
Democratic and Popular Republic of Algeria
Ministry of Higher Education and Scientific Research

University of Mohamed Khider - BISKRA
Faculty of Exact Sciences, Natural Sciences and Life

Computer Science Department

Order Number: IVA1/M2/2018

REPORT

PRESENTED TO OBTAIN THE ACADEMIC MASTER DIPLOMA IN

COMPUTER SCIENCE

OPTION: ARTIFICIAL LIFE AND IMAGE

The Alchemy Screen Space Ambient
Obscurance

By:
Rouabeh Younes

Defended the 25/06/2018, in front of the jury composed of:

Hamida Ammar MAA President

Zerari Abd Elmouméne MAA Supervisor

Benchabane Moufida MAA Examiner

University Year: 2017/2018

Dedication
i must express my very profound gratitude to my parents, my brothers and sisters, my
best friends for providing me with unfailing support and continuous encouragement
throughout my years of study and through the process of researching, writing and
achieving this humble project.
This accomplishment would not have been possible without them. Thank you. . .

Acknowledgements
First of all i want to thank Allah for giving me the courage and commitment to ac-
complish this work and for always guiding me to right path.

Secondly i would like to express my sincere gratitude to my advisor Mr.ABD EL
MOUMÉNE ZERARI for always being their for me when the curiosity overcomes,
when i ran into trouble spot or had question about my research or writing, for his
priceless advices that i had along this project or even before, for correcting the var-
ious faults that i’ve done or the misunderstanding that i had for several concepts.

I also want to express my thanks to Mr.Hamida Ammar for presiding the jury
and also thank Mrs.Benchabane Moufida for the effort and time they took to read
and evaluate this work.

I also want to thank all computer science teachers of Mohamed Kheidher Unver-
sity for their valuable lessons and advices during my study time.

I thank my fellow mates for the great years that we spent together and all the fun
we had.

Abstract

Achieving a global illumination in real time has always been the interest of com-
puter graphics where the need for approximations for rendering realistic scenes tak-
ing into account all kinds of interactions between light sources and objects of the
scene or objects between themselves. We are interested in one of the methods used
to approximate the global illumination which is the ambient occlusion that gener-
ates soft shadows in places with low light contribution to improve the realism of the
scene. Although it has excellent results for approximating global illumination, it is
not practical to use when real time is required because it depends on geometry in its
calculations.

Alchemy Ambient Obscurance Method on the other hand is considered to be one
of several solutions for approximating ambient obscurance which is an extended ver-
sion of ambient occlusion using screen space. This method has effective results in
real time, it causes a low performance, gives noisy results without speaking about
ignorance of the important contributions of the scene.

The goal of this project is to implement the original Alchemy Ambient Obscu-
rance Technique, to improve performance by using different filtering techniques
rather than the original and to improve the samples by performing a comparative
study between the different techniques of sampling to produce realistic and accept-
able results.

Keywords: global illumination, ambient obscurance, ambient occlusion, soft
shadows, screen space, filtering, sampling, real-time,

Résumé

Atteindre une illumination globale en temps réel a toujours été l’intérêt de l’infographie
où la nécessité des approximations pour un rendu des scènes réalistes en tenant
compte toutes sortes d’interactions entre les sources de lumière et les objets de la
scène ou les objets entre eux-mêmes. Nous nous intéressons à l’une des méthodes
utilisées pour approximer l’illumination globale qui est l’occultation ambiante qui
génère des ombres douces dans des endroits à faible contribution lumineuse afin
d’améliorer le réalisme de la scène. Bien qu’elle ait d’excellents rêsultats pour
l’approximation de l’illumination globale, elle n’est pas pratique à utiliser lorsque
le temps réel est demandé en raison du fait qu’il dépend de la géométrie dans ses
calculs.

La méthode d’Alchemy obscurance ambiante d’autre part est considérée comme
l’une des différentes solutions pour approximer l’obscurance ambiante qui est une
version étendue de l’occultation ambiante en utilisant l’espace écran. Cette méthode
a des résultats efficaces en temps réel, elle provoque une faible performance, donne
des résultats bruyants sans parler sur l’ignorance des contributions importantes de la
scène.

Le but de ce projet est d’implémenter la technique originale d’Alchemy obscu-
rance ambiante, d’améliorer les performances en utilisant différentes techniques de
filtrage plutôt que l’originale et d’améliorer les échantillons en effectuant une étude
comparative entre les différentes techniques d’échantillonnage pour produire des ré-
sultats réalistes et acceptables.

mots clés: illumination globale, obscurance ambiante , occlusion ambiante , om-
bres douces, espace écran, filtrage, échantillonnage, temps-réel,

Contents

General Introduction 1

1 Background 3
1.1 Introduction . 3
1.2 Illumination . 3

1.2.1 Local Illumination . 4
1.2.1.1 Local Reflection Types 4

1.2.1.1.1 Ambient Reflection 4
1.2.1.1.2 Diffuse Reflection 5
1.2.1.1.3 Specular Reflection 5

1.2.1.2 Local Illumination Techniques 7
1.2.1.2.1 Phong Illumination Model 7
1.2.1.2.2 Phong Blinn Illumination Model 8

1.2.2 Global Illumination . 8
1.3 Rendering Equation . 9

1.3.1 Solid Angle . 9
1.3.2 Radiance . 11
1.3.3 Irradiance . 11
1.3.4 Bidirectional Reflectance Distribution Function 12
1.3.5 Rendering Equation Foundation 13
1.3.6 Global Illumination Techniques 14

1.3.6.1 Radiosity . 14
1.3.6.2 Path Tracing . 15

1.4 Monte Carlo Integration . 15
1.4.1 Probabilites Theory Basics 16
1.4.2 Monte Carlo Estimator . 17
1.4.3 Convergence rates . 17

1.4.3.1 Importance Sampling 18
1.4.3.2 Distributions Techniques 19

1.5 Global Illumination Approximation Techniques 19
1.5.1 Instant Radiosity . 19
1.5.2 Reflective Shadow Maps 20
1.5.3 Imperfect Shadow Maps 21
1.5.4 Ambient Occlusion . 22
1.5.5 Comparison . 22

1.6 Conclusion . 23

Page v

Contents

2 Screen Space Ambient Occlusion 24
2.1 Introduction . 24
2.2 Ambient Occlusion . 24
2.3 Ambient Obscurance . 26
2.4 Real-Time Ambient Occlusion Methods 27

2.4.1 Object Based Methods . 27
2.4.1.1 Ambient Occlusion Fields 27
2.4.1.2 Fast Precomputed Ambient Occlusion for Shad-

ows Proximity 28
2.4.2 Point Based Methods . 28

2.4.2.1 Dynamic Ambient Occlusion and Indirect Lighting 28
2.4.2.2 Hardware Accelerated Ambient Occlusion Com-

putation . 28
2.4.3 Screen Space Based Methods 29

2.4.3.1 Screen Space Ambient Occlusion 30
2.4.3.2 Screen Space Directional Occlusion 30

2.4.4 Comparison . 31
2.5 Ambient Occlusion in Screen Space 32

2.5.1 Definition . 32
2.5.2 Screen Space Ambient Occlusion Techniques 33

2.5.2.1 Crytek Ambient Occlusion 33
2.5.2.2 StarCraft 2 Ambient Occlusion 34
2.5.2.3 Horizon Based Ambient Occlusion 34
2.5.2.4 Volumetric Obscurance 35
2.5.2.5 The Alchemy Ambient Obscurance 36
2.5.2.6 Comparison . 38

2.6 Filtering Techniques . 38
2.6.1 Anisotropic Filter . 39
2.6.2 Anti-Aliasing . 39
2.6.3 Gaussian Filter . 40
2.6.4 Bilateral Filter . 41
2.6.5 Comparison . 42

2.7 Conclusion . 43

3 GPUs and OpenGL Evolution 45
3.1 Introduction . 45
3.2 GPUs versus CPUs . 45
3.3 Acceleration Using GPUs . 46
3.4 GPUs Evolution . 46
3.5 GPU Architecture . 47

3.5.1 Material Components . 47
3.5.2 Shaders . 47
3.5.3 Graphic Pipeline . 48
3.5.4 Graphic Pipeline Evolution 49

3.6 GPUs Programming Languages 50
3.6.1 OpenGL Shading Language (GLSL) 51
3.6.2 High Level Shading Language (HLSL) 51

Page vi

Contents

3.6.3 C for Graphics (CG) . 51
3.7 OpenGL Evolution . 51

3.7.1 Compatibility profile . 53
3.7.2 Core profile . 53
3.7.3 Structures for Shader Programming 53

3.7.3.1 Vertex Buffer Object (VBO) 53
3.7.3.2 Element Buffer Object (EBO) 54
3.7.3.3 Vertex Array Object (VAO) 54
3.7.3.4 Frame Buffer Object (FBO) 54
3.7.3.5 G-Buffer . 55

3.8 Conclusion . 56

4 Results and Implementations 57
4.1 Introduction . 57
4.2 Project Description and Objectives 57
4.3 General Design . 57

4.3.1 Geometry Input . 58
4.3.2 G-Buffer Calculation . 59
4.3.3 Samples Creation . 60
4.3.4 AlchemySSAO Calculation 62
4.3.5 Filter Applying . 63
4.3.6 Illumination . 64

4.4 Realization . 64
4.4.1 Used Softwares and Materials 64

4.4.1.1 Materials . 64
4.4.1.2 Softwares and APIs 65

4.4.1.2.1 Softwares 65
4.4.1.2.2 APIs 65

4.4.2 Application Structure . 65
4.4.2.1 First Shader: G-Buffer 66
4.4.2.2 Second Shader: AlchemySSAO Calculation . . . 66

4.4.2.2.1 Display Screen Subdivision 66
4.4.2.2.2 Sampling Core 66
4.4.2.2.3 AlchemySSAO factor Calculation . . . 67

4.4.2.3 Third Shader: Filtering 67
4.4.2.4 Fourth Shader: Illumination 68
4.4.2.5 Additional Shader: Text render 68

4.5 Results . 70
4.5.1 Metrics . 70
4.5.2 G-Buffer Implementation 71
4.5.3 AlchemySSAO Results . 72
4.5.4 Sampling Core . 73
4.5.5 Sampling Distribution Techniques 74
4.5.6 Filtering Techniques . 80

4.5.6.1 Bilateral Filter 80
4.5.6.2 Gaussian Filter 81
4.5.6.3 4x4 blur Filter 83

Page vii

Contents

4.5.7 Filters comparison . 83
4.5.8 Scene Illumination . 84
4.5.9 Text render . 85
4.5.10 Results Discussion . 86
4.5.11 Conclusion . 87

General Conclusion 88

References 89

Page viii

List of Figures

1.1 Ambient reflection component properties 4
1.2 Diffuse reflection component properties 5
1.3 Specular reflection component properties 6
1.4 Reflection vector foundation . 6
1.5 Phong illumination model . 7
1.6 Phong Blinn illumination model 8
1.7 Global Illumination aspects demonstration using real-world photo-

graph. 9
1.8 Difference between local and global illumination. 9
1.9 Solid Angle difference from 2-D space to 3-D space. 10
1.10 Radiance involved geometry. 11
1.11 Different types of radiant receiving from a differential area. 12
1.12 Bidirectional Reflectance Distribution Function results and used Ge-

ometry . 12
1.13 A sample image from the kajiya rendering equation result. 14
1.14 Radiosity approches discretize the scene into patches and compute

the indirect illumination. 14
1.15 The power of Global Illumination in achieving realistic rendering. . 15
1.16 Monte Carlo sampling applied to shadow casting 16
1.17 Importance sampling different pdfs 18
1.18 Monte Carlo integration different distribution techniques using 17x17

samples kernel . 19
1.19 Instant Radiosity Indirect Illumination approximation 20
1.20 Global Illumination with imperfect shadow maps illustration 20
1.21 Reflective Shadow Maps components (depth, world space coordi-

nates, normal, flux) and resulted imaged rendered using the Reflec-
tive Shadow Maps. 21

1.22 Global Illumination with imperfect shadow maps illustration 21
1.23 Indirect illumination of a dynamic scene using Imperfect Shadow

Maps. 21
1.24 Ambient Occlusion and its visual improvement in rendering 22

2.1 Ray distributed in the normal-oriented hemisphere. 26
2.2 Ambient Occlusion in enclosed scenes results. 27
2.3 Ambient Occlusion Fields results. 27
2.4 Contact Shadows illustration. 28
2.5 Polygonal data converting to disk-shaped elements. 29
2.6 Realism enhanchement with ambient occlusion and indirect lighting

computation. 29
2.7 Standford Rabbit rendered with different light sources directions. . . 29

Page ix

List of Figures

2.8 Ambient Occlusion Approximation using Screen Space. 30
2.9 Screen Space Directional Occlusion different rendered results 31
2.10 Depth buffer visualization and its geometric definition 32
2.11 Ambient Occlusion factor approximation using sphere sampling in

Crytek technique, with the squares representing pixels as the green
defined the visible samples and red defines the occluded ones 33

2.12 StarCraftII rendered results using the normal-oriented hemisphere . 34
2.13 Horizon Based Ambient Occlusion technique result and illustration . 35
2.14 Volumetric Obscurance technique rendered results and technique il-

lustration . 36
2.15 AlchemyAO Alchemy engine results and technique illustration . . . 38
2.16 The huge difference between with and without Anisotropic filter as

the distance goes higher. 39
2.17 The effect resulted by the aliasing and its enhancement using the

anti-aliasing technique. 40
2.18 Gaussian Filtering illustration using Matlab platform 40
2.19 Bilateral Filtering results and technique illustration 42

3.1 NVIDIA Geforce 256 first GPU. 46
3.2 First Graphic Pipeline that is known as the Fixed function pipeline. . 49
3.3 Modern Graphic pipeline illustration. 50
3.4 FrameBuffer combination of the color,depth,stencil buffers. 54
3.5 Geometry informations Rendered for G-Buffer Textures for later use. 55

4.1 General Design. 58
4.2 loaded fire place room object with and without its own textures using

ASSIMP Library with FPS: 60-59 with Blinn-Phong Local Illumina-
tion Model. 59

4.3 G-Buffer different Textures . 60
4.4 Used Distribution Techniques and Importance Sampling for cosθ il-

lustration . 61
4.5 Noise texture used for rotating samples along z-axis 61
4.6 AlchemySSAO calculation with its essential factors illustration . . . 62
4.7 Different Blurring techniques which are used in noise suppression

illustration. 63
4.8 Global structure of the graphical application. 69
4.9 Text render shader additional shader structure. 70
4.10 G-Buffer implementation results. 71
4.11 AlchemySSAO factor calculated using random, uniform, stratified,

importance sampling techniques. 72
4.12 Comparison between the CrytekSSAO and the AlchemySSAO tech-

niques for ambient occlusion approximation. 73
4.13 enhanced results due the sampling core size variation. 74
4.14 Comparison of Sponza 3D model between the reference image and

implemented techniques using visual and root mean squared error
metrics. 75

Page x

List of Figures

4.15 Comparison of Fireplace room 3D model between the reference im-
age and implemented techniques using visual and root mean squared
error metrics. 76

4.16 Comparison of Sibenik 3D model between the reference image and
implemented techniques using visual and root mean squared error
metrics. 76

4.17 Comparison of Living room 3D model between the reference image
and implemented techniques using visual and root mean squared er-
ror metrics. 77

4.18 Comparison of Dragon 3D model between the reference image and
implemented techniques using visual and root mean squared error
metrics. 77

4.19 Comparison between a set of resulted images from rendering fire-
place room with different radius and tuning parameters. 78

4.20 Comparison between a set of resulted images from rendering sibenik
with different radius and tuning parameters. 79

4.21 Comparison between a set of resulted images from rendering living
room with different radius and tuning parameters. 79

4.22 Blurred AlchemySSAO factor using the bilateral filter with FPS: 9
and ms per frame average: 111ms, without FPS: 13 and ms per
frame average: 76ms . 80

4.23 Gaussian filter blurring phases illustration. 81
4.24 Blurred AlchemySSAO factor using the gaussian filter with FPS: 17

and ms per frame average: 58ms, without FPS: 23 and ms per
frame average: 43ms . 82

4.25 Blurred AlchemySSAO factor using the 4x4 blur filter with FPS: 11
and ms per frame average: 90ms, without FPS: 17 and ms per
frame average: 58ms . 83

4.26 Comparison between the original resulted AlchemySSAO factor and
the used filters . 84

4.27 with AlchemySSAO factor FPS: 20 and ms per frame average:
50ms, without FPS: 60 and ms per frame average: 16ms 85

4.28 Tuning parameters alongside the materials and softwares configura-
tions projected into the application frame. 86

Page xi

List of Tables

1.1 Global Illuminations Approximation Techniques 23

2.1 Ambient Occlusion different methods comparison 31
2.2 Comparison between the different SSAO techniques. 38
2.3 Comparison between the different filtering techniques used in the

computer graphics . 43

3.1 OpenGL Versions and Publication Dates. 52

Page xii

List of Abbreviations

SSAO Screen Space Ambient Occlusion
GPU Graphics Processing Unit
GL Graphics Library
L Luminance
E Energetic
A Area
BRDF Bidirectional Reflectance Distribution Function
PDF Probability Density Function
RMS Root Mean Squared
VPL Virtual Point Light
ISM Imperfect Shadow Maps
AO Ambient Occlusion
V Visibility
HBAO Horizon Based Ambient Occlusion
VO Volumetric Obscurance
CPU Central Processing Unit
R,G,B Red,Green, Blue

Page xiii

General Introduction

From the beginning of computer graphics the virtual vision was one of its biggest
interest in order to find a way to present reality or imagination graphically and to
facilitate human beings life, where it all started by trying to figure out what is go-
ing on in the real life when it comes to the visualization mechanism resulting the
essential component which is the light that is considered as the essence of our vi-
sual perception that is effected either by direct lighting, or indirect lighting or both
of them together to result the realistic visualization mechanism which known as the
global illumination.

Due the fact that the global illumination takes into consideration all types of
interactions whether these types of interactions are direct or indirect. Accomplish-
ing a full global illumination calculation in real-time is nearly impossible, and also
demands powerful computers which are a lot expensive, and not possessed by all
mankind that’s why it is approximated rather than being exactly calculated.

One of the techniques that are used to approximate the global illumination and
more specifically the indirect interactions is the ambient occlusion, which is defined
as the amount of obstruction there is between a scene geometry and a light source,
where each object is lit by taking all geometry into account resulting soft shadows in
places like corners, cracks or even human body wrinkles, which add a quite amount
of realism due the appearance of different geometry details by using the geometry
itself which is considered to be a time consuming, and therefore it is not quite prac-
tical when in comes to a real-time need.

Several methods are used in order to achieve a scale down version of the am-
bient occlusion, using screen space rather than the geometry itself to enhance per-
formance in real-time known as screen space ambient occlusion (SSAO), by using
pixel depth that is obtained from a depth buffer where the AlchemySSAO which is a
SSAO method considered to use these depth informations to calculate a vector be-
tween the occludee and the occluder, which is used along other tuning parameters to
approximate the ambient occlusion factor where the results are noisy due the usage
of random sampling, and also low when it comes to performance which is caused by
the chosen filtering method.

