
 People's Democratic Republic of Algeria

 Ministry of Higher Education and Scientific Research

 Mohamed Khider University - Biskra

 Faculty of Exact Sciences and Sciences of Nature and Life

 Computer Science department

 Option: Artificial Intelligence

 by

 THAMEUR Halima

 TITLE

 Selecting SOA design patterns using machine learning techniques

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master in computer science

 Defended the 06/07/2019, in front of the jury composed from:

 HATTAB Dalila President

 MOUSSAOUI Manel Member

Dr ZENADJI Tarek Supervisor

 year 2018-2019

i

Abstract

with the continuously increasing amount of textual informations, there is a pressing need

to structure them. Text classification (TC) is a technique which classifies textual information into

a predefined set of categories where documents can be automatically classified based on their

contents. Automatic classification of data is one of the main applications of machine

learning algorithms.

This master’s thesis explores a way in which text classification is used to categorize user

(developer) problems using machine learning algorithms so we can help him to find the

appropriat design pattern knowen,that finding and selecting a suitable soa design pattern

has always been a challenging task especially for young developer during the designing

phase because usually, a designer has to consult and search extensively to find a suitable

pattern.

 Among many patterns, few are considered to be relevant to solve a problem We can define

a 'suitable Soa pattern' as a solution, which is aligned with the developer's problem and

has a good affect.

With the help of already manually classified data that’s the set of SOA Patterns a model

can be learned using learning teckniques like (naïve-Bayesian, k-nearest-neighbor, svm,

decision-Tree). So that we can find the class of design patterns that our problem belongs

to. then we use the patterns of this class as dataset to find the most appropriate one or in

other words the closest design pattern to the user problem using cosine similarity.

.

Keywords: classification; cosine similarity; SOA Patterns.

ii

Résumé

Avec le nombre croissant d'informations textuelles, il est urgent de les structurer.

La classification de texte (TC) est une technique qui classe les informations textuelles dans

un ensemble prédéfini de catégories dans lesquelles les documents peuvent être

automatiquement classés en fonction de leur contenu. La classification automatique des

données est l'une des principales applications des algorithmes d'apprentissage

automatique.

Cette thèse de master explore une manière d'utiliser la classification de texte pour classer

les problèmes d'utilisateurs (développeurs) à l'aide d'algorithmes d'apprentissage

automatique afin de l'aider à trouver le modèle de conception approprié, sachant que

trouver et choisir un modèle de conception soa approprié a toujours été un défi tâche

particulièrement réservée aux jeunes développeurs au cours de la phase de conception car

généralement, un concepteur doit consulter et rechercher de manière approfondie pour

trouver un modèle approprié.

 Parmi de nombreux modèles, peu sont considérés comme pertinents pour résoudre un

problème. Nous pouvons définir un « modèle Soa approprié » comme une solution, alignée

sur le problème du développeur et ayant un impact positif.

À l’aide de données déjà classées manuellement, qui constituent l’ensemble des modèles

SOA, un modèle peut être appris à l’aide de techniques d’apprentissage telles que (naïve-

bayésien, k-voisin le plus proche, svm, arbre de décision). Pour que nous puissions trouver

la classe de modèles de conception à laquelle notre problème appartient. Nous utilisons

ensuite les modèles de cette classe comme jeu de données pour trouver le modèle le plus

approprié ou, en d'autres termes, le modèle de conception le plus proche du problème de

l'utilisateur, à l'aide de la similarité en cosinus.

 Mots-clés : classification ; similitude cosinus ; Modèles SOA.

iii

 ملخص

(هو TCالنص)علومات. تصنيف لهيكلة هذه الممع الزيادة المستمرة في المعلومات النصية ، هناك حاجة ملحة

المعلومات النصية إلى مجموعة محددة مسبقًا من الفئات حيث يمكن تصنيف المستندات تلقائياً الأسلوب الذي يصنف

 بناءً على محتوياتها. يعد التصنيف التلقائي للبيانات أحد التطبيقات الرئيسية لخوارزميات التعلم الآلي.

تم بها استخدام تصنيف النص لتصنيف مشاكل المستخدم)المطور(الطريقة التي يالماجستير هذه تستكشف رسالة

، أن مع المعرفة باستخدام خوارزميات التعلم الآلي حتى نتمكن من مساعدته في العثور على نمط تصميم مناسب

عادةً ة التصميم لأنهشاب أثناء مرحلالعثور على واختيار نمط تصميم مناسب كان دائمًا يمثل تحدياً خاصة للمطور ال

 ما يتوجب على المصمم التشاور والبحث على نطاق واسع للعثور على نمط مناسب.

المناسب" كحل ، Soaمن بين العديد من الأنماط ، يعتبر القليل منها ذا صلة بحل مشكلة ما. يمكننا تعريف "نمط

 والذي يتوافق مع مشكلة المطور وله تأثير جيد.

، يمكن تعلم نموذج باستخدام أدوات تعليمية SOAيدوياً والتي هي مجموعة من أنماط المصنفة ساعدة البياناتبم

، شجرة القرار(. حتى نتمكن من العثور على فئة أنماط التصميم التي تنتمي naïve-Bayésien, knn ،svmمثل)

احد أو بعبارة أخرى أقرب نمط تصميم إليها مشكلتنا. ثم نستخدم أنماط هذه الفئة كمجموعة بيانات لإيجاد أنسب و

 لمشكلة المستخدم باستخدام تشابه جيب التمام.

 لتشابه؛ نماذج الخدمية.الكلمات الرئيسية: تصنيف؛ جيب التماثل ا

iv

Dedication

 This work is dedicated to my beloved parents,

v

Acknowledgements

Praise to Allah, the Compassionate, the Merciful, Peace and blessing on the

Messenger of Allah Muhamed the prophet (Peace Be Upon Him).

A research is something that cannot be materialized without the co-operation

of many people involved in making it a reality. I wish to express our heartfelt

gratitude to all those who have helped me in making this research work a success.

I wish to express our deep sense of gratitude to my Guide, Dr. TAREK

ZERNADJI, Computer Department, for his able guidance and useful suggestions,

which helped me in completing the research work, in time. Without his co-

operation, it would have been extremely difficult for me to complete the research

work.

