

People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

Mohamed Khider University of Biskra
Faculty of Exact Sciences, Natural Sciences and Life

Computer Science Department

Order number: SIOD1/M2/2018

Master Memory

Presented to obtain the diploma of academic master in

Computer Science

Path: Information system, optimization and decision

Fog computing task scheduling

Based on simulated annealing algorithm

By:

LABED AYOUB

Examined on 26/06/2018, by the board of examiners, which is composed:

Bali Mahboub Abdelmadjid M A A Chair

Bitam Salim M C A Supervisor

Torki Fatima Zohra M A A Examiner

I
Fog Computing task scheduling based on simulated annealing algorithm

Deduction

Before all, my sincere praise to Allah the almighty for giving me

sufficient capacity and patience to accomplish this dissertation.

I dedicate this work to my dear parents who support me a lot in both

sides physically and morally.

To my dear brothers and sisters: Hocine, Med Souhile, Siham, Roufida

and wafa.

To all my friends: Abdel Jalil, Taher, Mohyeddine, Rezgallah, Fathi,

Saleh, Nadir, Fares, Okba, Amine, Rabie and Aymen.

And to all I know without exceptions.

To all my teachers without exceptions

To all my extended family LABED

Finally, I offer my regards and blessings to all those who supported me

to accomplish this work.

Acknowledgements

II
Fog Computing task scheduling based on simulated annealing algorithm

Acknowledgements

The first and the last thing is for Allah who providing me the sufficient capacity

to finish this work.

I would like to thank my supervisor, Dr. Salim BITAM, for the patient guidance,

encouragement and advice he has provided throughout my time as his student. I have

been extremely lucky to have a supervisor who cared so much about my work, and who

responded to my questions and queries so promptly.

I would not forget to thank the members of the jury, who have kindly accepted to

read and examine our work.

I am indefinitely thankful for those teachers who were sincerely caring, giving,

and understanding throughout my completely educational life.

Special thanks to all those who supported me to complete this work.

The main proposal of this study and the results were submitted to the 24th

International European Conference on Parallel and Distributed Computing (Euro-Par

2018), Workshop on Fog-to-Cloud Distributed Processing (F2C-DP), 27-31 august 2018,

Turin, Italy, (http://www.mf2c-project.eu/europar-2018-mf2c-workshop/).

 الملخص

III
Fog Computing task scheduling based on simulated annealing algorithm

 الملخص

تهدف إنترنت الأشياء إلى جعل كل الأجهزة متصلة بالإنترنت)مثل أجهزة الاستشعار والكاميرات

والمركبات(، وبالتالي توليد كميات هائلة من البيانات والتي يمكن أن تشكل عبئا على أنظمة التخزين وتطبيقات تحليلات

دم الحوسبة السحابية خدمات على مستوى البنية التحتية قادرة على تلبية متطلبات التخزين والمعالجة لإنترنت البيانات. تق

الأشياء. ومع ذلك ، هناك تطبيقات مثل مراقبة الصحة والاستجابة لحالات الطوارئ التي تتطلب سرعة في الاستجابة

م العودة إلى التطبيق يمكن أن يؤثر بشكل خطير على أدائها. ، والتأخير الناجم عن نقل البيانات إلى السحابة ومن ث

للتغلب على هذا المشكل ، تم اقتراح نموذج الحوسبة الضبابي كمكمل قوي للسحابة ، حيث يتم توسيع الخدمات السحابية

شياء من أجل إلى حافة الشبكة لتقليل وقت استجابة الإرسال. لتحقيق الإمكانات الكاملة لنماذج الضباب وإنترنت الأ

التحليلات في الوقت الحقيقي ، هناك العديد من التحديات التي يجب معالجتها. تتمثل المشكلة الأولى والأكثر أهمية في

تصميم تقنيات إدارة الموارد التي تعمل على تحسين جودة الخدمة. يقترح هذا العمل خوارزمية جدولة المهام في طبقة

تقنية في علم المعادن ، وهذه التقنية تنطوي . وهي طريقة مستوحات منر المحاكىالتخميالضباب تسمى خوارزمية

-NPعلى التسخين والتبريد المضبوط للمادة لزيادة حجم بلوراتها وتقليل عيوبها. وتعتبر مشكلة إدارة الموارد من نوع

Complete مفاضلة بين التكلفة الإجمالية وغرضها توزيع أعباء العمل بين موارد المعالجة بطريقة مثلى لتحقيق ال

ووقت تنفيذ المهام. من أجل تجسيد و تقييم فعالية الخوارزمية، تم إجراء مجموعة من الاختبارات التجريبية. بالمقارنة

، أظهرت النتائج التي تم التوصل إليها أن ”iFogSim“ على محاكي (FIFO)مع الخوارزمية الجينية و طريقة

 . التكلفة الإجمالية ووقت تنفيذ المهاممن حيث المقترحة حققت نتائج أفضل من الخوارزميات الأخرىخوارزميتنا

خوارزمية التخمير المحاكي. ،جدولة المهام ،كلمات البحث: الحوسبة الضبابية

Résumé

IV
Fog Computing task scheduling based on simulated annealing algorithm

Résumé

L'Internet des objets « IoT » vise à mettre en ligne chaque objet (par exemple, des

capteurs, des caméras et des véhicules), générant ainsi de grandes quantités de données

susceptibles de surpasser les systèmes de stockage et les applications d'analyse de données.

Le « Cloud Computing » offre des services au niveau de l'infrastructure qui peuvent

évoluer vers les exigences de stockage et de traitement de l'Internet des objets. Cependant,

il existe des applications telles que la surveillance de la santé et les interventions d'urgence

qui nécessitent une faible latence, et les retards causés par le transfert des données vers le

Cloud puis leur retour à l'application peuvent affecter sérieusement leurs performances.

Pour surmonter cette limitation, le paradigme informatique « Fog » a été proposé comme

un complément puissant au « Cloud », où les services « Cloud » sont étendus à la

périphérie du réseau pour réduire la latence de transmission. Pour réaliser tout le potentiel

des paradigmes « Fog » et « IoT » en matière d'analyse en temps réel, plusieurs défis

doivent être relevés. Le premier défi et le plus important est de concevoir des techniques

de gestion des ressources qui améliorent la qualité de service (QoS). Ce travail propose un

algorithme d'ordonnancement des tâches pour une infrastructure du « Fog Computing »

appelé « Fog Simulated Annealing algorithm » (FSA). FSA est basé sur le processus recuit-

simulé en métallurgie, une technique impliquant l’échauffement et le refroidissement

contrôlé d'un matériau pour augmenter la taille de ses cristaux et réduire leurs défauts. Pour

l’ordonnancement de tâche, nous nous attaquons à l'objectif de parvenir à l'équilibre entre

le temps d’exécution des tâches « makespan » et le coût monétaire requis en exploitant des

ressources du Fog. Il est considéré comme un problème « NP-Complet » et il vise à répartir

les charges des tâches entre les ressources de traitement de manière optimale pour obtenir

un compromis entre le coût total et le temps d'exécution des tâches. Afin d'évaluer

l'efficacité et la performance de cette proposition, un ensemble de tests expérimentaux a

été réalisé. Après comparaisons avec l’algorithme génétique (GA) et l’algorithme FIFO sur

le simulateur « iFogSim », les résultats obtenus ont montré que notre algorithme proposé

atteint un meilleur résultat par rapport d'autres algorithmes avec moins de complexité.

Mots-clés: Fog Computing, gestion des tâches, Algorithme de recuit simulé.

Abstract

V
Fog Computing task scheduling based on simulated annealing algorithm

Abstract

Internet of Things (IoT) aims to bring online every object (e.g. sensors, cameras,

and vehicles), therefore generating large amounts of data that can overpower storage

systems and data analytics applications. Cloud computing offers services at the

infrastructure level that can scale to IoT storage and processing requirements. However,

there are applications such as health monitoring and emergency response that require low

latency, and delay caused by transferring data to the cloud and then back to the application

can seriously affect their performances. To overcome this limitation, Fog computing

paradigm proposed as a powerful complement to the cloud, where cloud services are

extended to the edge of the network to reduce transmission latency. To realize the full

potential of Fog and IoT paradigms for real-time analytics, several challenges need to be

addressed. The first and most critical problem is designing resource management

techniques that improves the quality of service (QoS). This work proposes a task

scheduling algorithm in the fog layer called Fog Simulated Annealing algorithm (FSA).

FSA is based on the annealing in metallurgy, a technique involving heating and controlled

cooling of a material to increase the size of its crystals and reduce their defects. We tackle

the objective of achieving the balance between the makespan and the monetary cost of fog

resources. It is considered as NP-Complete problem and it aims at spreading the workloads

among the processing resources in an optimal way to achieve tradeoff between the total

cost and execution time of tasks. In order to evaluate the effectiveness and the performance

of this proposal, a set of experimental tests has been conducted. After comparison with

genetic algorithm (GA) and FIFO on iFogSim Simulator, the reached results showed that

our proposed algorithm achieves better tradeoff value than other algorithms with less

complexity.