The objective of this project is to enhance the realism of a virtual rendered scene
with highest performance, using the AlchemySSAO technique with a comparative
study between the original applied sampling and filtering methods, and other sug-
gested methods while using the power of GPUs to accelerate calculations, due the
fact of its huge amount of cores that makes real-time rendering possible.

Page 1

General Introduction

This project has been splitted into four chapters in order to accomplish the objec-
tive:

A background chapter as the first chapter, where we present the types of illumi-
nations and going deeper to the foundation of the global illumination, along with its
different fundamentals continuing with the essence of its approximation, which is the
monte Carlo integration also going further to the global illumination approximation
techniques.

In the second chapter we introduce the ambient occlusion, along with the ambient
obscurance and the different ambient occlusion methods, which are followed by the
screen space ambient occlusion and the different filtering techniques.

The third chapter contains the components that make this project possible, which
are the GPUs and OpenGL where we go through the GPU architecture, and its dif-
ferent programming languages along the OpenGL evolution, and its different profiles
and structures.

The implementation and results are defined as the last chapter, where we present
the description and the different objectives of this project, along with the general
design of the graphical application continuing with the application realization steps,
and the different obtained results.

And lastly, we finish up with a general conclusion that contains the different
accomplishments.

Page 2

Chapter 1

Background

1.1 Introduction
From the first appearance of the computer graphics realistic real-time scene render-
ing has always been the interest of researchers while achieving this goal requires the
study of a lot of phenomenons like light and materials nature, the interaction between
them where everything is transformed into mathematical formulas that are used in or-
der to achieve the closest realistic scene rendering with small amount of sacrifice that
might be in time or quality, or maybe even performance if it is necessary.

Where the light interactions have been divided into two major types direct in-
teraction which is known as Local Illumination and indirect Interaction known as
Global Illumination, each of these types has a different light source understanding
which cause eventually a time consumption that leads to real-time aspect loosing
when it comes to the global illumination, contrary local illumination which can be
calculated in real-time.

In this chapter, we start with the illumination different models, after that we go
through the rendering equation of the global illumination, its demonstration, finally
its different solutions which are based on approximation techniques.

1.2 Illumination
As we all know lighting a certain place can’t be done without having light transported
into the scene interacted with the different materials types causing light energy get-
ting weaker each time the light hits a surface leaving an amount of energy to be
redirected in multiple directions.

We mentioned in Section 1.1 that the light interactions are divided into two major
types :

• Local Illumination: Which takes in consideration only light to surface interac-
tions[1].

• Global Illumination: Which also takes in consideration surface-to-surface in-
teractions[1].

Page 3

Chapter 1. Background

1.2.1 Local Illumination
Illuminate scene elements locally needs a direct contact with the light source, which
means that each element of the scene is lit as if there were no other elements in the
scene and that’s what exactly defines local illumination. Also scene elements are not
all the same each element has its own material type which leads us to different types
of reflections depending on how each surface react with the light source which is
known as the illumination model, and of course a shading model to define in which
way the illumination model is applied in order to achieve the element material[2].

1.2.1.1 Local Reflection Types

Local Reflections are resulted by an interaction between a light ray and an element
of the scene as we mentioned in Section 1.2.1 where the element of the scene re-
quires a material type taking for example metal, mirroir requires specularity, walls
requires diffuse, hair requires diffuse and specularity, etc.... with a very simplified
calculations that leads to a low degree of realism.

1.2.1.1.1 Ambient Reflection

Ambient reflection is used in most scenes to minimize unlit areas and to approximate
global lighting by using a uniform value. Although it can be valuable, it should
be used with caution such as in Figure 1.1(a) to avoid high brightness of all scene
objects which leads to details vanishing like Figure 1.1(b), in fact uniform ambient
light alone can’t give details or even define an element shape such as in Figure 1.1(c)
and that is not identical to the real world[2].

(A) Well controlled ambi-
ent light with specular, dif-

fuse reflections

(B) Details vanishing
caused by high ambient

light value

(C) Absence of details
caused by a uniform

ambient light

FIGURE 1.1: Ambient reflection component properties

Ambient Reflection is calculated using the following formula :

I = Ia ·Ka

Where :
Ia is defined as low light constant intensity referred to as Ambient Intensity.
Ka is defined as ambient material of a certain object referred to as Ambient Coeffi-
cient.

Page 4

Chapter 1. Background

1.2.1.1.2 Diffuse Reflection

Diffuse Reflection means that surfaces lighting depends on the visual light source
and how each surface is facing it with a particular angle θ that can be calculated
using a light source ray and a surface normal giving us the ability to calculate its
cosine variable in a certain interval between [0,1] where the 0 value means absolute
darkness which leads to ambient lighting such as in Figure 1.2(a) while the 1 value
means that the surface is full lighted, or partially lighted for the values between 0
and 1 like in Figure 1.2(b) which is known as shading leading to details appearance,
where it doesn’t matter which direction the eye is, but does matter which direction
the light is as Figure 1.2(c) shows[3].

(A) Absence of diffuse re-
flection

(B) Details appearing due
the diffuse reflection

(C) perfect diffuse reflec-
tion

FIGURE 1.2: Diffuse reflection component properties

Diffuse Reflection is calculated using the following formula :

I = Id ·Kd cosθ

= Id ·Kd(N̂ · L̂)

Where :
Id is defined as light intensity referred to as Diffuse Intensity.
Kd is defined as Diffuse material of a certain object referred to as Diffuse Coefficient.
cosθ = (N̂ · L̂) is defined as the dot product between the normalized surface normal
and a normalized light source ray.

1.2.1.1.3 Specular Reflection

Until now we only spoke about the ambient, diffuse reflection types that are needed
usually a lot for matte surfaces like we mentioned in Section 1.2.1 as in Figure 1.3(a)
while specular reflection is used in order to render a shiny object, or specular like
metal, mirror using the view vector and reflecting a light source ray with the same
angle taking the surface normal as a symmetry axis such as Figure 1.3(c) which is
called the mirror reflection. In other words, real materials exhibit some amount of
specular reflection Figure 1.3(b) around the mirror reflection angle where the very
shiny surfaces specularly reflect over a very small range of angles. Less shiny ma-
terials reflect specular highlights over a wider range where the specular highlight is
controlled using a specular power value[4].

Page 5

Chapter 1. Background

(A) Absence of specular re-
flection matte surfaces

(B) specular high depend-
ing on eye view

(C) perfect specular reflec-
tion

FIGURE 1.3: Specular reflection component properties

Specular Reflection is calculated using the following formula :

I = Is ·Ks cosα

= Is ·Ks(R̂ ·V̂)n

With : R̂ = L̂−2(L̂ · N̂)N̂ as the reflection vector. Which is resulted from :

FIGURE 1.4: Reflection vector foundation

θL = θR

L̂ · N̂ = R̂ · N̂
Û ′ =−Û”

Û” = L̂− N̂” = L̂− (L̂ · N̂)N̂

Û ′ = R̂− N̂′ = R̂− (R̂ · N̂)N̂

R̂− (L̂ · N̂)N̂ =−(L̂− (L̂ · N̂)N̂)

R̂− (R̂ · N̂)N̂ =−(L̂− (L̂ · N̂)N̂)

R̂ = (L̂ · N̂)N̂− (L̂− (L̂ · N̂)N̂)

R̂ = (L̂ · N̂)N̂− L̂+(L̂ · N̂)N̂

R̂ = 2(N̂ · L̂)N̂− L̂

Where :
Is is defined as the highest light intensity referred to as Specular Intensity.
Ks is defined as Specular material of a certain object referred to as Specular Coeffi-
cient.
cosα = (R̂ ·V̂) is defined as the dot product between the normalized view vector and
the normalized reflection vector.
n is defined as the material specularity degree referred to as specular power.

Page 6

Chapter 1. Background

1.2.1.2 Local Illumination Techniques

Local illumination techniques depend only on a visual light source as we mentioned
in Section 1.2.1, which means direct interaction of each object surface with a light
source resulting different illuminations that is based on the used illumination model,
where some of them are discussed the next few sections.

1.2.1.2.1 Phong Illumination Model

The Phong illumination model consists of being one of the first illumination models
Figure 1.5(a) that has been introduced to the computer graphics in 1975[5], where
the phong model consist of calculating the illumination at certain point using the
three local illumination types mentioned in Section 1.2.1.1 which are the Ambient
Component, Diffuse Component known as the ideal diffuse model lambertian and
the Specular Component. All these three components combined allows us to calcu-
late the light intensity at a certain surface point that depends on the observer location
where the light intensity is emitted at the observer location as in Figure 1.5(b) and
received constantly if the observer doesn’t change its location or variably with each
change of location[5].

Phong illumination model is calculated using the following formula :

I = Ia ·Ka + Id ·Kd(N̂ · L̂)+ Is ·Ks(R̂ ·V̂)n

(A) Buddha model using phong illumina-
tion model

(B) phong illumination model mathemat-
ical presentation

FIGURE 1.5: Phong illumination model

Page 7

Chapter 1. Background

1.2.1.2.2 Phong Blinn Illumination Model

As we know the phong illumination model uses the mirror reflection vector that needs
calculation for each pixel which is very expensive from performance side and gives
unrealistic results see Figure 1.6(a). A halfway vector has been introduced in order to
accelerate the calculation of the specular term by replacing the mirror reflection vec-
tor with the halfway vector Figure 1.6(c) producing a new enhanced model known as
phong Blinn[6], which gives a better rendering results than phong in terms of realism
as Figure 1.6(b) shows.

Phong illumination model is calculated using the following formula :

I = Ia ·Ka + Id ·Kd(N̂ · L̂)+ Is ·Ks(Ĥ · N̂)n

With The Halfway Vector equals to :

Ĥ =
(L+V)

|L+V |
= (L̂+V̂)

(A) Difference between
Phong and Phong Blinn

highlight

(B) buddha model using
Phong Blinn illumination

model

(C) Phong Blinn illumi-
nation model mathematical

presentation

FIGURE 1.6: Phong Blinn illumination model

1.2.2 Global Illumination
Rendering realistic scenes always takes into consideration all geometry into account
as in Figure 1.7 and in order to do those surface-to-surface interactions must be taken
in consideration alongside with light-to-surface interactions, where these two types
of interactions define the meaning of the global illumination as mentioned in Sec-
tion 1.2 that takes into account the light energy distribution inside a scene resulting a
high quality and realistic rendered images Figure 1.8(a) which obviously requires an
amount of time conversely the local illumination where the scenes look more artifi-
cial Figure 1.8(b) than realistic[7].

Page 8

Chapter 1. Background

FIGURE 1.7: Global Illumination aspects demonstration using
real-world photograph. Source: [8]

(A) Illumination at a point can depend on
any other point in the scene

(B) Illumination depends on local objects
and light sources only

FIGURE 1.8: Difference between local and global illumination.
Source: [9]

1.3 Rendering Equation
A lot of aspects are needed in order to achieve the global illumination rendering
equation which is complicated and needs to be resolved, where these aspects which
are the basics are defined in the next few parts.

1.3.1 Solid Angle
The solid angle is the extension to 3D of the standard 2D angle see Figure 1.9(a).
Instead of working on the unit circle in two dimensions, the projection of a given
object into the unit sphere is calculated Figure 1.9(b).

Page 9

Chapter 1. Background

A solid angle is expressed in steradians(sr) where it is used for small areas, each
point of the unit sphere has a spherical coordinates which are (r,θ ,ϕ) as shown in
Figure 1.9(c)[2].

The area of the surface dA at this point is given by:

dA = r2 sinθdθdϕ

The differential solid angle, dω , is given by:

dω =
dA
r2 = sinθdθdϕ

(A) 2-D angle (B) 3-D angle

(C) Solid Angle and Spherical Coordinates

FIGURE 1.9: Solid Angle difference from 2-D space to 3-D space.
Source: [10]

Page 10

Chapter 1. Background

1.3.2 Radiance
Radiance L is defined as the radiant flux, or the quantity of energy Φ that is emitted
in a given direction per unit solid angle dω per unit area dA Figure 1.10 [2], which
cause other surfaces illumination or a scene visualization.

Radiance L is defined by the following formula :

L(x→ θ) =
d2Φ

dA⊥dω
=

d2Φ

dAdω cosθ

Where the flux radiant Φ is giving by :

Φ =
dQ
dt

FIGURE 1.10: Radiance involved geometry. Source: [2]

1.3.3 Irradiance
While the radiance or luminance is the radiant quantity emitted in a given direction
the irradiance E is completely the opposite, which means that it is the radiant quan-
tity received by an object surface that comes from a light source known as radiant
flux as Figure 1.11(a) shows, or comes from other surfaces known as the radiant exi-
tance as in fig. 1.11(b)[10].

Irradiance mathematical formula demonstration:

L =
d2Φ

dA⊥dω

=
d dΦ

dA
dω cosθ

=
dE

dω cosθ

→ dE = Ldω cosθ

dE(x← ψ) = Li(x← ψ)cosθdωψ

Page 11

Chapter 1. Background

(A) Irradiance "radiant flux" (B) Irradiance exitance "radiant exitance"

FIGURE 1.11: Different types of radiant receiving from a differential
area. Source: [10]

1.3.4 Bidirectional Reflectance Distribution Function
In Section 1.2.1.2, we spoke about some of the simplified illumination models that
don’t require complications like the BRDF does Figure 1.12(a) and uses just a simple
dot product operation to estimate the shading of a certain shape, and assuming that
every surface is smooth surface which results unrealistic rendered images. Here the
BRDF comes in handy which describes how an incident light is reflected by a rough
surface point toward the viewer direction inside a hemisphere while respecting the
energy conservation law which means that there is no loss in energy, everything is
taking into account which gives a more realistic results like Figure 1.12(b) shows.

The BRDF is defined as follow :

f r(x,ψ ↔ θ) =
dL(x→ θ)

dE(x← ψ)
=

dL(x→ θ)

Li(x← ψ)cosθdωψ

(A) Geometry for the definition of the brdf.
Source: [11]

(B) Dragon rendered with
MetalMaterial, based on re-
alistic measured gold scat-

tering data. Source: [12]

FIGURE 1.12: Bidirectional Reflectance Distribution Function results
and used Geometry

Page 12

Chapter 1. Background

1.3.5 Rendering Equation Foundation
The rendering equation which makes rendering realistic scenes possible Figure 1.13
that was founded by Kajiya in 1986[13] is defined by taking in consideration all the
real-world different light interactions or phenomenons. In other words as seen in
Figure 1.7 in Section 1.2.2 where these interactions have no analytic solution when
in comes to the illuminace part because of the massive relationship between each
element of the scene that has been known to be one of the biggest research prob-
lems in the computer graphics history. In this Section 1.3.5 rendering equation is
demonstrated step by step and some of the approximated solutions are presented
in the following Section 1.3.6 with what is known as the Monte Carlo Integration
in Section 1.4 that makes achieving an approximated global illumination almost in
real-time possible.

In order to demonstrate the foundation of the Rendering Equation, we start with
the part that has a sight of radiance (luminace) and irradiance (illuminace) part which
is the BRDF formula that is mentioned in Section 1.3.4.

Redering Equation is given by the following formula:

L(x→ θ) = Le(x→ θ)+Lr(x→ θ)

Where:
Le(x→ θ): is defined as the emitted spectrale radiance.
Lr(x→ θ): is defined as the reflected spectrale radiance.

The Le(x→ θ) side of the equation which is the emitted spectrale radiance is
easy part to calculate considering it as a one of the local illumination models cited
in Section 1.2.1 which is a direct illumination as explained in Section 1.2 while the
problem reside with the Lr(x→ θ) part that is the indirect illumination which comes
from other elements of the scene toward a certain point.

From Section 1.3.4 we have:

f r(x,ψ ↔ θ) =
dL(x→ θ)

dE(x← ψ)
=

dL(x→ θ)

Li(x← ψ)cosθdωψ

While Li(x← ψ)cosθdωψ is considered to be the irradiance (Illuminace) as men-
tioned in Section 1.3.3 of a certain point.
Radiance (Luminance) is equal to:

dL(x→ θ) = f r(x,ψ ↔ θ).Li(x← ψ)cosθdωψ

With taking into account all the possible directions dθ the resulted formula is inte-
grated on the hemisphere :

dL(x→ θ) =
∫

Ω

f r(x,ψ ↔ θ).Li(x← ψ)cosθdωψ

Page 13

Chapter 1. Background

FIGURE 1.13: A sample image from the kajiya rendering equation
result. Source: [13]

1.3.6 Global Illumination Techniques
In order to solve the rendering equation cited in Section 1.3, the reflected spectral
radiance Le integral part must be replaced with a summation which leads to precision
loss caused by transferring from the continuous space [x1,x2] to the discrete space
[s1,s2,s3,,sn] that allows a various of solutions either a non-interactive that are
explained in this section 1.3.6 or an interactive solutions which we go through in the
next Section 1.5.

1.3.6.1 Radiosity

The radiosity method consist of taking into account only ideal diffuse surfaces where
it is also known as the radiant exitance see Figure 1.11(b) in Section 1.3.3, or in other
words only Lambertian reflectors or emitters[2]. In Section 1.2.1.1.2 we come across
that a Lambertian surfaces are independent of the viewing direction which leads to
a great advantage for the radiosity method that is calculating the visual scene only
once, conversely the ray tracing that needs to calculate the illumination each time
the observer moves[14], even if radiosity is defined as a non-interactive method it
gives a full realistic scene rendered images when it comes to the diffuse component
as Figure 1.14 illustrate.

FIGURE 1.14: Radiosity approches discretize the scene into patches
and compute the indirect illumination. Source: [15]

Page 14

Chapter 1. Background

1.3.6.2 Path Tracing

In this section, we explain the Path Tracing Algorithm which is an extended ray
tracing algorithm because of the absence of the exact diffuse component aspect that
is caused by taking in consideration only one direction of illumination with the light
source direction like Figure 1.15(b) that is defined as direct illumination, the path
tracing comes to fill that gap by using the Monte Carlo sampling techniques which
we go through in the next section to provide a global illumination calculation in a
virtual scene, where the indirect lighting is calculated by tracing rays in all directions
surrounding the point of intersection on the surface resulting a high level of realism
as in Figure 1.15(b)[2].

(A) Path-traced Cornell room (B) Raytraced Cornell room

FIGURE 1.15: The power of Global Illumination in achieving realistic
rendering. Source: [2]

1.4 Monte Carlo Integration
We mentioned in Section 1.3.5 that Rendering Equation has no analytic solution,
which means that a higher dimensional and discontinuous integral needs to be solved
in order to estimate the light distribution in a virtual scene which requires numerical
integration techniques[12].

Although standard numerical integration methods either are deterministic such
as Gaussian quadrature which are effective in solving a higher dimensional integral
but convergence rate is poor which means that virtual scene rendering takes a quite
amount of time and no expected results. On the other hand, stochastic methods as
the Monte Carlo Integration are used during the fact that they depend on randomness
for integrals evaluations with a convergence rate that is independent of the integrand
dimensionality[12]. In this section, we review important concepts from probability
and Monte Carlo techniques to evaluate the key integrals in rendering.