Finally, yet importantly, I would like to express my heartfelt gratitude and

respect to my Almighty beloved parents THAMEUR Aide and DJAHRA

Messouda for their blessings, my brothers Mostapha, Boubaker Essiddik, Ayoub,

my sister Karima, my friends Ahlem, Khaira, Abir for their help and wishes for

the successful completion of this thesis work.

vi

Table of Contents

Abstract .. i

Dedication .. iv

Acknowledgements ... v

Table of Contents ... vi

List of Tables ... viii

List of Figures .. ix

List of Acronyms ... xi

Chapter 1: Text-classification ... 1

 Definition ... 1

 Text Classification Process .. 1

 Feature construction ... 4

 Constructing a Vector Space Model .. 7

 Machine learning algorithms ... 10

 Similarity Mathematical Metrics ... 25

 Conclusion ... 29

Chapter 2: Service Oriented Architecture .. 30

 Definition ... 30

 Service-orientation design paradigm ... 31

vii

 Design patterns... 33

 Design Patterns and Design Principles .. 36

 Conclusion ... 37

Chapter 3: Pattern selection .. 38

 Our design pattern selection approach ... 38

 Conclusion ... 48

Chapter 4: Implementation, results and comparaison 49

 Implementation .. 49

 Dataset.. 51

 Results and comparaison.. 52

 Interfaces of our system ... 56

Conclusion and future work .. 62

Bibliography ... 64

viii

List of Tables

Table 1 types of kernels .. 23

Table 2 Document Vector or Term-Frequency Vector ... 26

Table 3 SOA patterns dataset .. 39

Table 4 raw content ... 52

Table 5 Classification of a document.. 53

Table 6 Confusion matrix ... 53

Table 7 Results across classifiers .. 54

Table 8 real world examples ... 56

ix

List of Figures

Figure 1:Text Classification process[4] .. 2

Figure 2 stemming process ... 3

Figure 3 bag of words ... 8

Figure 4 Representing document as Vector .. 9

Figure 5 document-term matrix .. 9

Figure 6 decision Tree exemple .. 16

Figure 7 K-Nearest-Neighbors example ... 17

Figure 8 Non-linear and linear separation .. 19

Figure 9 Diagram Small and Large margin separation ... 20

Figure 10 cosine similarity between vectors ... 26

Figure 11 tight coupeling .. 32

Figure 12 loose coupeling ... 32

Figure 13 Preprocessing stages of each design pattern description and problem scenario

... 40

Figure 14 indexing .. 40

Figure 15 numerizing the pattern classes .. 41

Figure 16 indexing Rules .. 41

Figure 17 turning a pattern into a Vector ... 42

Figure 18 turning the user problem into a vector .. 42

Figure 19 training and testing the model .. 43

Figure 20 predicting the problem class ... 44

Figure 21 dataset for second phase ... 44

Figure 22 indexing labels .. 45

Figure 23 cosine similarity measure ... 46

Figure 24 getting the appropriat design pattern .. 46

Figure 25 the processes of selecting design pattern .. 47

Figure 26 Application Home .. 56

Figure 27drop-down menu .. 57

Figure 28 text area message warning .. 58

Figure 29 algorithm selection warning ... 58

Figure 30 text and algorithm are set ... 59

Figure 31solution using naive bayesian .. 59

Figure 32 solution using decision tree .. 60

Figure 33 solution using knn... 60

Figure 34 solution using svm .. 60

x

xi

List of Acronyms

Soa Service oriented architecture

Svm Support vector machine

Vsm Vector space model

Knn K nearest neighbor

Idf Inverse document frequency

Tf Term frequency

xii

General introduction

In today’s world, software engineering has become very important for the technology. It

includes the study and application of the engineering in designing, developing and

maintaining the software. The aim of software engineering is to produce quality software

to be delivered on time keeping it within budget which satisfies the requirement.

Software Design Process in software engineering deals with the activities that are to be

performed for the successful completion of a software. Design Patterns are a way to build

higher software quality, make the software maintenance easier and represent

recommended solutions to design problems. Their extensive use in every day programming

weaves valuable architectural information into software systems.

Four authors namely Erich Gama, Richard Helm, Ralph Johnson and John Vlissides in

1994 published a book, Gamma et al. on Design Patterns Elements of Reusable Object-

Oriented Software, which was beginning to the concept of software design patterns. The

authors collectively called themselves Gang of Four (GOF).

Softwares have a complexity problem. There appears to be a geometric relationship

between the complexity of a monolithic system and its stability and maintainability. So, a

system that is twice as complex as another one will be maybe four times more expensive to

maintain and a quarter as stable. There is also the human and organisational side of

software. Individual teams tend to build or buy their own solutions. The organisation then

needs to find ways for these disparate systems to share information and workflow. Small

single purpose systems are always a better choice than large monolithic ones. If we build

our systems as components, we can build and maintain them independently. SOA is a set

of design patterns that guide us in building and integrating these mini-application pieces.

But To be able to use design patterns and to attain their intended benefits, designers are

expected to have a good understanding and experience with them in order to be able to

select the right pattern for their context.

Software design pattern selection is an important part in the software designing process.

Pattern selection can be made by various methods using manual and automatic approaches

but since it is not feasible for human to process high volume of textual data and

classify and retrieve patterns and with the omnipresence of Machine learning in several

xiii

areas including classification. We can forget about old manual approaches and start

looking for Automatic approaches that represent a better way.

where automatic method includes Machine Learning algorithms. Supervised learning is

being implemented for selecting software design patterns. At the end, the design pattern

selection model will be proposed. Some studies are done on the design patterns selection

as in that article [1].where it uses machine learning to find object oriented design patterns.

But in this manuscript, we propose an approach for selecting SOA design patterns using

machine learning teckniques to predict the class of the design patterns that our problem

belongs to and then using cosine similarity we can retrieve the most appropriat or in others

words the most suitable pattern to our problem.

Thesis structure

This thesis is organized as follows:

Chapter 1 describes the architecture of the text classification model, details the

feature construction processes and the representation in the vector space model

then provides a brief introduction into the algorithms of machine learning and

gives an overview about some similarity measures.

Chapter 2 discusses all the concepts related with soa tecknology, fundamentals of

SOA design patterns, types of design patterns and general definitions.

 Chapter 3 details the pattern selection problematic and our proposed solution.

 Chapter 4 introduces the results of Implementation of the studied algorithm.

Finally, we will finish this thesis by a general conclusion and future work and a

bibliography.

Text-classification

Page | 1

Chapter 1: Text-classification

Introduction:

Text classification (text categorization) is one of the most prominent application of

machine Learning. It is used to automatically assign predefined categories (labels) to free-

text documents. The purpose of text classification is to give conceptual organization to a

large collection of documents. It has become more relevant with exponential growth of the

data, and the wide applicability in real world applications.

