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Introduction

In statistics, estimation is an important process of �nding the approximate value of
some population�s parameters from random samples of the population. In this master�s

thesis, we are interested in the study of parametric estimation in the �eld of regression;

Sir Francis Galton was the �rst who coined the term �regression�. He tried to describe

a biological phenomenon, but his work was later extended by Undy Yule, Karl Pearson,

Lagendre and Gauss.

Regression analysis is one of the most commonly used statistical methods in practice.

The applications of regression analysis can be found in many scienti�c �elds including

medicine, biology, agriculture, economics, engineering, sociology, geology, etc. It consists

of techniques for modeling the relationship between a dependent variable and one or more

independent variables.

In regression, the dependent variable is modeled as a function of independent variables,

corresponding regression parameters (coe¢ cients), and a random error term. The para-

meters of the regression models can be estimated using di¤erent method, one of the most

commonly techniques is the ordinary last squares (OLS) method.

The main objective of this master�s thesis is to study the linear regression, which

requires the model to be linear in regression parameters although, we gave a small overview

of the nonlinear regression where we discussed some of the popular transformable nonlinear

regression models.

Our master�s thesis is divided into three chapters. In the �rst chapter, we tackles the
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Introduction

simple linear regression, which aims to model the linear relationship between two variables;

one of them is independent variable while the other is dependent. Also we have discussed

the very basics characteristics of it.

The second chapter outlines the multiple linear regression that focuses on the linear

relationship between one dependent variable and more than one independent variable, we

end this chapter with a brief explanation of the nonlinear regression model, which assumes

that the relationship between the dependent variable and the independent variables is not

linear in regression parameters. In particular, we introduce the transformable models with

an explanatory example using the Statistical Package for Social Science (SPSS).

Finally, the third chapter presents a time series regression, which is about the global

temperature and we aim to study how the temperature change over years with the use of

a polynomial regression model. All the result are required from the software R.

We hope that our audiences will have a bene�cial view about regression.
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Chapter 1

Simple linear regression

This chapter is devoted the basic idea of linear regression. We started it by giving an

introductive example about simple regression and we discussed the estimation of regression

parameters containing a single variable.

In addition, we present tests of hypothesis and the con�dence interval; moreover, we

summarize the analysis of variance by presenting the variance analysis equation.

We explain the determination, correlation coe¢ cient and we end this chapter by de�n-

ing the most important issue in regression, which is prediction.

1.1 Introduction

One of the oldest topics in the area of mathematical statistics is to �nd and investigate

the relationship between variables. For example, does consumption e¤ect the production?

Following the table 1.1 Summarizes a study carried out by Sudanese Company[1]. The

data concerns 14 years from 1973 to 1987 about the production and the consumption of a

sugar (Sugar was measured in tons "t").

3



Chapter 1. Simple linear regression

i 1 2 3 4 5 6 7

x 16:5 17:7 19:0 20:8 22:8 26:3 30:60

y 382:7 413:2 446:5 466:8 487:8 500:0 520:0

i 8 9 10 11 12 13 14

x 34:5 40:3 42:0 47:2 50:3 59:0 66:5

y 520:0 602:0 613:0 638:0 660:2 700:2 800:1

Table 1.1: Production and consumption data

In order to answer the question: does consumption impact production we may like to

know the relationship between the amount of sugar production (y) and the consumption

(x). This falls into the �eld of regression analysis.

Graphically, we can represent this data in a scatter-plot as shown in �gure 1.1 clearly

from the scatter-plot we can observe that there is a relationship between y and x; in

other words, the higher the consumption amount, the higher tends to be the production

value. Thus, we have plotted a line that describes this relationship, it indicates the general

tendency in which production vary with the consumption performance�s level. However, in

reality; there are many other factors besides of consumption that will a¤ect the production

but not included in the model (like price and agricultural area...) it is usually considered

to be of a random nature and it has indicated by ". We can formulate this relationship as

follow:

y = f(x) + "

where f is an a¢ ne function from R to R.

Therefore, the best way to present the e¤ect of a quantitative variable on another

quantitative variable is to draw a scatter plot and �nd the line best �t. Generally, we use

the statistical simple linear regression method.
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Chapter 1. Simple linear regression

Figure 1.1: Relationship between production and consumption data

1.2 Simple regression model

De�nition 1.2.1 Simple linear regression is used to model the relationship between two

quantitative variable. For a set of n observed values (xi; yi)i=1;n of random variable�s (x; y),

a single response measurement y is related to a single predictor x for each observation, the

model can be expressed as follows:

yi = �0 + �1xi + "i ; i = 1; n (1.1)

where:
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Chapter 1. Simple linear regression

- yi represents the ith value of the response (dependent) random variable y.

- xi represents the ith value of the predictor (independent) deterministic variable x.

- �1 represents the slope of the regression line.

- �0 represents the intercept of the regression line.

- "i is the random error term with mean E(") = 0, variance V ar(") = �2 and covariance

Cov("i; "j) = 0, 8i 6= j.

In addition, those values form a system of linear equations. We can represent it in

matrix form as:

Y = X� + "

such: Y :=

266666664

y1

y2
...

yn

377777775
; X :=

266666664

1 x1

1 x2
...

...

1 xn

377777775
; � :=

264 �0
�1

375 and " :=
266666664

"1

"2
...

"n

377777775
1.3 Parameter estimation

In order to �nd good estimates for the parameters �0 and �1, we employ the Ordinary

Least Squares (OLS) method, which gives the line that minimizes the sum squared of the

vertical distances from each point to the line.