Keywords: Fog Computing, Task Scheduling, Simulated Annealing Algorithm

VI
Fog Computing task scheduling based on simulated annealing algorithm

List of tables

Table 1: Fog Devices capabilities ... 33

Table 2: The sizes of the tasks .. 33

Table 3: TASK SCHEDULING OF 100 TASKS USING FSA, GA AND FIFO 46

Table 4: TASK SCHEDULING OF 500 TASKS USING FSA, GA AND FIFO 46

Table 5: TASK SCHEDULING OF 1000 TASKS USING FSA, GA AND FIFO 47

List of graphs

Figure 1: Fog computing architecture. ..4

Figure 2: Fog computing in smart grid. ..6

Figure 3: Fog computing in smart traffic lights and connected vehicles.7

Figure 4: Illustration of task scheduling problem. ...9

Figure 5: Representation of the research space ... 14

Figure 6: System architecture ... 21

Figure 7: System model of fog tasks scheduling ... 22

Figure 8: Pseudo code and Flowchart of FSA ... 28

Figure 9: The principal interface .. 35

Figure 10: The interface after clicking the start button .. 36

Figure 11: The interface after clicking the show button 37

Figure 12: The makespan bar chart ... 38

Figure 13: The cost bar chart .. 39

Figure 14: The results of scheduling using FIFO, GA and SA algorithms 40

Figure 15: The results of scheduling 100 tasks using FIFO 41

Figure 16: The results of scheduling 100 tasks using GA.................................... 41

Figure 17: The results of scheduling 100 tasks using SA 41

Figure 18: Part of task and devices generating code. ... 42

Figure 19: Part of SA Broker code. ... 43

Figure 20: Part of GA Broker code. .. 44

file:///C:/Users/Ayoub/Desktop/memoir-final%20SB.docx%23_Toc517029301
file:///C:/Users/Ayoub/Desktop/memoir-final%20SB.docx%23_Toc517029303
file:///C:/Users/Ayoub/Desktop/memoir-final%20SB.docx%23_Toc517029306

Table of contents

VII
Fog Computing task scheduling based on simulated annealing algorithm

Table of Contents

Deduction I

Acknowledgements II

 III الملخص

Résumé IV

Abstract V

List of tables VI

List of graphs VI

Table of Contents VII

General introduction ... 1

Chapter 1. Fog Computing ... 3

1.1. Introduction .. 3

1.1. Definition of fog computing ... 3

1.2. Fog computing architecture ... 4

1.3. Essential characteristics ... 5

1.4. Application areas ... 6

1.5. Challenges of Fog computing and research directions .. 8

1.5.1. Architectural Challenges and Research Directions .. 8

1.5.2. Algorithmic Challenges and Research Directions .. 8

1.6. Task scheduling problem in the fog computing .. 9

1.6.1. Definition ... 9

1.6.2. Motivation ... 9

1.7. Conclusion ... 10

Chapter 2. Task scheduling in Fog computing: A state of the art .. 11

2.1. Introduction .. 11

2.2. Optimization .. 11

2.2.1. Definitions ... 11

2.2.2. Optimization problem types ... 12

2.2.3. Optimization approaches ... 13

2.3. Fog computing task scheduling problem .. 15

2.3.1. Definitions ... 15

Table of contents

VIII
Fog Computing task scheduling based on simulated annealing algorithm

2.3.2. Related works on fog comuting task scheduling ... 17

2.4. Conclusion ... 19

Chapter 3. The general design ... 20

3.1. Introduction .. 20

3.2. Contributions... 20

3.3. System model .. 20

3.4. Problem formulation ... 23

3.5. Fog Simulated Annealing Algorithm ... 24

3.5.1. Origin of the algorithm ... 24

3.5.2. The basic properties of the simulated annealing algorithm 24

3.5.3. Advantages of simulated annealing algorithm .. 25

3.6. Fog Simulated annealing for task scheduling .. 26

3.6.1. FSA Algorithm Illustration .. 26

3.6.2. FSA Algorithm representation, evaluation and stopping criterion 29

3.6.3. FSA Algorithm operators .. 29

3.7. Conclusion ... 30

Chapter 4. Experimental study .. 31

4.1. Introduction .. 31

4.2. The iFogSim simulator ... 31

4.3. Experimental settings .. 32

4.1. Application preview ... 34

4.2. Experimental results .. 45

4.3. Conclusion ... 47

General conclusion ... 48

References 49

General introduction

1
Fog Computing task scheduling based on simulated annealing algorithm

General introduction

Recently, academia and industry have been developing efficient architectures in

order to deal with the demands of the ever-increasing number of IoT devices. Fog

computing is one of promising solutions (Nisha, 2015). Fog computing is considered as an

extension of the cloud computing paradigm from the core of the network to the edge of the

network. It is a highly virtualized platform that provides computation, storage, and

networking services between end devices and traditional cloud servers (Stojmenovic, et al.,

2014), fog computing aims to process part of the service’s workload locally on fog nodes,

which are served as a near-end computing proxies between the front-end IoT devices and

the back-end cloud servers (Bonomi, et al., 2012). Putting resources at the edge of the

network only one or two hops from the data sources allows fog nodes to perform low

latency processing while latency-tolerant and large-scale tasks can still be efficiently

processed by the cloud. In addition, the cost and scale benefits of the cloud can help the

fog to serve peak demands of IoT devices if the resources of fog nodes are not sufficient.

Also, many applications require the interplay and cooperation between the edge (fog) and

the core (cloud), particularly for the IoT and big data analysis (Pham, et al., 2016).

 In this study, we consider task scheduling issue in a fog computing system, where

a fog provider can exploit the collaboration between its fog nodes for efficiently executing

users’ large-scale offloading applications. The fog nodes are local resources, which can be

any devices with computing, storage, and network connectivity such as set-top-boxes,

access points, routers, switches, base stations, and end devices, etc. (Yi, et al., 2015).

However, All distributed processing nodes, are managed by a resource broker (fog broker),

which is a resource management component, and scheduler for the workflows submitted

from users at the fog’s side. In this case, a task schedule, which does not achieve good

tradeoff between the completion time of the workflow and the monetary cost, is not an

optimal solution.

Therefore, in this work we propose a new task scheduling algorithm called Fog

Simulated Annealing (FSA) algorithm to achieve a good tradeoff between the workflow

execution time and the cost for the use of fog resources. Our proposal is based on the

annealing in metallurgy, a technique involving heating and controlled cooling of a material

General introduction

2
Fog Computing task scheduling based on simulated annealing algorithm

to increase the size of its crystals and reduce their defects. In order to evaluate the

performance of our proposal, simulator named iFogSim choose to perform a set of

simulations, and to compare it against other methods in terms of the workflow execution

time and the cost for the use of fog resources.

The organization of this manuscript is as follows: the first chapter presents a general

study on the concept of Fog Computing including definition, architecture and the different

characteristics of the fog. In the second chapter, we consider the detailed definition of the

problem of task scheduling, followed by state of the art in this problem. The third chapter

explains the fog simulated annealing algorithm and its different stages such as the

representation of an individual (a solution), the objective function, generating function, and

accept function. In the fourth chapter, a simulation of the fog simulated annealing on a fog

simulator called iFogSim is presented. It contains the description of the studied scenario,

the results obtained, as well as a discussion based on a comparison with the conventional

scheduling algorithm (First In First Out) and (Genetic Algorithm). Finally, we conclude

our research activity with some perspectives.

Chapter 1 Fog Computing: basic concepts

Chapter 1

Fog computing:

Basic concepts

Chapter 1 Fog Computing: basic concepts

3
Fog Computing task scheduling based on simulated annealing algorithm

Chapter 1. Fog Computing

1.1. Introduction

In the past few years, the Cloud computing has provided many opportunities for

enterprises by offering their customers a range of computing services. Current “pay-as you-

go” Cloud computing model becomes an efficient alternative to owning and managing

private data centers for customers facing Web applications and batch processing

(Armbrust, et al., 2010). Cloud computing frees the enterprises and their end users from

the specification of many details, such as storage resources, computation limitation and

network communication cost. However, this bliss becomes a problem for latency-sensitive

applications, which require nodes in the vicinity to meet their delay requirements (Bonomi,

et al., 2012). When techniques and devices of IoT are getting more involved in people’s

life, current Cloud computing paradigm can hardly satisfy their requirements of mobility

support, location awareness and low latency. Fog computing is proposed to address the

above problem. As Fog computing is implemented at the edge of the network, it provides

low latency, location awareness, and improves quality-of-services (QoS) for streaming and

real time applications. Typical examples include industrial automation, transportation, and

networks of sensors and actuators. Moreover, this new infrastructure supports

heterogeneity as Fog devices include end-user devices, access points, edge routers and

switches. The Fog paradigm is well positioned for real time big data analytics, supports

densely distributed data collection points, and provides advantages in entertainment,

advertising, personal computing and other applications (Stojmenovic, et al., 2014).

1.1. Definition of fog computing

In the perspective of Cisco, fog computing is considered as an extension of the

cloud computing paradigm from the core of network to the edge of the network. It is highly

virtualized platform that provides computation, storage, and networking services between

end devices and traditional cloud servers (Bonomi, et al., 2012).

While in flavor work, fog computing is defined as scenario where a huge number

of heterogeneous (wireless and sometimes autonomous) ubiquitous and decentralized

devices communicate and potentially cooperate among them and with the network to

Chapter 1 Fog Computing: basic concepts

4
Fog Computing task scheduling based on simulated annealing algorithm

perform storage and processing tasks without the intervention of third parties. These tasks

can be for supporting basic network functions or new services and applications that run in

sandboxed environments. Users leasing part of their devices to host these services get

incentives for doing so (Vaquero, et al., 2014).

Figure 1: Fog computing architecture.

1.2. Fog computing architecture

The fog computing system architecture has three layers in a hierarchy network as

represented in figure 1.