 Definition

Text Classification [2] involves assigning a text document to a set of pre-defined

classes automatically, using a machine learning technique. Text classification is a

supervised learning technique that uses labeled training data to derive a classification

system and then automatically classifies unlabelled text data using the derived classifier.

The most data for text classification is collected from the web, through newsgroups,

bulletin boards, and broadcast or printed news... many classification methods have been

developed with the aid of learning algorithms such as Naïve Bayesian, K-Nearest

Neighbor (KNN), Support Vector Machine and Decision Tree.

[3]More formally, if di is a document of the entire set of documents D and {c1,c2,….,cn}

is the set of all the categories, then text classification assigns one category cj to a document

di.

 Text Classification Process

 [4]The task of Text Classification is carried out in several sub phases, see (Figure1).

They are: Data Collection & Representation, Document Pre-processing phase, Feature

selection or Transformation, Applying a text classifier and performance evaluation.

Text-classification

Page | 2

Figure 1:Text Classification process[4]

 Document Collection

This is first step of classification process. The text documents from various sources

are collected in different formats of document like html,.doc, .pdf, web content etc... These

documents are used during training and testing the classifier.

 Document Pre-Processing &Representation

A document is considered as collection of words or Bag of words. Only few of these

words are used for the classification. The words which are insignificant seems to degrade

the process of classification. Hence these documents need to be preprocessed. The steps of

Pre –processing are:

 Tokenization

A document is defined as collection of strings of sentences, which are then isolated

into set of tokens by removing spaces and commas.

 Removing unuseful stop words

Certain words that are not useful for classification. These are called Stop words.

This step involves removal of frequently occurring Stop words like “the”, “a”, “and”,

’of’’, etc. from the list of tokens.

Document

collection
Document Pre-Processing

&Representation

Feature Generation

and feature selection

Application of Text

classifier

Evaluation of Text

classifier

Text-classification

Page | 3

 Stemming

Another very important step to reduce the number of words is to use stemming

which converts different word form into similar canonical form. This technique is used to

find the root or stem of a word. Stemming converts words to their root words. For example,

the words like waiting, rained converted to wait, rain respectively.

 w a i t i n g r a i n e d

w a i t r a i n

Figure 2 stemming process

 Feature Generation/Text Transformation

Text Transformation or Feature generation is one of the important steps of pre-

processing, which reduces the complexity of documents. Documents have to be transformed

from the full text version to a vector of words using the vector Space model see

(Constructing a Vector Space Model section 1.4 page 7).

 Feature Selection

Feature Selection is the dimension reduction step. The main aim of Feature

selection is to select subset of features from the original Documents. Feature Selection is

performed by retaining the most significant words according to predetermined measure of

the significance of the word. Most important feature evaluation metric are information

gain (IG), Chi-square, expected cross entropy, term frequency, Odds Ratio, the weight of

evidence of text, mutual information, Gini index. Advantage of Feature selection is that it

i n g

 e d

 stemmer

Text-classification

Page | 4

improves the accuracy and efficiency of the classifier. Also feature selection reduces the

size of dataset and provides minimum search space for more information see(Feature

construction section 1.3 page 4).

 Text Classification

The objective of the classification is to classify the pre processed documents into

predefined categories by using the training data set. The documents can be classified by

three ways: supervised, unsupervised and semi supervised methods. In Supervised: All data

is labelled and the algorithms learn to predict the output from the input data.

Unsupervised: All data is unlabeled and the algorithms learn to inherent structure from

the input data. Semi-supervised: Some data is labelled but most of it is unlabeled and a

mixture of supervised and unsupervised techniques can be used. Classification is the

problem of Supervised Learning. A number of Classifiers such as Bayesian classifier,

Decision Tree, K-nearest neighbour (KNN), Support Vector Machines (SVMs), Neural

Networks, are available see (Machine learning algorithms section 1.5 page 10).

 Evaluation of Text classifier

Another major process that needs to be performed for the text classification process

is the evaluation of classifier. the process is being performed in order to judge the accuracy

and the reliability of the text classifier.

 Feature construction

 Introduction

Feature construction is one of the key steps in the data analysis process, largely

conditioning the success of any subsequent statistics or machine learning endeavor. In

particular, one should beware of not losing information at the feature construction stage.

Feature construction consists of various techniques and approaches which convert textual

data into a feature-based representation. Since traditional machine learning and data

mining techniques are generally not designed to deal directly with textual data, feature

Text-classification

Page | 5

construction is an important preliminary step, converting source documents into a

representation that a data mining algorithm can then work with.

 Some of the limitations are: high dimensionality of the representation, loss of correlation

with adjacent words and loss of semantic relationship that exist among the terms in a

document. To overcome these problems, feature identification, term weighting methods can

be used.

 Feature identification

[5]in the document representation One particularity of the text categorization

problem is that the number of features (unique words or phrases) can easily reach orders

of tens of thousands. This raises big hurdles in applying many sophisticated learning

algorithms to the text categorization.

Thus, dimension reduction methods are called for. Two possibilities exist, either selecting

a subset of the original features, or transforming the features into new ones.

 Feature-selection

 Choose the best features (= representation words) for your task, remove the rest.

[6]Feature selection is the process of determining the terms to be used in classification. is

applied almost in all text classification studies.

excluding very frequent and/or very rare words – excluding stop words ('of', 'the', 'and',

'or, ...).

[5]The aim of feature-selection methods is the reduction of the dimensionality of the dataset

by removing features that are considered irrelevant for the classification. This

transformation procedure has been shown to present a number of advantages, including

smaller dataset size, smaller computational requirements for the text categorization

algorithms (especially those that do not scale well with the feature set size) and

considerable shrinking of the search space. The goal is the reduction of the curse of

dimensionality to yield improved classification accuracy and decreases process time.

Another benefit of feature selection is its tendency to reduce overfitting, i.e. the

phenomenon by which a classifier is tuned also to the contingent characteristics of the

Text-classification

Page | 6

training data rather than the constitutive characteristics of the categories, and therefore,

to increase generalization.

 Feature extraction(reparameterization)

[7]In this feature reduction technique, the original vector space is transformed to

form a new minimalistic feature vector space. Unlike Feature selection technique, in this

method, all the features are used. The original features are transformed into a smaller set

of transformed features which might not be meaningful to humans but are composed of

original human understandable features for example (Stemming and lemmatizing).

 Feature weighting

[8]Term weighting is one of the known concepts in TC, which can be defined as a

factor given to a term in order to reflect the importance of that term.

In text representation, terms are words, phrases, or any other indexing units used to

identify the contents of a text. However, no matter which indexing unit in use, each term in

a document vector must be associated with a value (weight) which measures the

importance of this term and denotes how much this term contributes to the categorization

task of the document.