Remark 1.3.1 The vertical distance corresponding to the ith observation is:

ei = yi � byi; i = 1; n (1.2)

with:

byi = b�0 + b�1xi
These vertical distances are called the ordinary least squares residual�s. One of the

residuals�properties (1.2) is that their sum is equal to zero:
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Chapter 1. Simple linear regression

nX
i=1

ei = 0:

These residuals can be obtained by rewriting (1.2) as:

ei = yi � b�0 � b�1xi ; i = 1; n (1.3)

The sum of squares of these distances can then be written as:

Q( b�0; b�1) = nX
i=1i

e2i =

nX
i=1

(yi � b�0 � b�1xi)2; i = 1; n (1.4)

This comes back to determination of minimal optimal of Q( b�0; b�1), that is:
8><>:

@Q

@c�0 = �2
Pn

i=1(yi � b�0 � b�1xi) = 0
@Q

@c�1 = �2
Pn

i=1 xi(yi � b�0 � b�1xi) = 0
We �nd: 8><>:

b�0(Pn
i=1) +

b�1(Pn
i=1 xi) =

Pn
i=1 yib�0(Pn

i=1 xi) +
b�1(Pn

i=1 x
2
i ) =

Pn
i=1 yixi

Simplifying, we obtain:

b�1 = Pn
i=1(yi � y)(xi � x)Pn

i=1(xi � x)2
=
Sxy
S2x

and b�0 = y � b�1x (1.5)

where:

Sxy :=
1
n

Pn
i=1(yi � y)(xi � x):

Sx :=
1
n

Pn
i=1(xi � x)2:

y :=
Pn
i=1 yi
n

:

x :=
Pn
i=1 xi
n

:

7



Chapter 1. Simple linear regression

Finally, the ordinary least squares regression line is given by:

by = b�0 + b�1x (1.6)

An important theorem, called the Gauss Markov theorem states:

Theorem 1.3.1 Under the condition of a regression model (1.1), the least squares es-

timators �0; �1 in (1.5) are unbiased and have a minimum variance among all unbiased

linear estimators.[8]

Remark 1.3.2 an unbiased estimator of �2 is given by :

S2 :=

Pn
i=1(yi � byi)2
n� 2 =

Pn
i=1 e

2
i

n� 2 =
SSE

n� 2 (1.7)

where SSE is the sum of squares of the residuals.

Properties of OLS estimates:

a) E( b�0) = �0 ( b�0 is unbiased estimator of �0).
E( b�1) = �1 ( b�1 is unbiased estimator of �1).

b) V ar( b�0) = �2 h 1n + x2Pn
i=1(xi�x)2

i
= �2

n

h
1 + x2

S2x

i
:

V ar( b�1) = �2Pn
i=1(xi�x)2

= �2

nS2x
:

c) Cov( b�0; b�1) = Cov( b�1; b�0) = � �2xPn
i=1(xi�x)2

= � �2x
nS2x
:

1.4 Parameter estimation with a normal error distri-

bution

The following parameters �0; �1 and �2 can be estimated by the method of Maximum

Likelihood (ML), when the probability distribution of the error term is determined.

8



Chapter 1. Simple linear regression

Thus, we assume that the normal error regression model is:

yi = �0 + �1xi + "i ; i = 1; n (1.8)

where "i is independent with normal distribution: "i  N(0; �2) for all i = 1; n and

therefor, Yi  N(�0 + �1xi; �
2):

Under the normal errors assumption, the joint density of an observation yi is:

L(�; �2) =
nY
i=1

f(yi; �0; �1; �
2) (1.9)

=
1

(2��2)
n
2

exp[� 1

2�2

nX
i=1

(yi � �0 � �1xi)2]

Consequently, by using the log-likelihood function we obtain:

logL(�0; �1; �
2) = �n

2
log(2�)� n

2
log(�2)� 1

2�2

nX
i=1

(yi � �0 � �1xi)2

And the �rst partial derivatives of the log-likelihood function on �0; �1 and �2 give us:8>>>><>>>>:
Pn

i=1(yi � �0 � �1xi) = 0Pn
i=1 xi(yi � �0 � �1xi) = 0Pn
i=1(yi � �0 � �1xi)2 = n�2

Therefore, we get the following estimators:

8>>>><>>>>:
[�1;Ml =

Sxy
S2x

\�0;ML = y � b�1xb�2ML =
1
n

Pn
i=1(yi � byi)2

Remark 1.4.1 We note that the ML estimators of �0; �1 are identical to OLS estimators

of �0; �1, and for b�2ML is biased, therefor, we use the unbiased estimator is given in (1.7).
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Chapter 1. Simple linear regression

1.5 Tests of hypotheses and con�dence interval

In this part, we use a formal way of measuring the usefulness of x as a predictor of y,

which is a test of hypothesis about the regression parameters.

As stated earlier, we assume that the normal error regression model (1.8) is applicable.

1.5.1 Slope and intercept parameter test

The hypothesis test concerning the slope �1 and the intercept �0 is formed respectively:

�
H0 : �1 = 0
H1 : �1 6= 0

&
�
H0 : �0 = 0
H1 : �0 6= 0

Since that b�1 and b�0 are a linear combination of the observation Yi, thus, b�1 and b�0
will be normally distributed and can be expressed as follow:

b�1  N(�1;
�2

nS2x
) ,

b�1 � �1
�

Sx
p
n

 N(0; 1)

b�0  N(�0;
�2

n

�
1 +

x2

S2x

�
) ,

b�0 � �0
�p
n

q
1 + x2

S2x

 N(0; 1)

Since � is unknown, we replace it by S given in (1.7), therefore, we obtain:

T�1 :=
b�1 � �1

S
Sx
p
n

 tn�2 & T�0 :=
b�0 � �0

Sp
n

q
1 + x2

S2x

 tn�2 (1.10)

Under the null hypothesis, we �nd:

T�1 =
b�1
S

Sx
p
n

& T�0 =
b�0

Sp
n

q
1 + x2

S2x

10



Chapter 1. Simple linear regression

Accordingly, at the level of signi�cance � �[0; 1]; H0 is rejected if:

jT�1j > t
1��

2
(n�2) & jT�0j > t

1��
2
(n�2)

where: t
1��

2
(n�2) is the (1��=2)100 percentile of the student distribution with (n� 2)

degrees of freedom.

1.5.2 Con�dence interval

Since the statistics in (1.10) follow a student distribution respectively, we can make

the following probability statement:

P (jT�1 j < t(n�2;1��
2
)) = 1� �

P (jT�0 j < t(n�2;1��
2
)) = 1� �

Therefore, the (1� �) con�dence limits for �1, �0 respectively are:

b�1 � t1��
2
(n�2)

S

Sx
p
n
;

b�0 � t1��
2
(n�2)

Sp
n

s
1 +

x2

S2x
:

11



Chapter 1. Simple linear regression

1.6 The analysis of variance

1.6.1 Variance analysis equation

The variance analysis equation arises from the description of the deviation of the yi

around their mean y. Thus, we have:

nX
i=1

(yi � y)2| {z }
:=SST

=

nX
i=1

(yi � byi)2| {z }
:=SSE

+

nX
i=1

(byi � y)2| {z }
:=SSR

such as:

� SST is Total sum of squares.