The bottommost layer consists of end user devices, which can be smartphones,

tablets, wearable devices, thin-client, smart home appliances, wireless sensor nodes, and

so on. They send requests to the upper layers for application execution.

The middle layer represents fog computing environment. The primary components

of this layer are intelligent fog devices (e.g. routers, gateways, switches, access points) that

have the capability of computing, networking, and storage. They are called fog nodes,

which are deployed in the vicinity of end users to receive and process part of a workload

Chapter 1 Fog Computing: basic concepts

5
Fog Computing task scheduling based on simulated annealing algorithm

of users’ requests with the local short-distance high-rate connection. Also, they are

connected to the cloud so as to benefit from a massive pool of redundant resources of the

cloud on demand.

The uppermost layer represents cloud computing environment, which hosts a

number of heterogeneous cloud nodes or VMs of different cloud service providers. The

cloud nodes provide outsourced resources to execute the workload dispatched from the fog

layer. (Pham, et al., 2017)

1.3. Essential characteristics

The different characteristics of fog computing are:

 Edge location, location awareness, and low latency: Fog computing support

endpoints with finest services at the edge of the network.

 Geographical distribution : The services and application objective of the fog

is widely distributed for example fog will play an important role in

delivering high quality streaming to connected vehicles through proxies and

access points positioned nearby.

 Support for mobility: Using LISP protocol fog devices provide mobility

techniques like decouple host identity to location identity.

 Real time interactions: fog computing requires real time interactions for

speedy service.

 Heterogeneity: Fog nodes can be deployed in a wide variety of

environments.

 Interoperability: Fog components must be able to interoperate in order to

give wide range of services like streaming.

 Support for on-line diagnostic and interplay with the Cloud: The fog sited

to play a virtual role in the intake and processing of the data close to the

source. (Nisha, 2015)

Chapter 1 Fog Computing: basic concepts

6
Fog Computing task scheduling based on simulated annealing algorithm

1.4. Application areas

We elaborate on the role of Fog computing in the following three motivating

scenarios. The advantages of Fog computing satisfy the requirements of applications in

these scenarios.

Smart Grid: Energy load balancing applications may run on network edge devices,

such as smart meters and micro-grids. Based on energy demand, availability and the lowest

price, these devices automatically switch to alternative energies like solar and wind. As

shown in figure 2, Fog collectors at the edge process the data generated by grid sensors and

devices, and issue control commands to the actuators. They also filter the data to be

consumed locally, and send the rest to the higher tiers for visualization, real-time reports

and transactional analytics. Fog supports ephemeral storage at the lowest tier to semi-

permanent storage at the highest tier. Global coverage is provided by the Cloud with

business intelligence analytics.

Figure 2: Fog computing in smart grid.

Smart Traffic Lights and Connected Vehicles: Video camera that senses an

ambulance flashing lights can automatically change the streetlights to open lanes for the

vehicle to pass through traffic. Smart streetlights interact locally with sensors and detect

presence of pedestrian and bikers, and measure the distance and speed of approaching

vehicles. As shown in figure 3, intelligent lighting turns on once a sensor identifies

movement and switches off as traffic passes. Neighboring smart lights serving as Fog

Chapter 1 Fog Computing: basic concepts

7
Fog Computing task scheduling based on simulated annealing algorithm

devices coordinate to create green traffic(efficient networking) wave and send warning

signals to approaching vehicles. Wireless access points like Wi-Fi, 3G, roadside units and

smart traffic lights are deployed along the roads. Vehicles-to-Vehicle, vehicle to access

points, and access points to access points interactions enrich the application of this

scenario.

Figure 3: Fog computing in smart traffic lights and connected vehicles.

Wireless Sensor and Actuator Networks: Traditional wireless sensor networks

fall short in applications that go beyond sensing and tracking, but require actuators to exert

physical actions like opening, closing or even carrying sensors. In this scenario, actuators

serving as Fog devices can control the measurement process itself, the stability and the

oscillatory behaviors by creating a closed-loop system. For example, in the scenario of self-

maintaining trains, sensor monitoring on a train’s ball bearing can detect heat levels,

allowing applications to send an automatic alert to the train operator to stop the train at

next station for emergency maintenance and avoid potential derailment. In lifesaving air

vents scenario, sensors on vents monitor air conditions flowing in and out of mines and

Chapter 1 Fog Computing: basic concepts

8
Fog Computing task scheduling based on simulated annealing algorithm

automatically change airflow if conditions become dangerous to miners. (Stojmenovic, et

al., 2014)

1.5. Challenges of Fog computing and research directions

Many architectures and algorithms have been developed for the fog computing, but

none of them meets all the identified criteria such as heterogeneity, scalability, mobility....

This section discusses the fog computing challenges.

1.5.1. Architectural Challenges and Research Directions

 Heterogeneity: the design of exhaustive and flexible semantic ontologies

 QoS Management: the design of appropriate SLA management techniques.

 Scalability: the design of mechanisms that in addition to scale the resources

from cloud can support scaling the resources of involved domain in fog

stratum and devices in IoT/end-user stratum.

 Mobility: the design of mechanisms that consider the mobility of IoT and

fog nodes in addition to the cloud nodes.

 Federation: the design of appropriate composition mechanisms for the

application components.

 Interoperability: the design of signaling control, and data interface between

the serval domain parts of the fog system.

1.5.2. Algorithmic Challenges and Research Directions

 Heterogeneity: acquiring a clear vision on the degree of heterogeneity in

term of computing and storage capabilities.

 QoS Management: considering various QoS metrics.

 Scalability: validating algorithms over large scale in real world

environment.

 Mobility: ensuring the continuity of offered services despite the movement

of IoT/end-user devices and/or fog nodes.

 Federation: designing algorithms for federation in fog systems. (Mouradian,

et al., 2017)

Chapter 1 Fog Computing: basic concepts

9
Fog Computing task scheduling based on simulated annealing algorithm

1.6. Task scheduling problem in the fog computing

1.6.1. Definition

Task scheduling on a target system that has network topology is defined as the

problem of allocating the tasks of an application to a set of processors with various

processing capabilities so, as to minimize the makespan of the schedule. Thus, the input of

task scheduling involves a task graph and a processor graph, and the output is a schedule

representing the assignment of a processor to each task as shown in Figure 4. (Pham, et al.,

2017)

Figure 4: Illustration of task scheduling problem.

1.6.2. Motivation

The task scheduling problem for the fog computing environment deals with the

problem of the increasing demand for computational resources requested by mobile users

to perform a large number of tasks efficiently. The task scheduling problem determines an

optimal assignment of various tasks submitted to be executed on the lowest number of fog

Chapter 1 Fog Computing: basic concepts

10
Fog Computing task scheduling based on simulated annealing algorithm

computing resources (e.g. less memory) in the shortest CPU execution time. As a result,

the mobile user achieves faster execution time of his/her tasks at the lowest cost. (Bitam,

et al., 2017)

1.7. Conclusion

In this chapter, we have seen the different definitions of fog computing, its essential

characteristics and some application areas. Next, we cited some challenges in this area as

well as an introduction to the issue of task scheduling in the fog computing environment.

In the next chapter, we will see the optimization domain in general; later we will

develop and deal with the problem of tasks scheduling as an optimization problem. In

addition, we will see the different works proposed in the literature to solve this problem in

the fog as a state of the art.

Chapter 2 Task scheduling in Fog computing

Chapter 2

Task scheduling

In fog computing

Chapter 2 Task scheduling in Fog computing

11
Fog Computing task scheduling based on simulated annealing algorithm

Chapter 2. Task scheduling in Fog computing: A state of the art

2.1. Introduction

The problem of task scheduling in fog computing environments considered as a

very important research issue because of its impact on quality of service (QoS) such as

end-user waiting time, CPU execution time and dedicated memory (Hao, et al., 2017).

In this chapter, we present the main research work and the methods of resolutions

used to solve this problem. Task scheduling can be qualified as an NP-hard optimization

problem (Bitam, et al., 2017). For this reason, all existed works used advanced optimization

methods. By exposing the state of the art of this issue, we will detail principle of each

proposed method.

2.2. Optimization

2.2.1. Definitions

 Optimization can be defined as finding solution of a problem where it is necessary

to maximize or minimize a single or set of objective functions within a domain,

which contains the acceptable values of variables while some restrictions

(constraints) are to be satisfied.

 The solutions: there are two types of solutions

a. Acceptable solutions: are solutions that maximize or minimize the objective

function(s) while satisfying the described restrictions.

b. An optimum solution: is the best solution.

 The objective function: expresses the main aim of the model that is either to be

minimized or maximized.

 A set of variables: control the value of the objective function and these variables

are essential for the optimization problems. We cannot define the objective function

and the constraints without the variables.

 A set of constraints: are those, which allow the variables to take on certain values

but they exclude others. The constraints depends on the requirements of the

optimization problem (Rao, 2015).

Chapter 2 Task scheduling in Fog computing

12
Fog Computing task scheduling based on simulated annealing algorithm

2.2.2. Optimization problem types

In literature, there are two types of optimization problem, the former is called single

objective optimization problem aiming at improving one objective, where the latter is

known as multiple or multi-objective optimization problem in which more than one

objective is tackled (Rao, 2015).

2.2.2.1. Optimization methods for single objective optimization problems

We can solve the single objective optimization problems by using traditional

methods (such as simplex method, dynamic programming, separable programming, etc.)

and advanced optimization methods (such as genetic algorithm (GA), simulated annealing

(SA), particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee

colony algorithm (ABC), etc.

