الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement Supérieur et de la Recherche scientifique

Université Mohamed Khider Biskra Faculté des Sciences et de la Technologie Département de Génie Electrique Filière : Electrotechnique Option : Réseaux électriques

Réf:

Mémoire de Fin d'Etudes En vue de l'obtention du diplôme:

MASTER

Thème

Développement d'un environnement graphique à base de Matlab pour l'analyse et la simulation des réseaux électriques

Présenté par : AZRI Elkassem Soutenu le : 30 Mai 2016

Devant le jury composé de :Mr . REZIG MohamedM.A.AMr . MAHDAD BelkacemM.C.AMr . MEGHERBI Ahmed ChaoukiM.C.A

Président Encadreur Examinateur

Année universitaire : 2015 / 2016

الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement Supérieur et de la recherche scientifique

Université Mohamed Khider Biskra Faculté des Sciences et de la Technologie Département de Génie Electrique Filière : Electrotechnique Option : Réseaux électriques

Mémoire de Fin d'Etudes En vue de l'obtention du diplôme:

MASTER

Thème

Développement d'un environnement graphique à base de Matlab pour l'analyse et la simulation des réseaux électriques

Présenté par :

AZRI Elkassem

Avis favorable de l'encadreur : Mr. MAHDAD Belkacem

Avis favorable du Président du Jury

Mr. REZIG Mohamed

Cachet et signature

الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement Supérieur et de la Recherche scientifique

Université Mohamed Khider Biskra Faculté des Sciences et de la Technologie Département de Génie Electrique Filière : Electrotechnique Option : Réseaux électriques

Thème :

Développement d'un environnement graphique à base de Matlab pour l'analyse et la simulation des réseaux électriques

Proposé et dirigé par : MAHDAD Belkacem

Résumé

Ce projet de fin d'étude vise le développement d'une application d'analyse des réseaux électriques inspiré de la programmation visuelle basé sur MATLAB pour l'étude et l'amélioration de l'efficacité des réseaux électriques. L'objectif est donc la création d'un outil de calcul qui rendra plus accessible et facile l'analyse des réseaux électriques. La structure interactive de l'outil permet à l'utilisateur et en particulier l'expert l'accès aux données afin de programmer avec un minimum d'efforts et d'opérations pour trouver des solutions techniques flexibles. Le logiciel que nous présentons permet d'évaluer l'état des réseaux électriques dans le régime normal et dans les conditions critiques, et par la suite facilite aux experts chargés de l'exploitation de prendre des décisions technique.

Mots clés : analyse des réseaux électriques, programmation visuelle, outil de calcul, structure interactive, logiciel, état des réseaux.

Parce qu'il a des choses plus faciles à écrire qu'à dire, je dédie ce Modeste travail de fin d'étude : A mes symboles d'affection et de tendresse Ma chère maman et mon cher père A mes frère et mes chers sœurs chacun de son nom pour leur soutien moral et leurs sacrifices au long de ma formation. A ma grande famille A tous qui m'ont encouragé et aidé dans la réalisation de ce projet A tous mes amis chacun de son nom A tous mes amis chacun de son nom A tous mes collègues de promotion 2016 A tous les enseignants de ma période d'étude A tous ceux que j'aime et m'aiment.

Elkassem

Remerciements

Je remercie et louons Dieu qui nous a donné la force, La patience et la volonté tout au long des années de nos études, et nous ont honoré de sa science pour la réalisation de ce travail de recherche.

> Je tiens au terme de ce travail à exprimer notre plus grand remerciement à Monsieur : MAHDAD Belkacem qui a suivi et dirigé notre travail avec patience et beaucoup d'intérêt, nous lui exprimons vivement notre grand respect.

Mon remerciement s'adresse également aux membres de jury pour avoir accepté de critiquer notre travail, sans oublier les professeurs du département de Génie Electrique pour leurs efforts et leurs sincérités.

Elkassem

Liste des tableaux

N°	Titre	Page
	Chapitre I : Généralités sur les réseaux électriques	
I.1	Classes de tension.	7
	Chapitre II : Résolution de problème de l'écoulement de puissance	
II.1	Classification des jeux de barres.	27
	Chapitre III : Programmation visuelle	
	/	
	Chapitre IV : Tests et applications sur les réseaux typiques	
IV.1	Données des lignes du réseau test 14 JB.	60
IV.2	Données des jeux de barres de réseau test 14 JB.	61
IV.3	Ecoulement de puissance de réseau test 14 JB (cas normal).	63
IV.4	Puissances transitées et les pertes de réseau test 14 JB (cas normal).	63
IV.5	Ecoulement de puissance de réseau test 14 JB (surcharge locale de 10%).	67
IV.6	Puissances transitées et pertes de réseau test 14 JB (surcharge locale de 10%).	68
IV.7	Ecoulement de puissance de réseau test 14 JB (surcharge locale de 20%).	70
IV.8	Puissances transitées et pertes de réseau test 14 JB (surcharge locale de 20%).	70
IV.9	Ecoulement de puissance de réseau test 14 JB (surcharge locale de 30%).	72
IV.10	Puissances transitées et pertes de réseau test 14 JB (surcharge locale de 30%).	72
IV.11	Comparaison entre le régime normal et le surcharge locale de réseau test 14	73
JB.		
IV.12	Ecoulement de puissance de réseau test 14 JB (surcharge globale de 10%).	76
IV.13	Puissances transitées et pertes de réseau test 14 JB (surcharge globale de	76
10%).		
IV.14	Ecoulement de puissance de réseau test 14 JB (surcharge globale de 20%).	79
IV.15	Puissances transitées et pertes de réseau test 14 JB (surcharge globale de	79
20%).		
IV.16	Ecoulement de puissance de réseau test 14 JB (surcharge globale de 30%).	80
IV.17	Puissances transitées et pertes de réseau test 14 JB (surcharge globale de	80
30%).		
IV.18	Comparaison entre le régime normal et le surcharge globale de réseau test 14	82
JB.		

IV.19	Données des lignes du réseau test 30 JB.	86
IV.20	Données des jeux de barres du réseau test 30 JB.	87
IV.21	Ecoulement de puissance de réseau test 30 JB (cas normal).	90
IV.22	Puissances transitées et les pertes de réseau test 30 JB (cas normal).	91
IV.23	Ecoulement de puissance de réseau test 30 JB (surcharge locale de 10%).	95
IV.24	Puissances transitées et pertes de réseau test 30 JB (surcharge locale de 10%).	96
IV.25	<i>Ecoulement de puissance de réseau test 30 JB (surcharge locale de 20%).</i>	99
IV.26	Puissances transitées et pertes de réseau test 30 JB (surcharge locale de 20%).	99
IV.27	<i>Ecoulement de puissance de réseau test 30 JB (surcharge locale de 30%).</i>	100
IV.28	Puissances transitées et pertes de réseau test 30 JB (surcharge locale de 30%).	100
IV.29	Comparaison entre le régime normal et le surcharge locale de réseau test 30	102
JB.		
IV.30	Ecoulement de puissance de réseau test 30 JB (surcharge globale de 10%).	104
IV.31	Puissances transitées et pertes de réseau test 30 JB (surcharge globale de	105
10%).		
IV.32	Ecoulement de puissance de réseau test 30 JB (surcharge globale de 20%).	107
IV.33	Puissances transitées et pertes de réseau test 30 JB (surcharge globale de	107
20%).		
IV.34	Ecoulement de puissance de réseau test 30 JB (surcharge globale de 30%).	109
IV.35	Puissances transitées et pertes de réseau test 30 JB (surcharge globale de	109
30%).		
IV.36	Comparaison entre le régime normal et le surcharge globale de réseau test 30	110
JB.		

Liste des figures

N°	Titre	Page
	Chapitre I : Généralités sur les réseaux électriques	
I.1	Structure générale des réseaux électriques.	5
I.2	Structure topologique des réseaux électriques.	8
I.3	Schéma de principe d'un réseau radial.	8
I.4	Schéma de principe d'un réseau bouclé.	9
I.5	Schéma de principe d'un réseau maillé.	10
I.6	Schéma de principe d'une compensation shunt.	11
I.7	Schéma de principe d'une compensation série.	12
	Chapitre II : Résolution de problème de l'écoulement de puissance	
II.1	Modèle d'une génératrice.	15
II.2	Source de tension.	15
II.3	Transformateur de puissance dans un poste électrique.	16
II.4	Symbole d'un transformateur monophasé.	17
II.5	Circuit magnétique d'un transformateur triphasé.	17
II.6	Symbole d'un transformateur triphasé.	18
II.7	Photographie des enroulements d'un transformateur triphasé.	18
II.8	Symbole d'un transformateur réglable.	20
II.9	Quadripôle permettant la modélisation d'une section de ligne.	20
II.10	Modèle d'une ligne courte.	21
II.11	Diagramme vectoriel d'une ligne courte.	21
II.12	Modèle d'une phase d'une ligne moyenne en π .	22
II.13	Diagramme vectoriel d'une ligne moyenne en π .	22
II.14	Modèle d'une phase d'une ligne moyenne en T.	23
II.15	Diagramme vectoriel d'une ligne moyenne en T.	23
II.16	Modèle d'une phase d'une ligne longue.	24
II.17	Modèle d'une charge.	25
II.18	Algorithme de résolution du problème de la répartition des charges.	29
II.19	Représentation géométrique de la méthode de N-R.	30
II.20	Fonctionnement de la méthode de N-R.	32

II.21	Transite de puissance d'une ligne de transmission.	34
Chapitre III : Programmation visuelle		
III.1	Exemple d'une interface graphique.	38
III.2	Activation de l'interface graphique « Guide ».	39
III.3	Fenêtre principale de l'interface graphique « Guide ».	40
III.4	Fenêtre de travail de l'interface « Guide ».	41
III.5	Exemple d'une Fenêtre.	44
III.6	Fenêtre contient un texte non éditable.	44
III.7	Fenêtre contient un texte éditable.	45
III.8	Fenêtre contient un bouton poussoir activé.	45
III.9	Fenêtre contient un bouton poussoir non activé.	46
III.10	Fenêtre contient un menu.	47
III.11	Fenêtre contient un ascenseur.	47
III.12	Fenêtre contient un texte éditable et un texte non éditable.	48
III.13	Fenêtre contient une liste de choix.	48
III.14	Fenêtre contient des boutons radio.	49
III.15	Fenêtre contient un tableau.	50
III.16	Fenêtre contient un cadre.	51
	Chapitre IV : Tests et applications sur les réseaux typiques	
IV.1	Schéma bloc de structure générale de logiciel développé.	54
IV.2	Interface générale de logiciel développé.	55
IV.3	Schéma unifilaire de réseau test Américain IEEE à 14 jeux de barres.	57
IV.4	Boite de dialogue permettant l'ouverture et le sauvegarde de fichier des	58
données	des lignes du réseau test 14 JB.	
IV.5	Fenêtre des données des lignes de réseau test 14 JB.	59
IV.6	Boite de dialogue permettant l'ouverture et le sauvegarde de fichier des	59
données	des jeux de barres de réseau test 14 JB.	
IV.7	Fenêtre des données de jeux de barres de réseau test 14 JB.	60
IV.8	Fenêtre des matrices Ybus et Zbus du réseau test 14 JB.	61
IV.9	Rapport de l'écoulement de puissance de réseau test 14 JB dans le cas normal.	62
IV.10	Affichage graphique des résultats de réseau test 14 JB dans le cas normal.	64
IV.11	Tension au niveau de chaque JB de réseau test 14 JB dans le cas normal.	65

IV.12	Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas	65
normal.		
IV.13	Accès à la partie de surcharge locale (10% et JB N° 3).	66
IV.14	Rapport de l'écoulement de puissance de réseau test 14 JB dans le cas de	67
surcharg	e locale.	
IV.15	Affichage graphique des résultats de réseau test 14 JB dans le cas de	69
surcharg	e locale.	
IV.16	Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge	69
locale de	10%.	
IV.17	Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de	70
surcharg	e locale de 10%.	
IV.18	Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge	71
locale de	20%.	
IV.19	Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de	71
surcharg	e locale de 20%.	
IV.20	Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge	72
locale de	30%.	
IV.21	Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de	73
surcharg	e locale de 30%.	
IV.22	Tension dans chaque JB de réseau test 14 JB (cas normal et surcharge locale).	74
IV.23	Accès à la partie de surcharge globale.	75
IV.24	Rapport de l'écoulement de puissance de réseau test 14 JB dans le cas de	75
surcharg	e globale.	
IV.25	Affichage graphique des résultats de réseau test 14 JB dans le cas de	77
surcharg	e globale.	
IV.26	Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge	78
globale d	le 10%.	
IV.27	Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de	78
surcharg	e globale de 10%.	
IV.28	Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge	79
globale d	le 20%.	
IV.29	Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de	80
surcharg	e globale de 20%.	

IV.30	Tension au niveau de chaque JB le réseau test 14 JB dans le cas de surcharge	81
globale de 30%.		
IV.31	Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas	81
de surcha	arge globale de 30%.	l
IV.32	Tension dans chaque JB de réseau test 14 JB (cas normal et surcharge	82
globale).		l
IV.33	Schéma unifilaire de réseau test Américain IEEE à 30 jeux de barres.	83
IV.34	Boite de dialogue permettant l'ouverture et le sauvegarde de fichier des	84
données d	des lignes du réseau test 30 JB.	l
IV.35	Fenêtre des données des lignes de réseau test 30 JB.	85
IV.36	Boite de dialogue permettant l'ouverture et le sauvegarde de fichier des	85
données d	des jeux de barres de réseau test 30 JB.	I
IV.37	Fenêtre des données de jeux de barres de réseau test 30 JB.	86
IV.38	Fenêtre des matrices Ybus et Zbus de réseau test 30 JB.	88
IV.39	Rapport de l'écoulement de puissance de réseau test 30 JB dans le cas normal.	89
IV.40	Affichage graphique des résultats de réseau test 30 JB dans le cas normal.	92
IV.41	Tension au niveau de chaque JB de réseau test 30 JB dans le cas normal.	93
IV.42	Angle de la tension en fonction de numéro de JB pour un réseau à 30 JB dans	93
le cas no	rmal.	l
IV.43	Accès à la partie de surcharge locale (10% et JB N° 5).	94
IV.44	Rapport de l'écoulement de puissance de réseau test 30 JB dans le cas de	95
surcharg	e locale.	l
IV.45	Affichage graphique des résultats de réseau test 30 JB dans le cas de	97
surcharg	e locale.	l
IV.46	Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge	98
locale de	10%.	l
IV.47	Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de	98
surcharg	e locale de 10%.	l
IV.48	Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge	99
locale de	20%.	l
IV.49	Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de	100
surcharg	e locale de 20%.	l
IV.50	Tension au niveau de chaque JB de réseau 30 JB dans le cas de surcharge	101

locale de 30%.		
IV.51	Angle de la tension au niveau de chaque JB de réseau 30 JB dans le cas de	101
surcharge locale de 30%.		
IV.52	Tension dans chaque JB de réseau test 30 JB (cas normal et surcharge locale).	102
IV.53	Rapport de l'écoulement de puissance de réseau test 30 JB dans le cas de	103
surcharge	e globale.	
IV.54	Affichage graphique des résultats de réseau test 30 JB dans le cas de	106
surcharge	e globale.	
IV.55	Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge	106
globale d	e 10%.	
IV.56	Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de	107
surcharge	e globale de 10%.	
IV.57	Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge	108
globale d	e 20%.	
IV.58	Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de	108
surcharge	e globale de 20%.	
IV.59	Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge	109
globale d	e 30%.	
IV.60	Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas	110
de surcha	rge globale de 30%.	
IV.61	Tension dans chaque JB de réseau test 30 JB (cas normal et surcharge	111
globale).		
IV.62	Interface générale de logiciel développé (deuxième version).	112
IV.63	Boite permettant de faire le réglage des transformateurs.	112

Liste des symboles et abréviations

	Symboles
S	Puissance apparente.
Р	Puissance active.
Q	Puissance réactive.
U	Tension.
Ι	Courant.
φ	Déphasage de courant.
Q_c	Puissance réactive de condensateur.
С	Capacité.
L	Inductance
ω	Pulsation.
V _i	Tension injectée au jeu de barre i.
V _{min}	Tension minimale.
V _{max}	Tension maximale.
E_0	Force électromotrice à vide.
Ea	Force électromotrice en charge.
Xar	Réactance de réaction d'induit.
X _a	Réactance de fuite.
X _s	Réactance synchrone.
R _e	Réactance d'enroulement.
<i>N</i> ₁	Nombre de spire de l'enroulement primaire.
<i>N</i> ₂	Nombre de spire de l'enroulement secondaire.
<i>I</i> ₁	Courant au primaire.
<i>I</i> ₂	Courant au secondaire.
U ₁	Tension au primaire.
U ₂	Tension au secondaire.
Φ	Flux magnétique.
t	Temps
е	Force électromotrice.
η	Rendement.
P ₁	Puissance active au primaire.
P ₂	Puissance réactive au secondaire.
Un	Tension nominale.
V_{S}	Tension simple à l'origine de ligne.
V _R	Tension simple à l'extrémité de ligne.
Is	Courant simple à l'origine de ligne.
I _R	Courant simple à l'extrémité de ligne.
R	Résistance.

X	Réactance.
Ζ	Impédance.
Y	Admittance.
δ	Angle de tension.
Z _C	Impédance caractéristique.
γ	Constante de propagation.
P _D	Puissance active demandée.
Q_D	Puissance réactive demandée.
P _G	Puissance active générée.
Q_G	Puissance réactive générée.
P _i	Puissance active injectée.
Q_i	Puissance réactive injectée.
$\boldsymbol{\theta}_{ij}$	Angle entre la tension au JB i et JB j.
ε	Précision.
T _r	Transformateur de réglage.
G	Générateur.
С	Compensateur.
B	Suceptance.
X' _{mer}	Rapport de transformation.
P _{ch}	Puissance active de charge.
Q_{ch}	Puissance réactive de charge.
P _{ij}	Puissance active transitée de jeu de barre i vers le jeu de barre j.
Q_{ij}	Puissance réactive transitée de jeu de barre i vers le jeu de barre j.
DP _{ij}	Perte active transitée de jeu de barre i vers le jeu de barre j.
DQ _{ij}	Perte réactive transitée de jeu de barre i vers le jeu de barre j.
DPt	Pertes active total.
DQ_t	Pertes réactive total.
λ	Facteur de surcharge.
nj	Numéro de jeu de barre.
Y _{Bus}	Matrice des admittances.
Z _{Bus}	Matrice des impédances.

	Abréviations
ТВТ	Très Basse Tension.
BT	Basse Tension.
MT	Moyenne Tension.
НТ	Haute Tension.
THT	Très Haute Tension.
JB	Jeu de Barre.
Bus	Jeu de barre.
EP	Ecoulement de Puissance.
AVR	Automatic Voltage Regulator (Régulateur automatique de la tension).
p.u	Grandeur en unité relative.
N-R	Newton-Raphson.
РОО	Programmation Orientée Objet.
GUIDE	Graphical User Interface Development Environment.
GUI	Graphical User Interface (Interface graphique d'utilisateur).
Nd	Nœud de départ.
Na	Nœud d'arrivé.
Tr	Transformateur de réglage.
G	Générateur.
С	Compensateur.
IEEE	Institute of Electrical and Electronics Enginners.

Résumé

Ce projet de fin d'étude vise le développement d'une application d'analyse des réseaux électriques inspiré de la programmation visuelle basé sur MATLAB pour l'étude et l'amélioration de l'efficacité des réseaux électriques. L'objectif est donc la création d'un outil de calcul qui rendra plus accessible et facile l'analyse des réseaux électriques. La structure interactive de l'outil permet à l'utilisateur et en particulier l'expert l'accès aux données afin de programmer avec un minimum d'efforts et d'opérations pour trouver des solutions techniques flexibles. Le logiciel que nous présentons permet d'évaluer l'état des réseaux électriques dans le régime normal et dans les conditions critiques, et par la suite facilite aux experts chargés de l'exploitation de prendre des décisions technico économique.

Mots clés : analyse des réseaux électriques, programmation visuelle, outil de calcul, structure interactive, logiciel, état des réseaux.

ملخص

مشروع المذكرة يهدف إلى تطوير برنامج شامل تفاعلي مستوحى من مبادئ البرمجة المرئية لدراسة وتحليل الشبكات الكهربائية لغرض تحسين فعالية أدائها. الهدف الأولي يتمثل في إنجاز أداة حساب مبني على مبدأ البرمجة المرئية ضمن برنامج MATLAB، والذي يسمح لمستعملي البرنامج والمتخصص في استغلال الشبكات الكهربائية من تسهيل متابعة تطور قاعدة البيانات وكذا انجاز حسابات بشكل تفاعلي ومرن لغرض إيجاد حلول سريعة. البرنامج التفاعلي المقدم في طبعته الأولي يمكن من تحليل حالة الشبكات الكهربائية في الوضع الطبيعي وكذا في الأوضاع الحرجة كزيادة الحمولة أو خلل في عناصر الشبكة، وبالتالي يسهل للمتخصص في استغلال الشبكات ماحول وأخذ القرارات السريعة والفعالة.

الكلمات المفتاحية : تحليل الشبكات الكهربائية، البرمجة المرئية، أداة حساب، شكل تفاعلى، برنامج، حالة الشبكات.

Sommaire

Titre	Page
Dédicace	Ι
Remerciements	II
Liste de tableaux	III
Liste des figures	V
Liste des symboles et abréviations	Х
Résumé	XIII
Sommaire	XIV
Introduction générale	2
Chapitre I : Généralités sur les réseaux électriques	
I.1. Introduction	5
I.2. Définition d'un réseau électrique	5
I.3. Structure des réseaux électriques	5
I.4. Classification des réseaux électriques	6
I.5. But de l'étude d'un réseau électrique	6
I.6. Classes de tension	6
I.7. Structure d'un réseau MT	7
I.8. Structure topologique des réseaux électriques	7
I.8.1. Réseaux radiaux	8
I.8.2. Réseaux bouclés	9
I.8.3. Réseaux maillés	9
I.9. Compensation de l'énergie réactive	10
I.9.1. Moyens de compensation	10
I.9.2. Différentes types de compensation	11
I.9.2.1. Compensation shunt	11
I.9.2.2. Compensation série	11
I.10. Conclusion	12
Chapitre II : Résolution de problème de l'écoulement de puissance	
II.1. Introduction	14
II.2. Concept général de l'écoulement de puissance	14
II.3. But de l'étude de l'écoulement de puissance	14
II.4. Modélisation des éléments du réseau électrique	15

II.4.1. Modélisation des générateurs	15
II.4.2. Modélisation des transformateurs	16
II.4.2.1. Principe générale	16
II.4.2.1.1. Transformateur monophasé	16
II.4.2.1.2. Transformateur triphasé	17
II.4.2.2. Principe de fonctionnement d'un transformateur	18
II.4.2.3. Rendement d'un transformateur	19
II.4.2.4. Prise de réglage	19
II.4.3. Modélisation des lignes électriques	20
II.4.3.1. Représentation d'une ligne par un quadripôle	20
II.4.3.2. Modélisation d'une ligne courte	21
II.4.3.3. Modélisation d'une ligne moyenne	22
II.4.3.3.1. Modélisation d'une ligne moyenne en π	22
II.4.3.3.2. Modélisation d'une ligne moyenne en T	23
II.4.3.4. Modélisation d'une ligne longue	24
II.4.4. Modélisation d'une charge	25
II.5. Classification des variables de l'écoulement de puissance	25
II.5.1. Les variables de perturbation ou non contrôlables	25
II.5.2. Les variables d'état	25
II.5.3. Les variables de contrôle	26
II.6. Classification des jeux de barres selon leurs spécifications	26
II.6.1. Jeu de barre de référence ($ V , \delta$)	26
II.6.2. Jeu de barre de génération (à tension contrôlée) (PV)	26
II.6.3. Jeu de barre de charge (PQ)	27
II.7. Formulation des équations de l'écoulement de puissance	27
II.8. Algorithme de résolution du problème de l'écoulement de puissance	29
II.9. Méthode itérative de Newton Raphson	30
II.9.1. Représentation géométrique de la méthode de N-R	30
II.9.2. Algorithme de N-R dans un système de dimension <i>n</i>	30
II.9.3. Arrêt des opérations	31
II.10. Application de la méthode de N-R au problème de l'EP	31
II.11. Puissances transitées et les pertes	33
II.12. Conclusion	35

Chapitre	III	:	Programmation	visuelle
----------	-----	---	---------------	----------

III.1. Introduction	37			
III.2. Matlab programmation orientée objet				
III.3. Guide et l'interface graphique				
III.3.1. Programmation avec l'interface graphique « Guide »	42			
III.3.2. Fichiers de l'interface graphique « Guide »				
III.3.3. Principe d'interaction avec la souris				
III.3.4. Propriétés d'une fenêtre graphique (ou d'un objet)				
III.3.5. Insertion d'un Objet dans la fenêtre	44			
III.3.6. Principaux objets graphiques	45			
III.4. Conclusion	51			
Chapitre IV : Tests et applications sur des réseaux typiques				
IV.1. Introduction	53			
IV.2. Objectifs et fonctions de logiciel développé	53			
IV.3. Étapes d'utilisation de logiciel développé	55			
IV.4. Application de logiciel dans les réseaux typiques	56			
IV.5. Réseau test Américain IEEE à 14 jeux de barres	57			
IV.5.1. Base de données du réseau	58			
IV.5.2. Formation des matrices Ybus et Zbus de réseau	61			
IV.5.3. Analyse dans le cas normal	62			
IV.5.4. Analyse dans le cas de surcharge	66			
IV.5.4.1. Surcharge locale	66			
IV.5.4.2. Surcharge globale	74			
IV.6. Réseau test Américain IEEE à 30 jeux de barres				
IV.6.1. Base de données du réseau	84			
IV.6.2. Formation des matrices Ybus et Zbus de réseau				
IV.6.3. Analyse dans le cas normal				
IV.6.4. Analyse dans le cas de surcharge				
IV.6.4.1. Surcharge locale	94			
IV.6.4.2. Surcharge globale	103			
IV.7. Prises de réglage				
IV.8. Conclusion	113			
Conclusion générale	115			

Références bibliographiques	117

Introduction générale

Introduction générale

Avec l'avancée des nouvelles technologies de production, d'automatisation et de communication dans le domaine de l'énergie, le secteur est en profonde mutation. D'une part avec le développement accéléré du numérique et en particulier l'outil informatique à ouvert de nouvel perspectives à l'industrie et les services d'électricité pour moderniser à grande échelle leurs installations afin de réduire les coûts d'opération de leur réseau, tout en augmentant leur fiabilité, leur efficacité et leur sécurité. D'autre part La gestion des réseaux modernes caractérisés par l'aspect stochastique par l'intégration des sources d'énergie distribuées a poussé les gestionnaires des réseaux électriques l'élaboration et l'adaptation des nouvelles technologies afin de réduire les coûts d'opération et augmenter l'efficacité et la fiabilité des réseaux électriques.