� SSR is Regression sum of squares.

� SSE is Error sum of squares.

1.6.2 The analysis of variance table for simple regression

The sums of squares are usually laid out in the following analysis of variance table

(ANOVA), this table adds a few extra columns like: Degrees of freedom (Df), Mean sums

of Squares (MS) and F-ratios(F). The calculations are displayed as follow:

Variation SS Df MS F

Regression SSR =
Pn

i=1(byi � y)2 1 MSR = SSR
1

MSR
MSE

Error SSE =
Pn

i=1(yi � byi)2 n� 2 MSE = SSE
n�2

Total SST =
Pn

i=1(yi � y)2 n� 1

Table 1.2: ANOVA table for simple linear regression

where:

MSR is the Regression mean squares.
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Chapter 1. Simple linear regression

MSE is the Error mean squares.

The analysis of variance provides us with a useful global test (simultaneous test on

� = (�0; �1)) for regression model. This test is denoted by F which called Fisher Statistic:

F =
MSR

MSE

allows to test: 8><>: H0 : �0 = �1 = 0

H1 : 9 �i 6= 0, i = f0; 1g

Accordingly, H0 is to be rejected if:

F > f1��(1;n�2)

So, test statistic is valide at that level, where f1��(1;n�2) is the (1��)100 percentile of the

Fisher distribution with (1; n� 2) degrees of freedom.

1.6.3 Determination and correlation coe¢ cients

� The measure R-squared ( R2) is called the coe¢ cient of determination, it can be

interpreted as the proportion of the total variation in Y that is accounted by the

predictor variable X, we can express it by:

R2 :=
SSR

SST
= 1� SSE

SST

Since 0 � SSE � SST , we note that:

0 � R2 � 1

Remark 1.6.1 A measure of linear association between Y and X when both Y and X are

13



Chapter 1. Simple linear regression

random is the coe¢ cient of correlation r. This measure is the signed square root of R2:

r = �
p
R2

A plus or minus sign is attached to this measure according to whether the slope of the �tted

regression line is positive or negative [8]. Thus, the range of r is:

�1 � r � 1

1.7 Prediction

An important application of regression model is predicting new observations y corre-

sponding to a speci�ed level of the predictor variable x.

In other words, prediction situation is when we have a new predictor variable and we

want to know the corresponding response, but it has not been observed, yet.

For a new predictor xk model (1.1) can be written as follows:

yk = �0 + �1xk + "k

with the following hypotheses:

E("k) = 0; V ar("k) = �
2; for all i 6= k, Cov("k; "i) = 0:

Thus, the predicted value for yk is:

byk = b�0 + b�1xk

14



Chapter 1. Simple linear regression

Now we discuss prediction interval on regression prediction, we have:

E(yk � byk) = 0
V ar(yk � byk) = V ar(�0 + �1xk + "k � b�0 � b�1xk)

= �2(1 +
1

n
+

(xk � x)2Pn
i=1(xi � x)2

)

Under the normality assumption of the error term, and substituting � with S, we �nd:

yk � byk
S
q
1 + 1

n
+ (xk�x)2Pn

i=1(xi�x)2

 tn�2

Therefore, prediction interval for (1� �) prediction limits is:

byk � t1��
2
(n�2)S

s
1 +

1

n
+

(xk � x)2Pn
i=1(xi � x)2

:
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Chapter 2

Multiple linear regression

In this chapter, we display the basics of multiple linear regression. Firstly, we introduce
the model and its matrix notation, then, we suggest the estimates of parameters by the

ordinary least squares. Moreover, we discuss the inference of parameters that contains

properties of estimates and con�dence interval.

In addition, we present the variance results that hold the coe¢ cient of multiple de-

termination, the overall table of variance and the global test, and we continue by review

prediction for multiple linear regression. Finally, we introduce nonlinear regression and

show a variety of transformable nonlinear regression models.

2.1 Modeling

Multiple linear regression is an extension (generalization) of simple regression where

the data consist of n observations on a dependent variable y and p predictor variables x.

The model is presented as:

y = �0 + �1x1 + �2x2 + :::::::+ �pxp + " (2.1)

16
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According to (2.1), each observation can be written as

yi = �0 + �1xi1 + �2xi2 + :::::::+ �pxip + "i, i = 1; n (2.2)

where,

- yi is the ith observation of the response variable y.

- xij , j = 1; p is the ith observation of the jth predictor x.

- "i is the ith error term.

- �j , j = 1; p are the slopes and �0 is the intercept.

2.1.1 Matrix notation

In matrix terms, the model (2.1) is expressed as:

Y = X� + ",

266666664

y1

y2
...

yn

377777775
=

266666664

1 x11 x12 � � � x1p

1 x21 x22 � � � x2p
...

...
...

. . .
...

1 xn1 xn2 � � � xnp

377777775

266666664

�0

�1
...

�p

377777775
+

266666664

"1

"2
...

"n

377777775
with:

- Y is a vector of responses (dim(Y ) = (n� 1)).

- X is a matrix of constants (dim(X) = (n� (p+ 1))).

- � is a vector of parameters (dim(�) = ((p+ 1)� 1)).

- " is a random vector of errors with mean vector E(") = 0n�1 and variance-covariance

matrix:

V ar(") =

266666664

�2 0 � � � 0

0 �2 � � � 0

...
...

. . .
...

0 0 � � � �2

377777775
= �2In; In :=

266666664

1 0 � � � 0

0 1
. . .

...
...
. . . . . . 0

0 � � � 0 1

377777775
:
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Chapter 2. Multiple linear regression

2.2 Estimation method

2.2.1 Ordinary least squares estimates

In order to �nd the estimator b� of �, we use OLS method, and for that, we minimize
the sum of squares of errors:

nX
i=1

e2i =
nX
i=1

(yi � ( b�0 + b�1xi1 + b�2xi2 + :::::::+ b�pxip))2
So, OLS estimate is given by the formula:

b� = (X tX)�1X tY: (2.3)

Denoting Q to the sum of squares errors:

Q( b�0; ::; b�p) = nX
i=1

e2i

= ete

= (Y �X b�)t(Y �X b�)
= Y tY � Y tX b� � b�tX tY + b�tX tX b�

Since Y tX� is a symmetric matrix, therefore:

Y tX b� = b�tX tY

Consequently:

Q( b�0; ::; b�p) = Y tY � 2b�tX tY + b�tX tX b�
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So, we calculate the �rst derivate of Q for � :

@Q

@b� = �2X tY + 2X tX b� = 0
Finally, If the inverse of matrix (X tX) exist ,we �nd the OLS estimates (2.3).