Page 15

Chapter 1. Background

FIGURE 1.16: Monte Carlo sampling applied to shadow casting.
Source: [16]

While The Monte Carlo Integration is one of the most powerful and simplest
used methods in evaluation rendering equation integrals. But it has an inconvenient
which is the large variance of its samples that requires using a large set of samples
[17] in order to achieve the wanted results as Figure 1.16 shows.

The monte carlo ingeration sampling large variance leads to an unwanted effect
that is resulted in rendered images known as Noise due to the low number of used
samples, which needs to be high in order to reduce the variance and converge into
the wanted solution. A lot of techniques are developed to provide variance reduction
as the Importance Sampling that target the finest or wanted solution, or using the
randomness aspect to generate random values which contribute to reach the wanted
solution[12].

1.4.1 Probabilites Theory Basics
The main essence of probability theory is an experiment that can be repeated, at least
hypothetically, under essentially the same conditions and that may give different out-
comes on each time we repeat the experiment [17].

Where the possible set outcomes of an experiment are called "sample space" Ω

and each outcome of trial is known as a continuous random variable x, where its
behavior is entirely described by the distribution of values it takes. This distribution
can be quantitatively described by the probability density function with x∼ p[17].

The probability of x assumes a particular value in some interval [a,b] is given by:

Probability(x ∈ [a,b]) =
∫ b

a
p(x)dx

Page 16

Chapter 1. Background

The pdf has two characteristics:

p(x)≥ 0 (Probability is nonenegative)∫ +∞

−∞

p(x)dx = 1 (Probability(x ∈ IR) = 1

The average value that a real function f with a pd f takes is called expected
value giving by :

E(f (x)) =
∫

Ω

f (x)p(x)dx

The E(x) of a random variable can be calculated by setting f (x) = x.

1.4.2 Monte Carlo Estimator
One of the most important things in the monte carlo integration is the Monte Carlo
Estimator that allows any function f integral estimation by a summation of its values
in a sampling points using the pd f value at the same sampling points[2].

The Monte Carlo Estimator is given by the following formula :

〈I〉= 1
N

N

∑
i=1

f (xi)

p(xi)

Where:
N is the number of samples or ”kernelsamples”.
I is the the desired integral to estimate.
f (xi)
p(xi)

is the key part which makes the samples weighted that means higher samples
contribution in regions with low density and less contribution in regions with high
density.

Demonstration of the Monte Carlo Estimator formula:

E[〈I〉] = E
[

1
N

N

∑
i=1

f (xi)

p(xi)

]
=

1
N

N

∑
i=1

[
f (xi)

p(xi)

]
≈ 1

N
N
∫ f (x)

p(x)
p(x)dx =

∫
f (x)dx = I

1.4.3 Convergence rates
The convergence of Monte Carlo integration is computed by using the variance of its
estimator 〈I〉[18]. For simplicity Let Yi = f (Xi)/p(Xi), so that:

〈I〉= 1
N

N

∑
i=1

Yi

Also let Y = Y1. We then have :

V [Y] = E[Y 2]−E[Y]2 =
∫

Ω

f 2(x)
p(x)

p(x)dx− I2

Page 17

Chapter 1. Background

Now considering the quantity is finite, it won’t be hard to discover that the vari-
ance of 〈I〉 is decreased linearly with N:

σ
2[〈I〉] = σ

2
[

1
N

N

∑
i=1

Yi

]
=

1
N2 σ

2
[N

∑
i=1

Yi

]
=

1
N2

N

∑
i=1

σ
2[Yi] =

1
N

σ
2[Y]

While the fact that the Yi are independent samples. The σ2[aY] = a2σ2[Y], which
gives the standard deviation :

σ [〈I〉] = 1√
N

σY

Which leads us to consider that the RMS error converges at a rate of O(N
−1
2) that

means in order to reduce RMS error by 2 the sampling number must be increased
four times.

1.4.3.1 Importance Sampling

During to the variance slowest convergence as mentioned in the previous section,
an Importance sampling technique is used in order to reduce the estimator variance
and while each random value of the integrand f is divided by its pdf due to the
weighting process as we explained in Section 1.4.2, a similar density function p to
the integrand f must be chosen as in Figure 1.17(b)that makes the integrand function
looks more constant according to its pdf where p(x) = c f (x) is preferable to be the
best choice[18].

(A) Uniform PDF due the
uniform sampling which
has the highest convergence

rate

(B) Similar PDF or Good
PDF in other words which
gives the smallest conver-

gence rate error

(C) Bad PDF which must
be avoided and stick with
the uniform PDF in cases of

complications

FIGURE 1.17: for importance sampling to work, you need a PDF (in
red) which is as close as possible to the integrand function (in blue)

Importance Sampling considered to be the essence of the monte carlo integration,
if a good pdf is chosen which is not practical and not always the case due to the
absence of the desired integral value to compute the normalization constant c that
leads to 0 variance[18]. By other meaning a full disappearing of the noise effect in
rendered images rather than that we just stick with decreasing the variance value.

Page 18

Chapter 1. Background

1.4.3.2 Distributions Techniques

There is another strategy that comes along variance reduction which is ensuring that
samples are distributed more or less uniformly over the domain[18] that leads to a
faster convergence. Conversely picking samples randomly that causes missing im-
portant areas as in Figure 4.4(a), while uniform sampling which is illustrated in Fig-
ure 4.4(b) solve this problem it causes the aliasing effect, the stratified technique
Figure 4.4(c) comes to replace the aliasing effect with noise that leads to less percep-
tual human vision[19]

(A) randomly distributed
samples over 17x17 grid

(B) uniformly distributed
samples over 17x17 grid

(C) Stratified distributed
samples over 17x17 grid

FIGURE 1.18: Monte Carlo integration different distribution tech-
niques using 17x17 samples kernel

1.5 Global Illumination Approximation Techniques
In the previous Section 1.3.6, we came across the global illumination techniques
where it is well known that the used algorithms demand a quite amount of time in
order to render a realistic images which is unusable in Real-Time applications like
Video games for example, which requires the interactivity aspect and at the same
time a realistic rendered images aspect where gathering these two under one roof is
impossible without having the approximation term included. In this section, we cite
the most known global illumination approximation techniques.

1.5.1 Instant Radiosity
Instant Radiosity has been introduced to the computer graphics field by Keller[20],
which consist of replacing the secondary light bounce by a virtual light points re-
ferred to as (VPLs) as Figure 1.19(a) shows.

Where the algorithm of the instant radiosity depends on the monte carlo integra-
tion techniques, and to be more specifically a quasi-monte carlo integration that is
used in order to approximate the diffuse radiance in a scene by generating a particles
approximation of the diffuse radiance[20].

Page 19

Chapter 1. Background

After that the power of GPU is used in order to render shadows for each particle
that has been become a virtual light source, finally summing up the rendered images
that contains shadows produce a global illumination approximation Figure 1.19(b)[20].

(A) Traced Paths from the primary
light. Source: [21]

(B) Instant Radiosity results. Source:
[20]

FIGURE 1.19: Instant Radiosity Indirect Illumination approximation

1.5.2 Reflective Shadow Maps
Reflective Shadow Maps are defined as considering each pixel of shadow maps pix-
els as an indirect light source, which generates the one-bounce indirect illumination
in a scene with a single light source where all the surfaces visible in its shadow
maps are considered as one-bounce indirect illumination, what makes the shadow
maps contains indirect illumination information, which leads to considering that the
reflective shadow maps are collection of textures as Figure 1.23 shows that contains
information of surfaces visibility from a light source where this collection is sampled
to select the surfaces that are used as a virtual point lights like Figure 1.20 shows[22].

FIGURE 1.20: Two indirect pixel lights corresponding to two pixels.
Source: [22]

Page 20

Chapter 1. Background

FIGURE 1.21: Reflective Shadow Maps components (depth,
positions, normal, flux) and resulted imaged rendered using the
Reflective Shadow Maps. Source: [22]

1.5.3 Imperfect Shadow Maps
Imperfect Shadow Maps Shadow Maps (ISM) fril the other hand that was introduced
in 2008[23], uses low-resolution point representation in order to capture visibility in
the scene rather than high-resolution shadow maps[24].

Where the Imperfect Shadow Maps uses a different scene geometry representa-
tion to make shadow maps rendering rapidly enhanced, by using geometry points
as Figure 1.22 illustrate rather than using polygons which can provide the imperfect
shadow maps for indirect illumination calculation[23], in order to render a large scale
of shadow maps in just one draw call with less amount of geometry reduction.

FIGURE 1.22: Global Illumination with imperfect shadow maps
illustration. Source: [23]

FIGURE 1.23: Indirect illumination of a dynamic scene using
Imperfect Shadow Maps. Source: [23]

Page 21

Chapter 1. Background

1.5.4 Ambient Occlusion
Ambient Occlusion is a technique that takes in consideration light attenuation due
to occlusion. In another meaning, using AO makes scene parts occluded by nearby
objects for example, corners or cracks Figure 1.24(a) or even human body wrinkles
are more likely occluded than flat surfaces by making them receive less contribution
from the shading model resulting soft shadowed areas. Ambient Occlusion is popu-
lar technique in interactive application specially Videogames for its ability to provide
a substantial improvement in the shading realism and enhancing the scene visualiza-
tion Figure 1.24(b) rather than just using a constant ambient light Figure 1.24(b) as
mentioned in Section 1.2.1.1.1[25].

Where the ambient occlusion is considered to be a global illumination approxi-
mation method that depends only on geometry location, resulting one-dimensional
value that is between [0,1] used to define how much each scene point is exposed to a
to illumination process.

Regardless of the significant realism improvement by the AO its quite a time-
consuming technique which is caused by the traced rays that defines how much a
point as blocked by nearby objects[25].

(A) Ambient Occlusion realism en-
hancement in corners. Source: [26]

(B) Ambient Occlusion versus a con-
stant ambient term. Source: PRT-
Demo, Microsoft SDK, November

2007

FIGURE 1.24: Ambient Occlusion and its visual improvement in ren-
dering

1.5.5 Comparison
In this chapter section, we came across a comparison between the global illumina-
tion approximation techniques mentioned in Section 1.5 by citing each technique
advantages and disadvantages see Table 1.1.

Page 22

Chapter 1. Background

Technique Advantages Disadvantages

Instant Radiosity

- Efficient for Diffuse surfaces,
(can be extended to specular surfaces).
- Provide much more realism interactively.
- On the fly computed solution displaying.
- Low memory requirements.

- Time consuming technique due the VPLs number.
- View dependency.
- Final result quality depends on GPU capabality.

Reflective Shadow
Maps

- Geometric Bounce
- Dynamic lighting

- Indirect light sources aren’t occluded

Imperfect Shadow
Maps

- High Performance in Real-Time - Shadow Maps for higher resolution needs

Ambient occlusion
- Light Source independent technique.
- Soft Shadows are rendered.
- Highly improved scene realism.

- Geometry dependent technique,
(Complex Scenes leads to time consumption).
- Applicable just for Diffuse Environments.

TABLE 1.1: Global Illuminations Approximation Techniques

1.6 Conclusion
In this chapter, we came across the foundation of the global illumination and its var-
ious aspects which are included in its powerful equation that has been demonstrated
by extracting the radiance from the brdf, which makes scene rendering realistic as
much as it could either in deferred time using high-resolution techniques, or an ap-
proximation techniques that sacrifice a bit of realism in order to provide us the inter-
activity in real-time which is a very important aspect in computer graphics fields.

Where the Ambient Occlusion seems to be the fastest and the simplest global
illumination approximation technique that makes enhancing scene realism more alive
that before either statically, or dynamically.

Page 23

Chapter 2

Screen Space Ambient Occlusion

2.1 Introduction
The ambient occlusion add a quite amount of realism enhancement to the rendered
scenes by approximating the global illumination in places where the light intensity
has a small or none contribution at all such as cracks, corners, and even the human
body wrinkles by surrounding each blocked point or occluded in more accurate way
by generating soft shadows which also makes objects shapes or "details" more visual
than before.

Regardless the realism enhancement of scene rendering that is calculated using
the ambient occlusion that provides a good ratio between quality and speed, but it
was never practical to run it completely in real-time for complex geometry in appli-
cations such as video games, where it needs to be computed per frame within few
milliseconds.

Screen Space Ambient Occlusion a technique that has achieved approximating
real-time ambient occlusion computation by completely rely on images and discard
all geometry dependency and complexity.

In this chapter, we start by the ambient occlusion foundation and its various meth-
ods, after that we come across the screen space and its powerful usage when it comes
to the ambient occlusion computation with the most recent and used screen space
ambient occlusion.

2.2 Ambient Occlusion
Global illumination approximation in most often used techniques requires knowledge
of how geometry is positioned in a scene the ambient occlusion has been introduced
in 2002[27] which approximates the amount of light reaching a point on a diffuse
surface based on its directly visible occluders[28].

The essence behind the ambient occlusion is that it compute how much each sur-
face point is exposed to light intensity which provide a quite approximation of how
much each point is soft shadowed using traced rays around each surface occluded
point.

Page 24

Chapter 2. Screen Space Ambient Occlusion

A Cosine-weighted distribution is used between a surface normal and a traced
ray in a hemisphere domain Ω as Figure 2.1 shows.

Where the ambient occlusion is demonstrated as follow:

We have the Rendering Equation equals to:

L(x→ θ) = Le(x→ θ)+
∫

Ω

f r(x,ψ ↔ θ).Li(x← ψ)cosθdωψ

We assume that the scne uses only a diffuse model so that all the emmited light
Le is coming from another source (environment map for example). This gives us:
Le(x→ θ) = 0. This removes the left term of the sum, so we have:

L(x→ θ) =
∫

Ω

f r(x,ψ ↔ θ).Li(x← ψ)cosθdωψ

Now, let’s choose a BRDF. For simplicity’s reason, we use Lambert’s model, so
f r(x,ψ ↔ θ) = c

π
with c the surface color, now we get:

L(x→ θ) =
c
π

∫
Ω

Li(x← ψ)cosθdωψ

Because f r is a constant, it is outside the integral.

Now, we simplify the incoming radiance from any direction side Li as a simple
visibility function V (ω) which is for occluder existent or nonexistent given as follow:

V (ω) =

{
0, Ray from p in direction ω hits anything
1, Otherwise

The unoccluded part of the hemisphere is not hard to compute but a stronger
mathematical is demanded in order to evaluate the integral[29].

Also, we set c = 1, because we assume that the surface is fully reflective, so the
value 1 won’t affect the color, the equation becomes:

A0(p) =
1
π

∫
Ω

V (ω)(n ·ω)dω

The integral needs to be evaluated by considering the quantity is finite monte
carlo integration is used to evaluation process which leads to the following for-
mula[29]:

AO≈ 1
N

N

∑
k=1

V · (n ·ωk)

Where:
AO is the Ambient Occlusion approximated factor.
N is the samples number in other words rays number. V is the previous discussed
visibility function. (n ·ωn): is the key part which is the dot product between a ray
sample ωn and the surface normal n.

Page 25

Chapter 2. Screen Space Ambient Occlusion

FIGURE 2.1: Rays distributed in the normal-oriented hemisphere.
Source: [28]

2.3 Ambient Obscurance
Ambient Occlusion gives a quite good approximation of occluded surfaces indirect
lighting which makes the rendered scene looks more realistic than before, but us-
ing Ray Marching methods in almost closed environments makes results much more
darker that leads even to details disappearing because of the small amount of rays
that could escape the scene which means that the visibility function of the AO V is in
the most cases equals to 0 leading to make scene getting darker until reaching fully
blacked scene as Figure 2.2 illustrates

Ambient Obscurance was introduced in 1998[30] which makes AO no longer de-
pends on the visibility function V but to be in more accurate way by using an attenu-
ation function usually called falloff function ρ(d) that use the distance d into account.

By taking the distance between a point and an occluder into account occluders
became having a little or no influence at all while calculating the ambient occlusion
factor which that the rendered scene is more brighter than using the visibility func-
tion[29].

The falloff function has the following properties:

ρ is monotonically increasing function of d.

The distance is considered finite by setting ρ(d) = 1 when d > dmax.

The Ambient Obscurance formula factor is given by the following formula:

AO∗(p) =
1
π

∫
Ω

ρ(|pω − p|)(n ·ω)dω

Where:
|pω − p| is defined as the distance between a point p and the ray ω first hit.

Page 26

Chapter 2. Screen Space Ambient Occlusion

FIGURE 2.2: Ambient Occlusion in enclosed scenes results Source:
[29]

2.4 Real-Time Ambient Occlusion Methods
When it comes to the ambient occlusion computation a lot of methods has been
provided to the computer graphics fields where each of these methods compete to
gain real-time aspect interactivity by depending on various types of computation:

2.4.1 Object Based Methods
Geometry based methods depends on the geometry itself to calculate the ambient
occlusion factor where these kind of methods don’t rely on traced rays, so they are
more efficient than ray-traced ambient occlusion which leads to real-time interactiv-
ity achievement as we present some of these methods in the next part[31].

2.4.1.1 Ambient Occlusion Fields

Ambient Occlusion fields technique consist of an inter-object ambient occlusion cal-
culation, where each occluded object has a pre-computation field in its surrounding
space that leads to an approximation of the occlusion that has been caused by a scene
object. where each field which is a volumetric information is then used for shadow
casting on the objects that have the occlusion influenceFigure 2.4[32].

FIGURE 2.3: Ambient Occlusion Fields results.. Source: [32]

Page 27

Chapter 2. Screen Space Ambient Occlusion

2.4.1.2 Fast Precomputed Ambient Occlusion for Shadows Proximity

Fast Precomputed ambient occlusion for shadows proximity considered as a new
method for ambient occlusion evaluation or more accurate stocking which is an ef-
ficient and simple that uses just a small amount of graphic memory in order to store
and retrieve the ambient occlusion values which has no relationship with the occluder
complexity which makes this method recommended for Real-Time needs[33].

FIGURE 2.4: Contact Shadows illustration. Source: [33]

2.4.2 Point Based Methods
Point based methods consider ambient occlusion factor computation as a process that
is done in each object point rather than the whole geometry itself where we present
some of these methods in the next part.

2.4.2.1 Dynamic Ambient Occlusion and Indirect Lighting

Dynamic Ambient Occlusion and Indirect is a technique that has been introduced by
Bunnell[34] of Nvidia that consist of using the gpu for computation acceleration of
each Ambient Occlusion and Indirect Lighting that turns algorithms usage in a real-
time possible which can be quite useful for dynamic.

Where the polygonal data in converted to surface elements which makes illu-
minated or shadowed surfaces by a part of a surface calculation easy, each surface
element is defined as an oriented disk with the geometry informations which are
the position, normal, area as Figure 2.5 shows. An element has a front face and a
back face that makes the front face responsible for light emitting and reflecting and
the back face has the shadows casting and light transmitting where for each object
point an element is created[34] which result a quite amount of realism illustrated in
Figure 2.7.

2.4.2.2 Hardware Accelerated Ambient Occlusion Computation

Hardware Accelerated Ambient Occlusion Computation uses the gpu to accelerate
the visibility between surface points and directional light sources computation[35].