Le projet de fin d'étude ouvre de nouvel perspectives technico économique afin de renforcer la collaboration entre le secteur industriel en particulier la société Sonelgaz et l'université. Ce projet de fin d'étude vise le développement d'un outil de calcul qui rendra plus accessible et facile l'analyse des réseaux électriques. L'interactivité de l'outil proposé permet à l'utilisateur et en particulier l'expert l'accès aux données afin de programmer avec un minimum d'efforts et d'opérations pour trouver des solutions techniques flexibles. Le logiciel que nous présentons permet d'évaluer l'état des réseaux électriques dans le régime normal est dans les conditions critiques, et par la suite facilite aux experts chargés de l'exploitation de prendre des décisions technico économique fiables.

Dans ce mémoire, nous présentons dans le premier chapitre des généralités sur les réseaux électriques, les différents moyens de compensation utilisés par les exploitants des réseaux électriques. Les notions introduites dans ce chapitre sont nécessaires pour une bonne compréhension et considérer comme une introduction au problème des réseaux électriques.

Dans le deuxième chapitre, nous présentons la méthode itérative de Newton-Raphson qui utilisée pour l'étude du problème de l'écoulement de puissance ainsi que la modélisation des éléments d'un réseau électrique tels que : les générateurs, les transformateurs, les lignes et les charges. L'étude d'écoulement de puissance est une tache indispensable pour assurer une meilleure exploitation des réseaux électriques. Dans le troisième chapitre, nous présentons une introduction générale et des notions de base sur la programmation visuelle (GUI) à base de l'environnement graphique de Matlab afin de développer un environnement graphique ou un logiciel.

Dans le quatrième chapitre, nous présentons d'une manière détaillée notre logiciel d'analyse des réseaux électrique dans sa première version avec des applications dans des réseaux tests Américain (IEEE 14 JB, IEEE 30 JB) pour valider la robustesse du logiciel.

Enfin, une conclusion générale récapitule le travail que nous avons effectué et les principaux résultats que nous avons obtenus.

Chapitre I :

Généralités sur les réseaux électriques

I.1. Introduction

L'électricité est la forme le plus noble de l'énergie, car elle peut :

- Se transformer facilement avec un excellent rendement en n'importe qu'elle forme d'énergie.
- Etre obtenue de n'importe qu'elle autre forme d'énergie quoique que le rendement de production ne soit pas toujours excellent.
- Etre transformée et transportée à n'importe qu'elle distance par les lignes de transport.

Malheureusement elle présente l'inconvénient d'être la plus périssable de toutes les dérivées; elle doit être utilisée aussi au moment où on la produit puisqu'il est impossible de la stocker en grande quantité.

Donc l'énergie électrique doit être immédiatement transportée de l'usine productrice vers les centres de consommation et c'est là qu'intervient le rôle important des réseaux électriques.

[HAD 06]

I.2. Définition d'un réseau électrique

On appelle réseau électrique l'ensemble des infrastructures permettant d'acheminer (de transporter) l'énergie électrique des centres de production (centrales électriques) vers les consommateurs d'électricité, la structure des réseaux électriques est présentée dans la **Figure I.1**.

[MAH 14]

Figure I.1 : Structure générale des réseaux électriques.

I.3. Structure des réseaux électriques

- **Réseau de transport** : l'objectif principal de ce réseau est d'assurer l'acheminement (le transport) de l'énergie des centres de production vers les centres de consommations.
- **Réseau d'interconnexion** : c'est un réseau de transport qui a la particularité d'assurer l'échange énergétique entre les différentes zones géographiques.
- **Réseau de répartition** : ce réseau est un réseau intermédiaire qui à pour mission d'assurer la livraison de l'énergie à des grands consommateurs.

Réseau de distribution : Ils ont pour rôle de fournir aux réseaux d'utilisation la puissance dont ils ont besoin. L'énergie électrique fournie aux consommateurs (clients) par l'intermédiaire du réseau de distribution (par exemple Sonelgaz on Algérie) selon quatre niveaux de tension normalisés: 30 KV -10 KV et 0.4 KV. [MAH 14]

I.4. Classification des réseaux électriques

Les critères de classifications des réseaux électriques sont:

- Construction (réseau aérien, en câbles, mixtes).
- La tension qui limite les puissances transportées et fixe dimensions des lignes et des matériaux des postes.
- La fonction que le réseau doit remplir.
- Topologie du réseau (géométrie de situation: elle étudie les positions indépendamment des formes et des grandeurs). Elle fixe son mode d'exploitation normale et les possibilités de secours en cas d'incidents.
- le système utilisé pour les courants alternatifs et les nombres de phase et la position du neutre par rapport à la terre. [HAD 06] [LAI 05]

I.5. But de l'étude d'un réseau électrique

En pratique ; on ne peut pas obtenir une qualité parfaite qui suppose une fourniture continue à tension et à fréquence constante, mais on doit toujours chercher à s'en rapprocher le plus possible. Pour cela, l'exploitant du réseau de distribution doit mettre à sa disposition des moyens destinés à réduire aussi bien le nombre que la durée des interruptions ainsi que le maintien de la tension voisine de sa valeur nominale.

L'étude de ces moyens pour l'obtention d'une bonne qualité de service nécessite la connaissance du fonctionnement du réseau de distribution à ses états sain et d'incident. **[LAI 05]**

I.6. Classes de tension

La tension choisie pour un réseau impose que tous les appareils incorporés ou raccordés à ce réseau possèdent un isolement suffisant.

L'échelle des tensions utilisées dans le réseau d'énergie est très grande puisqu'elle va de quelques dizaines de volts à prés du million de volts, à l'intérieur de cette échelle, on distingue les classes de tension dans le tableau suivant : **[LAI 05]**

Domaine de tension	La valeur de tension
Très Basse Tension (TBT)	$U \le 50 V$
Basse Tension (BT)	$50 < U \le 1000 \text{ V}$
Moyenne Tension (MT)	$1 < U \le 50 \text{ kV}$
Haute Tension (HT)	$50 < U \le 300 \text{ kV}$
Très Haute Tension (THT)	$300 < U \le 1000 \text{ kV}$

Tableau I.1 : Classes de tension.

I.7. Structure d'un réseau MT

Il est important de connaître les caractéristiques de chaque type de réseau moyenne tension car cela a une influence sur la conception et l'exploitation des postes de transformation MT /BT, sur tout en ce qui concerne :

- Les dispositifs de protection.
- Les prises de terre.
- Le régime du neutre.
- Le choix de l'appareillage.

Il y a deux types de réseaux MT :

- Réseau moyenne tension aérienne (zone rurale).
- Réseau moyenne tension souterraine (zone urbaine).

Ces réseaux peuvent alimenter différents types de postes de transformation

- Postes d'extérieur (sur poteau, en maçonnerie).
- Postes d'intérieur (ouvert, en cellule préfabriquée). [LAI 05]

I.8. Structure topologique des réseaux électriques

Les réseaux doivent assurer le transit de l'énergie électrique avec une sécurité suffisante, cette sécurité d'alimentation est augmentée soit :

- Par les lignes aux appareillages plus solides.
- Par des circuits plus nombreux.

Alors il y'a donc un compromis à réaliser entre le coût des investissements supplémentaires et la valeur de ce qu'ils permettent de sauver ce qui conduit à des topologies de réseaux différents. [LAI 05]

Figure I.2 : Structure topologique des réseaux électriques.

I.8.1. Réseaux radiaux

Un réseau radial depuis d'un poste d'alimentation est constitué de plusieurs artères dont chacune va en se ramifiant, cette structure nous permet d'avoir des points communs, de sorte que le réseau soit bouclable mais non bouclé. Car en un point est placé toujours un appareil de coupure, ouvert en régime normal. Cette disposition permet en cas d'incidents sur une artère de reprendre l'alimentation.

Les réseaux radiaux sont des structures simples et peuvent être contrôles et protégés par un appareillage simple, ce sont les réseaux les moins coûteux. **[LAI 05]**

La Figure I.3 représente le schéma de principe d'un réseau radial.

Figure I.3 : Schéma de principe d'un réseau radial.

I.8.2. Réseaux bouclés

Les réseaux bouclés sont alimentés à la fois par plusieurs sources ; les postes sont raccordés en coupure d'artère cette disposition permet lors d'une coupure, une continuité de service.

L'augmentation de la sécurité d'alimentation en cas d'avarie de l'une d'elles (transformateurs) ou en cas d'avarie sur une boucle exige l'existence de plusieurs sources en parallèle. Dans ce dernier cas, le tronçon avarié est isolé en deux fractions du réseau. On voit que ce réseau est un peu plus complique que le précédent, de plus le contrôle et la protection du réseau nécessitent des dispositifs plus complexes. Cette structure coûte chère car elle nécessite au moins deux cellules de départ en plus. **[LAI 05]**

La Figure I.4 représente le schéma de principe d'un réseau bouclé.

Figure I.4 : Schéma de principe d'un réseau bouclé.

I.8.3. Réseaux maillés

Ce sont des réseaux ou toutes les lignes sont bouclées formant ainsi une structure analogue aux mailles d'un filet, de plus, le nombre de sources débitant en parallèle peut atteindre plusieurs dizaines.

Cette structure nécessite que tous les traçons de ligne soient capable de supporter des surcharges permanentes et qu'ils soient munis à leurs deux extrémités d'appareils de coupure les isolants en cas d'avarie. Le coût est plus cher mais on assure une meilleure sécurité. **[LAI 05]**

La Figure I.5 représente le schéma de principe d'un réseau maillé.

Figure I.5 : Schéma de principe d'un réseau maillé.

I.9. Compensation de l'énergie réactive

Les réseaux électrique à pour but de véhiculer de les puissances depuis ses source jusqu'aux centres de consommations dans un réseau à courant alternatif.

La puissance apparente S se compose de deux composantes P et Q liées par le déphasage. Elle est donnée avec la formule suivante :

$$S = P + jQ = U \cdot I \cdot (\cos \varphi + \sin \varphi)$$
(I.1)

Où :

P : La puissance active comme une puissance utile.

Q: La puissance réactive comme une puissance parasite dont la circulation sur le réseau provoque des phénomènes indésirables.

On voit donc l'intérêt économique de réduire les transits de la puissance réactive pour réduire les pertes. [MAO 08]

I.9.1. Moyens de compensation

Il y a plusieurs sources qui sont capables de produire de l'énergie réactive, ce qui permet de les utiliser comme des moyens de compensation d'énergie réactive et on peut les classer comme suit :

- Les compensateurs rotatifs : qui sont les moteurs synchrones.
- Les compensateurs statiques : qui sont les batteries de condensateurs. [MAO 08]

I.9.2. Différentes types de compensation

I.9.2.1. Compensation shunt

Les condensateurs de puissance sont les plus souvent installés en dérivation sur le réseau. C'est que ce que n'appelle « compensation shunt ». Ils sont connectés aux bornes du réseau soit avec un couplage étoile ou triangle. Le condensateur fournisse une puissance Qc et sa dimension est liée à sa puissance.

Les condensateurs Shunt sont utilisés soit :

- En basse tension : souvent auprès des appareils d'utilisation les plus puissants.
- En moyen tension : où ils sont regroupés en batteries de quelques MVAR.

La figure suivante représente comment va placer les compensateurs shunts dans d'une ligne d'un réseau électrique. [MAO 08]

La Figure I.6 représente le schéma de principe de compensation shunt.

Figure I.6 : Schéma de principe d'une compensation shunt.

I.9.2.2. Compensation série

Les condensateurs sont placés en séries sur une ligne dont ils compensent la réactance. La compensation série est utilisée sur certaines lignes à haute tension à la fois très longues et très chargées. Elle est justifiée par des considérations telle que la stabilité. Ce type de compensation est assez exceptionnel. [MAO 08] La Figure I.7 représente le schéma de principe d'une compensation série.

Figure I.7: Schéma de principe d'une compensation série.

I.10. Conclusion

Nous avons présentés dans ce chapitre une générale aperçue sur les réseaux électriques à savoir : la structure générale, la classification et les structures topologiques des réseaux électriques ainsi que la compensation de l'énergie réactive.

Dans le prochain chapitre on va discuter sur la modélisation des éléments d'un réseau électrique tels que : les générateurs, les transformateurs, les lignes et les charges ainsi que la méthode itérative de Newton-Raphson qui sera utilisée pour l'analyse de l'écoulement de puissance.

Chapitre II :

Résolution de problème de l'écoulement de puissance

II.1. Introduction

L'étude de l'écoulement de puissance (load flow) permet d'avoir la solution des grandeurs d'un réseau électrique en fonctionnement normal et anormal afin d'assurer une exploitation efficace, c'est-à-dire conforme aux normes techniques. Il permet de planifier la construction et l'extension des réseaux électriques ainsi que la conduite et le contrôle de ces réseaux.

Les grandeurs d'un réseau électrique sont :

- La tension au niveau de chaque jeu de barre.
- Le courant transité dans chaque ligne.
- Les puissances actives et réactives injectées aux jeux de barres et celles qui transitent dans les lignes.
- Les pertes transitées dans chaque ligne.

Dans ce chapitre en va exposer la méthode itérative de Newton-Raphson qui permet d'analyse les réseaux électriques. Cette méthode est considérée comme un outil indispensable pour l'ingénieur afin d'assurer une meilleur gestion de l'énergie électrique. Afin de faciliter la tache a l'exploitant des réseaux électriques. **[HAM 13]**

II.2. Concept général de l'écoulement de puissance

La détermination des tensions complexes en régime permanent au niveau des jeux de barres d'un réseau est basée sur la résolution de problème de l'écoulement de puissance. L'ensemble des équations représente le réseau électrique et de nature non linéaire.

II.3. But de l'étude de l'écoulement de puissance

L'étude de l'écoulement de puissance permet :

- L'équilibre entre la production et la demande de l'énergie électrique. (L'amélioration de dépense de l'électricité, production de l'énergie selon les besoins).
- ✓ Le maintien des tensions aux JB entre les limites admissibles ($V_{min} < V_i < V_{max}$), en utilisent le contrôle de puissance.
- ✓ Ne pas dépasser les valeurs limites (la stabilité théorique, selon bon la durée d'utilisation).
- ✓ La planification du réseau (à partir de calcul de la charge). Augmenter la sécurité de fonctionnement des réseaux par une bonne stratégie d'EP avant les perturbations.[MAN 13]

II.4. Modélisation des éléments du réseau électrique

Les générateurs de puissance (machines synchrones), les charges électriques, les lignes de transports, transformateurs de puissances et compensateurs statiques ce sont des éléments qui participent (interviennent) dans le problème de répartition des charges.

II.4.1. Modélisation des générateurs

Le générateur est considéré comme le cœur du réseau électrique, il assure la production de l'énergie électrique demandé par le consommateur. Les générateurs sont modélisés comme des injecteurs de courants dans l'analyse de l'écoulement de puissance. Le modèle d'une génératrice est représenté dans la **Figure II.1**.

Figure II.1 : Modèle d'une génératrice.

Dans le calcul d'écoulement de puissance, il est représenté par une source de tension dans la **Figure II.2**.

Figure II.2 : Source de tension.

- $S_i = P_i + jQ_i$: La puissance apparente délivré par le générateur.
- $V_i = |V_i|e^{j\delta i}$: La tension simple.
- E_0 : La *f.e.m* à vide et E_a : La *f.e.m* en charge.
- V: Tension de sortie.

 X_{ar} : Réactance de réaction d'induit et X_a : Réactance de fuite.

 $X_s = X_a + X_{ar}$: Réactance synchrone.

R_e : Réactance d'enroulement. [MAM 12]

II.4.2. Modélisation des transformateurs

Le transformateur est une machine électrique statique destinée à transformer une tension (courant) alternative en une autre tension (courant) alternative de même fréquence, et d'amplitudes généralement différentes afin de l'adapter aux différents besoins d'utilisation.

Les transformateurs de puissance permettent de minimiser les pertes dans les lignes pour assurer le transport de l'énergie à longue distance sous tension élever (200 kV et 400 kV et plus entre phase) puis d'abaisser ensuite cette jusqu'à la tension d'alimentation domestique (la tension d'utilisation). **[GDO 04]**

La Figure II.3 représente un transformateur de puissance dans un poste électrique.

Figure II.3 : Transformateur de puissance dans un poste électrique.

II.4.2.1. Principe générale

II.4.2.1.1. Transformateur monophasé

Le transformateur monophasé est un convertisseur « alternatif-alternatif », il permet de faire passer de l'énergie électrique d'un bobinage à un autre par couplage magnétique. Il se compose de :

- Un noyau ferromagnétique destiné à canalisé les lignes de champ magnétique.
- Deux enroulements qui sont bobinés autour de ce noyau (deux circuit électriques indépendants).
Les deux enroulements sont :

- L'enroulement primaire : ce qui branché avec la source d'énergie.
- L'enroulement secondaire : ce qui branché avec le récepteur (la charge).

L'enroulement HT comporte le plus grand nombre de spires.

L'enroulement BT comporte le moins de spires.

L'enroulement HT est réalisé en fil de tension plus faible que l'enroulement BT. [GDO 04]

Le symbole d'un transformateur monophasé est représenté dans la Figure II.4.

Figure II.4 : Symbole d'un transformateur monophasé.

II.4.2.1.2. Transformateur triphasé

Le circuit magnétique (noyau) de transformateur triphasé comporte ordinairement trois colonnes disposées dans un même plan, chaque colonne porte un enroulement primaire et un enroulement secondaire. On peut remplacer un montage de trois transformateurs monophasés par un seul transformateur triphasé. La **Figure II.5** représente le circuit magnétique d'un transformateur triphasé.

Figure II.5 : Circuit magnétique d'un transformateur triphasé.

Pour une puissance donnée, on préfère la construction du transformateur triphasé en un seul bloc car il est plus petit et moins coûteux que trois transformateurs monophasés ayant la même capacité totale. Le symbole d'un transformateur triphasé est représenté dans la **Figure II.6**. **[GDO 04]**

Figure II.6 : Symbole d'un transformateur triphasé.

La Figure II.7 représente une photographie des enroulements d'un transformateur triphasé.

Figure II.7 : Photographie des enroulements d'un transformateur triphasé.

II.4.2.2. Principe de fonctionnement d'un transformateur

La transmission de l'énergie d'un enroulement à un autre se fait à l'aide de la loi de l'électromagnétisme :

$$e = -\frac{d\Phi}{dt} \tag{II.1}$$

En effet, si on applique un courant alternatif aux bornes du bobinage primaire, celui-ci engendre dans le circuit magnétique un flux alternatif dont les variations produisent les forces électromotrices suivantes :

$$\boldsymbol{e}_1 = -N_1 \cdot \frac{d\Phi}{dt} \cdot \boldsymbol{e}_2 = -N_2 \cdot \frac{d\Phi}{dt} \tag{II.2}$$

Où :

 N_1 : Le nombre de spires de l'enroulement primaire.

 N_2 : Le nombre de spires de l'enroulement secondaire.

Il existe entre la tension primaire et secondaire un rapport égal au quotient du nombre de spires primaires par le nombre de spires secondaires. Ce rapport n'est d'autre que le rapport de transformation. **[GDO 04]**

Le rapport de transformation est donné par la relation suivante :

$$\frac{U_1}{U_2} = \frac{N_1}{N_2}$$
(II.3)

II.4.2.3. Rendement d'un transformateur

Le rendement du transformateur est excellent lorsque les pertes Joule dans les deux enroulements sont égales aux pertes dans le fer. Il est égal à la puissance secondaire sur la puissance primaire.

$$\eta = \frac{P_2}{P_1} \tag{II.4}$$

II.4.2.4. Prise de réglage

Le fonctionnement du transformateur peut se faire à des valeurs variables de la tension autour de la valeur nominale. En faisant varier le rapport de transformation par modification du nombre de spires de l'un des enroulements au niveau de la prise de réglage.

$$\frac{U_1}{U_2} = \frac{N_1}{N_2}$$
 (II.5)

D'où, on a :

$$\boldsymbol{U}_2 = \boldsymbol{U}_1 \cdot \frac{N_2}{N_1} \tag{II.6}$$

Pour un bon fonctionnement, les transformateurs sont équipés d'un commutateur d'ajustement pour la tension primaire (+5 %, 0, -5%).

Le réglage se fait hors tension à 3 prises fixes :

- Position 1 (prise soustractive) : $U_n X \%$
- Position 2 (prise nominale) : **U**_n
- Position 3 (prise additive) : $U_n + X \%$

Les spires de réglage sont enroulées sur la dernière couche du primaire pour des raisons d'ordre pratique et pour faciliter leurs connexions au commutateur de réglage. La **Figure II.8** représente le symbole d'un transformateur réglable. **[GDO 04]**

Figure II.8 : Symbole d'un transformateur réglable.

II.4.3. Modélisation des lignes électriques

II.4.3.1. Représentation d'une ligne par un quadripôle

On peut représenter un tronçon de ligne par un quadripôle comportant une entré et une sortie. La Figure II.9 représente un quadripôle permettant la modélisation d'une section de ligne. [FAR 04]

Figure II.9 : *Quadripôle permettant la modélisation d'une section de ligne.*

Où :

 V_S : La tension simple à l'origine (source) de la ligne.

 V_R : La tension simple à l'extrémité (récepteur) de la ligne.

 I_S : Le courant simple à l'origine (source) de la ligne.

 I_R : Le courant simple à l'extrémité (récepteur) de la ligne.

Pour calculer les paramètres A, B, C et D on utilise la formule matricielle (II.7)

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_R \\ I_R \end{bmatrix}$$
(II.7)

Alors :

$$\begin{cases} V_S = A \cdot V_R + B \cdot I_R \\ I_S = C \cdot V_R + D \cdot I_R \end{cases}$$
(II.8)

II.4.3.2. Modélisation d'une ligne courte

Pour une ligne dite une ligne courte, la longueur de cette ligne doit être inférieure à 80 km. Le modèle d'une ligne courte est représenté dans la **Figure II.10**. **[FAR 04]**

Figure II.10 : Modèle d'une ligne courte.

Le diagramme vectoriel de ce modèle de ligne est représenté dans la Figure II.11.

Figure II.11 : Diagramme vectoriel d'une ligne courte.

$$\begin{cases} V_S = V_R + Z \cdot I_R \\ I_S = I_R \end{cases}$$
(II.9)

En peut calculer les paramètres A, B, C et D par la formule matricielle (II.10).

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_R \\ I_R \end{bmatrix}$$
(II.10)

Où :

$$A = 1, B = Z, C = 0, D = 1$$

Coefficient de régulation de la tension :

$$\varepsilon(\%) = \frac{V_S - V_R}{V_R} \cdot 100 \tag{II.11}$$

II.4.3.3. Modélisation d'une ligne moyenne

Elle caractérisée par la longueur comprise entre 80 et 250 km, lorsqu'on représente le schéma de ce modèle de ligne on ne peut pas négliger l'admittance parallèle. Ce modèle de ligne se compose de deux types tels que le type π et le type T. **[FAR 04]**

II.4.3.3.1. Modélisation d'une ligne moyenne en π

Le modèle d'une ligne moyenne de type π est représenté dans la Figure II.12. [FAR 04]

Figure II.12 : *Modèle d'une phase d'une ligne moyenne en* π *.*

Le diagramme vectoriel de ce modèle de ligne est représenté dans la Figure II.13.

Figure II.13 : *Diagramme vectoriel d'une ligne moyenne en* π *.*

La formule matricielle de ce type de ligne est représentée dans la formule (II.12).

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} 1 + Z \frac{Y}{2} & Z \\ Y \left(1 + Z \frac{Y}{4} \right) & 1 + Z \frac{Y}{2} \end{bmatrix} \begin{bmatrix} V_R \\ I_R \end{bmatrix}$$
(II.12)

Alors :

$$\begin{cases}
A = 1 + Z \frac{Y}{2} \\
B = Z \\
C = Y \left(1 + Z \frac{Y}{4} \right) \\
D = 1 + Z \frac{Y}{2}
\end{cases}$$
(II.13)

II.4.3.3.2. Modélisation d'une ligne moyenne en T

Le modèle d'une phase d'une ligne moyenne de type T est représenté sur la **Figure II.14**. [FAR 04]

Figure II.14 : Modèle d'une phase d'une ligne moyenne en T.

Où :

$$Z/2 = R/2 + j(X/2)$$
 (II.14)

Le diagramme vectoriel de ce modèle de ligne est représenté dans la Figure II.15.

Figure II.15 : Diagramme vectoriel d'une ligne moyenne en T.

La formule matricielle de ce type de ligne est représentée dans la formule (II.15).

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} 1 + Z\frac{Y}{2} & Z\left(1 + Z\frac{Y}{4}\right) \\ Y & 1 + Z\frac{Y}{2} \end{bmatrix} \begin{bmatrix} V_R \\ I_R \end{bmatrix}$$
(II.15)

Alors :

$$\begin{cases}
A = 1 + Z \frac{Y}{2} \\
B = Z \left(1 + Z \frac{Y}{4} \right) \\
C = Y \\
D = 1 + Z \frac{Y}{2}
\end{cases}$$
(II.16)

II.4.3.4. Modélisation d'une ligne longue

Ce modèle est appliqué pour les lignes de longueur supérieure à 250 km. Il est représenté sur la **Figure II.16**. **[FAR 04]**

Figure II.16 : Modèle d'une phase d'une ligne longue.