Theorem 2.2.1 Gauss-Markov

Among the unbiased estimators of � (linear function of Y ), b� is the one that has a
minimum variance with respect to each of its components, Therefore, b� is the Best Linear
Unbiased Estimators (BLUE)[8].

Remark 2.2.1 -Fitted values are:

bY = X b� = X(X tX)�1X tY (2.4)

-Residuals are:

e = Y � bY = (In �X(X tX)�1X t)Y

Theorem 2.2.2 Unbiased estimator of the variance �2 in the multiple linear regression

is given by [8]:

S2 =

Pn
i=1(Yi � bYi)2
n� (p+ 1) =

Pn
i=1 e

2
i

n� (p+ 1) =
SSE

n� (p+ 1) (2.5)

Remark 2.2.2 By adding the assumption of normality to the error term (" Nn(0n�1; �
2In))

we can use The method of ML which leads to the same estimators at (2.5) and (2.3).the

ML function in (1.9) generalizes directly for multiple regression as follows:

L(b�; �2) = 1p
(2��2)n

exp[� 1

2�2

nX
i=1

(yi � b�0 � b�1xi1 � :::::� b�pxip)2]

19
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2.3 Inference about parameter

2.3.1 Properties of the estimates

Theorem 2.3.1 1) The OLS and ML estimators in � are unbiased :

E(b�) = �
2) The variance-covariance matrix of �:

V ar(b�) = �2(X tX)�1

However, this estimator is biased, thus, we use the unbiased in (2.5), therefore:

V ar(b�) = S2(X tX)�1

Proof.

1)

E(b�) = E((X tX)�1X tY )

= E((X tX)�1X t(X� + "))

= � + (X tX)�1X tE(")

= �
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Chapter 2. Multiple linear regression

2)

V ar(b�) = E([b� � E(b�)]2)
= E([b� � �][b� � �]t)
= E((X tX)�1X t""tX(X tX)�1)

= �2(X tX)�1

We �nd the result by replacing �2 into S2.

2.3.2 Test for parameters

For " Nn(0n�1; �
2In) so b�  Nn(�; S

2(X tX)�1), we use the hypothesis test to test

�j: �
H0 : �j = 0
H1 : �j 6= 0

So, under the null hypothesis, test statistic is de�ned by:

T�j =
b�jp
vj

with vj is jth diagonal term of S2(X tX) matrix.

Thus, we reject H0, if

jT�j j > t1��
2
(n�p�1)

Here, t1��
2
(n�p�1) denotes the 100(1 � �

2
) percentile of the student distribution with

n� p� 1 degrees of freedom.
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2.3.3 Con�dence interval

Since, " Nn(0n; �
2In), we have:

b�j � �jp
vj
 t

1��
2
(n�p�1)

Hence, (1� �) the con�dence limits for �j are:

b�j � t1��
2
(n�p�1)

p
vj

2.4 Analyses of variance results

2.4.1 Coe¢ cient of multiple determination

As illustrated in simple regression, in multiple regression we have the decomposition

formula:

jjY � Y jj2| {z }
:=SST

= jjY � bY jj2| {z }
:=SSE

+ jjbY � Y jj2| {z }
SSR

Thus, multiple determination�s coe¢ cient is based on this decomposition, and it is

de�ned as follows:

R2 :=
SSR

SST
= 1� SSE

SST
= 1� jjY �

bY jj2
jjY � Y jj2

De�nition 2.4.1 The adjusted coe¢ cient of multiple determination R2a; is de�ned by:

R2a := 1�
(n� 1)SSE

(n� p� 1)SST = 1�
(n� 1)jjY � bY jj2

(n� p� 1)jjY � Y jj2

This is supposed to adjust the value of R2 to account for both the sample size and the

number of predictors.
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2.4.2 The overall ANOVA table:

The ANOVA table is set up as follows:

Variation SS Df MS F

Regression SSR =
Pn

i=1(
bYi � Y )2 p MSR = SSR

p
MSR
MSE

Error SSE =
Pn

i=1(Yi � bYi)2 n� p� 1 MSE = SSE
n�p�1

Total SST =
Pn

i=1(Yi � Y )2 n� 1

Table 2.1: ANOVA table for multiple linear regression

2.4.3 Global test

We denote the global test as follows:

8><>: H0 : �0 = ::: = �p = 0

H1 : 9 �j 6= 0

We use the test statistic:

F :=
MSR

MSE
=

jjbY � Y jj2=(p)
jjY � bY jj2=(n� p� 1)

Therefore, the decision rule is:

If F > f1��(p;n�p�1)

we reject the null hypothesis, which means the test is signi�cant, with f1��(p;n�p�1)

denote the 100(1 � �) percentile of the Fisher distribution with (p; n � p � 1) degree of

freedom.

Remark 2.4.1 In multiple regression, the F test does not indicate which parameter �j is

not equal to zero, only that at least one of them is linearly related to the response variable.
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2.5 Prediction and prediction interval

2.5.1 Prediction

In multiple regression, we use the equation (2.4) which can be written as follows:

byi = b�0 + b�1xi1 + ::::+ b�pxip ; i = 1; n
Thus, for a new predictor xk = (1; xk1; ::::; xkp), the predicted value for yk is:

byk = b�0 + b�1xk1 + ::::+ b�pxkp
2.5.2 Prediction interval

Using arguments which are similar to the ones in chapter 1, prediction interval in

multiple linear regression for a given xk = (1; xk1; ::::; xkp) is:

byk � t(n�p�1;1��
2
)S
q
1 + xtk(X

tX)�1xk

For (1� �) prediction limits.

2.6 Nonlinear regression

Nonlinear regression is a powerful tool for analyzing scienti�c data, especially if you

need to transform data to �t a linear regression. In statistics, nonlinear regression is a form

of regression analysis in which observational data are modeled by a function, which is a

nonlinear combination of the model parameters and depends on one or more independent

variables. The objective of nonlinear regression is to �t a model to the data you are

analyzing and estimate the possible parameters from the available data, but it is very

complicated to apply.
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Therefore, there is a class of function that can be linearized by applying the appropriate

transformations. In this case, the estimation of the parameters becomes possible.