Page 28

Chapter 2. Screen Space Ambient Occlusion

FIGURE 2.5: Polygonal data converting to disk-shaped elements.
Source: [34]

FIGURE 2.6: Realism enhanchement with ambient occlusion and in-
direct lighting computation. Source: [34]

Which gives an approximation of the rendering equation using gpu by accumulat-
ing depth tests of each vertex fragment as it is captured from a light source direction,
where this methods doesn’t require a preprocessing stage of scene object and no
memory lost costs that can be used either with static or dynamic geometry and can
handle a large polygonal models[35].

FIGURE 2.7: Standford Rabbit rendered with different light sources
directions. Source: [35]

2.4.3 Screen Space Based Methods
We mentioned in the previous sections the ambient occlusion computation methods
that are based on geometry now when it comes using images as a source for cal-
culating the ambient occlusion screen space methods are the finest ones where the

Page 29

Chapter 2. Screen Space Ambient Occlusion

computation depends completely on images rather than geometry which is known
that it takes a quite amount of time below we present most of the screen space used
methods.

2.4.3.1 Screen Space Ambient Occlusion

Screen Space Ambient Occlusion is a technique that has been introduced by Crytek
in 2007[36] by its creative developer Vladimir Kajalin and used for the first time
an efficient way for ambient occlusion calculation in a video game called Crysis
which has gained a lot of popularity in that time due the fast and simplest ambient
occlusion approximating computation, where this technique consider the depth buffer
as a geometry state approximation and as a pillar for the AO computation at each
rendered pixel by sampling its surrounding pixels and verifying if a sample pixel is
above or below the center of the sampling that is considered as the point we want to
calculate the AO at which gives a quite good approximation of the ambient occlusion
factor.

FIGURE 2.8: Ambient Occlusion Approximation using Screen
Space.. Source: [36]

2.4.3.2 Screen Space Directional Occlusion

Screen Space Directional Occlusion allows calculate local indirect illumination and
cast directional like in Figure 2.9(a) without the aid of environmental maps which al-
lows for wider variety of shades by taking the angles from which the light approaches
the object as well as the bounce of light of an object behind the initial object into ac-
count as the Figure 2.9(b)below shows[37].

Page 30

Chapter 2. Screen Space Ambient Occlusion

(A) Screen Space Directional Occlusion Re-
sults. Source: [37]

(B) Yellow surface light
bounce to the floor. Source:

[37]

FIGURE 2.9: Screen Space Directional Occlusion different rendered
results

2.4.4 Comparison
In this part we present a comparison between the different ambient occlusion com-
putation methods that has been introduced in the above sections see Table 2.1.

Methods Advantages Disadvantages

O
bj

ec
tB

as
ed

- Ambient Occlusion Fields - Efficient for shadow computation - Rigid mesh are the only shadowed

- Fast Precomputed AO
for proximity Shadows

- On the fly implementation
- Fast computation execution
- Occluder complexity independency - Memory overhead

Po
in

tB
as

ed

- Dynamic AO and Indirect Lighting - Fast for Ambient Occlusion computation - Polygonal data treatment

- Hardware Accelerated AO computation

- Easy to implement
- No preprocessing

- High light adaptation for models

Sc
re

en
Sp

ac
e

B
as

ed - Screen Space Ambient Occlusion

- Zero loads time
- No preprocessing
- No cpu usage - High frequency Noise

- Screen Space Directional Occlusion - One bounce of indirect lighiting is included

- Bad classification
- Only visible shippers can contribute
to indirect illumination

TABLE 2.1: Ambient Occlusion different methods comparison

Page 31

Chapter 2. Screen Space Ambient Occlusion

2.5 Ambient Occlusion in Screen Space
Each of the previous mentioned techniques in Section 2.4 has a different understand-
ing of the Ambient Occlusion factor calculation, we have chosen the screen space
ambient occlusion where we go through its foundation and its different techniques
that use the same pillar which is the depth buffer to compete for a better realism
enhancement.

2.5.1 Definition
Screen Space Ambient Occlusion is a technique that depends on the depth buffer that
is defined as a grayscale texture like in Figure 2.10(a) as a visual geometry location
approximation as Figure 2.10(b) shows which used to define the occluded areas that
has a low light intensity contribution like corners, crack, or even human body wrin-
kles which uses alongside with the depth buffer a per-vertex normal and position
buffers where all these three combined together to achieve an approximated ambient
occlusion and more realistic lighting enhancement that can be generated on the fly
with zero load time where the ambient occlusion factor can be approximated by sam-
pling the surroundings of each depth value that is stored as pixel and can be retrieved
from the depth buffer considering the surroundings samples as a finite quantity where
they are generated using the powerful monte carlo integration techniques[28].

(A) Scene geometry approximation
using the depth buffer. The grayscale
values defines geomtery location
where black values for closer geome-
try and white values for far geometry.

(B) Depth buffer illustration Source: [38]

FIGURE 2.10: Depth buffer visualization and its geometric definition

Page 32

Chapter 2. Screen Space Ambient Occlusion

2.5.2 Screen Space Ambient Occlusion Techniques
Screen Space Ambient Occlusion variate through a lot of techniques in this Sec-
tion 2.5.2 we come across a various techniques of the Ambient Occlusion Approxi-
mation using the screen space as calculation field.

2.5.2.1 Crytek Ambient Occlusion

Crytek Occlusion is considered as the first Screen Space based Ambient Occlusion
approximation technique that has been introduced by Crytek in 2007[36] as a scale
down version of the ambient occlusion in Crysis as we have seen in the previous
Figure 2.8 which has been implemented in Crytek game engine that is the Cryengine
2 where as mentioned in Section 2.5.1 that it uses the depth buffer as depth sampling
inside a sphere around the occluded point which is presented by a pixel where we
calculate the ambient occlusion factor at by a simple comparison between the origi-
nal point depth value Sz and the depth of a sample that is projected into the scene Sd
like Figure 2.11 illustrates after randomly choosing the kernel sample resulting the
ambient factor approximation which gives much more realism into the scene.

Where the original base of all the SSAO techniques is giving by the following
formula:

AO≈ 1
N

n=1

∑
N

V ′(Sn)

With:
N: as the sample kernel which is the number of used samples.
Sn: is a sample point that has random position around the center of the sphere p
where we want to calculate the SSAO at.
V ′: is the same ambient occlusion visibility function but with a simplified calculation
that is done between pixel depth rather than geometry like in AO, which is given as
follow:

V ′(s) =

{
1, Sd > Sz

0, Otherwise

FIGURE 2.11: Ambient Occlusion factor approximation using sphere
sampling in Crytek technique, with the squares representing pixels as
the green defined the visible samples and red defines the occluded

ones

Page 33

Chapter 2. Screen Space Ambient Occlusion

2.5.2.2 StarCraft 2 Ambient Occlusion

Regardless the great results of the CrytekAO it is quite obvious that it will approxi-
mate the ambient in surfaces where there is no occluded areas at all like flat surfaces
which represent a wall for examples because of the sphere sampling method which
cause inside geometry to contribute in the AO factor approximation resulting a darker
color in each of these flat surfaces.

StarCraft2 has been introduced in 2008[39] in BLIZZARD entertainement game
development company which defines the sample kernel as sampling in a normal-
oriented hemisphere that is illustrated in Figure 2.12(a) where samples considered
to be alongside the sampled point rather then behind it inside the geometry resulting
better AO approximation as we can see in Figure 2.12(b) flat surfaces are white rather
then darker like in the CrytekAO used method.

(A) StarCraftII samples distribution illustra-
tion which is considered as a distribution with

a normal-oriented hemisphere. (B) SSAO calculation using random
sampling. Source: [39]

FIGURE 2.12: StarCraftII rendered results using the normal-oriented
hemisphere

2.5.2.3 Horizon Based Ambient Occlusion

Horizon Based Ambient Occlusion or HBAO is a technique that has been introduced
in 2008[40], that uses the depth buffer in order to ray marching which is obviously
in screen space to find a visible horizon angle h[40] as Figure 2.13(a) illustrate by
setting a perpendicular ray to the observer view direction which makes sampling
achieved along side this perpendicular ray where in each step the depth value is
obtained and compared to the previous depth value to check if it is inferior which
leads to update the horizon angle, several rays are cast and the ambient occlusion
factor is then approximated using the average free horizon angle which makes scene
rendering looks more realistic than before as Figure 2.13(b) shows.

Page 34

Chapter 2. Screen Space Ambient Occlusion

(A) Horizon Based samples distribution using
Ray Marching and technique illustration with
the average free horizon angle as the last visual

contribution.

(B) Ambient Occlusion without and
with shadows respectively. Source:

[40]

FIGURE 2.13: Horizon Based Ambient Occlusion technique result
and illustration

2.5.2.4 Volumetric Obscurance

One of the screen space methods are the volumetric obscurance that depends on the
3D neighborhood volume around p[41]. Where the ambient occlusion factor is ap-
proximated using the unoccluded and occluded 3D volume with the sphere sampling
method taking as a center the point p where we want to approximate the ao factor and
a random generated samples which are perpendicular to the observer view direction
with each sample represent small volumetric piece that is defined as line segment as
Figure 2.14(a) illustrate which can be occluded or unoccluded where then the depth
buffer is used to project each sample in other words the line segment with applying
the simple trigonometry to calculate the visible samples in order to determine the AO
factor as Figure 2.14(b) demonstrate.

Page 35

Chapter 2. Screen Space Ambient Occlusion

(A) VO used technique for sampling in a
sphere with the green and red line segments
are the occluded and unoccluded parts of each

sample
(B) Ambient Occlusion approxima-
tion using the Volumetric Obscu-
rance technique rendered results.

Source: [41]

FIGURE 2.14: Volumetric Obscurance technique rendered results and
technique illustration

2.5.2.5 The Alchemy Ambient Obscurance

The Alchemy Ambient Obscurance is a technique that uses the falloff function rather
than the occlusion function it was introduced in 2011[42] by NVIDIA and Vicarious
Visions Studio where it has been implemented in their Alchemy game engine.

We mentioned in Section 2.3 that ambient obscurance is used to approximate the
ambient occlusion that is used rather then the ambient obscurance name for its famil-
iarization and popularity in using screen space to approximate the indirect lighting.

The falloff function ρ that represent the Ambient Obscurance is given by the
following formula:

ρ(d) =
u ·d

max(u,d)2

Where:
d: is the sample distance.
u: is a user-specified parameter to choose the exact shape (intensity scale).

The AlchemyAO uses AO inversion rather than direct computation which means
with higher dmax the attenuation function ρ will converge toward 0 and not 1 that we
mentioned in Section 2.3.

We have from inversion the AO function:

AO = 1− 1
π

∫
Ω

ρ(d)(n ·ω)dω

Page 36

Chapter 2. Screen Space Ambient Occlusion

Which leads to:

AO = 1− u
π

∫
Ω

d · (n ·ω)

max(u,d)2 dω

With the user-specified parameter u outside the integral then a v vector which
equals to v = ω ·d is defined leading the formula to be simplified as follow:

AO = 1− u
π

∫
Ω

−→v · n̂
max(u,d)2 dω

While each of u and d which are the user specified parameter and the distance
from point to sample respectively are assumed positive it is quire assertive that
max(u,d)2 = max(u2,d2) and during the fact that v ·v = |v|2 is the same as d2 which
is caused v being defined as the vector between each ray direction ω and point p like
it is illustrated in Figure 2.15(a) simplifying the formula to:

AO = 1− u
π

∫
Ω

−→v · n̂
max(u2,−→v ·−→v)

dω

Considering the integral as a continuous space which can’t be calculated using a
machine during that an infinity of ray direction can contribute the computation. A
finite quantity of samples is used alongside with the powerful monte carlo integration
in order to get the AO factor ready to approximated with the following formula:

AO(p) = max
(

0,1− 2u
N

N

∑
m=1

max(0,−→vm · n̂+Zcβ)
−→vm ·−→vm + ε

)k

Where:
N: is the number of kernel samples.
n: is the surface normal.
vm: is the sampler vector which is calculated using (Sm - p).
β : is the depth bias.
Zc: is the occludee’s depth value.
u: is the user-specified parameter which is also known as the intensity scale.
k: is the contrast controller.
ε: is a small value to prevent 0 division.

The AlchemyAO leaves the Ambient Occlusion factor realism enhancing tuned
using the four previous mentioned parameters which are the radius, bias, intensity
scale and the contrast value which result a good ambient occlusion approximation as
seen in Figure 2.15(b).

Page 37

Chapter 2. Screen Space Ambient Occlusion

(A) Alchemy Ambient Occlusion Technique
illustration where the sample are in a normal-
oriented hemisphere with v a vector between
the sample point and the potential occluded

point.

(B) Alchemy Ambient Occlusion in
rendered scene. Source: [42]

FIGURE 2.15: AlchemyAO Alchemy engine results and technique
illustration

2.5.2.6 Comparison

In the Table 2.2 a comparison between the different screen-space techniques in ap-
proximating the ambient occlusion.

Technique Avantages Disadvantages

CrytekAO
- Fast results.
- Simple to implement.

- Spherical Sampling
problem with flat surfaces.

StarCraftIIAO
-Hemisphere sampling
(Improved sampling).

- Self-occlusion.
- Edge case.

VolumetricAO

- Better volume approximation
(due the line samples).
- No blur required with 32
samples usages.
- Suited for dynamic scenes.

- Low performance when
it comes to area samples.
- Absence of thin objects
influence.

HBAO
- Better resulted shading
(due the heightfield assumption).

- Randomized ray directions
(due the usage of random
vectors.

AlchemySSAO

- Intuitive
- Efficient
- Simple to implement
- Artistic control
- Robust

- Bilateral filtering causes
low performance.
- Sample variance.
- Under-occlussion.

TABLE 2.2: Comparison between the different SSAO techniques.

2.6 Filtering Techniques
Approximating the Ambient Occlusion in the screen space using random depth sam-
ples produces the banding effect due the textures usage which is very visual and no-
ticed with the real human eye which can be fully cleared using a rotation technique
around the z-axis producing as a result a less noticeable effect known as Noise which

Page 38

Chapter 2. Screen Space Ambient Occlusion

can be reduced using filtering techniques which in most cases uses interpolation in
order to enhance the Ambient Occlusion approximation screen space techniques that
we go through in this part.

2.6.1 Anisotropic Filter
Giving a rendered scene a realistic aspect inherit from the real world is quite com-
putational without using textures which make the scene looks more detailed by us-
ing several different textures like colorization texture, transparency, reflectively and
bumps that are mapped to an object and processed by the GPU to achieve the realistic
appearance, where the distance between the camera and the object texel which is a
pixel of a texture in other words affects the observable level of details that consist the
usage of mipmap which a is duplication of the master texture that is used often in a
repeated pattern like brick walls or floors where the repeated process gives a blurring
effect or visual artifacts as the mipmap are far and has an angle view with the camera
multiple mipmaps are sampled for a single texel.

Anisotropic filtering is one of the techniques that is used avoid the blurry or
artifacts effects by providing a superior quality in scene rendering at a low cost of
performance where it has a high frequency GPU usage due the mipmap height and
width scaling with a power of two level from 2x to 16x providing a high quality of
textures and clarity as the level goes up as Figure 2.16 shows[43].

FIGURE 2.16: The huge difference between with and without
Anisotropic filter as the distance goes higher. Source: [44]

2.6.2 Anti-Aliasing
Anti-Aliasing is defined as rendering technique that is used in order to minimize
the spread of aliasing which is a visual artifact that looks like the steps on a stair
as Figure 2.17 illustrate, on any smooth or non-perpendicular surface of 3D object
which is caused by a resterization stage of the graphic pipeline or from transforming
a vector image like Encapsulated PostScript (EPS) for example to a raster image like
Bitmap (BMP), that leads to create visible inconsistencies in edge continuity due to
the GPU only coloring a pixel if the line passing through it occupies more than half of
the space, resulting jagged edge where we would normally expect smooth contiguous
line[43].

Page 39

Chapter 2. Screen Space Ambient Occlusion

FIGURE 2.17: The effect resulted by the aliasing and its enhancement
using the anti-aliasing technique. Source: [43]

2.6.3 Gaussian Filter
Image processing has always included filtering techniques which provide a much
more images enhancement due the fact that a passage from continuity interval to dis-
crete interval or randomness usage must be done in computer graphics which leaves
us with a quite amount of noise that can be reduced by smoothing it which is a known
effect nowadays under the name blur as Figure 2.18 illustrate using the Gaussian fil-
tering that is defined as a weighted average of the adjacent positions intensity [45].

Where the Gaussian filter is giving by the following formula:

g(x,y) =
1

2πσ2 exp−(x2 + y2)

2σ2

With:
(x,y): is the image coordinates.
σ2: is the variance of the Gaussian filter respectively σ as the standard deviation.

(A) result of camera man with Gaus-
sian filter

(B) Without Gaussian filtering Orig-
inal Image

FIGURE 2.18: Gaussian Filtering illustration using Matlab platform

Page 40

Chapter 2. Screen Space Ambient Occlusion

2.6.4 Bilateral Filter
Like the Gaussian filter the Bilateral filter technique that is used to smooth images
as Figure 2.19(a) shows results of applying the bilateral filter but without loosing
edges as it is illustrated in Figure 2.19(b) and considered to be a non-linear technique
where it has been introduced in 2009[46] it is actually based on the Gaussian filter
technique when it comes to the weighted average on intensity values from nearby
pixels for pixel intensity replacement.

Where the Bilateral filter is defined using the following formula:

BF [I]p =
1

Wp
∑
q∈S

Gσs(||p−q||)Gσr(|Ip− Iq|)Iq

With:

1
Wp

: as a normalization factor which is new comparing to the Gaussian filter.

Gσs(||p− q||): as a space weight which used for the weighted average like the
Gaussian filter.

Gσr(|Ip− Iq|) : as a range weight which makes the weighted average depends on
the image content.

Page 41

Chapter 2. Screen Space Ambient Occlusion

(A) Blurring effect results using the bilateral
filter by taking an image as an input and con-
vert it into blurred output smoothed in other

word. Source: [46]

(B) As we can see the bilateral filtering technique combine be-
tween spatial weight and range weight in order to avoid loosing
edges and gives great results when it comes to blurring effect.

Source: [46]

FIGURE 2.19: Bilateral Filtering results and technique illustration

2.6.5 Comparison
After we came across the different filtering techniques a simple comparison between
them are given in the Table 2.3 below.

Page 42

Chapter 2. Screen Space Ambient Occlusion

Filtring Method Advantages Disadvantages

Anisotropic Filtering
- Optimal Visual Quality.
- Eliminate all kinds of
Aliasing Effects.

- Memory overhead.

Anti-Aliasing

- Has a maximum details
saving.
- Efficient Implementation
using Modern Material.

- Some Artifact can’t
be treated.

Gaussian Filter

- Noise Reduction.
- Separable Filtre.
- Symmetrical in rotation
for large filters.

- Details disappearing
caused by high Variance
value.
- Takes a quite amount
of time.