There are many term weighting approaches:[9]

 TF weighting

 Term Frequency (TF) measures how many times a term occurs in a document.

 IDF weighting

Inverse Document Frequency (IDF), helps in determining the importance of a term.

When we compute term frequency, we give equal importance to all the terms. But certain

terms, such as “the”, “that”, and “is”, may appear very frequently which are not

important. So, we need to bring down the weights of frequent terms and increase the

weights of the rare terms, by calculating the following:

 𝐼𝐷𝐹 =
𝑙𝑜𝑔2(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑡ℎ𝑒𝑚)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
 (1.1)

Text-classification

Page | 7

 TF-IDF weighting

is the most widely used and considered as one of the most appropriate term

weighting schemes. This TF.IDF is employed to get rid of terms with lower weights from

documents and helps to increase the retrieval effectiveness. Term frequency–inverse

document frequency, is a numerical statistic that tells us how important a word is to a

document in a collection or corpus. It is mostly used as a weighting factor in various

processes used for information retrieval and text mining. The increase in the TF.IDF value

of a word is directly proportional to the number of times that word occurs in the document,

but is neutralized by the frequency of the word in the corpus, which helps to balance off

those words which appear more frequently in general.

 𝑇𝐹. 𝐼𝐷𝐹 = (𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) (1.2)

 Constructing a Vector Space Model

 Introduction:

[10]The documents representation is one of the pre-processing techniques that is

used to reduce the complexity of the documents and make them easier to handle, the

document has to be transformed from the full text version to a document vector. The most

commonly used document representation is called vector space model (VSM), documents

are represented by vectors of words.

 Text representation models

[11]How can texts be represented? The most popular text representation model is

the vector space model. In this model, each document is represented by a vector whose

dimensions correspond to features found in the corpus. When features are single words,

the text representation is called bag-of-words.

[5]A document is a sequence of words. So, each document is usually represented

by an array of words. The set of all the words of a training set is called vocabulary, or

feature set.

Text-classification

Page | 8

 Bag of words

[12]Bag-of-words depiction form is used with the variety of instances of Vector

Space Model. In the representation of bag- of- word, it is assumed that the content of a

document could be determined by the set of terms it has. Within the vocabulary area

documents can be represented as points, i.e., a document is represented by a numerical

vector of length equal to the numeral of different terms within the vocabulary (the set of all

different terms within the document collection) see(figure 3 below).

Figure 3 bag of words

 Document representation

 [12]The main idea consists of representing a document as a vector, in particular as a bag

of words. This set contains only the words that belong to the document and their frequency. This

means that a document is represented by the words that it contains. In this representation,

punctuation is ignored, and a sentence is broken into elementary elements (words) losing the order

and the grammar information. These two observations are crucial, because they show that it is

impossible to reconstruct the original document given its bag of words; it means that the mapping

is not one to one. Consider a corpus as a set of documents, and a dictionary as the set of words

that appear into the corpus. This can view a document as a bag of terms or bag of words. This bag

can be seen as a vector, where each component is associated with one term from the dictionary

see(Figure 4) below.

𝑤1 𝑤2 … 𝑤𝑛

Bag of words{vocabulary} Corpus

Text-classification

Page | 9

Figure 4 Representing document as Vector

 Document-term Matrix

If we have a large collection of documents, and hence a large number of document

vectors, it is convenient to organize the vectors into a matrix.

[12]A corpus of n documents can be represented as a document-term matrix whose rows

are indexed by the documents and whose columns are indexed by the terms. Each entry at

position (i, j) is the weight of the term j in document i.

as shown in following matrix:

(

𝐷/𝑇 𝑡1 𝑡𝑗 … 𝑡𝑚
𝑑1 𝑤11 𝑤1𝑗 … 𝑤1𝑚
𝑑𝑖 𝑤𝑖1 𝑤𝑖𝑗 … 𝑤𝑖𝑚
: : : … :
𝑑𝑛 𝑤𝑛1 𝑤𝑛𝑗 … 𝑤𝑛𝑚)

Figure 5 document-term matrix

 The whole processes from scratch

✓ First after the preprocessing step and getting the important terms we make a

dictionary out of this set.

✓ Second: we use this dictionary to index each document.

✓ Third: organize the vectors into a matrix. Where the rows are the documents and

The columns are the terms.

𝑤11 𝑤12 𝑤13 𝑤14 … 𝑤1𝑛

𝑡1 𝑡2 𝑡3 𝑡4 … 𝑡𝑛

Dictionary of the distinct terms in

the corpus{vocabulary}.

 vector representing a document

d1Within the vocabulary area.

W1i is the weight of the word i in

the document1

Text-classification

Page | 10

 Machine learning algorithms

 Introduction:

After feature selection and transformation, the documents can be easily represented

in a vsm form that can be used by a ML algorithm. Many text classifiers have been proposed

in the literature using machine learning techniques, probabilistic models, etc. They often

differ in the approach adopted: decision trees, naïve-Bayes, rule induction, neural

networks, nearest neighbors, and lately, support vector machines. Although many

approaches have been proposed, automated text classification is still a major area of

research primarily because of the effectiveness of current automated text classifiers is not

faultless and still needs improvement.

 Types of machine learning

[13]The documents can be classified by three ways, unsupervised, supervised and

semi supervised methods. Many techniques and algorithms are proposed recently for the

classification of electronic documents. Machine Learning algorithms are classified as

 Supervised Machine Learning

Machine learning algorithms that make predictions on given set of samples.

Supervised machine learning algorithm searches for patterns within the value labels

assigned to data points.

 Unsupervised Machine Learning Algorithms

 There are no labels associated with data points. These machine learning

algorithms organize the data into a group of clusters to describe its structure and make

complex data look simple and organized for analysis.

 Reinforcement Machine Learning Algorithms

 These algorithms choose an action, based on each data point and later learn how

good the decision was. Over time, the algorithm changes its strategy to learn better and

achieve the best reward.

Text-classification

Page | 11

 Machine learning algorithms

 Common algorithms for performing classification:

 Naïve Bayesian

[14]Naïve bayes is a probabilistic classifier which do not work on any single

algorithm rather it works on a family of algorithm that all work on a single principle of

classification. All of the extracted features using this classifier are independent of each

other. The advantage of using this classifier is that it works good on both numeric as well

as textual data and moreover it is easier to implement. The disadvantage of this classifier

is that its performance gets poorer when the extracted features are correlated to each

other.