La formule matricielle de ce type de ligne est représentée dans la formule (II.17).

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} \cosh(\gamma \cdot L) & Z_C \cdot \sinh(\gamma \cdot L) \\ \frac{\sinh(\gamma \cdot L)}{Z_C} & \cosh(\gamma \cdot L) \end{bmatrix} \begin{bmatrix} V_R \\ I_R \end{bmatrix}$$
(II.17)

Alors :

$$\begin{cases}
A = \cosh(\gamma \cdot L) \\
B = Z_C \cdot \sinh(\gamma \cdot L) \\
C = \frac{\sinh(\gamma \cdot L)}{Z_C} \\
D = \cosh(\gamma \cdot L)
\end{cases}$$
(II.18)

Où :

 $Z_C = \sqrt{\frac{z}{y}}$: est appelée l'impédance caractéristique. $\gamma = \sqrt{Z \cdot Y}$: est appelée la constante de propagation.

II.4.4. Modélisation d'une charge

Une charge peut être modélisée par une impédance qui consomme une quantité constante de puissance active et réactive. La **Figure II.17** représente le modèle d'une charge. **[MAM 12]**

Figure II.17 : Modèle d'une charge.

II.5. Classification des variables de l'écoulement de puissance

Pour faite la classification des variables de l'écoulement de puissance on a besoin des grandeurs à savoir : la puissance active et réactive, le module de la tension et l'argument. Donc il est impératif d'introduire un certain ordre sur les variables pour cette raison on les classe on trois types des variables suivants : **[HAM 13]**

II.5.1. Les variables de perturbation ou non contrôlables

Parmi les variables des équations de l'écoulement de puissance, les variables de la demande P_D et Q_D ne sont pas contrôlables car elles dépendent seulement des abonnés (consommateurs) de la puissance. Elles représentent par le vecteur de perturbation P comme suit :

$$P = \begin{bmatrix} P_{D1} \\ P_{D2} \\ \vdots \\ P_{Dn} \\ Q_{D1} \\ Q_{D2} \\ \vdots \\ Q_{Dn} \end{bmatrix}$$
(II.19)

II.5.2. Les variables d'état

Ce sont le module et l'argument de la tension au niveau de jeux de barres $(|V|, \delta)$. Elles représentent par le vecteur d'état X comme suit :

$$X = \begin{bmatrix} |V_1| \\ |V_2| \\ \vdots \\ |V_n| \\ \delta_1 \\ \delta_2 \\ \vdots \\ \delta_n \end{bmatrix}$$
(II.20)

II.5.3. Les variables de contrôle

Les puissances générées actives et réactives (P_G et Q_G) sont des variables de contrôle représentées par le vecteur de contrôle U comme suit :

$$P = \begin{bmatrix} P_{G1} \\ P_{G2} \\ \vdots \\ P_{Gn} \\ Q_{G1} \\ Q_{G2} \\ \vdots \\ Q_{Gn} \end{bmatrix}$$
(II.21)

II.6. Classification des jeux de barres selon leurs spécifications

Les jeux de barres sont classés en fonction des spécifications des variables utilisées et généralement on les classe sous trois types.

II.6.1. Jeu de barre de référence $(|V|, \delta)$

C'est un jeu barre connecté à une source de tension considérée constante, et sans angle de phase et pris comme référence de calcul .Ses puissances actives et réactives, doivent être calculées d'après le calcul de la puissance pour s'adapter aux exigences de jeu barre de contrôle.

II.6.2. Jeu de barre de génération (à tension contrôlée) (PV)

Ce jeu de barre est connecté à un générateur délivrant une puissance active P sous une tension constante V contrôlée par un régulateur automatique de tension (AVR). Donc la puissance active et le module de la tension puisqu'elles sont contrôlables, par contre la puissance réactive et l'argument de la tension sont inconnues (à calculer). **[HAM 13]**

II.6.3. Jeu de barre de charge (PQ)

Ce sont les jeux barre de la demande clientèles, pour ce genre, les puissances actives et sont données, mais l'amplitude de l'argument de la tension sont à déterminer.

Cette classification est résumée dans le tableau suivant :

Tableau II.1:	Classification	des jeux d	le barres.
---------------	----------------	------------	------------

Type de jeu de barre	Variables connues	Variables inconnues	Numérotation de jeu
	(spécifiés)	(à calculé)	de barre
Référence	V , δ	P, Q	0 ou 1
Contrôle	P, V	Q , δ	2,,k
Charge	P, Q	V , δ	k,,n

II.7. Formulation des équations de l'écoulement de puissance

Pour un réseau électrique avec N jeux de barres, les équations des tensions nodales du système sont exprimées par la relation matricielle :

$$\begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & \dots & Y_{n1} \\ Y_{21} & Y_{22} & \dots & Y_{n2} \\ \vdots & & \ddots & & \\ Y_{n1} & Y_{n2} & \dots & Y_{nn} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix}$$
(II.22)

Toutes les grandeurs sont exprimées en valeur relative. On a :

$$I_{bus} = Y_{bus} * V_{bus} \tag{II.23}$$

Où :

 $I_{bus} = [I_1 I_2 \dots I_N]^T$: est le vecteur $1 \times N$ des courants complexes injectés à chaque jeu de barres

$$V_{bus} = \begin{bmatrix} V_1 V_2 \dots \dots V_N \end{bmatrix}^T \text{: est le vecteur } \mathbf{1} \times N \text{ des tensions complexes de chaque jeu de barres}$$
$$Y_{bus} = \begin{bmatrix} Y_{11} & \cdots & Y_{1N} \\ \vdots & \ddots & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{bmatrix} \text{: est la matrice } N \times N \text{ des admittances nodale du système.}$$

La matrice d'admittance est formée avec les éléments du réseau électriques (lignes de transmission, transformateurs, batteries de condensateurs et réactances), chaque élément peut

être connecté entre un jeu de barre et le jeu de barre de référence ou entre deux jeux de barres différents de jeu de référence.

 Y_{ii} c'est l'élément diagonal ii, il est égal à la somme des admittances de tous les composants connectés au jeu de barre i, soit :

$$Y_{ii} = Y_{i0} + \sum_{\substack{j=1 \\ j \neq i}}^{N} Y_{ij}$$
(II.24)

Y_{i0} : L'élément shunt.

 Y_{ij} : L'élément hors diagonale de la matrice Y_{bus} , il est égal à la somme négative des admittances de tous les composants connectés entre les jeux de barres *i* et *j*, c'est-à-dire :

$$Y_{ij} = -\sum_{j \neq i} Y_{ij} \tag{II.25}$$

Alors le courant injecté à un jeu de barre *i*, peut s'écrire :

$$I_{i} = Y_{ii}V_{i} + \sum_{\substack{j=1\\j\neq i}}^{N} Y_{ij}V_{j}$$
(II.26)

Les grandeurs complexes V_j et Y_{ij} sont représentées sous la forme exponentielle ou rectangulaire suivantes :

$$V_j = |V_j| \exp j\delta_j = V_j(\cos \delta_j + j \sin \delta_j)$$
(II.27)

$$Y_{ij} = |Y_{ij}| \exp j\theta_{ij} = Y_{ij}(\cos \theta_{ij} + j \sin \theta_{ij})$$
(II.28)

La puissance apparente injectée au jeu de barre *i* est définie comme suit :

$$S_i = P_i + jQ_i = V_i I_i^* \tag{II.29}$$

Les puissances active et réactive injectées au jeu de barre *i* sont données par les formules suivantes :

$$P_{i} = P_{Gi} - P_{Li} = Re[V_{I}I_{i}^{*}]$$
(II.30)

$$Q_i = Q_{Gi} - Q_{Li} = Im[V_I I_i^*]$$
 (II.31)

Donc, à partir de l'équation (II.26) et (II.29), pour N jeux de barres, le courant est formulé comme suit :

$$I_{i} = \frac{P_{i} - Q_{i}}{V^{*}} = Y_{ii} \cdot V_{i} + \sum_{j \neq i}^{n} Y_{ij} \cdot V_{j}$$
(II.32)

A partir de l'équation (II.32)

$$V_{i} = \frac{1}{Y_{ii}} \left[\frac{P_{i} - Q_{i}}{V^{*}} - \sum_{j \neq i}^{n} Y_{ij} V_{j} \right]$$
(II.33)

Finalement, la formule de la puissance apparente injectée au jeu de barre *i* en fonction de la tension et l'admittance est donnée comme suite :

$$S_i = P_i + jQ_i = \sum_{j=1}^n |V_i V_j Y_{ij}| \exp^{(\delta_i - \delta_j - \theta_{ij})}$$
(II.34)

Avec :

$$P_{i} = \sum_{j=1}^{n} |V_{i}V_{j}Y_{ij}| \cos\left(\delta_{i} - \delta_{j} - \theta_{ij}\right)$$
(II.35)

et

$$Q_{i} = \sum_{j=1}^{n} |V_{i}V_{j}Y_{ij}| sin (\delta_{i} - \delta_{j} - \theta_{ij})$$

$$i = 1, 2, ..., n$$
(II.36)

 $i \neq jeu$ de barre de référence (slack bus)

Pour un profil de tension et une topologie du réseau donnés, ces équations donnent les injections de la puissance active P_i et la puissance réactive Q_i au niveau d'un jeu de barre *i*.

Les équations d'équilibre de puissance sont de la forme :

$$P_{Gi} = P_{Di} + \sum_{i=1}^{n} |V_i V_j Y_{ij}| \cos\left(\delta_i - \delta_j - \theta_{ij}\right)$$
(II.37)

$$\boldsymbol{Q}_{Gi} = \boldsymbol{Q}_{Di} + \sum_{j=1}^{n} |\boldsymbol{V}_{i} \boldsymbol{V}_{j} \boldsymbol{Y}_{ij}| \sin(\delta_{i} - \delta_{j} - \theta_{ij})$$
(II.38)

II.8. Algorithme de résolution du problème de l'écoulement de puissance

Parmi les méthodes de résolution de problème de l'écoulement de puissance il ya la méthode de Gauss-Seidel, cette méthode qui a l'inconvénient de converger en un nombre d'itération dépendant de la taille du réseau et elle n'est pas rapide pour les grands systèmes. Il ya aussi la méthode de Newton-Raphson ou la méthode découplée rapide, cette méthode est la plus utilisée car le nombre d'itération requis pour obtenir une solution est indépendant de la taille du réseau et elle est plus rapide par rapport la première méthode. **[MAN 13]**

Figure II.18 : Algorithme de résolution du problème de la répartition des charges.

Dans ce chapitre en va représenter la méthode de Newton-Raphson parce qu'il est la plus utilisée pour l'analyse de l'écoulement de puissance dans les réseaux électriques.

II.9. Méthode itérative de Newton Raphson

La méthode itérative de Newton-Raphson est convergée plus rapide (au moins cinq itération) soit pour les larges systèmes ou les courts systèmes. C'est pour cette raison que cette méthode est la plus utilisée pour l'étude des larges systèmes.

II.9.1. Représentation géométrique de la méthode de N-R

Elle est basée sur la détermination de la tangente à la courbe f(x) en chaque point $(x^{(x)}, f(x^{(x)}))$. L'intersection de cette tangente avec l'axe des x fournit le point $x^{(k+1)}$, $(\Delta x^{(k+1)})$, étant une approximation de l'erreur commise sur x à l'itération k. [MAN 13]

Figure II.19 : Représentation géométrique de la méthode de N-R.

II.9.2. Algorithme de N-R dans un système de dimension n

 $f_{n(x^{(0)})} + \left(\frac{\partial f_n}{\partial x_1}\right) \Delta x_1^{(0)} + \left(\frac{\partial f_n}{\partial x_2}\right) \Delta x_2^{(0)} + \dots \left(\frac{\partial f_n}{\partial x_n}\right) \Delta x_n^{(0)} = 0$ (II.39) Les termes $\left(\frac{\partial f_1}{\partial x_1}\right)|_0, \dots, \left(\frac{\partial f_n}{\partial x_{1n}}\right)|_0$ correspond a la dérivée partielle évaluée avec les valeurs $x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}$ Ou dans une notation compacte : $f(x^{(0)}) + J^{(0)} \Delta x^{(0)} \approx 0$ La matrice carrée dite Jacobienne : $[J]^{(0)}$

De cette dernière équation on tire ensuite le vecteur d'erreur $\Delta x^{(0)} = -[j^{(0)}]^{-1} f(x^{(0)})$

Mais :

$$\Delta x^{(0)} = x^{(1)} - x^{(0)} \operatorname{donc} x^{(1)} = x^{(0)} - [j^{(0)}]^{-1} f(x^{(0)})$$
(II.40)

En général :

$$x^{(k+1)} = x^{(k)} - [j^{(k)}]^{-1} f(x^{(k)})$$
(II.41)

II.9.3. Arrêt des opérations

En pratique, on arrête les opérations pour l'un des testes suivants :

- 1. Si $f(x^{(k)})$ est quasiment nulle.
- 2. Si l'amélioration de $x^{(k)}$ d'une itération à la suivante ne justifie pas l'effort de calcul supplémentaire.
- 3. Si la convergence n'est pas obtenue avant un nombre d'itération fixe. Le processus est considéré comme non convergent pour l'estimation initiale $x^{(0)}$ donnée.

II.10. Application de la méthode de N-R au problème de l'EP

L'approximation linéaire est obtenue par un développement en série de Taylor des deux équations (**II.35**) et (**II.36**) de l'écoulement de puissance en obtenue cette forme :

$$\Delta P_i = \sum_{j=1}^n \left(\frac{\partial P_i}{\partial \delta_j} \Delta \delta_j + \frac{\partial P_i}{\partial V_j} \Delta V_j \right)$$
(II.42)

$$\Delta Q_i = \sum_{j=1}^n \left(\frac{\partial Q_i}{\partial \delta_j} \Delta \delta_j + \frac{\partial Q_i}{\partial V_j} \Delta V_j \right)$$
(II.43)

Ou sous la forme matricielle

$$\begin{bmatrix} \Delta \mathbf{P} \\ \Delta \mathbf{Q} \end{bmatrix} = \begin{bmatrix} \mathbf{H} & \mathbf{N} \\ \mathbf{J} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{V} \\ \Delta \boldsymbol{\delta} \end{bmatrix}$$
(II.44)

Où les éléments H, N, J et L sont des sous matrices de Jacobienne, ils sont déterminés comme suit :

$$H_{ii} = \frac{dP_i}{d\delta_i} = \sum_{\substack{j=1\\j\neq i}}^N V_i V_j Y_{ij} \sin(\delta_j - \delta_i + \theta_{ij})$$
(II.45)

$$J_{ii} = \frac{dQ_i}{d\delta_i} = \sum_{\substack{j=1\\j\neq i}}^N V_i V_j Y_{ij} \cos(\delta_j - \delta_i + \theta_{ij})$$
(II.46)

$$N_{ii} = \frac{dP_i}{dV_i} = 2V_i Y_{ii} \cos \theta_{ii} + \sum_{\substack{j=1\\j \neq i}}^N V_j Y_{ij} \cos(\delta_j - \delta_i + \theta_{ij})$$
(II.47)

$$L_{ii} = \frac{dQ_i}{dV_i} = -2V_i Y_{ii} \sin \theta_{ii} - \sum_{\substack{j=1\\j\neq i}}^N V_j Y_{ij} \sin(\delta_j - \delta_i + \theta_{ij})$$
(II.48)

H_{ii}, J_{ii}, N_{ii}, L_{ii}: Ce sont les éléments diagonaux de la matrice Jacobienne.

$$H_{ij} = \frac{dP_i}{d\delta_j} = -V_i V_j Y_{ij} \sin(\delta_j - \delta_i + \theta_{ij})$$
(II.49)

$$J_{ij} = \frac{dQ_i}{d\delta_j} = -V_i V_j Y_{ij} \cos(\delta_j - \delta_i + \theta_{ij})$$
(II.50)

$$N_{ij} = \frac{dP_i}{dV_j} = V_j Y_{ij} \cos(\delta_j - \delta_i + \theta_{ij})$$
(II.51)

$$L_{ij} = \frac{dQ_i}{dV_j} = -V_j Y_{ij} \sin(\delta_j - \delta_i + \theta_{ij})$$
(II.52)

 $H_{ij}, J_{ij}, N_{ij}, L_{ij}$: Ce sont les éléments hors diagonaux de la matrice Jacobienne.

Pour la méthode de N-R, les variations des puissances sont liées avec les variations des amplitudes de la tension et les angles de phase dans l'équation suivant :

$$\begin{bmatrix} \Delta P \\ \cdots \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & \vdots & J_2 \\ \cdots & \vdots & \cdots \\ J_3 & \vdots & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \cdots \\ \Delta |V| \end{bmatrix}$$
(II.53)

L'organigramme de la **Figure II.20** représente le principe général du fonctionnement de la méthode de N-R.

Figure II.20 : Fonctionnement de la méthode de N-R.

Le calcul de l'écoulement de puissance par l'utilisation de la méthode de Newton-Raphson en résumée dans les étapes suivantes :

- 1. Initialiser le compteur d'itération, t=0.
- 2. Formuler la matrice d'admittance Y.
- 3. Affecter des valeurs initiales aux modules et phases des tensions, $\left|V_{i}^{(0)}\right|$ et $\delta_{i}^{(0)}$

D'habitude, les valeurs initiales sont $\left|V_{i}^{(0)}\right| = 1 p. u$ et $\delta_{i}^{(0)} = 0$.

- 4. Calculer les puissances $P_i^{(k)}$ et $Q_i^{(k)}$.
- 5. Calculer le vecteur des écarts de puissances $\Delta P_i^{(k)}$ et $\Delta Q_i^{(k)}$ comme suit :

$$\Delta P_i^{(k)} = P_i^{spec} - P_i^{(k)} \tag{II.54}$$

$$\Delta Q_i^{(k)} = Q_i^{spec} - Q_i^{(k)} \tag{II.55}$$

Les écarts de puissances représentent la différence entre l'injection des puissances spécifiées et la valeur actuelle de l'injection des puissances calculées sur la base des formules (II.35) et (II.36), en fonction des valeurs actuelles des variables d'état.

- 6. Vérifier la convergence. Si le vecteur des écarts de puissance est inferieur à une certaine précision $\left|\Delta P_i^{(k)}\right| \le \varepsilon$ et $\left|\Delta Q_i^{(k)}\right| \le \varepsilon$ stop. Sinon, continuer.
- Calculer les éléments de la matrice Jacobienne (H, N, J et L) à partir les équations (II.45) jusqu'à (II.52).
- 8. Résoudre le système (**II.44**) par rapport à $[\Delta V, \Delta \delta]^T$, par l'inversion directe de la matrice Jacobienne ou par la technique de factorisation triangulaire et l'élimination gaussienne.
- 9. Calculer les nouvelles estimations des variables d'états :

$$V_{i}^{(k+1)} = V_{i}^{k} + \Delta V_{i}^{(k)}$$
(II.56)
$$\delta_{i}^{(k+1)} = \delta_{i}^{k} + \Delta \delta_{i}^{(k)}$$
(II.57)

10. Incrémenter k de 1 et retourner à l'étape 4, jusqu'à le vecteur des écarts de puissance est inférieur à la valeur de précision.

II.11. Puissances transitées et les pertes

Le calcul des puissances transitées et les pertes dans les lignes est la dernière étape de l'analyse de l'écoulement de puissance, pour cela on utilise le modèle en π d'une ligne de transmission représenté dans la **Figure II.21**.

Figure II.21 : Transite de puissance d'une ligne de transmission.

Le courant transité I_{ij} dans la ligne *i-j* est définie positif de jeu de barre i vers le jeu j s'écrit :

$$I_{ij} = I_l + I_{i0} = (V_i - V_j)Y_{ij} + V_iY_{i0}$$
(II.58)

Le courant transité inverse I_{ji} dans la ligne *i*-*j* est définie négatif de jeu de barre j vers le jeu i s'écrit :

$$I_{ji} = -I_l + I_{j0} = (V_j - V_i)Y_{ij} + V_jY_{j0}$$
(II.59)

La puissance apparente transitée S_{ij} et la puissance apparente transitée S_{ji} comme suit :

$$S_{ij} = V_i I_{ij}^* = V_i (V_i^* - V_j^*) Y_{ij}^* + V_i^2 Y_{i0}^*$$
(II.60)

$$S_{ji} = V_j I_{ji}^* = V_j (V_j^* - V_i^*) Y_{ji}^* + V_j^2 Y_{j0}^*$$
(II.61)

La puissance perdu ΔS_{ij} due à la transmission est égale à la somme algébrique des puissances apparentes S_{ij} et S_{ji}

$$\Delta S_{ij} = S_{ij} + S_{ji} \tag{II.62}$$

II.12. Conclusion

Nous avons présentés dans ce chapitre la modélisation des éléments du réseau électriques et comment classifier les variables et les jeux de barres dans l'écoulement de puissance.

Nous avons donné la formulation mathématique de l'algorithme de Newton-Raphson (N-R) appliqué pour résoudre le problème de l'écoulement de puissance. On peut conclure que la résolution de problème de l'écoulement de puissance basé sur la méthode de N-R est un outil très important pour estimer l'état du réseau électrique, en particulier le niveau des tensions et les pertes dans les lignes de transport afin d'assurer une exploitation efficace.

Dans le prochain chapitre on va discuter sur la programmation visuelle basée sur le langage de programmation Matlab (l'interface graphique GUIDE). On va précise les notions de base et les composants permettant de comprendre le fonctionnement de l'interface graphique avec l'illustration par quelques exemples.

Chapitre III :

Programmation visuelle

III.1. Introduction

Le problème qui a été confronté les utilisateurs de MATLAB est la faible capacité d'afficher et mettre en évidence le travail, Par conséquent, beaucoup de programmeurs dépendaient sur le Matlab pour calculer et résoudre les problèmes mathématiques et utiliser ensuite les résultats dans d'autres programmes tels que le Visuel Basic par exemple.

Dans les versions modernes de Matlab ont émergé fortement l'idée d'introduire de construction des interfaces dans MATLAB, un processus ce qui est connu sous le nom des interfaces utilisateur graphiques, ces interfaces sont intégrées avec Matlab dans le but de facilité la programmation, la résolution de problèmes et la possibilité d'afficher et de démontrer les résultats avec une manière magnifique, flexible et de création d'un environnement interactif entre lui et l'utilisateur. **[SHA]**

III.2. Matlab programmation orientée objet

En complément des types de données purement mathématiques, Matlab fournit à l'utilisateur la possibilité de travailler sur des « objets », l'autorisant ainsi à créer de nouveaux types de données, ayant leurs propres méthodes et propriétés. Cette notion étend considérablement le champ des développements réalisables dans l'environnement Matlab. Cette formation expose les concepts et les techniques relatifs à la programmation orientée objet (POO) avec Matlab. [ACS]

III.3. Guide et l'interface graphique

Le Guide est un environnement de développement de l'interface graphique GUI dans le Matlab. Cet environnement contient un ensemble des outils qui utilisés pour créer une interface graphique GUI, ces outils simplifient le processus de planification et la programmation de GUI. **[SHA]**

Une interface graphique permet de contrôler une application interactivement avec la souris, plutôt que par lancement des commandes au clavier. Une interface graphique comprend des menus, des boutons, des "ascenseurs", des cases à cocher, des zones de texte, des listes de choix, des tableaux, etc...

📣 figprincipale				
🗋 🗃 🖬 🖕				۲ ۲
Push Button	Listbox	¹ [
		. 0.8		
Radio Button		0.6		
Check Box	1 2 1 2 3	0.4 0.2		
Edit Text	4	0	0.5	1
Static Text	- Panel		– Button Group	
Pop-up Menu 💌				
Toggle Button				

La Figure III.1 représente un exemple d'une interface graphique.

Figure III.1 : *Exemple d'une interface graphique*.

Elle permet de "cliquer" directement sur des images, des graphiques ou des objets pour modifier la valeur d'une variable, déclencher des fonctions ou simplement faire apparaître des informations lors d'un survol à la souris.

Matlab permet d'écrire assez simplement une interface graphique pour faire une application interactive utilisable par des utilisateurs non formés à Matlab.

Les notions principales d'une interface graphique sont :

- Les divers objets graphiques, auxquels sont attribués des noms symboliques; ces "poignées de main" ou "*handles*" permettent de les repérer dans l'interface; pour envisager par exemple une modification dynamique (grisé d'un bouton provisoirement non utilisable, changement du texte d'un bouton, modification d'une liste de choix...).
- les propriétés des objets (couleur, disposition, taille, variable associée)

les fonctions exécutées par les clic souris sur les éléments ou "*callbacks*" (décrites en ligne de commande Matlab).

Les versions actuelles de Matlab permettent de construire ces interfaces directement avec la souris grâce au GUIDE (Graphical User Interface Development Environment). Cet outil est capable de construire des applications de très haut niveau. Cependant, son approche est très délicate pour un utilisateur peu expérimenté. L'approche classique par description textuelle de l'interface, moins performante mais compréhensible, permet de se familiariser avec les principales notions. Ce chapitre permet de faire une approche progressive du GUI; les exemples sont opérationnels et sont à tester pour se familiariser. **[BON]**

Le GUIDE est un outil graphique qui regroupe tout ce dont le programmeur à besoin pour créer une interface graphique de façon intuitive.

La **Figure III.2** représente la méthode utilisée pour l'activation de l'interface graphique « guide ». Pour activer l'interface, il faut taper le mot « guide » sur l'interpréteur de commande puis appuyer sur le bouton « enter ».

Figure III.2 : Activation de l'interface graphique « Guide ».

La fenêtre principale de l'interface graphique est affichée après avoir appuyé sur le bouton « enter ». Elle est représentée dans la **Figure III.3**.