Bilateral Filter

- Noise suppression.
- Edges preserving.
- Resulting smoothed
images.
- Easy to understand
(Weighted mean of nearby pixels).
- Easy to adapt
(Distance between pixel values).
- Easy to set up
(Non-iterative).

- Absence of impulsive
Noise elimination.
- Filtering replacement
in noisy or non-noisy cases.
- It softens the image alone,
does not sharpen it.

TABLE 2.3: Comparison between the different filtering techniques
used in the computer graphics

2.7 Conclusion
During this chapter we uncovered the power of different creative methods that can
approximate the ambient occlusion which uses different aspects and knowledge that
compete in order to achieve a more realistic global illumination approximation along-
side with their most known advantages and disadvantages that could be enhanced.
Also we discussed noise and aliasing filtering technique which can result a quite
good smoothness that is known as blur to reduce the amount or even eliminate the
visual artifacts which the human being eye can distinguish along with a summarized
comparison that recaps their differences when it comes to time, memory and result
efficiency.

Page 43

Chapter 2. Screen Space Ambient Occlusion

Interactive Ambient Occlusion achievement leads to quality reduction which is
obviously caused by the approximation that is an important obligation in order to
have an acceptable results when it comes to Real-Time obtaining which is the essen-
tial requirements for interactive applications like videogames.

The greatness of screen space allows us to approximate the ambient occlusion in
real-time with the screen space ambient occlusion method that is a less consuming
method when it comes to time or performance and it can be acclimated easily in com-
puter graphics applications. Though its realistic results in visualization enhancement
it can produce a lot of noise due to randomness usage which can be resolved using
filtering techniques.

Page 44

Chapter 3

GPUs and OpenGL Evolution

3.1 Introduction
Ambient Occlusion either calculation or approximation that has been discussed in
second chapter has no meaning if it is not rendered in real-time which is requires
for interactive applications most often in videogames. the CPU by itself cant handle
all the geometry that can be defined for a videogame because of all the mathematical
formulas that must be solved from the simple normalizing formula to the complicated
illumination models, where the GPU here comes in handy using its special gift that
is the parallelism through its multiple threads a lot of calculation can be done in
a fraction of a seconds. In this chapter we came across the different between the
CPU and the GPU along with its parallelism when it comes to acceleration with
the architecture behind the GPUs and the way that are programmed with in order to
create realistic rendered images in real-time, after that we have been introduced the
OpenGL and its evolution from the old to the new one along with the used structures
for shader programming.

3.2 GPUs versus CPUs
In a simple system or machine for other word, there may be only one processor which
is the central processing unit (CPU), which it handles each of the normal and graph-
ical processing. The main graphical function of the processor is to take two things
into account the first one is to take the shape of the graphical primitive as a specifica-
tion like lines, circles, polygons and the second thing is to assign values to the pixels
in the framebuffer that is directly addressed by the CPU in the old days graphics
systems which is in other word the displaying window where the graphical function
must figure out how to transform geometric shapes into colored and located pixels[4].

The GPU which is an abbreviation of graphics processing units has came to take
responsibility of the graphical functions which is can be either embedded directly
with the mother board or on a graphics card which is usually used with desktop
where framebuffer became accessed through the GPU and each of them are located
on the same circuit board for faster assigning[4].

GPUs has evolved to the point where they are as complex or even more complex
then CPUs and become so powerful to even be used as mini supercomputers.

Page 45

Chapter 3. GPUs and OpenGL Evolution

3.3 Acceleration Using GPUs
As the GPU had more threads than the CPU it became parallelism supported which
is extremely beneficial with independent graphical operations causing a huge accel-
eration into rendering three dimensional shapes comparing to the cpu that can only
preform sequential operations.

A Fixed Function pipeline was the first rendering procedure that has been out and
defined as the rendering stage not being controllable which means that the rendering
functions and geometry manipulation was embedded (built-in) directly inside the
GPU[47].

3.4 GPUs Evolution
Graphics on desktop computers were handled by Video graphics Array (VGA) where
it is defined as a memory controller attached to the DRAM and display generator with
a specified main function that is receiving image data, arrange it properly, and send
it to a video device (monitor)[48].

Different graphics acceleration components are added to the VGA controller by
the 1990s for triangles rasterization, texture mapping and simple shading leading
NVIDIA to release the "GeForce 256" that is showed in Figure 3.1 and marketed as
the world’s first GPU[49].

FIGURE 3.1: NVIDIA Geforce 256 first GPU. Source: [48]

The original GPUs were modeled from the idea of a graphics pipeline which
combine between GPU(GPU cores) and CPU(Opengl, Direct and with a main task
which is transforming a 3D coordinates into 2D screen pixel coordinates[48].

GPU came into existance for graphical purpose, it has now evolved into comput-
ing, accuracy and performance. The fast computation of the GPU over the last years
has open a new world of possibilities for high-speed computation where graphics
cards are widely used for accelerated rendering of three dimensional scenes and in
the field of image processing[49].

Page 46

Chapter 3. GPUs and OpenGL Evolution

GPUs can be set up in a wide range of devices from desktops and laptops to
mobile handsets nad super computers. Thanks to their parallel structure, GPUs im-
plement a variety of 2D and 3D graphics primitives processing in hardware[48].

3.5 GPU Architecture
Due to the phenomenal tasks that can a GPU do an architecture for rendering achieve-
ment are required which are presented in the next sections.

3.5.1 Material Components
Achieving the acceleration aspect using the GPU needs a lot of memory and pro-
cessors with adding chipsets and registers to ensure communication between them
in order to the GPU to stay synchronized and give great results when it comes to
parallelism.

As the GPU being a processor unit means that it is like the Central Processing
Unit (CPU) a single-chip processor with a much bigger difference than the CPU the
GPU may have hundreds of threads (Cores) while the number is limited in CPU that
is capable to be executed at the same time to do independent computations with a
VRAM which is the video ram that can reaches 4Go or Higher nowadays [48].

3.5.2 Shaders
Manipulating geometry using the CPU which means just OpenGL can’t be freely as
using GPU due to the complex geometry and phenomenal rendering techniques that
can be achieved with the GPU particularly using the Shaders which are defined as a
small programs executed within the GPU to render shapes into the screen passing by
several steps:

⇒ Scene objects Modeling.

⇒ Objects vertices input for Vertex Shader.

⇒ Transform Space Coordinates to Screen Coordinates

⇒ Rasterizing the 3D geometry into a pixel output for the Fragment Shader.

⇒ Colorization of pixels based on the giving color or texel value.

⇒ Projected scene into the framebuffer for visualization.

Page 47

Chapter 3. GPUs and OpenGL Evolution

With the following Shader types list:

⇒ Vertex Shader: Which is responsible for per-vertex operations that takes ge-
ometry vertices as an input.

⇒ Tessellation Shader: that is responsible for surfaces subdivision into smaller
primitives for smoother meshes.

⇒ Geometry Shader: that is specialized in suppression vertices or primitives
which is known as geometry operations.

⇒ Fragment Shader: Pixel Colorization requires the fragment shader to deter-
mine the final color of pixels.

While the Shader being small programs executed within the GPU as mentioned
above it requires a communication variables between the host part which is the CPU
and GPU and between the shaders themselves some variables are used:

⇒ Attribute: which is per-vertex informations which is the same as In in modern
OpenGL.

⇒ Uniform: a Global variable passed from the client side to the GPU and shared
between the shader programs.

⇒ In: for input that defines a shader input that comes from a previous stage of
rendering.

⇒ Out: for Output which is used to pass a computed result to the next stage of
rendering.

⇒ Const: Local constant for shaders which has a fast accessing due to the con-
stant memory space reservation.

Each of In and Out are used in modern OpenGL they are the replacement of the
keyword Varying in older OpenGL version.

3.5.3 Graphic Pipeline
In order to render 3D scene into a virtual sized screen several steps are demanded
which make three dimensional (3D) coordinates conversion to two dimensional (2D)
coordinates where the conversion is meaning rasterizing primitives shapes like poly-
gons from continuous space which is world space into a discrete space that is the
screen coordinates that are known under the keyword pixels, where in the first years
of computer graphics a Fixed function pipeline was used in order to display rasterized
results into the frambuffer which means that the developer has no possibility in mod-
ifying the pipeline that lacks to flexibility and understanding the way that graphic
cards works as the Figure 3.2 illustrate the fixed function pipeline.

Page 48

Chapter 3. GPUs and OpenGL Evolution

Vertex and Index Lists Transform & Lighting

Texture Operations

Frame Buffer

Assembly of primitives

Rasterization

Transformed Vertices

Pixels On the Screen

Triangles, lines, points

FIGURE 3.2: First Graphic Pipeline that is known as the Fixed func-
tion pipeline.

Fixed function pipeline contains only fixed sequence of processing stages which
means that are unmodified from users and can only be configurable which makes cre-
ativity and flexibility absence when it comes to reality simulation or even imagination
creation, where the graphics card nowadays are more flexible than the old versions
by providing a large programmable parts of the graphic pipeline than before.

3.5.4 Graphic Pipeline Evolution
The graphic pipeline has been evolved considerably since its introduction that was
discussed in the section above 3.5.3 by providing more flexibility and better under-
standing to the way rendering is working which is preformed by a rasterization pro-
cess and that is done by adding four programmable stages that are the Vertex Shader,
Fragment Shader which are the shaders that must be included additionally Geometry
and Tessellation Shaders as optional choice, where the Figure 3.3 below illustrate the
new graphic pipeline.

Page 49

Chapter 3. GPUs and OpenGL Evolution

Vertex Array

Framebuffer

Client Side

Send/Receive
Textures

VRAM

GPU Side

Geometric Primitives
+ Attributes

Graphical Application

Fragments

Primitives

3D Space

2D Space

Programmable

Programmable

Programmable

Texture

Vertex Shader

Geometry Shader

Fragment Shader

Rasterizer
Clipping / Culling

Read / Write Transformed
Vertices

Shaded
Fragments

FIGURE 3.3: Modern Graphic pipeline illustration.

The graphic pipeline begins with the geometric data that is provided (vertices
and geometric primitives) and first processes it through a sequence of shader stages:
vertex shading, tessellation shading (which itself uses two shaders), and finally ge-
ometry shading, before it’s passed to the rasterizer. After that the rasterizer will
generate fragments for any primitive that’s inside of the clipping region, and execute
a fragment shader for each of the generated fragments[3].

Shaders play an essential role in creating graphical applications specially when it
comes to creativity and flexibility and a better understanding on how virtual scenes
are really achieved.

3.6 GPUs Programming Languages
graphic pipeline programmable stages requires to be written by their user in order
to do a task that is provoked through a draw call, using a high-level C-like language
nowadays we can write any programmable stage in order to be executed where the
written shaders is attached to a program that is called any time we want to use a spe-
cific shaders. In the next sections some of the popular gpus graphical programming
languages are discussed.

Page 50

Chapter 3. GPUs and OpenGL Evolution

3.6.1 OpenGL Shading Language (GLSL)
GLSL which refers to OpenGL Shading Language is in the class of languages that
can be considered "C-like" as mentioned in the section above 3.6 which means that
each of GLSL and C are almost the same when it comes to GLSL syntax and model
with some differences that make it more suitable for graphics and parallel execu-
tion like built-in mathematical types like vector or matrices that was inhirit from the
RenderMan Shading language for the deferred time rendering while being the GLSL
specifically designed to OpenGL standard API and to be run on massively parallel
implementations[47].

3.6.2 High Level Shading Language (HLSL)
HLSL for High Level Shading Language that is the same as GLSL but designed
for Microsoft DiretX rather than OpenGL which was developed in collaboration
with NVIDIA that was also influenced by the syntax and philosophy of the C pro-
gramming language and also included elements from the Renderman shading lan-
guage[49].

3.6.3 C for Graphics (CG)
C for Graphics was introduced by a collaboration between Microsoft and NVIDIA
while working on HLSL which is a programming language for the DirectX where
CG is considered to be a cross-platform programming language which means that it
can be used with the two fancy graphics APIs: OpenGL and DirectX[49].

3.7 OpenGL Evolution
Real-time rendering has became possible thanks to OpenGL which is defined as an
Application Programming Interface which is just a software library for accessing
graphics hardware feautures that has been introduced at Silicon Graphics Computers
Systems and their IRIS GL where GL stood for (and still stands for) "Graphics Li-
brary" with Version 1.0 released in June of 1992[47], it is designed as a streamlined,
hardware-independent interface that can be implemented either on different graphics
hardware systems, or entirely in software due to the absence of graphics hardware
with an operating system windowing system usage due the fact that OpenGL doesn’t
include functions for performing windowing tasks or processing user input[3].

OpenGL is implemented as a client-server system, with application side as a
client and the OpenGL implementation provided by the manufacture of the graphics
hardware being the server where it doesn’t provide three dimensional models loading
functionalities as long as the absence of image files reading which leads to the need
of Libraries usage in order to do such things[3]. The various versions of OpenGL
are presented in the Table 3.1 below.

Page 51

Chapter 3. GPUs and OpenGL Evolution

Version Publication Date

OpenGL 1.0 January 1992
OpenGL 1.1 January 1997
OpenGL 1.2 March 1998
OpenGL 1.2.1 October 1998
OpenGL 1.3 August 2001
OpenGL 1.4 July 2002
OpenGL 1.5 July 2003
OpenGL 2.0 September 2004
OpenGL 2.1 July 2006
OpenGL 3.0 August 2008
OpenGL 3.1 March 2009
OpenGL 3.2 August 2009
OpenGL 3.3 March 2010
OpenGL 4.0 March 2010
OpenGL 4.1 July 2010
OpenGL 4.2 July 2011
OpenGL 4.3 August 2012
OpenGL 4.4 2013
OpenGL 4.5 2014
OpenGL 4.6 2017

TABLE 3.1: OpenGL Versions and Publication Dates.[47]

The list below briefly describes the major operations that an OpenGL application
would perform to render an image:

⇒ Data Specifying for shapes constructing using OpenGL’s geometric primitives

⇒ Shaders usages to perform computations on input primitives for position, color
and other attributes determination.

⇒ Fragment Shader execution for each fragment generated by rasterization lead-
ing to determine fragment’s final color and position.

⇒ Visibility and blending per-fragment tests can be additionally performed.

In 2008 the ARB which stands for Architecture Review Board decided to sper-
ate the OpenGL specification into two profile Compatibility and Core profiles along
side the release of the OpenGL 3.2 due to drivers bugs caused by the difficulties of
specifying the interaction between older legacy features in a graphics card and the
new recent features[47] after the 3.1 version has removed all the functions that was
deprectaded in 3.0 version like: (Fixed function pipeline, glBegin/glEnd, etc) that
are only configurable and doesn’t provide an understandng on how OpenGL itself
works.

Page 52

Chapter 3. GPUs and OpenGL Evolution

3.7.1 Compatibility profile
The Compatibility profile defines keeping all old legacy features which are known
as the "deprecated functions" of OpenGL in other words it maintains the backwards
compatibility with all revisions of OpenGL back to version 1.0. which means that an
old written software in 1992 should compile and run on a modern graphics card with
higher performance than the first time the software has been produced. Although
it has been really exist to allow software developers to maintain legacy applications
and to add features to them without having to tear out years of work in order to shift
to a new API[47].

3.7.2 Core profile
Core profile from the other hand removes a number of legacy features that has been
point to them as the "deprecation functions" leaving those that are truly accelerated
by current graphics hardware. This specification is more shorter that the compati-
bility version where it is strongly recommended for better OpenGL experience and
understanding and for those who demand more freedom and flexibility[47].

3.7.3 Structures for Shader Programming
Using Modern OpenGL requires using modern methods in order to pass object data
as attributes like: (positions, colors, texels coordinates) and so on anything that is
related to the object data passed to the shaders from the graphical application in or-
der to be processed and rasterized after than displayed in windowed screen called the
framebuffer using the operating system windowing system, where a set of a bind-
able buffers are used in order to accomplish such a task conversely the old OpenGL
(compatibility profile) where the geometry shapes which are the 3D models that are
used in a 3D scene are loaded into the scene itself using the deprecated functions like
glBegin,glEnd by drawing a set of triangles attached with each other presenting the
geometry shape that is known as the three dimensional "Model".

3.7.3.1 Vertex Buffer Object (VBO)

The Vertex Buffer Object is defined as a memory portion on the GPU that contains all
the vertices data from position to texture coordinates or other attributes with telling
OpenGL how to interpret the memory and specifying the data send to the GPU where
the vertex shader deal with each vertex providing a transformed vertices to the geom-
etry shader if it is implemented or directly as primitives to the rasterizer. sending data
using VBOs rather than CPU makes data accessing faster due the fact that we can
send a large portion of vertices data to the GPU rather than sending data per-vertex
at a time [50].

Page 53

Chapter 3. GPUs and OpenGL Evolution

3.7.3.2 Element Buffer Object (EBO)

An Element Buffer Object is the same as the Vertex Buffer Object but rather than
using the vertices themselves to draw call a list of indices are used instead which
has the vertices arrangement for drawing calls where the benefit of the EBO is that
it removes duplicated vertices for each face by providing a unique definition of the
vertex data and an index list to tell the vertex shader how it should interepret the
vertex input[50].

3.7.3.3 Vertex Array Object (VAO)

A Vertex Array Object from the other hand holds all calls that is related to a ver-
tex attribute that is stored inside a VAO which makes the advantage of configuring
the VBO or EBO only once rather than re-configuring it each time we need to use
a specific vertex attribute leading to make the process of vertex data and attribute
configurations which are implemented with the VBO or EBO changing easy and on
the fly only by binding different VAO[50].

3.7.3.4 Frame Buffer Object (FBO)

The Frame Buffer Object is as all the buffers has a memory portion which holds
a color buffer for color values and a depth buffer for depth informations, a stencil
buffer that allows us to discard some fragments based on particular condition as in
Figure 3.4 the combination of the framebuffer are illustrated where a FBO is defined
either by a default framebuffer which is created with the windowing process or a
personal framebuffer that is created by users and offered by the provided flexibility
of the modern OpenGL[50].

Frame Buffer Object

Color Buffer

Depth Buffer

Stencil Buffer

FIGURE 3.4: FrameBuffer combination of the color,depth,stencil
buffers.

Page 54

Chapter 3. GPUs and OpenGL Evolution

3.7.3.5 G-Buffer

The G-buffer with G standing for Geometry is defined as storing geometry informa-
tions into textures for later use which are commonly used in deferred shading for
performance optimization and more faster results than the forward shading, where
the G-buffer can contains:

⇒ Vertices Positions.

⇒ Surfaces Normals.

⇒ Diffuse Intensity.

⇒ Texture coordinates.

⇒ Specular Intensity.

The following Figure 3.5 illustrate some of the gBuffer rendered textures.

FIGURE 3.5: Geometry informations Rendered for G-Buffer Textures
for later use.