De�nition 2.6.1 In general, we can state a nonlinear regression model in the form:

yi = f(xi; �) + "i

An observation yi is still the response given by the nonlinear response function f(xi; �)

and the error term "i. The error terms usually are assumed to have expectation zero,

constant variance, and to be uncorrelated, just as for linear regression models. Parameter

vector in the response function f(xi; �) is denoted by � [8].

2.6.1 Transformable nonlinear regression models

The following table represents the most four common nonlinear regression models that

can use in transforming our data in order to achieve a linear relationship between the newly

transformed variables and parameters which is the purpose of having a linear function in

this form:

f(x; �) = a+ bX

Model Variable Transformation Transformed parameter

Exponential y = �0e
�1x Y = ln(y), X = x a = ln(�0), b = �1

Logarithmic y = ln(�0x
�1) Y = y, X = ln(x) a = ln(�0), b = �1

Power y = �0x
�1 Y = log(y), X = log(x) a = log(�0), b = �1

Reciprocal y = 1
�0+�1x Y = 1

y
, X = x a = �0, b = �1

Table 2.2: The common nonlinear model transformation

Remark 2.6.1 In this case, we can easily obtain an estimate of the parameters with the

Ordinary Least Squares (OLS) method.
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Example 2.6.1 A mail order company seeking for the relationship between height and

volume of shipping boxes that have a square bases and varying height from 1 to 5 feet (1

ft = 1 m) [7]. The data are shown in the following table:

Height (ft) 1 1.5 2 2.5 3 3.5 4 4.5 5

Volume (ft3) 2 7 16 31 54 86 128 182 250

Table 2.3: Height and volume data of boxes

So as to solve this problem, �rstly, we need to observe the scatter plot of this data as

it�s shown in �gure (2.1).

Figure 2.1: Scatter plot of mail order company data & interpolation line.

Graphically, we notice that the scattered and trend curve are clearly nonlinear. There-

fore, we need to determine which regression model is most appropriate for data. Manually,

we can use the transformation in the table 2.2 to estimate the parameters and also to cal-

culate the R-squared value for each model, then, choose the model with the closest value to

one.
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In this example, we solve the relationship between height and volume using the SPSS

Statistics Software. Particularly, we use the curve estimation command.

SPSS output:

Equation Model summary Parameter Estimation

R square F df1 df2 Sig. Constant b1

Linear 0:851 39:891 1 7 0:000 1:853 0:013

Logarithmic 0:959 162:678 1 7 0:000 �0:010 0:817

Inverse 0:514 7:395 1 7 0:030 3:530 �6:091

Power 0:999 7523:898 1 7 0:000 0:804 0:327

Exponential 0:681 14:971 1 7 0:006 1:792 0:004

Table 2.4: Model summary and parameter estimates

Figure 2.2: The curve �tting for �ve models
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Explanation of the output:

Model summary and parameter estimates table show the result of curve estimation

for Linear, Logarithmic, Inverse, Power and Exponential models, it gives the estimated

values of regression coe¢ cient (the � coe¢ cient), in addition, the F test values show

whether the model is a good �t or not with the p-value and the R-square (R2 Coe¢ cient

of Determination).

The F, df1, df2, and Sig. columns summarize the results of the F test of model �t. The

signi�cance value of the F statistic is less than 0:05 for all models, which means that the

variation explained by each model is not due to chance. We note that R square statistic is

the important value, which is a measure of association strength between the observed and

model-predicted values of the dependent variable (in other words, it is a statistical measure

of how close data are to �tted regression line). Thus, the R square for the power model is

larger than other values (it is very close to one).

Finally, analyzing the curve �t chart gives you a quick visual assessment of the �t of

each model to the observed values. From this plot, it appears that the Power and Loga-

rithmic model better follow the shape of data. In particular, power model seems the best

explanation of the patterns observed in the data with R2 equal to 0:999.

Therefore, data �ts into power curve, the parameter can be obtained from the SPSS

output table. In this case, we have �0 = 0:804 and �1 = 0:327. Thus, regression line of

the Power model is:

y = 0:804x0:327:
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Application

In the previous two chapters, we studied some basic properties of regression analy-
sis. In this chapter, we shed the light on a popular regression model as an example for

application.

3.1 Introduction

Time series regression is a statistical method for predicting a future response based on

the response history that deals with time series data, which means that data is in a series

of particular time periods or intervals.

In this part, we discuss linear regression in the time series context to estimate the

parameters of the model. Therefore, to start a time series regression, we should build the

model in the sense of regression by assuming the output (dependent) time series, say, y,

which being in�uenced by a collection of possible inputs ( independent) series, say, xt.

We express this relation through the linear regression model:

y = f(xt) + ", t = 1; n (3.1)

where f(xt) is the general trend of the model; and the independent error terms " follow
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a normal distribution with mean 0 and variance equalto �2:

3.2 Representation of the data

Data that will be studied and analyzed is the global temperature anomaly data which

come from the Global Historical Climatology Network-Monthly (GHCN-M) data set and

International Comprehensive Ocean-Atmosphere Data Set (ICOADS), which have data

from 1880 to 2016, that means we have n = 137 observations.[9]. For more information

on this data, please visit " www.ncdc.noaa.gov/cag/global/data-info ". Data show how

variable y which is Global Temperature is changing over time denoted by t. To estimate

a time series regression model, a trend must be estimated. We begin by creating a Scat-

ter plot of the time series. Scatter plot can help visualize any relationship between the

explanatory variable time (also called regression variable, or predictor) and the response

variable Global temperature, it shows how a variable does change over time; it can be

used to inspect characteristics of data, in particular, to detect whether a trend exists.

Based on this data, our objective is to build a regression model as shown in (3.1), in

which we can set the model up for each observation as follow:

yi = f(ti) + "i; i = 1; n (3.2)

where, the independent variable is time; noted by t and y is the global temperature

which is the dependent variable. The following table provides a brief summary of data.