📣 GUIDE Quick Start	
Create New GUI Open Existing GUIDE templates	GUI Preview
GUI with Uicontrols GUI with Axes and Menu Modal Question Dialog	BLANK
Save new figure as: C:\P	rogram Files\MATLAB\R2012b\bin\until Browse
	OK Cancel Help

Figure III.3 : Fenêtre principale de l'interface graphique « Guide ».

Cette fenêtre se caractérise par :

- a) Créer une nouvelle GUI (Create New GUI) qui contient :
 - 1) Créer une nouvelle interface (Blank GUI (Defaut)).
 - 2) Utiliser une interface graphique simple prédéfinie (GUI with Uicontrols).
 - Utiliser une interface prédéfinie contenant l'objet Axes et un Menu (GUI with Axes and Menu).
 - 4) Créer une boite de dialogue (Modal Question Dialog).

Cet objet à pour objective de contrôler les événements, tel qu'une confirmation quitter le programme.

b) Ouvrir une interface pré-existante (Open Existing GUI)

Si l'operateur choisi par exemple la première option « Blank GUI (Defaut) » la fenêtre permettant la gestion des objets sera affichée comme indiqué dans la **Figure III.4**. Cette fenêtre représente la fenêtre de travail de l'interface « Guide ». **[MAO 08]**

Figure III.4 : Fenêtre de travail de l'interface « Guide ».

Où :

- « 1 » : La fenêtre de travail de l'interface
- « **2** » : Les objets de l'interface.
- « **3** » : Alignement des objets.
- « 4 » : Création des menus.
- « 5 » : L'ordre de sélection avec le bouton « Tab » de clavier.
- « 6 » : Création de la barre d'outils.
- « 7 » : Fichier (.m) de l'interface graphique (pour la modification).
- « 8 » : Propriétés d'objet.
- « 9 » : Navigateur d'objet.
- « **10** » : L'exécution de l'interface graphique.
- « 11 » : L'ajustement sur la taille de fenêtre de travail de l'interface.

Le placement des objets est réalisé par sélection dans la boite à outils, mise en place et mise à dimension à la souris. Un double-clique sur chaque objet permet de faire apparaître un menu avec les propriétés de cet objet. Leur modification et l'aperçu de ces modifications sont immédiats. Au final, le code est généré automatiquement et l'interface est enregistrée sous deux fichiers portant le même nom mais dont les deux extensions sont .fig et .m. Le premier contient la définition des objets graphiques. Le second contient les lignes de code qui assurent le fonctionnement de l'interface graphique.

L'utilisation du GUIDE semble donc être la méthode de programmation des GUI sous MATLAB. Mais, comparons cette méthode à la programmation des GUI à la main à l'aide d'un exemple simple.

III.3.1. Programmation avec l'interface graphique « Guide »

Après avoir mis en place tous les objets et ajusté toutes les propriétés, le GUIDE génère deux fichiers. Un fichier .fig (non éditable) contenant les objets graphiques (Figure, Axes et Pushbutton) de l'interface et un fichier .m qui représente la partie programmé de l'interface. **[SHA]**

III.3.2. Fichiers de l'interface graphique « Guide »

Après avoir mis en place tous les objets et ajusté sur toutes les propriétés de l'interface développée, le GUIDE génère les deux fichiers suivant :

- Le premier est un fichier Fig-file « .fig » qui contient une description complète de la structure de l'interface développé et ces objets graphiques tels que : les menus, les boutons, les axes,...etc. Ce fichier est modifiable seulement à travers le Guide.
- Le deuxième est un fichier M-file « .m » qui contient le code de configuration et quelques modèles de callbacks qu'ils sont nécessaires pour contrôler le comportement de l'interface.

Lorsqu'on sauvegarde l'interface, le Guide ouvre automatiquement le fichier M-file de cette interface dans l'éditeur de Maltab. Habituellement les deux fichiers M-file et Fig-file sont enregistrées dans le même dossier. **[SHA]**

III.3.3. Principe d'interaction avec la souris

La presque totalité des objets de l'interface graphique (curseur, case à cocher...) peut interagir avec la souris.

La fonctionnalité la plus courante est la modification de la valeur associée à l'objet (si elle existe): pour les objets destinés à faire une saisie (case à cocher, curseur, champ de saisie, choix de liste...), Matlab gère automatiquement la valeur associée. Cette valeur est récupérable par toute partie de l'application par la fonction "get" :

Variable=get(handles.buttonname, 'property')

Cette fonctionnalité permet de saisir la valeur d'une variable par l'interface graphique plutôt que par le clavier.

 La deuxième interaction courante est une action déclenchée par le "clic" souris sur l'objet (appuyé puis relâché): la fonction associée est décrite dans la propriété "*callback*" de l'objet. Cette fonction peut être une instruction de base Matlab ou une fonction définie par l'utilisateur (stockée en fichier .m). [BON]

set(handles.buttonname, 'property', variablename)

III.3.4. Propriétés d'une fenêtre graphique (ou d'un objet)

Les principales propriétés sont : le titre, la position et la dimension dans l'écran, la couleur de fond, la présence et le type de menus, le redimensionnement...

La fenêtre de base est l'écran qui a pour handle "0". Par get (0, 'ScreenSize'), on obtient la taille de l'écran physique de l'écran. Ces valeurs permettent de fixer la taille d'une fenêtre en rapport avec la dimension physique de l'écran et d'éviter de créer une application qui "déborde" de l'écran!

La taille et la position de la fenêtre (ou d'un objet) se fixent par modification de sa propriété ou contrôle "position", comprenant les coordonnées (Xor,Yor) du coin inférieur gauche et ses dimensions (Xfen,Yfen) : **[BON]**

```
figure('Name','Figure vide','NumberTitle','off',...
'position',[ 10 , 10 , 400 , 150 ])
```

La Figure III.5 représente un exemple d'une Fenêtre.

Figure III.5 : Exemple d'une Fenêtre.

III.3.5. Insertion d'un Objet dans la fenêtre

L'insertion d'un objet dans une fenêtre se fait directement avec la souris grâce à GUIDE ou par la fonction "**uicontrol**", dont le premier paramètre est le handle de la figure de référence. Le deuxième paramètre précise le "style" ou type d'objet à insérer. **[BON]**

Exemples :

```
Insertion d'un texte statique « Static Text »:
fig1=figure('Name','Première figure','NumberTitle','off',...
    'position' ,[ 10 , 10 , 400 , 100 ])
text1 = uicontrol( fig1,'style' , 'text' , 'position' ,
[120,30,170,30] ,...
'string' , 'Matlab 2012b' , 'fontsize' , 15 )
```

La Figure III.6 représente une fenêtre contient un texte non éditable.

Figure III.6 : Fenêtre contient un texte non éditable.

On remarque que cet objet est non cliquable et non modifiable après l'exécution de l'interface (on peut modifier juste dans l'instruction 'Matlab 2012b').

Insertion d'un texte modifiable « Edit Text »

```
fig1=figure('Name','Première figure','NumberTitle','off',...
    'position' ,[ 10 , 10 , 400 , 100 ])
text1 = uicontrol( fig1,'style' , 'edit' , 'position' ,
[120,30,170,30] ,...
'string' , 'Matlab 2012b' , 'fontsize' , 15 )
```

La Figure III.7 représente une fenêtre contient un texte éditable.

Figure III.7 : Fenêtre contient un texte éditable.

Dans ce cas, on remarque que cet objet est cliquable et on peut modifier après l'exécution de l'interface.

III.3.6. Principaux objets graphiques

• Bouton poussoir « Push Button »

```
Un bouton poussoir se crée par :
figl=figure('Name','Première figure','NumberTitle','off',...
'position' ,[ 10 , 10 , 400 , 100 ])
bpl = uicontrol( figl,'style' , 'push' , 'position' ,
[120,30,170,30] ,...
'string' , 'Démarrer' , 'fontsize' , 15 )
```

La Figure III.8 représente une fenêtre contient un bouton poussoir activé.

Figure III.8 : Fenêtre contient un bouton poussoir activé.

Lorsqu'on clique sur le bouton poussoir, il provoque l'exécution de la fonction indiquée dans le « callback ». Cette fonction peut être une instruction de base Matlab ou une liste d'instruction, ce qui évite d'écrire une multitude de petites fonctions exécutées par les callbacks.

[BON]

Un bouton-poussoir s'inactive par la commande :

```
set(bp1 , 'enable' , 'off' )
```

La Figure III.9 représente une fenêtre contient un bouton poussoir non activé.

Figure III.9 : Fenêtre contient un bouton poussoir non activé.

Par cette commande, on peut rendre inactif certaines commandes, par exemple lorsqu'il manque des informations pour traiter un problème.

• Menus

Généralement, les menus de la fenêtre d'application ne sont pas les menus standard (voir vue ci-dessus mais des menus spécifiques. Un menu est un titre complété par une liste de sousmenu. Les actions (callbacks) sont généralement lancées à partir des sous-menus. L'ajout de menus spécifique se fait par :

menu1 = uimenu(fig1 , 'label' , ' Menu principale');

Un sous-menu est un élément du menu principal, donc de l'entité père. Il est donc déclaré car menu du menu principal.

```
smenu1 = uimenu( menu1 , 'label' , 'sous-menu 1' , 'callback' ,
'methode 1' );
smenu2 = uimenu( menu1 , 'label' , 'sous-menu 2' , 'callback' ,
'methode 2' );
```

Pour enlever les menus standards de la fenêtre, il faut fixer la propriété « Menubar » à la valeur par défaut None :

set(fig1,'menubar','None');

La Figure III.10 représente une fenêtre contient un menu.

🚺 Première figure	
Menu principale	لا
sous-menu 1 sous-menu 2	

Figure III.10 : Fenêtre contient un menu.

• Ascenseur « Slider »

L'ascenseur a pour objectif de fixer la valeur d'un paramètre entre deux bornes fixées. La valeur prise par la variable est représentée par la position du curseur.

```
slid1=uicontrol(fig1,'style','slider','position',
[120,50,150,20] , 'Min' , -1 , 'Max' , 1 , ...
'callback' , 'val_variable = get(slid1 , ''value'' )' );
```

Les textes (variable affectée, valeurs..) ne sont pas définis par le slider. Il faut le compléter par des éléments textes convenablement placés et paramétrés; leur valeur est à modifier par le callback du slider.

Exemple d'ascenseur avec affichage de la valeur :

```
fig1=figure('Name','Première figure','NumberTitle','off',...
    'position' ,[ 10 , 10 , 400 , 100 ])
texte1=uicontrol(fig1,'Style','text','String',0,'Position',
[155,70,80,20],'BackGroundcolor','w');
slid1=uicontrol(fig1,'style','slider','position',
[120,50,150,20], 'Min', -1, 'Max', 1, ...
'callback', 'set(texte1,''String'', get(slid1, ''value''))'
);
```

La Figure III.11 représente une fenêtre contient un ascenseur.

🚺 Première figure		
File Edit View	Insert Tools Desktop Window	Help 🏻 🍽
	0.185186	

Figure III.11 : Fenêtre contient un ascenseur.

• Texte éditable « Edit Text »

Permet à l'utilisateur de saisir une valeur. C'est une fonction importante.

Text1 = uicontrol (fig1, 'style', '

```
edit', 'position', [120,50,150,20], 'Max', 1, 'string', '0')
```

Généralement, Il faut associer un texte fixe pour préciser le rôle de la fenêtre de saisie à l'utilisateur.

Exemple :

```
Le texte (le mot « fréquence ») est placé à gauche de la fenêtre de saisie
uicontrol(fig1,'style','
text','position',[20,50,90,20],'string','fréquence');
```

La Figure III.12 représente une fenêtre contient un texte éditable et un texte non éditable.

🛃 Première figure 📃 🗖 🗾									
File	Edit	View	Insert	Tools	Desktop	Window	Help	'N	
	fréque	nce		0					

Figure III.12 : *Fenêtre contient un texte éditable et un texte non éditable.*

• Liste de choix « Pop-up Menu »

La liste de choix ou pop-up menu permet de sélectionner une valeur parmi une liste. Généralement, cette valeur est un texte. La valeur retournée lors du choix (paramètre 'Value') est le numéro de ligne du choix.

```
choix1 = uicontrol(fig1 ,'Style','popup','String','ler Cas|2ème
Cas|3ème Cas' , 'Position' , [150 0 100 80] );
```

La Figure III.13 représente une fenêtre contient une liste de choix.

Figure III.13 : Fenêtre contient une liste de choix.

La liste des texte est modifiable après la création de la fenêtre de choix, en modifiant la propriété 'String'.

• Bouton Radio « Radio Button »

Le bouton Radio permet de fixer un paramètre binaire (0 ou 1), représentant souvent un choix ou une option dans une application.

```
fig1=figure('Name','Première figure','NumberTitle','off',...
    'position' ,[ 10 , 10 , 400 , 100 ])
radiol = uicontrol(fig1,'style','Radio','Position',[ 140 45 130
25 ],'String','Type A');
radio2 = uicontrol(fig1,'style','Radio','Position',[ 140 20 130
25 ],'String','Type B');
uicontrol(fig1,'style','Text','Position' , [ 140 70 130 20 ]
,'String', ...
'Choix des types','FontWeight','bold');
```

La Figure III.14 représente une fenêtre contient des boutons radio.

Figure III.14 : Fenêtre contient des boutons radio.

Remarquer que les choix ne sont pas exclusifs (chaque choix peut être sélectionné). Pour obtenir l'exclusion mutuelle, il faut agir sur les valeurs de choix par les callbacks.

set(bradio1 , ' Value' , 1);

set(radio1 , 'callback' , 'set(radio2 , ' ' Value' ' , 0) ');

set(radio2 , 'callback' , 'set(radio1 , ' ' Value' ' , 0) ');

• Tableau « Table »

Cet objet est disponible seulement dans les versions modernes de Matlab (de version 2012 ou plus).

L'ajout d'un tableau se fait par :

```
figl=figure('Name','Première figure','NumberTitle','off',...
'position' ,[ 10 , 10 , 400 , 120 ])
data = rand(3);
cnames = {'ler colonne ','2ème colonne','3ème colonne'};
rnames = {'ler ligne','2ème ligne','3ème ligne'};
t = uitable(fig1,'Data',data,'ColumnName',cnames,...
'RowName',rnames,'Position',[25 20 350 80]);
```

La Figure III.15 représente une fenêtre contient un tableau.

💧 Pr	emière figi	ure						x
File	Edit V	iew	Inse	ert Tools	Desktop \	Vindow	Help	
								1
				1er colonne	2ème colon	ne 3ème	colonne	
	1er lia	ine		0.7011	0.69	81	0.1280	
	20119		_					
	2ème li	gne		0.6663	0.66	65	0.9991	

Figure III.15 : Fenêtre contient un tableau.

Où :

Data : sont les données de tableau

ColumnName : sont les noms des colonnes de tableau.

RawName : sont les noms des lignes de tableau.

• Cadre « frame »

Le cadre permet de dessiner un rectangle de présentation (par exemple regroupement de diverses entités graphiques dans un rectangle).

```
cadre1 =
uicontrol(fig1,'style','frame','position',[120,10,150,80])
```

La Figure III.16 représente une fenêtre contient un cadre.

📣 Pre	emière	figure						23
File	Edit	View	Insert	Tools	Desktop	Window	Help	r
						٦		

Figure III.16 : Fenêtre contient un cadre.

III.4. Conclusion

Nous avons présentés dans ce chapitre les notions de base et les composants principaux pour réaliser une interface graphique basée sur le langage de programmation Matlab ainsi que nous avons données quelques exemples pour l'explication.

Le prochain chapitre sera consacré au développement d'une interface graphique qui basée sur la méthode de Newton-Raphson pour l'analyse des réseaux électriques ainsi que l'application de cette interface sur des réseaux typiques (14 JB, 30 JB) dans différents régimes (normal, surcharge).

Chapitre IV :

Tests et applications sur les réseaux typiques
IV.1. Introduction

Notre travail que nous avons effectué consiste à développer un environnement graphique (logiciel) à base de l'environnement Matlab pour l'analyse et simulation des réseaux électriques.

Ce logiciel que nous avons élaboré est basé sur la méthode de Newton-Raphson pour l'analyse de l'écoulement de puissance. Il est programmé pour le Microsoft Windows et bénéficie d'une interface utilisateur puissante dynamique, agréables et interactives.

Dans la première version, ce logiciel permet de saisir les données des réseaux électriques d'une manière flexible, ces données peuvent aussi être éditées et archiver. Les résultats obtenus sont rendus sous forme des tableaux et des affichages graphiques.

Dans ce chapitre on va utiliser notre logiciel que nous avons développé pour analyse des différents réseaux typiques (IEEE 14JB, IEEE 30 JB) dans différents régimes (normal, surcharge,...)

IV.2. Objectifs et fonctions de logiciel développé

Notre logiciel que nous avons développé à base de Matlab permet de :

- ✓ Calculer la matrices d'admittance Ybus et la matrice d'impédance Zbus.
- ✓ Calculer l'écoulement de puissance dans les cas :
 - Normal.
 - Surcharge local.
 - Surcharge global.
- ✓ Prise de réglage.
- ✓ Affichage graphique des résultats.

La Figure IV.1 représente le schéma bloc de structure générale de logiciel développé.

Figure IV.1 : Schéma bloc de structure générale de logiciel développé.

🥠 are			
Fichier Simulation Aide			ע
		1	
Les données du réseau	F	Paramètres	
Charger les données des lignes		100	Puissance de base (MVA)
Charger les données des jeux de barres		100	
		1e-5	Précision
Cas de réseau Régime normal			
Version 1.0, Juin 2016	Les résultats Ecoulement de p	Affichage graphiq	Formation de Ybus et Zbus
			Fermer

IV.3. Étapes d'utilisation du logiciel développé

Figure IV.2 : Interface générale de logiciel développé.

L'interface générale du programme développé est présentée dans la **Figure IV.2**, Les étapes d'utilisation de l'interface sont présentées comme suit :

Etape 1 : Chargement des données du réseau

On charge les données du réseau à analyser soit à travers :

Les deux boutons « Charger les données des lignes » et « Charger les données des jeux de barres » ou les deux icones
 Introduire → Linedata ou busdata.

Etape 2 : Introduire des paramètres du réseau

Il faut introduire les paramètres du réseau tels que la puissance de base en MVA et la précision.

Etape 3 : Sélection de régime de réseau

On sélectionne le régime du réseau à analyser soit en régime normal ou régime de surcharge local ou global.

Etape 4 : Formation des matrices Ybus et Zbus

Pour former les matrices Ybus et Zbus de réseau sélectionné on utilise soit le bouton « Formation de Ybus et Zbus » ou l'icône $\boxed{}$ ou aussi la barre d'outils « Simulation \rightarrow Formation de Ybus et Zbus », les deux matrices sont affichées sous forme des tableaux.

Etape 5 : Analyse de l'écoulement de puissance

Cette étape permet de lancer l'écoulement de puissance du réseau sélectionné par l'action sur soit le bouton « *Ecoulement de puissance* » ou par action sur l'icône \square ou aussi à travers la barre d'outils « Simulation \rightarrow Calcul de l'écoulement de puissance ». Après le calcul, le rapport de l'écoulement de puissance est affiché sous forme des tableaux.

Etape 6 : Affichage graphique

Pour l'affichage graphique des résultats obtenus, on utilise soit le bouton « Affichage graphique » ou l'icône \square ou aussi à travers la barre d'outils « Simulation \rightarrow Affichage graphique ».

IV.4. Application de logiciel dans les réseaux typiques

Afin de démontrer l'efficacité et les possibilités de notre logiciel, nous présentons deux exemples typiques des réseaux :

- Réseau test Américain IEEE à 14 jeux de barres.
- Réseau test Américain IEEE à 30 jeux de barres.

Pour introduire d'autres réseaux test il faut les adapter au format standard.

Notation : La base des données des deux réseaux tests est caractérisée par les notations suivantes :

Les nœuds : « na » c'est le nœud de départ et « nd » c'est le nœud d'arrivé.

Type de JB :

« 1 » c'est le JB de référence, « 2 » ce sont les JBs de contrôle (PV) et « 3 » ce sont les JBs de charge (PQ).

IV.5. Réseau test Américain IEEE à 14 jeux de barres

Ce réseau test se compose de 14 jeux de barres, 20 branches, 2 générateurs et 4 transformateurs de réglages. Les puissances active et réactive à satisfaire sont respectivement 259 MW et 73.5 MVAR. Le schéma unifilaire de ce réseau test est représenté dans la **Figure IV.3**.

Figure IV.3 : Schéma unifilaire de réseau test Américain IEEE à 14 jeux de barres.

IV.5.1. Base de données du réseau

Pour introduire la base de données du réseau test IEEE 14 JB on suit les étapes suivantes :

1. On clique sur le bouton « Charger les données des lignes » et on sélectionne le fichier « Linedata14 ».

La **Figure IV.4** représente la boite de dialogue permettant l'ouverture et le sauvegarde de fichier des données des lignes du réseau test 14 JB.

📣 are			
Fichier Simulation Aide			ע
Selectioner le fichier des do	nnées des lignes (linedata)	A Real Property lies	
🔾 🗢 🎍 « ASRE Offic	iel∨1.3 ► Réseau test	✓ 4 Rechercher dans : Ré	iseau test 🔎
Organiser 🔻 Nouveau o	dossier	:== ▼	base (MVA)
🔶 Favoris	Nom	Modifié le	Туре
🧮 Bureau	1. linedata14	13/05/2016 03:10	D Documen
🔛 Emplacements ré	2. busdatas14	13/05/2016 05:3	9 Documen
📙 Téléchargements 🔤	📋 3. linedata30	13/05/2016 03:1:	5 Documen
🕞 Bibliothèques	📋 4. busdatas30	13/05/2016 05:3	3 Documen
🖳 Ordinateur			
🚢 Disque local (C:)			et Zbus
👝 Disque local (D:)			
👝 Disque local (E:)			
👝 Disque local (F:) 🍸	•		F
Nom d	u fichier : 1. linedata14		-
		Ouvrir 🔽	Annuler

Figure IV.4 : Boite de dialogue permettant l'ouverture et le sauvegarde de fichier des données des lignes du réseau test 14 JB.

Après la sélection de fichier des données des lignes du réseau test 14 JB, ces données sont affichées dans l'éditeur de Matlab.

La Figure IV.5 représente la fenêtre des données des lignes de réseau test 14 JB.

	ſ	🚺 are	e													
		Fichi	er Si	mulati	ion A	ide										
2.00				8				- 10] [•]				D
Edr		Users	AZKASO VIF	oπ\De w	sktop\3	su Juin 2	2016 (Memoire 1	inal)	ASRE Officiel V 1	3\K	eseau test\1. III	neda		E (2 💿 🛪	
-	_			Fied Fi				n -		X		-Mills				
5				Compa		Comp	ant 0/ 0/ %	<u>11</u>			•					
New	Open	Save	9	Drint	-	Inc	ient 🗉 🛵 🕅	24 11	Go Find	Bre	akpoints					
•		FIL	E				EDIT	7	NAVIGATE	BRE	AKPOINTS					
1. lir	nedata1	4.bt	×											_		
1	θ I	es	don	née	s de	es l	ignes du	r	éseau						~	
2																
3	8		nd		na	1	R	1	Х	1	B/2	I	X'mer	1		
4	8					- I	(pu)	1	(pu)	1	(pu)	I	TAP (a)	1		
5															E	
6			1		2		0.01938		0.05917		0.0264		1.0000			
1			1		5		0.05403		0.22304		0.0246		1.0000			
0			2		3		0.04699		0.19/9/		0.0219		1 0000			
9			2		5		0.05695		0.17388		0.0173		1 0000			
1			3		4		0.06701		0.17103		0.0064		1.0000			
2			4		5		0.01335		0.04211		0		1.0000			
13			4		7		0		0.20912		0		0.9780			
4			4		9		0		0.55618		0		0.9690			
			5		6		0		0 25202		0		0 0220		*	

Figure IV.5 : Fenêtre des données des lignes de réseau test 14 JB.

 Il faut cliquer sur le bouton « Charger les données des jeux de barres » et sélectionner le fichier « Busdata14 ».

La **Figure IV.6** représente la boite de dialogue permettant l'ouverture et le sauvegarde de fichier des données des jeux de barres de réseau test 14 JB.

🛃 are			
Fichier Simulation Aide			ע
Selectioner le fichier des de	onnées des jeux de barres (buse	data)	
Solo - Market Aske Office	tiel v 1.3 → Réseau test	👻 🍫 Rechercher dans : Rése	au test 🔎
Organiser 🔻 Nouveau	dossier	8== ▼	base (MVA)
🔶 Favoris	Nom	Modifié le	Туре
🧮 Bureau	📋 1. linedata14	13/05/2016 03:10	Documen
🔛 Emplacements ré	2. busdatas14	13/05/2016 05:39	Documen
🐌 Téléchargements 🚆	📋 3. linedata30	13/05/2016 03:15	Documen
📜 Bibliothèques	📋 4. busdatas30	13/05/2016 05:38	Documen
🖳 Ordinateur			
🚢 Disque local (C:)			et Zbus
🕞 Disque local (D:)			
👝 Disque local (E:)			
👄 Disque local (F:) 🍈	·		
Nom c	lu fichier : 2. busdatas14	✓ (*.txt) Ouvrir I▼ A	nnuler mer

Figure IV.6 : Boite de dialogue permettant l'ouverture et le sauvegarde de fichier des données des jeux de barres de réseau test 14 JB.

La Figure IV.7 représente Fenêtre des données de jeux de barres de réseau test 14 JB.

