#### الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique



Université de Biskra Faculté des Sciences et de la Technologie Département de Génie Mécanique Filière : Génie Mécanique Option: conception mécanique et productique

Réf:

# Mémoire de Fin d'Etudes En vue de l'obtention du diplôme de:

# MASTER

# Thème

# Détermination de la limite d'optimisation (augmentation de puissance et du couple) des moteurs diesel modernes

Présenté par:

DHAHOUA Med Abdenour

Proposé et dirigé par: Mr. BENARFAOUI Arfaoui

Promotion: 2017

Dédicaces

A mes chers parents

Pour tous les amis et la famille, pour leur patience, leur encouragement et leur soutien affectif sans lequel ce travail n'aurait pu être mené à bien

A tous ceux qui me sont chers

## je remercie ALLAH le tout

puissant qui m'a éclairé le bon chemin

je remercie mes parents pour leur encouragement et leur confiance en moi

je remercie mon encadreur **Mr.Arfaoui BENARFAOUI** de m'avoir encadré durant cette année de préparation du projet de fin d'étude et de m'avoir guidé et m'a mis sur la bonne voie de la Recherche

Je tiens à exprimer mes sincères remerciements aux membres du jury d'avoir accepté ce travail.

# LISTE DES FIGURES

# **Chapitre I**

- Fig.1 admission
- Fig.2 compression
- Fig.3 combustion et détente
- Fig.4 échappement
- Fig.5 diagramme moteur
- Fig.6 l'épure circulaire
- Fig.7 diagramme mixte
- Fig.8 diagramme réel

# **Chapitre II**

- Fig.1 la courbe d'admission
- Fig.2 la courbe de la compression
- Fig.3 courbe de détente
- Fig.4 la courbe d'échappement
- Fig.5 représentation de chaine de rendement du moteur à combustion interne
- Fig.6 la course du piston
- Fig.7 masse du groupe piston
- Fig.8 masse de la bielle
- Fig.9 masse du coude du vilebrequin
- Fig.10 charge sur l'axe du piston
- Fig.11 distribution de charge dans le cas de traction (Webster et al 1983)
- Fig.12 Les chargements et les fixations sur la bielle
- Fig.13 Les forces exercées sur le mécanisme bielle manivelle

# **Chapitre IV**

- Fig.1 point de masse de calculateur
- Fig.2 lecture des données
- Fig.3 Repérage des maps

- Fig.4 Map EGR
- Fig.5 Courbe du couple moteur
- Fig.6 Map d'accélération

## LISTE DES TABLEAUX

- **TABLEAU I.1:**l'ordre d'injection
- **TABLEAU II.1:**Récapitulatif
- **TABLEAU II.2 :**Résultats de phase de compression et détente
- **TABLEAU II.3:**capacité thermique molaire moyenne des gaz à volume<br/>constant
- **TABLEAU II.4 :**énergie interne des produits de combustion
- **TABLEAU II.5 :** capacité calorifique des produits de combustion
- **TABLEAU II.6 :**l'énergie interne des gaz
- **TABLEAU II.7 :** Caractéristique mécanique typiques
- **TABLEAU II.8 :**Caractéristique chimique de la bielle.
- **TABLEAU II.9 :**Caractéristique thermique et mécanique de la bielle
- **TABLEAU II.10 :**Caractéristique géométrique de bielle.
- **TABLEAU II.11 :**La pression appliquée sur la bielle.
- **TABLEAU II.12 :** Caractéristique mécanique du vilebrequin
- **TABLEAU II.13 :**le décalage des différentes étapes
- **TABLEAU II.14 :**les résultats en fonction de l'angle de rotation de<br/>vilebrequin
- **TABLEAU II.15 :**les résultats en fonction de l'angle de rotation de<br/>vilebrequin
- **TABLEAU II.16 :**couple totale du moteur

## LISTE DES GRAPHE

- graphe n°01 Diagramme réel du moteur
- graphe n°02 déplacement du piston
- graphe n°03 vitesse du piston
- graphe n°04 accélération du piston
- graphe n°05 les efforts agissants sur l'axe de piston
- graphe n°06 Les Forces exercées sur le mécanisme bille-manivelle
- **graphe n°07** Variation  $\sum Ti = f(\phi)$
- graphe n°08 le couple totale du moteur F4L912
- graphe n°09 couple à faible régime
- graphe n°10 le couple à régime élevé

# Nomenclature

| PMH                   | Point mort haut                                                                   | -       |
|-----------------------|-----------------------------------------------------------------------------------|---------|
| PMB                   | Point mort bas                                                                    | -       |
| AOA                   | Avance à l'Ouverture à l'Admission                                                | -       |
| RFA                   | Retarde Fermeture à l'Admission                                                   | -       |
| AOE                   | Avance à l'Ouverture à l'Echappement                                              | -       |
| RFE                   | Retarde Fermeture à l'Echappement                                                 | -       |
| AI                    | L'Avance à l'Injection                                                            | -       |
| ς                     | Rapport volumétrique (compression)                                                | -       |
| Po                    | Pression ambiantes                                                                | MPa     |
| T <sub>0</sub>        | Température ambiante                                                              | K°      |
| Pr                    | Pression des gaz résiduels                                                        | MPa     |
| Tr                    | Température des gaz résiduels                                                     | K°      |
| <b>n</b> 1            | L'exposant poly-tropique phase de compression                                     | -       |
| <b>n</b> <sub>2</sub> | L'exposant poly-tropique phase de détente                                         | -       |
| $\Delta_{\mathrm{T}}$ | Augmentation de température du fluide moteur admis par le contact avec les parois | K°      |
| Ta                    | Température de fin d'admission                                                    | K°      |
| Tz                    | Température maxi                                                                  | K°      |
| Po                    | Pression atmosphérique                                                            | MPa     |
| $\lambda_1$           | Coefficient d'admission supplémentaire                                            | -       |
| λ2                    | Coefficient de balayage de chambre de combustion                                  | -       |
| $\lambda_t$           | Coefficient de correction de la chaleur spécifique                                | -       |
| m                     | L'exposant poly-tropique de la détente des gaz résiduels pendant la phase         | -       |
| 6                     | d'admission                                                                       |         |
| ξz                    | Coefficient d'utilisation de la chaleur au point z                                | -       |
| ξb<br>                | Coefficient d'utilisation de la chaleur au point b                                | -       |
| Uc                    | l'énergie interne de combustion                                                   |         |
| γ                     | L'exposant adiabatique                                                            | -       |
| a                     | Coefficient de l'excès d'aire                                                     | -       |
| $\mathbf{M}_{0}$      | Quantité théorique de l'aire                                                      | Mole/kg |
| $M_1$                 | Quantité réel d'air admis dans le cylindre                                        | Mole/kg |
| $M_2$                 | Quantité des gaz brulé                                                            | Mole/kg |

| M1a                       |                                                        |         |
|---------------------------|--------------------------------------------------------|---------|
| ΔΜ                        | Variation du volume après la combustion                | Mole/kg |
| Vo                        | Volume occupé par l'air aspiré                         | L       |
| $\mathbf{V}_{\mathbf{h}}$ | Cylindre unitaire de moteur                            | L       |
| 3                         | Taux de compression                                    | -       |
| $\eta_v$                  | Coefficient d'admission (de remplissage)               | -       |
| γr                        | Coefficient des gaz résiduels                          | -       |
| λ                         | Coefficient de construction de la bille-manivelle      | -       |
| Ср                        | Chaleur spécifique de l'aire fraîche                   | -       |
| C <sub>p</sub> '          | Chaleur spécifique du mélange (air+gaz résiduelles)    | -       |
| <b>C</b> <sub>p</sub> "   | Chaleur spécifique des gaz résiduels                   | -       |
| Q                         | Quantité de chaleur transférée                         | -       |
| βo                        | Coefficient de variation du volume après la combustion | -       |
| β                         | Coefficient de variation réelle                        | -       |
| βz                        | Coefficient de variation au point Z                    | -       |
| Qh                        | Pouvoir calorifique du combustible                     | J/kmole |
| U                         | L'énergie interne de k mole des gaz                    | J/kmole |
| ρ                         | Rapport d'augmentation de volume pendant la combustion | -       |
| $\mathbf{W}_{\mathbf{i}}$ | Travail indiqué théorique                              | kw      |
| Wref                      | Travail de référence                                   | kw      |
| Pi                        | Pression indiquée théorique moyenne                    | MPa     |
| Pi'                       | Pression indiquée réelle moyenne                       | MPa     |
| Pm                        | Pression correspondante à la perte mécanique           | MPa     |
| S                         | Cours du piston                                        | mm      |
| Ν                         | Nombre de tour par minute                              | Tr/min  |
| Pe                        | Pression effective                                     | MPa     |
| Pm                        | Pression correspond à la perte mécanique               | MPa     |
| Nic                       | Puissance indiquée pour un seul cylindre               | kw      |
| $\mathbf{N}_{\mathbf{i}}$ | Puissance indiquée pour quatre cylindre                | kw      |
| Ne                        | Puissance effective                                    | kw      |
| Pm                        | Pression mécanique moyenne                             | MPa     |
| $\eta_i$                  | rendement indiqué                                      | %       |
| η <sub>mec</sub>          | rendement mécanique                                    | %       |
|                           |                                                        |         |

| ηε                        | rendement effectif (globale)                     | %                |
|---------------------------|--------------------------------------------------|------------------|
| $\eta_{th}$               | rendement théorique                              | %                |
| $\eta$ thrmo              | rendement thermodynamique                        | %                |
| $\mathbf{g}_{\mathbf{i}}$ | consommation spécifique indiquée                 | g/kwh            |
| ge                        | consommation effective moyenne                   | g/kwh            |
| τ                         | nombre de temps                                  | temps            |
| i                         | nombre de cylindre                               | cylindre         |
| n                         | vitesse de rotation                              | tr/min           |
| S                         | course du cylindre                               | mm               |
| D                         | diamètre de cylindre                             | mm               |
| ΔD                        | erreur relative                                  | %                |
| L                         | longueur de la bielle                            | mm               |
| R                         | rayon de la manivelle                            | mm               |
| ω                         | vitesse angulaire de la manivelle                | rad/s            |
| Fp                        | section de piston                                | mm²              |
| X                         | déplacement du piston                            | cm <sup>2</sup>  |
| β                         | l'angle que fait la bille avec l'axe du cylindre | ٥                |
| φ                         | l'angle de rotation de vilebrequin               | ٥                |
| δĸ                        | intervalle entre deux allumages successifs       | ٥                |
| J                         | accélération du piston                           | m/s <sup>2</sup> |
| J <sub>max</sub>          | variations de l'accélération maximale            | m/s <sup>2</sup> |
| J <sub>min</sub>          | variations de l'accélération minimale            | m/s <sup>2</sup> |
| m <sub>gp</sub>           | masse du groupe piston                           | Kg               |
| mgb                       | masse du groupe bielle                           | Kg               |
| m <sub>b</sub>            | masse de la bielle                               | Kg               |
| mc                        | masse des clips de l'axe de piston               | Kg               |
| ms                        | masse des segments                               | Kg               |
| ma                        | masse de l'axe de piston                         | Kg               |
| mp                        | masse de piston                                  | Kg               |
| $\mathbf{m}_1$            | masse du pied de la bielle                       | Kg               |
| <b>m</b> 2                | masse de tête de la bielle                       | Kg               |
| mc                        | masse du coude de vilebrequin                    | Kg               |
| mm                        | masse de maneton sans bras                       | Kg               |

| masse des bras concentrées au maneton        | Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| masse des bras concentrées de tourillon      | Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| masse en mouvement de translation            | Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| masse en mouvement de rotation               | Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| l'effort agissant sur l'axe de piston        | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| force de la pression des gaz                 | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| l'effort d'inertie                           | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| inertie du premier ordre                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| inertie de deuxième ordre                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| force centrifuge                             | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| effort des gaz exercé sur la tête du piston  | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| surface de la tête du piston                 | mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| effort agissant sur les parois du cylindre   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| effort agissant sur la longueur de la bielle | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| effort agissant sur le palier du vilebrequin | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| effort tendant à tourner le vilebrequin      | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| couple moteur $C_{max}$ et $C_{min}$         | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                              | masse des bras concentrées au maneton<br>masse des bras concentrées de tourillon<br>masse en mouvement de translation<br>masse en mouvement de rotation<br>l'effort agissant sur l'axe de piston<br>force de la pression des gaz<br>l'effort d'inertie<br>inertie du premier ordre<br>inertie du premier ordre<br>inertie de deuxième ordre<br>force centrifuge<br>effort des gaz exercé sur la tête du piston<br>surface de la tête du piston<br>effort agissant sur les parois du cylindre<br>effort agissant sur le palier du vilebrequin<br>effort tendant à tourner le vilebrequin<br>effort tendant à tourner le vilebrequin |

# Sommaire

## Nomenclature Introduction Générale

### **CHAPITRE I : principe de la combustion chez les moteurs diesel**

| <ul><li>I-1) Généralité sur les moteur thermique</li><li>a/ moteur à combustion</li></ul> | 1 |
|-------------------------------------------------------------------------------------------|---|
| externe1                                                                                  |   |
| <b>b</b> / moteur à combustion interne                                                    | 1 |
| I-2) Cycle de travail                                                                     | 2 |
| <b>I-3</b> ) L'ordre d'injection                                                          | 3 |
| I-4) Le diagramme théorique d'un moteur diesel                                            | 3 |
| I-5) Diagramme mixte                                                                      | 6 |
| I-6) Diagramme réel d'un moteur diesel                                                    | 7 |

## **CHAPITRE II : Détermination de l'expression du couple** 1<sup>er</sup> partie : étude thermodynamique

| II.1) Le choix des valeurs caractérisant de moteur             | 8  |
|----------------------------------------------------------------|----|
| II.2) Données relatives au moteur DV6                          | 8  |
| <b>II.3</b> ) Etablissement du diagramme réel du moteur F4L912 | 9  |
| 3-1) Admission                                                 | 9  |
| 3-2) Compression                                               | 13 |
| 3-3) Combustion et détente                                     | 14 |
| 3-4) Echappement                                               | 21 |
|                                                                |    |

### 2eme partie : Etude Cinématique

| II.2.1) Généralités                                           | 27 |
|---------------------------------------------------------------|----|
| <b>II.2.2</b> ) Fonction de déplacement du piston $X=f(\phi)$ | 27 |
| <b>II.2.3</b> ) Fonction de Vitesse du piston $V = f(\phi)$   | 28 |
| <b>II.2.4</b> ) Fonction d'accélération du piston J           | 29 |
| <b>II.3</b> ) Tracage des courbes                             | 30 |
|                                                               |    |

## **3eme partie : Etude Dynamique**

| II.3.1) Généralités                                             |  |
|-----------------------------------------------------------------|--|
| II.3.2) Calcul des masses                                       |  |
| <b>II.3.3</b> ) Forces exercées sur le système bielle-manivelle |  |
| <b>II.3.4</b> ) Les efforts agissant sur l'axe du piston        |  |
| II.3.5) Les efforts agissant sur la bielle                      |  |
| II.3.6) analyse des forces                                      |  |
| II.3.7) Efforts exercé sur le vilebrequin                       |  |

| II.3.8) Tracé de la courbe                                |    |
|-----------------------------------------------------------|----|
| T=f(Q)44                                                  |    |
| <b>II.3.9</b> ) Expression du couple moteur               |    |
| II.3.10) Discussion                                       | 52 |
| CHAPITRE III : Simulation des charges appliquées sur      |    |
| le système bielle-manivelle                               |    |
| III.1) Fonctionnement de logiciel SOLIDWORKS              | 53 |
| 1.1) Introduction aux éléments finis                      |    |
| <b>1.2</b> ) Le maillage                                  | 54 |
| III.2) Rapport de simulation                              | 57 |
| 2.1) Informations sur le modèle                           | 57 |
| <b>2.2</b> ) Unités                                       | 58 |
| 2.3) Propriétés du matériau                               | 59 |
| 2.4) Actions extérieures                                  | 60 |
| 2.5) Définitions des connecteurs                          | 61 |
| 2.6) Informations sur le maillage                         |    |
| 2.7) Résultats de l'étude                                 | 63 |
| <b>2.8</b> ) Conclusion                                   | 67 |
| <b>CHAPITRE IV : Reprogrammation avec logiciel WinOLS</b> |    |

| IV.1) WinOLS                      | 68 |
|-----------------------------------|----|
| IV.2) Etape de la reprogrammation | 68 |

# **INTRODUCTION**

L'optimisation de puissance est l'augmentation des valeurs du couples et vitesse et rendement du moteur cette étude nous permis de calculer ses valeurs

Les constructeurs n'ont pas directement paramétré le boitier au maximum de son rendement. En effet, ils règlent les moteur en fonction des différences de contraintes ; les véhicules doivent pouvoir rouler aussi bien dans des lieux plus froid en hiver et au plus chaud en été, et cela, quel que soit le type de conduite de l'usager. Aussi la qualité des carburant n'est également pas identique dans tous les pays et les constructeurs doivent dès lors trouver un compromise dans leur programmation d'origine pour que chaque véhicule fonctionne correctement partout.

La reprogrammation permet d'avoir plus de puissance dans une certaine tolérance sans changer les organes du moteur. L'accélération d'un véhicule dépend de la quantité de gazole injectée, cette dernière est gérée par un boîtier électronique l'Engine Control Unit (ECU ou calculateur). Le principe est donc de modifier les paramètres d'origine de l'ECU afin de changer la courbe de carburant pour augmenter la puissance et le couple moteur du véhicule. Cette opération peut s'effectuer avec des logiciels spécifiques.