Variable Min 1st quantile Median Mean 3rd quantile Max

t 1880 1914 1948 1948 1982 2016

y �0:3006 �0:1774 0:0034 0:0663 0:2273 0:9363

Table 3.1: Summary of the global temperature data

Thus, we plot the yearly global tampreteur using the R code:
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>plot(t,y,col=�navy�,xlab = �years�,ylab = �Temperature (�C)�,main=�Global temper-

ature anomalies�,lwd=2)

The plot looks like this:

Figure 3.1: Scatter plot of global temperature over 1880-2016

The plot suggests that there is an obvious trend in data; however, the trend does not

appear to be quite linear. It appears as if the relationship is slightly curved.

One way of modeling the curvature in these data is by formulating a "polynomial

model" with one quantitative predictor, which is the time, it is provided in section (3.3).
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3.3 Fitting the model

In this section, we examine the yearly changing of the global temperature and we

restrict ourselves to polynomial regression, which is limited from �rst to fourth degree.

De�nition 3.3.1 Polynomial regression is a form of regression analysis in which we can

model the expected value of y as an dth degree polynomial, yielding the general polynomial

regression model,

y = �0 + �1t+ �2t
2 + ::::::+ �dt

d + "

with d is the degree of the polynomial. For lower degrees, the relationship has a speci�c

name (i.e., d = 2 is called quadratic, d = 3 is called cubic, d = 4 is called quartic, and

so on), polynomial regression is still considered linear regression since it is linear in the

regression coe¢ cients, �0; :::; �d, although, polynomial regression �ts a nonlinear model to

the data, as a statistical estimation problem it is linear, in the sense that the regression

function is linear in the unknown parameters that are estimated from the data. For this

reason, polynomial regression is considered to be a special case of multiple linear regression

[6].

The matricial form is:

Y = T� + "

where

Y = X� + ",

266666664

y1

y2
...

yn

377777775
=

266666664

1 t1 � � � td1

1 t2 � � � td2
...
...

. . .
...

1 tn � � � tdn

377777775

266666664

�0

�1
...

�d

377777775
+

266666664

"1

"2
...

"n

377777775
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Yet, we can de�ne the model that will be estimated by considering the functions in

(3.2) of the form:

f(ti) = f(ti; �0; �1; :::::; �d)

= �0 + �1ti + �2ti
2 + ::::::+ �dt

d
i

Thus, the model of temperature data is:

yi = �0 + �1ti + ::::::+ �dt
d
i + "i; d = 1; 4 and i = 1; n

In order to estimate the equation above, we only need the response variable (y) and the

predictor variable (t), however, building a polynomial regression model requires estimating

model�s parameters. Hense, we compare the four possible models and select the best one.

3.3.1 Model building

In order to, formally test whether a linear, quadratic, cubic or quartic trend occurs,

we can �t the four models to our data by using the function "lm" and instead of de�ning

each component of the regression model, it is equivalent to de�ne explicitly the regression

model as a polynomial of degree d with d = 1; 4:

R code used:

##model1 = linear

model1=lm(y~poly(t,degree=1,raw=T),lwd=2)

summary(model1)

lines(smooth.spline(t,predict(model1)), col="maroon",lwd=2)

##model2 = quadratic

model2=lm(y~poly(t,degree=2,raw=T),lwd=2)

summary(model2)

lines(smooth.spline(t,predict(model2)), col="green",lwd=2)
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##model3 = cubic

model3=lm(y~poly(t,degree=3,raw=T),lwd=2)

summary(model3)

lines(smooth.spline(t,predict(model3)), col="dodgerblue",lwd=2)

##model4 = quartic

model4=lm(y~poly(t,degree=4,raw=T),lwd=2)

summary(model4)

lines(smooth.spline(t,predict(model4)), col="red",lwd=3)

##legend

legend(1880, 0.8,legend=c("Polynomial of degree 1 ","Polynomial of degree 2" ,"Poly-

nomial of degree 3","Polynomial of degree4") ,col=c("maroon","green", "dodgerblue"

,"red") ,lwd=2)

##plot residuals

par(mfrow = c(2, 2))

plot(model1,main="Polynomial of degree 1", which=c(1,1))

plot(model2,main="Polynomial of degree 2", which=c(1,1))

plot(model3,main="Polynomial of degree 3", which=c(1,1))

plot(model4,main="Polynomial of degree 4", which=c(1,1))

Numerical results

The following table summarizes the most important characteristics of each model;

observations values are taken from the summary command, which gives us many numbers,

but the most important values for the four models, which are the estimates coe¢ cients

and its p-value, standard error S and adjusted R-squared R2a shall be recognized.
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Model Estimates p-value S R2a

Linear
b�0 = �1:277� 101b�1 = 6:589� 10�3

< 2� 10�16

< 2� 10�16
0:1335 0:7946

Quadratic

b�0 = 2:803� 102b�1 = �2:944� 10�1b�2 = 7:726� 10�5
< 2� 10�16

< 2� 10�16

< 2� 10�16

0:0774 0:9313

Cubic

b�0 = �1:657� 103b�1 = 2:691b�2 = �1:456� 10�3b�3 = 2:623� 10�7

0:0986

0:0819

0:0670

0:0539

0:0766 0:9332

Qaurtic

b�0 = 2:187� 105b�1 = �4:501� 102b�2 = 3:473� 10�1b�3 = �1:191� 10�4b�4 = 1:532� 10�8

6:66� 10�5

6:48� 10�5

6:30� 10�5

6:10� 10�5

5:89� 10�5

0:0724 0:9409

Table 3.2: Most important characteristics of summary of the four models

Based on the �p-value�we can conclude that the lesser the p-value the more signi�cant is

the variable, if the p-value is less than 0:05 (the default level), the predictor is an in�uential

factor in the variable we are trying to study. Consequently, from the �summary�dump we

notice that the estimate b�0,c�1; c�2 and b�3 of the cubic model are less signi�cant features
as the �p� value is large for them, however, all the predictors are signi�cant in linear,

quadratic and quartic model.