	🛃 a	re									X
	Fich	ier Sin	nulation Aid	le							r
										()]
Editor -	- C:\Users	AzKaSot	t\Desktop\30	Juin 2016 (Mé	moire final)V	ASRE Officie	l v 1.3\Ré	seau test\2. bu	sdatas14.txt		
EDITO	DR	VIEV	/			SM	XXX			2 🖸 🕐 🍳 🗠	
	> E	F 🔤 F	ind Files	Insert 📃	<u>fx</u> 🖌 👻	\$\$		Print I			
New Or	pen Sav	្ទីខ្ល	ompare 💌	Comment 🎋	22 27	Go To	Brea	akpoints			
-	• •	P	rint 💌	Indent 🗾	•E 💽	Q Find	-	•			
	F	ILE		ED	IT	NAVIGAT	E BREA	KPOINTS			
2. busda	atas14.txt	×	<u> </u>		-1 1						
	Les	donn	iees de:	barro	le pari	es du	rese	au		-	
3 8	1 ype	.Tell	de har	re de re	••• Sférenc		ack B	115)			
4 %	2 -	Jen	de bar	re de co	ontrole	(PV)	uck D	(45)			
5 %	3 -	Jeu	de bar	re de cl	harge ((PQ)				=	
6						~ ~ ~ ~					
7 %	- T	JB	Type	Vsp	the	eta	Pgi	Qgi	Pchi	i Qchi	
8 %	1		1	1	1	1			1	1	
9											
10		1	1	1.06	0 0		0	0	0	0	
11		2	2	1.04	50		40	42.4	21.7	12.7	
12		3	2	1.01	0 0		0	23.4	94.2	19.0	
13		4	3	1	0		0	0	47.8	-3.9	
14		5	3	1	0		0	0	7.6	1.6	
					pla	in text file			Ln 1	Col 1 OVR	

Figure IV.7 : Fenêtre des données de jeux de barres de réseau test 14 JB.

Afin de mieux visualiser les données du réseau test, les données sont récapitulé dans les tableaux **Tableau IV.1** et **Tableau IV.2**.

J	В	R	Х	B/2	X'mer TAP
nd	na	(p.u)	(p.u)	(p.u)	(p.u)
1	2	0.01938	0.05917	0.0264	1
1	5	0.05403	0.22304	0.0246	1
2	3	0.04699	0.19797	0.0219	1
2	4	0.05811	0.17632	0.0170	1
2	5	0.05695	0.17388	0.0173	1
3	4	0.06701	0.17103	0.0064	1
4	5	0.01335	0.04211	0.0	1
4	7	0.0	0.20912	0.0	0.978
4	9	0.0	0.55618	0.0	0.969
5	6	0.0	0.25202	0.0	0.932
6	11	0.09498	0.19890	0.0	1
6	12	0.12291	0.25581	0.0	1
6	13	0.06615	0.13027	0.0	1
7	8	0.0	0.17615	0.0	1
7	9	0.0	0.11001	0.0	1
9	10	0.03181	0.08450	0.0	1
9	14	0.12711	0.27038	0.0	1
10	11	0.08205	0.19207	0.0	1
12	13	0.22092	0.19988	0.0	1
13	14	0.17093	0.34802	0.0	1

Tableau IV.1 : Données des lignes du réseau test 14 JB.

JB	Туре	Vsp	theta	Pgi	Qgi	Pchi	Qchi	Qmin	Qmax
1	1	1.060	0	0	0	0	0	0	0
2	2	1.045	0	40	42.4	21.7	12.7	-40	50
3	2	1.010	0	0	23.4	94.2	19.0	0	40
4	3	1.0	0	0	0	47.8	-3.9	0	0
5	3	1.0	0	0	0	7.6	1.6	0	0
б	2	1.070	0	0	12.2	11.2	7.5	-6	24
7	3	1.0	0	0	0	0.0	0.0	0	0
8	2	1.090	0	0	17.4	0.0	0.0	-б	24
9	3	1.0	0	0	0	29.5	16.6	0	0
10	3	1.0	0	0	0	9.0	5.8	0	0
11	3	1.0	0	0	0	3.5	1.8	0	0
12	3	1.0	0	0	0	6.1	1.6	0	0
13	3	1.0	0	0	0	13.5	5.8	0	0
14	3	1.0	0	0	0	14.9	5.0	0	0

Tableau IV.2 : Données des jeux de barres de réseau test 14	JB.
--	-----

IV.5.2. Formation des matrices Ybus et Zbus de réseau

Pour former les matrices Ybus et Zbus du réseau test 14 JB on utilise le bouton « Formation de Ybus et Zbus ».

La Figure IV.8 représente la fenêtre des matrices Ybus et Zbus du réseau test 14 JB.

			Les	matrices des	s admittance	s et des imp	édances			
				La mati	rice des admitt	ances Ybus				
	1	2	3	4	5	6	7	8	9	1
1	6.0250 - 19.4471i	-4.9991 + 15.2631i	0.0000 + 0.0000i	0.0000 + 0.0000i	-1.0259 + 4.2350i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 -
2	-4.9991 + 15.2631i	9.5213 - 30.2721i	-1.1350 + 4.7819i	-1.6860 + 5.1158i	-1.7011 + 5.1939i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
3	0.0000 + 0.0000i	-1.1350 + 4.7819i	3.1210 - 9.8224i	-1.9860 + 5.0688i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
4	0.0000 + 0.0000i	-1.6860 + 5.1158i	-1.9860 + 5.0688i	10.5130 - 38.6542i	-6.8410 + 21.5786i	0.0000 + 0.0000i	0.0000 + 4.8895i	0.0000 + 0.0000i	0.0000 + 1.8555i	0.0000
5	-1.0259 + 4.2350i	-1.7011 + 5.1939i	0.0000 + 0.0000i	-6.8410 + 21.5786i	9.5680 - 35.5336i	0.0000 + 4.2574i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
6	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 4.2574i	6.5799 - 17.3407i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
7	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 4.8895i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 - 19.5490i	0.0000 + 5.6770i	0.0000 + 9.0901i	0.0000
8	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 5.6770i	0.0000 - 5.6770i	0.0000 + 0.0000i	0.0000
9	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 1.8555i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 9.0901i	0.0000 + 0.0000i	5.3261 - 24.2825i	-3.9020
	•			III						+
				La mati	rice des impéd	ances Zbus				
	1	2	3	4	5	6	7	8	9	1
1	0.0199 - 4.4239i	0.0090 - 4.4592i	0.0040 - 4.4801i	0.0053 - 4.4765i	0.0075 - 4.4636i	-0.0043 - 4.7246i	0.0120 - 4.6214i	0.0120 - 4.6214i	0.0154 - 4.6447i	0.0127
2	0.0090 - 4.4592i	0.0139 - 4.4449i	0.0072 - 4.4712i	0.0064 - 4.4722i	0.0074 - 4.4626i	-0.0043 - 4.7224i	0.0129 - 4.6176i	0.0129 - 4.6176i	0.0163 - 4.6412i	0.0135
3	0.0040 - 4.4801i	0.0072 - 4.4712i	0.0332 - 4.3861i	0.0083 - 4.4630i	0.0069 - 4.4630i	-0.0045 - 4.7194i	0.0148 - 4.6100i	0.0148 - 4.6100i	0.0181 - 4.6345i	0.0150
4	0.0053 - 4.4765i	0.0064 - 4.4722i	0.0083 - 4.4630i	0.0197 - 4.4334i	0.0149 - 4.4417i	0.0047 - 4.6939i	0.0261 - 4.5811i	0.0261 - 4.5811i	0.0293 - 4.6063i	0.025
5	0.0075 - 4.4636i	0.0074 - 4.4626i	0.0069 - 4.4630i	0.0149 - 4.4417i	0.0207 - 4.4162i	0.0093 - 4.6790i	0.0221 - 4.5830i	0.0221 - 4.5830i	0.0257 - 4.6047i	0.0235
6	-0.0043 - 4.7246i	-0.0043 - 4.7224i	-0.0045 - 4.7194i	0.0047 - 4.6939i	0.0093 - 4.6790i	0.0110 - 4.7843i	0.0042 - 4.8017i	0.0042 - 4.8017i	0.0039 - 4.8029i	0.0050
7	0.0120 - 4.6214i	0.0129 - 4.6176i	0.0148 - 4.6100i	0.0261 - 4.5811i	0.0221 - 4.5830i	0.0042 - 4.8017i	0.0371 - 4.5963i	0.0371 - 4.5963i	0.0425 - 4.6601i	0.0372
8	0.0120 - 4.6214i	0.0129 - 4.6176i	0.0148 - 4.6100i	0.0261 - 4.5811i	0.0221 - 4.5830i	0.0042 - 4.8017i	0.0371 - 4.5963i	0.0371 - 4.4201i	0.0425 - 4.6601i	0.0372
	0.0154 4.6447	0.0163 - 4.6412i	0.0181 - 4.6345i	0.0293 - 4.6063i	0.0257 - 4.6047i	0.0039 - 4.8029i	0.0425 - 4.6601i	0.0425 - 4.6601i	0 0491 - 4 6339i	0.0428 -

Figure IV.8 : Fenêtre des matrices Ybus et Zbus du réseau test 14 JB.

IV.5.3. Analyse dans le cas normal

Ce premier test a pour objectif de déterminer l'état du réseau pour les conditions normales, c'està-dire sans considéré l'augmentation des charges. Connaitre l'état des tensions aux niveaux des jeux de barres est considéré le premier indice qui caractérise la qualité de l'énergie fournie aux consommateurs.

Pour faire l'analyse de ce réseau dans le cas normal, on introduit premièrement les paramètres de réseau tels que la puissance de base et la précision.

On prend :

- La puissance de base est égale à 100 MVA.
- La précision est égale à 10^{-5} .

Après ça on choisit le régime du réseau (Régime normal) et par la suite il faut cliquer sur le bouton « Ecoulement de puissance ». La **Figure IV.9** montre le rapport de l'écoulement de puissance de réseau test 14 JB dans le cas normal.

			Rappor	t de l'écoule	ment de pu	issance			
Vmin (p.u)	1.0100	5							
DPij total (M	w)	13.5929		F			N	br d'itérations	7
				Ecoulement de	puissance			1	
Bus No.	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)	
1	1.0600	0	232.5929	-15.2331	232.5929	-15.2331	0	0	-
2	1.0450	-4.9891	18.3000	35.2276	40.0000	47.9276	21.7000	12.7000	
3	1.0100	-12.7492	-94.2000	8.7584	4.2633e-14	27.7584	94.2000	19	
4	1.0132	-10.2420	-47.8000	3.9000	2.9132e-13	4.6052e-13	47.8000	-3.9000	:
5	1.0166	-8.7601	-7.6000	-1.6000	-4.6363e-13	-1.0458e-12	7.6000	1.6000	
6	1.0700	-14.4469	-11.2000	15.5261	1.8119e-13	23.0261	11.2000	7.5000	
7	1.0457	-13.2368	-1.4211e-14	-2.2737e-13	-1.4211e-14	-2.2737e-13	0	0	-
8	1.0800	-13.2368	0	21.0303	0	21.0303	0	0	
9	1.0305	-14.8201	-29.5000	-16.6000	2.8422e-14	4.3343e-13	29.5000	16.6000	
10	1.0299	-15.0360	-9.0000	-5.8000	-5.6843e-14	-2.9576e-13	9	5.8000	
Total	NaN	NaN	13.5929	31.0093	272.5929	104.5093	259.0000	73.5000	
			Les pu	uissances trans	itées et les pe	rtes			
nd	na	Pij (Mw)	Qij (Mvar)	nd	na	Pji (Mw)	Qji (Mvar)	DPij (Mw)	DQij (Mvar)
1	2	157.0804	-17.4841	2	1	-152.7718	30.6388	4.3086	13.154
1	5	75.5126	7.9814	5	1	-72.7400	3.4641	2.7726	11.445
2	3	73.3960	5.9362	3	2	-71.0628	3.8935	2.3332	9.829 8
2	4	55.9430	2.9351	4	2	-54.2731	2.1320	1.6700	5.067
2	5	41.7328	4.7376	5	2	-40.8128	-1.9287	0.9200	2.808
3	4	-23.1372	7.7518	4	3	23.5284	-6.7535	0.3911	0.998
4	5	-59.5849	11.5744	5	4	60.0640	-10.0631	0.4791	1.511
4	7	27.0657	-15.3955	7	4	-27.0657	17.3272	0	1.931
4	9	15.4639	-2.6400	9	4	-15.4639	3.9320	-3.5527e-15	1.292
•									•

Figure IV.9 : Rapport de l'écoulement de puissance de réseau test 14 JB dans le cas normal.

Afin de mieux visualiser les résultats de ce réseau test, les résultats sont récapitulés dans le **Tableau IV.3** et **Tableau IV.4**

JB	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)
1	1.0600	0.0000	232.593	-15.233	232.593	-15.233	0.000	0.000
2	1.0450	-4.9891	18.300	35.228	40.000	47.928	21.700	12.700
3	1.0100	-12.7492	-94.200	8.758	0.000	27.758	94.200	19.000
4	1.0132	-10.2420	-47.800	3.900	0.000	0.000	47.800	-3.900
5	1.0166	-8.7601	-7.600	-1.600	-0.000	-0.000	7.600	1.600
б	1.0700	-14.4469	-11.200	15.526	0.000	23.026	11.200	7.500
7	1.0457	-13.2368	-0.000	-0.000	-0.000	-0.000	0.000	0.000
8	1.0800	-13.2368	0.000	21.030	0.000	21.030	0.000	0.000
9	1.0305	-14.8201	-29.500	-16.600	0.000	0.000	29.500	16.600
10	1.0299	-15.0360	-9.000	-5.800	-0.000	-0.000	9.000	5.800
11	1.0461	-14.8581	-3.500	-1.800	0.000	0.000	3.500	1.800
12	1.0533	-15.2973	-6.100	-1.600	-0.000	-0.000	6.100	1.600
13	1.0466	-15.3313	-13.500	-5.800	0.000	0.000	13.500	5.800
14	1.0193	-16.0717	-14.900	-5.000	-0.000	0.000	14.900	5.000
Total	/	/	13.593	31.009	272.593	104.509	259.000	73.500
Nombre d'itérations					7			
Vmin	(p.u)				1.0100			
Dpt	(MW)				13.593			

 Tableau IV.3 : Ecoulement de puissance de réseau test 14 JB (cas normal).

 Tableau IV.4 : Puissances transitées et les pertes de réseau test 14 JB (cas normal).

nd	na	Pij	Qij	nd	na	Pji	Qji	DPij	DQij
		(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
1	2	157.080	-17.484	2	1	-152.772	30.639	4.309	13.155
1	5	75.513	7.981	5	1	-72.740	3.464	2.773	11.445
2	3	73.396	5.936	3	2	-71.063	3.894	2.333	9.830
2	4	55.943	2.935	4	2	-54.273	2.132	1.670	5.067
2	5	41.733	4.738	5	2	-40.813	-1.929	0.920	2.809
3	4	-23.137	7.752	4	3	23.528	-6.753	0.391	0.998
4	5	-59.585	11.574	5	4	60.064	-10.063	0.479	1.511
4	7	27.066	-15.396	7	4	-27.066	17.327	0.000	1.932
4	9	15.464	-2.640	9	4	-15.464	3.932	-0.000	1.292
5	6	45.889	-20.843	6	5	-45.889	26.617	-0.000	5.774
6	11	8.287	8.898	11	6	-8.165	-8.641	0.123	0.257
6	12	8.064	3.176	12	6	-7.984	-3.008	0.081	0.168
6	13	18.337	9.981	13	6	-18.085	-9.485	0.252	0.496
7	8	-0.000	-20.362	8	7	0.000	21.030	0.000	0.668
7	9	27.066	14.798	9	7	-27.066	-13.840	0.000	0.957
9	10	4.393	-0.904	10	9	-4.387	0.920	0.006	0.016
9	14	8.637	0.321	14	9	-8.547	-0.131	0.089	0.190
10	11	-4.613	-6.720	11	10	4.665	6.841	0.051	0.120
12	13	1.884	1.408	13	12	-1.873	-1.398	0.011	0.010
13	14	6.458	5.083	14	13	-6.353	-4.869	0.105	0.215
Tot	al	/	/	/	/	/	/	13.593	56.910

Affichage graphique

Pour l'affichage graphique des résultats obtenus, il faut cliquer sur le bouton « Affichage graphique ».

La **Figure IV.10** représente l'affichage graphique de l'écoulement de puissance de réseau test 14 JB dans le cas normal.

Figure IV.10 : Affichage graphique des résultats de réseau test 14 JB dans le cas normal.

La **Figure IV.11** représente la tension au niveau de chaque JB de réseau test 14 JB dans le cas normal.

La **Figure IV.12** représente l'angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas normal.

Les **Figure IV.11** et **Figure IV.12** montrent clairement la répartition des tenions et angles aux niveaux des jeux de barres.

D'après la **Figure IV.11**, on remarque que les tensions aux niveaux des JB sont dans leurs limites admissibles (entre 0.9 et 1.1 p.u).

Figure IV.11 : Tension au niveau de chaque JB de réseau test 14 JB dans le cas normal.

Figure IV.12 : Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas normal.

IV.5.4. Analyse dans le cas de surcharge

Afin de démontrer l'importance de l'écoulement de puissance aux exploitants des réseaux électriques, ce test permet de vérifier les performances des réseaux électriques en termes de qualité de la tension et les pertes totales afin de prendre des mesures techniques (renforcement, compensation, installation des postes transformateurs) pour assurer la continuité de service et la meilleur qualité de l'énergie fournie aux consommateurs.

IV.5.4.1. Surcharge locale

Ce test consiste à réalisé des surcharges locales aux niveaux des jeux de barres sélectionné par l'exploitant des réseaux en fonction des statistiques prédéfinies. Ce premier test est indispensable pour établir les prévisions d'extensions avec efficacités. Le jeu de barre N° 3 est choisi pour pratiquer la surcharge locale. La figure **IV.13** permet l'accès à la partie contenant les paramètres de surcharge locale.

🤳 are			
Fichier Simulation Aide			נ
Les données du réseau		nètres	
Charger les données des lignes			
		100	Puissance de base (MVA)
Charger les données des jeux de barres		4.5	Defeision
Cas de réseau Surcharge local Facteur de surcharge N° de JB 1.1 3	Les résultats	ance For	rmation de Ybus et Zbus
Version 1.0, Juin 2016			
			Fermer

Figure IV.13 : Accès à la partie de surcharge locale (10% et JB N° 3).

L'augmentation locale de la charge est planifiée comme suit :

$$P_{charge}^{new}(nj) = \lambda \cdot P_{charge}^{old}(nj)$$
$$Q_{charge}^{new}(nj) = \lambda \cdot Q_{charge}^{old}(nj)$$

Ou :

 λ : Facteur de surcharge.

nj : Numéro de jeu de barre.

Test 1 : Surcharge de 10%

L'application de surcharge de 10% a engendré des pertes de **14.999 MW**, la tension minimale décroit à **1 p.u**.

La **Figure IV.14** représente le rapport de l'écoulement de puissance de réseau test 14 JB dans le cas de surcharge locale. Le **Tableau IV.5** et **Tableau IV.6** récapitulent les résultats de l'écoulement de puissance.

			Rappo	rt de l'écoule	ment de pu	issance			
Vmin (p.u)	1	I I							
DPij total (N	/w)	14.9991		Ecoulement de	nuissance		N	br d'itérations	11
Bus No.	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)	
1	1.0600	0	243,4191	3.7621	243,4191	3.7621	0	0	l. D
2	1.0350	-5.1260	18.3000	17.2969	40.0000	29.9969	21.7000	12.7000	
3	1	-13.6664	-103.6200	11,9867	-2.8422e-14	32.8867	103.6200	20,9000	
4	1.0050	-10.6593	-47.8000	3.9000	-8.5265e-14	-5.3424e-13	47.8000	-3.9000	
5	1.0088	-9.0747	-7.6000	-1.6000	-1.6520e-13	-1.0458e-12	7.6000	1.6000	
6	1.0600	-14.8501	-11.2000	13.7324	6.7502e-14	21.2324	11.2000	7.5000	
7	1.0404	-13.7004	8.1712e-14	-5.6843e-13	8.1712e-14	-5.6843e-13	0	0	L
8	1.0800	-13.7004	-3.1514e-14	24.2788	-3.1514e-14	24.2788	0	0	
9	1.0235	-15.3061	-29.5000	-16.6000	-5.6843e-14	3.5527e-14	29.5000	16.6000	
10	1.0223	-15.5133	-9.0000	-5.8000	8.5265e-14	-6.8390e-14	9	5.8000	
Total	NaN	NaN	14.9991	36.7570	283.4191	112.1570	268.4200	75.4000	
			Les p	uissances trans	itées et les pe	rtes			
nd	na	Pij (Mw)	Qij (Mvar)	nd	na	Pji (Mw)	Qji (Mvar)	DPij (Mw)	DQij (Mvar)
1	2	165.0522	-1.8581	2	1	-160.3528	16.2060	4.6994	14.347
1	5	78.3669	11.3506	5	1	-75.3518	1.0961	3.0151	12.446
2	3	78.9139	5.3645	3	2	-76.1696	6.1974	2.7443	11.561 8
2	4	57.3589	1.4336	4	2	-55.5731	3.9851	1.7858	5.418
2	5	42.3800	3.1412	5	2	-41.4199	-0.2098	0.9601	2.931
3	4	-27.4504	8.6193	4	3	28.0051	-7.2035	0.5547	1.415
4	5	-62.8193	11.8583	5	4	63.3594	-10.1545	0.5401	1.703
4	7	27.1239	-16.6584	7	4	-27.1239	18.7098	-7.1054e-15	2.051
4	9	15.4633	-2.8239	9	4	-15.4633	4.1422	0	1.318
•									•

Figure IV.14 : Rapport de l'écoulement de puissance de réseau test 14 JB dans le cas de surcharge locale.

Tableau IV.5 : Ecoulement de puissance de réseau test 14 JB (surcharge locale de 10%).

JB	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)
1	1.0600	0.0000	243.419	3.762	243.419	3.762	0.000	0.000
2	1.0350	-5.1260	18.300	17.297	40.000	29.997	21.700	12.700
3	1.0000	-13.6664	-103.620	11.987	-0.000	32.887	103.620	20.900
4	1.0050	-10.6593	-47.800	3.900	-0.000	-0.000	47.800	-3.900
5	1.0088	-9.0747	-7.600	-1.600	-0.000	-0.000	7.600	1.600
6	1.0600	-14.8501	-11.200	13.732	0.000	21.232	11.200	7.500
7	1.0404	-13.7004	0.000	-0.000	0.000	-0.000	0.000	0.000

0	1 0000	12 7004	0 000	24 270	0 000	04 070	0 000	0 0 0 0
8	1.0800	-13./004	-0.000	24.279	-0.000	24.2/9	0.000	0.000
9	1.0235	-15.3061	-29.500	-16.600	-0.000	0.000	29.500	16.600
10	1.0223	-15.5133	-9.000	-5.800	0.000	-0.000	9.000	5.800
11	1.0373	-15.3025	-3.500	-1.800	0.000	0.000	3.500	1.800
12	1.0434	-15.7195	-6.100	-1.600	0.000	0.000	6.100	1.600
13	1.0369	-15.7625	-13.500	-5.800	0.000	0.000	13.500	5.800
14	1.0109	-16.5508	-14.900	-5.000	0.000	-0.000	14.900	5.000
Total	/	/	14.999	36.757	283.419	112.157	268.420	75.400
Total Nor d'itén	/ nbre rations	/	14.999	36.757	283.419 11	112.157	268.420	75.400
Total Nor d'itén Vmin	/ nbre rations (p.u)	/	14.999	36.757	283.419 11 L.0000	112.157	268.420	75.400

Tableau IV.6 : Puissances transitées et pertes de réseau test 14 JB (surcharge locale de 10%).

nd	na	Pij	Qij	nd	na	Pji	Qji	DPij	DQij
		(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
1	2	165.052	-1.858	2	1	-160.353	16.206	4.699	14.348
1	5	78.367	11.351	5	1	-75.352	1.096	3.015	12.447
2	3	78.914	5.365	3	2	-76.170	6.197	2.744	11.562
2	4	57.359	1.434	4	2	-55.573	3.985	1.786	5.419
2	5	42.380	3.141	5	2	-41.420	-0.210	0.960	2.931
3	4	-27.450	8.619	4	3	28.005	-7.203	0.555	1.416
4	5	-62.819	11.858	5	4	63.359	-10.154	0.540	1.704
4	7	27.124	-16.658	7	4	-27.124	18.710	-0.000	2.051
4	9	15.463	-2.824	9	4	-15.463	4.142	0.000	1.318
5	6	45.812	-19.680	6	5	-45.812	25.418	-0.000	5.738
6	11	8.258	8.154	11	6	-8.145	-7.916	0.114	0.238
6	12	8.041	3.084	12	6	-7.960	-2.915	0.081	0.169
6	13	18.313	9.606	13	6	-18.061	-9.110	0.252	0.496
7	8	0.000	-23.389	8	7	-0.000	24.279	0.000	0.890
7	9	27.124	16.322	9	7	-27.124	-15.304	0.000	1.018
9	10	4.406	-0.195	10	9	-4.400	0.210	0.006	0.016
9	14	8.681	0.783	14	9	-8.589	-0.586	0.092	0.196
10	11	-4.600	-6.010	11	10	4.645	6.116	0.045	0.105
12	13	1.860	1.315	13	12	-1.849	-1.305	0.011	0.010
13	14	6.411	4.615	14	13	-6.311	-4.414	0.099	0.202
Tot	al	/	/	/	/	/	/	14.999	62.274

Affichage graphique

La **Figure IV.15** représente l'affichage graphique de l'écoulement de puissance de réseau test 14 JB dans le cas de surcharge locale.

Figure IV.15 : Affichage graphique des résultats de réseau test 14 JB dans le cas de surcharge locale.

Figure IV.16 : Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge locale de 10%.

Figure IV.17 : Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge locale de 10%.

Test 2 : Surcharge de 20%

De la même manière de test 1, on fait une surcharge locale de 20 % au niveau de jeu de barre N°3.

Le **Tableau IV.7** et **Tableau IV.8** récapitulent les résultats essentiels de l'écoulement de puissance de ce test.

	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	16.497	41.649	294.337	118.949	277.840	77.300
Non d'itér	nbre rations				11			
Vmin	(p.u)		1.0000					
Dpt	(MW)			1	L6.497			

Tableau IV.7 : Ecoulement de puissance de réseau test 14 JB (surcharge locale de 20%).