L'objectif de notre travail consiste à déterminer la limite, en pourcentage, que peut atteindre cette optimisation pour que le technicien programmeur le considère comme limite à ne pas dépasser. Pour atteindre cet objectif nous avons scindé notre travail en quatre chapitres dont **le premier chapitre** on décrit le principe de la combustion chez les moteurs diesel d'aujourd'hui. Dans le **deuxièmes chapitre** nous allons déterminé l'expression du couple moteur et on dévisse ce chapitre on trois partie : thermodynamique, la cinématique et la dynamique pour déterminer les efforts exercés sur l'ensemble bielle manivelle dus aux pressions des gaz et aux forces d'inertie lors de la combustion, et tracé le couple moteur. Dans **le troisième chapitre** ; on simule la charge appliquée sur notre système pour voir son effet sur nos pièces et déduire le pourcentage de sécurité à ne pas dépasser sur notre moteur. Et dans **le dernier chapitre** on verra comment ce fait une reprogrammation avec logiciel <u>WinOLS</u> et les étapes à faire et les cartographies à modifier.

CHAPITRE I : principe de la combustion chez les moteurs diesel

#### <u>I-1- Généralité sur les moteurs thermique</u>

Les moteurs thermiques sont des machines transformant l'énergie calorifique (chaleur) en énergie mécanique (travail).

Les moteurs a combustion se répartissent en trois classes :

1- Les moteurs alternatifs parmi lesquels on distingue les moteurs a explosion (allumage commandé) et les moteurs diesel (auto-allumage)

2- Les moteurs rotatifs ou turbines.

3- Les moteurs à réaction que l'on peut subdiviser en réacteur proprement dit et en (statoréacteur, pulsoréacteur et fusée)

#### > MOTEURS A COMBUSTION EXTERNE :

Ce type de moteur n'est plus utilisé aujourd'hui, bien que certains inventeurs isolés aient mis au point au cours des années des modèles expérimentaux de voitures mues par un moteur à vapeur, le combustible utilisé pour produire la vapeur brule à l'extérieur du moteur, c'est d'où vient ce nom de moteur à combustion externe.

#### > MOTEURS A COMBUSTION INTERNE :

C'est comme son nom l'indique, une machine thermique dans la quelle le moteur reçoit la chaleur de combustion d'un combustible brulant à l'intérieur de ce moteur, alors la source chaude se trouve en quelque sorte, à l'intérieur de celui-ci.

Les moteurs a combustion interne de type à piston sont largement employés (automobile, tracteur, avion, ect...).

L'organe principal de tout le moteur à piston est le cylindre, dans lequel se déplace un piston relié par l'intermédiaire d'un système bielle-manivelle, à l'organe consommateur du travail. Ma chambre de combustion comporte deux orifice fermé par des soupapes dont l'une permet au début de cycle le pénétration de l'air ou d'un mélange combustible et l'autre à l'échappement des gaz brulés après la réalisation du cycle

Un tel moteur se compose essentiellement d'un ou plusieurs cylindres dans chacun desquels se déplace un piston, ce piston constitue la paroi mobile de l'enceinte dans laquelle se produit la combustion

Le piston coulissant dans le cylindre ne peut avoir qu'un mouvement alternatif (linéaire). Pour obtenir un mouvement circulaire continu, on relie le piston a l'arbre moteur (vilebrequin) par une bielle articulée a ces deux extrémité

#### I-2) Cycle de travail :

Sur ce type de moteur Diesel, le processus de travail se déroule en quatre temps :

- temps d'admission
- temps de compression
- temps de travail ou temps moteur
- temps d'échappement

#### Temps d'admission : 1er temps

Le piston se déplace vers le bas. La soupape d'admission est ouverte. Le cylindre aspire uniquement de l'air.



Figure 1-1 admission

#### Temps de compression : 2ème temps

Le piston se déplace vers le haut, tandis que les deux soupapes sont fermées. L'air est à présent comprimé.

Le gazole est injecté dans l'air chaud, au moyen d'un injecteur situé entre les soupapes.

A cause de la chaleur de l'air comprimé, le carburant pulvérisé en fines gouttelettes s'enflamme.

#### Temps de travail : 3ème temps



Figure 1-3 combustion détente

Sous l'effet de l'augmentation de pression, Le piston est repoussé vers le bas et l'énergie est transmise au vilebrequin.

Pendant cette phase, les deux soupapes sont fermées.

#### Temps d'échappement : 4ème temps

Le piston remonte pendant que la soupape d'échappement est ouverte.

Au cours de cette phase, le mélange brûlé est refoulé vers l'extérieur (soupape d'échappement ouverte).



#### **I.3)** L'ordre d'injection :

#### Moteur à 4 cylindres:

L'ordre de marche utilisé pour les moteurs à 4 cylindres est : 1-3-4-2 la répartition des phases des différents cylindres au d'un cycle complet est résumée dans le tableau n° 01 suivant :[3]

| CYL 1 | admission    | compression  | Comb_Détente | Echappement  |
|-------|--------------|--------------|--------------|--------------|
| CYL 2 | compression  | Comb_Détente | Echappement  | admission    |
| CYL 3 | Echappement  | admission    | compression  | Comb_Détente |
| CYL 4 | Comb_Détente | Echappement  | admission    | compression  |

 Tableau 1-1 : l'ordre d'injection [3]

#### I-4) Le diagramme théorique d'un moteur diesel :

#### <u>1er temps : L'admission</u>

Remplissage des cylindres avec l'air à pression Atmosphérique: lorsque le piston se déplace de son PMH à son PMB, il y a aspiration d'air par la soupape d'admission ouverte.

Le cylindre restant en communication avec l'atmosphère, on peu dire que la pression dans le cylindre est de 1 atm, **P=1bar** pendant 1'admission.

La transformation peut être représentée par la droite (0-1).[4]



#### <u>2ème temps : La compression</u>

L'air est fortement comprimé et porter à une température supérieure à celle d'autoinflammation du carburant, le rapport volumétrique est très élevé.

Compression isentropique : courbe (1-2) figure ci dessous :

#### <u>3ème temps : La combustion Détente</u>

Les soupapes d'admission et d'échappement sont toujours fermées ; Le carburant est injecté sous pression en fin de compression et s'enflamme spontanément au contact de l'air surchauffé.

#### 1. Combustion à pression constante : droite (2-3)

C'est une transformation au cours de laquelle le volume et la température du gaz varient alors que sa pression reste constante. Elle ne peut résulter que d'un apport ou d'un retrait de chaleur au gaz.

#### 2. Détente isentropique

Détente du gaz chaud le long de la courbe (3-4) qui ramène le volume à V2, mais à une pression P5 supérieure à celle de l'atmosphère.

#### <u> 4ème temps : Échappement (évacuation des gaz brûlés) :</u>

Au point 4, la soupape d'échappement s'ouvre pour que les gaz brûlés sortent à l'extérieur du cylindre (début d'échappement). La pression chute de P4 à P1 (droites (4-1). Le piston se déplace du P.M.B au P.M.H (droites (1-0)), c'est son premier point de départ, pour chasser les gaz brûler et permettre le commencement d'un nouveau cycle.[4]

#### I.4.1) l'épure circulaire

AOA : caractérise l'angle d'Avance à l'Ouverture à l'Admission.

- RFE : caractérise l'angle de Retard à la Fermeture à l'Admission.
- AOE : caractérise l'angle d'Avance à l'Ouverture à l'Echappement.
- RFE : caractérise l'angle de Retard à la Fermeture à l'Echappement.

AI : caractérise l'Avance à l'Injection



Figure 1-6 l'épure circulaire [2]

#### I.5) Diagramme mixte :

Dans le cycle à introduction mixte de la chaleur ; une partie de cette chaleur est introduite à volume constant et l'autre partie est introduite à pression constante il est composé des transformations suivante :

- une compression adiabatique (1-2)

- une introduction de la chaleur à volume Constant (2-3)
- une introduction de la chaleur à pression Constante (3-4)
- une détente adiabatique (4-5)
- une prise de chaleur à volume constant (5-1)



processus du dégagement de la chaleur et de la formation du mélange se fait au fur et à mesure de l'introduction du combustible dans le cylindre, et part conséquent, les premières portions du combustible se brûlent spontanément presque à volume constant, alors que les autres portions se brûlent par la suite presque à pression constante pour cette raison on suppose que les moteurs diesels rapides fonctionnent selon le cycle à introduction mixte de la chaleur.[4]

#### I.6) Diagramme réel d'un moteur diesel :

Le diagramme théorique ne tient pas compte de certains inconvénients :

- La mise en mouvement d'un gaz n'est pas instantanée due à son inertie et l'ouverture des soupapes n'est pas instantanée.

- La variation de la température est modifiée par les échanges avec l'extérieur.

- Le délai d'inflammation n'est pas pris en compte et la combustion complète demande un certain temps.

Pour remédier à ces problèmes et obtenir un rendement aussi bon que possible et un diagramme le plus proche possible du diagramme théorique, on modifie le temps d'ouverture des soupapes ainsi que le point d'allumage de l'ensemble gazeux.[4]



Figure 1-8 diagramme réel [4]

# CHAPITRE II :

# Détermination de l'expression du couple

# 1<sup>er</sup> partie : étude thermodynamique

#### II.1) le choix des valeurs caractérisant le moteur :

Les paramètres thermodynamiques caractérisant les moteurs diesel sont données dans des intervalles ; Les valeurs choisies doivent correspondre aux dimensions caractéristiques du moteur en question (la course et l'alésage), c'est-à-dire quelles sont déterminées par le calcul.

#### II.2. Données relatives au moteur DV6 :

**1-pression température ambiantes :**  $P_0 = 0.1 \text{ M Pa} \longrightarrow T_0 = 290 \text{ }^{\circ}\text{K}$ 

2- Pression et Température des gaz résiduels :

 $P_r = 1.05 P_o$   $\longrightarrow$   $P_r = 0.112 M Pa$  $T_r = 700 a 900 °K$   $\longrightarrow$   $T_r = 850 °K$ 

**3-** L'exposants poly tropique :

| 3-a/ Phase de compression : | n1 = 1.34 à 1.39 | > | n1 = 1.37 |
|-----------------------------|------------------|---|-----------|
| 3-b/ Phase de détente :     | n2 = 1.14 à 1.23 | > | n2 = 1.19 |

4- Augmentation de température du fluide moteur admis par le contact avec les

**parois**  $\Delta T$  :  $\Delta T = 20 \text{ à } 40 \text{ °C} \longrightarrow \Delta T = 31 \text{ °C}$ 

**5- Coefficient d'admission supplémentaire :**  $\lambda 1 = 1.02 \text{ à } 1.07 \quad \square \quad \lambda 1 = 1.05$ 

6- Coefficient de balayage de la chambre de combustion :

 $\lambda_2 = 0 \text{ à } 1 \longrightarrow \lambda_2 = 1$ 

7- Coefficient de correction de la chaleur spécifique  $\lambda$  t en fonction de  $\alpha$ :

 $\alpha = 1.7$   $\longrightarrow \lambda t = 1.1$ 

8- Exposant polytropique m : m=1.5

9- Coefficient d'utilisation de la chaleur au point z :

 $\xi z = 0.65 \text{ à } 0.85 \longrightarrow \xi z = 0.81$ 

10- Coefficient d'utilisation au point B :

 $\xi b = 0.85 \text{ à } 0.90 \longrightarrow \xi b = 0.88$ 

#### II.3) Etablissement du diagramme réel d'un moteur à quatre temps

Tous les moteur thermique fond appel aux transformation thermodynamique d'une masse gazeuse pour passer de l'énergie chimique contenue dans le combustible à l'énergie mécanique directement exploitable sur l'arbre moteur, en portant les valeurs de pression du gaz à chaque instant sur l'axe des ordonnées, et les volumes qu'ils ont causés ces pressions, sur l'axe de abscisses, pendant un cycle en peut obtenir le diagramme théorique d'un moteur qui se compose de quatre partie qui se succèdent dans l'ordre ci-après :

- 1- Admission : le premier temps
- 2- Compression : le deuxième temps
- 3- Combustion-détente : le troisième temps
- 4- Echappement : le quatrième temps [1].

#### II.3.1) Admission :

Théoriquement, la phase d'admission commence lorsque le piston arrive au point mort haut(PMH) ; au moment ou la soupape d'échappement vient de se fermer et celle d'admission s'ouvre jusqu'à ce que le piston atteigne le point mort bas(PMB).

Dans cette phase on cherche à remplir au maximum le cylindre de temps pour augmenter la puissance du moteur.[1]

# a) Détermination de la quantité théorique de l'air nécessaire pour une combustion complète d'un Kg de combustible :

C'est la quantité théorique d'oxygène  $O_{th}$ ; minimale qui peut être importé pour l'oxydation complète **d'1 Kg** de combustible liquide composé essentiellement du C Kg de carbone, H Kg de hydrogène et de O Kg d'oxygène ; Elle est décrite par les réactions chimiques :

> $C + O_2 \longrightarrow CO_2$ 2 H<sub>2</sub> + O<sub>2</sub>  $\longrightarrow$  2 H<sub>2</sub>O

Nous savons que le combustible renferme par Kg :

On peut écrire :

C Kg de (C) + C/12 K Mole de (O<sub>2</sub>)  $\longrightarrow$  C/12 K Mole de (CO<sub>2</sub>) H Kg de (H) + H/4 K Mole de (O<sub>2</sub>)  $\longrightarrow$  H/2 K Mole de (H<sub>2</sub>O)

Alors pour la combustion complète d'un Kg de combustible il faut :

(C/12 + H/4) K Mole de  $(O_2)$  mais comme une partie de  $(O_2)$  existe déjà dans le combustible soit (O/32) K Mole donc l'oxygène demandé sera :

(C/12 + H/4 - O/32) K Mole et comme l'air contient 21% de  $(O_2)$  c'est-à-dire 1 m<sup>3</sup> de  $(O_2)$  correspond à 4.76 m<sup>3</sup> d'air donc la quantité théorique d'air nécessaire est :

 $M_0 = 4.76 (C/12 + H/4 - O/32) K Mole$ 

On a: C = 0,870 ; H = 0,126 ; O = 0,004Donc:  $M_0 = 0.494445$  K Mole/ Kg

#### b) La quantité réelle d'air admise dans le cylindre:

Dans la combustion la quantité d'air réellement utile (M<sub>1</sub>) est un peut supérieur à la quantité théorique pour une combustion complète; c'est-à-dire avec un excès d'air symbolisé par un coefficient  $\alpha$ ; telle que ( $\alpha > 1$ ).

| On a : | $M_1 = \alpha$ . Mo et $\alpha = 1.7$ | (2.1) |  |
|--------|---------------------------------------|-------|--|
|        | $M_o = 0.494445$ K Mole/Kg            |       |  |
| A.N:   | $M_1 = 0.840556 \text{ K}$ Mole       |       |  |

#### **Remarque**

Selon la valeur de coefficient, le mélange air+combustible peut être pauvre, stœchiométrique ou riche :

 $\alpha > 1$ : le mélange est dit pauvre

 $\alpha = 1$ : le mélange est dit stœchiométrique

 $\alpha < 1$ : le mélange est dit riche

#### c) Détermination des paramètres d'admission :

#### **Détermination de Pa :**

Pendant le corse d'admission, l'air introduit dans le cylindre est lié aux paramètres suivant:

> La température ambiante supposée égale à  $T_0 = 17$  °C.

> La pression atmosphérique qui est égale à  $P_0 = 0.1$  M Pa.

> L'augmentation de la température de l'air en contact avec les parois du cylindre  $\Delta T = 31 \text{ °C}.$ 

La pression des gaz résiduels Pr qui est choisie égale à 0.112 M Pa.

> La température des gaz résiduels Tr = 850 °K.