We can assume which model represents data well based on R2a value as it indicates how

much does variation the model capture. R2a closer to one indicates that the model explains

the large value of the variance of the model, hence a good �t. In this case, the value is

R2a = 0:9409 (closer to one) of the quartic model and also it has the smallest residual
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standard error S = 0:0724. As a start, we can say that quartic model represents data well

Some diagnostic plots:

At this point, it might be useful to plot all the four models, in order to analyze the good

trend and take an idea about the model that adequately approximates our data. In fact,

R does not have a function for plotting polynomials model, which are found. Therefore,

we must use the function �predict�which calculates the y values given the x values; the

coordinates are linked with lines. The previous code gives this plot:

Figure 3.2: The curve �tting for the four models
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Based on this graphic, we note that linear model does not describe the global trend in

data, in contrast, with the rest of the models that �t the shape of the general trend in a

good way. We also note that the quadratic and cubic models have very similar trends.

The residual plots:

It is important to verify some assumptions in which your data must meet in order to

have valid results. In this part, we focus on the assumptions that the residuals terms have

a mean of zero and constant variance. As so as to review these assumptions, we should

use residuals versus �tted values plot, which show the di¤erence between the observed

response and the �tted response values. The ideal residual plot, called the null residual

plot, shows a random scatter of points forming an approximately constant width band

around the identity line. If, for example, the residuals increase or decrease with the �tted

values in a pattern, the errors may not have a constant variance. The following �gure

given as the residual plot for each model:

Figure 3.3: Residuals versus �tted values plot for linear and quadratic models
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Figure 3.4: Residuals versus �tted values plot for cubic and quartic models

For linear model, there is de�nitely a noticeable pattern here. Residuals take on positive

values with small or large �tted values, and negative values in the middle. The points are

not randomly scattered around the zero line from left to right. This graph tells us we

should not use the regression model that produced these results.

Observing the other plots, there are no obvious patterns, but for quadratic and cubic

model, the residuals show a slight (increasing and decreasing) trend which suggests that

the residuals are not identically distributed around zero. However, the residuals�trend

of the quartic model began to disappear and it does not appear to increase or decrease

across the �tted values, so, we can assume that the variance in the error terms is constant.

The points on the plot above appear to be randomly scattered around zero, therefore, we

assume that the error terms have a mean of zero is reasonable.

3.3.2 Model selection

The sum of data analyzes and the available models being studied, on the other hand,

model selection procedure can help identifying the most appropriate model that �t our

38



Chapter 3. Application

data. In fact, there are several quantitative criteria and several statistical tests, which are

available for comparing models, thus, we present two of them.

Analyses of variance of two models

We compare two nested models: a full model y2 and a reduced model y1, we have:

y1 = �0 + �1x1 + :::+ �kxk + "

y2 = �0 + �1x1 + :::+ �kxk + �k+1xk+1 + :::+ �pxp + "

We intend to test the hypothesis in which the full model adds explanatory value over

the reduced model. That hypothesis is:

H0 : �k+1 = ::::: = �p = 0

The statistic we use is the following:

F =
explained variance
unexplained vriance

=
(SSEy1 � SSEy2)=(p� k)

SSEy2=(n� p� 1)

with, SSEy1 ; SSEy2 is the Error sum of squares for models y1; y2 respectively1:

Under the null hypothesis, the F test follows a Fisher distribution with (k�p; n�k�1)

degree of freedom thus, we can compute a p-value associated.

The F statistic test, if the model includes more predictors (full model) it will be signi�-

cant better than the reduced model, it has two hypothesis; the null hypothesis clari�es that

there is no signi�cant di¤erence between the two models, while the alternative hypothesis

states that the full model is more signi�cant.

The relevant values are produced by the ANOVA function in R. This function compares

1See:www.calvin.edu/~stob/courses/m241/F11/.../Nov29-anova.pdf.
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a reduced model to a full model. the following table gives a brief of the anova test:

Test F p-value

anova(linear,quadratic) 266:55 < 2:2� 10�16

anova(quadratic,cubic) 3:7829 0:05389

anova(cubic,quartic) 17:235 5:888� 10�5

Table 3.3: Result of ANOVA

As stated in table (3.3), and based on the p-value of the �rst test between linear and

quadratic model that is less than 0:05, we reject the null hypothesis and conclude that

there is a reliable evidence considers the quadratic model statistically signi�cant and better

�ts than the linear model.

For the second test, we can notice that the p-value is large, p=0:05389, thus, there

is not a statistically signi�cant di¤erence in the two models hence, we can decide that

the cubic term does not improve the model. However, we note that the quartic model is

slightly preferred to cubic model with p-value equal to 5:888� 10�5.

Information cretiria

Information criteria such as the Akaike information criterion (AIC) and the Bayesian

information criaterion (BIC) can also be used for comparing models. AIC and BIC are

both penalized-likelihood criteria,de�ned by:

AIC = �2 ln(L) + 2p; BIC = �2 ln(L) + log(n)p

where p is the number of parameters to estimate the model and L is the maximum of

the likelihood function of the model. The objective of these criteria is to propose a model

with an optimal compromise between the goodness of �t (measured by the log-likelihood)

and the complexity of the model (measured by the number of parameters p). The best

model is generally the one that minimizes both AIC and BIC. Therefore, we calculate it for
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the four models in R with the following command: AIC(model1,model2,model3,model4),

BIC(model1,model2,model3,model4)

Result:

Test Linear Quadratic Cubic Quartic

AIC �159:0447 �307:0581 �308:9004 �323:7131

BIC �150:2848 �295:3782 �294:3005 �306:1932

Table 3.4: Result of AIC and BIC for linear, quadratic, cubic and quartic model

Models with the lowest AIC and/or BIC are preferred. Here, both criteria agree on

rejecting Linear model with high con�dence and the quartic model have the lowest values

of AIC and BIC, which is considered the best model for this criterion.

Chosen model

The following table represents all the important values of the four models of the pre-

vious analysis.

Model S R2a AIC BIC

Linear 0:1335 0:7946 �159:0447 �150:2848

Quadratic 0:0774 0:9313 �307:0581 �295:3782

Cubic 0:0766 0:9332 �308:9004 �294:3005

Quartic 0:0724 0:9409 �323:7131 �306:1932

Table 3.5: S, adjusted R-squared, AIC and BIC result for each model

According to these values, we �nd that the quartic model is the most appropriate,

inspecting the other �t indices, the quartic model has the smallest value of the residual

standardnerror S, which is more signi�cantly than the other models, while the two infor-

mation criteria con�rmed that quartic model is a good choice. Furthermore, the R2a is the

highest of all models. Considering the overall summed up evidence, it seems reasonable to
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conclude that the quartic model is the most parsimonious and best-�tting model for this

data set. Finally, the �tted model of the global temperature is given by:

by = 2:187� 105 +�4:501� 102t+ 3:473� 10�1t2 +�1:191� 10�4t3 + 1:532� 10�8t4:
3.3.3 Con�dence and prediction interval of the �tted model

As �nal step, when you �t a parameter to a model, the accuracy or precision can be

expressed as a con�dence interval or a prediction interval, the two are quite distinct.