 Definitions

1.5.2.1.1.1. The posterior probability

 is defined as the probability after observing the specific characteristics of the test

instance.

1.5.2.1.1.2. The prior probability

 is simply the fraction of training records belonging to each particular class, with no

knowledge of the test instance.

 Principle

[15] the posterior probability of a particular class is estimated by determining the

class-conditional probability and the prior class separately and then applying Bayes

theorem to find the parameters. Consider a test instance with 𝑑 different features, which

have values 𝑋 = 〈𝑥1… 𝑥𝑑〉 respectively. Its is desirable to determine the posterior

probability that the class 𝑌(𝑇) of the test instance 𝑇 is 𝑖. In other words, we wish to

determine the posterior probability 𝑃(𝑌(𝑇) = 𝑖|𝑥1… 𝑥𝑑). Then, the Bayes rule can be

used in order to derive the following:

 𝑃(𝑌(𝑇) = 𝑖|𝑥1… 𝑥𝑑) =
𝑃(𝑌(𝑇) = 𝑖). 𝑃(𝑥1… 𝑥𝑑/𝑌(𝑇) = 𝑖)

𝑃(𝑥1… 𝑥𝑑)
 (2.1)

Text-classification

Page | 12

Since the denominator is constant across all classes, and one only needs to determine the

class with the maximum posterior probability, one can approximate the aforementioned

expression as follows:

 𝑃(𝑌(𝑇) = 𝑖|𝑥1… 𝑥𝑑) ∝ 𝑃(𝑌(𝑇) = 𝑖). 𝑃(𝑥1… 𝑥𝑑/𝑌(𝑇) = 𝑖) (2.2)

The key here is that the expression on the right can be evaluated more easily in a data-

driven way, as long as the naive Bayes assumption is used for simplification. Specifically,

in Equation(2.2), the expression 𝑃(𝑥1… 𝑥𝑑/𝑌(𝑇) = 𝑖) can be expressed as the product

of the feature-wise conditional probabilities.

 𝑃(𝑥1… 𝑥𝑑/𝑌(𝑇) = 𝑖) =∏𝑃(𝑥𝑗/𝑌(𝑇) = 𝑖)

𝑑

𝑗=1

 (2.3)

This is referred to as conditional independence, and therefore the Bayes method is referred

to as “naive”.

 Multinomial Naive Bayes Classifier

[16]Multinomial Naive Bayes is a Bayesian Classifier where the number of

occurrences of each token is also accounted for. We would expect this to work better than

the Naive Bayes model that builds on a binary ‘Bernoulli’ value for each attribute (token)

indicating occurrence or non-occurrence of the token. Multinomial Naive Bayes has

traditionally been used for document classification.

multinomial model outperforms the Bernoulli model when the size of the text document is

large and incorporates a large vocabulary.

 Decision tree

 Definition

[17]A decision tree is a flowchart-like tree structure see(Figure 6), where each

internal node (nonleaf node) denotes a test on an attribute, each branch represents an

outcome of the test, and each leaf node (or terminal node) holds a class label. The topmost

node in a tree is the root node.

 Decision tree induction

[17]is the learning of decision trees from class-labeled training tuples.

Text-classification

Page | 13

 The split criterion

[18]The decision at a particular node of the tree, which is referred to as the split

criterion, is typically a condition on one or more feature variables in the training data. The

split criterion divides the training data into two or more parts.

For example, consider the case where Age is an attribute, and the split criterion is Age ≤

30. In this case, the left branch of the decision tree contains all training examples with age

at most 30, whereas the right branch contains all examples with age greater than 30

The goal is to identify a split criterion so that the level of “mixing” of the class variables

in each branch of the tree is reduced as much as possible.

The design of the split criterion depends on the nature of the underlying attribute:

1.5.2.2.3.1. Binary attribute

Only one type of split is possible, and the tree is always binary. Each branch corresponds

to one of the binary values.

1.5.2.2.3.2. Categorical attribute

 If a categorical attribute has r different values, there are multiple ways to split it. One

possibility is to use an r-way split, in which each branch of the split corresponds to a

particular attribute value. The other possibility is to use a binary split by testing each of

the 2𝑟 − 1 combinations (or groupings) of categorical attributes, and selecting the best

one. This is obviously not a feasible option when the value of r is large. A simple approach

that is sometimes used is to convert categorical.

1.5.2.2.3.3. Numeric attribute

 If the numeric attribute contains a small number r of ordered values (e.g., integers in a

small range [1, r]), it is possible to create an r-way split for each distinct value. However,

for continuous numeric attributes, the split is typically performed by using a binary

condition, such as 𝑥 ≤ 𝛼, for attribute value x and constant a. Consider the case where a

node contains m data points. Therefore, there are m possible split points for the attribute,

and the corresponding values of a may be determined by sorting the data in the node along

this attribute. One possibility is to test all the possible values of 𝛼 for a split and select the

Text-classification

Page | 14

best one. A faster alternative is to test only a smaller set of possibilities for 𝛼, based on

equi-depth division of the range.

Many of the aforementioned methods requires the determination of the “best” split from a

set of choices. Specifically, it is needed to choose from multiple attributes and from the

various alternatives available for splitting each attribute.

 Nodes

Each node in the decision tree logically represents a subset of the data space

defined by the combination of split criteria in the nodes above it. The decision tree is

typically constructed as a hierarchical partitioning of the training examples.

 Stopping Criterion and Pruning

[18]The stopping criterion for the growth of the decision tree is intimately related

to the underlying pruning strategy. When the decision tree is grown to the very end until

every leaf node contains only instances belonging to a particular class, the resulting

decision tree exhibits 100 % accuracy on instances belonging to the training data.

However, it often generalizes poorly to unseen test instances because the decision tree has

now overfit even to the random characteristics in the training instances. Most of this noise

is contributed by the lower level nodes, which contain a smaller number of data points.

To reduce the level of overfitting, one possibility is to stop the growth of the tree early.

Unfortunately, there is no way of knowing the correct point at which to stop the growth of

the tree.

 How are decision trees used for classification?

[17]Given a tuple 𝑋 for which the associated class label is unknown, the attribute

values of the tuple are tested against the decision tree. A path is traced from the root to a

leaf node, which holds the class prediction for that tuple

 Why are decision tree classifiers so popular?

[17]The construction of decision tree classifiers does not require any domain

knowledge or parameter setting, and therefore is appropriate for exploratory knowledge

discovery.