Then, we cannot know which method will give the best solution only after applying

these methods to the same problem and whichever method gives the best solution is called

the best optimization method for the given problem.

2.2.2.2. Optimization methods for multi-objective optimization problems

In the real world, there are many problems in which it is desirable to optimize two

or more objectives at the same time, these problems are known as multi-objective

optimization problems. To cope with this kind of issues, single or multiple objective

problems), continuous research is being conducted in this field, and nature inspired

heuristic optimization methods are proving to be better than the classical deterministic

methods, and thus are widely used, we mention for example genetic algorithm (GA), ant

colony optimization (ACO) algorithm, particle swarm optimization (PSO) algorithm;

differential Evolution (DE) algorithm, artificial bee colony (ABC) algorithm, shuffled frog

leaping (SFL) algorithm, harmony search (HS) algorithm, etc.

Generally, the multi-objective optimization problems have decision variable values

which are determined in a continuous or integer domain with either an infinite or a large

number of solutions, the best of which should satisfy the designer or decision-maker’s

constraints and preference priorities (Rao, 2015).

Chapter 2 Task scheduling in Fog computing

13
Fog Computing task scheduling based on simulated annealing algorithm

2.2.3. Optimization approaches

Optimization approaches can be classified into two main categories (mansouri,

2013).

2.2.3.1. Exact approaches

An exact method can be defined as a method that provides an optimal solution for

an optimization problem. The use of this type of method is particularly interesting in the

case of small problems.

 Features

- The solution found is accurate

- This method is theoretical and less practical method

- The processing complexity is exponential

 Examples

- Branch and bound

- Dynamic programming

- A*

- Etc.

2.2.3.2. Approximation strategies (Metaheuristic)

The word metaheuristic is derived from the composition of two Greek words:

- Heuristic which comes from the verb heuriskein and which means to find.

- Meta which is a suffix meaning beyond.

A metaheuristic method is a resolution algorithm that does not necessarily provide

an optimal (global) solution for a given optimization problem. It offers a solution close to

the so-called optimal solution (found).

 Features

- The solution found is not exact

- This realistic method

- The complexity of treatment is acceptable

 Representation of the research space as follows:

Chapter 2 Task scheduling in Fog computing

14
Fog Computing task scheduling based on simulated annealing algorithm

Figure 5: Representation of the research space

S-metaheuristic

 Principle: This is a method that searches around a chosen solution. It is easy to

apply in its different stages: representation, evaluation function "fitness", and

neighborhood.

 Limitations of S-metaheuristics:

- Convergence towards local optima

- The local optimum found depends on the initial solution

- No general approach to limit the relative error (find the global optimum)

P-metaheuristic

 Generality:

A P-metaheuristic construct a method inspired by a natural and biological

phenomenon exercises a resolution based on a population where a population is a

set of individuals (i.e. a set of solutions).

 Examples:

- Genetic algorithms (GA): based on evolutionary operators such as selection,

crossing and mutation.

- Ant colony-based optimization (ACO): inspired by the search for food in

ants by the use of a substance known as pheromone.

Chapter 2 Task scheduling in Fog computing

15
Fog Computing task scheduling based on simulated annealing algorithm

- Optimization based on bee colonies: inspired by the natural behavior of bees

such as the search for food, communication, and reproduction.

2.3. Fog computing task scheduling problem

Fog computing has several advantages, including decrease latency time, decrease

network traffic and energy efficiency, but due to the novelty, this concept also has

challenges (KRAEMER, et al., 2017).One of these challenges is associated with the

allocation of resources and scheduling (Puliafito, et al., 2013). As the IoT applications is

growing rapidly and clients are demanding more services and better results, task scheduling

for the Fog has become a very interesting and important research area (Al Nuaimi, et al.,

2012).

2.3.1. Definitions

2.3.1.1. The tasks

A task is a unit of execution or a unit of work, with execution and competition time.

It consists of a set of processes, which require for their implementation, certain resources,

and that it is necessary for the program to achieve a specific objective.

• The Execution Time EET(j, r) is defined as the time the resource r will take to

execute the job j from the time the job starts executing on the resource.

• The Completion Time ECT(j, r) is the time at which job j would complete

execution at resource r:

ECT(j, r) = EET(j, r) + max(EAT(j,r), FAT(j, r)) (Blythe, et al., 2005)

2.3.1.2. The task scheduling problem in fog computing

Task scheduling issue in a fog computing system, is where a fog provider can

exploit the collaboration between its fog nodes for efficiently executing users’ large-scale

offloading applications. Task scheduling aims to achieve a high performance computing

and the best system throughput (Salot, 2013). In fog computing, task scheduling problem

means assigning a set of tasks to fog nodes located at the edge of the network (Bitam, et

al., 2017).

2.3.1.3. Task scheduling process

Scheduling process in fog can be generalized into three stages namely:

https://en.wikipedia.org/wiki/Execution_(computing)

Chapter 2 Task scheduling in Fog computing

16
Fog Computing task scheduling based on simulated annealing algorithm

- Resource discovering and filtering: Fog Broker discovers the resources (fog

devices) present in the network system and collects status information

related to them.

- Resource selection: Target resource is selected based on certain parameters

of task and resource. This is deciding stage.

- Task submission: Task is submitted to resource selected (Salot, 2013).

2.3.1.4. Task scheduling algorithms classification

According to a simple classification, task scheduling algorithms in fog computing

can be categorized into two main groups; Batch mode heuristic scheduling algorithms

(BMHA) and online mode heuristic algorithms (Salot, 2013)..

In BMHA, tasks are queued and collected into a set when they arrive in the system.

The scheduling algorithm will start after a fixed period of time. The main examples of

BMHA based algorithms are; First Come First Served scheduling algorithm (FCFS),

Round Robin scheduling algorithm (RR), Min–Min algorithm and Max–Min algorithm.

By On-line mode heuristic scheduling algorithm, Jobs are scheduled when they

arrive in the system. Since the cloud environment is a heterogeneous system and the speed

of each processor varies quickly, the on-line mode heuristic scheduling algorithms are more

appropriate for a cloud environment. Most fit task scheduling algorithm (MFTF) is suitable

example of On-line mode heuristic scheduling algorithm.

Chapter 2 Task scheduling in Fog computing

17
Fog Computing task scheduling based on simulated annealing algorithm

a. First Come First Serve Algorithm: Job in the queue which come first is served.

This algorithm is simple and fast.

b. Round Robin algorithm: In the round robin scheduling, processes are dispatched

in a FIFO manner but are given a limited amount of CPU time called a time-slice or a

quantum. If a process does not complete before its CPU-time expires, the CPU is

preempted and given to the next process waiting in a queue. The preempted process is

then placed at the back of the ready list.

c. Min–Min algorithm: This algorithm chooses small tasks to be executed firstly,

which in turn large task delays for long time.

d. Max – Min algorithm: This algorithm chooses large tasks to be executed firstly,

which in turn small task delays for long time.

e. Most fit task scheduling algorithm: In this algorithm task which fit best in

queue are executed first. This algorithm has high failure ratio.

f. Priority scheduling algorithm: The basic idea is straightforward: each process is

assigned a priority, and priority is allowed to run. Equal-Priority processes are scheduled

in FCFS order. The shortest-Job-First (SJF) algorithm is a special case of general

priority scheduling algorithm. An SJF algorithm is simply a priority algorithm where the

priority is the inverse of the (predicted) next CPU burst. That is, the longer the CPU

burst, the lower the priority and vice versa. Priority can be defined either internally or

externally. Internally defined priorities use some measurable quantities or qualities to

compute priority of a process (Salot, 2013).

2.3.2. Related works on fog comuting task scheduling

In the literature, many studies have been proposed to solve task scheduling problem

in heterogeneous computing systems, where the sequence of tasks (workflow) is popularly

presented by a Directed Acyclic Graph (DAG), nevertheless, there are few research

activities aiming at scheduling tasks in fog computing domain. Because DAG task

scheduling is a non-deterministic polynomial-time complete (NP-complete) problem, it is

expected to be solved by heuristic algorithms for finding approximate optimal solutions.

The heterogeneous earliest finish time (HEFT) algorithm is the most popular and widely

used algorithm to solve task scheduling problem in heterogeneous computing systems such

as cloud and fog computing systems. The HEFT includes two main phases: a task

Chapter 2 Task scheduling in Fog computing

18
Fog Computing task scheduling based on simulated annealing algorithm

prioritizing phase for computing the priorities of all tasks based on upward rank value and

a processor selection phase for selecting the task with the highest upward rank value at

each step and assigning the selected task to the processor which minimizes the task’s finish

time (Pham, et al., 2017).

In the literature, we can find (Ningning, et al., 2016) in which the authors designed

a fog computing load balancing mechanism of task allocation based graph partitioning,

where fog computing tasks are assigned to a single or multiple virtual machines nodes

according to the level of resources required by the task. The authors represent the physical

nodes of the fog computing by a non-directional graph. These physical nodes come into a

set of virtual machine’s nodes according to the available fog computing resources, where

virtual machine nodes provide services to the users by graph partitioning. To achieve this,

a minimum spanning tree is constructed from the entire graph; edges that did not provide

enough resources are removed. The resulting graph represents the load balancing partition

that is handled by fog computing. This effectiveness of this proposed mechanism has been

demonstrated in terms of tasks’ run time. This study took into account only one criterion

that is execution time, regardless of the existence of others important criterion such as the

monetary cost.