 Tableau IV.8 : Puissances transitées et pertes de réseau test 14 JB (surcharge locale de 20%).

	Pij	Qij	/	/	Pji	Qji	DPij	DQij
	(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	/	/	/	/	16.497	67.106

Le **Figure IV.18** et **Figure IV.19** représentent respectivement le module et l'angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge locale de 20%.

Figure IV.18 : Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge locale de 20%.

Figure IV.19 : Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge locale de 20%.

Test 3 : Surcharge de 30%

De la même manière de test 1 et test 2, on fait une surcharge locale de 30 % au niveau de jeu de barre N° 3.

Le **Tableau IV.9** et **Tableau IV.10** récapitulent les résultats essentiels de l'écoulement de puissance de ce test.

Tableau IV.9 : Eco	oulement de puis	sance de réseau	test 14 JB (su	rcharge locale	de 30%).
	e me p me		1001 1 . 02 (01		

	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)	
Total	/	/	18.079	47.255	305.339	126.455	287.260	79.200	
Nor d'itér	nbre rations		11						
Vmin	(p.u)		0.9900						
Dpt	(MW)	18.079							

Tableau IV.10 : Puissances transitées et pertes de réseau test 14 JB (surcharge locale de 30%).

	Pij	Qij	/	/	Pji	Qji	DPij	DQij
	(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	/	/	/	/	18.079	72.785

La **Figure IV.20** et **Figure IV.21** représentent respectivement le module et l'angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge locale de 30%.

Figure IV.20 : Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge locale de 30%.

Figure IV.21 : Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge locale de 30%.

Comparaison entre les résultats de trois tests par rapport au régime normale

La **Tableau IV.11** représente une comparaison entre le régime normale et le surcharge locale de réseau test 14 JB.

Tableau IV.11 : Comparaison entre le régime normal et la surcharge locale de réseau test 14

JB.

	Réseau test Américain à 14 JB								
Régime réseat	du u	Vmin (p.u)	Vmax (p.u)	Pg (MW)	Qg (MVAR)	Pch (MW)	Qch (MVAR)	DPt (MW)	DQt (MVAR)
Norma	al	1.0100	1.0800	272.593	104.509	259.000	73.500	13.593	56.910
Surcharge	10%	1.0000	1.0800	283.419	112.157	268.420	75.400	14.999	62.274
local	20%	1.0000	1.0800	294.337	118.949	277.840	77.300	16.497	67.106
(JB N° 3)	30%	0.9900	1.0700	305.339	126.455	287.260	79.200	18.079	72.785

D'après le Tableau IV.11 on remarque que :

- La tension minimale sera diminue avec l'augmentation de la charge.
- Les pertes sera augmente avec l'augmentation de la charge.
- Les puissances générées seront augmentées avec l'augmentation de la charge.

La **Figure IV.22** représente la tension dans chaque JB de réseau test 14 JB dans le cas normal et le cas de surcharge locale (10%, 20% et 30%).

Figure IV.22 : Tension dans chaque JB de réseau test 14 JB (cas normal et surcharge locale).

D'après la **Figure IV.22**, On remarque que les valeurs de tension aux niveaux de jeux de barres dans le cas de surcharge locale sont inférieures par rapport les valeurs de tension au cas normal.

IV.5.4.2. Surcharge globale

Ce test consiste à appliqué une augmentation de la charge uniforme aux niveaux de tous les jeux de barres. Ce test est très important pour assurer une meilleure planification des réseaux électriques. L'augmentation globale de la charge est planifiée comme suit :

$$P_{charge}^{new} = \lambda \cdot P_{charge}^{old}$$
$$Q_{charge}^{new} = \lambda \cdot Q_{charge}^{old}$$

Où :

 λ : Facteur de surcharge.

La **Figure IV.23** montre la manière utilisée pour faite une surcharge globale. Elle permet l'accès à la partie contenant les paramètres de surcharge globale.

🥠 are		
Fichier Simulation Aide		لا ا
Les données du réseau	Paramètres	
Charger les données des lignes	100	Puissance de base (MVA)
Charger les données des jeux de barres		
Cas de réseau	1e-5	Précision
Surcharge global		
Facteur de surcharge		
	Les résultats	
	Ecoulement de puissance	Formation de Ybus et Zbus
Version 1.0, Juin 2016	Affichage gr	raphique
		Fermer

Figure IV.23 : Accès à la partie de surcharge globale.

Test 1 : surcharge de 10%

L'application de surcharge de 10% a engendré des pertes de **16.996 MW**, la tension minimale décroit à **0.9967 p.u**.

				Rappor	t de l'écoule	ment de pui	issance			
Vmin (p.u)		0.9967	1							
DPii total	(Mw)		16.9958					N	br d'itérations	9
					Ecoulement de	puissance				
Bus No.	V (p.u)		Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)	
	1 1.	0600	0	261.8958	2.9506	261.8958	2.9506	0	0	
	2 1.	0350	-5.5501	16.1300	26.8951	40.0000	40.8651	23.8700	13.9700	
	3	1	-14.3532	-103.6200	15.2288	2.8422e-14	36.1288	103.6200	20.9000	
	4 0.	9994	-11.4504	-52.5800	4.2900	-2.8422e-14	7.3097e-13	52.5800	-4.2900	
	5 1.	0034	-9.7641	-8.3600	-1.7600	-1.6342e-13	-7.8648e-13	8.3600	1.7600	
	6 1.	0500	-16.1811	-12.3200	14.1149	1.2079e-13	22.3649	12.3200	8.2500	
	7 1.	0304	-14.8719	4.9738e-14	1.1369e-13	4.9738e-14	1.1369e-13	0	0	Ļ
	8 1.	0700	-14.8719	3.1514e-14	24.0381	3.1514e-14	24.0381	0	0	
	9 1.	0117	-16.6893	-32.4500	-18.2600	7.1054e-14	1.0658e-14	32.4500	18.2600	
1	0 1.	0099	-16.9246	-9.9000	-6.3800	1.9362e-13	2.3181e-13	9.9000	6.3800	
Total		NaN	NaN	16.9958	45.4975	301.8958	126.3475	284.9000	80.8500	
				Les pu	uissances trans	itées et les pe	rtes			
nd	na		Pij (Mw)	Qij (Mvar)	nd	na	Pji (Mw)	Qji (Mvar)	DPij (Mw)	DQij (Mvar)
	1	2	177.7701	-4.7469	2	1	-172.3155	21.4008	5.4547	16.653
	1	5	84.1256	13.4278	5	1	-80.6358	0.9785	3.4898	14.406
	2	3	81.2382	5.1742	3	2	-78.3315	7.0719	2.9067	12.246
	2	4	61.5296	3.7050	4	2	-59.4684	2.5490	2.0612	6.254
	2	5	45.6777	5.4634	5	2	-44.5526	-2.0282	1.1251	3.435
	3	4	-25.2885	10.9870	4	3	25.7979	-9.6868	0.5094	1.300
	4	5	-66.0916	12.5778	5	4	66.6965	-10.6696	0.6049	1.908
	4	7	30.0520	-14.2464	7	4	-30.0520	16.5111	-3.5527e-15	2.264
	4	9	17.1301	-1.4821	9	4	-17.1301	3.0772	0	1.595
٠						-				•
Total		NaN	NaN	NaN	NaN	NaN	NeN	NaN	16 9958	70 4981

Figure IV.24 : Rapport de l'écoulement de puissance de réseau test 14 JB dans le cas de surcharge globale.

Afin de mieux visualiser les résultats de ce réseau test dans la surcharge globale, les résultats sont récapitulés dans le **Tableau IV.12** et le **Tableau IV.13**.

Bus	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch				
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)				
1	1.0600	0.000	261.896	2.951	261.896	2.951	0.000	0.000				
2	1.0350	-5.5501	16.130	26.895	40.000	40.865	23.870	13.970				
3	1.0000	-14.3532	-103.620	15.229	0.000	36.129	103.620	20.900				
4	0.9994	-11.4504	-52.580	4.290	-0.000	0.000	52.580	-4.290				
5	1.0034	-9.7641	-8.360	-1.760	-0.000	-0.000	8.360	1.760				
6	1.0500	-16.1811	-12.320	14.115	0.000	22.365	12.320	8.250				
7	1.0304	-14.8719	-0.000	0.000	0.000	0.000	0.000	0.000				
8	1.0700	-14.8719	0.000	24.038	0.000	24.038	0.000	0.000				
9	1.0117	-16.6893	-32.450	-18.260	0.000	0.000	32.450	18.260				
10	1.0099	-16.9246	-9.900	-6.380	0.000	0.000	9.900	6.380				
11	1.0257	-16.6892	-3.850	-1.980	0.000	0.000	3.850	1.980				
12	1.0316	-17.1564	-6.710	-1.760	-0.000	-0.000	6.710	1.760				
13	1.0246	-17.2069	-14.850	-6.380	-0.000	-0.000	14.850	6.380				
14	0.9967	-18.0959	-16.390	-5.500	0.000	0.000	16.390	5.500				
Total	/	/	16.996	45.498	301.896	126.348	284.900	80.850				
Nor d'itéi	mbre rations	9										
Vmin	(p.u)	0.9967										
Dpt	(MW)			1	L6.996							

Tableau IV.12 : Ecoulement de puissance de réseau test 14 JB (surcharge globale de 10%).

Tableau IV.13 : Puissances transitées et pertes de réseau test 14 JB (surcharge globale de

10%).

nd	na	Pii	Oii	nd	na	Pii	Oii	DPii	DOii
nu	ma	(Mw)	(Mvar)	nu	ma	(Mw)	(Mvar)	(Mw)	(Mvar)
1	2	177.770	-4.747	2	1	-172.315	21.401	5.455	16.654
1	5	84.126	13.428	5	1	-80.636	0.979	3.490	14.406
2	3	81.238	5.174	3	2	-78.331	7.072	2.907	12.246
2	4	61.530	3.705	4	2	-59.468	2.549	2.061	6.254
2	5	45.678	5.463	5	2	-44.553	-2.028	1.125	3.435
3	4	-25.289	10.987	4	3	25.798	-9.687	0.509	1.300
4	5	-66.0916	12.578	5	4	66.697	-10.670	0.605	1.908
4	7	30.052	-14.246	7	4	-30.052	16.511	0.000	2.265
4	9	17.130	-1.482	9	4	-17.130	3.077	-0.000	1.595
5	6	50.132	-17.097	б	5	-50.132	23.642	0.000	6.545
б	11	8.904	8.590	11	б	-8.772	-8.314	0.132	0.276
6	12	8.826	3.370	12	6	-8.727	-3.163	0.100	0.207
6	13	20.082	10.432	13	6	-19.775	-9.826	0.307	0.605
7	8	-0.000	-23.149	8	7	0.000	24.038	0.000	0.889
7	9	30.052	18.059	9	7	-30.052	-16.786	0.000	1.274
9	10	5.036	0.185	10	9	-5.028	-0.164	0.008	0.021
9	14	9.696	1.151	14	9	-9.577	-0.899	0.118	0.252

12 13	13 14	2.017 6.929	1.403 4.838	13 14	12 13	-2.004 -6.813	-1.391 -4.601	0.013	0.011
Tot	al	/	/	/	/	/	/	16.996	70.498

Affichage graphique

De la même manière, on fait l'affichage graphique des résultats obtenus.

La **Figure IV.25** représente l'affichage graphique de l'écoulement de puissance de réseau test 14 JB dans le cas de surcharge globale.

Figure IV.25 : Affichage graphique des résultats de réseau test 14 JB dans le cas de surcharge globale.

La **Figure IV.26** représente la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 10%.

Figure IV.26 : Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 10%.

La **Figure IV.27** représente l'angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 10%.

Figure IV.27 : Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 10%.

Test 2 : Surcharge de 20%

De la même manière de test 1, on fait une surcharge globale de 20%.

Le **Tableau IV.14** et **Tableau IV.15** récapitulent les résultats essentiels de l'écoulement de puissance de ce test.

Tableau IV.14 : Ecoulement de puissance de réseau test 14 JB (surcharge globale de 20%).

	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)
Total	/	/	20.977	61.812	331.777	150.012	310.800	88.200
Nor d'itér	nbre cations				11			
Vmin	(p.u)			(.9803			
Dpt	(MW)			2	20.977			

Tableau IV.15 : Puissances transitées et pertes de réseau test 14 JB (surcharge globale de20%)

				-	070).			
	Pij	Qij	/	/	Pji	Qji	DPij	DQij
	(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	/	/	/	/	20.977	86.483

La **Figure IV.28** représente la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 20%.

Figure IV.28 : Tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 20%.

La **Figure IV.29** représente l'angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 20%.

Figure IV.29 : Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 20%.

Test 3 : Surcharge de 30%

De la même manière de test 1 et test 2, on fait une surcharge globale de 30%.

Le **Tableau IV.16** et le **Tableau IV.17** récapitulent les résultats essentiels de l'écoulement de puissance de ce test.

	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	25.328	78.994	362.028	174.544	336.700	95.550
Non d'itér	nbre rations	11						
Vmin	(p.u)			C	.9700			
Dpt	(MW)			2	25.328			

Tableau IV.16 : Ecoulement de puissance de réseau test 14 JB (surcharge globale de 30%).

 Tableau IV.17 : Puissances transitées et pertes de réseau test 14 JB (surcharge globale de

30%).

	Pij (Mw)	Qij (Mvar)	/	/	Pji (Mw)	Qji (Mvar)	DPij (Mw)	DQij (Mvar)
Total	/	/	/	/	/	/	25.328	103.847

La **Figure IV.30** représente la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 30%.

Figure IV.30 : Tension au niveau de chaque JB le réseau test 14 JB dans le cas de surcharge globale de 30%.

La **Figure IV.31** représente l'angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 30%.

Figure IV.31 : Angle de la tension au niveau de chaque JB de réseau test 14 JB dans le cas de surcharge globale de 30%.

Comparaison entre les résultats de trois tests par rapport au régime normale

La **Tableau IV.18** représente une comparaison entre le régime normale et la surcharge globale de réseau test 14 JB.

Tableau IV.18 : Comparaison entre le régime normal et la surcharge globale de réseau test 14

JB.

	Réseau test Américain à 14 JB												
Régime du		Vmin	Vmax	Pg	Qg	Pch	Qch	DPt	DQt				
réseau		(p.u)	(p.u)	(MW)	(MVAR)	(MW)	(MVAR)	(MW)	(MVAR)				
Normal		1.0100	1.0800	272.593	104.509	259.000	73.500	13.593	56.910				
10%		0.9967	1.0700	301.896	126.348	284.900	80.850	16.996	70.498				
surcharge	20%	0.9803	1.0600	331.777	150.012	310.800	88.200	20.977	86.483				
giobal	30%	0.9700	1.0600	362.028	174.544	336.700	95.550	25.328	103.847				

D'après le Tableau IV.18, on peut conclure que :

- La tension minimale sera diminue avec l'augmentation de la charge.
- Les pertes sera augmente avec l'augmentation de la charge.

Figure IV.32 : Tension dans chaque JB de réseau test 14 JB (cas normal et surcharge globale).

D'après la **Figure IV.32** et la **Figure IV.22**, on peut conclure que l'influence de surcharge globale sur la diminution de tension au niveau de chaque JB et l'augmentation des pertes est grand par rapport la surcharge locale.

IV.6. Réseau test Américain IEEE à 30 jeux de barres

Ce réseau test se compose de 30 jeux de barres, 41 branches, 6 générateurs et 4 transformateurs de réglages. Les puissances active et réactive à satisfaire sont respectivement 283.4 MW et 126.2 MVAR. Le schéma unifilaire de ce réseau test est représenté dans la **Figure IV.33**.

Figure IV.33 : Schéma unifilaire de réseau test Américain IEEE à 30 jeux de barres.

IV.6.1. Base de données du réseau

Pour introduire la base de données du réseau test IEEE 30 JB on suit les mêmes étapes de réseau IEEE 14 JB :

1. On clique sur le bouton « Charger les données des lignes » et on sélectionne le fichier « Linedata30 ».

La **Figure IV.34** représente la boite de dialogue permettant l'ouverture et le sauvegarde de fichier des données des lignes du réseau test 30 JB.

📣 are			
Fichier Simulation Aide			צ
Selectioner le fichier des d	onnées des lignes (linedata)	And Address of the Ad	
Solver 📕 « ASRE Offic	ciel v 1.3 → Réseau test	👻 🍫 Rechercher dans : Résea	nu test 🔎
Organiser 🔻 Nouveau	dossier	8≡ ▼	base (MVA)
🗙 Favoris	Nom	Modifié le	Туре
Mareau Bureau	📋 1. linedata14	13/05/2016 03:10	Documen
🔛 Emplacements ré	2. busdatas14	18/05/2016 03:13	Documen
🚺 Téléchargements 🔤	3. linedata30	13/05/2016 03:15	Documen
Eibliothèques	4. busdatas30	13/05/2016 05:38	Documen
🖳 Ordinateur			
🏭 Disque local (C:)			et Zbus
👝 Disque local (D:)			
👝 Disque local (E:)			
👝 Disque local (F:) 🍸	•		,
Nom	du fichier : 3. linedata30	✓ (*.txt)	
		Ouvrir 🖌 Ar	nnuler

Figure IV.34 : Boite de dialogue permettant l'ouverture et le sauvegarde de fichier des données des lignes du réseau test 30 JB.

Après la sélection de fichier des données des lignes du réseau test 30 JB, ces données sont affichées dans la **Figure IV.35**.

	ſ	🚺 are	•															23
		Fichi	er Si	mulat	ion A	ide												
					ekten) 2	0 Juin 2	D16 (Mémoire	- Fearm				th2 line	-d-t-20 t		0			
Euro		(Users)	VIE	w	sktop(s	o Julii 2	oro (imemoire	e final) (ASRE Officier v	1.5 (Ke	Seau tes		Z The f		⇒ 81	2 🕤	Ā	
	biroit								59/////S//			4.0						
52				Find Fi	les	Ins	ert Jx	<u>∽</u> £ ▼	22		1							
New	Open	Save	14	Compa	ire 🔻	Comm	ent <u>%</u> 323	<u>994</u>	Go To 👻	Bre	akpoints							
•	•	-		Print	•	Ind		100		DDC								
3 Jin	edata3	0.txt	×	-			EUII		NAVIGATE	BREA	WPOINTS						-1	
1 2	ξ I	es	don	née	s de	s li	.gnes d	u ré	éseau								Â	
3	8		nd	L	na	1	R	1	Х	1	B/	2	X	mer	1		-	
4	8			1		- I	(pu)	1	(pu)	1	(pu	1)	TAI	? (a)	1		-	
5																		
6			1		2		0.0192		0.0575		0		1.	.0000)			
7			1		3		0.0452		0.1652		0		1.	.0000)			
8			2		4		0.0570		0.1737		0		1	.0000)			
9			3		4		0.0132		0.0379		0		1.	.0000)			
10			2		5		0.0472		0.1983		0		1.	.0000)			
11			2		6		0.0581		0.1763		0		1.	.0000)			
12			4		6		0.0119		0.0414		0		1	.0000)			
13			5		7		0.0460		0.1160		0		1.	.0000)			
14			6		7		0.0267		0.0820		0		1.	.0000)		-	
110			<u> </u>		0		0 01 20	pl	ain text file		0		1	1	Col 1	OVE	2 .:	

Figure IV.35 : Fenêtre des données des lignes de réseau test 30 JB.

 Il faut cliquer sur le bouton « Charger les données des jeux de barres » et sélectionner le fichier « Busdata30 ».

La **Figure IV.36** représente la boite de dialogue permettant l'ouverture et le sauvegarde de fichier des données des jeux de barres de réseau test 30 JB.

📣 are			
Fichier Simulation Aide			
			()
Selectioner le fichier des de	onnées des jeux de barres (busda	ta)	
🚱 🔍 🗢 📕 « ASRE Offic	ciel v 1.3 🕨 Réseau test	✓ 4→ Rechercher dans : Réservence	au test 🔎
Organiser 🔻 Nouveau	dossier	8== ▼	base (MVA)
🔶 Favoris	Nom	Modifié le	Туре
🧮 Bureau	📋 1. linedata14	13/05/2016 03:10	Documen
🔛 Emplacements ré	📋 2. busdatas14	18/05/2016 03:13	Documen
🗼 Téléchargements 🚆	📄 3. linedata30	13/05/2016 03:15	Documen
-	4. busdatas30	13/05/2016 05:38	Documen
🥽 Bibliothèques			
🖳 Ordinateur			
🏭 Disque local (C:)			et Zbus
🧰 Disque local (D:)			
👝 Disque local (E:)			
🚗 Disque local (F:) 🍸	•		•
Nom o	du fichier : 4. busdatas30	▼ (*.txt)	•
		Ouvrir 🔽 🗛	nnuler

Figure IV.36 : Boite de dialogue permettant l'ouverture et le sauvegarde de fichier des données des jeux de barres de réseau test 30 JB.

La Figure IV.37 représente Fenêtre des données de jeux de barres de réseau test 30 JB.

Figure IV.37 : Fenêtre des données de jeux de barres de réseau test 30 JB.

Afin de mieux visualiser les données du réseau test, les données sont récapitulées dans le **Tableau IV.19** et le **Tableau IV.20**

Bus		R	Х	B/2	X'mer TAP
nd	na	(p.u)	(p.u)	(p.u)	(p.u)
1	2	0.0192	0.0575	0.0264	1
1	3	0.0452	0.1652	0.0204	1
2	4	0.0570	0.1737	0.0184	1
3	4	0.0132	0.0379	0.0042	1
2	5	0.0472	0.1983	0.0209	1
2	6	0.0581	0.1763	0.0187	1
4	6	0.0119	0.0414	0.0045	1
5	7	0.0460	0.1160	0.0102	1
6	7	0.0267	0.0820	0.0085	1
6	8	0.0120	0.0420	0.0045	1
6	9	0.0	0.2080	0.0	0.978
6	10	0.0	0.5560	0.0	0.969
9	11	0.0	0.2080	0.0	1
9	10	0.0	0.1100	0.0	1
4	12	0.0	0.2560	0.0	0.932
12	13	0.0	0.1400	0.0	1
12	14	0.1231	0.2559	0.0	1
12	15	0.0662	0.1304	0.0	1
12	16	0.0945	0.1987	0.0	1
14	15	0.2210	0.1997	0.0	1

Tableau IV.19 : Données des lignes du réseau test 30 JB.

16	17	0.0824	0.1923	0.0	1
15	18	0.1073	0.2185	0.0	1
18	19	0.0639	0.1292	0.0	1
19	20	0.0340	0.0680	0.0	1
10	20	0.0936	0.2090	0.0	1
10	17	0.0324	0.0845	0.0	1
10	21	0.0348	0.0749	0.0	1
10	22	0.0727	0.1499	0.0	1
21	23	0.0116	0.0236	0.0	1
15	23	0.1000	0.2020	0.0	1
22	24	0.1150	0.1790	0.0	1
23	24	0.1320	0.2700	0.0	1
24	25	0.1885	0.3292	0.0	1
25	26	0.2544	0.3800	0.0	1
25	27	0.1093	0.2087	0.0	1
28	27	0.0	0.3960	0.0	0.968
27	29	0.2198	0.4153	0.0	1
27	30	0.3202	0.6027	0.0	1
29	30	0.2399	0.4533	0.0	1
8	28	0.0636	0.2000	0.0214	1
6	28	0.0169	0.0599	0.065	1

 Tableau IV.20 : Données des jeux de barres du réseau test 30 JB.
 Données des jeux de barres du réseau test 30 JB.

Bus	Туре	Vsp	theta	Pgi	Qgi	Pchi	Qchi	Qmin	Qmax
1	1	1.06	0	0	0	0	0	0	0
2	2	1.043	0	40	50.0	21.7	12.7	-40	50
3	3	1.0	0	0	0	2.4	1.2	0	0
4	3	1.06	0	0	0	7.6	1.6	0	0
5	2	1.01	0	0	37.0	94.2	19.0	-40	40
6	3	1.0	0	0	0	0.0	0.0	0	0
7	3	1.0	0	0	0	22.8	10.9	0	0
8	2	1.01	0	0	37.3	30.0	30.0	-10	40
9	3	1.0	0	0	0	0.0	0.0	0	0
10	3	1.0	0	0	19.0	5.8	2.0	0	0
11	2	1.082	0	0	16.2	0.0	0.0	-6	24
12	3	1.0	0	0	0	11.2	7.5	0	0
13	2	1.071	0	0	10.6	0.0	0.0	-6	24
14	3	1.0	0	0	0	6.2	1.6	0	0
15	3	1.0	0	0	0	8.2	2.5	0	0
16	3	1.0	0	0	0	3.5	1.8	0	0
17	3	1.0	0	0	0	9.0	5.8	0	0
18	3	1.0	0	0	0	3.2	0.9	0	0
19	3	1.0	0	0	0	9.5	3.4	0	0

20	3	1.0	0	0	0	2.2	0.7	0	0
21	3	1.0	0	0	0	17.5	11.2	0	0
22	3	1.0	0	0	0	0.0	0.0	0	0
23	3	1.0	0	0	0	3.2	1.6	0	0
24	3	1.0	0	0	4.3	8.7	6.7	0	0
25	3	1.0	0	0	0	0.0	0.0	0	0
26	3	1.0	0	0	0	3.5	2.3	0	0
27	3	1.0	0	0	0	0.0	0.0	0	0
28	3	1.0	0	0	0	0.0	0.0	0	0
29	3	1.0	0	0	0	2.4	0.9	0	0
30	3	1.0	0	0	0	10.6	1.9	0	0

IV.6.2. Formation des matrices Ybus et Zbus de réseau :

Pour former les matrices Ybus et Zbus de réseau test 30 JB on utilise la même manière que le réseau test 14 JB avec le clique le bouton « Formation de Ybus et Zbus ».

La Figure IV.38 représente la fenêtre des matrices Ybus et Zbus du réseau test 30 JB.