Text-classification

Page | 15

 Algorithm

[17]Most algorithms for decision tree induction also follow a top-down approach,

which starts with a training set of tuples and their associated class labels. The training set

is recursively partitioned into smaller subsets as the tree is being built. A basic decision

tree algorithm is summarized below

[18]Algorithm GenericDecisionTree (Data Set: D)

begin

 Create root node containing D;

 repeat

 Select an eligible node in the tree;

Split the selected node into two or more nodes based on a pre-defined

split criterion;

 until no more eligible nodes for split;

 Prune overfitting nodes from tree;

 Label each leaf node with its dominant class;

End

Text-classification

Page | 16

Figure 6 decision Tree exemple

A decision tree for the concept buys computer, indicating whether a

customer at All Electronics is likely to purchase a computer. Each

internal (nonleaf) node represents a test on an attribute. Each leaf node

represents a class (either buys computer = yes or buys computer = no).

 KNN (k-nearest-neighbor)

 Principle

[19]Given an unlabeled sample, Knearest neighbor classifier will search the

pattern space for k-objects that are closest to it and will delegate the class by identifying

the class label which is frequently used.

 Detailed:

[20]A K-Nearest Neighbor algorithm is also called as instance-based learning

algorithm Nearest Neighbor classifier are based on learning by analogy, that is by

comparing a given test tuple with training tuples that are similar to it. Each tuple

represents a point in an n-dimension pattern space. When given an unseen tuple, a K-

nearest neighbor classifier searches the pattern space for different values of K (which can

take any value 1 through some arbitrary number) the training tuples that are closest to the

unseen tuple. Depending on the value of K, K training tuples are used which are near to

 Age ?

 Student?

youth

credit rating?

middle-aged

 Yes

Senior

 No Yes No Yes

No Yes Fair

Excellent

Text-classification

Page | 17

the unseen tuple. The Euclidean distance between two points or tuples say X1 and X2 which

have ‘n’ component elements is used to find the similarity (closeness) between the tuples

using the Euclidean distances. the distance between the training and a particular test

document is measured, the class with the smallest distance in the training data is taken as

the class of the test data.

 as in in(Figure 7)below ,K value in K-NN is 3, we take 3 smallest distances, and if both

belong to same class than the test tuple is considered to belong to the same class as of the

training document class.

Figure 7 K-Nearest-Neighbors example

 Svm

[21]Support vector machines have strong theoretical foundations and excellent

empirical successes. They have been applied to tasks such as handwritten digit recognition,

object recognition, and text classification.

 Why Should SVMs Work Well for Text Categorization?

[22]To Find out what methods are promising for learning text classifiers, we should

find out more about the properties of text.

✓ High dimensional input space

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

class1 class2 class3 class4 target

k=3
Belongs to

Class 4

Text-classification

Page | 18

 When learning text classifiers, one has to deal with very many (more than

10000) features. Since SVMs use overfitting protection which does not necessarily

depend on the number of features, they have the potential to handle these large

feature spaces.

✓ Few irrelevant features

 One way to avoid these high dimensional input spaces is to assume that most

of the features are irrelevant. Feature selection tries to determine those.

Unfortunately, in text categorization there are only very few irrelevant features.

even features ranked lowest still contain considerable information and are

somewhat relevant. this leads to the conjecture that a good classifier should

combine many features (learn a "dense" concept) and that feature selection is

likely to hurt performance due to a loss of information.

✓ Document vectors are sparse

 For each document 𝑑𝑖, the corresponding document vector 𝑑𝑖⃗⃗ ⃗contains only few

entries which are not zero. for the mistake bound model that "additive"

algorithms, which have a similar inductive bias like SVMs, are well suited for

problems with dense concepts and sparse instances.

✓ Most text categorization problems are linearly separable

There's plenty of instances that are linearly separable.

 Binary classification using Svm

[23]For binary classification problems, the idea behind SVM is to split the data in

finest method. Binary classification is used when we need to classify the two data sets.

There are numerous examples of Binary classification like try-outs (one either makes or

fails to make the team), claim size (large claims are above some threshold and small claims

below), and fingerprint identification (matched or unmatched). Support vector machines

are primarily designed for 2-class classification problems.

Support Vector Machine consider 2 approaches:

✓ Case when the data are linearly separable.

✓ Case when the data are non-linearly separable.

Text-classification

Page | 19

Figure 8 Non-linear and linear separation

1.5.2.4.2.1. Data are linearly-separable

there are many linear decision boundaries that divide the data. But only one of

these achieves maximum division. The main purpose we need it is because if we use a

decision boundary to classify, it may end up nearer to one set of datasets compared to

others and we do not want this to happen and thus concept of maximum margin classifier

or hyperplane as an apparent solution. Support vectors are the data points that lie closest

to the decision surface see (Figure 8)above. Support Vectors can be described as those

data points that the margins push up against. They are the most difficult to classify. The

major problem here is to find the only optimal margin of the separating hyperplane 𝑤𝑡𝑥 +

𝑏 the one that provides maximum margin between the classes Figure 9. This margin

guaranties the lowest rate of misclassification. The further advantage of margin would be

avoiding local minima and better classification.

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

non linearly seaperable

class1

class2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5

linearly seapreable

class1

class2

θ

hyperplane

Text-classification

Page | 20

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

Large margin

class1

class2

Figure 9 Diagram Small and Large margin separation

1.5.2.4.2.1.1. How do we determine the maximum margin hyperplane?

[18]The way to do this is to set up a nonlinear programming optimization

formulation that maximizes the margin by expressing it as a function of the coefficients of

the separating hyperplane. The optimal coefficients can be determined by solving this

optimization problem. Let the n data points in the training set D be denoted

by(𝑋1, 𝑦1)… (𝑋𝑛, 𝑦𝑛), where 𝑋𝑖 is a d-dimensional row vector corresponding to the ith

data point, and 𝑦𝑖 ∈ {−1,+1} is the binary class variable of the ith data point. Then, the

separating hyperplane is of the following form:

 𝑊. 𝑋̅ + 𝑏 (3.1)

Here,𝑊 = (𝑤1 … 𝑤𝑑) is the d-dimensional row vector representing the normal

direction to the hyperplane, and b is a scalar, also known as the bias. The vector 𝑊

regulates the orientation of the hyperplane and the bias b regulates the distance of the

hyperplane from the origin.

W and b need to be learned from the training data to maximize the margin of separation

between the two classes. Because it is assumed that the classes are linearly separable, such

a hyperplane can also be assumed to exist.