On a : Pa = Po . 0.85

(2.2)

avec : 0.85 est la pression atmosphérique dans la chambre de combustion
A.N: Pa = 0.085 M Pa

#### d) Détermination des coefficients d'admission et des gaz résiduels: (nv,yr)

Coefficient des gaz résiduels (yr) :

on a:  $\gamma = \frac{M_r}{M_1}$ 

(2.3)

et: 
$$M_r = \frac{(P_r.V_c)}{(8314.T_r)} = \frac{(P_r.V_h)}{(8314.(\varepsilon-1)).T_r}$$

(2.4)

*donc*: 
$$M_1 = \frac{(P_0.V_0)}{8314.T_0}$$

(2.5)

 $\label{eq:Vo} \textbf{V}_{\textbf{o}} = le \mbox{ volume occupé par l'air aspiré. } \quad V_o = \eta_v. \ V_h$ 

Tel que : V<sub>h</sub> est le volume d'écrit par la course du piston

Tel que :  $\eta_v = \text{coefficient d'admission.}$ 

donc: 
$$\gamma_r = \frac{M_r}{M_1} = \frac{P_r \cdot T_0}{P_0} \cdot (\varepsilon - 1) \cdot T_r \cdot H_v$$

(2.6)

Coefficients d'admission (de remplissage) nv :

On a :  $\eta v = V_o/V_h$ 

(2.7)

Au point **a** du cycle on a :  $P_a. V_a = R. (M_{1a} + M_r) .T_a$ 

(2.8)

Et pour la quantité totale d'air 
$$M_1$$
:  $P_0.V_0 = R.M_1.T_0$  (2.9)

Dans le cas général, la valeur de  $M_1$  est grande par rapport à  $M_{1a}$ 

Soit: 
$$\lambda = (M_1 + M_r) / (M_{1a} + M_r)$$
 (2.10)

Et on a: le coefficient supplémentaire  $\lambda_1 = 1.02 \text{ à } 1.07$  on a choisi  $\lambda_1 = 1.05$ 

alors: 
$$M1a + Mr = \frac{M1 + Mr}{\lambda 1} = \frac{Pa.Va}{R.Ta}$$

(2.11)

Ou: 
$$M_1 + M_r = \lambda 1. Pa. Va/(R.Ta)$$
 (2.12)

Et:  $M_1 = (P_0.V_h). \eta v / (R.T_o)$  (2.13)

Donc: 
$$(M_{1a} + M_r) / M_1 = (\lambda_1. P_a. V_a. T_o) / (T_a. P_o. V_h. \eta_v) = 1 + \gamma_r$$
 (2.14)

Avec: 
$$V_a / V_h = \epsilon V_c / ((\epsilon - 1) V_c) = \epsilon / (\epsilon - 1)$$
 et :  $\epsilon = V_a / V_c$  (2.15)

(2.16)

Donc:  $\eta_v = (\lambda_1. \epsilon. P_a. T_o) / (\epsilon - 1). P_o. T_a. (1+\gamma_r)$ 



Figure 2-1 La courbe d'admission [5]

#### Calcul de Ta :

La température de fin d'admission Ta peut être déterminée en écrivant l'équation d'équilibre d'énergie entre l'air admis et le mélange air + gaz résiduels :

On définit :  $C_p$  : la chaleur spécifique de l'air frais.  $C_{p'}$  : la chaleur spécifique du mélange (air +gaz résiduelles)  $C_{p''}$  : la chaleur spécifique des gaz résiduelles. [5]

On pose :  $C_{p''} = \lambda_t . C_p$  (2.17)

Donc l'équation d'équilibre devient :

$$M_{1}.C_{p}.(T_{k}+\Delta T) + \lambda_{2}.M_{r}.C_{p}, T_{r} = (M_{1} + M_{r}) C_{p}.T_{a}$$
(2.18)

Avec  $\lambda_2$  est le coefficient du balayage choisi :  $\lambda_2 = 1$ 

Et:  $M_1 + M_r = M_1 (1 + M_1 / M_r)$ 

(2.19)

Donc :  $T_a = [M_1. C_p. (T_o + \Delta T) + M_r. T_r'. \lambda t. C_p] / [C_p. (M_1 + M_r)]$ 

(2.20)

Et:  $T_{r'} = T_r \cdot (P_a/P_r)^{(m-1)/m}$ 

(2.21)

m : est l'exposant poly tropique de la détente des gaz résiduels pendant la phase d'admission :



Ta : devient alors :

 $T_a = C_p. [M_1. C_p. (T_o + \Delta T) + M_r. T_r. \lambda t. (P_a/P_r)^{(m-1)/m}] / [C_p.(M_1+M_r)]$ 

(2.22)

Et comme:  $\gamma r = Mr/M1$ 

(2.23)

Ta: exprime en fonction de  $\gamma r$ : Ta= [ $\Delta T$ +To+  $\gamma r$ . Tr.  $\lambda t$ . (Pa/Pr)<sup>(m-1)/m</sup> ] /( $\gamma r$ +1)

(2.24)

En remplaçant γr par :  $(P_r.T_0) / P_0.(\epsilon - 1).T_r.\eta v$ (2.25)Et: ηv par :  $(\lambda 1. \epsilon. Pa. T_0) / (\epsilon - 1). P_0. Ta. (1 + \gamma r)$ (2.26)On obtient une équation à partir de la quelle on peut déterminer ny :  $\eta v = (1/(\epsilon - 1)) [T_0/(T_0 + \Delta T) . (P_a/P_0) . [\epsilon . \lambda 1 - \lambda t. (P_r/P_a)^{(1/m)}]$ (2.27) $\gamma r = (Pr/Pa) \cdot (To + \Delta T)/Tr \cdot [\varepsilon \cdot \lambda 1 - \lambda t \cdot (Pr/Pa)^{(1/m)}]$ Et: (2.28)Pa = 0.085 MPo = 0.1 M PaAvec : et A.N : η*v* = 0.932  $\gamma r = 0.030$ Et: Ta=316.43569 k° ta=43.43569 °C ou

#### **II.3.2.** Compression :

Après son arrivé au **PMB**, le piston revient en comprimant l'air dans le cylindre, les soupapes d'admission et d'échappement étant fermées ; Dans cette phase la température et la pression doivent s'augmenter d'une manière à permettre à la fin la combustion du mélange.

En réalité la phase de compression n'est pas une transformation adiabatique, car il existe un échange de chaleur entre le gaz et les parois du cylindre ; au début de la compression la température de l'air admis étais inférieure à celle des parois ce qui favorise le transfert de chaleur des parois vers les gaz admis

 $(\mathbf{Q} > \mathbf{0} \, \cdot \, \mathbf{n1} > \gamma)$ 

P, H1, X P20 Y 10 Jeckstin Type Trans



- Q : quantité de chaleur transférée.
- n1 : coefficient polytropique de compression.
- $\gamma$  : coefficient de l'adibate.

A la fin de la compression, la température des gaz sera plus élevée (pour qu'elle permette la combustion des gaz), alors dans ce cas il y a un transfert de chaleur des gaz vers les parois.

 $(\mathbf{Q} > \mathbf{0} \cdot \mathbf{n1} > \gamma)[\mathbf{5}].$ 

#### Figure 2.2 -la courbe de la compression[5]

Entre les deux étapes où la température des gaz passe d'une valeur faible à une valeur élevée, il existe un moment où celle –ci sera égale à la température des parois, à ce moment là on n'a pas de transfert de chaleur (instant adiabatique ( $Q = 0 \cdot n1 = \gamma$ )

Pour simplifier le calcul on fixe un exposant poly tropique moyen calculé à partir de la conservation de l'énergie avant et après que la température des gaz soit égale à celle des parois.

La valeur du coefficient déterminée pratiquement est :

n1 = (1.34 a 1.39); n1=1.37

#### a) Calcule des paramètres de la compression (Pc et Tc) :

| A.N: <b>Pc</b> = | 4.1222 M Pa              | ; Pc = 41 l   | Bar | ; Tc = 902.71687 °K   | ; tc = 629.71°C |
|------------------|--------------------------|---------------|-----|-----------------------|-----------------|
| Donc :           | Tc = Ta. ɛn1             | et            |     | Pc = Pa. ɛn1          |                 |
| Avec :           | $Pc/Pa = \varepsilon n1$ | et            |     | Vc/Va=1/e             |                 |
| (2.30)           |                          |               |     |                       |                 |
| Donc :           | Tc = Ta. (Vc/Va)         | a). (Pc/Pa) n | 1   |                       |                 |
| (2.29)           |                          |               |     |                       |                 |
| On a :           | Pa. Va = 8314. I         | Ma. Ta        | et  | Pc. $Vc = 8314.Mc.Tc$ |                 |

#### II.3.3. Combustion et détente :

La combustion est l'ensemble des phénomènes physiques, chimiques et thermodynamiques qui accompagnent la combinaison d'un combustible avec l'oxygène.

Le mélange gazeux formé d'un liquide a l'état vapeur ou d'un gaz et d'air ambiant porte le nom de mélange carburé ; L'air apporte l' $O_2$  nécessaire à la combustion, appelé comburant.

C'est la phase essentielle du cycle puisque c'est pendant cette phase que l'énergie contenue dans le combustible est libérée par la combustion, elle transforme dans les meilleurs conditions l'énergie calorifique libérée par la combustion, en travail cette transformation se fait dans un temps très court avec des conditions thermique très dures. Lorsque le piston atteint le PMH on injecte dans l'air comprimé le combustible à une pression supérieur à celle de ce dernier et sous forme de très fines gouttelettes, ce contact provoque la combustion qui tend à augmenter la pression, ce qui pousse le piston du PMH au PMB.

Pratiquement le combustible est injecté avant le PMH et se termine après ce point, pour donner au combustible le temps de se bruler, le décalage entre le début d'injection et le PMH s'appelle l'avance d'injection correspondant à un angle qui varie entre 14° et 18°.[**1**]

#### a)- Les contrains influant sur la combustion sont :

La combustion dépend de la forme et la vitesse de la réaction chimique.

- Le rapport de compression (ε).
- L'angle d'avance d'injection (AI).
- La forme de la chambre du moteur.
- La méthode d'alimentation.
- La vitesse de rotation du moteur
- La combustion dépend de la forme et la vitesse de la réaction chimique

#### b)- Le processus thermodynamique de la combustion :

Dans le moteur diesel la combustion est la conséquence directe du phénomène d'autoinflammation du combustible injecté sous forme d'un brouillard dans la masse d'air portée a température élevée par la compression. L'obtention d'une température suffisante pour créer l'auto-inflammation (≈600°C) nécessite un rapport volumétrique plus grand que celui du moteur a allumage commandé.[1]

Lorsque le mélange **gazoil-air** se brule dans le cylindre moteur, une partie de la chaleur dégagée est transmise aux parois pendant la détente et une autre partie de cette chaleur est utilisée pour la dissociation des molécules produites par la combustion à une haute température.

Le processus de dissociation consiste essentiellement de détruire les liaisons des molécules de  $CO_2$  et  $H_2O$  à des simples molécules en formant simultanément O et H atome et OH, NO ; aussi c'est une des causes qui s'opposent à la transformation intégrale du pouvoir calorifique du combustible en travail. **[6]** 

Le calcul et l'expérience montrent qu'en réalité l'influence de la dissociation est négligeable pour les moteurs Diesels, ainsi que pour les moteurs à explosion.

Les pertes totales de la chaleur de combustion (dues à l'incomplète combustion et aussi à la dissociation et au transfert de la chaleur aux parois du cylindre), sont caractérisées par un coefficient d'utilisation de chaleur de combustion  $\xi z$  déterminé expérimentalement, La combustion se déroule à volume constant, puis à une pression constante.[6]

#### **b-1)** Calcule des paramètres de combustion :

Quantité de gaz brulé (M2) on a :

$$M_2 = M (CO_2) + M (H_2O) + M (O_2) + M (N_2) K Mole$$
$$M_2 = C/12 + H/2 + 0.21 . (\alpha - 1).Mo + 0.79 . \alpha. Mo$$
(2.31)

A.N:  $M_2 = 0.872$  K Mole

#### b-2)Variation du volume après la combustion (ΔM) :

$$\Delta M = M_2 - M_1$$

(2.32)

A.N: Δ**M =0.03162 K Mole** 

b-3) Coefficient de variation du volume après la combustion (β<sub>0</sub>) :

$$\beta_0 = M_2/M_1 = (1+\Delta M)/M_1 = 1 + (H/4+O/32) / (\alpha.M_0)$$
  
(2.33)  
A.N:  $\beta_0 = 1.03762$ 

**b-4)** Coefficient de variation réelle (ß) :

 $\beta = (M_2+M_r) / (M_1+M_r) = (\beta_0+\gamma r) / (1+\gamma r)$ 

(2.34)

A.N:  $\beta = 1.03708$ 

$$\beta z = (Mc + \Delta Mz) / Mc$$
  

$$\beta z = [(1 + \gamma r) \cdot M1 + X \cdot \Delta M] / [(1 + \gamma r) + Mr] = 1 + X \cdot (\beta_0 - 1) / (1 + \gamma r)$$
(2.35)  
Avec:  $X = \xi z / \xi b$  A.N:  $\beta z = 1.03413$ 

#### **B-6)** Détermination de la température maximale du cycle (Tz) :

D'après la première loi de la thermodynamique (loi de la conservation de l'énergie) on a :

$$\xi z . Qh = Uz - Uc + Wzz'$$
(2.36)

$$\xi z.Qh = (M2+Mr).Uz'' - M1.Uc - Mr.Uc''+Wz''$$
 (2.37)

Avec : Qh : est le pouvoir calorifique du combustible : (Qh = 42.5 MJ /K Mole)

$$Wzz' = Pz. (Vz - Vc)$$
 (2.38)

#### **b-6-1) Détermination de Tz :**

$$Pz = \lambda . Pc \tag{2.39}$$

$$Wzz' = Pz. Vz - \lambda .Pc .Vc = *8314. [(M1+Mr). Tz - \lambda. (M1+Mr). Tc]$$
(2.40)

Donc on aura : (2.41)

ξz.Qh+ M1.Uc + Mr.Uc"+ 8314. (M1+Mr). λ. Tc = (M2+Mr). Uc" + 8314. [(M2+Mr). Tz

Finalement on obtient l'équation qui nous permet de déterminer Tz : (2.42)

 $[(\xi z.Qh)/(M1.M1.\gamma r)] + [(Uc + Uc''.\gamma r)/(1+\gamma r)] + 8314. \lambda. Tc = ßz (Uz'' + 8314. Tz)$ 

On a: 
$$\lambda = 1.6 \text{ à } 1.8$$
 on prend:  $\lambda = 1.8$ 

Donc : 
$$8314. \text{ Tc. } \lambda . 10^{-6} = 13.5093$$
 et  $(\xi z. Qh) / (M1. (1+\gamma r)) = 40.3708$ 

b-6-2) Calcule de Uc et Uc'': Voir tableaux II-3 et II-4 ; (Annexe –A-)

#### On a : $Tc = 902.71687 \ ^{\circ}K \quad \longleftrightarrow \quad tc = 629.71687 \ ^{\circ}C$

On remarque que :  $700 > tc > 600^{\circ}C$ 

Donc on doit faire une approximation pour calculer Uc et Uc"[5]

```
Uvc = Cvc \cdot Tc
```

(2.43)

On a: 
$$Cvc = (Cvc2 - Cvc1) \cdot (Tc - T1) / (Tc - T1) + Ccv1$$
 (2.44)

```
A.N: Cvc = 22.271 \text{ KJ / K Mole}

Uc(\alpha=1) = 13.8726 \text{ K J}

Uc(air) = 13.8726 \text{ K J}

U_c(\alpha=1.7) = U_c(\alpha=1).r. M2(\alpha=1) + Uc (air).r (éxc.d'air)

(2.45)

U_c(\alpha=1.7) = U_c(\alpha=1).(C/12+H/2+0.79.\alpha.M_0) / M_2+U_cair. (\alpha-1). M_0/M_2

(2.46)
```

```
A.N: U_c(\alpha=1.7) = 13.8754 \text{ M J/ K Mole}
```

Uc" .tc

On a:

$$C_{vc}$$
" =  $\Sigma_{ri}$ .  $C_{vci}$ " et  $r_i = M_i/M_2$ 

(2.47)

Donc:  $U_c'' = \Sigma(M_i/M_2) \cdot C_{vci}'' \cdot t_c$  (2.48)

L'énergie interne d'un Kilo Mole de produit de la combustion à une (tc = 629.71687 °C) contient l'énergie interne produits de combustion pour les deux cas : ( $\alpha$ =1) et  $\alpha$  > 1 (excès d'air).

 $\alpha = 1: \quad Uc'' (\alpha = 1) = (Uc2'' - Uc1'') * (Tc - T1) / 100 + Uc1''$ (2.49) A.N:  $Uc''(\alpha = 1) = 24.736554 \text{ M J/K Mole}$ Donc:  $Uc''(\alpha = 1) = 22.3301 \text{ M J/K Mole}$   $Uc (\alpha = 1) = 13.87276 \text{ M J/K Mole}$   $\alpha = 1.7: \quad Uc (\alpha = 1.7) = 13.8754 \text{ M J/K Mole}$ Donc:  $Uc'' (\alpha = 1.7) = 17.23299 \text{ M J/K Mole}$  Donc on aura l'équation finale comme suit :

 $\beta z . (Uz'' + 8314. Tz) = 67.803865 M J/K Mole$ 

Ou: 
$$(Uz" + 8314.Tz) = 65.5660147 \text{ M J/K Mole}$$

Pour résoudre cette équation nous devons choisir une valeur de Tz de telle façon qu'elle vérifie notre équation. <u>Voir les tableaux : II-5 et II-6 (annexe –A-)</u> Après plusieurs essais de différentes valeurs de Tz on a choisi la valeur suivante [5]:

 $Tz = 2057.3 \ ^{\circ}K$  c'est-à-dire :
  $tz = 1784.3 \ ^{\circ}C$  

 On remarque que :
 1800 \ ^{\circ}C > tz > 1700 \ ^{\circ}C

Donc pour avoir la valeur de Uz'' nous devons faire des approximations et après lesquelles nous aurons les résultats suivantes :

Uz'' (α = 1) = 51.0237 M J/K Mole °C

Uz (aire) = 44.5676 M J/K Mole °C

Donc :  $Uz (\alpha = 1.7) = 44.5676 \text{ M J/K Mole}$ 

Nous obtenons l'équation suivante :

Uz'' + 8314. Tz = 65.565903 M J/ K Mole

#### **b-7)** Calcul de l'erreur relative au choix de Tz :

ε = (65.565903- 65.5660147). 100 / 65.5659603 = **0.000082965 %** 

Donc la valeur de Tz que nous avons choisi est acceptable ; finalement la valeur de Tz qui vérifie tous les conditions est : Tz = 2057.3 °K

#### **b-8) Détermination de Pz :**

On a :  $Pz = \lambda$ . Pc

(2.50)

Avec :  $\lambda = 1.8$ 

A.N: **Pz = 7.42 MPa Pz = 74.2 Bar** 

#### **b-9**) Rapport d'augmentation de volume pendant la combustion ρ :

 $\rho = (\beta z.Tz) / (\lambda.Tc)$ 

A.N :  $\rho = 1.309$ 

#### **<u>2) Détente :</u>**

(2.51)

En ce qui concerne la détente, elle devra être la plus longue que possible, puisque elle conditionne le rendement du cycle, c'est durant laquelle la chaleur dégagée par la combustion est convertie au travail mécanique.