Page 55

Chapter 3. GPUs and OpenGL Evolution

3.8 Conclusion
Through this chapter we have introduced the essence of computer graphics in real-
time which is based on the GPU and shaders programming that let users to be more
creative than before as long as the graphic pipeline evolution from its beginning to
the used models nowadays where these shaders needs a high-level languages when it
comes to coding like the GLSL that is designed specifically to OpenGL and HLSL
for the Microsoft DirectX after that we went deeper into the details with the dis-
tinguish between The Compatibility and Core OpenGL profiles and the useful data
structures which are obligated in the Core profile type of OpenGL that are encap-
sulated inside a VAO which is a data stracture by itself for re-using and easiness
and lastly we have defined the powerful rendering tool which is the G-Buffer that is
dedicated for deferred shading and performance optimization thanks to the OpenGL
flexibility in new versions.

Page 56

Chapter 4

Results and Implementations

4.1 Introduction
Through this chapter we have begin by the description and the objectives of the
project alongside with the general design of the application continuing after that with
its realization where we start by defining the used materials and softwares that has an
influence on the project achievement along with the application structure, all this part
part combined allowed us to achieve the objectives of the project where we present
its results in the last part of this chapter.

4.2 Project Description and Objectives
One of the main objectives of this project is to implement the Alchemy Screen Space
Ambient Obscurance technique which has robust result in approximating the Ambi-
ent Obscurance in real-time that add a quite amount of realism into the scene where
sampling and filtering are the fundamentals of this achievement, but due the fact that
it uses randomness in samples providing and bilateral filtering technique the results
can be quite consuming when it comes to resources which leads to low performance
where our goal consist of less resources usage and achieving an acceptable results
in high performance by doing a comparative study between the sampling distribu-
tion techniques and variance reduction techniques and different filtering techniques
that are applied to the in order to enhance performance and achieve acceptable visual
results.

4.3 General Design
In Figure 4.1 the general design is discussed where we split the objectives achieve-
ment into several steps where each step has an important role in providing an ambient
occlusion approximation in real-time.

Page 57

Chapter 4. Results and Implementations

FIGURE 4.1: General Design.

4.3.1 Geometry Input
Geometry input that is used in the application it can be rather a modeled 3D Models
which are the 3D models or objects that are modeled in execution time using the
OpenGL primitive shapes (Point, Line, Triangles, Quads, etc. . .) or loaded 3D Mod-
els which are created using modeling softwares like Maya or 3ds Max each of this
loaded models is a combination of primitive shapes which is a group of polygons
where a polygon is defined as a plane figure that has at least three straight sides and
angles which are the shapes accepted by OpenGL that we mentioned before. Loaded
models comes with an ".obj" extension which are originally a ".txt" files that take
obj format as a known convention between modeling softwares game engines.

The obj models are usually used rather than modeling geometry shapes directly
in OpenGL because of the complexity that a model can have and the high number
of polygons used in order to define a complex and smooth object. In order to load
this objects into the scene several libraries (APIs) are defined by experts in order to
facilitate such a task, we used the Open Asset import Assimp Library which provides

Page 58

Chapter 4. Results and Implementations

a flexible obj model loader alongside with other supported formats also it automat-
ically generates the different textures that include geometry informations (Normals,
Specularity coefficient, Albedo) using the "MTL" file that comes along with each
"OBJ" file where it defines the placement of the textures in the concerned obj model
to be used as uniform samplers in shaders. The Figure 4.2 shows an obj file which is
knows with "fireplace room" that is modedled by Morgan Mcguire[51] loaded with
its Albedo (Diffuse map) texture using the Assimp Library.

FIGURE 4.2: loaded fire place room object with and without its own
textures using ASSIMP Library with FPS: 60-59 with Blinn-Phong

Local Illumination Model.

4.3.2 G-Buffer Calculation
One of the most important things that allowed the Ambient Occlusion to be calcu-
lated in Screen Space is the G-Buffer where it stores all the geometry informations
(Positions, Normals, Texture Coordinates known as TexCoords) as Figure 4.3 illus-
trate into a specified textures attached to the same FBO for later use when we use it
either in approximating the Ambient Occlusion factor or to calculate the final illumi-
nation using one of the simplified local illumination models where it is considered as
deferred rather than forward due to G-Buffer usage which is considered as a geom-
etry pass.

Page 59

Chapter 4. Results and Implementations

FIGURE 4.3: G-Buffer different Textures

4.3.3 Samples Creation
Approximating the Ambient Occlusion factor in screen space using the Alchemy
Screen Space Ambient Occlusion (AlchemySSAO) requires kernel samples which
are a limited number of points that surround a point where we want to calculate the
AlchemySSAO at, where these points are generated in a way to form a hemisphere
that is oriented by the surface normal which point in the Z-direction.

Generating these samples consist of a mathematical conversion between the Po-
lar coordinates (r,θ ,φ) and the Cartesian coordinates (x,y,z).

In a sphere with Polar coordinates (r,θ ,φ) the Cartesian coordinates are equal to:
x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

With:

r: is the sphere radius.
To a Hemisphere variation rather than Sphere the following variation are use:

x: vary in the tangent space between [−1,1].

y: vary in the tanget space between [−1,1].

z: vary only between [0,1].

Page 60

Chapter 4. Results and Implementations

The way the kernel are generated is the essence of the AO factor approximation
where we used the distribution and variance reduction techniques that are illustrated
in the Figure 4.7 below:

(A) Random Sampling (B) Uniform Sampling (C) Stratified Sampling

(D) Importance Sampling for
”cosθ”

FIGURE 4.4: Used Distribution Techniques and Importance Sampling
for cosθ illustration

Using only these techniques doesn’t provide us with a quite great results without
having a high number of samples while using a low amount of samples also result the
banding effect that is noticeable to the human eye sensation that’s we used a random
rotation vectors to rotate samples along the z-axis these random vectors which are
generated and saved into texture known as the Noise Texture as Figure 4.5 shows
are is used to get a great results without having the banding effect which has been
replaced by the noise effect that is less noticeable by human vision.

FIGURE 4.5: Noise texture used for rotating samples along z-axis

Page 61

Chapter 4. Results and Implementations

4.3.4 AlchemySSAO Calculation
After the samples are generated along side with the noise texture they are passed
to the Alchemy shader in order to be rotated to produce larger variation with a low
number of samples along with the geometry informations that has been stored into
the gBuffer textures where these components are the essentials of approximating the
AO factor in screen space using the Alchemy technique which is based on calculating
the vector vi between each sampling point which is the occluder and the center of the
hemisphere that is defined as the occludee and producing a dot product between each
vector and the surface normal alongside the tuning parameters which are σ as an in-
tensity scale, k as contrast controller which is more clearly understood as the power
of the AO and a depth bias product β where all this factors combined are responsible
for calculating the AlchemySSAO that is saved into a texture for later display as an
overdraw in a two dimensional screen resolution fit rectangle as Figure 4.6 illustrate.

The original CrytekSSAO with the hemisphere sampling improvement has been
also provided alongside the AlchemySSAO to do some comparison and study the
differences between the two techniques where the CrytekSSAO consist of a simple
comparison between samples depth values to approximate the AO factor in the center
of a hemisphere.

Importance Sampling

FIGURE 4.6: AlchemySSAO calculation with its essential factors il-
lustration

Page 62

Chapter 4. Results and Implementations

4.3.5 Filter Applying
Due the random rotation of samples along the z-axis using the random vectors as
mentioned in Section 4.3.3 the banding effect which is the most observable artifact is
removed and replaced with noise which is less observable to the human eye. In order
to remove this kind of noise image processing techniques are needed specifically fil-
tering which is known as "blurring" nowadays which is the right solution to achieve
such a task.

Three types of filters has been implemented which are the original AlchemyS-
SAO used filter that takes an noisy image as input and result a blurred image as in
Figure 4.7(b) that is defined as the bilateral filter which is a powerful filtering tech-
nique in edge preserving that uses a range parameter σr and spatial parameter σs
originally based on the second filter which is the gaussian filter that split the blurring
phase into two phases the horizontal blurring and the vertical blurring as illustrated
in Figure 4.7(a) which is preferred in order to augment performance by averaging a
pixel color using pixels that correspond to the blur size parameter with a the targeted
pixel in the center and a blur strength parameter for smoothing while the last filter is
a 4x4 grid simple blur filter that average a 4x4 texels which is the same resolution of
the noise texture in order to provide a simple blur efectFigure 4.7(b).

(A) Gaussian blurring technique phases.

(B) Bilateral blurring and 4x4 blurring filters phase.

FIGURE 4.7: Different Blurring techniques which are used in noise
suppression illustration.

Page 63

Chapter 4. Results and Implementations

4.3.6 Illumination
Approximating the ambient light alone doesn’t achieve realistic scene rendering due
the fact that real-world scenes doesn’t only includes the ambient light for that kind of
reason we used a local illumination model in order to enhance the realism of the scene
which is the Blinn-Phong model that is inherited from the phong where it needs less
calculation than the Phong model due to the use of the halfway vector rather than the
reflective vector which requires less computations that is resulted from using only
the light and view vectors also it also enhance specularity realism by blending the
specular component a little bit with the model matriel itself.

4.4 Realization
In order to achieve our goal a graphical application is needed to render or rasterize
in more accurate way a virtual scene with an AlchemySSAO factor and a simplified
local illumination model where we used a set of softwares and materials alongside
the application structure which are presented in the next sections.

Also some softwares are used in order to design the schemes that are used in this
thesis which are also presented in the section below.

4.4.1 Used Softwares and Materials
In general an application implementation and design requires softwares and materials
full specification where it comes handy for future comparisons or to see how much of
achievement has been accomplished by a specific materials and softwares. In this part
we provided the full specification of materials, softwares along side the application
structure.

4.4.1.1 Materials

⇒ Machine: MacBook pro Mid 2010 Series .

⇒ Operation System: macOS High Sierra, Version: 10.13.3 .

⇒ Processor: 2.4 GHz Intel Core 2 Duo .

⇒ Memory: 6 GB 1067 MHz DDR3 .

⇒ Graphic card: NVIDIA GeForce 320M 256 MB .

Page 64

Chapter 4. Results and Implementations

4.4.1.2 Softwares and APIs

Several Softwares and APIs are used in order to accomplish the application and the
figures and schemes used in this thesis where they are introduced below.

4.4.1.2.1 Softwares

⇒ Programming Environment: Apple Xcode, Version 9.2(9C40b) .

⇒ Figures design: Adobe Photoshop CC, Version 2017.1.1 .

⇒ Schemes design: Sketch, Version 43.1 .

⇒ Metrics (RMSE, Visual): Matlab, Version R2015b .

4.4.1.2.2 APIs

⇒ Graphics Library: OpenGL, profile: Core, Version 3.30 .

⇒ OpenGL Shading Language: GLSL, Profile: Core, Version 3.30.

⇒ OpenGL Mathematics: GLM, Core profile : Supported, Version 0.9.9.0 .

⇒ 3D Models Loader: Open Asset Import Library (Assimp), Version 4.1.0 .

⇒ Loader Generator for C/C++: GLAD, Version: 0.1.13a0 .

⇒ Windowing System and inputs: GLFW, Version 3.2.

⇒ Text Render: FreeType, Version 2.8.1 .

⇒ Image Save: FreeImage, Version 3.17.0.

4.4.2 Application Structure
In order to calculate the AlchemySSAO and using blurring techniques we used shaders
that are necessary for the total flexibility and freedom in rendering that make the over-
drawing possible where the task consist of using 5 rendering passes where 4 are used
for AlchemySSAO and blurring calculation and additional shader are used to render
textual content to the scene which contains informations about used parameters and
material also the fps and the ms per frame where the list below consist of detailed
informations about each pass.

⇒ First shader: G-Buffer setting in order to obtain the geometry informations
that is stored into defined textures (Positions, Normals, Albedo, Depth) that
are attached to the gbuffer fbo.

⇒ Second shader: AlchemySSAO factor calculation using the gbuffer textures,
chosen samples, random vectors for rotations.

Page 65

Chapter 4. Results and Implementations

⇒ Third shader: burring resulted image from the previous shader using bilateral,
gaussian or 4x4 blur filter.

⇒ Fourth shader: Local illumination calculation with the Blinn-Phong model.

⇒ Additional shader: rendering the textual content into the scene.

4.4.2.1 First Shader: G-Buffer

Using Screen Space to approximate the AO factor requires using textures which is
a known fact where they are actually a set images that contain the geometry infor-
mations stored using the gbuffer shader by creating a framebuffer that holds these
different needed textures: Positions, Normals, Albedo, Depth, where these informa-
tions are obtained from the loaded 3D model.

Positions, Normals, are provided by the VAO to the vertex shader via the at-
tributes arrays pointers to send the values from the cpu directly to the vertex shader
where the normals are multiplied by the Normal Matrix for the correct bent and the
position are multiplied by the view and model matrices in order to extract the depth
value which is linear in the view position case directly from the position after that
each position is multiplied by the projection matrix in order to be displayed accord-
ing to the projection matrix. After that each of the normals and positions are passed
to the Fragment Shader as an out variable.

Additionally the Albedo of a certain model are recovered in the fragment shader
using the sample2D uniform same as the specular component after that we normal-
ize the normals, now that we have the three needed components we attach their data
according to their color attachment location index using the layout keyword and spec-
ifying the out variable for each location where these out variables are containing the
geometry informations which are stored into textures after a draw call to the used
color attachements

4.4.2.2 Second Shader: AlchemySSAO Calculation

In order to calculate the AlchemySSAO factor several steps are needed within the
AlchemySSAO shader itself where they are explained below.

4.4.2.2.1 Display Screen Subdivision
After sending the 4x4 noise texture to the AlchemySSAO fragment shader as a uni-
form sampler2D along with other uniforms which are used to tune the effect a 2D
vector is required in order to scale the noise texture all over the screen resolution
where its x and y values equals to window width and height by 4 division resulting a
scaled 4x4 texture that match the window resolution.

4.4.2.2.2 Sampling Core
Now that the random vector are distributed along the viewing screen a sample core is
transferred from the cpu to the fragment shader as a uniform vector of (x,y,z) vectors

Page 66

Chapter 4. Results and Implementations

which contains a set of samples according the needed number of samples which is
known as the Kernel Size generated by one of the fourth used techniques: random,
uniform, stratified distribution techniques, or an importance sampling variance re-
duction technique according to the cos(θ) function where the resulted samples are
distributed along a hemisphere with a radius r.

4.4.2.2.3 AlchemySSAO factor Calculation
Now we come to the interesting part which is the factor calculation after we provide
the essentials needs, each of the positions and normals along with the random vec-
tors are obtained from textures where we create a TBN matrix that switch between
spaces (tangent space, view space) using the normal vector and the random vector
to create th tangent and bitangent vectors resulting each sample transformation from
the tangent space to the view space along the surface normal where we translate each
sample according the first viewed position that is presented in the positions texture.

After that each of these samples are projected into the screen to get their posi-
tions on texture where these samples are used as an offset in order to get the occludee
position that is involved in the calculation of vi vector alongside with the occluder
position which is the sample position itself.

The vector vi along with other tuning parameters are used then to calculate the
AlchemySSAO factor using the monte carlo estimator that is defined by the original
authors of the AlchemySSAO technique.

4.4.2.3 Third Shader: Filtering

AlchemySSAO results that is stored in a texture contains an amount of noise that
is produced from low sampling core samples and the usage of the rotation vectors
that’s why the resulted texture (image) is passed to a filtering or in more accurate
way blurring shader where it contains three types of blurring techniques which are
mentioned in Section 4.3.5.

The first is the gaussian blur which uses two horizontal and vertical blur passes
for performance reasons using a kernel size which indicates the grid involved in
blurring averaging and a strength value to define more or less blur effect while we
offset each texture coordinate by the exact size of a single texel multiplied by either
a horizontal-vertical blurring stage 0-1 values respectively to calculate the average
value that is divided by a coefficient sum which contains an incremental gaussian
coefficient values.

The second one is a simple 4x4 blur stage where we used a 4x4 grid to average
4x4 texels using an offset vector to offset the resulted noisy image by the exact size
of a single texel in order to provide a simple blurring results.

Lastly the bilateral filter which is based on the gaussian filter where we used two
nested loops along with a range and spatial σ values which make the bilateral filter
a geometry-aware filter when in comes to pixel (texels) edges preserving where an

Page 67

Chapter 4. Results and Implementations

offset color is chosen to present one of the neighbors AlchemySSAO factor value
using a 2D vector for the current position added to the actual texture coordinate and
divided by the actual texture size that is presented using a 2D vector, after that the
spatial distance is computed by the distance between the centered targeted texel and
one of its neighbors and the range distance which is calculated using the offset color
of a neighbor texel value and the actual AlchemySSAO factor value in the current
position, where these two distances are used to calculated the weight assigned to a
neighbor texel in order to blur the current texel after normalizing each weight.

4.4.2.4 Fourth Shader: Illumination

we compute the illumination using the Blinn-Phong local illumination model that we
came through in Chapter 1, Section 2.2.1.2.2 with an extended ambient light compo-
nent in order to overdraw our resulted AlchemySSAO factor over the geometry and
that is achieved by either replacing the uniform ambient light factor by the Alche-
mySSAO factor or by multiplying it directly by approximated AO value alongside
with the diffuse, specular components, each of the scene materials can be either a
uniform colorization or a used Albedo that is multiplied by the Alchemy factor to
reduce the high intensity of colors which reflect the real-world when it comes to the
ambient component and multiplying the albedo map directly with the light intensity
Id and the Lambert model cos(θ) for the diffuse component while the specular com-
ponent is calculated using halfway and view vectors.

The Blinn-Phong formula after including the approximated AO factor:

I = AlchemySSAO∗Ka + Id ∗Kd ∗ (N̂ · L̂)+ Is ∗Kd ∗ (Ĥ · N̂)n

4.4.2.5 Additional Shader: Text render

In order to display textual content into the screen frame an additional shader is used
which takes as an input a uniform texture where its Red component contains an or-
thogonal projected characters where each character is within a small quad that is
rendered into the Alpha channel in order to have a transparent background and only
the actual character pixels rendered and that is achieved by enabling the blending
OpenGL technique and using the FreeType Library.

The Figure 4.8 defines the global design of the graphical application with the
different typeso f communications between the three components: CPU, Shaders,
GPU.

Page 68

Chapter 4. Results and Implementations

CPU Side

First Shader
Vertex

 Shader
Fragment
Shader

Shaders GPU Side

G-Buffer G-BUFFER FBO

Second Shader
Vertex

 Shader
Fragment
Shader

AlchemySSAO

Samples

Noise
Texture

Normals

Albedo

Positions

Horizontal
 Vertical

different 3D
model textures

3D Geometric
model

Normals NormalsAlbedo AlbedoPositions Positions

Linear Depth Value

Linear Depth Value

Textures

AlchemySSAO FBO

AlchemySSAO
Textures

Horizontal FBO

Third Shader
Vertex

 Shader
Fragment
Shader

Blur
Horizontal Blur

Textures

Vertical FBO

Vertical Blur
Textures

Fourth Shader
Vertex

 Shader
Fragment
Shader

Light

Ga
us

si
an

 b
lu

r
4x

4
or

 B
ila

te
ra

l b
lu

r

Result

Gaussian blur
parameters

Tuning
parameters

Tuning
parameters

Light
Propetries

FIGURE 4.8: Global structure of the graphical application.