All data points 𝑋𝑖with 𝑦𝑖 = +1 will lie on one side of the hyperplane satisfying

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

Small margin

class1

class2

Text-classification

Page | 21

 𝑊.𝑋𝑖 + 𝑏 ≥ 0 Similarly, all points with 𝑦𝑖 = −1 will lie on the other side of the

hyperplane satisfying 𝑊.𝑋𝑖 + 𝑏 ≤ 0 ·

 𝑊.𝑋𝑖 + 𝑏 ≥ 0 ∀𝑖: 𝑦𝑖 = +1 (3.2)

 𝑊.𝑋𝑖 + 𝑏 ≤ 0 ∀𝑖: 𝑦𝑖 = −1 (3.3)

These constraints do not yet incorporate the margin requirements on the data points. A

stronger set of constraints are defined using these margin requirements. It may be assumed

that the separating hyperplane 𝑊.𝑋 + 𝑏 = 0 is located in the center of the two margin-

defining hyperplanes. Therefore, the two symmetric hyperplanes touching the support

vectors can be expressed by introducing another parameter c that regulates the distance

between them.

 𝑊.𝑋 + 𝑏 = +𝑐 (3.4)

 𝑊.𝑋 + 𝑏 = −𝑐 (3.5)

It is possible to assume, without loss of generality, that the variables 𝑊 and 𝑏 are

appropriately scaled, so that the value of 𝑐 can be set to 1. Therefore, the two separating

hyperplanes can be expressed in the following form:

 𝑊.𝑋 + 𝑏 = +1 (3.6)

 𝑊.𝑋 + 𝑏 = −1 (3.7)

These constraints are referred to as margin constraints. The two hyperplanes segment the

data space into three regions. It is assumed that no training data points lie in the uncertain

decision boundary region between these two hyperplanes, and all training data points for

each class are mapped to one of the two remaining (extreme) regions. This can be

expressed as pointwise constraints on the training data points as follows:

 𝑊.𝑋𝑖 + 𝑏 ≥ 1 ∀𝑖: 𝑦𝑖 = +1 (3.8)

Text-classification

Page | 22

 𝑊.𝑋𝑖 + 𝑏 ≤ −1 ∀𝑖: 𝑦𝑖 = −1 (3.9)

1.5.2.4.2.1.2. Test instance

In expression for W in terms of the Lagrangian multipliers and the training data

points:

 ∑𝜆𝑖𝑦𝑖𝑋𝑖

𝑛

𝑖=1

 (3.10)

For a test instance 𝑍, its class label 𝐹(𝑍) is defined by the decision boundary obtained by

substituting for W in terms of the Lagrangian multipliers.

 𝐹(𝑍) = 𝑠𝑖𝑔𝑛{𝑊. 𝑍+𝑏} = 𝑠𝑖𝑔𝑛 {(∑𝜆𝑖𝑦𝑖𝑋𝑖.

𝑛

𝑖=1

𝑍) + 𝑏} (4.1)

1.5.2.4.2.2. Case when the data are non-linearly separable

data are not linearly separable i.e. in such cases no straight line can be found that

would divide the classes. Linear svm’s can be extended to generate nonlinear SVM’S for

classification of linearly inseparable data. Such svm are capable of finding nonlinear

decision boundaries like using:

1.5.2.4.2.2.1. the Kernel Trick

The kernel trick leverages the important observation that the SVM formulation can be fully

solved in terms of dot products (or similarities) between pairs of data points. One does not

need to know the feature values. Therefore, the key is to define the pairwise dot product

(or similarity function) directly in the d -dimensional transformed representation Φ(X),

with the use of a kernel function 𝐾(𝑋𝑖, 𝑋𝑗).

 𝐾(𝑋𝑖, 𝑋𝑗) = 𝛷(𝑋𝑖). 𝛷(𝑋𝑗) (4.2)

Text-classification

Page | 23

To effectively solve the SVM, recall that the transformed feature values 𝛷(𝑋) need not be

explicitly computed, as long as the dot product (or kernel similarity) 𝐾(𝑋𝑖, 𝑋𝑗)is known.

the term 𝑋𝑖 . 𝑍 in Equation (4.1) can be replaced by 𝐾(𝑋𝑖, 𝑍) to perform SVM

classification.

 𝐹(𝑍) = 𝑠𝑖𝑔𝑛 {(∑𝜆𝑖𝑦𝑖 .

𝑛

𝑖=1

𝐾(𝑋𝑖, 𝑍)) + 𝑏} (4.3)

all computations are performed in the original space, and the actual transformation 𝛷(.)

does not need to be known as long as the kernel similarity function 𝐾(. , .)is known. By

using kernel-based similarity with carefully chosen kernels, arbitrary nonlinear decision

boundaries can be approximated. There are different ways of modeling similarity between

𝑋𝑖 𝑎𝑛𝑑 𝑋𝑗. Some common choices of the kernel function are as follows:

 Function Form

 Gaussian radial basis kernel 𝐾(𝑋𝑖, 𝑋𝑗) = 𝑒
−‖𝑋𝑖,− 𝑋𝑗‖

2
2𝜎2⁄

 Polynomial kernel 𝐾(𝑋𝑖, 𝑋𝑗) = (𝑋𝑖 . 𝑋𝑗 + 𝑐)
ℎ

 Sigmoid kernel 𝐾(𝑋𝑖, 𝑋𝑗) = tanh(𝑘𝑋𝑖 . 𝑋𝑗 − 𝛿)

Table 1 types of kernels

Many of these kernel functions have parameters associated with them. In general, these

parameters may need to be tuned by holding out a portion of the training data, and using

it to test the accuracy of different choices of parameters.

 Multi class classification methods

[24] Although SVMs were originally designed as binary classifiers, approaches

that address a multi-class problem as a single “all-together” optimization problem exist,

but are computationally much more expensive than solving several binary problems. A

variety of techniques for decomposition of the multi-class problem into several binary

problems using Support Vector Machines as binary classifiers have been proposed, and

several widely used are:

Text-classification

Page | 24

1.5.2.4.3.1. One-against-all

 For the N-class problems (N>2), N 2-class SVM classifiers are constructed. The i th SVM

is trained while labeling all the samples in the i th class as positive examples and the rest

as negative examples. In the recognition phase, a test example is presented to all N SVMs

and is labeled according to the maximum output among the N classifiers. The disadvantage

of this method is that the number of training samples is too large, so it is difficult to train.

1.5.2.4.3.2. One-against-one

This algorithm constructs N(N-1)/2 2-class classifiers, using all the binary pair-wise

combinations of the N classes. Each classifier is trained using the samples of the first class

as positive examples and the samples of the second class as negative examples. To combine

these classifiers, it naturally adopts Max Wins algorithm that finds the resultant class by

first voting the classes according to the results of each classifier and then choosing the

class that is voted most. The disadvantage of this method is that every test sample has to

be presented to large number of classifiers (N(N-1)/2). This results in faster training but

slower testing, especially when the number of the classes in the problem is big.