			Les	matrices des	s admittance	es et des im	pédances			
				La mat	rice des admitt	ances Ybus				
	1	2	3	4	5	6	7	8	9	1
1	6.7655 - 21.2784i	-5.2246 + 15.6467i	-1.5409 + 5.6317i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 -
2	-5.2246 + 15.6467i	9.7523 - 30.7331i	0.0000 + 0.0000i	-1.7055 + 5.1974i	-1.1360 + 4.7725i	-1.6861 + 5.1165i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
3	-1.5409 + 5.6317i	0.0000 + 0.0000i	9.7363 - 29.1625i	-8.1954 + 23.5309i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
4	0.0000 + 0.0000i	-1.7055 + 5.1974i	-8.1954 + 23.5309i	16.3141 - 54.7072i	0.0000 + 0.0000i	-6.4131 + 22.3112i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
5	0.0000 + 0.0000i	-1.1360 + 4.7725i	0.0000 + 0.0000i	0.0000 + 0.0000i	4.0900 - 12.2217i	0.0000 + 0.0000i	-2.9540 + 7.4493i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
6	0.0000 + 0.0000i	-1.6861 + 5.1165i	0.0000 + 0.0000i	-6.4131 + 22.3112i	0.0000 + 0.0000i	22.3416 - 81.6409i	-3.5902 + 11.0261i	-6.2893 + 22.0126i	0.0000 + 4.4598i	0.0000
7	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	-2.9540 + 7.4493i	-3.5902 + 11.0261i	6.5442 - 18.4754i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000
8	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	-6.2893 + 22.0126	0.0000 + 0.0000i	7.7333 - 26.55341	0.0000 + 0.0000i	0.0000
9	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 4.4598i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 - 18.7063i	0.0000 -
	•	III								•
				La mat	rice des impéd	ances Zbus				
	1	2	3	4	5	6	7	8	9	1
1	7.5754e+01 + 4.5	7.5770e+01 + 4.5	7.5672e+01 + 4.5	7.5647e+01 + 4.5	7.5815e+01 + 4.5	7.5886e+01 + 4.5	7.5860e+01 + 4.5	7.5887e+01 + 4.5	7.0588e+01 + 4.2	7.0689e+ ^
2	7.5770e+01 + 4.5	7.5801e+01 + 4.5	7.5696e+01 + 4.5	7.5674e+01 + 4.5	7.5845e+01 + 4.5	7.5914e+01 + 4.5	7.5889e+01 + 4.5	7.5915e+01 + 4.5	7.0614e+01 + 4.2	7.0715e+
3	7.5672e+01 + 4.5	7.5696e+01 + 4.5	7.5615e+01 + 4.5	7.5585e+01 + 4.5	7.5744e+01 + 4.5	7.5821e+01 + 4.5	7.5793e+01 + 4.5	7.5822e+01 + 4.5	7.0527e+01 + 4.2	7.0629e+
4	7.5647e+01 + 4.5	7.5674e+01 + 4.5	7.5585e+01 + 4.5	7.5567e+01 + 4.5	7.5724e+01 + 4.5	7.5802e+01 + 4.5	7.5773e+01 + 4.5	7.5803e+01 + 4.5	7.0510e+01 + 4.2	7.0611e+
5	7.5815e+01 + 4.5	7.5845e+01 + 4.5	7.5744e+01 + 4.5	7.5724e+01 + 4.5	7.5921e+01 + 4.5	7.5966e+01 + 4.5	7.5949e+01 + 4.5	7.5966e+01 + 4.5	7.0662e+01 + 4.2	7.0763e+
6	7.5886e+01 + 4.5	7.5914e+01 + 4.5	7.5821e+01 + 4.5	7.5802e+01 + 4.5	7.5966e+01 + 4.5	7.6047e+01 + 4.5	7.6018e+01 + 4.5	7.6048e+01 + 4.5	7.0738e+01 + 4.2	7.0839e+
7	7.5860e+01 + 4.5	7.5889e+01 + 4.5	7.5793e+01 + 4.5	7.5773e+01 + 4.5	7.5949e+01 + 4.5	7.6018e+01 + 4.5	7.6010e+01 + 4.5	7.6018e+01 + 4.5	7.0710e+01 + 4.2	7.0812e+
8	7.5887e+01 + 4.5	7.5915e+01 + 4.5	7.5822e+01 + 4.5	7.5803e+01 + 4.5	7.5966e+01 + 4.5	7.6048e+01 + 4.5	7.6018e+01 + 4.5	7.6059e+01 + 4.5	7.0738e+01 + 4.2	7.0840e+
9	7.0588e+01 + 4.2	7.0614e+01 + 4.2	7.0527e+01 + 4.2	7.0510e+01 + 4.2	7.0662e+01 + 4.2	7.0738e+01 + 4.2	7.0710e+01 + 4.2	7.0738e+01 + 4.2	6.5801e+01 + 4.0	6.5897e+ -

Figure IV.38 : Fenêtre des matrices Ybus et Zbus de réseau test 30 JB.
IV.6.3. Analyse dans le cas normal

Pour faite l'analyse de ce réseau dans le cas normal, on fait les mêmes étapes que nous avons fait pour le réseau test 14 JB.

Premièrement, on prend :

- La puissance de base est égale à 100 MVA.
- La précision est égale à 10^{-5} .

Ensuite, il faut choisit le régime de réseau (régime normal) et cliquer sur le bouton « Ecoulement de puissance ». La **Figure IV.39** montre le rapport de l'écoulement de puissance de réseau test 30 JB dans le cas normal.

			Rappor	t de l'écoule	ment de pu	issance				
Vmin (p.u)	0.908	13								
DPij total	(Mw)	5.7921		Ecoulement de	puissance		N	Nbr d'itérations		
Bus No.	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)		
	1.0500	0	99.1921	-15.2637	99.1921	-15.2637	0	0		
1	1.0476	-1.8090	58.3000	19.4336	80.0000	32.1336	21.7000	12.7000	[
:	1.0367	-3.8100	-2.4000	-1.2000	2.5002e-13	1.8185e-13	2.4000	1.2000	-	
	1.0339	-4.6640	-7.6000	-1.6000	-7.2831e-14	-2.3532e-12	7.6000	1.6000	L	
	5 1.0161	-6.3710	-44.2000	-4.5468	50.0000	14.4532	94.2000	19		
	1.0324	-5.4703	-1.7053e-13	9.0949e-13	-1.7053e-13	9.0949e-13	0	0		
1	1.0169	-6.3489	-22.8000	-10.9000	2.7356e-13	8.1890e-13	22.8000	10.9000		
	1.0349	-5.7989	-10.0000	12.4603	20.0000	42.4603	30	30		
1	0.9918	-6.9776	2.4869e-14	1.7053e-13	2.4869e-14	1.7053e-13	0	0		
10	0.9718	-9.0713	-5.8000	-2.0000	-2.1050e-13	3.4106e-13	5.8000	2		
Total	NaN	NaN	5.7921	29.9155	289.1921	156.1155	283.4000	126.2000		
			Les pu	issances trans	itées et les pe	rtes				
nd	na	Pij (Mw)	Qij (Mvar)	nd	na	Pji (Mw)	Qji (Mvar)	DPij (Mw)	DQij (Mvar)	
	2	55.9349	-13.3413	2	1	-55.3590	15.0659	0.5759	1.724	
	3	43.2572	-1.9223	3	1	-42.4886	4.7317	0.7687	2.809	
	2 4	30.7205	-1.0284	4	2	-30.2297	2.5238	0.4907	1.495	
	3 4	40.0886	-5.9317	4	3	-39.8869	6.5108	0.2017	0.579	
:	2 5	44.5377	7.7408	5	2	-43.6588	-4.0484	0.8789	3.692	
1	2 6	38.4009	-2.3447	6	2	-37.6173	4.7224	0.7836	2.377	
	6	34.5841	-5.8957	6	4	-34.4471	6.3724	0.1370	0.476	
	5 7	-0.5412	-0.4985	7	5	0.5415	0.4991	2.4122e-04	6.0830e-0	
	5 7	23.5157	11.9342	7	6	-23.3415	-11.3991	0.1742	0.535	
•									•	

Figure IV.39 : Rapport de l'écoulement de puissance de réseau test 30 JB dans le cas normal.

Afin de mieux visualiser les résultats de ce réseau test, les résultats sont récapitulés dans le **Tableau IV.21** et le **Tableau IV.22**.

Bus	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)
1	1.0500	0.0000	99.192	-15.264	99.192	-15.264	0.000	0.000
2	1.0476	-1.8090	58.300	19.434	80.000	32.134	21.700	12.700
3	1.0367	-3.8100	-2.400	-1.200	0.000	0.000	2.400	1.200
4	1.0339	-4.6640	-7.600	-1.600	-0.000	-0.000	7.600	1.600
5	1.0161	-6.3710	-44.200	-4.547	50.000	14.453	94.200	19.000
6	1.0324	-5.4703	-0.000	0.000	-0.000	0.000	0.000	0.000
7	1.0169	-6.3489	-22.800	-10.900	0.000	0.000	22.800	10.900
8	1.0349	-5.7989	-10.000	12.460	20.000	42.460	30.000	30.000
9	0.9918	-6.9776	0.000	0.000	0.000	0.000	0.000	0.000
10	0.9718	-9.0713	-5.800	-2.000	-0.000	0.000	5.800	2.000
11	1.0661	-4.7228	20.000	38.480	20.000	38.480	0.000	0.000
12	1.0164	-8.6909	-11.200	-7.500	0.000	0.000	11.200	7.500
13	1.0733	-7.2202	20.000	43.852	20.000	43.852	0.000	0.000
14	0.9962	-9.6624	-6.200	-1.600	0.000	-0.000	6.200	1.600
15	0.9867	-9.6552	-8.200	-2.500	-0.000	0.000	8.200	2.500
16	0.9900	-9.1336	-3.500	-1.800	0.000	0.000	3.500	1.800
17	0.9716	-9.3190	-9.000	-5.800	0.000	0.000	9.000	5.800
18	0.9686	-10.2323	-3.200	-0.900	-0.000	-0.000	3.200	0.900
19	0.9611	-10.3623	-9.500	-3.400	0.000	0.000	9.500	3.400
20	0.9630	-10.1019	-2.200	-0.700	-0.000	-0.000	2.200	0.700
21	0.9583	-9.6080	-17.500	-11.200	0.000	-0.000	17.500	11.200
22	0.9588	-9.5990	-0.000	-0.000	-0.000	-0.000	0.000	0.000
23	0.9652	-10.0187	-3.200	-1.600	0.000	-0.000	3.200	1.600
24	0.9454	-10.1232	-8.700	-6.700	-0.000	0.000	8.700	6.700
25	0.9379	-10.1529	-0.000	-0.000	-0.000	0.000	0.000	0.000
26	0.9186	-10.6483	-3.500	-2.300	0.000	-0.000	3.500	2.300
27	0.9427	-9.8701	-0.000	-0.000	-0.000	-0.000	0.000	0.000
28	1.0284	-5.8999	0.000	-0.000	0.000	-0.000	0.000	0.000
29	0.9209	-11.3247	-2.400	-0.900	-0.000	-0.000	2.400	0.900
30	0.9083	-12.3750	-10.600	-1.900	0.000	0.000	10.600	1.900
Total	/	/	5.792	29.916	289.192	156.116	283.400	126.200
Nom d'itér	bre ations				10			
Vmin	(p.u)				0.9083			
Dpt	(MW)				5.792			

 Tableau IV.21 : Ecoulement de puissance de réseau test 30 JB (cas normal).

nd	na	Pij	Qij	nd	na	Pji	Qji	DPij	DQij
		(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
1	2	55.935	-13.341	2	1	-55.359	15.066	0.576	1.725
1	3	43.257	-1.922	3	1	-42.489	4.732	0.769	2.809
2	4	30.720	-1.028	4	2	-30.230	2.524	0.491	1.495
3	4	40.089	-5.932	4	3	-39.887	6.511	0.202	0.579
2	5	44.538	7.741	5	2	-43.659	-4.048	0.879	3.692
2	6	38.401	-2.345	6	2	-37.617	4.722	0.784	2.378
4	6	34.584	-5.896	6	4	-34.447	6.372	0.137	0.477
5	7	-0.541	-0.498	7	5	0.541	0.499	0.000	0.001
6	7	23.516	11.934	7	6	-23.341	-11.399	0.174	0.535
6	8	11.846	-9.596	8	6	-11.819	9.688	0.026	0.092
6	9	12.011	18.834	9	6	-12.011	-17.784	0.000	1.050
6	10	10.601	10.850	10	6	-10.601	-9.567	0.000	1.283
9	11	-20.000	-35.038	11	9	20.000	38.480	0.000	3.442
9	10	32.011	18.605	10	9	-32.011	-17.072	-0.000	1.533
4	12	27.932	7.806	12	4	-27.932	-5.727	0.000	2.079
12	13	-20.000	-41.029	13	12	20.000	43.852	0.000	2.823
12	14	8.616	3.964	14	12	-8.509	-3.742	0.107	0.223
12	15	19.676	13.260	15	12	-19.316	-12.549	0.361	0.711
12	16	8.440	9.519	16	12	-8.292	-9.207	0.148	0.311
14	15	2.309	2.142	15	14	-2.286	-2.122	0.022	0.020
16	17	4.792	7.407	17	16	-4.727	-7.255	0.065	0.153
15	18	6.808	4.893	18	15	-6.731	-4.735	0.077	0.158
18	19	3.531	3.835	19	18	-3.512	-3.797	0.019	0.037
19	20	-5.988	0.397	20	19	6.001	-0.371	0.013	0.027
10	20	8.269	0.481	20	10	-8.201	-0.329	0.068	0.152
10	17	4.280	-1.436	17	10	-4.273	1.455	0.007	0.018
10	21	16.307	10.030	21	10	-16.172	-9.739	0.135	0.291
10	22	7.956	4.600	22	10	-7.891	-4.466	0.065	0.134
21	22	-1.328	-1.461	22	21	1.329	1.462	0.000	0.001
15	23	6.594	7.278	23	15	-6.495	-7.078	0.099	0.200
22	24	6.563	3.005	24	22	-6.498	-2.903	0.065	0.101
23	24	3.295	5.478	24	23	-3.237	-5.360	0.058	0.118
24	25	1.035	1.563	25	24	-1.027	-1.550	0.007	0.013
25	26	3.553	2.379	26	25	-3.500	-2.300	0.053	0.079
25	27	-2.526	-0.829	27	25	2.535	0.846	0.009	0.017
28	27	15.871	21.407	27	28	-15.871	-18.567	0.000	2.840
27	29	6.214	1.715	29	27	-6.111	-1.521	0.103	0.194
27	30	7.122	1.719	30	27	-6.929	-1.355	0.193	0.364
29	30	3.711	0.621	30	29	-3.671	-0.545	0.040	0.076
8	28	1.819	2.773	28	8	-1.813	-2.752	0.007	0.021
6	28	14.091	2.848	28	6	-14.058	-2.732	0.033	0.116
Tot	al	/	/	/	/	/	/	5.792	32.367

Tableau IV.22 : Puissances transitées et les pertes de réseau test 30 JB (cas normal).

Affichage graphique

De la même manière de réseau test 14 JB, pour faire l'affichage graphique des résultats obtenus de réseau test 30 JB il faut cliquer sur le bouton « Affichage graphique ».

La **Figure IV.40** représente l'affichage graphique de l'écoulement de puissance de réseau test 30 JB dans le cas normal.

Figure IV.40 : Affichage graphique des résultats de réseau test 30 JB dans le cas normal.

La **Figure IV.41** représente la tension au niveau de chaque JB de réseau test 30 JB dans le cas normal.

La **Figure IV.42** représente l'angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas normal.

Les **Figure IV.41** et **Figure IV.42** montrent clairement la répartition des tenions et angles aux niveaux des jeux de barres. On remarque que les tensions sont dans leurs limites admissibles.

D'après la **Figure IV.41**, on remarque que les tensions aux niveaux des JB sont dans leurs limites admissibles (entre 0.9 et 1.1 p.u).

Figure IV.41 : Tension au niveau de chaque JB de réseau test 30 JB dans le cas normal.

Figure IV.42 : Angle de la tension en fonction de numéro de JB pour un réseau à 30 JB dans le cas normal.

IV.6.4. Analyse dans le cas de surcharge

IV.6.4.1. Surcharge locale

Ce test consiste à réalisé des surcharges locales aux niveaux des jeux de barres sélectionné par l'exploitant des réseaux en fonction des statistiques prédéfinies. Ce test est indispensable pour établir les prévisions d'extensions avec efficacités. Le jeu de barre N° 5 est choisi pour pratiquer la surcharge locale. La figure **IV.43** permet l'accès à la partie contenant les paramètres de surcharge locale.

🐠 are					X
Fichier Simulation Aide					¥د ا
Les données du réseau		Paran	nètres		
Charger les données des lignes]				
			100	Puissance de base (MVA)	
Charger les données des jeux de barres			10.5	Précision	
Cas de réseau Surcharge local	Les résultats	nt de puiss	ance Affichage g	Formation de Ybus et Zbus	
				Fermer	

Figure IV.43 : Accès à la partie de surcharge local (10% et JB N° 5).

Test 1 : Surcharge de 10%

L'application de surcharge de 10% a engendré des pertes de **6.452 MW**, la tension minimale décroit à **0.9083 p.u**.

La **Figure IV.44** représente le rapport de l'écoulement de puissance de réseau test 30 JB dans le cas de surcharge locale. Le **Tableau IV.23** et **Tableau IV.24** récapitulent les résultats de l'écoulement de puissance.

Vmin (p.u) DPij total (N Bus No.	0.9083 fw)	8 4548								
DPij total (N Bus No.	ſw)	6 4549								
Bus No.	Bus No. V (p.u) Angle (Deg)		1	Ecoulement de	puissance		N	Nbr d'itérations		
	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)		
1	1.0500	0	109.2718	-17.9349	109.2718	-17.9349	0	0		
2	1.0476	-2.0549	58.3000	20.9581	80.0000	33.6581	21.7000	12.7000	[
3	1.0366	-4.0490	-2.4000	-1.2000	2.2649e-14	-7.2764e-13	2.4000	1.2000	1	
4	1.0338	-4.9600	-7.6000	-1.6000	6.5192e-13	1.4788e-13	7.6000	1.6000		
5	1.0161	-7.2387	-53.6200	-1.2171	50.0000	19.6829	103.6200	20.9000		
6	1.0323	-5.8353	-8.5265e-13	-1.1369e-12	-8.5265e-13	-1.1369e-12	0	0		
7	1.0170	-6.9172	-22.8000	-10.9000	1.5987e-13	1.3678e-13	22.8000	10.9000		
8	1.0349	-6.1643	-10.0000	12.5723	20.0000	42.5723	30	30		
9	0.9917	-7.3310	0	5.6843e-14	0	5.6843e-14	0	0		
10	0.9717	-9.4189	-5.8000	-2.0000	1.6875e-14	-1.0232e-12	5.8000	2		
Total	NaN	NaN	6.4518	32.2408	299.2718	160.3408	292.8200	128.1000		
			Les pu	issances trans	itées et les pe	rtes				
nd	na	Pij (Mw)	Qij (Mvar)	nd	na	Pji (Mw)	Qji (Mvar)	DPij (Mw)	DQij (Mvar)	
1	2	63.4010	-15.5576	2	1	-62.6589	17.7803	0.7422	2.222	
1	3	45.8708	-2.3773	3	1	-45.0058	5.5386	0.8650	3.161	
2	4	31.2385	-1.0969	4	2	-30.7311	2.6433	0.5075	1.546	
3	4	42.6058	-6.7386	4	3	-42.3772	7.3949	0.2286	0.656	
2	5	50.1424	6.9016	5	2	-49.0406	-2.2725	1.1018	4.629	
2	6	39.5779	-2.6268	6	2	-38.7450	5.1543	0.8329	2.527	
4	6	37.3994	-6.8700	6	4	-37.2383	7.4302	0.1610	0.560	
5	7	-4.5794	1.0554	7	5	4.5892	-1.0306	0.0098	0.024	
6	7	27.6080	10.5414	7	6	-27.3892	-9.8694	0.2188	0.672 -	
•									•	

Figure IV.44 : Rapport de l'écoulement de puissance de réseau test 30 JB dans le cas de surcharge locale.

Bus	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)
1	1.0500	0.0000	109.272	-17.935	109.272	-17.935	0.000	0.000
2	1.0476	-2.0549	58.300	20.958	80.000	33.658	21.700	12.700
3	1.0366	-4.0490	-2.400	-1.200	0.000	-0.000	2.400	1.200
4	1.0338	-4.9600	-7.600	-1.600	0.000	0.000	7.600	1.600
5	1.0161	-7.2387	-53.620	-1.217	50.000	19.683	103.620	20.900
б	1.0323	-5.8353	-0.000	-0.000	-0.000	-0.000	0.000	0.000
7	1.0170	-6.9172	-22.800	-10.900	0.000	0.000	22.800	10.900
8	1.0349	-6.1643	-10.000	12.572	20.000	42.572	30.000	30.000
9	0.9917	-7.3310	0.000	0.000	0.000	0.000	0.000	0.000
10	0.9717	-9.4189	-5.800	-2.000	0.000	-0.000	5.800	2.000
11	1.0661	-5.0761	20.000	38.502	20.000	38.502	0.000	0.000
12	1.0164	-9.0129	-11.200	-7.500	0.000	-0.000	11.200	7.500
13	1.0733	-7.5421	20.000	43.860	20.000	43.860	0.000	0.000
14	0.9962	-9.9876	-6.200	-1.600	-0.000	-0.000	6.200	1.600
15	0.9867	-9.9836	-8.200	-2.500	-0.000	-0.000	8.200	2.500
16	0.9900	-9.4661	-3.500	-1.800	-0.000	0.000	3.500	1.800
17	0.9716	-9.6620	-9.000	-5.800	0.000	0.000	9.000	5.800
18	0.9685	-10.5675	-3.200	-0.900	0.000	-0.000	3.200	0.900
19	0.9611	-10.7015	-9.500	-3.400	0.000	-0.000	9.500	3.400
20	0.9629	-10.4432	-2.200	-0.700	0.000	-0.000	2.200	0.700
21	0.9582	-9.9552	-17.500	-11.200	0.000	0.000	17.500	11.200
22	0.9587	-9.9460	-0.000	-0.000	-0.000	-0.000	0.000	0.000
23	0.9651	-10.3539	-3.200	-1.600	0.000	0.000	3.200	1.600
24	0.9453	-10.4679	-8.700	-6.700	-0.000	0.000	8.700	6.700
25	0.9378	-10.5055	0.000	0.000	0.000	0.000	0.000	0.000

 Tableau IV.23 : Ecoulement de puissance de réseau test 30 JB (surcharge locale de 10%).

26	0 9185	-11 0010	-3 500	-2 300	-0 000	0 000	3 500	2 300			
27	0.9426	-10.2274	-0.000	0.000	-0.000	0.000	0.000	0.000			
28	1.0284	-6.2641	0.000	-0.000	0.000	-0.000	0.000	0.000			
29	0.9208	-11.6823	-2.400	-0.900	-0.000	0.000	2.400	0.900			
30	0.9083	-12.7328	-10.600	-1.900	0.000	0.000	10.600	1.900			
Total	/	/	6.452	32.241	299.272	160.341	292.820	128.100			
Nom d'itér	nbre ations	10									
			0.9083								
Vmin	(p.u)				0.9083						

 Tableau IV.24 : Puissances transitées et pertes de réseau test 30 JB (surcharge locale de 10%).

nd	na	Pij	Qij	nd	na	Pji	Qji	DPij	DQij
		(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
1	2	63.401	-15.558	2	1	-62.659	17.780	0.742	2.223
1	3	45.871	-2.377	3	1	-45.006	5.539	0.865	3.161
2	4	31.239	-1.097	4	2	-30.731	2.643	0.507	1.546
3	4	42.606	-6.739	4	3	-42.377	7.395	0.229	0.656
2	5	50.142	6.902	5	2	-49.041	-2.272	1.102	4.629
2	6	39.578	-2.627	6	2	-38.745	5.154	0.833	2.527
4	6	37.399	-6.870	6	4	-37.238	7.430	0.161	0.560
5	7	-4.579	1.055	7	5	4.589	-1.031	0.010	0.025
6	7	27.608	10.541	7	6	-27.389	-9.869	0.219	0.672
6	8	11.840	-9.690	8	6	-11.814	9.782	0.026	0.092
6	9	11.919	18.833	9	6	-11.919	-17.788	0.000	1.045
6	10	10.549	10.853	10	6	-10.549	-9.575	0.000	1.278
9	11	-20.000	-35.057	11	9	20.000	38.502	0.000	3.445
9	10	31.919	18.630	10	9	-31.919	-17.102	0.000	1.528
4	12	28.109	7.774	12	4	-28.109	-5.671	0.000	2.103
12	13	-20.000	-41.036	13	12	20.000	43.860	0.000	2.824
12	14	8.634	3.956	14	12	-8.526	-3.733	0.107	0.223
12	15	19.752	13.241	15	12	-19.390	-12.527	0.362	0.714
12	16	8.523	9.498	16	12	-8.374	-9.184	0.149	0.313
14	15	2.326	2.133	15	14	-2.304	-2.113	0.022	0.020
16	17	4.874	7.384	17	16	-4.808	-7.231	0.066	0.154
15	18	6.853	4.879	18	15	-6.775	-4.720	0.078	0.159
18	19	3.575	3.820	19	18	-3.556	-3.782	0.019	0.038
19	20	-5.944	0.382	20	19	5.957	-0.356	0.013	0.026
10	20	8.224	0.494	20	10	-8.157	-0.344	0.067	0.150
10	17	4.198	-1.413	17	10	-4.192	1.431	0.007	0.018
10	21	16.296	10.032	21	10	-16.161	-9.742	0.135	0.290
10	22	7.949	4.602	22	10	-7.884	-4.468	0.065	0.134
21	22	-1.339	-1.458	22	21	1.339	1.459	0.000	0.001
15	23	6.641	7.261	23	15	-6.542	-7.060	0.099	0.201
22	24	6.545	3.009	24	22	-6.480	-2.908	0.065	0.101
23	24	3.342	5.460	24	23	-3.284	-5.341	0.058	0.119

24	25	1.064	1.549	25	24	-1.056	-1.536	0.007	0.013
25	26	3.553	2.379	26	25	-3.500	-2.300	0.053	0.079
25	27	-2.497	-0.843	27	25	2.505	0.859	0.009	0.016
28	27	15.842	21.416	27	28	-15.842	-18.578	0.000	2.838
27	29	6.214	1.715	29	27	-6.111	-1.521	0.103	0.194
27	30	7.122	1.719	30	27	-6.929	-1.355	0.193	0.364
29	30	3.711	0.621	30	29	-3.671	-0.545	0.040	0.076
8	28	1.814	2.790	28	8	-1.807	-2.769	0.007	0.021
6	28	14.067	2.840	28	6	-14.034	-2.725	0.033	0.116
Tot	al	/	/	/	/	/	/	6.452	34.692

Affichage graphique

La **Figure IV.45** représente l'affichage graphique de l'écoulement de puissance de réseau test 30 JB dans le cas de surcharge locale.