Page 69

Chapter 4. Results and Implementations

The structure of the text render shader are also provided in the Figure 4.9 below.

Additional Shader
Vertex

 Shader
Fragment
Shader

Text render
Configuration
informations

FIGURE 4.9: Text render shader additional shader structure.

4.5 Results
The Original AlchemySSAO technique has been implemented which uses both ran-
dom samples distribution technique and bilateral filtering but using randomness and
bilateral filter causes ignoring an important depth values occasionally that needs to
be sampled which requires a high kernel size leading to low performance which
also caused by the usage of the bilateral filter. In this part we tried to enhance the
usage of samples by doing a comparative study between the different distribution
techniques and also using an importance sampling variance reduction technique by
choosing cosθ as a pdf to the original AlchemySSAO monte carlo estimator for
samples weighting in order to provide an acceptable results comparing to a reference
image that is rendered using 576 samples in five different scenes using fixed radius
and tuning parameters along filtering parameters and from the other hand the same
comparison are done except rather than using fixed parameters this time we control
the different used parameters in order to get much better results like hemisphere sam-
pling radius, tuning parameters, also replacing the bilateral filter by either a gaussian
filter or 4x4 simple blur can increase the performance significantly and also provide
an acceptable results.

4.5.1 Metrics
In order to achieve the comparison between the different samples techniques images
and the reference image we used the following different metrics:

⇒ Visual Metric: which is defined as the difference between the reference image
and the different resulted images where the difference is calculated by sub-
tracting the R,G,B values between reference image pixels and resulted image
pixels

Page 70

Chapter 4. Results and Implementations

⇒ RMSE Metric: the root mean squared error which is also known as the root
mean squared deviation is one another way to calculated the amount of differ-
ence between two images more accurately by using the following formula:

RMSE =

√
∑

n
i=1(Ire f ,i− Ires,i)2

n

With:
n: the resolution of the images.
ire f : is the reference image.
ires: is the resulted image.

4.5.2 G-Buffer Implementation
AlchemyAOcalculation In the Figure 4.13 the G-Buffer implementation are illus-
trated where it contains the different geometry informations (Positions, Normals,
Albedo) the depth buffer isn’t included due the fact that we extract the linear depth
value from the position information while it is in the view space where it is known
that the depth is linear before projecting positions into the screen where the depth
becomes non-linear.

FIGURE 4.10: G-Buffer implementation results.

Page 71

Chapter 4. Results and Implementations

4.5.3 AlchemySSAO Results
The AlchemySSAO factor are calculated as it is shown in Figure 4.11 using the fire-
place room 3D model provided by Mcguire[51] where the illustration is given with
and without texture using the following parameters:

AlchemySSAO parameters:

⇒ radius : 0.1.

⇒ β = 0.005.

⇒ σ = 0.05.

⇒ Contrast power : k = 6.

Random Sampling
Kernel size : 64

FPS: 24
ms per frame: 41

Uniform Sampling
Kernel size : 64

FPS: 22
ms per frame: 45

Stratifid Sampling
Kernel size : 64

FPS: 23
ms per frame: 43

Importance Sampling
cos(θ)

Kernel size : 64
FPS: 20

ms per frame: 50

FIGURE 4.11: AlchemySSAO factor calculated using random, uni-
form, stratified, importance sampling techniques.

As we can see the resulted AlchemySSAO output depends on the used sampling
techniques and the complexity of geometry which gives different results with a fps
variation.

Page 72

Chapter 4. Results and Implementations

Compared to the improved CrytekSSAO technique:
CrytekSSAO parameters:

⇒ radius : 0.1.

⇒ SSAO power : 3.

CrytekSSAO
FPS: 30

ms per frame : 33ms

AlchemySSAO
FPS: 23

ms per frame : 43ms

FIGURE 4.12: Comparison between the CrytekSSAO and the Alche-
mySSAO techniques for ambient occlusion approximation.

The result above clearly illustrate the efficiency of the AlchemySSAO compared
to the CrytekSSAO technique though when it comes to performance the CrytekSSAO
considered faster than the AlchemySSAO.

4.5.4 Sampling Core
Sampling Core play an essential role in enhancing the AlchemySSAO factor due the
fact that the more we samples the more we get greater result and the opposite that’s
why is this part we compare different samples kernel size using random distribution
and the fireplace room 3D model for the illustration which is provided from[51] as
Figure 4.13 illustrates using the following parameters:

Page 73

Chapter 4. Results and Implementations

AlchemySSAO parameters:

⇒ radius : 0.5.

⇒ β = 0.005.

⇒ σ = 0.05.

⇒ Contrast power : k = 6.

Sampling Core: 16 samples

Sampling Core: 32 samples

Sampling Core: 64 samples

Sampling Core: 128 samples

FPS : 40
ms per frame : 25ms

FPS : 22
ms per frame : 45ms

FPS : 14
ms per frame : 71ms

FPS : 12
ms per frame : 83ms

FIGURE 4.13: enhanced results due the sampling core size variation.

4.5.5 Sampling Distribution Techniques
In order to variate samples distribution different distribution techniques are imple-
mented which are the random, uniform and stratified techniques along with an im-
portance sampling according to the pdf cos(θ)

π
.

Visual and RMSE metrics are computed in order to compare between the different
techniques mentioned above for 5 different scene which are:

⇒ Sponza[51].

⇒ Living room[51].

Page 74

Chapter 4. Results and Implementations

⇒ fireplace room[51].

⇒ Sibenik[51].

⇒ Dragon.

With the following AlchemySSAO factor and Filtering parameters:
AlchemySSAO parameters:

⇒ radius : 0.5.

⇒ β = 0.005.

⇒ σ = 0.05.

⇒ Contrast power k = 6.

Filtering parameters:

⇒ Filter: gaussian

⇒ Blur strength = 2.0.

⇒ Blur Kernel Size = 8.

Where the AlchemySSAO tuning parameters and hemisphere radius along filter-
ing parameters are considered the same to all tested scenes to compare them exactly
with the same way.

Sponza:

ms per frame: 588000ms

ms per frame: 52ms

ms per frame: 50ms

ms per frame: 71ms

ms per frame: 55ms

Reference Image

Sponza

576 Samples : Uniform Sampling

64 Samples
Random Sampling

64 Samples
Uniform Sampling

64 Samples
Stratified Sampling

64 Samples
Cosine(θ) Sampling

FPS : 1

FPS : 19

FPS : 20

FPS : 14

FPS : 18

RMSE valueVisual Metric

0.0164

0.0111

0.0264

0.0184

FIGURE 4.14: Comparison of Sponza 3D model between the refer-
ence image and implemented techniques using visual and root mean

squared error metrics.

Page 75

Chapter 4. Results and Implementations

fireplace room:

ms per frame: 438000ms

ms per frame: 71ms

ms per frame: 66ms

ms per frame: 66ms

ms per frame: 66ms

Reference Image

fireplace room

576 Samples : Random Sampling

64 Samples
Random Sampling

64 Samples
Uniform Sampling

64 Samples
Stratified Sampling

64 Samples
Cosine(θ) Sampling

FPS : 1

FPS : 14

FPS : 15

FPS : 15

FPS : 15

Visual Metric RMSE value

0.0491

0.0678

0.0449

0.0724

FIGURE 4.15: Comparison of Fireplace room 3D model between the
reference image and implemented techniques using visual and root

mean squared error metrics.

Sibenik:

Reference Image

Sibenik

576 Samples : Uniform Sampling

64 Samples
Random Sampling

64 Samples
Uniform Sampling

64 Samples
Stratified Sampling

64 Samples
Cosine(θ) Sampling

FPS : 1

FPS : 23

FPS : 24

FPS : 23

FPS : 24

RMSE valueVisual Metric

0.0309

0.0098

0.0525

0.0267

ms per frame: 432000ms

ms per frame: 43ms

ms per frame: 41ms

ms per frame: 43ms

ms per frame: 41ms

FIGURE 4.16: Comparison of Sibenik 3D model between the refer-
ence image and implemented techniques using visual and root mean

squared error metrics.

Page 76

Chapter 4. Results and Implementations

Living room:

Reference Image

Living room

576 Samples : Uniform Sampling

64 Samples
Random Sampling

64 Samples
Uniform Sampling

64 Samples
Stratified Sampling

64 Samples
Cosine(θ) Sampling

FPS : 1

FPS : 13

FPS : 13

FPS : 15

FPS : 14

RMSE valueVisual Metric

0.0489

0.0224

0.0814

0.0447

ms per frame: 546000ms

ms per frame: 76ms

ms per frame: 76ms

ms per frame: 66ms

ms per frame: 71ms

FIGURE 4.17: Comparison of Living room 3D model between the
reference image and implemented techniques using visual and root

mean squared error metrics.

Dragon:

Reference Image

Dragon

576 Samples : Uniform Sampling

64 Samples
Random Sampling

64 Samples
Uniform Sampling

64 Samples
Stratified Sampling

64 Samples
Cosine(θ) Sampling

FPS : 1
ms per frame: 480000ms

ms per frame: 38ms

ms per frame: 40ms

ms per frame: 35ms

ms per frame: 41ms

FPS : 26

FPS : 25

FPS : 28

FPS : 24

RMSE valueVisual Metric

0.0194

0.0245

0.0192

0.0235

FIGURE 4.18: Comparison of Dragon 3D model between the refer-
ence image and implemented techniques using visual and root mean

squared error metrics.

Page 77

Chapter 4. Results and Implementations

From the comparisons above we see that each of the used sampling techniques
along filtering can effect the resulted output which is considered as an acceptable
result comparing to the reference image in each tested scene due the fact that both
hemisphere radius and tuning parameters are fixed.

After that we do a comparison between 3 chosen scenes with different tuning
parameters which are the intensity scale σ and the contrast power k and sampling
hemisphere radius r in order to get much more acceptable results with higher perfor-
mance and small difference while the chosen scenes are :

⇒ fireplace room[51].

⇒ Sibenik[51].

⇒ Living room[51].

fireplace room:

ms per frame: 438000ms

ms per frame: 100ms

ms per frame: 53ms

ms per frame: 50ms

ms per frame: 50ms

Reference Image

fireplace room

576 Samples : Random Sampling

64 Samples
Random Sampling

64 Samples
Uniform Sampling

64 Samples
Stratified Sampling

64 Samples
Cosine(θ) Sampling

FPS : 1

FPS : 10

FPS : 19

FPS : 20

FPS : 20

64 RMSE value

0.0567

0.0713

0.0517

0.0724

32 RMSE value

0.0455

0.0681

0.0699

0.0671

σ = 0.07, k = 1
radius = 0.5

σ = 0.038, k = 2
radius = 0.1

σ = 0.084, k = 1
radius = 0.1

σ = 0.046, k = 2
radius = 0.1

ms per frame: 42ms

ms per frame: 33ms

ms per frame: 33ms

ms per frame: 34ms

32 Samples
Random Sampling

32 Samples
Uniform Sampling

32 Samples
Stratified Sampling

32 Samples
Cosine(θ) Sampling

FPS : 24

FPS : 30

FPS : 30

FPS : 29

σ = 0.042, k =2
radius = 0.5

σ = 0.044, k = 2
radius = 0.1

σ = 0.044, k = 2
radius = 0.1

σ = 0.026, k = 2
radius = 0.1

FIGURE 4.19: Comparison between a set of resulted images from
rendering fireplace room with different radius and tuning parameters.

Page 78

Chapter 4. Results and Implementations

Sibenik:

ms per frame: 41ms

ms per frame: 43ms

ms per frame: 48ms

ms per frame: 43ms

64 Samples
Random Sampling

64 Samples
Uniform Sampling

64 Samples
Stratified Sampling

64 Samples
Cosine(θ) Sampling

FPS : 24

FPS : 23

FPS : 21

FPS : 23

64 RMSE value

0.0529

0.0572

0.0598

0.0546

32 RMSE value

0.0378

0.0372

0.0563

0.0520

σ = 0.046, k = 4
radius = 0.3

σ = 0.046, k = 2
radius = 0.3

σ = 0.046, k = 2
radius = 0.3

σ = 0.050, k = 2
radius = 0.3

ms per frame: 31ms

ms per frame: 33ms

ms per frame: 33ms

ms per frame: 33ms

32 Samples
Random Sampling

32 Samples
Uniform Sampling

32 Samples
Stratified Sampling

32 Samples
Cosine(θ) Sampling

FPS : 32

FPS : 30

FPS : 30

FPS : 30

σ = 0.026, k = 6
radius = 0.9

σ = 0.026, k = 6
radius = 0.3

σ = 0.022, k = 5
radius = 0.3

σ = 0.018, k = 6
radius = 0.3

Reference Image

Sibenik

576 Samples : Uniform Sampling
FPS : 1

ms per frame: 432000ms

FIGURE 4.20: Comparison between a set of resulted images from
rendering sibenik with different radius and tuning parameters.

Living room:

ms per frame: 71ms

ms per frame: 76ms

ms per frame: 76ms

ms per frame: 76ms

Reference Image

64 Samples
Random Sampling

64 Samples
Uniform Sampling

64 Samples
Stratified Sampling

64 Samples
Cosine(θ) Sampling

FPS : 1

FPS : 14

FPS : 13

FPS : 13

FPS : 13

64 RMSE value

0.1324

0.0593

0.0614

0.1204

32 RMSE value

0.1079

0.1164

0.1216

0.1205

σ = 0.038, k = 4
radius = 0.3

σ = 0.040, k = 3
radius = 0.3

σ = 0.064, k = 2
radius = 0.3

σ = 0.010, k = 1
radius = 0.3

ms per frame: 55ms

ms per frame: 50ms

ms per frame: 52ms

ms per frame: 55ms

32 Samples
Random Sampling

32 Samples
Uniform Sampling

32 Samples
Stratified Sampling

32 Samples
Cosine(θ) Sampling

FPS : 18

FPS : 20

FPS : 19

FPS : 18

σ = 0.044, k =3
radius = 0.5

σ = 0.044, k = 3
radius = 0.1

σ = 0.044, k = 3
radius = 0.1

σ = 0.060, k = 2
radius = 0.1

Living room

576 Samples : Uniform Sampling

ms per frame: 546000ms

FIGURE 4.21: Comparison between a set of resulted images from
rendering living room with different radius and tuning parameters.

In this resulted comparisons we can see clearly the efficiency of the tuning pa-
rameters along the hemisphere radius in generating much more acceptable results
even when using a 32 sample kernel size which makes performance more higher
than using 64 kernel size along with gaussian blur which leads us to consider the
tuning parameters along hemisphere radius and the sampling techniques a great way
to produce and control the realism of the resulted outputs which also depends on the
screen complexity when in comes to the fps calculation.

Page 79

Chapter 4. Results and Implementations

4.5.6 Filtering Techniques
In order to get rid of the noise that is within AlchemySSAO factor we gonna add
a blur effect to the resulted texture or image in more accurate way and compare
between the blurred AlchemySSAO factor from the different filtering techniques.

4.5.6.1 Bilateral Filter

With and Without bilateral filter are illustrated in the Figure 4.22 below using the
following parameters:

⇒ σs = 3 which is the spatial parameter.

⇒ σr = 3 which is the range weight.

FIGURE 4.22: Blurred AlchemySSAO factor using the bilateral filter
with FPS: 9 and ms per frame average: 111ms, without FPS: 13

and ms per frame average: 76ms

Page 80

Chapter 4. Results and Implementations

The resulted AlchemySSAO factor texture are clearly enhanced and the noisy
spots are significantly vanished and the scene geometry shapes are preserved due the
fact that the bilateral filter consist of edge preserving but when it comes to perfor-
mance it is a time consuming technique.

4.5.6.2 Gaussian Filter

Another filter is implemented which is the gaussian filter where the blurring effect
are splitted into two phases horizontal and vertical blurring as Figure 4.23 illustrate
where the result are shown in Figure 4.24 with parameters:

⇒ Blur strength = 2.0.

⇒ Blur kernel size = 8.

Noisy Texture

Horizontal Filter

Vertical Filter

Blurred Texture

FIGURE 4.23: Gaussian filter blurring phases illustration.

Page 81

Chapter 4. Results and Implementations

FIGURE 4.24: Blurred AlchemySSAO factor using the gaussian filter
with FPS: 17 and ms per frame average: 58ms, without FPS: 23

and ms per frame average: 43ms

The gaussian filter gives a great results when it comes to noise reduction but
it also must be well controlled in order to preserve scene geometry shapes due the
fact that it only uses spatial parameter which makes edge preserving absent causing
details loosing.

Page 82

Chapter 4. Results and Implementations

4.5.6.3 4x4 blur Filter

The last applied filter is the 4x4 blur filter which is illustrated in the Figure 4.25
below.

FIGURE 4.25: Blurred AlchemySSAO factor using the 4x4 blur filter
with FPS: 11 and ms per frame average: 90ms, without FPS: 17

and ms per frame average: 58ms

A 4x4 blur considered to be an efficient way to provide a simple blurring that is
used to increase performance as the Figure 4.25 above shows the difference in fps
where it is considered to be small comparing to the gaussian and bilateral filters.

4.5.7 Filters comparison
The Figure 4.26 illustrate the comparison between the used filters and also the Alche-
mySSAO result without using filtering techniques.

Page 83

Chapter 4. Results and Implementations

AlchemySSAO factor Alone

Gaussian Filter

4x4 blur

Bilateral Filter

FPS : 60
ms per frame : 16ms

FPS : 20
ms per frame : 50ms

FPS : 21
ms per frame : 47ms

FPS : 12
ms per frame : 83ms

FIGURE 4.26: Comparison between the original resulted AlchemyS-
SAO factor and the used filters

From the Figure 4.26 we can clearly see the decreasing of the fps the the increas-
ing in the time taken for each frame where the bilateral filter considered to be as one
of the low performance causes.

4.5.8 Scene Illumination
Scene illumination has been achieved using the Blinn-Phong illumination model
where the Figure 4.27 shows the difference between an approximated ambient ob-
scurance factor and a uniform ambient light value.

Page 84

Chapter 4. Results and Implementations

FIGURE 4.27: with AlchemySSAO factor FPS: 20 and ms per frame
average: 50ms, without FPS: 60 and ms per frame average: 16ms

As the figure above illustrate the realism enhancement by using the AlchemyS-
SAO to approximate the ambient obscurance factor where it effects significantly the
blocked areas like behind the couch, between the cups, between the floor and the
end of the wall, behind the picture frame where it is considered as one of the global
illumination essences.

4.5.9 Text render
In order to dynamically check the tuning parameters for both AlchemySSAO and
Filtering alongside with some of the materials and software Configurations a textual
informations content projection are implemented as the Figure 4.28 shows.

Page 85

Chapter 4. Results and Implementations

FIGURE 4.28: Tuning parameters alongside the materials and soft-
wares configurations projected into the application frame.