Dans le cycle réel, la course motrice commence avec la commence avec la combustion (point C) et se termine au **PMB**.

La phase de détente est une évolution poly tropique, on peut déterminer les paramètres à la fin de cette phrase en choisissant une valeur moyenne de l'exposant poly tropique n2, puisque pratiquement il est impossible de déterminer n2 d'après le diagramme indiqué à cause de sa variation pendant la détente, elle commence par une valeur négative au début de la détente jusqu'au  $P_{max}$ , où sa valeur devient nulle, et positive à partir de  $P_{max}$  jusqu'à  $T_{max}$ .[5]

Au début on a : Q < 0 ;  $n2 > \gamma$ 

A un certain temps on a : Q = 0 ;  $n2 = \gamma$ 

A la fin on a : Q >0 ;  $n2 < \gamma$ 



Figure 2.3 -courbe de détente[5]

Donc pour une évolution poly tropique et de même que n1 ; on utilise un coefficient n2 poly tropique moyen, soit n2 = 1.14 on prend n2 = 1.19.

## a) Détermination des paramètres de la détente (Pb ;Tb) : a-1)Calcul du Pb : Nous avons : Pb .Vb<sup>n2</sup> = Pz . Vz<sup>n2</sup> $\checkmark$ Pb = Pz . (Vz/Vb)<sup>n2</sup> (2.52)
| Et on a : | Va = Vb            | et | Vb/VZ = Va/Vz = (Va/Vz) | $Vc) / (Vz/Vc) = \varepsilon / \rho = \delta$ |
|-----------|--------------------|----|-------------------------|-----------------------------------------------|
| (2.53)    |                    |    |                         |                                               |
| Donc :    | $Pb=Pz/\delta^{r}$ | 12 |                         |                                               |
| (2.54)    |                    |    |                         |                                               |
| A.N :     | δ=22,1             | et | Pb=0,186 Mpa            | Pb=1,86 Bar                                   |

#### b) Calcul du Tb :

Nous pouvons écrire les trois équations suivantes à condition qu'il n'y a pas de fuite des gaz :

| Pb.Vb=8314.Tb.Mb  | (1) |
|-------------------|-----|
| Pz.Vz=8314. Tz.Mz | (2) |
| Mb = Mz           | (3) |

De : (1) ; (2) et (3) nous obtenons : Tb = Tz.(Pb .Vb) /(Pz .Vz) et Tb =Tz/  $\delta^{n2-1}$ 

(2.55)

AN:  $Tb = 1142,35 \ ^{\circ}k$   $tb = 869 \ ^{\circ}C$ 

#### **II -3-4) ECHAPPEMENT :**

Au commencement de l'échappement, le piston est au **PMB** et le volume occupé par le gaz est égal au volume total du cylindre. La courbe commence du point **e**, à ce moment la soupape d'échappement s'ouvre, la pression diminue instantanément jusqu'à la valeur Pa voisine de la pression atmosphérique P0.

Cette évacuation est supposée s'effectuée à volume constant ; Le piston remonte en évacuant les gaz à l'extérieur jusqu'au **PMH** ; la courbe représentant cette transformation est une droite parallèle à l'axe de volumes **[5]**.



a) TRACAGE DE DIAGRAMME THEORIQUE :

Calcul des volumes V :



# a-1/ calcul de : Vc et Vz

Nous savons que :  $Vz = Vc = Vh/(\epsilon - 1)$  (2.56) Donc : Vc=0,058874 litre

# a-2/Calcul de : Vz'

On a : Vc = Vz'

Donc : Vz'=0,058874 litre

#### a-3/ Calcul de : Vz

| on a $Vz = \rho$ .Vc | (2.57) |
|----------------------|--------|
|                      |        |

Donc : Vz=0, 0726 litre

# a-4/ calcul de : Vb

Nous avons :

| $Vb = \delta .Vz$ | (2.58) |
|-------------------|--------|
|                   |        |

Donc : **Vb= 0.9495 litre** 

a-5/ Calcul de : Tz'

On a :  $Tz' = Tz / \rho$  (2.59)

Donc : Tz'= 1571.26 °K

## b) : TABLEAU II .1 : RECAPITULATIF

| etat | Pression (MPa) | Volume (I) | Température (°k) |
|------|----------------|------------|------------------|
| Α    | 0.085          | 0.9495     | 316              |
| С    | 4.12           | 0.0588     | 902              |
| Ζ'   | 7.42           | 0.0588     | 1571             |
| Z    | 7.42           | 0.0726     | 2057             |
| b    | 0.351          | 0.9495     | 1264             |

# c) Traçage des cycles théorique

- Courbe de compression on choisi Px et Vx variable Alors :

| $Px.Vx^{n1} = Pc.Vc^{n1}$       |              | Px = | $= Pc \left(\frac{Vc}{Vx}\right)^{n1}$ |
|---------------------------------|--------------|------|----------------------------------------|
| (2.60)                          |              |      |                                        |
| avec $Vx = i.Vc$ et             | $n_1 = 1.37$ | et   | (i = 1, p, 2,, ε=16)                   |
| Donc: $Px = \frac{Pc}{i^{n_1}}$ |              |      |                                        |
| (2.61)                          |              |      |                                        |

# - Courbe de détente :

|     |            | Course de c | ompression | Course d   | e détente |
|-----|------------|-------------|------------|------------|-----------|
| i   | i.Vc       | a=i.n1      | Px=Pc/a    | B=(ρ/i).n2 | Px=Pz.b   |
| 1   | 0.058874   | 1           | 4.1222464  | 1.3787     | 10.229954 |
| 1.3 | 0.07265362 | 1.432525    | 2.8776     | 1.0085     | 7.48307   |
| 2   | 0.117748   | 2.584705    | 1.5948     | 0.604      | 4.48168   |
| 3   | 0.176622   | 4.504598    | 0.9151     | 0.3728     | 2.766176  |
| 4   | 0.235496   | 6.680703    | 0.61703    | 0.2647     | 1.964074  |
| 5   | 0.29437    | 9.069616    | 0.4545     | 0.203      | 1.50626   |
| 6   | 0.353244   | 11.643062   | 0.354      | 0.1634     | 1.212428  |
| 7   | 0.412118   | 14.380842   | 0.2866     | 0.136      | 1.00912   |
| 8   | 0.470992   | 17.26765    | 0.2387     | 0.116      | 0.86072   |
| 9   | 0.529866   | 20.29141    | 0.2031     | 0.1008     | 0.747936  |
| 10  | 0.58874    | 23.442288   | 0.1758     | 0.0889     | 0.659638  |
| 11  | 0.647614   | 26.71209    | 0.1543     | 0.0794     | 0.589148  |
| 12  | 0.706488   | 30.093888   | 0.1369     | 0.0716     | 0.531272  |
| 13  | 0.765362   | 33.581677   | 0.1227     | 0.065      | 0.4823    |
| 14  | 0.824236   | 37.17024    | 0.1109     | 0.0596     | 0.442232  |
| 15  | 0.88311    | 40.85498    | 0.1008     | 0.0549     | 0.407358  |
| 16  | 0.941984   | 44.631797   | 0.0923     | 0.0508     | 0.376936  |
| 17  | 1.000858   | 48.497016   | 0.085      | 0.0473     | 0.350966  |

#### TABLEAU II.2 : RESULTATS DE PHASE DE COMPRESSION ET DETENTE

$$Px = Pz \left(\frac{Vz}{i.Vc}\right)^{n^2} \quad et \qquad n^2 = 1,19 \quad ; \quad (Vz = \rho.Vc)$$

$$(2.62)$$

donc:

$$Px = Pz(\frac{\rho}{i})^{n^2}$$

(2.63)

D'après la variation de **Px** en fonction de **Vx** et pour les différents valeurs de **i**, on peut tracer les courbes de compression et de détente, la premier commence du point **a** (**Pa**, **Va**) et se termine au point **c** (**Pc**, **Vc**), par contre la deuxième courbe commence du point  $z(Pz, Vz = \rho.Vc)$  et se termine au point **b** (**Pb**, **Vb** = **Va**).[6]



Graphe n°1 Diagramme réel du moteur



|                           | Mean Mol | ar Heat C    | apacity of<br>[in kJ/(k                       | Gases µ <i>c</i><br>mole ·°C)] | at    | innetent Val        | ernal Energy | of Combustio | n Products U | (in MJ/kmol | e)                 |
|---------------------------|----------|--------------|-----------------------------------------------|--------------------------------|-------|---------------------|--------------|--------------|--------------|-------------|--------------------|
| L                         |          |              |                                               |                                | :     |                     | ×            | Petro        | 1 at         |             |                    |
| Tempera-<br>lure t.<br>°C | Alr      | Oxygen<br>Or | Nitrogen<br>(atmos-<br>pheric) N <sub>3</sub> | Carbon<br>d lox ide<br>CO3     | _~~ ¥ | emperature<br>1, °C | α=1.0        | α=0.9        | α=0.8        | α=0.7       | Diesel fuel<br>a=1 |
| 0.                        | 20.758   | 20.959       | 20.704                                        | 27.545                         | 25    | 0                   | <b>°</b> .   | 0            | 0            | 0           | 0                  |
| 100                       | 20.838   | 21.223       | 20.733                                        | 29.797                         | 25    | 100                 | 2.2530       | 2.2045       | 2.1881       | 2.1685      | 2.252              |
| 200                       | 20.984   | 21.616       | 20.800                                        | 31.744                         | 25    | 200                 | 4.5766       | 4.5352       | 4.4867       | 4.4285      | 4.580              |
| 300                       | 21.206   | 22.085       | 20.972                                        | 33.440                         | 26    | 300                 | 6.3969       | 6.9165       | 6.8337       | 6.7344      | 6.992              |
| 400                       | 21.474   | 22.563       | 21.185                                        | 34.935                         | 26    | 400                 | 9.4881       | 9.3842       | 9.2584       | 9.1123      | 9.483              |
| 500                       | 21.780   | 23.019       | 21.449                                        | 36.258                         | 27    | 500                 | 12.0740      | 11.9386      | 11.7688      | 11.5713     | 12.100             |
| 600                       | 22.090   | 23.446       | 21.729                                        | 37.438                         | 27    | 600                 | 14.7500      | 14.5759      | 14.3590      | 14.1057     | 14.779             |
| 700                       | 22.408   | 23.834       | 22.027                                        | 38.498                         | 28    | 700                 | 17.5130      | 17.2989      | 17.0422      | 16.7202     | 17.585             |
| 800                       | 22.713   | 24.187       | 22.320                                        | 39.448                         | 29    | 800                 | 20.3090      | 20.0938      | 18.7753      | 19.4024     | 20.390             |
| 900                       | 23.006   | 24.510       | 22.609                                        | 40.302                         | 29    | 006                 | 23.2600      | 22.9688      | 22.5870      | 22.1510     | 23.237             |
| 1000                      | 23.283   | 24.803       | 22.881                                        | 41.077                         | 30    | 1000                | 26.2262      | 25.8806      | 25.4548      | 24.9534     | 26.293             |
| 1100                      | 23.547   | 25.071       | 23.140                                        | 41.784                         | 30    | 1000                | 29.2490      | 28.8569      | 28.3743      | 27.7968     | 29.308             |
| 1200                      | 23.794   | 25.318       | 23.392                                        | 42.425                         | 31    | 1200                | 32.3250      | 31.8871      | 31.3476      | 30.7140     | 32.406             |
| 1300                      | 24.018   | 25.548       | 23.626                                        | 43.007                         | 32    | 1300                | 35.4430      | 34.9565      | 34.3598      | 33.6586     | 35.504             |
| 1400                      | 24.250   | 25.761       | 23.848                                        | 43.543                         | 32    | 1400                | 38.6010      | 38.0531      | 37.4129      | 36.6433     | 38.686             |
| 1500                      | 24.459   | 25.967       | 24.057                                        | 44.033                         | జ     | 1000                | 41.6760      | 41.1969      | 40.4990      | 39.6603     | 41.868             |
| 1600                      | 24.652   | 26.159       | 24.250                                        | 44.485                         | 33    | 1200                | 45.0140      | 44.3680      | 43.6125      | 42.7048     | 45.008             |
| 1700                      | 24.863   | 26.343       | 24.434                                        | 44.903                         | 34    | 0071                | 48.2680      | 47.5716      | 46.7580      | 45.7802     | 48.358             |
| 1800                      | 25.003   | 26.519       | 24.602                                        | 45.299                         | 34    | 0081                | 51.5370      | 50.7924      | 49.9207      | 48.8732     | 51.498             |
| 1900                      | 25.167   | 26.691       | 24.765                                        | 45.644                         | 35    | 0061                | 54.8350      | 55.0398      | 53.1101      | 51.9929     | 54.931             |
| 2000                      | 25.326   | 26.854       | 24.916                                        | 45.975                         | 35    | 2000                | 58.1500      | 57.3052      | 56.3174      | 55.1298     | 58.197             |
| 2100                      | 25.474   | 27.013       | 25.062                                        | 46.281                         | 36    | 2100                | 61.4910      | 60.5947      | 59.5484      | 58.2851     | 61.546             |
| 2200                      | 25.611   | 27.168       | 25.200                                        | 46.566                         | 36    | 2200                | 64.8460      | 63.9001      | 62.7955      | 61.4671     | 64.979             |
| 2300                      | 25.745   | 27.319       | 25.326                                        | 46.829                         | 36    | 2300                | 68.2080      | 67.2127      | 66.0498      | 64.6528     | 68.287             |
| 2400                      | 25.870   | 27.470       | 25.447                                        | 47.076                         | 37    | 2400                | 71.5880      | 70.5432      | 69.3228      | 67.8557     | 71.594             |
| 2500                      | 25.992   | 27.612       | 25.560                                        | 47.302                         | 37    | 2000                | 74.9760      | 73.8820      | 72.6038      | 71.0678     | 75.027             |
| _                         | _        | _            | _                                             |                                | 1     |                     |              |              |              |             |                    |

Tableaux II-5- capacité calorifique des produits de combustion (MJ/kmole.°c) Tableaux II-6- l'energie interne des gaz U(MJ/kmole)

| 2500    | 2400    | 9300    | 2200    | 2100    | 2000    | 1900    | 1800    | 1700    | 1600    | 1500    | 1400    | 1300    | 1200    | 1100    | 1000    | 900     | 800     | 700     | 600     | 500     | 400     | 300     | 200     | 100     | 0       |   | l, °C                  | 1        |   | Heat        |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------------------------|----------|---|-------------|
| 29.9905 | 29.8284 | 29.6555 | 29.4755 | 29.2812 | 29.0752 | 28.8604 | 28.6314 | 28.3928 | 28.1340 | 27.7840 | 27.5722 | 27.2636 | 26.9370 | 26.5899 | 26.2261 | 25.8439 | 25.4382 | 25.0191 | 24.5828 | 24.1478 | 23.7203 | 23.2899 | 22.8830 | 22.5304 | 22.1849 |   | α=1.0                  |          |   | Capacity of |
| 29.5528 | 29.3930 | 29.2299 | 29.0455 | 28.8546 | 28.6526 | 28.4420 | 28.2180 | 27.9833 | 27.7300 | 27.4646 | 27.1808 | 26.8896 | 26.5726 | 26.2355 | 25.8806 | 25.5088 | 25.1173 | 24.7126 | 24.2931 | 23.8772 | 23.4605 | 23.0552 | 22.6762 | 22.3556 | 22.0451 |   | a=0.9                  | Petro    |   | Combustion  |
| N       | 22      | 22      | 22      | 22      | 22      | 2       | 2       | 2       | 2       | 2(      | 2(      | 2(      | 26      | 22      | 22      | 25      | 24      | 24      | 23      | 23      | 23      | 22      | 22      | 22      | 21      | l | ٩                      | al       |   | Prod        |
| 2500    | 2400    | -2300   | 2200    | 2100    | 2000    | 1900    | 1800    | 1700    | 1600    | 1500    | 1400    | 1300    | 1200    | 1100    | 1000    | 900     | 809     | 700     | 600     | 500     | 400     | 300     | 200     | 100     | 0       |   | °C                     | Tempera- |   |             |
| 64.979  | 62.090  | 59.201  | 56.354  | 53.507  | 50.660  | 47.813  | 45.008  | 42.203  | 39.444  | 36.689  | 33.951  | 31.238  | 28.554  | 25.899  | 23.983  | 20.708  | 18.171  | 15.684  | 13.255  | 10.890  | 8.591   | 6.364   | 4.195   | 2.015   | 0       |   | 21                     | ÷        |   |             |
| 69.040  | 65.942  | 62.844  | 59.787  | 56.731  | 53.716  | 50.702  | 47.729  | 44.799  | 41 855  | 38.950  | 36.065  | 33.241  | 30.379  | 27.578  | 24.803  | 22.060  | 19.347  | 16.684  | 14.068  | 11.509  | 9.027   | 6.628   | 4.325   | 2.123   | 0       |   | 0,                     | Oxygen   | - | Internal E  |
| 63.890  | 61.085  | 58.100  | 55.433  | 52.628  | 49.823  | 47.059  | 44.296  | 41.537  | 38.799  | 36.086  | 33.385  | 30.714  | 28.068  | 25.456  | 22.881  | 20.348  | 17.857  | 15.420  | 13.038  | 10.726  | 8.474   | 6.293   | 4.162   | 2.072   | 0       |   | pheric) N <sub>1</sub> | Nitrogen |   | nergy of (  |
| 118.277 | 113.002 | 107.726 | 102.541 | 97.175  | 90.942  | 86.708  | 81.517  | 76.325  | 71.175  | 66.086  | 60.960  | 55.894  | 50.911  | 45.971  | 41.077  | 36.270  | 31.560  | 26.950  | 22.462  | 18.129  | 13.975  | 10.031  | 6.347   | 2.981   | 0       |   | co,                    | Carbon   | _ | Gases U (li |
| 94.245  | 89.597  | 84.950  | 80.386  | 75.865  | 71.343  | 66.947  | 62.551  | 58.238  | 53.758  | 49.823  | 45.720  | 41.721  | 37.811  | 34.001  | 30.304  | 26.724  | 23.262  | 19.933  | 16.726  | 13.657  | 10.710  | 1.8/9   | 5.162   | 2.541   | 0       |   | 0,H                    | Water    |   | n MJ/kmo    |
| 60.063  | 62.174  | 59.327  | 56.480  | 53.633  | 50.780  | 47.981  | 45.175  | 42.370  | 38.578  | 36.814  | 34.072  | 31.346  | 28.654  | 25.983  | 23.350  | 20.754  | 18.204  | 15.705  | 13.265  | 10.790  | 8.591   | 0.300   | 4.199   | 2.085   | 0       |   | 8                      | Curbon   |   | le)         |
| 00.104  | 57.359  | 54.596  | 51.8/9  | 49.103  | 40.4/3  | 43./94  | 41.177  | 38.585  | 36.023  | 33.498  | 31.011  | 28.562  | 26.152  | 23./93  | 21.4/4  | 19.201  | 10.901  | 14./0/  | 12.002  | 10.40/  | 0.040   | 0.242   | 4.103   | 2.004   | 0       |   | 2                      | Hydrogen |   | 0           |

# 2ème partie : étude cinématique

L'intérêt de cette étude est de déduire les formules qui caractérisent les mouvements du piston, bielle et du vilebrequin, elle sert à trouver la relation qui lier le déplacement, la vitesse et l'accélération on fonction de l'angle de la rotation du vilebrequin.