In (Pham, et al., 2016), the authors proposed to use heuristic-based algorithm,

whose major objective is achieving the balance between the makespan and the monetary

cost of cloud resources. The authors consider task scheduling in a cloud-fog computing

system, where a fog provider can exploit the collaboration between its fog nodes and the

rented cloud nodes for efficiently executing users’ large-scale offloading applications, and

achieving a good tradeoff between the workflow execution time and the cost for the use of

cloud resources. The results obtained during this study, could be more general, if the

authors use other algorithms such Genetic Algorithm and Particle swarm optimization

when comparing the proposed algorithm’s results.

The purpose of (Pham, et al., 2017) is to study the tradeoff issue between the

makespan and cloud cost when scheduling large-scale applications in such a platform. A

scheduling algorithm called Cost-Makespan aware Scheduling heuristic was proposed

where its major objective is to achieve the balance between the performance of application

https://en.wikipedia.org/wiki/Particle_swarm_optimization

Chapter 2 Task scheduling in Fog computing

19
Fog Computing task scheduling based on simulated annealing algorithm

execution and the mandatory cost for the use of cloud resources. Additionally, an efficient

task reassignment strategy based on the critical path of the directed acyclic graph modeling

the applications is also proposed to refine the output schedules of the Cost-Makespan aware

Scheduling algorithm to satisfy the user-defined deadline constraints or quality of service

of the system. The results obtained of this study could be more convincing with a

complexity analysis of the approach execution time.

The authors of (Bitam, et al., 2017) explored a novel approach called Bees Life

Algorithm (BLA), whose major objective is to find an optimal tradeoff between CPU

execution time and allocated memory required by fog computing services established by

mobile users. The empirical performance evaluation results demonstrate that the proposal

outperforms the traditional particle swarm optimization and genetic algorithm in terms of

CPU execution time and allocated memory. This study could be generalized if BLA is

tested on a large-scale fog computing platform.

2.4. Conclusion

In this chapter, we have exposed the scheduling problem, and then a state-of-the-

art dealing with the treatment of this problem was presented. Following our comparison

study, we choose Fog Simulated Annealing as a method to solve this problem. In the next

chapter, we will see the detailed design of our system in order to use FSA to solve this

problem.

Chapter 3 The general design

Chapter 3

The general

Design

Chapter 3 The general design

20
Fog Computing task scheduling based on simulated annealing algorithm

Chapter 3. The general design

3.1. Introduction

To deal with the task scheduling problem in fog computing, we propose a new

optimization approach named Fog Simulated Annealing algorithm (FSA) (Labed, et al.,

2018) to find an optimal allocation for tasks among the available fog resources (i.e. fog

nodes) so that we can achieve a tradeoff between the cost and the time of executing the

tasks. In this way, the response latency and bearable cost can satisfy mobile users’

requests.

In this chapter, we will consider the design of our system, which is the use of a

Simulated Annealing Algorithm to solve the problem of task scheduling in a fog computing

environment. More specifically, we will explain the steps of the simulated algorithm to

solve this optimization problem.

3.2. Contributions

The main contributions of this work are summarized as follows:

 To deal with the task scheduling problem in fog computing, we propose a new

optimization approach named Fog Simulated Annealing algorithm (FSA) to find an

optimal allocation for tasks among the available fog resources (i.e. fog nodes) so that

we can achieve a tradeoff between the cost and the time of executing the tasks. In this

way, the response latency and bearable cost can satisfy mobile users’ requests.

 We evaluate the performance of the proposed novel approach FSA and demonstrate its

efficiency by comparing its performances with other approaches using FIFO and the

genetic algorithm (GA).

3.3. System model

The fog computing system has three layers in a hierarchy network, as represented

in figure 6.

The front-end layer consists of IoT devices, which serve as user interfaces that send

requests from users.

The fog layer, which is formed by a set of near-end fog nodes, receives and

processes users’ requests. Fog server or broker, is a centralized management component

Chapter 3 The general design

21
Fog Computing task scheduling based on simulated annealing algorithm

and task scheduler. The broker (1) receives all requests of users; (2) manages available

resources on fog nodes (e.g. processing capacity, network bandwidth) as well as processing

and communication costs together with results of data query returned from nodes; and (3)

creates the most appropriate schedule for an input workflow.

The cloud layer, which hosts a number of computing machines or cloud nodes,

provides outsourced resources to execute the workload dispatched from the fog layer.

To ensure task scheduling, we propose a new algorithm called Fog simulated

annealing algorithm (FSA), performed by the administrator node in order to find the

optimal order (scheduling), which is further executed by the fog nodes. Thus, the fog nodes

can together guarantee cost and makespan performance of the scheduled services.

Figure 6: System architecture

Chapter 3 The general design

22
Fog Computing task scheduling based on simulated annealing algorithm

We describe the operation of our system model by summarizing the steps for

running a scheduled service in figure 7.

First, a mobile user sends a service request to a fog node located at the edge of the

network of this computing infrastructure (step 1). Next, the fog node sends data and

parameters of this request to the administrator node often located far away from the user

(step 2). In the following step 3, FSA is executed to find the best task scheduling. Next,

each fog node receives its assigned tasks (step 4). These tasks are executed at the level of

the fog nodes (step 5). Each fog node sends its results (step 6) to the administrator node.

The final result is then sent to the mobile user as a service response (step 7).

Figure 7: System model of fog tasks scheduling

Chapter 3 The general design

23
Fog Computing task scheduling based on simulated annealing algorithm

3.4. Problem formulation

Task Scheduling aims at assigning tasks to fog nodes in the fog environment so that the

cost and execution time (makespan) of the overall tasks minimized. This problem can be

formulated as follows:

We denote by:

𝑇𝑎𝑠𝑘𝑠 = {𝑇1, 𝑇2, … , 𝑇𝑖, … , 𝑇𝑛}

A set of ‘n’ tasks. Disseminated among ‘m’ fog devices (FDs) in order to be

executed. Consequently, each fog device can carry out tasks set, 𝐹𝐷𝑗 ensures the execution

of the tasks as follows:

𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠 = {𝑇1𝑗, 𝑇2𝑗 , … , 𝑇𝑘𝑗 , … , 𝑇𝑟𝑗}

For example, 𝐹𝐷𝑗 carries out:

𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠 = {𝑇2𝑗, 𝑇11𝑗 , 𝑇13𝑗}

Therefore, the total execution time of all tasks (‘r’ tasks) assigned to 𝐹𝐷𝑗 would be:

𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠) = ∑ 𝑇𝑘𝑗 . 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑟
𝑘=0 (1)

Where 𝑇𝑖. 𝐸𝑥𝑒𝑇𝑖𝑚𝑒 is the execution time of task ‘i’ at 𝐹𝐷𝑗.

In addition, the cost of using a fog node 𝐹𝐷𝑗 would be as follows:

𝐶𝑜𝑠𝑡(𝐹𝐷𝑗) = 𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠) ∗ 𝑢𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝐹𝐷𝑗) (2)

Where, 𝑢𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝐹𝐷𝑗) is the cost of using a fog device during a specific time

unit.

In order to evaluate the quality of the requested solution 𝐹𝐷𝑇𝑎𝑠𝑘𝑠, two fitness

function is defined as follows:

The total execution time of all tasks (‘n’ task):

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛𝑒(𝐹𝐷𝑇𝑎𝑠𝑘𝑠) = 𝑀𝑎𝑥 (𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠)) (3)

The total cost of executing all tasks (‘n’ task):

Chapter 3 The general design

24
Fog Computing task scheduling based on simulated annealing algorithm

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝐹𝐷𝑇𝑎𝑠𝑘𝑠) = ∑ 𝐶𝑜𝑠𝑡(𝐹𝐷𝑗)𝑚
𝑗=0 (4)

Thus, the tasks scheduling problem in the fog computing could be defined as

searching of a set:

𝐹𝐷𝑇𝑎𝑠𝑘𝑠 = {𝐹𝐷1𝑇𝑎𝑠𝑘𝑠, 𝐹𝐷2𝑇𝑎𝑠𝑘𝑠, … , 𝐹𝐷𝑚𝑇𝑎𝑠𝑘𝑠}

and:

𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠 = {𝑇1𝑗 , 𝑇2𝑗 , … , 𝑇𝑘𝑗 , … , 𝑇𝑟𝑗} 𝑤𝑖𝑡ℎ 0 < 𝑟 ≤ 𝑛

which reduce the Makespan and the Total Cost.

3.5. Fog Simulated Annealing Algorithm

3.5.1. Origin of the algorithm

Simulated annealing algorithm (JOHNSON, et al., 1991) is an approach proposed

to the approximate solution of difficult combinational optimization problems (problems

that are central to the disciplines of computer science and engineering (Kirkpatrick, et al.,

1983)).

Simulated annealing originates from the analogy between the physical annealing

process and the problem of finding (near) minimal solutions for discrete minimization

problems (Dekkers, et al., 1988).

The simulated annealing in metallurgy based on an analogy of thermodynamics

with the way metals cool and anneal. The solid is heated to melt first, and then let it cool

slowly solidified into a regular crystal. When heating the fixed, the inside of the solid

particles can increase the internal energy with the increase of internal temperature. When

internal energy achieves maximum, the arrangement state of the particle into a liquid

disordered. This process is called smelting. When cooling, particle solidified into a solid

crystalline state with the decrease of the temperature. The particle is orderly and solidified

into a solid crystalline state. This process is called annealing (Liu, et al., 2010).