Figure IV.45 : Affichage graphique des résultats de réseau test 30 JB dans le cas de surcharge locale.

La **Figure IV.46** représente la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge locale de 10%.

Figure IV.46 : Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge locale de 10%.

La **Figure IV.47** représente l'angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge locale de 10%.

Figure IV.47 : Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge locale de 10%.

Test 2 : Surcharge de 20%

Le **Tableau IV.25** et **Tableau IV.26** récapitulent les résultats essentiels de l'écoulement de puissance de ce test.

Tableau IV.25 : Ecoulement de puissance de réseau test 30 JB (surcharge locale de 20%).

	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)			
Total	/	/	7.204	34.877	309.444	164.877	302.240	130.000			
Nor d'itér	nbre rations	10									
Vmin	/min (p.u) 0.9082										
Dpt	(MW)	7.204									

Tableau IV.26 : Puissances transitées et pertes de réseau test 30 JB (surcharge locale de 20%).

	Pij	Qij	/	/	Pji	Qji	DPij	DQij
	(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	/	/	/	/	7.204	37.327

La **Figure IV.48** et **Figure IV.49** représentent respectivement le module et l'angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge locale de 20%.

Figure IV.48 : Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge locale de 20%.

Figure IV.49 : Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge locale de 20%.

Test 3 : Surcharge de 30%

De la même manière de test 1 et test 2, on fait une surcharge locale de 30 % au niveau de jeu de barre N° 5.

Le **Tableau IV.27** et **Tableau IV.28** récapitulent les résultats essentiels de l'écoulement de puissance de ce test.

	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch		
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)		
Total	/	/	8.049	37.830	319.709	169.730	311.660	131.900		
Nor d'itér	nbre rations				10					
Vmin	(p.u)		0.9081							
Dpt (MW) 8.049										

Tableau IV.27 : Ecoulement de puissance de réseau test 30 JB (surcharge locale de 30%).

 Tableau IV.28 : Puissances transitées et pertes de réseau test 30 JB (surcharge locale de 30%).

	Pij	Qij	/	/	Pji	Qji	DPij	DQij
	(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	/	/	/	/	8.049	40.279

La **Figure IV.50** et **Figure IV.51** représentent respectivement le module et l'angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge locale de 30%.

Figure IV.50 : Tension au niveau de chaque JB de réseau 30 JB dans le cas de surcharge locale de 30%.

Figure IV.51 : Angle de la tension au niveau de chaque JB de réseau 30 JB dans le cas de surcharge locale de 30%.

Comparaison entre les résultats de trois tests par rapport au régime normale

La **Tableau IV.29** représente une comparaison entre le régime normale et le surcharge locale de réseau test 30 JB.

Tableau IV.29 : Comparaison entre le régime normal et la surcharge locale de réseau test 30JB.

	Réseau test Américain à 30 JB								
Régime du		Vmin (nu)	Vmax	Pg (MW)	Qg (MVAR)	Pch (MW)	Qch (MVAR)	DPt (MW)	DQt (MVAR)
Tescar	4	(p.u)	(p.u)	(1111)	(mvmit)	(1111)	(mvmit)	(1111)	(mvmit)
Norma	al	0.9083	1.0733	289.192	156.116	283.400	126.200	5.792	32.367
Surcharge	10%	0.9083	1.0733	299.272	160.341	292.820	128.100	6.452	34.692
local	20%	0.9082	1.0733	309.444	164.877	302.240	130.000	7.204	37.327
(JB N° 5)	30%	0.9081	1.0733	319.709	169.730	311.660	131.900	8.049	40.279

La **Figure IV.52** représente la tension dans chaque JB de réseau test 30 JB dans le cas normal et le cas de surcharge locale (10%, 20% et 30%).

Figure IV.52 : Tension dans chaque JB de réseau test 30 JB (cas normal et surcharge locale).

D'après la **Figure IV.52**, On remarque que l'influence de surcharge locale sur la diminution de tension est très petit.

IV.6.4.2. Surcharge globale

Pour faire une surcharge globale au réseau test 30 JB, la **Figure IV.23** permet l'accès à la partie contenant les paramètres de surcharge globale.

Test 1 : surcharge de 10%

L'application de surcharge de 10% a engendré des pertes de **8.008 MW**, la tension minimale décroit à **0.8901 p.u**.

La **Figure IV.53** représente le rapport de l'écoulement de puissance de réseau test 30 JB dans le cas de surcharge globale.

Vmin (p.u) DPij total (Mw Bus No.	0.8901	7				Issance			
DPij total (Mw Bus No.	3								
Bus No.	0	8.0081		Ecoulement de	puissance		N	br d'itérations	11
	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)	
1	1.0500	0	129.7481	-19.4952	129.7481	-19.4952	0	0	
2	1.0476	-2.5036	56.1300	32.6104	80.0000	46.5804	23.8700	13.9700	ſ
3	1.0306	-4.6141	-2.6400	-1.3200	3.5483e-13	7.4585e-13	2.6400	1.3200	
4	1.0265	-5.6573	-8.3600	-1.7600	1.7764e-13	-1.0436e-13	8.3600	1.7600	l
5	1.0161	-8.0086	-53.6200	3.8198	50	24.7198	103.6200	20.9000	
6	1.0239	-6.6402	4.5475e-13	2.0464e-12	4.5475e-13	2.0464e-12	0	0	
7	1.0110	-7.7595	-25.0800	-11.9900	-1.5277e-13	-7.1054e-15	25.0800	11.9900	
8	1.0249	-7.0232	-13.0000	9.2653	20.0000	42.2653	33	33	
9	0.9804	-8.5374	5.3291e-14	2.8422e-13	5.3291e-14	2.8422e-13	0	0	
10	0.9580	-10.8747	-6.3800	-2.2000	-2.7978e-13	-2.7267e-13	6.3800	2.2000	
Total	NaN	NaN	8.0081	38.8636	319.7481	177.6836	311.7400	138.8200	
			Les pu	uissances trans	itées et les pe	rtes			
nd	na	Pij (Mw)	Qij (Mvar)	nd	na	Pji (Mw)	Qji (Mvar)	DPij (Mw)	DQij (Mvar)
1	2	77.0467	-19.5183	2	1	-75.9465	22.8129	1.1001	3.294
1	3	52.7014	0.0231	3	1	-51.5627	4.1387	1.1387	4.161
2	4	34.7919	2.2289	4	2	-34.1606	-0.3052	0.6313	1.923
3	4	48.9227	-5.4587	4	3	-48.6216	6.3233	0.3011	0.864
2	5	53.0414	6.4919	5	2	-51.8133	-1.3322	1.2281	5.159
2	6	44.2433	1.0767	6	2	-43.2064	2.0697	1.0369	3.146
4	6	42.0433	-5.2381	6	4	-41.8406	5.9433	0.2027	0.705
5	7	-1.8067	5.1521	7	5	1.8200	-5.1186	0.0133	0.033
6	7	27.1013	7.4898	7	6	-26.9000	-6.8714	0.2013	0.618

Figure IV.53 : Rapport de l'écoulement de puissance de réseau test 30 JB dans le cas de surcharge globale.

Afin de mieux visualiser les résultats de ce réseau test dans la surcharge globale, les résultats sont récapitulés dans le **Tableau IV.30** et le **Tableau IV.31**.

Le **Tableau IV.30** représente l'écoulement de puissance de réseau test 30 JB (surcharge globale de 10%).

Bus	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch		
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)		
1	1.0500	0.0000	129.748	-19.495	129.748	-19.495	0.000	0.000		
2	1.0476	-2.5036	56.130	32.610	80.000	46.580	23.870	13.970		
3	1.0306	-4.6141	-2.640	-1.320	0.000	0.000	2.640	1.320		
4	1.0265	-5.6573	-8.360	-1.760	0.000	-0.000	8.360	1.760		
5	1.0161	-8.0086	-53.620	3.820	50.000	24.720	103.620	20.900		
6	1.0239	-6.6402	0.000	0.000	0.000	0.000	0.000	0.000		
7	1.0110	-7.7595	-25.080	-11.990	-0.000	-0.000	25.080	11.990		
8	1.0249	-7.0232	-13.00	9.265	20.000	42.265	33.000	33.000		
9	0.9804	-8.5374	-0.000	0.000	0.000	0.000	0.000	0.000		
10	0.9580	-10.8747	-6.380	-2.200	-0.000	-0.000	6.380	2.200		
11	1.0561	-6.2348	20.000	38.842	20.000	38.842	0.000	0.000		
12	1.0047	-10.4150	-12.320	-8.250	-0.000	-0.000	12.320	8.250		
13	1.0633	-8.9131	20.000	44.771	20.000	44.771	0.000	0.000		
14	0.9825	-11.5102	-6.820	-1.760	0.000	-0.000	6.820	1.760		
15	0.9724	-11.5110	-9.020	-2.750	-0.000	0.000	9.020	2.750		
16	0.9765	-10.9294	-3.850	-1.980	-0.000	0.000	3.850	1.980		
17	0.9573	-11.1512	-9.900	-6.380	-0.000	0.000	9.900	6.380		
18	0.9529	-12.1753	-3.520	-0.990	-0.000	-0.000	3.520	0.990		
19	0.9450	-12.3290	-10.450	-3.740	0.000	-0.000	10.450	3.740		
20	0.9473	-12.0361	-2.420	-0.770	-0.000	-0.000	2.420	0.770		
21	0.9429	-11.4787	-19.250	-12.320	0.000	0.000	19.250	12.320		
22	0.9435	-11.4671	0.000	-0.000	0.000	-0.000	0.000	0.000		
23	0.9493	-11.9243	-3.520	-1.760	0.000	0.000	3.520	1.760		
24	0.9286	-12.0440	-9.570	-7.370	0.000	-0.000	9.570	7.370		
25	0.9221	-12.0498	0.000	-0.000	0.000	0.000	0.000	0.000		
26	0.9005	-12.6151	-3.850	-2.530	0.000	-0.000	3.850	2.530		
27	0.9287	-11.7080	0.000	-0.000	0.000	0.000	0.000	0.000		
28	1.0187	-7.1298	-0.000	0.000	-0.000	-0.000	0.000	0.000		
29	0.9042	-13.3620	-2.640	-0.990	0.000	-0.000	2.640	0.990		
30	0.8901	-14.5626	-11.660	-2.090	-0.000	-0.000	11.660	2.090		
Total	/	/	8.008	38.864	319.748	177.684	311.740	138.820		
Nom d'itér	bre ations	11								
Vmin	(p.u)				0.8901					
Dpt	(MW)				8.008					

Tableau IV.30 : Ecoulement de puissance de réseau test 30 JB (surcharge globale de 10%).

Le **Tableau IV.31** représente les puissances transitées et pertes de réseau test 30 JB (surcharge globale de 10%).

nd	na	Pij	Qij	nd	na	Pji	Qji	DPij	DQij
		(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
1	2	77.047	-19.518	2	1	-75.947	22.813	1.100	3.295
1	3	52.701	0.023	3	1	-51.563	4.139	1.139	4.162
2	4	34.792	2.229	4	2	-34.161	-0.305	0.631	1.924
3	4	48.923	-5.459	4	3	-48.622	6.323	0.301	0.865
2	5	53.041	6.492	5	2	-51.813	-1.332	1.228	5.160
2	6	44.243	1.077	6	2	-43.206	2.070	1.037	3.146
4	6	42.043	-5.238	6	4	-41.841	5.943	0.203	0.705
5	7	-1.807	5.152	7	5	1.820	-5.119	0.013	0.033
6	7	27.101	7.490	7	6	-26.900	-6.871	0.201	0.618
6	8	14.824	-6.574	8	6	-14.794	6.679	0.030	0.105
6	9	14.822	20.122	9	6	-14.822	-18.786	0.000	1.336
6	10	12.186	11.780	10	б	-12.186	-10.169	0.000	1.631
9	11	-20.000	-35.283	11	9	20.000	38.842	0.000	3.560
9	10	34.822	20.633	10	9	-34.822	-18.758	0.000	1.875
4	12	32.379	9.828	12	4	-32.379	-6.957	0.000	2.871
12	13	-20.000	-41.793	13	12	20.000	44.771	0.000	2.977
12	14	9.421	4.257	14	12	-9.290	-3.986	0.130	0.271
12	15	21.491	14.104	15	12	-21.057	-13.250	0.433	0.854
12	16	9.148	9.913	16	12	-8.977	-9.555	0.170	0.358
14	15	2.470	2.226	15	14	-2.445	-2.203	0.025	0.023
16	17	5.127	7.575	17	16	-5.055	-7.406	0.072	0.169
15	18	7.414	5.084	18	15	-7.322	-4.897	0.092	0.187
18	19	3.802	3.907	19	18	-3.781	-3.865	0.021	0.042
19	20	-6.669	0.125	20	19	6.686	-0.091	0.017	0.034
10	20	9.193	0.873	20	10	-9.106	-0.679	0.087	0.194
10	17	4.854	-1.003	17	10	-4.845	1.026	0.009	0.023
10	21	17.874	11.103	21	10	-17.706	-10.742	0.168	0.361
10	22	8.708	5.099	22	10	-8.627	-4.933	0.081	0.166
21	22	-1.544	-1.578	22	21	1.544	1.580	0.001	0.001
15	23	7.068	7.620	23	15	-6.954	-7.389	0.114	0.231
22	24	7.083	3.353	24	22	-7.003	-3.230	0.079	0.123
23	24	3.434	5.629	24	23	-3.3/1	-5.499	0.064	0.130
24	25	0.804	1.358	25	24	-0.798	-1.349	0.005	0.010
25	20	3.91/	2.629	26	25 25	-3.850	-2.530	0.067	0.099
25	27	-3.118	-1.281	27	25 20	3.133	10.055	0.015	0.028
<u>∠</u> ŏ 27	∠/ 20		44.399	2/	⊿ŏ 27	-11.000	-12.055	0.000	3.344
27	20	7 965	1 047	20	∠/ 27	-0.729	-1 /00/	0.129	0.244
20	30	1.005		30	20	_4 020	-1.400	0.244	0.409
29 Q	20	1 70/	2 596	20	22 م	-4.039	-2 569	0.050	0.095
6	20 28	16 112	4 366	0 2	6	-16 068	-2.500	0.000	0.019
0	20	10.113	Ŧ.300	20	0	10.000	1.207	0.013	0.137
Tot	al	/	/	/	/	/	/	8.008	41.888

Tableau IV.31 : Puissances transitées et pertes de réseau test 30 JB (surcharge globale de10%).

Affichage graphique :

La **Figure IV.54** représente l'affichage graphique de l'écoulement de puissance de réseau test 30 JB dans le cas de surcharge globale.

Figure IV.54 : Affichage graphique des résultats de réseau test 30 JB dans le cas de surcharge globale.

La **Figure IV.55** représente la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 10%.

Figure IV.55 : Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 10%.

Figure IV.56 : Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 10%.

Test 2 : Surcharge de 20%

De la même manière de test 1, on fait une surcharge globale de 20%.

Le **Tableau IV.32** et **Tableau IV.33** récapitulent les résultats essentiels de l'écoulement de puissance de ce test.

	V	Angle	Pi	Qi	Pg	Qg	Pch	Qch	
	(p.u)	(Deg)	(Mw)	(Mvar)	(Mw)	(Mvar)	(Mw)	(Mvar)	
Total	/	/	10.756	50.444	350.836	201.884	340.080	151.440	
Nor d'itér	nbre rations	10							
Vmin	(p.u)	0.8721							
Dpt	(MW)	10.756							

 Tableau IV.33 : Puissances transitées et pertes de réseau test 30 JB (surcharge globale de

20%).

	Pij	Qij	/	/	Pji	Qji	DPij	DQij
	(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	/	/	/	/	10.756	53.736

La **Figure IV.57** représente la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 20%.

Figure IV.57 : Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 20%.

La **Figure IV.58** représente l'angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 20%.

Figure IV.58 : Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 20%.

Test 3 : Surcharge de 30%

De la même manière de test 1 et test 2, on fait une surcharge globale de 30%.

Les tableaux **Tableau IV.34** et **Tableau IV.35** récapitulent les résultats essentiels de l'écoulement de puissance de ce test.

Tableau IV.34 : Ecoulement de puissance de réseau test 30 JB (surcharge globale de 30%).

	V (p.u)	Angle (Deg)	Pi (Mw)	Qi (Mvar)	Pg (Mw)	Qg (Mvar)	Pch (Mw)	Qch (Mvar)	
Total	/	/	14.070	64.065	382.490	228.125	368.420	164.060	
Nor d'itér	nbre rations	11							
Vmin	(p.u)	0.8506							
Dpt	(MW)	14.070							

Tableau IV.35 : Puissances transitées et pertes de réseau test 30 JB (surcharge globale de

30%).

	Pij	Qij	/	/	Pji	Qji	DPij	DQij
	(Mw)	(Mvar)			(Mw)	(Mvar)	(Mw)	(Mvar)
Total	/	/	/	/	/	/	14.070	67.838

La **Figure IV.59** représente la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 30%.

Figure IV.59 : Tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 30%.

La Figure IV.60 représente l'angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 30%.

Figure IV.60 : Angle de la tension au niveau de chaque JB de réseau test 30 JB dans le cas de surcharge globale de 30%.

Comparaison entre les résultats de trois tests par rapport au régime normale

La Tableau IV.36 représente une comparaison entre le régime normale et le surcharge globale de réseau test 30 JB.

Tableau IV.36 : Comparaison entre le régime normal et la surcharge globale de réseau test 30

Réseau test Américain à 30 JB Régime du Vmax Pch Qch DPt DQt Vmin Pg Qg réseau (p.u) (MW) (MVAR) (MW) (MVAR) (MW) (MVAR) (p.u) Normal 0.9083 1.0733 289.192 156.116 283.400 126.200 5.792 32.367 0.8901 1.0633 319.748 177.684 311.740 138.820 8.008 41.888 10% Surcharge 0.8721 1.0561 350.836 201.884 340.080 151.440 10.756 53.736 20% global 30% 0.8506 1.0500 382.490 228.125 368.420 164.060 14.070 67.838

JB.

Le Tableau IV.36 montre clairement l'augmentation des pertes totales soit les pertes actives ou réactives.

La surcharge à engendré des déviations de tensions et des pertes importantes.

D'après les résultats obtenus on peut conclure que :

- La tension minimale sera diminue avec l'augmentation de la charge.
- Les pertes sera augmente avec l'augmentation de la charge.

Figure IV.61 : Tension dans chaque JB de réseau test 30 JB (cas normal et surcharge globale).

On remarque que l'influence de surcharge globale sur la diminution de tension et l'augmentation des pertes est très grand par rapport le surcharge locale.

D'après les résultats obtenus, on peut conclure que les réseaux électriques sont grandement affectés par les surcharges globales qui provoquent des chutes de tensions et des pertes importantes.

IV.7. Prises de réglage

Le réglage de la tension par l'action sur les transformateurs de réglage installé à des locations sensible permet l'amélioration de la qualité de l'énergie en terme de réduction des pertes totales ainsi que l'amélioration des niveaux de tensions. La boite de dialogue associée au transformateur de réglage est incorporé dans la deuxième version de programme, est permet à l'utilisateur de proposer des réglages afin de réduire les pertes et les chutes de tensions. La **Figure IV.62** et la **Figure IV.63** montrent la méthode utilisée pour faite ça.

👃 are		
Fichier	Simulation Aide	
l	Formation de Ybus et Zbus Rapport de l'écoulement de puissance Affichage graphique	Ctrl+Y 2 Ctrl+R Ctrl+P
Le	Surcharge	Local Jammètres
	Charger les données des lignes	100 Puissance de base (MVA)
	Charger les données des jeux de barres	1e-5 Précision
		Les résultats Ecoulement de puissance Formation de Ybus et Zbus
	Version 1.1, Juin 2016	Affichage graphique
		Fermer

Figure IV.62 : Interface générale de logiciel développé (deuxième version).

Surcharge_local	And a second	
	Surcharge local	
	Facteur de surcharge Nº de JB 1.1 3	
	Les résultats Ecoulement de puissance Affichage graphique	
Prise de réglage	Prise de réglage Surcharge Prise de réglage 6-10 4-12 27-28 Tr2 Tr3 Tr4	Fermer

Figure IV.63 : Boite permettant de faire le réglage des transformateurs.

IV.8. Conclusion

Nous avons présentés dans ce chapitre la structure de programme développé qui permet d'évaluer l'état des réseaux électriques dans le régime normal et dans les conditions critiques (surcharge local et surcharge global) et permet aussi de trouver des solutions par les moyens de réglage de la tension tel que les transformateurs de prise de réglage.

Conclusion générale

Conclusion générale

Le travail que nous avons effectué consiste en le développement d'une phase initiale d'une interface sous environnement graphique du Matlab avec une base de données pour l'analyse et la simulation des réseaux électriques. La structure interactive de l'outil développé permet à l'utilisateur et en particulier l'expert l'accès aux données afin de programmer avec un minimum d'efforts et d'opérations pour trouver des solutions techniques flexibles. La première version de l'outil proposé permet à l'utilisateur (Etudiant ou expert) d'effectuer les opérations suivantes :

- Analyse de l'état du réseau dans le cas normal, cet analyse permet de déterminer les tensions aux niveaux des jeux de barres, les pertes totales, les puissances transitées dans les branches ainsi que les pertes de puissances dans chaque branche.
- Analyse de l'état du réseau dans le cas anormal avec considération de l'augmentation de charge. Cette analyse est très importante pour programmer les prévisions d'extension à court et longue terme. Le programme permet à l'utilisateur d'introduire une augmentation des charges locales et globale afin de localiser les points faible du réseau à exploiter.
- Pour cette première version, l'outil permet aussi de trouver des solutions urgentes par l'introduction des moyens de réglage de tension tels que la compensation de la puissance réactive et le réglage par les auto-transformateurs.

Le logiciel que nous présentons est extensible à d'autres applications et analyses tels que l'écoulement de puissance par la méthode de Gauss-Seidel, la stabilité des réseaux électriques, le dimensionnement des câbles, le dispatching économique par les méthodes d'intelligences artificielles, d'autre part l'outil proposé peuve être utilisé comme un moyen pédagogique simplifie pour les étudiants qui feront une formation spécialisée dans le domaine des réseaux électriques.

La voie est donc ouverte à d'autres étudiants pour le développement de logiciel en utilisant le Matlab ou d'autres langages de programmation tel que le C++, le Delphi.

Références bibliographiques

Références bibliographiques

A.	
[ACS]	Acsystème formations, « Formation MA-PO », page 9, 2016
	www.acsysteme.com/fr/matlab-programmation-objet
В.	
[BON]	BONNET Pierre - USTL, « Introduction Matlab - Compléments GUI »,
pages 1-7, 2	2016
F.	
[FAR 04]	فرطاس عبد الرحمان و كربع يوسف، « برمجة حساب سريان القدرة باستعمال لغة Matlab » ،
	مذكر ة التخرح لنبل شعادة الدر إسات الجامعية التطبيقية، جامعة بسكر ة، 2004

G.

 $[\textbf{GDO 04}] \quad \text{G.D'Orival, } \ll \text{Recommandations de maintenance sur transformateurs de puissances }, catalogue N^\circ: FAQ MEX 017/02, pages 2 -23, 2004.}$

H.

[HAD 06] Hadj Ammar Abdelhamid & LIDI Hamza, « ETUDE DE LA LIGNE MT-30kV ENASEL II », Mémoire de fin d'étude pour l'obtention du diplôme d'Ingénieur d'état, Université de Biskra, 2006.

[HAM 13] HAMED Mostefa, « Dispatching économique dynamique par utilisation de méthodes d'optimisation globales », Université de Biskra, 2013

L.

[LAI 05] LAIDI Belkacem & KREKIR Mohamed Saber, « Compensation dynamique de l'énergie réactive dans les réseaux électriques », Mémoire de fin d'étude pour l'obtention du diplôme d'Ingénieur d'état, Université de Biskra, 2005.

M.

[MAH 14] MAHDAD Belkacem, «Dispatching économique par Matlab», Editions Al-Djazair, 2014.

[MAM 12] MAMMERI Oussama, « Différentes méthodes de calcul de la puissance réactive dans un nœud à charge non linéaire en présence d'un système de compensation de l'énergie », Mémoire de Magister, Université de Batna, 2012.

[MAN 13] MANCER Nabil, « Contribution à l'optimisation de la puissance réactive en présence de dispositifs de compensation dynamique (FACTS) », Thèse de Magister, Université de Biskra, 2013

[MAO 08] MAOUCHE Khaled & HICHER Saad, « Simulation des réseaux électriques par Matlab », Mémoire de fin d'étude pour l'obtention du diplôme d'Ingénieur d'état, Université de Biskra, 2008.

S.

(SHA] [SHA] [SHA] [Anity المهندسين» ، إعداد وتأليف عدنان شاهين، مراجعة وتدقيق آلاء المتني يمان رجب، 2014 www.matlab4engineers.com