A la fin de cette étude on peut facilement tracer les graphiques du déplacement, vitesses accélération du piston en fonction de l'angle de rotation du vilebrequin.[7]

# **II.2.2)** Fonction de déplacement du piston $X = f(\phi)$ :

#### Données de départ

✓ Longueur de la bielle :

L = 224 mm.

✓ Course du piston :

Rayon de la manivelle :

R = S / 2 = 60 mm

 Le rapport du rayon de la manivelle par apport longueur de la bielle [8]:

 $\lambda = L / R = 3.733$ 

La vitesse angulaire de la manivelle (ω) :

 $\omega = \pi$ . N/ 30 = (3.14. 2800)/ 30 = 293.21 rad/S

✓ Section de piston F<sub>P</sub> :

 $F_P = \pi$ . D<sup>2</sup> / 4 = 8332.28 mm<sup>2</sup>

✓ Masse du groupe piston (mgp):

 $m_{gp} = 1759 g$ 

✓ Masse du groupe de la bielle (mgb) :

#### $m_{gb} = 1400 g$

On peut écrire la relation suivante qui exprime l'éloignement du piston du **PMH** en fonction des dimensions fixes des éléments du mécanisme (bielle-manivelle).

On a: X = AC = AO - OC(2.92)

$$AO = L + R$$

(2.93)



Figure n°2.6 : la course du piston [7]

#### $OC = L \cdot cos\beta + R \cdot cos\phi$

(2.94)

 $\beta$ : l'angle que fait la bielle avec l'axe du cylindre.

 $\varphi$ : l'angle de rotation de vilebrequin.

De ces équations on aura la relation la suivante :

$$X = (R + L) - (L \cos\beta + R \cos\phi)$$

(2.95)

Il est préférable d'exprimer la relation précédente seulement en fonction de l'angle de rotation du vilebrequin  $\phi$  :

En posant : 
$$\lambda = \frac{L}{R}$$

(2.96)

Tel que :  $\lambda$  est appelée le coefficient de construction de la bille-manivelle.

$$X = R\left[\left(1 + \frac{1}{\lambda}\right) - \left(\cos\varphi + \left(\frac{1}{\lambda}\right) \cdot \cos\beta\right)\right]$$

(2.97)

$$\boldsymbol{\beta} = \boldsymbol{f}(\boldsymbol{\varphi})$$

soit :  $MH = R . sin\phi = L . sin\beta$ 

(2.98)

Et comme : 
$$\sin\beta = \lambda . \sin\varphi$$

(2.99)

(2.102)  $\begin{aligned}
Sin^{2}\beta &= \lambda^{2} . \sin^{2}\varphi & 1 \cdot \cos^{2}\beta &= \lambda^{2} . \sin^{2}\varphi \\
Cos^{2}\beta &= 1 \cdot \lambda^{2} . \sin^{2}\varphi & \cos\beta &= \sqrt{(1 - \lambda^{2} \sin^{2}\varphi)} \\
\cos\beta &= 1 \cdot (1/2) . (\lambda^{2} . \sin^{2}\varphi) \cdot [1/8(\lambda^{4} . \sin^{4}\varphi)]^{8} + \dots \\
\end{cases}$ (2.102)

On prend seulement les deux premiers termes et on aura donc [8]:

 $\cos\beta = 1 - (1/2) \cdot (\lambda^2 \cdot \sin^2 \varphi)$ 

(2.103) Et:  $X = R [(1 - \cos \phi) + (\sin^2 \phi)/2 \lambda]$ (2.104) On a:  $\sin^2 \phi = (1 - \cos^2 \phi)/2$ 

(2.105)

Donc: 
$$X = R [(1 - \cos\varphi) + (1 - \cos2\varphi)/4\lambda]$$
 (2.106)

## **II.2.3**) Fonction de Vitesse du piston $V = f(\phi)$ :

La vitesse de déplacement du piston est obtenue par la dérivation de l'équation de déplacement par rapport au temps c'est-à-dire : V = dX/dt

donc  $V = \frac{dX}{dt}$  $= \left(\frac{dX}{d\varphi}\right) \cdot \left(\frac{d\varphi}{dt}\right) \qquad (2.107)$  $et \qquad \qquad \left(\frac{d\varphi}{dt}\right)$  $= \omega \qquad (2.108)$ 

 $V = R. \omega. [sin \varphi + (sin 2\varphi)/2\lambda]$ 

V

donc:

$$= \boldsymbol{\omega} \cdot \left(\frac{dX}{d\boldsymbol{\varphi}}\right) \tag{2.109}$$

alors:

# II.2.4) Accélération du piston J :

La dérivation de l'équation de la vitesse ou le deuxième dérivé du déplacement du piston par rapport au temps nous donnera l'expression de l'accélération **[8]**:

$$J = \frac{d^2 X}{d^2 t} = \frac{dV}{dt} = \left(\frac{dV}{d\varphi}\right) \cdot \left(\frac{d\varphi}{dt}\right)$$
(2.111)

(2.110)

$$J = R .\omega^2 . [\cos\varphi + (\cos 2\varphi)/\lambda]$$
(2.112)

# II.2.4.1) Etudes des variations de l'accélération :

# Calcul de J<sub>max</sub> et J<sub>min</sub> :

Pratiquement l'accélération sera maximale ou minimale ou la vitesse est nulle :

$$dJ/dt = 0$$
  $\leftarrow$  R. $\omega^3 . \sin\varphi . (1+4. \cos\varphi/\lambda) = 0$ 

(2.113)

Et:

R.ω<sup>3</sup> ≠ 0 précédente est :

 $\sin \phi = 0$   $\checkmark$   $\phi = n\pi$ 

Alors la solution de l'équation p ; (n = 0, 1, 2, 3, 4)

$$\cos \phi = -\lambda/4$$
 $\leftarrow \rightarrow$  $\cos = -0.9332$  $\phi = 159^{\circ}$ ou $\phi = 201^{\circ}$  (1er tour de vilebrequin) $\phi = 519^{\circ}$ ou $\phi = 561^{\circ}$  (2eme tour de vilebrequin)

$$J_{\text{max}} = R . \omega^2 . [1 + 1/\lambda] = 6540.144 \text{ m/s}^2$$
(2.114)

$$J_{min} = R .\omega^2 . \left[ \cos 159 + \cos 318 / \lambda \right] = -3788,82 \text{ m/s}^2$$
(2.115)

# II.3. Traçage des courbes :



Graphe n°02 : déplacement du piston

# **Explication du graphe :**

A partir du graphe, on constate que le piston a déplacé la moitié de la course 60mm à  $82.5^{\circ}$ 

Si le rapport de rayon est augmenté (c.-à-d. Rendant le mandrin plus long, alors la course moyenne se déplace vers un angle de vilebrequin de 90 °)

La vitesse instantanée à n'importe quel angle de vilebrequin peut également être calculée.



Graphe n°03 : vitesse du piston

# **Explication du graphe :**

On constate que la vitesse maximale est atteinte lorsque la manivelle est à 76  $^\circ$  après PMH et à nouveau à 76  $^\circ$  avant PMH

Si la barre de con: le rapport du rayon de vilebrequin est augmenté alors le point de la vitesse maximale se rapproche de 90 ° après PMH. Et la courbe se rapproche d'une forme d'onde sinusoïdale pure. Plus le rapport est faible (c'est-àdire que la courbure est plus courte, plus la vitesse maximale du piston est élevée)



Graphe n°04 : accélération du piston

# **Explication du graphe :**

Le piston s'accélère le plus rapidement lorsqu'il se trouve sur PMH. Il accélère encore, bien que le taux d'accélération diminue jusqu'à atteindre 0 m / s<sup>2</sup> lorsque la vitesse est maximale (dans ce cas 76 ° après PMH). Le piston décélère jusqu'à ce qu'il atteigne PMB, quand il s'arrête, change de direction et accélère le pilotage du cylindre.

Le taux d'accélération chute jusqu'à ce qu'il atteigne 76° avant PMH lorsqu'il décélère jusqu'à ce que le taux de décélération atteigne 6540 m / s  $^2$  lorsqu'il atteigne PMH.

Ce qui peut sembler d'abord comme une anomalie est la «ligne» dans la courbe 50 ° de chaque côté de PMB. L'accélération / décélération n'est pas à une valeur maximale à 180 ° mais à environ 130 ° et 230 °. Ceci est une fonction du rapport de la tige de conduction: rayon de vilebrequin. Si cela augmente, la courbe devient sinusoïdale

# 3<sup>ème</sup> Partie : Etude dynamique

II.3.1) GENERALITE :

Pendant le fonctionnement du moteur le système bielle-manivelle travaille sous l'action des efforts suivants :

1. Effort produit par la pression des gaz.

2. L'ensemble des forces produites d'après le mouvement des éléments du mécanisme :

-force d'inertie produite par les masses qui sont en mouvement rectiligne Alternatif

-la force centrifuge produit par les masses en rotation

L'étude dynamique a pour but la détermination des différents efforts exercés sur le système bielle-manivelle c'est-à-dire le calcule des valeurs des actions mutuelles entre les différentes organes.

#### **II.3.2) CALCUL DES MASSES :**

Les masses des organes en mouvement utilisées dans l'étude dynamique :

### II.3.2.1) Masse du groupe piston :mgp

La masse du groupe piston englobe lamasse du piston proprement dit + la masse de l'axe du piston + la masse des clips de l'axe du piston + lamasse des segments.

Donc: mgp = mp + mc + ms + ma (Kg)

(2.120)



Figure 2-7 masse du groupe piston [7]

#### II.3.2.2) Masse de la bielle :mb

Pour simplifier les calcules, on remplace la masse totale de la bielle par deux masses fictives concentrées, il existe plusieurs méthodes de remplacement dont la plus utilisée est le remplacement par deux masses c'est-à-dire :

mb = m1 + m2 (kg)

(2.121)

Avec : m1 : partie de la masse de la bielle concentrée au pied de la bielle et qui participe au mouvement de translation.

m2 : partie de la masse de bielle concentrée à la tête de la bielle et qui participe au mouvement de rotation.



Figure 2-8 masse de la bielle [7]

#### II.3.2.3) Masse du coude du Vilebrequin: mc

$$m_c = m_m + 2.m_{bras} (R) + 2.m_{bras} (\rho) (kg)$$
(2.122)

 $Ou: m_m:$  masse de maneton sans bras

m<sub>bras</sub>(R) : masse des bras concentrées au maneton

 $m_{bras}(\rho)$ : masse des bras concentrées au tourillon



Figure 2-9 masse du coude du vilebrequin [7]

D'âpres le principe de conservation de la force centrifuge on a :

 $m_{bras}(R).R.(\omega)^2 = mbras(\rho).\rho.(\omega)^2$ 

(2.123)

On début que : mbras(R) =  $(\rho / R)$ . mbras $(\rho)$ 

(2.124)

## II.3.2.4) Masses en mouvement de translation :m

 $m = mgp + m_1$ 

(2.125)

# II.3.2.5) Masses en mouvement de rotation :mr

 $mr = mc + m_2$ 

(2.126)

On négligera l'effet du poids des pièces et du frottement ainsi que le couple résiduel dû à la substitution de la bielle bar un système a deux masses.

Conformément au principe de **D'ALEMBERT**, chaque organe est à tout instant en équilibre sous l'action des :

- Forces directement appliquées (pression des gaz).
- Forces de liaison (réactions des appuis).
- Forces d'inerties[7]

# II.3.3) FORCES EXERCEES SUR LE SYSTEME BIELLE-MANIVELLE :

Au cours de fonctionnement du moteur, le système bielle-manivelle est soumis aux efforts suivants : (voire graphe 6)

- L'effort de la pression des gaz brulés.
- L'ensemble des efforts produits par les éléments en mouvement qui sont :

-les forces d'inerties dues aux masses en translation.

- les forces centrifuges dues aux masses en rotation.[7]

# II.3.4) LES EFFORTS AGISSANT SUR L'AXE DU PISTON :



(a)traction

(b)compression

Figure 2-10 charge sur l'axe du piston

Lors de la combustion, l'axe du piston est soumis à un effort de pression considérable Pg .

En plus cet effort l'axe du piston est soumis à l'effort d'inertie des masses en mouvement de translation Pg .

Donc : 
$$P\epsilon = Pg + Pj [MN]$$
 (2.127)

On :

Pg : force provoquée bar la pression des gaz brulès.

Pj : l'effort d'inertie de la masse du piston.

# II.3.4.1. forces d'inertie : Pj

$$Pj = -m . J = -m . R . \omega^{2} . (Cos\varphi + \lambda . Cos2\varphi).$$

$$= -m . R . \omega^{2} . Cos\varphi - m . R . \omega^{2} . \lambda . Cos2\varphi .$$
(2.128)

(2.129)

 $= P_{j1} + P_{j2}$ 

(2.130)

Et : m = mgp + m1

Ou :

Pj1 : inertie du premier ordre.Pj2 : inertie du deuxième ordre.

En effet la direction de la force d'inertie se trouve suivant l'axe du cylindre et son point d'application est sur l'axe de piston de piston ; au moment ou l'accélération est nul la force d'inertie change le sens.

# Détermination de m1, m2 et m :

On: 
$$m_1 + m_2 = m_b$$
  
(2.131)  
 $m_1 \cdot l2 + m_2 \cdot (L - I)^2 = IG$   
(2.132)

$$m_2 = m_b . I/L$$
  
(2.133)  
 $m_1 = m_b . (1 - I/L)$ 

# (2.134)

Avec: 
$$I = 164.5 \text{ mm} (donnée du PMA) \text{ et } L = 224.25 \text{ mm}$$
  
Donc :  $m1 = 0.373021 [kg]$   
 $m2 = 1.026979 [kg]$   
 $m = 2.132021 [kg]$   
Alors :  $Pj = -2.132021.R . \omega^2 . (Cos \varphi + \lambda . Cos 2\varphi)$   
On :  $Pj = -2.132021 . (J_1 + J_2) .$   
 $= -2.132021.R . \omega^2 . Cos \varphi - 2.132021.R . \omega^2 . \lambda . Cos 2\varphi.$ 

# II.3.4.2. Forces centrifuge : Pc

C'est la force centrifuge du coude du vilebrequin, elle est donnée par :

$$Pc = mr . R . \omega^2[N]$$
(2.135)

Tant que  $\omega$  est constante la force centrifuge reste constante aussi ; son point d'application est le centre de maneton.[8]

# II.3.4.3. Force des gaz : Pg

$$Pg = F - P_0$$

(2.136)

Ou :

F : Force des gaz exercée sur la tète du piston.

P<sub>0</sub>: effort provoqué par la pression ambiante qui existe au-dessus du piston.

Ou :

 $Pg = F \cdot S$ 

(2.137)

Avec :

Pg : pression des gaz [MPa]

S : surface de la tète du piston.