3.5.2. The basic properties of the simulated annealing algorithm

 Energy: Energy function is expressed as E，E=f(x)，f (x) is the general function.

Chapter 3 The general design

25
Fog Computing task scheduling based on simulated annealing algorithm

 Generating function: Generating function g (x1) defines the probability density

function of the difference between the current point and the next point to be accessed.

x1 = xnew − x. According to x1, the algorithm will generate a new value.

 Accept function: After generating a new solution by generating functions, the algorithm

based on accepted function P(E1, T) value to determine whether to accept or give up

the new value.

 Probability accept function 𝑃 = exp (−𝐸1/𝐶𝑡) .C is a constant system. T is the

temperature. E1 is the energy difference between f(xnew) − f(x). simulated annealing

algorithms based on probability way to generate new value. When the E1 is negative,

the algorithm tends to accept the solution. When E1 is positive, the algorithm tends to

accept the solution with smaller probability.

 Simulated annealing schedule: Annealing schedule is a function of time or number of

iterations that controls the temperature that drop from high to low. (Liu, et al., 2010).

3.5.3. Advantages of simulated annealing algorithm

SA has become one of the many heuristic approaches designed to give a good, not

necessarily optimal solution. It is simple to formulate and it can handle mixed discrete and

continuous problem with ease. It is also efficient and has low memory requirement. SA

takes less CPU time than genetic algorithm (GA) when used to solve optimization

problems, because it finds the optimal solution using point-by-point iteration rather than a

search over a population of individuals. (Suman, et al., 2006).

It is a method to obtain an optimal solution of a single objective optimization

problem and to obtain a Pareto set of solutions for a multi-objective optimization problem

with a substantial reduction in computation time (Busetti, 2003).

It is quite powerful finding global minimum, and provides more features at the cost

of an increase in execution time for a single run of the algorithm (Goffe, et al., 1994)

When adapted efficiently to optimization problems, SA is often characterized by

fast convergence and ease of implementation. These characteristics motivate the choice of

SA for NP-hard combinatorial optimization problems (Bouleimen K, 2003).

Chapter 3 The general design

26
Fog Computing task scheduling based on simulated annealing algorithm

3.6. Fog Simulated annealing for task scheduling

In this section, we present our contribution, which is the proposal to solve the task

scheduling problem in the fog computing by applying simulated annealing algorithm, we

named our proposed algorithm Fog Simulated Annealing algorithm (FSA).

3.6.1. FSA Algorithm Illustration

Fog Simulated Annealing Algorithm (FSA) pseudo-code is as follows:

FSA_Begin

S0 = initialization; // generating an initial solution (a task scheduling) at random

S* = S0; // best task scheduling

f1(S0); //exaction time off all tasks using scheduling S

f2(S0); // total cost off executing all tasks using scheduling S

E(S0) = w1 * f1(S0) + w2 * f2(S0); // evaluation of S0 by applying the objective

 function (Energy) according to the objective weights

T = Max_Temp; // temperature of system initialized with a high value

Tmin = Min_Temp; // the lower limit of temperature; When T achieves T_min, the

 system stops its iterations

𝑤ℎ𝑖𝑙𝑒(𝑇 > 𝑇𝑚𝑖𝑛)

{

 𝑆 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑆0); // Selecting a neighbor solution of S0

 E(S) = w1 * f1(S) + w2 * f2(S); // evaluation of S

 𝑖𝑓(E(S) < E(S0)) 𝑡ℎ𝑒𝑛

 {

Chapter 3 The general design

27
Fog Computing task scheduling based on simulated annealing algorithm

𝑒𝑙𝑠𝑒 // Accepting probabily a worest solution

 𝑆0 = 𝑆;

 S ∗ = 𝑆0; //set the new scheduling as the best solution

 }

 𝑖𝑓 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (−
𝐸(𝑆0)−𝐸(𝑆)

𝑇
)) > Random (0, 1) then

 {

 S0 = S;

 };

 𝑇 = 𝑇 ∗ 𝑟; // reducing the temperature and annealing, 0<r<1

 };

FSA_End.

Chapter 3 The general design

28
Fog Computing task scheduling based on simulated annealing algorithm

Our Fog Simulated Annealing algorithm (FSA) for task scheduling in fog

environment presented in figure 8 (FSA pseudo-code and flowchart) works as follows:

First, FSA starts with an initial task scheduling chosen at random (S0), then this

found solution is temporary considered as the best one. For instance, for five tasks

𝑇𝑎 , 𝑇𝑏, 𝑇𝑐 , 𝑇𝑑 , 𝑇𝑒, we select randomly five fog devices x, y, z, t, r. After that, this S0 solution

is evaluation by applying a bi-objective function E(S0) based on both execution time and

cost of the chosen task scheduling. This function is considered as bi-objectives (execution

time and cost of the chosen task scheduling) biased by two weights w1 and w2 showing

the importance of these two objectives. Next, temperature T is set with a high value

Max_Temp and its minimum value is also set with value Min_Temp. Min_Temp is used a

stopping criterion to stop FSA.

Estimate initial T

Record scheduling.

Update T

Generate new scheduling.

Accept

Scheduling?

Final (best) scheduling

Done?

Yes

No

Inner loop

Figure 8: Pseudo code and Flowchart of FSA

Chapter 3 The general design

29
Fog Computing task scheduling based on simulated annealing algorithm

Now, the main loop of FSA is performed; we start by generating and selecting a

neighbor solution (called S) of S0, which is evaluated.

If this neighbor solution is better that the last one, it will be considered temporary

as the best solution, otherwise this newer solution (which is worse than S0) is accepted

only with a probability: 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(
−(𝐸(𝑆0)−𝐸(𝑆))

𝑇
). Next, temperature T is reduced.

This process is performed until satisfying the stopping criterion.

3.6.2. FSA Algorithm representation, evaluation and stopping criterion

The encoding system used in this work to represent the individuals is the list of

strings as dynamic data structure. Each list (solution) contains ‘N’ fog device where each

fog device carried out a set of tasks as follows:

𝐹𝐷𝑇𝑎𝑠𝑘𝑠 = {𝐹𝐷1𝑇𝑎𝑠𝑘𝑠, 𝐹𝐷2𝑇𝑎𝑠𝑘𝑠, … , 𝐹𝐷𝑚𝑇𝑎𝑠𝑘𝑠}

Each fog device carried out a set of tasks as follows:

𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠 = {𝑇1𝑗 , 𝑇2𝑗 , … , 𝑇𝑘𝑗 , … , 𝑇𝑟𝑗}

The FSA initialization aims at the generation of the first solution randomly:

𝐹𝐷𝑇𝑎𝑠𝑘𝑠 = {𝐹𝐷1𝑇𝑎𝑠𝑘𝑠, 𝐹𝐷2𝑇𝑎𝑠𝑘𝑠, … , 𝐹𝐷𝑚𝑇𝑎𝑠𝑘𝑠 =

 {<𝑇11, 𝑇21, … , 𝑇𝑟1>,<{𝑇12, 𝑇22, … , 𝑇𝑟2>,…,<𝑇1𝑚 , 𝑇2𝑚 , … , 𝑇𝑟𝑚>}

 To evaluate each solution, the fitness function (formula 4) is applied in order to

find minimum 𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛𝑒(𝐹𝐷𝑇𝑎𝑠𝑘𝑠) and minimum 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝐹𝐷𝑇𝑎𝑠𝑘𝑠).

As a stopping criterion, FSA iterations are carried out and stopped only when the

temperature T became equal to the temperature ‘Min_Temp’. The number ‘Min_Temp’ is

a user parameter.

3.6.3. FSA Algorithm operators

3.6.3.1. Generating function (neighborhood generation):

There are many ways to generate a neighbor solution (similar solution). In our proposal,

we create a neighbor using swapping by randomly choosing ‘n’ tasks, and swapping their

assigned fog devices also randomly.

Chapter 3 The general design

30
Fog Computing task scheduling based on simulated annealing algorithm

For example (for 5 tasks):

 Solution = {<𝑇11, 𝑇21, 𝑇31>,<{𝑇12, 𝑇22, 𝑇32>,<𝑇13, 𝑇23, 𝑇33>}

 Neighbor = {<𝑇11>,<.>,<𝑇13, 𝑇23, 𝑇33, 𝑇43, 𝑇53, 𝑇63, 𝑇73, 𝑇83,>}

We can see that the 5th task has moved to the fog device FD3, two came from FD1 and the

other three from FD2.

3.6.3.2. Accept function (neighborhood selection):

In our proposal, we select the first generated neighbor that reduces the execution time, this

selection is named: the first improvement.

g. Acceptance probability:

The Simulated Annealing's major advantage over other optimization methods is its

ability to avoid becoming trapped in local minima. The algorithm employs a random search

which not only accepts changes that optimize the objective function f (assuming a

minimization problem), but also some changes that decrease it; it is the case of a worse

neighbor. The latter is accepted with a probability.

The applied probability in our FSA is as follows (as explained above):

𝑃𝑟𝑜𝑏 = exp (−
(𝐸(𝑆0) − 𝐸(𝑆))

𝑇
)

3.7. Conclusion

In this chapter, we presented the general design of our system, which based on a

simulated annealing algorithm in order to solve the problem of task scheduling in fog

computing environment.

In the next chapter, we will see the scenarios of testing simulation in addition to

the simulation parameters and the obtained results.