4.5.10 Results Discussion
After doing a comparison between the sampling techniques using different scenes in
order to observe the difference between the reference image and the different images
resulted from sampling techniques by using fixed parameters and per-scene different
parameters along the root mean squared error where each of them is considered as a
metric for difference observation and also using the frame per second (FPS) and the
noise degree in the resulted AlchemySSAO factor along the ms per frame average,
we conclude that both the bilateral and randomness sampling technique which are
used in the original authors in AlchemySSAO can be replaced either with a uniform
or stratified distribution or even an importance sampling technique while the blurring
can be enhanced when it comes to performance by using either a gaussian blur or a
4x4 simple blur and of course the controllable tuning, filtering parameters followed
by the hemisphere radius makes instant realism enhancing possible, all of these com-
ponents are combined together in order to achieve an acceptable ambient obscurance
approximation using the screen space.

Page 86

Chapter 4. Results and Implementations

4.5.11 Conclusion
In this chapter, we did an implementation of the original AlchemySSAO technique
with its both original used techniques random sampling and bilateral filtering that
causes low performance when it comes to the bilateral filtering and noise produc-
ing along important samples ignorance, which is caused by the random sampling.
Due to these problems, we tried to achieve an acceptable ambient obscurance fac-
tor approximation and good performance by using other different techniques rather
than the original ones for filtering and sampling, where we used a gaussian and 4x4
blur as filtering techniques which provide a better performance. For sampling tech-
niques we did a comparative study between three different distribution techniques
along with a chosen importance sampling pdf that were compared either with fixed
AlchemySSAO tuning parameters applied to five different scenes that allowed us to
evaluate the amount of difference there is with a reference image, or with control-
lable parameters applied to three different scenes along with different samples kernel
size to enhance performance and reduce the noise effect as much as we could, where
all of these implementations were possible using the power of gpus when it comes
to shaders programming let us include real-time factor in approximating one of the
global illumination resulted effects which is the ambient obscurance.

Page 87

General Conclusion

In this project, we have presented the foundation of the global illumination along
with its different approximation methods that have different essentials. One of these
methods is the ambient obscurance which is an extended version of the ambient oc-
clusion, where it depends on scene geometry in order to determine the amount of
obstruction there is between one point, or a region of a 3D scene and a light source
whereby all geometry is taken into account which is not practical in real-time appli-
cation.

Alchemy Screen Space Ambient Obscurance from the other hand is one of the
solutions that is used to approximate the ambient obscurance in real-time, where it
depends on the screen space more accurately pixel depth rather than the geometry
itself which means that it uses the depth buffer as an approximation of the visible ge-
ometry which allows faster ambient obscurance approximations that can be used in
real-time. But due to the used sampling and filtering techniques it is more exposed to
low performance, and noise not to mention that it usually misses an important scenes
contributions when it comes to sampling technique.

To solve this kind of problems, we implemented the alchemy screen space am-
bient obscurance using the original authors used sampling and filtering techniques
which are the random sampling and bilateral filter respectively, and another set of
chosen techniques which are the uniform, stratified sampling along the importance
sampling with a cos(θ) as a probability density function and a gaussian, 4x4 filters
where the different results have been compared together using five different scenes
with fixed tuning parameters, and three other scenes with controllable parameters in
order to come up with a better results that has a better samples expectations, higher
performance and lower noise. We also did a comparison with the original crytek
screen space ambient occlusion that leads us to efficient results as we expected. All
of this is accomplished by using the power of GPUs as the graphics essence.

For the future works, we suggest ideas that can enhance the outputs in much more
better way like:

⇒ Using textures rather than vectors in samples transferring between the CPU
and the GPU to accelerate the acces.

⇒ Using Mutiple Importance Sampling rather that different used techniques for
better sampling.

Page 88

References

[1] Zerari Abd El Moumene. “Volume D’ombre en Rendu Temps Réel”. MA the-
sis. Biskra: Mohamed kheidher University, Sept. 2011.

[2] Kelly Dempski and Emmanuel Viale. Advanced Lighting and Materials with
Shaders. 2320 Los Rious Boulevard Plano, Texas 75074: Wordware, 2005.
ISBN: 1-55622-292-0.

[3] Dave Shreiner et al. OpenGL Programming Guide. Pearson Education, One
Lake Street Upper Saddle River, New Jersy 07458: Edwards Brothers Malloy,
2013. ISBN: 978-0-321-77303-6.

[4] Edward Angel and Dave Shreiner. Interactive Computer Graphics. 7th ed.
Pearson Education, One Lake Street Upper Saddle River, New Jersy 07458:
Addison-Wesley, 2015. ISBN: 978-0-13-357484-5.

[5] Bui Tuong Phong. “Illumination for Computer Generated Pictures”. In: Com-
mun. ACM 18.6 (June 1975), pp. 311–317. ISSN: 0001-0782. DOI: 10.1145/
360825.360839. URL: http://doi.acm.org/10.1145/360825.360839.

[6] James F. Blinn. “Models of Light Reflection for Computer Synthesized Pic-
tures”. In: SIGGRAPH Comput. Graph. 11.2 (July 1977), pp. 192–198. ISSN:
0097-8930. DOI: 10.1145/965141.563893. URL: http://doi.acm.org/
10.1145/965141.563893.

[7] Elhadad Feriel. “Photon Mapping Acceleration for global rendering”. MA the-
sis. Biskra: Mohamed kheidher University, Sept. 2013.

[8] Ritschel Tobias et al. “The State of the Art in Interactive Global Illumination”.
In: Computer Graphics Forum 31.1 (Feb. 2012), pp. 160–188. DOI: 10.1111/
j.1467-8659.2012.02093.x. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1111/j.1467-8659.2012.02093.x. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.
02093.x.

[9] Townsend Tamsyn. Ray Tracing. University Lecture. 2017.

[10] Ian Ashdown. Radiosity: A Programmer’s Perspective. New York, NY, USA:
John Wiley & Sons, Inc., 1994. ISBN: 0471304433.

[11] Duck Bong Kim et al. “High-dynamic-range camera-based bidirectional re-
flectance distribution function measurement system for isotropic materials”.
In: 48 (Sept. 2009).

[12] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edi-
tion: From Theory To Implementation. 2nd. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2010. ISBN: 0123750792, 9780123750792.

Page 89

https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
http://doi.acm.org/10.1145/360825.360839
https://doi.org/10.1145/965141.563893
http://doi.acm.org/10.1145/965141.563893
http://doi.acm.org/10.1145/965141.563893
https://doi.org/10.1111/j.1467-8659.2012.02093.x
https://doi.org/10.1111/j.1467-8659.2012.02093.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.02093.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.02093.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x

REFERENCES

[13] James T. Kajiya. “The Rendering Equation”. In: SIGGRAPH Comput. Graph.
20.4 (Aug. 1986), pp. 143–150. ISSN: 0097-8930. DOI: 10.1145/15886.
15902. URL: http://doi.acm.org/10.1145/15886.15902.

[14] Rita Zrour. “Global Illumination method parallelism using Voxles”. PhD the-
sis. Auvergne University, 2007.

[15] Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. “Combining Hi-
erarchical Radiosity and Discontinuity Meshing”. In: Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’93. Anaheim, CA: ACM, 1993, pp. 199–208. ISBN: 0-89791-601-8.
DOI: 10.1145/166117.166143. URL: http://doi.acm.org/10.1145/
166117.166143.

[16] REDWAY3D. Monte Carlo Sampling. Accessed: 2018-05-26. 2017. URL: http:
//www.redway3d.com/downloads/public/documentation/bk_re_
monte_carlo_sampling.html.

[17] Peter Shirley and Steve Marschner. Fundamentals of Computer Graphics. 4rd.
Natick, MA, USA: A. K. Peters, Ltd., 2016. ISBN: 1568814690, 9781568814698.

[18] Eric Veach. “Robust Monte Carlo Methods for Light Transport Simulation”.
PhD thesis. Standford University, 1997.

[19] Konstantinos Vardis. “Efficient Illumination Algorithms for Global Illumina-
tion In Interactive and Real-Time Rendering”. PhD thesis. Athens University,
1997.

[20] Alexander Keller. “Instant Radiosity”. In: Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’97. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997,
pp. 49–56. ISBN: 0-89791-896-7. DOI: 10 . 1145 / 258734 . 258769. URL:
https://doi.org/10.1145/258734.258769.

[21] Samuli Laine et al. “Incremental Instant Radiosity for Real-Time Indirect Il-
lumination”. In: Rendering Techniques. 2007.

[22] Carsten Dachsbacher and Marc Stamminger. “Reflective Shadow Maps”. In:
Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games.
I3D ’05. Washington, District of Columbia: ACM, 2005, pp. 203–231. ISBN:
1-59593-013-2. DOI: 10.1145/1053427.1053460. URL: http://doi.acm.
org/10.1145/1053427.1053460.

[23] T. Ritschel et al. “Imperfect Shadow Maps for Efficient Computation of In-
direct Illumination”. In: ACM Trans. Graph. 27.5 (Dec. 2008), 129:1–129:8.
ISSN: 0730-0301. DOI: 10.1145/1409060.1409082. URL: http://doi.
acm.org/10.1145/1409060.1409082.

[24] Oliver Mattausch. “Visibility Algorithms for Real-Time Rendering in General
3D Environements”. PhD thesis. Vienna University of Technology, 2010.

[25] David Wolff. OpenGL 4.0 Shading Language Cookbook. Packt Publishing,
2011. ISBN: 1849514763, 9781849514767.

[26] Eisemann. Elmar et al. Real-Time Shadows. A K Peters/CRC Press, 2011.
ISBN: 978-1-56881-438-4.

Page 90

https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
http://doi.acm.org/10.1145/15886.15902
https://doi.org/10.1145/166117.166143
http://doi.acm.org/10.1145/166117.166143
http://doi.acm.org/10.1145/166117.166143
http://www.redway3d.com/downloads/public/documentation/bk_re_monte_carlo_sampling.html
http://www.redway3d.com/downloads/public/documentation/bk_re_monte_carlo_sampling.html
http://www.redway3d.com/downloads/public/documentation/bk_re_monte_carlo_sampling.html
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/1053427.1053460
https://doi.org/10.1145/1409060.1409082
http://doi.acm.org/10.1145/1409060.1409082
http://doi.acm.org/10.1145/1409060.1409082

REFERENCES

[27] Hayden Landis. “Production-ready global illumination”. In: Siggraph course
notes 16.2002 (2002), p. 11.

[28] Wolfgang Engel. “ShaderX7”. In: Charles River Media (2009).

[29] Frederik Peter Aalund. “A Comparative Study of Screen Space Ambient Oc-
clusion Methods”. MA thesis. Denmark: Technical University of Denmark
Informatics and Mathematical Modelling, May 2013.

[30] Sergey Zhukov, Andrei Iones, and Grigorij Kronin. “An ambient light illumi-
nation model”. In: Rendering Techniques’ 98. Springer, 1998, pp. 45–55.

[31] Marc Sunet. “Ambient Occlusion on Mobile: An Empirical Comparison”. MA
thesis. Spain: POLYTECHNIC UNIVERSITY OF CATALONIA, 2016.

[32] Janne Kontkanen and Samuli Laine. “Ambient Occlusion Fields”. In: Proceed-
ings of the 2005 Symposium on Interactive 3D Graphics and Games. I3D ’05.
Washington, District of Columbia: ACM, 2005, pp. 41–48. ISBN: 1-59593-
013-2. DOI: 10.1145/1053427.1053434. URL: http://doi.acm.org/10.
1145/1053427.1053434.

[33] Mattias Malmer et al. “Fast precomputed ambient occlusion for proximity
shadows”. In: Journal of graphics tools 12.2 (2007), pp. 59–71.

[34] Matt Pharr and Randima Fernando. Gpu gems 2: programming techniques
for high-performance graphics and general-purpose computation. Addison-
Wesley Professional, 2005.

[35] Mirko Sattler et al. “Hardware-accelerated ambient occlusion computation”.
In: Vision, Modeling, and Visualization 2004. Ed. by B. Girod, M. Magnor,
and H.-P. Seidel. Akademische Verlagsgesellschaft Aka GmbH, Berlin, Nov.
2004, pp. 331–338. ISBN: 3-89838-058-0.

[36] Martin Mittring. “Finding next gen: Cryengine 2”. In: ACM SIGGRAPH 2007
courses. ACM. 2007, pp. 97–121.

[37] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. “Approximating dy-
namic global illumination in image space”. In: Proceedings of the 2009 sym-
posium on Interactive 3D graphics and games. ACM. 2009, pp. 75–82.

[38] Quagliozzi Eric. Z buffering. Accessed: 2018-05-31. 2017. URL: http://
www.pda-fx.net/pagedoc.php?id=4&lg=EN.

[39] Dominic Filion and Rob McNaughton. “Effects & techniques”. In: ACM SIG-
GRAPH 2008 Games. ACM. 2008, pp. 133–164.

[40] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. “Image-space horizon-
based ambient occlusion”. In: ACM SIGGRAPH 2008 talks. ACM. 2008, p. 22.

[41] Bradford James Loos and Peter-Pike Sloan. “Volumetric obscurance”. In: Pro-
ceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics
and Games. ACM. 2010, pp. 151–156.

[42] Morgan McGuire et al. “The alchemy screen-space ambient obscurance algo-
rithm”. In: Proceedings of the ACM SIGGRAPH Symposium on High Perfor-
mance Graphics. ACM. 2011, pp. 25–32.

Page 91

https://doi.org/10.1145/1053427.1053434
http://doi.acm.org/10.1145/1053427.1053434
http://doi.acm.org/10.1145/1053427.1053434
http://www.pda-fx.net/pagedoc.php?id=4&lg=EN
http://www.pda-fx.net/pagedoc.php?id=4&lg=EN

REFERENCES

[43] Nvidia. Anisotropic Filtering. Accessed: 2018-06-01. 2012. URL: https://
www.geforce.com/whats-new/guides/aa-af-guide#1.

[44] Quora. What consumes more CPU power in regard to games - anisotropic
filtering or anti-aliasing. Accessed: 2018-06-01. 2017. URL: https://www.
quora.com/What-consumes-more-CPU-power-in-regards-to-games-
anisotropic-filtering-or-anti-aliasing.

[45] Guang Deng and LW Cahill. “An adaptive Gaussian filter for noise reduction
and edge detection”. In: Nuclear Science Symposium and Medical Imaging
Conference, 1993., 1993 IEEE Conference Record. IEEE. 1993, pp. 1615–
1619.

[46] Sylvain Paris et al. “Bilateral filtering: Theory and applications”. In: Founda-
tions and Trends R© in Computer Graphics and Vision 4.1 (2009), pp. 1–73.

[47] Graham Sellers, Richard S. Wright, and Nicholas Haemel. OpenGL Super-
Bible: Comprehensive Tutorial and Reference. 6th. Addison-Wesley Profes-
sional, 2013. ISBN: 0321902947, 9780321902948.

[48] Prashanta Kumar Das and Ganesh Chandra Deka. “History and evolution of
gpu architecture”. In: Emerging Research Surrounding Power Consumption
and Performance Issues in Utility Computing. IGI Global, 2016, pp. 109–135.

[49] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time rendering.
AK Peters/CRC Press, 2008.

[50] Joey de Vries. Learn OpenGL. Joey de Vries, 2017.

[51] Morgan McGuire. Computer Graphics Archive. Accessed: 2018-06-05. 2017.
URL: https://casual-effects.com/data.

Page 92

https://www.geforce.com/whats-new/guides/aa-af-guide#1
https://www.geforce.com/whats-new/guides/aa-af-guide#1
https://www.quora.com/What-consumes-more-CPU-power-in-regards-to-games-anisotropic-filtering-or-anti-aliasing
https://www.quora.com/What-consumes-more-CPU-power-in-regards-to-games-anisotropic-filtering-or-anti-aliasing
https://www.quora.com/What-consumes-more-CPU-power-in-regards-to-games-anisotropic-filtering-or-anti-aliasing
https://casual-effects.com/data

	General Introduction
	Background
	Introduction
	Illumination
	Local Illumination
	Local Reflection Types
	Ambient Reflection
	Diffuse Reflection
	Specular Reflection

	Local Illumination Techniques
	Phong Illumination Model
	Phong Blinn Illumination Model

	Global Illumination

	Rendering Equation
	Solid Angle
	Radiance
	Irradiance
	Bidirectional Reflectance Distribution Function
	Rendering Equation Foundation
	Global Illumination Techniques
	Radiosity
	Path Tracing

	Monte Carlo Integration
	Probabilites Theory Basics
	Monte Carlo Estimator
	Convergence rates
	Importance Sampling
	Distributions Techniques

	Global Illumination Approximation Techniques
	Instant Radiosity
	Reflective Shadow Maps
	Imperfect Shadow Maps
	Ambient Occlusion
	Comparison

	Conclusion

	Screen Space Ambient Occlusion
	Introduction
	Ambient Occlusion
	Ambient Obscurance
	Real-Time Ambient Occlusion Methods
	Object Based Methods
	Ambient Occlusion Fields
	Fast Precomputed Ambient Occlusion for Shadows Proximity

	Point Based Methods
	Dynamic Ambient Occlusion and Indirect Lighting
	Hardware Accelerated Ambient Occlusion Computation

	Screen Space Based Methods
	Screen Space Ambient Occlusion
	Screen Space Directional Occlusion

	Comparison

	Ambient Occlusion in Screen Space
	Definition
	Screen Space Ambient Occlusion Techniques
	Crytek Ambient Occlusion
	StarCraft 2 Ambient Occlusion
	Horizon Based Ambient Occlusion
	Volumetric Obscurance
	The Alchemy Ambient Obscurance
	Comparison

	Filtering Techniques
	Anisotropic Filter
	Anti-Aliasing
	Gaussian Filter
	Bilateral Filter
	Comparison

	Conclusion

	GPUs and OpenGL Evolution
	Introduction
	GPUs versus CPUs
	Acceleration Using GPUs
	GPUs Evolution
	GPU Architecture
	Material Components
	Shaders
	Graphic Pipeline
	Graphic Pipeline Evolution

	GPUs Programming Languages
	OpenGL Shading Language (GLSL)
	High Level Shading Language (HLSL)
	C for Graphics (CG)

	OpenGL Evolution
	Compatibility profile
	Core profile
	Structures for Shader Programming
	Vertex Buffer Object (VBO)
	Element Buffer Object (EBO)
	Vertex Array Object (VAO)
	Frame Buffer Object (FBO)
	G-Buffer

	Conclusion

	Results and Implementations
	Introduction
	Project Description and Objectives
	General Design
	Geometry Input
	G-Buffer Calculation
	Samples Creation
	AlchemySSAO Calculation
	Filter Applying
	Illumination

	Realization
	Used Softwares and Materials
	Materials
	Softwares and APIs
	Softwares
	APIs

	Application Structure
	First Shader: G-Buffer
	Second Shader: AlchemySSAO Calculation
	Display Screen Subdivision
	Sampling Core
	AlchemySSAO factor Calculation

	Third Shader: Filtering
	Fourth Shader: Illumination
	Additional Shader: Text render

	Results
	Metrics
	G-Buffer Implementation
	AlchemySSAO Results
	Sampling Core
	Sampling Distribution Techniques
	Filtering Techniques
	Bilateral Filter
	Gaussian Filter
	4x4 blur Filter

	Filters comparison
	Scene Illumination
	Text render
	Results Discussion
	Conclusion

	General Conclusion
	References