R code used:

r=predict(model4,interval="con�dence")

s=predict(model4,interval="prediction")

r1=r[,2]

r2=r[,3]

s1=s[,2]

s2=s[,3]

lines(smooth.spline(t,r1), col="darkgoldenrod1",lwd=4,lty = 3)

lines(smooth.spline(t,r2), col="deepskyblue",lwd=4,lty = 3)

lines(smooth.spline(t,s2), col="green",lwd=2)

lines(smooth.spline(t,s1), col="deeppink",lwd=2)

legend(1880, 0.8,legend=c("�tted line","Lower CI ","Upper CI","Upper PI","Lower

PI"), col=c("red","darkgoldenrod1","deepskyblue","green","deeppink"),

lty=c(1,3,3,1,1),lwd=2,bty="n",cex=0.9)

The �gure below explains each of them on the basis of the �tted model.
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Figure 3.5: Con�dence and prediction interval of the �tted model

The �gure shows the con�dence interval for the global temperature, which there is a

95% probability that the true best-�t line for the data lies within the two dotted lines.

Moreover, for the prediction interval there is a 95% of the y-values are found for a certain

x-value within the interval range around the regression line except three values that are

considered outliers.

We note that the prediction interval is wider than the con�dence interval of the pre-

diction.

3.4 Conclusion

The example shows how to approach linear regression modeling for the global temper-

ature over years. We focus our study on polynomials, which are powerful tools. In this
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case, we �nd that data was generated using a fourth degree polynomial, however, The

model that is created still has a scope for improvement as we can apply techniques like

Outlier detection, Correlation detection to further improve the accuracy of more accurate

prediction. As a matter of fact, when analyzing real data, we usually know few about it,

therefore, we need to be cautious, because the use of high order polynomials (d > 4) may

lead to over-�tting. Even though your model is getting better at �tting the existing data,

this can be bad when you try to predict new data and lead to misleading results.
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This master�s thesis explored the linear regression model, in which a dependent vari-

able is controlled or a¤ected by a set of independent variables. The purpose of regression

analysis is to establish a relationship between response variable and predictors, also, to

predict dependent variable based on a set of values of independent variables, moreover,

to identify which predictor is more important than others are and to explain the response

variable so that the relationship can be more e¢ ciently and accurately.

The commonly used techniques for estimating the parameters of regression are the OLS

and ML. Actually, the ML is a method used in estimating the parameters of a statistical

model and for �tting a statistical model to data. It is used when the functional form of the

probability distribution of the error term is speci�ed. While, the OLS is a general method

for approximately determining the unknown parameters located in a linear regression

model, moreover, no matter what may be the form of the distribution of the error terms,

the OLS method provides unbiased point estimator that have a minimum variance among

all unbiased linear estimators. However, we need to make an assumption about the form

of the distribution of the error to set up interval estimates and tests and a normal error

term greatly simpli�es the theory of regression analysis and it is justi�able in many real

world situations.

In this project, we emphasized on presenting a speci�c regression techniques including

simple linear regression analysis, multiple linear regression analysis, and we gave a high-

light about nonlinear regression. Particularly, we concentrated on studying a special case
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of data that is global temperature. We �rst reviewed its scatter plot, which has a curved

trend. Hence, in order to model this data, we proposed a polynomial regression that is

to model a non-linear relationship between the independent and dependent variable, but

as a statistical problem, it is considered linear. Therefore, we build typically four models

to �t our data before selecting the best model. For this, we used a useful commands and

diagnostics in software R; we relied on the function lm(), which �ts a model using Ordi-

nary Least Squares (OLS) method and we end this analysis by functions and parameters

to support a number of criteria for selecting models in R.

We conclude that the use of polynomial regression model may lead to the known

collinearity issues because of the high order polynomials. Therefore, the models developed

using regression analysis are not perfect, and there is many ways to improve our regression

model.

A researcher can use an advanced technique like Random Forest and Boosting tech-

nique. As a future project, we propose the application of Stochastic Gradient Boosting

and Nonlinear Regression Splines that handle the missing values, interactions, outliers and

nonlinearities in data.
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Annex A: softwares: R and SPSS

SPSS:

Statistical Package for Social Sciences (SPSS) is also one of the most widely used

softwares for the statistical analysis in the area of social sciences. It is one of the preferred

softwares used by market researchers, health researchers, survey companies, government,

education researchers, among others. In addition to statistical analysis, data management

(case selection, le reshaping, creating derived data) and data documentation (a metadata

dictionary is stored) are features of the SPSS. Many features of SPSS are accessible via pull-

down menus or can be programmed with a proprietary 4GL command syntax language.

R:

R is a language and environment for statistical computing and graphics. It is a GNU

project similar to the S language and environment. R can be considered as a di¤erent im-

plementation of S language. There are some important di¤erences, but much code written

for S language runs unaltered under R. The S language is often the vehicle of choice for re-

search in statistical methodology, and R provides an open source route to participation in

that activity. One of R�s strengths is the ease with which well-designed publication-quality

plots can be produced, including mathematical symbols and formulae where needed. R is

available as free software under the terms of the Free Software Foundation�s GNU General

Public License in source code form.
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Annex B: Abreviations and

Notations

i = 1; n the index i is incremented by one unit from 0 to n

x Sample mean

S2 Sample Variance

S Sample standard deviation

V ar(:) Variance.

E(:) Mathematical expectation (Mean)

Cov(:) Covariance

N(0; �2) Normal distribution with mean 0 and varince �2

Nn(0; �
2) Multivariate normal distribution with mean 0 and variance �2

At Transpose of matrix A

In Identity matrix size (n� n)

0n�1 Null vector

X  Distribution of X

R Real numbersQi=n
i=1 Product from i = 1 to i = nPi=n
i=1 Sum from i = 1 to i = n
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log(x) Commun Logarithm

ln(x) Natural Logarithm

Df Degree of freedom

p� value Probability value
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