Tel que :  $S = \pi . D^2 / 4$ (2.138) An :  $S = 0.00430 \text{ m}^2$ 

Pg peut être déterminée d'après le diagramme (P-V)

# II.3.4.4. Caractéristique du piston :

L'alliage principalement utilise pour les pistons forgée est le type 2618A c'est le plus fréquenté. Ca qualité dépend directement de type de trempage qu'il a subi, normalement T6, qui permet d'accroître la résistance par rapport a l'aluminium d'environ 30%. Les pistons forgés en **alliage 2618A** conservent leurs qualités même sous les charges les plus importantes et les régimes les plus élèves. **[9]** 

## Matériaux utilises :

Les alliages d'aluminium, cuivre, magnésium, étain et silicium sont la base des pistons modernes

Le silicium est la matière jointe à l'aluminium la plus importante dans cet alliage il offre résistance et capacité de dilatation.

|     | Limite                   | Limite de            | Allongement a la | Dureté brinell | Cha    | rge de rup | ture   |
|-----|--------------------------|----------------------|------------------|----------------|--------|------------|--------|
|     | d'élasticité<br>Re (MPa) | traction Rm<br>(MPa) | rupture(%)       | HB             |        |            |        |
| Min | -                        | -                    | 5                | 120            | 20°c   | 150°c      | 200°c  |
| Max | 380                      | 420                  | 5                | 130            | 440MPa | 390MPa     | 320MPa |

| Tableau II.7 | : | Caractéristique | mécanique | typiques | [10],[11] |
|--------------|---|-----------------|-----------|----------|-----------|
|--------------|---|-----------------|-----------|----------|-----------|

# **II.3.5. LES EFFORTS AGISSANT SUR LA BIELLE :**

# II.3.5.1. Les conditions aux limites:

Webster et al (1983) ont constaté que dans les conditions de service de bielle, par expérience la distribution de charge sur le pied de bielle est s'appliquée sur la moitie supérieure de la surface interne d'un angle de 180°C est sous forme cosinus (**figure 2-11 a**).

Dans le cas de compression, l'axe piston comprime par une pression uniforme sur un angle de 120°C de la surface interne du pied (**figure 2-11 b**).

Webster et al (1983) montre par expérience que le même phénomène de distribution de charge est causée par le vilebrequin sur la tête de bielle.

La figure 2-12 représente les conditions aux limites dans les deux cas de chargement (traction ou compression)



Figure 2-11 (a,b) : La distribution de charge dans le cas de traction (Webster et al 1983) [14].



Figure 2-12: Les chargements et les fixations sur la bielle [14].

# II.3.5.3. Caractéristique de la bielle :

Le matériau utilisé est 36NiCrMo16, les caractéristiques chimiques sont données sur le tableau Suivant :

| С         | Р     | Ni      | Cr      | Мо        | Si  | Mn        |
|-----------|-------|---------|---------|-----------|-----|-----------|
| Min-max   | Max   | Min-max | Min-max | Min-max   | Max | Min-max   |
| 0.32-0.39 | 0.025 | 3.6-4.1 | 1.6 - 2 | 0.25-0.45 | 0.4 | 0.60-0.90 |

Tableau II.8 : Caractéristique chimique de la bielle.

Toutes les caractéristiques de la bielle sont données à la température 293°k et les conditions de fonctionnement sont reportées dans le tableau. De plus, la bielle est en matériau du 36NiCrMo16. La pression qui s'exerce sur le piston, à partir d'un calcul thermodynamique, dans la phase de détente est égale à **7.42MPa**.

| module de    | masse                | limite de      | limite         | conductivité | chaleur    |
|--------------|----------------------|----------------|----------------|--------------|------------|
| cisaillement | volumique            | traction [MPa] | d'élasticité à | thermique    | spécifique |
| [MPa]        | [Kg/m <sup>3</sup> ] |                | 0.2% [MPa]     | [W/(m.K)]    | [J/kg °k]  |
| 79000        | 7800                 | 1250           | 1050           | 14           | 440        |

**Tableau II.9 :** Caractéristique thermique et mécanique de la bielle.

|                             | Dimensions |
|-----------------------------|------------|
| Longueur                    | 218mm      |
| Diamètre de tête de bielle  | 64mm       |
| Diamètre de pied de bielle  | 38mm       |
| Epaisseur de tête de bielle | 28mm       |
| Epaisseur de pied de bielle | 32mm       |

Tableau II.10 : Caractéristique géométrique de bielle.

#### **II.3.6. ANALYSE DES FORCES :**

Les forces exercées sur le mécanisme biellemanivelle sont essentiellement comme le montre la figure n°13:

Avec :

Pg : les forces des gaz.

Pj : la force d'inertie.

 $P\Sigma$ : se décompose en deux composantes.

N : effort agissant sur les parois du cylindre.

Pb : effort agissant le long de la bielle.

Pb : a son tour se décompose en deux composantes :

Z : est l'effort agissant sur le palier du vilebrequin.

T : est l'effort tendant à tourner le vilebrequin.

D'après la figure on peut déterminer ces efforts :





le mécanisme bielle manivelle [7]

$$Pb$$

$$= P\varepsilon \cdot \left(\frac{1}{\cos\beta}\right) \qquad (2.147)$$

$$Tg\beta = \frac{N}{P\varepsilon} \quad donc \quad N$$

$$= P\varepsilon \cdot Tg\beta \qquad (2.148)$$

Et on a aussi :

$$= P\varepsilon.Tg\beta \qquad (2.148)$$
  
Sin(\varphi + \varphi) =  $\frac{T}{Pb}$  donc  $T = Pb.Sin(\varphi + \varphi)$ 

(2.149)

$$T = \frac{P\varepsilon.Sin(\varphi + \beta)}{Cos\beta}$$
(2.150)  
$$cos(\varphi + \beta) = \frac{Z}{Pb} \longrightarrow Z = Pb.cos(\varphi + \beta)$$
  
$$Z = P\varepsilon.\frac{cos(\varphi + \beta)}{cos\beta}$$
(2.152)

Les valeurs de  $\beta$  seront déterminées on fonction de  $\varphi$  :

| $Sin\beta = Y/L$ | $Y=L.Sin\beta\qquad \qquad \qquad 1$ |         |
|------------------|--------------------------------------|---------|
| Sinφ= Y/R        | $Y=R.Sin\varphi \qquad \qquad 2$     |         |
| Et :             | $\lambda = R/L$                      |         |
| Alors :          | $\beta$ = arsin (λ . sin $\varphi$ ) | (2.153) |

# **Représentation graphique de :**

 $P_g = f(\varphi),$   $P_j = f(Q)$  et  $P\varepsilon = p_j + p_g = f(Q)$ 

#### **II.3.7. EFFORT EXERCE SUR LE VILEBREQUIN :**

C'est le couple total du moteur ; qui est égal au produit de la somme des forces Ti qui agit sur chaque coude de vilebrequin par le rayon de manivelle :

 $C = \Sigma T_i . R = R . \Sigma_1 ^N T_i$ 

(2.154)

Ou : n : est le nombre de cylindre (n=4)

Pour déterminer C il faut connaitre les valeurs instantanées des efforts (Ti) et pour cela doit connaitre l'ordre d'allumage et l'intervalle entre deux allumages successifs.[7]

Dans notre cas l'ordre d'allumage est : 1-3-4-2

# II.3.7.1. Caractéristiques du Vilebrequin

Le matériau utilisé est la fonte grise à graphite sphéroïdal

| Résistance à la traction                        | 900   |
|-------------------------------------------------|-------|
| KIII EII N/IIIIIIZ                              |       |
| Limite conventionnelle d'élasticité 0.2%        | 600   |
| Rp0.2 en N/mm2                                  |       |
| Allongement minimal                             | 2     |
| A en %                                          |       |
| Résistance au cisaillement [N/mm <sup>2</sup> ] | 810   |
|                                                 |       |
| Résistance à la torsion [N/mm <sup>2</sup> ]    | 810   |
| Module d'élasticité [GN/m <sup>2</sup> ]        | 176   |
| coefficient de poisson                          | 0.275 |
| conductivité thermique à 300°c[W(k.m)]          | 31.1  |

| ténacité à la rupture k1c [MPa.m <sup>2</sup> ] | 14 |
|-------------------------------------------------|----|
|                                                 |    |

 Tableau II.12 : Caractéristique mécanique du vilebrequin [12]

# II.3.8. TRACE DE LA COURBE T=f (Q) :

## a) Intervalle entre deux allumages successifs :

L'intervalle entre deux allumages successifs est donné par la relation suivante :

 $\delta_k = 180^\circ . \tau/i$ 

(2.155)

Tel que :

 $\tau$  : nombre de temps .

i : nombre des cylindres.

AN :  $\delta_{K} = (180.4) / 4 = 180^{\circ}$ 

## b) Position de chaque piston dans son cycle :

Elle est donnée par la relation suivante :

$$Q_j = 720^\circ - (J - 1) . \delta k$$

D'après l'ordre de fonctionnement des pistons on doit compter J :

Exemple :

$$\varphi_{I} = \varphi 1 = 720^{\circ} = 0^{\circ}$$
  
 $\varphi_{II} = \varphi 2 = 720^{\circ} - (2 - 1) \cdot 180^{\circ} = 540^{\circ}$   
 $\varphi_{III} = \varphi 3 = 720^{\circ} - (3 - 1) \cdot 180^{\circ} = 360^{\circ}$   
 $\varphi_{IV} = \varphi 4 = 720^{\circ} - (4 - 1) \cdot 180^{\circ} = 180^{\circ}$ 

#### c) Le décalage des différentes étapes :

Admission, compression, détente et l'échappement correspondent aux quatre cylindres dans un moteur à quatre temps peuvent être représentés sous forme d'un tableau :

| <i>0</i> ° | <b>180°</b> | 360° | <b>540</b> ° | 720° |
|------------|-------------|------|--------------|------|
| 1          | Α           | С    | D            | Ε    |
| 2          | С           | D    | E            | Α    |

| 3 | Ε | А | С | D |
|---|---|---|---|---|
| 4 | D | E | Α | С |

Tableau 2-13 : le décalage des différentes étapes

- Pour les valeurs de  $(\phi_1)$  variant de  $(0^\circ)$  à (180°), on affectera l'indice (1) aux valeurs de la force tangentielle qui correspond à T<sub>1</sub>.
- Pour les valeurs de ( $\varphi_2$ ) variant de (180°) à (360°), on affectera l'indice (2) aux valeurs de la force tangentielle qui correspond à T<sub>2</sub>.
- Pour les valeurs de ( $\varphi_3$ ) variant de (360°) à (540°), on affectera l'indice (3) aux valeurs de force tangentielle qui correspond à T<sub>3</sub>.
- Pour les valeurs de (φ<sub>4</sub>) variant de (540°) à (720°), on affectera l'indice (4) aux valeurs de la force tangentielle qui correspond à T<sub>4</sub>. [7]

D'où on déterminera la somme de *Ti* :

 $Ti = \Sigma Ti$ 

Et ainsi on pourra représenter les graphes des variations : voir graphe n°7

 $T = f(\phi)$  et  $\Sigma Ti = f(\phi)$ 

Tableau II.14: les résultats en fonction de l'angle de rotation de vilebrequin

| φ°  | β°     | Pg    | Pj     | Pε     | Cosβ°  | Tgβ°   |
|-----|--------|-------|--------|--------|--------|--------|
| 0°  | 0      | 0,4   | -1,392 | -0,992 | 1      | 0      |
| 20° | 5.2505 | -0,34 | -1,257 | -1,597 | 0.9958 | 0.0918 |