Chapter 4 Experimental study

Chapter 4

Experimental study

Chapter 4 Experimental study

31
Fog Computing task scheduling based on simulated annealing algorithm

Chapter 4. Experimental study

4.1. Introduction

In the fourth chapter, we present the simulation of the fog simulated annealing

algorithm as a task scheduler using the iFogSim simulator. We start with a detailed

explanation of the scenario used and simulation settings, then we explain the way the tasks

are scheduled on fog devices. Finally, extraction and analysis of the results are presented.

4.2. The iFogSim simulator

As the chosen Fog computing simulator, iFogSim is an open source framework for

modeling fog computing environments. As well as a simulation tool allows investigation

and comparison of resource management techniques based on QoS criteria such as latency,

network congestion, energy consumption, and cost under different workloads (tuple size

and transmit rate) (Gupta, et al., 2016). iFogSim was developed by Java language.

 Basics

 Tuple: Tuples form the fundamental unit of communication between

entities in the Fog. Tuples are represented as instances of Tuple class in

iFogSim, which is inherited from the Cloudlet class of CloudSim.

 Application: An application is modeled as a directed graph, the vertices of

the DAG representing modules that perform processing on incoming data

and edges denoting data dependencies between modules. These entities are

realized using the following classes:

 AppModule: Instances of AppModule class represent processing elements

of Fog applications. AppModule is implemented by extending the class

PowerVm in CloudSim.

 AppEdge: An AppEdge instance denotes the data-dependency between a

pair of application modules and represents a directed edge in the application

model. Each edge is characterized by the type of tuple it carries, which is

captured by the tupleType attribute of AppEdge class along with the

processing requirements and length of data encapsulated in these tuples

(Gupta, et al., 2016).

Chapter 4 Experimental study

32
Fog Computing task scheduling based on simulated annealing algorithm

4.3. Experimental settings

In order to evaluate our proposal, FSA algorithm is simulated on iFogSim

simulator. We precisely modified the Java class named FogBroker.java, which is

responsible for the distribution of the tasks across the fog devices (scheduling) using

initially First In First Out method (FIFO). In this work, we have used a new method named

Fog Simulated Annealing for task scheduling in the fog computing environment and we

have compared its results against FIFO method and Genetic Algorithm results.

In iFogsim as an extension of Cloudsim (Gupta, et al., 2016), the application

modules are defined as nodes and the connection between them as the edge (AppEdge)

in the fog network topology (Rahbari, et al.).

In this work, we define fog computing task scheduling problem, in iFogSim

simulator as finding mapping between the Tuples and the Application modules, that

achieves best tradeoff between cost and time of execution the tuples. By default, the

iFogSim ensures the mapping in FIFO method, where first tuple goes to first application

module and so on. To generate new mapping, our algorithm works on changing the

attribute of AppEdge, which is named destination, and which is referred to the application

module responsible of processing tuple carried by this AppEdge.

The effectiveness of FSA is tested to schedule tasks between fog devices in Fog

infrastructure composted of 20 fog devices. We assume that there are 100, 500 and 1000

tasks to execute by the fog devices after the scheduling process. Note that we have chosen

w1 = w2 = 1 to express the importance of the execution time and the cost of the task

scheduling.

The fog devices generated as follows:

Algorithm 1 Create fog device

Create processor list.

Create hosts (Input, OS, VMs, cost, cost per storage).

Create storage list.

Set latency, upper and lower bandwidth.

Mapping application to modules.

https://www.accountingtools.com/articles/2017/5/13/first-in-first-out-method-fifo

Chapter 4 Experimental study

33
Fog Computing task scheduling based on simulated annealing algorithm

 The generated fog devices as follows:

Table 1: Fog Devices capabilities

Fog device FD1 FD2 FD3 … FDn

CPU(MIPS) 500 500*2 500*3 … 500*n

Using

Cost($)

10 10*2 10*3 10*n

The tasks generated as follows:

Algorithm 1 Create application

Add all modules to the application (module name, ram capacity).

Add all edges between modules for the application (source, destination module

name, tuple CPU length, and direction).

Add tuple mapping (module name, input tuple type, output tuple).

Add Loops of modules.

The generated tasks as follows

Table 2: The sizes of the tasks

Task T1 T2 T3 … Tn

CPU

LENGTH(MIPS)
100 100+(50) 100+2*(50) … 100+n*(50)

The Makespan and The Cost calculated as follows:

The execution time for each task:

𝑇𝑘𝑗 . 𝑒𝑥𝑒𝑐𝑇𝑖𝑚𝑒 =
𝐹𝐷𝑗.𝐶𝑃𝑈

𝑇𝑘.𝐶𝑝𝑢𝐿𝑒𝑛𝑔ℎ𝑡
 (𝑠𝑒𝑐𝑜𝑛𝑑) (5)

The total execution time of all tasks (‘r’ tasks) assigned to 𝐹𝐷𝑗:

𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠) = ∑ 𝑇𝑘𝑗 . 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑟
𝑘=0 (6)

Chapter 4 Experimental study

34
Fog Computing task scheduling based on simulated annealing algorithm

The total execution time of all tasks (‘n’ task):

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛𝑒(𝐹𝐷𝑇𝑎𝑠𝑘𝑠) = 𝑀𝑎𝑥 (𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝐹𝐷𝑗𝑇𝑎𝑠𝑘𝑠)) (7)

The total execution time of all tasks (‘r’ tasks) assigned to 𝐹𝐷𝑗:

𝐶𝑜𝑠𝑡(𝐹𝐷𝑗) = ∑ (𝑇𝑘𝑗. 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑟
𝑘=0 ∗ 𝐹𝐷𝑗. 𝑈𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡) ($) (8)

The total cost of executing all tasks (‘n’ task):

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝐹𝐷𝑇𝑎𝑠𝑘𝑠) = ∑ 𝐶𝑜𝑠𝑡(𝐹𝐷𝑗)𝑚
𝑗=0 (9)

4.1. Application preview

iFogSim is a simulation tool that does not have a graphical interface; meaning that

all parameters and data simulations are fixed in the source code. Therefore, by using

NetBeans integrated development environment (IDE) for Java, we have added a graphical

user interface that allows fixing the number of default tasks and devices as well as

displaying the results in a window rather than displaying them in the device. The following

figures illustrate the graphical interface before and after simulations.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Java_(programming_language)

Chapter 4 Experimental study

35
Fog Computing task scheduling based on simulated annealing algorithm

Figure 9: The principal interface

Chapter 4 Experimental study

36
Fog Computing task scheduling based on simulated annealing algorithm

Figure 10: The interface after clicking the start button

Chapter 4 Experimental study

37
Fog Computing task scheduling based on simulated annealing algorithm

Figure 11: The interface after clicking the show button

Chapter 4 Experimental study

38
Fog Computing task scheduling based on simulated annealing algorithm

Figures 12 and 13 show the results of scheduling as two bar charts, makespan and cost bar

chart.

Figure 12: The makespan bar chart

Chapter 4 Experimental study

39
Fog Computing task scheduling based on simulated annealing algorithm

Figure 13: The cost bar chart

Figures 14. 15. 16 and 17 show the scheduling results as a list, where AM represents

the application module, and T represents a task. Moreover, each application module is

responsible of processing a set of tasks.

Chapter 4 Experimental study

40
Fog Computing task scheduling based on simulated annealing algorithm

Figure 14: The results of scheduling using FIFO, GA and SA algorithms

Chapter 4 Experimental study

41
Fog Computing task scheduling based on simulated annealing algorithm

Figure 15: The results of scheduling 100 tasks using FIFO

Figure 16: The results of scheduling 100 tasks using GA

Figure 17: The results of scheduling 100 tasks using SA

Chapter 4 Experimental study

42
Fog Computing task scheduling based on simulated annealing algorithm

The figure 18. 19 and 20 shows some essential parts of the code of our application.

Figure 18: Part of task and devices generating code.

Chapter 4 Experimental study

43
Fog Computing task scheduling based on simulated annealing algorithm

Figure 19: Part of SA Broker code.

Chapter 4 Experimental study

44
Fog Computing task scheduling based on simulated annealing algorithm

Figure 20: Part of GA Broker code.