| 40°                                                                                                                                                              | 9.903                                                                                                                                                                                                                                                                                  | -0,34                                                                                                                           | -0,892                                                                                                                                                                             | -1,232                                                                                                                                                                | 0.9851                                                                                                                                                                 | 0.1743                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60°                                                                                                                                                              | 13.397                                                                                                                                                                                                                                                                                 | -0,34                                                                                                                           | -0,402                                                                                                                                                                             | -0,742                                                                                                                                                                | 0.9727                                                                                                                                                                 | 0.2381                                                                                                                                                                                                               |
| 80°                                                                                                                                                              | 15.277                                                                                                                                                                                                                                                                                 | -0,34                                                                                                                           | 0,0856                                                                                                                                                                             | -0,2544                                                                                                                                                               | 0.9646                                                                                                                                                                 | 0.2731                                                                                                                                                                                                               |
| 100°                                                                                                                                                             | 15.277                                                                                                                                                                                                                                                                                 | -0,34                                                                                                                           | 0,4668                                                                                                                                                                             | 0,1268                                                                                                                                                                | 0.9646                                                                                                                                                                 | 0.2731                                                                                                                                                                                                               |
| 120°                                                                                                                                                             | 13.397                                                                                                                                                                                                                                                                                 | -0,34                                                                                                                           | 0,6762                                                                                                                                                                             | 0,3362                                                                                                                                                                | 0.9727                                                                                                                                                                 | 0.2381                                                                                                                                                                                                               |
| 140°                                                                                                                                                             | 9.903                                                                                                                                                                                                                                                                                  | -0,34                                                                                                                           | 0,7905                                                                                                                                                                             | 0,4505                                                                                                                                                                | 0.9851                                                                                                                                                                 | 0.1745                                                                                                                                                                                                               |
| 160°                                                                                                                                                             | 5.2505                                                                                                                                                                                                                                                                                 | -0,34                                                                                                                           | 0,8071                                                                                                                                                                             | 0,4671                                                                                                                                                                | 0.9958                                                                                                                                                                 | 0.0918                                                                                                                                                                                                               |
| 180°                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                      | -0,34                                                                                                                           | 0,8047                                                                                                                                                                             | 0,4647                                                                                                                                                                | 1                                                                                                                                                                      | 0                                                                                                                                                                                                                    |
| 200°                                                                                                                                                             | -5.2505                                                                                                                                                                                                                                                                                | -0,34                                                                                                                           | 0,8072                                                                                                                                                                             | 0,4672                                                                                                                                                                | 0.9958                                                                                                                                                                 | -0.0918                                                                                                                                                                                                              |
| 220°                                                                                                                                                             | -9.903                                                                                                                                                                                                                                                                                 | -0,34                                                                                                                           | 0,7905                                                                                                                                                                             | 0,4505                                                                                                                                                                | 0.9851                                                                                                                                                                 | -0.1743                                                                                                                                                                                                              |
| <b>240°</b>                                                                                                                                                      | -13.397                                                                                                                                                                                                                                                                                | 0                                                                                                                               | 0,6963                                                                                                                                                                             | 0,6963                                                                                                                                                                | 0.9727                                                                                                                                                                 | -0.2381                                                                                                                                                                                                              |
| <b>260°</b>                                                                                                                                                      | -15.277                                                                                                                                                                                                                                                                                | 0,8                                                                                                                             | 0,467                                                                                                                                                                              | 1,267                                                                                                                                                                 | 0.9646                                                                                                                                                                 | -0.2731                                                                                                                                                                                                              |
| <b>280°</b>                                                                                                                                                      | -15.277                                                                                                                                                                                                                                                                                | 0,9                                                                                                                             | 0,0854                                                                                                                                                                             | 0,9854                                                                                                                                                                | 0.9646                                                                                                                                                                 | -0.2731                                                                                                                                                                                                              |
| <b>300°</b>                                                                                                                                                      | -13.397                                                                                                                                                                                                                                                                                | 1,4                                                                                                                             | -0,4023                                                                                                                                                                            | 0,9977                                                                                                                                                                | 0.9727                                                                                                                                                                 | -0.2381                                                                                                                                                                                                              |
| <b>320°</b>                                                                                                                                                      | -9.903                                                                                                                                                                                                                                                                                 | 2,3                                                                                                                             | -0,6926                                                                                                                                                                            | 1,6074                                                                                                                                                                | 0.9851                                                                                                                                                                 | -0.1745                                                                                                                                                                                                              |
| 340°                                                                                                                                                             | -5.2505                                                                                                                                                                                                                                                                                | 5                                                                                                                               | -1,0985                                                                                                                                                                            | 3,9015                                                                                                                                                                | 0.9958                                                                                                                                                                 | -0.0918                                                                                                                                                                                                              |
| 360°                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                      | 29,5                                                                                                                            | -1,3926                                                                                                                                                                            | 28,1074                                                                                                                                                               | 1                                                                                                                                                                      | 0                                                                                                                                                                                                                    |
| 2009                                                                                                                                                             | F 3505                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                             | 1 2570                                                                                                                                                                             | 0 2 4 2 4                                                                                                                                                             |                                                                                                                                                                        | 0.0010                                                                                                                                                                                                               |
| 380°                                                                                                                                                             | 5.2505                                                                                                                                                                                                                                                                                 | 9,6                                                                                                                             | -1,2576                                                                                                                                                                            | 8,3424                                                                                                                                                                | 0.9958                                                                                                                                                                 | 0.0918                                                                                                                                                                                                               |
| 380°<br>400°                                                                                                                                                     | 5.2505<br>9.903                                                                                                                                                                                                                                                                        | 9,6<br>6                                                                                                                        | -1,2576<br>-0,8926                                                                                                                                                                 | 8,3424<br>5,1074                                                                                                                                                      | 0.9958<br>0.9851                                                                                                                                                       | 0.0918<br>0.1743                                                                                                                                                                                                     |
| 400°<br>420°                                                                                                                                                     | 9.903<br>13.397                                                                                                                                                                                                                                                                        | 9,6<br>6<br>4,3                                                                                                                 | -1,2576<br>-0,8926<br>-0,4023                                                                                                                                                      | 8,3424<br>5,1074<br>3,8977                                                                                                                                            | 0.9958<br>0.9851<br>0.9727                                                                                                                                             | 0.0918<br>0.1743<br>0.2381                                                                                                                                                                                           |
| 400°<br>420°<br>440°                                                                                                                                             | 5.2505<br>9.903<br>13.397<br>15.277                                                                                                                                                                                                                                                    | 9,6<br>6<br>4,3<br>3,3                                                                                                          | -0,8926<br>-0,4023<br>0,0855                                                                                                                                                       | 8,3424<br>5,1074<br>3,8977<br>3,3855                                                                                                                                  | 0.9958<br>0.9851<br>0.9727<br>0.9646                                                                                                                                   | 0.0918<br>0.1743<br>0.2381<br>0.2731                                                                                                                                                                                 |
| 380°<br>400°<br>420°<br>440°<br>460°                                                                                                                             | 5.2505<br>9.903<br>13.397<br>15.277<br>15.277                                                                                                                                                                                                                                          | 9,6<br>6<br>4,3<br>3,3<br>2,7                                                                                                   | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601                                                                                                                                  | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601                                                                                                                        | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9646                                                                                                                         | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731                                                                                                                                                                       |
| 380°<br>400°<br>420°<br>440°<br>460°<br>480°                                                                                                                     | 5.2505<br>9.903<br>13.397<br>15.277<br>15.277<br>13.397                                                                                                                                                                                                                                | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2                                                                                            | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963                                                                                                                        | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963                                                                                                              | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9646<br>0.9727                                                                                                               | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2381                                                                                                                                                             |
| 380°<br>400°<br>420°<br>440°<br>460°<br>480°<br>500°                                                                                                             | 9.903<br>13.397<br>15.277<br>15.277<br>13.397<br>9.903                                                                                                                                                                                                                                 | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8                                                                                     | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905                                                                                                              | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905                                                                                                    | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9646<br>0.9727<br>0.9851                                                                                                     | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2381<br>0.1745                                                                                                                                                   |
| 380°<br>400°<br>420°<br>440°<br>460°<br>480°<br>500°<br>520°                                                                                                     | 5.2505<br>9.903<br>13.397<br>15.277<br>15.277<br>13.397<br>9.903<br>5.2505                                                                                                                                                                                                             | 9,8<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6                                                                              | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072                                                                                                    | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072                                                                                          | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9646<br>0.9727<br>0.9851<br>0.9958                                                                                           | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918                                                                                                                                         |
| 380°<br>400°<br>420°<br>440°<br>460°<br>480°<br>500°<br>520°<br>540°                                                                                             | 9.903         13.397         15.277         15.277         13.397         9.903         5.2505         0                                                                                                                                                                               | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br>1,3                                                                       | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8047                                                                                          | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047                                                                                | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br>1                                                                                      | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918<br>0                                                                                                                                    |
| 380°<br>400°<br>420°<br>440°<br>460°<br>480°<br>500°<br>520°<br>540°<br>560°                                                                                     | 5.2505         9.903         13.397         15.277         15.277         13.397         9.903         5.2505         0         -5.2505                                                                                                                                                | 9,8<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br>1,3<br>0,6                                                                | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8047<br>0,8072                                                                                | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047<br>1,4072                                                                      | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br>1<br>0.9958                                                                                      | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918<br>0<br>-0.0918                                                                                                                         |
| 380°<br>400°<br>420°<br>440°<br>460°<br>500°<br>520°<br>520°<br>540°<br>560°<br>580°                                                                             | 5.2505         9.903         13.397         15.277         15.277         13.397         9.903         5.2505         0         -5.2505         -9.903                                                                                                                                 | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br>1,3<br>0,6<br>0,6                                                         | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8047<br>0,8072<br>0,8072<br>0,8072                                                            | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047<br>1,4072<br>1,3905                                                            | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br>1<br>0.9958<br>0.9851                                                                            | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918<br><b>0</b><br>-0.0918<br>-0.1743                                                                                                       |
| 380°<br>400°<br>420°<br>440°<br>460°<br>500°<br>520°<br>520°<br>540°<br>560°<br>580°<br>600°                                                                     | 5.2505<br>9.903<br>13.397<br>15.277<br>15.277<br>13.397<br>9.903<br>5.2505<br>0<br>-5.2505<br>-9.903<br>-13.397                                                                                                                                                                        | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br>1,3<br>0,6<br>0,6<br>0,6                                                  | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8047<br>0,8072<br>0,8072<br>0,7905<br>0,6963                                                  | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047<br>1,4072<br>1,3905<br>1,2963                                                  | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br>1<br>0.9958<br>0.9851<br>0.9851<br>0.9727                                                        | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918<br>0<br>-0.0918<br>-0.1743<br>-0.1743<br>-0.2381                                                                                        |
| 380°<br>400°<br>420°<br>440°<br>460°<br>500°<br>520°<br>520°<br>540°<br>560°<br>580°<br>600°<br>620°                                                             | 5.2505         9.903         13.397         15.277         15.277         13.397         9.903         5.2505         0         -5.2505         -9.903         -13.397         -13.397                                                                                                 | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br><b>1,3</b><br>0,6<br>0,6<br>0,6<br>0,6<br>0,6                             | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,6963<br>0,467                                         | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047<br>1,4072<br>1,3905<br>1,2963<br>1,067                                         | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br>1<br>0.9958<br>0.9851<br>0.9851<br>0.9727<br>0.9646                                              | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918<br><b>0</b><br>-0.0918<br>-0.0918<br>-0.1743<br>-0.2381<br>-0.2381<br>-0.2731                                                 |
| 380°         400°         420°         440°         460°         500°         520°         540°         560°         580°         600°         620°         640° | 5.2505<br>9.903<br>13.397<br>15.277<br>15.277<br>13.397<br>9.903<br>5.2505<br>0<br>-5.2505<br>-9.903<br>-13.397<br>-15.277<br>-15.277                                                                                                                                                  | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br>1,3<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,5                             | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8047<br>0,8072<br>0,8072<br>0,8072<br>0,6963<br>0,6963<br>0,467<br>0,0854                     | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047<br>1,4072<br>1,3905<br>1,2963<br>1,2963<br>1,067<br>0,5854                     | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br>1<br>0.9958<br>0.9851<br>0.9851<br>0.9727<br>0.9646<br>0.9646                                    | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918<br>0<br>-0.0918<br>-0.1743<br>-0.2381<br>-0.2731<br>-0.2731                                                                   |
| 380°<br>400°<br>420°<br>440°<br>460°<br>500°<br>520°<br>520°<br>540°<br>560°<br>580°<br>600°<br>620°<br>640°<br>660°                                             | 5.2505         9.903         13.397         15.277         15.277         13.397         9.903         5.2505         0         -5.2505         -9.903         -13.397         -13.397         -15.277         -15.277         -15.277         -15.277         -15.277         -13.397 | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br>1,3<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,5<br>0,4        | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,6963<br>0,467<br>0,0854<br>-0,402                     | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047<br>1,4072<br>1,3905<br>1,2963<br>1,067<br>0,5854<br>-0,002                     | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br>1<br>0.9958<br>0.9851<br>0.9851<br>0.9727<br>0.9646<br>0.9646<br>0.9727                          | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918<br>-0.0918<br>-0.0918<br>-0.1743<br>-0.2381<br>-0.2731<br>-0.2731<br>-0.2381                                        |
| 380°<br>400°<br>420°<br>440°<br>460°<br>500°<br>520°<br>520°<br>540°<br>560°<br>580°<br>600°<br>620°<br>640°<br>660°<br>660°                                     | 5.2505<br>9.903<br>13.397<br>15.277<br>15.277<br>13.397<br>9.903<br>5.2505<br>0<br>-5.2505<br>-9.903<br>-13.397<br>-15.277<br>-15.277<br>-13.397<br>-9.903                                                                                                                             | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br>1,3<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,5<br>0,4<br>0,4 | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,6963<br>0,467<br>0,0854<br>-0,402<br>-0,892 | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047<br>1,4072<br>1,3905<br>1,2963<br>1,067<br>0,5854<br>-0,002<br>-0,492           | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br><b>1</b><br>0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9646<br>0.9727<br>0.9851                   | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2731<br>0.2381<br>0.1745<br>0.0918<br>0<br>-0.0918<br>-0.0918<br>-0.1743<br>-0.2381<br>-0.2731<br>-0.2731<br>-0.2381<br>-0.2381<br>-0.2381<br>-0.2381<br>-0.2381 |
| 380°<br>400°<br>420°<br>440°<br>460°<br>500°<br>520°<br>520°<br>540°<br>550°<br>580°<br>600°<br>620°<br>640°<br>660°<br>680°<br>700°                             | 5.2505         9.903         13.397         15.277         15.277         13.397         9.903         5.2505         0         -5.2505         -9.903         -13.397         -15.277         -15.277         -15.277         -15.277         -15.277         -15.277         -5.2505 | 9,6<br>6<br>4,3<br>3,3<br>2,7<br>2,2<br>1,8<br>1,6<br>1,3<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6 | -1,2576<br>-0,8926<br>-0,4023<br>0,0855<br>0,4601<br>0,6963<br>0,7905<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,8072<br>0,6963<br>0,467<br>0,0854<br>-0,402<br>-0,892<br>-1,257 | 8,3424<br>5,1074<br>3,8977<br>3,3855<br>3,1601<br>2,8963<br>2,5905<br>2,4072<br>2,1047<br>1,4072<br>1,3905<br>1,2963<br>1,067<br>0,5854<br>-0,002<br>-0,492<br>-0,857 | 0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958<br>0.9958<br>0.9851<br>0.9727<br>0.9646<br>0.9646<br>0.9727<br>0.9646<br>0.9727<br>0.9851<br>0.9958 | 0.0918<br>0.1743<br>0.2381<br>0.2731<br>0.2731<br>0.2731<br>0.2731<br>0.2731<br>0.1745<br>0.0918<br>-0.0918<br>-0.0918<br>-0.2731<br>-0.2731<br>-0.2731<br>-0.2731<br>-0.2381<br>-0.1745<br>-0.1745<br>-0.0918       |

 Tableau
 II-15 : les résultats en fonction de l'angle de rotation de vilebrequin

| φ°         | sin(β+φ)/cosβ | Cos(β+φ)/cosβ | Pb      | Ν       | Z       | Т       |
|------------|---------------|---------------|---------|---------|---------|---------|
| <b>0°</b>  | 0             | 1             | -0,992  | 0       | -0,992  | 0       |
| <b>20°</b> | 0.4283        | 0.9054        | -1,6037 | -0,1467 | -1,445  | -0,6839 |
| 40°        | 0.7765        | 0.6538        | -1,2506 | -0,2148 | -0,8054 | -0,9566 |
| 60°        | 0.9808        | 0.2937        | -0,7628 | -0,1766 | -0,2179 | -0,7277 |

| 80°         | 1.0323  | -0,0953 | -0,2637 | -0,0694 | 0,02425          | -0,2626 |
|-------------|---------|---------|---------|---------|------------------|---------|
| <b>100°</b> | 0.9374  | -0,4426 | 0,1314  | 0,0346  | 0,0561           | 0,1188  |
| <b>120°</b> | 0.747   | -0,7063 | 0,3456  | 0,0800  | 0,2374           | 0,2511  |
| <b>140°</b> | 0.509   | -0,8782 | 0,4573  | 0,0786  | 0,3956           | 0,2293  |
| <b>160°</b> | 0.2556  | -0,9711 | 0,4690  | 0,0429  | 0,4536           | 0,1193  |
| <b>180°</b> | 0       | -1      | 0,4647  | 0       | -0,4647          | 0       |
| 200°        | -0.2551 | -0,9711 | 0,4691  | -0,0429 | -0,4536          | -0,1191 |
| 220°        | -0.509  | -0,8782 | 0,4573  | -0,0786 | -0,3956          | -0,2293 |
| 240°        | -0.747  | -0,7063 | 0,7158  | -0,1657 | -0,4917          | -0,5201 |
| <b>260°</b> | -0.9374 | -0,4426 | 1,3134  | -0,3460 | -0,5607          | -1,1876 |
| <b>280°</b> | -1.0326 | -0,0953 | 1,0215  | -0,2691 | -0,0939          | -1,0175 |
| 300°        | -0.9808 | 0,2937  | 1,0257  | -0,2376 | 0,2930           | -0,9785 |
| 320°        | -0.7765 | 0,6538  | 1,6317  | -0,2806 | 1,0509           | -1,2781 |
| 340°        | -0.4283 | 0,9082  | 3,9179  | -0,3585 | 3,5355           | -1,6710 |
| 360°        | 0       | 1       | 28,1074 | 0       | 28,1074          | 0       |
| 380°        | 0.4283  | 0.9054  | 8,3515  | 0,7658  | 7,5532           | 3,5730  |
| <b>400°</b> | 0.7765  | 0.6538  | 5,1537  | 0,8902  | 3,3392           | 3,9658  |
| <b>420°</b> | 0.9808  | 0.2937  | 3,9825  | 0,9280  | 1,1475           | 3,8228  |
| <b>440°</b> | 1.0323  | -0,0953 | 3,4981  | 0,9245  | -0,3226          | 3,4948  |
| <b>460°</b> | 0.9374  | -0,4426 | 3,2798  | 0,8630  | -1,3986          | 2,9622  |
| <b>480°</b> | 0.747   | -0,7063 | 2,9926  | 0,6896  | -2 <i>,</i> 0456 | 2,1635  |
| <b>500°</b> | 0.509   | -0,8782 | 2,6468  | 0,4520  | -2,2749          | 1,3185  |
| <b>520°</b> | 0.2556  | -0,9711 | 2,4290  | 0,2209  | -2,3376          | 0,6152  |
| 540°        | 0       | -1      | 2,1070  | 0       | -2,1047          | 0       |
| 560°        | -0.2551 | -0,9711 | 1,4131  | -0,1291 | -1,3665          | -0,3589 |
| <b>580°</b> | -0.509  | -0,8782 | 1,4115  | -0,2423 | -1,2211          | -0,7077 |
| 600°        | -0.747  | -0,7063 | 1,3326  | -0,3086 | -0,9155          | -0,9683 |
| 620°        | -0.9374 | -0,4426 | 1,1061  | -0,2913 | -0,4722          | -1,0002 |
| 640°        | -1.0326 | -0,0953 | 0,6068  | -0,1598 | -0,0557          | -0,6045 |
| 660°        | -0.9808 | 0,2937  | -0,0020 | 0,00047 | -0,00058         | 0,0019  |
| 680°        | -0.7765 | 0,6538  | -0,4994 | 0,0858  | -0,3216          | 0,3820  |
| 700°        | -0.4283 | 0,9082  | -0,8606 | 0,0787  | -0,7766          | 0,3670  |
| 720°        | 0       | 1       | -0,992  | 0       | -0,992           | 0       |



Graphe n°05 : les efforts agissants sur l'axe de piston



Graphe  $n^{\circ}06$ : Les Forces exercées sur le mécanisme bille-manivelle

**Tableau II.16 :** couple totale du moteur

| φ° | T <sub>1</sub> | ¢° | T <sub>2</sub> | ¢° | T <sub>3</sub> | ¢° | T <sub>4</sub> | ΣТ       | C = R*∑T |
|----|----------------|----|----------------|----|----------------|----|----------------|----------|----------|
| •  | _              | •  | _              | •  | -              | •  | •              | <b>-</b> |          |

| 0°          | 0       | 180° | 0       | 360° | 0      | 540° | 0       | 0       | 0       |
|-------------|---------|------|---------|------|--------|------|---------|---------|---------|
| 20°         | -0,6839 | 200° | -0,1191 | 380° | 3,5730 | 560° | -0,3589 | 2,4111  | 144.666 |
| 40°         | -0,9566 | 220° | -0,2293 | 400° | 3,9658 | 580° | -0,7077 | 2,0722  | 124.332 |
| 60°         | -0,7277 | 240° | -0,5201 | 420° | 3,8228 | 600° | -0,9683 | 1,6067  | 96.402  |
| 80°         | -0,2626 | 260° | -1,1876 | 440° | 3,4948 | 620° | -1,0002 | 1,0444  | 62.664  |
| 100°        | 0,1188  | 280° | -1,0175 | 460° | 2,9622 | 640° | -0,6045 | 1,4590  | 87.54   |
| <b>120°</b> | 0,2511  | 300° | -0,9785 | 480° | 2,1635 | 660° | 0,0019  | 1,4380  | 86.28   |
| <b>140°</b> | 0,2293  | 320° | -1,2781 | 500° | 1,3185 | 680° | 0,3820  | 0,6517  | 39.102  |
| 160°        | 0,1193  | 340° | -1,6710 | 520° | 0,6152 | 700° | 0,3670  | -0,5695 | -34.17  |
| 180°        | 0       | 360° | 0       | 540° | 0      | 720° | 0       | 0       | 0       |



Graphe n°07 : Variation  $\Sigma Ti = f(\phi)$ 

# **II.3.9. EXPRESSION DU COUPLE MOTEUR**

Le couple effectif est le produit de l'effort tangentiel par le rayon du maneton :

$$C = T \cdot R$$
  
avec:  $T = P\varepsilon \cdot \frac{\sin(\varphi + \beta)}{\cos\beta}$  et  $R = \frac{s}{2} = 60mm$ 

Donc :

$$C = P\varepsilon. R. \frac{\sin(\varphi + \beta)}{\cos\beta}$$

La variation du couple effectif en fonction du régime moteur, le couple instantané d'un moteur est très différente aux faibles vitesses et aux grands régimes **[7]**.

On a vu que le couple instantané est à chaque instant égale à la somme du couple actif  $C_1$  engendré par la pression des gaz et du couple d'inertie  $C_2$  engendré par les forces d'inertie.

## Donc : $C = C_1 + C_2$

La force due à la pression des gaz n'a lieu pendent in demi-tour tous les deux tours, on voit donc que le couple actif est une fonction sinusoïdale de période  $4\pi$ .

Le couple d'inertie est du aux forces d'inertie qui proviennent du mouvement rectangulaire alternatif du piston et de la masse de la bielle considérée comme rattachée au piston.