Chapter 4 Experimental study

45
Fog Computing task scheduling based on simulated annealing algorithm

4.2. Experimental results

After FSA, GA and FIFO test executions with the same parameter settings

according to the fog, the best solutions found (task scheduling) in terms of makespan and

cost are listed in table 3.4 and 5. The listed values choose by doing three simulations for

both FSA and GA with same parameter settings, then to choose best cost and makespan

from the obtained results of the three simulations, where:

 Case of 100 Tasks:

The values obtained by FIFO was

 Makespan = 21.0, cost = 1243.8269224003548

The results obtained by GA was as follows

 Makespan = 3.8384615384615386, cost = 314.04876487547534

 Makespan = 3.88, cost = 512.1730780957951

 Makespan = 4.271428571428572, cost = 324.5282098551603

The results obtained by SA was as follows

 Makespan = 3.5300000000000002, cost = 290.47534185628604

 Makespan = 3.5555555555555554, cost = 289.7361589068825

 Makespan = 3.6357142857142857, cost = 437.8327442230113

 Case of 500 Tasks:

The values obtained by FIFO was

 Makespan = 605.0, cost = 33995.4010120104

The results obtained by GA was as follows

 Makespan = 94.15, cost = 13505.873315011859

 Makespan = 124.76666666666667, cost = 16121.917173154507

 Makespan = 104.07499999999997, cost = 15024.74265722539

The results obtained by SA was as follows

 Makespan = 91.4625, cost = 13097.201396310082

Chapter 4 Experimental study

46
Fog Computing task scheduling based on simulated annealing algorithm

 Makespan = 78.57, cost = 11661.966306912902

 Makespan = 87.86666666666669, cost = 10710.879149247292

 Case of 1000 Tasks:

The values obtained by FIFO was

 Makespan = 2460.0 , cost = 137431.4680240429

The results obtained by GA was as follows

 Makespan = 493.39999999999986, cost = 67926.77202872078

 Makespan = 642.7500000000001, cost = 75726.93659198248

 Makespan = 487.80000000000007, cost = 69082.59664295963

The results obtained by SA was as follows

 Makespan = 358.97999999999996 , cost = 52045.818634460215

 Makespan = 367.0 , cost = 53992.39871310453

 Makespan = 333.025 , cost = 56932.20563399832

Table 3: TASK SCHEDULING OF 100 TASKS USING FSA, GA AND FIFO

Method Makespan (ms) Cost ($)

FIFO 21.0 1243.82

Genetic Algorithm 3.83 314.05

Fog Simulated Annealing

Algorithm
3.53 289.74

Table 4: TASK SCHEDULING OF 500 TASKS USING FSA, GA AND FIFO

Method Makespan (ms) Cost ($)

FIFO 605.0 33995.4

Genetic Algorithm 94.15 13505.87

Fog Simulated Annealing

Algorithm
78.57 10710.87

Chapter 4 Experimental study

47
Fog Computing task scheduling based on simulated annealing algorithm

Table 5: TASK SCHEDULING OF 1000 TASKS USING FSA, GA AND FIFO

Method Makespan (ms) Cost ($)

FIFO 2460.0 137431.46

Genetic Algorithm 487.8 67926.77

Fog Simulated Annealing

Algorithm
333.025 52045.81

Tables 3-5 showed that the best fitness is the fitness obtained by FSA compared

with the fitness given by the GA and FIFO. It represents the best execution time and the

best cost of all the tasks). These results confirm the reliability and efficiency of FSA to

solve task scheduling problem in the fog by an optimal workload balancing.

 This superiority is due to the acceptance probability operator, which guarantees

the diversity of the solution and ensures the local optima escape. It is also has low memory

requirements. FSA takes less CPU time than the genetic algorithm (GA) when used to solve

optimization problems, because it finds the optimal solution using point-by-point iteration

rather than a search over a population of individuals.

4.3. Conclusion

In this chapter, we have presented all the steps in the design of our project with all

the tools, programming languages and platforms used. Furthermore, the obtained results

discussed, and proved the efficiency of our proposal FSA algorithm in scheduling tasks in

fog computing environments, also showed its superiority against FIFO and GA in term of

makespan and monetary cost.

General conclusion

48

General conclusion

In our Master memory, task scheduling problem in the fog computing is studied

and solved with a novel metaheuristic called Fog Simulated Annealing algorithm (FSA).

In order to prove the reliability and the efficiency of this proposal, an implementation and

a set of tests of the FSA have been carried out and compared against (First In First Out)

and (Genetic Algorithm) in iFogSim simulator. The obtained results of FSA proved the

efficiency and the performance of the proposed algorithm against FIFO and GA in terms

of cost and execution time. This superiority due to the advantage of the Simulated

Annealing Algorithm escaping local optimal solution to find better solutions (global

optimum).

As future research, there are a number of directions, which can enhance our

algorithm performance in the context of improving the QoS on task scheduling, we

highlight:

Failures of Fog devices management: Future research can focus on extracting the failed

devices. The developed algorithm can used to evaluate and compare the fog devices and

designing recovery and resuming policies for a wide range of applications.

Power-Aware resource management: One of the biggest challenges that most of Fog

computing solutions face is how to get extra bit of battery life for Fog devices. Future

studies can look into developing the algorithm to schedule tasks dynamically and based on

the battery life of devices.

References

49

References

Al Nuaimi Klaithem [et al.] A Survey of Load Balancing in Cloud Computing:

Challenges and Algorithms [Journal]. - [s.l.] : IEEE, 2012.

Armbrust Michael [et al.] A view of cloud computing [Journal]. - 2010.

Bitam Salim, Zeadally Sherali and Mellouk Abdelhamid Fog computing job

scheduling optimization based on bees swarm [Journal] // IEEE. - 2017.

Blythe Jim [et al.] Task Scheduling Strategies for Workflow-based Applications

in Grids [Journal]. - [s.l.] : IEEE, 2005.

Bonomi Flavio [et al.] Fog Computing and Its Role in the Internet of Things

[Journal] // CISCO. - 2012.

Bonomi Flavio [et al.] Fog Computing and Its Role in the Internet of Things

[Article]. - 2012.

Bouleimen K Lecocq H A new efficient simulated annealing algorithm for the

resource-constrained project scheduling problem and its multiple mode version

[Journal]. - [s.l.] : Elsevier, 2003.

Busetti Franco Simulated annealing overview [Journal] // Citeseer. - [s.l.] :

Citeseer, 2003.

Dekkers Anton and Aartsl Emile GLOBAL OPTIMIZATION AND

SIMULATED ANNEALING [Journal]. - [s.l.] : Springer, 1988.

Goffe William L, D Ferrier Gary and Rogers John Global optimization of

statistical functions with simulated annealing [Journal]. - [s.l.] : Elsevier, 1994.

Gupta Harshit [et al.] iFogSim: A toolkit for modeling and simulation of

resource management techniques in the Internet of Things, Edge and Fog computing

environments [Journal]. - 2016.

Hao Zijiang [et al.] Challenges and Software Architecture for Fog Computing

[Journal]. - [s.l.] : IEEE, 2017.

References

50

JOHNSON S DAVID [et al.] OPTIMIZATION BY SIMULATED

ANNEALING: AN EXPERIMENTAL EVALUATION; PART II, GRAPH COLORING

AND NUMBER PARTITIONING [Journal]. - [s.l.] : pubsonline, 1991.

Kirkpatrick S, Gelatt C D and Vecchi M P Optimization by Simulated

Annealing [Journal]. - [s.l.] : sciencemag, 1983.

KRAEMER FRANK ALEXANDER [et al.] Fog Computing in Healthcare-A

Review and Discussion [Journal]. - [s.l.] : IEEE, 2017.

Labed Ayoub, Bitam Salim and Mellouk Abdelhamid FSA: Simulated

Annealing Algorithm for Task Scheduling in Fog Computing [Journal]. - [s.l.] :

submitted to the 24th International European Conference on Parallel and Distributed

Computing (Euro-Par 2018), Workshop on Fog-to-Cloud Distributed Processing (F2C-

DP), 27-31 august 2018, Turin, Italy, (http://www.mf2c-project.eu/europar-2018-mf2c-

worksho, 2018.

Liu Xi and Liu Jun A Task Scheduling Based on Simulated Annealing

Algorithm in Cloud Computing [Journal]. - 2010.

mansouri khalil L’Ordonnancement des Tâches dans le Cloud Computing par

une Approche d’Optimisation Parallèle [Report]. - 2013.

Mouradian Carla [et al.] A Comprehensive Survey on Fog Computing: State-of-

the-art and Research Challenges [Journal]. - 2017.

Ningning SONG [et al.] “Fog Computing Dynamic Load Balancing Mechanism

Based on Graph Repartitioning [Journal]. - 2016.

Nisha Peter FOG Computing and Its Real Time Applications [Journal] //

IJETAE. - 2015.

Nisha Peter FOG Computing and Its Real Time Applications [Article]. - 2015.

Pham Xuan-Qui [et al.] A cost- and performance-effective approach for task

scheduling based on collaboration between cloud and fog computing [Journal]. - 2017.

References

51

Pham Xuan-Qui and Huh Eui-Nam Towards task scheduling in a cloud-fog

computing system [Journal]. - [s.l.] : IEEE, 2016.

Puliafito Carlo, Mingozzi Enzo and Anastasi Giuseppe Fog Computing for the

Internet of Mobile Things: issues and challenges [Journal]. - [s.l.] : IEEE, 2013.

Rahbari Dadmehr and Nickray Mohsen Scheduling of Fog Networks with

Optimized Knapsack by Symbiotic Organisms Search [Journal]. - [s.l.] : fruct.

Rao Venkata Teaching Learning Based Optimization Algorithm And Its

Engineering Applications [Book]. - 2015.

Salot Pinal A SURVEY OF VARIOUS SCHEDULING ALGORITHM IN

CLOUD COMPUTING ENVIRONMENT [Journal]. - [s.l.] : IJREI, 2013.

Stojmenovic Ivan and Wen Sheng The Fog Computing Paradigm: Scenarios and

Security Issues [Journal] // ACSIS. - 2014.

Stojmenovic Ivan and Wen Sheng The Fog Computing Paradigm: Scenarios and

Security Issues [Journal]. - 2014.

Suman B and Kumar P A survey of simulated annealing as a tool for single and

multiobjective optimization [Journal]. - 2006.

Vaquero M Luis and Rodero-Merino Luis Finding your Way in the Fog:

Towards a Comprehensive Definition of Fog computing [Article]. - 2014.

Verma Manisha, Bhardwaj Neelam and Yadav Arun Kumar Real Time

Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment

[Journal]. - [s.l.] : MECS, 2016.

Yi Shanhe, Li Cheng and Li Qun A Survey of Fog Computing: Concepts,

Applications and Issues [Journal]. - 2015.