L'ensemble constituant une masse totale. Le terme  $\mathbf{m}.\mathbf{R}^2.\boldsymbol{\omega}^2$  (donc le couple d'inertie) peut être négligé, il n'en est pas de même au régime élèves ou il devient très important [7].



Graphe n°08 : le couple totale du moteur F4L912

# **II.3.10. DISCUSSION**

#### a) <u>Le couple a faible régime</u>

Si on néglige les forces d'inertie alternatives, c'est-à-dire si l'on examine seulement les valeurs du couple lorsque le moteur tourne lentement à la vitesse de ralenti 650Tr/min par exemple, on constate que le couple reste **positif** environ les trois quarts de la durée du cycle, se couple se reproduit naturellement périodiquement tous les demi-tours de vilebrequin.

A ce moment, l'effort moteur est fourni seulement par la cylindrée en travail qui est prés de la fin de sa détente, à une pression relativement faible par conséquent il a à vaincre l'effort retardateur du cylindre au temps de la compression est plus élevée à ce moment que la pression résiduelle des gaz en fin de détente (voir graphe n°09) **[7]**.



Graphe n°09 : couple à faible régime

# b) Le couple a régime élevé :

Lorsque le moteur tourne à régime élève, le couple est instantané.

On remarque que le couple du moteur devient très irrégulier aux grandes vitesses.

Le couple part de 0 (PMH) et commence à diminuer : il est par conséquence négatif.

Il devient ensuit **positif**, croit très rapidement, puis décrois et s'annule de nouveau à l'extrémité de sa demi cours, dans cette phase le surface négative des boucles est naturellement inférieure à la surface positive, leur différence est égale au travail accompli pendant la course du piston (voir graphe n°10) **[7]**.



Graphe n°10 : le couple à régime élevé

#### c) <u>Régime optimale : vitesse en plein charge</u>

Si on examinait la variation du couple en fonction de différentes vitesse de rotation entre le régime de ralenti 650Tr/min et le régime maximal 2800Tr/min, on constaterait que pour une vitesse intermédiaire déterminée le couple reste toujours sensiblement **positif** et ne sort pas de limites assez étroites **[7]**.

Cette allure représente pour le moteur considère une vitesse de régime optimum. C'est à cette vitesse que les déformations du vilebrequin et par conséquent ses vibrations sont les moins grandes. Naturellement cette allure optimum correspondra à une vitesse de rotation d'autant plus élève que le moteur aura des pièces à mouvements alternatifs plus légères ce que correspond à un couple optimal, ils sont toujours positif (voir graphe n°11) **[7].** 



Graphe n°11 : couple optimale du moteur

# CHAPITRE III :

Simulation des charges appliquées sur le système bielle-manivelle

# **III.1 - Fonctionnement de logiciel SOLIDWORKS**

SOLIDWORKS Simulation utilise la formulation des déplacements de la méthode par éléments finis pour calculer les déplacements des composants, les déformations et les contraintes causés par les chargements internes et externes. La géométrie analysée est discrétisée avec des éléments tétraédriques (3D), triangulaires (2D) et des poutres, et résolue par un solveur soit direct, soit itératif. SOLIDWORKS Simulation propose également une hypothèse de simplification 2D pour les contraintes planes, les déformations planes, les options d'extrusion et d'axisymétrie. SOLIDWORKS Simulation peut utiliser une méthode adaptative H ou P, ce qui présente un avantage considérable pour les concepteurs et les ingénieurs étant donné que la méthode assure que la solution a convergé.

Pour le maillage coque, SOLIDWORKS Simulation propose un outil de productivité, appelé Gestionnaire de coques, pour gérer les diverses définitions de coques ou celles du document d'assemblage. Il augmente le flux de travail afin d'organiser les coques en fonction du type, de l'épaisseur ou du matériau, et permet une meilleure visualisation et une meilleure vérification des propriétés de la coque.[13]

#### III.1.1 : Introduction aux éléments finis :

Ces dernières années, la méthode des éléments finis a été progressivement considérée par tous les ingénieurs comme une méthode d'étude d'un grand nombre de problème jusque là considérée comme insolubles et les efforts intenses prometteurs de recherche qui lui sont encore consacrés permettent d'envisager un élargissement rapide de son champ d'application.

En générale, le principe de toute méthode de discrétisation consiste à remplacer un milieu continu (structure) comportant une infinité des modes de déformations ou de tensions par un milieu idéalisé ne possédant qu'un nombre fini de tels modes .C'est la procédure de **Rayleigh- Ritz**; cette démarche est utilisée également dans la méthode des éléments finis, avec un certain nombre de sous région appelées < éléments finis >, dont la forme géométrique et la fonction structurale sont simples.

On va alors définir une approximation de la solution (déplacements et/ou contraintes) non pas pour l'ensemble de la structure, mais pour chacun de ses éléments en les réduisant à un petit nombre de modes décrits simples. Ils sont choisis parmi les plus fondamentaux pour la description du comportement de l'élément dans la structure. La structure entière est donc idéalisée par un nombre fini de modes qui se transmettent entre chaque élément de manière bien précise. Les paramètres qui représentent l'intensité de chaque mode.

Le problème mathématique revient alors a recherche ces inconnues qui doivent rendre minimale la fonctionnelle d'énergie en tenant compte des conditions aux limites.

## **III.1.2 : Le maillage :**

La méthode des éléments finis repose sur un découpage de l'espace selon un maillage.

D'habitude l'on choisit un maillage carré ou triangulaire mais rien n'interdit de choisir des maillages plus complexes. Il n'est pas non plus nécessaire que le maillage soit régulier et l'on a tendance à resserrer le maillage près des endroits d'intérêts (par exemple aux endroits où l'on pense que la solution va beaucoup varier), cependant il faut veiller à avoir des éléments faiblement distordus (se rapprocher d'un polygone régulier). Plus ce maillage est resserré plus la solution que l'on obtient par la méthode des éléments finis sera précise et proche de la « vraie » solution de l'équation aux dérivés partielles.



Figure V.1: Maillage du domaine en triangles à trois noeuds [8].

#### V.1.2.1 : Les différents types de maillage

#### • Maillage linéaire

Il schématise un composant d'une structure qui travaille uniquement en traction et compression. Dans cet élément, il est supposé que seule la contrainte normale est différente de zéro et qu'elle est constante sur la section droite.

C'est généralement un élément à 2 nœud qui comporte 3 inconnues ou degrés de liberté (DDL) par nœud (u, v, w), puisqu'il suffit de connaitre l'allongement de l'élément pour déterminer son énergie élastique.




Figure V.2 : élément barre ou poutre [13]

### • Maillage surfacique

C'est un élément bidimensionnel dans lequel on suppose que les contraintes sont uniformes dans l'épaisseur et que la contrainte normal est nulle (Oz est l'axe perpendiculaire au plan de l'élément). Il est utilisé pour modéliser :

Soit des structures minces travaillant en membrane, c'est-à-dire sans rigidité de flexion.



Figure V.3: Différents éléments surfacique [13].

### • Maillage volumique :

Dans cet élément, aucune hypothèse simplificatrice n'est posée sur les déformations et les contraintes. Il est, par contre, nécessaire, pour calculer l'énergie élastique, de faire des hypothèses sur l'évolution du champ de déplacement à l'intérieur de l'élément. Chaque nœud comporte 3 inconnues : les trois composantes u, v, w du vecteur déplacement.



Figure V.4: Différents éléments volumiques [8].

# **III.2.Rapport de simulation**

2.1.Informations sur le mo



| d'unités:     |  |
|---------------|--|
| r/Déplacement |  |
| iture         |  |
| Ingulaire     |  |
| /Contrainte   |  |

### 2.3.Propriétés du ma

| e du modèle | és                                                                                                                                                      |                                                                                                                                                                            | ants    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|             | nodèle:<br>e ruine par défaut:<br>élasticité:<br>traction:<br>l'élasticité:<br>nt de Poisson:<br>lumique:<br>le cisaillement:<br>nt de dilatation<br>e: | 6NiCrMo16)<br>isotropique<br>N/mm^2<br>N/mm^2<br>N/mm^2<br>m^3<br>N/mm^2<br>/Kelvin                                                                                        | Bielle  |
|             | nodèle:<br>e ruine par défaut:<br>élasticité:<br>traction:<br>l'élasticité:<br>nt de Poisson:<br>lumique:<br>le cisaillement:<br>nt de dilatation<br>e: | N-GJS-800-2)<br>≦lastique isotropique<br>N/mm^2<br>I/mm^2<br>V/mm^2<br>m^3<br>N/mm^2<br>/Kelvin                                                                            | prequin |
|             | nodèle:<br>e ruine par défaut:<br>élasticité:<br>traction:<br>l'élasticité:<br>nt de Poisson:<br>lumique:<br>le cisaillement:<br>nt de dilatation<br>e: | aluminum<br>. (SS)<br>ślastique isotropique<br>te de von Mises max.<br><sup>1</sup> 2 N/mm^2<br><sup>1</sup> 2 N/mm^2<br><sup>1</sup> 4 N/mm^2<br>m^3<br>I/mm^2<br>/Kelvin | ston    |

| déplacement      | u déplacem | nent imposé | lu déplacement imposé |         |    |  |
|------------------|------------|-------------|-----------------------|---------|----|--|
|                  |            | ž           |                       | ie fixe |    |  |
| ésultantes       |            |             |                       |         |    |  |
| ints             |            |             |                       |         | te |  |
| réaction(N)      |            |             |                       |         |    |  |
| de réaction(N.m) |            |             |                       |         |    |  |
|                  | e e e e    |             | ie fixe               |         |    |  |
| ésultantes       |            |             |                       |         |    |  |
| ints             |            |             |                       |         | te |  |
| réaction(N)      |            |             |                       |         |    |  |
| de réaction(N.m) |            |             |                       |         |    |  |

| chargement | J chargement                            | u chargement |                               |
|------------|-----------------------------------------|--------------|-------------------------------|
| -1         | Y I I I I I I I I I I I I I I I I I I I | phase:       | la face sélectionnée<br>(MPa) |
| L          |                                         |              | de torsion                    |

### eur axe/boulon/palier

| ce du modèle        | u connecteur                     |                               |       | e résistance |     |
|---------------------|----------------------------------|-------------------------------|-------|--------------|-----|
| ur d'axe-1          | :onnexion:<br>؛ la raideur en ro | lip (aucune<br>ንո)<br>tation: |       | lonnée       |     |
| ans les connecteurs |                                  |                               |       | -            |     |
|                     | inte X                           | nte Y                         | nte Z |              | te  |
| iale (N)            | )14                              |                               |       |              |     |
| cisaillement (N)    |                                  |                               |       |              |     |
| N.m)                | 026                              |                               | 010   |              | 010 |
| de flexion (N.m)    |                                  |                               | 16    |              |     |
| ur de type palier-1 |                                  |                               |       | lonnée       |     |
| ans les connecteurs |                                  |                               |       |              |     |
|                     | inte X                           | inte Y                        | nte Z |              | te  |
| iale (N)            | 038                              |                               | 022   |              | 022 |
| cisaillement (N)    | 006                              |                               | )22   |              | 006 |
| de flexion (N.m)    |                                  | )11                           |       |              | 011 |
| ur de type palier-2 |                                  |                               |       |              |     |
| ans les connecteurs |                                  |                               |       |              |     |
|                     | nte X                            | inte Y                        | nte Z |              | te  |
| iale (N)            | 012                              |                               |       |              |     |
| cisaillement (N)    |                                  |                               |       |              |     |
| de flexion (N.m)    |                                  |                               | )17   |              |     |

# 2.6.Informations sur le maillage – Déta











Apres plusieurs essai de changement de charge sur notre système à fin d'atteindre la concertation de charge maximale qui peut supporter notre matériaux, comme on peut constater que la bielle qui es la plus exposer au contrainte est donc d'après les caractéristique du matériaux de la bielle qui on été étudier au deuxième chapitre dans l'étude dynamique que ce dernier ne peut pas supporter plus que **1050MPa** (limite d'élastisité) et pour cela on c'est arrêter a **8.82MPa** comme charge maximale optimiser ce qui expose la bielle à **994MPa** dans la zone de concentration des contraintes ce qui reste inférieure a la limite, ainsi que les déplacement et les déformation des matériaux qui on été inférieur la leur limite et c'est on peut dire qu'on arriver dans notre étude à **19% de gain** en tout sécurité ce qui est un pourcentage très satisfaisant.

# CHAPITRE IV :

Reprogrammation avec logiciel WinOLS

<u>IV.1.WinOLS</u>: WinOLS est un logiciel qui nous permettra d'effectuer des modifications dans les cartographies. L'interface facilite la recherche ainsi que la constatation des cartes. Celles-ci peuvent ensuite être nommées et traitées de différentes manières pour être changées.

### IV.2.Etape de la reprogrammation

Les reprogrammations des moteurs se font généralement selon un procédé identique d'abord, on doive faire une extraction des informations qui se trouve dans le calculateur moteur (ECU) ; et c'est en ouvrant ECU et le placé sur ça table BDM et s'assurer que les pins soient bien en masse avec ce qu'on appel les points boot sur le ECU



Figure IV.1-point de masse de calculateur

On réalise par la suite une lecture des données avec le matériel et les interfaces spécifique.



Figure IV.2- lecture des données

Apres la lecture on aura notre fichier pour une analyse, et un perfectionnement des données, les cartographies qu'on a à modifier son généralement (durée d'injection, le temps d'injection, du couple moteur, courbe de pression et pédale d'accélérateur .... ect) quelque exemple dans la figure ....... En rouge sont les valeurs modifiées







Figure IV.4- Map EGR



Figure IV.5- Courbe du couple moteur



Figure IV.6- Map d'accélération

 Après avoir terminé tout nos maps et bien vérifier notre modification on programme les informations optimisées dans l'ECU avec la même méthode de lecture, on remet en place notre ECU et on démarre la voiture

# **CONCLUSION**

Comme il a été décrit auparavant dans l'introduction de ce mémoire de fin d'étude le principale objectif est la détermination de la limite d'optimisation de puissance dans un moteur diesel et pour y arriver la principale donnée sur laquelle toute notre étude a été basée c'est la variation du couple en fonction de la vitesse de rotation.

Est pour y arriver à tracer cette courbe on était obligé de passer par la détermination de l'évolution de pression en fonction de la variation du volume de la chambre. Puis par une étude cinématique pour trouver les déplacements et les vitesses ainsi que l'accélération de piston.

L'étude dynamique nous a permis de trouver les charges appliquées sur chaque élément du système mobile ; piston, bielle et vilebrequin, ce qui en fin de compte nous a ramené à tracer la courbe du couple moteur en fonction de la vitesse de rotation. D'après cette courbe on a pu déduire la valeur maximale du couple de pleine charge que ce moteur peut délivrer.

L'utilisation du logiciel SOLIDWORKS nous a permis de trouver les efforts agissant sur le mécanisme ceci nous a facilité la tache de calculer la résistance des pièces et voir la variation des contraintes en augmentant la charge sur notre système sans prendre les risques d'effectuer des tests directement sur le moteur. Un autre atout de ce logiciel ce qu'il nous a permis de visualiser les phénomènes physiques difficiles à imaginer et à interpréter d'une manière traditionnelle.

L'optimisation du moteur sans tenir compte des limites mécaniques admissibles des organes peut causer la destruction des certaines pièces mécaniques dans le moteur. Dans notre cas nous avons commencé par une étude d'RDM pour déterminer cette limite admissible ce qui nous permis de déduire en pourcentage la valeur limite à ne pas dépasser. Le pourcentage trouvé est **19%**.

Tant que l'optimisation n'atteigne pas cette valeur limite le moteur ne court aucun risque et les paramètres sont en effet modifiés dans les tolérances du constructeur.

# **REFERANCE BIBLIOGRAPHIQUE**

- SOUDANI. T, -étude cinématique et dynamique du moteur diesel de la SONACOME K66 –thèse, département de génie mécanique, université de Biskra, 2012
- [2] BELALA. H, FATNACI. F, -étude technologie de la pompe haute pression CP3 Bosch du nouveau système d'injection Common Rail – thèse, département de génie mécanique, université de Biskra, 2011
- [3] **BENARFAOUI.** A, cours, Généralités sur le moteur diesel.
- [4] **BENARFAOUI.** A, cours, Présentation des moteurs diesel.
- [5] **BENABBASSI.** A, -les moteur à combustion interne introduction à la théorie, centre universitaire de Béchar
- [6] **CATHERINE Botet** thermodynamique classique, édition Marketing, 1990.
- [7] AOUES.K, BERKANE.H étude de vibration du moteur diesel F4L912 de la SONACOME thèse département de génie mécanique, université de Biskra 2002.
- [8] KHOVAKH.M Motor Vehicle Engines, traduis en Russe vers l'Anglais avec : A.TOITSKY &
  M.SAMOKHVALOV , mir Publishers, Moscow, 1979
- [9] <u>http://www.laverdamania.net/pistonfr.htm</u>
- [10] <u>http://www.euralliage.com/2618A.htm</u>
- [11] <u>http://www.euralliage.com/alliage.html#ancre672017</u>
- [12] http://www.giroudfonderie.com/rep-matieres/ido-1/fonte\_a\_graphite\_spheroidale.html
- [13] <u>http://www.solidworks.fr/sw/products/simulation/finite-element-analysis.htm</u>
- [14] ADILA AFZEL -Le comportement en fatigue de l'acier forgé et des bielles de poudres métalliques, thèse université de Toledo 2004
- [15] <u>http://www.br-performance-sud.fr/winols/</u>