Text-classification

Page | 25

 Similarity Mathematical Metrics

Introduction:

 Measuring similarity or distance between two information entities is a core

requirement for all information discovery tasks (whether IR or Data mining).

Use of appropriate measures not only improves the quality of information selection but it

also helps reduce the time and processing costs.

 Types of similarity measures

 Cosine-Based Similarity

[25]A document can be represented by thousands of attributes, each recording the

frequency of a particular word (such as a keyword) or phrase in the document. Thus, each

document is an object represented by what is called a term-frequency vector. For example,

in (Table 2)below, we see that Document1 contains five instances of the word team, while

hockey occurs three times. The word coach is absent from the entire document, as indicated

by a count value of 0. Such data can be highly asymmetric. Term-frequency vectors are

typically very long and sparse (i.e., they have many 0 values). Applications using such

structures include information retrieval, text document clustering, biological taxonomy,

and gene feature mapping.

Text-classification

Page | 26

Table 2 Document Vector or Term-Frequency Vector

 Why cosine similarity

[25]The traditional distance measures do not work well for such sparse numeric

data. For example, two term-frequency vectors may have many 0 values in common,

meaning that the corresponding documents do not share many words, but this does not

make them similar. We need a measure that will focus on the words that the two documents

do have in common, and the occurrence frequency of such words. In other words, we need

a measure for numeric data that ignores zero-matches.

Figure 10 cosine similarity between vectors

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

x1=d1

d3θ

D
o

cu
m

en
ts

T
erm

s

team Coach hockey Baseball soccer penalty score win loss season

DOCUMENT1 5 0 3 0 2 0 0 2 0 0

DOCUMENT 2 3 0 2 0 1 1 0 1 0 1

DOCUMENT 3 0 7 0 2 1 0 0 3 0 0

DOCUMENT 4 0 1 0 0 1 2 2 0 3 0

Y=d2

Text-classification

Page | 27

 Principle

[25] Cosine similarity is a measure of similarity that can be used to compare

documents or, say, give a ranking of documents with respect to a given vector of query

words. Let x and y be two vectors for comparison see (Figure 10) above. Using the cosine

measure as a

𝑠𝑖𝑚(𝑥, 𝑦) =
𝑥. 𝑦

||𝑥|| ||𝑦||

(5.1)

where ||x|| is the Euclidean norm of vector

 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑃) (5.2)

defined as

 √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛2 (5.3)

Conceptually, it is the length of the vector. Similarly, ||y|| is the Euclidean norm of vector

y. The measure computes the cosine of the angle (θ)between vectors 𝑥 and y.

 All the cases

✓ A cosine value of 0 means that the two vectors are at 90 degrees to each other

(orthogonal) and have no match.

✓ The closer the cosine value to 1, the smaller the angle and the greater the match

between vectors.

 Euclidean distance

[26]The Euclidean distance between 𝑋 = (𝑥1… 𝑥𝑑) and 𝑌 = (𝑦1… 𝑦𝑑) is defined

as follows:

Text-classification

Page | 28

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋, 𝑌) = √∑(𝑥𝑖 − 𝑦𝑖)2
𝑑

𝑖=1

 (6.1)

It would seem at first sight that one should simply use the Euclidean distances to compute

distances between pairs of points, since text is a special case of the multidimensional

representation. However, the Euclidean distance is not good in computing distances in

multidimensional representations that are very sparse and the number of zero values vary

significantly over different points. This occurs frequently in the case of text because of the

varying lengths of different documents.

 Jaccard similarity

[26]Let 𝑆𝑥 and 𝑆𝑦 be the set of words in a pair of documents that are represented

in boolean form. Then, the Jaccard similarity is defined as follows:

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑆𝑥, 𝑆𝑦) =
|𝑆𝑥 ∩ 𝑆𝑦|

|𝑆𝑥 ∪ 𝑆𝑦|
 (7.1)

=
𝐶𝑜𝑚𝑚𝑜𝑛 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑆𝑥𝑎𝑛𝑑 𝑆𝑦

𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑆𝑥𝑎𝑛𝑑 𝑆𝑦

(7.2)

The Jaccard coefficient always lies in the range (0, 1) just like the cosine coefficient. It is

also possible to define the Jaccard coefficient for the case where the documents

 𝑋 = (𝑥1… 𝑥𝑑) and 𝑌 = (𝑦1… 𝑦𝑑) are represented in tf-idf form:

Text-classification

Page | 29

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑋, 𝑌) =
∑ 𝑥𝑖 . 𝑦𝑖
𝑑
𝑖=1

∑ 𝑥𝑖
2𝑑

𝑖=1 + ∑ 𝑦𝑖
2𝑑

𝑖=1 − ∑ 𝑥𝑖 . 𝑦𝑖
𝑑
𝑖=1

(7.3)

The Jaccard coefficient is especially useful for the case where the boolean representation

of text is used. For the tf-idf representation, it is more common to use the cosine measure.

 Conclusion

In this chapter, we presented text classification using machine learning teckniques

and some very known similarity measures.

In the next chapter we will introduce the SOA architecture and its concepts, as well as a

detailed explanation about it and design patterns and their types.

Service Oriented Architecture

Page | 30

Chapter 2: Service Oriented Architecture

Introduction

 Service Oriented Architecture (SOA) is an architectural style increasingly adopted

because it offers system architects a high-level solution to software design. SOA systems

are based upon loosely coupled, autonomous and reusable coarse-grained components

called services Each service provides a domain specific behavior, and services can be

composed as composite to fulfill high level business processes requirements. Various

technologies have emerged to implement this style, among them, Web Services and SCA.

Google, Amazon, Microsoft are well-known businesses that have successfully based their

information systems on SOA.

 Definition

[27]SOA is not a concrete architecture: it is something that leads to a concrete

architecture. You might call it a style, paradigm, concept, perspective, philosophy, or

representation. That is, SOA is not a concrete tool or framework you can purchase. It is an

approach, a way of thinking, a value system that leads to certain concrete decisions when

designing a concrete software architecture.

 SOA is built with services

[28]This is the “service” part of “service-oriented architecture” It’s not an SOA if

it’s not an architecture, or if that architecture doesn’t use the service as the common unit

of measure (just as an object-oriented system uses the object or class as its common unit).

 Service

[29]a service is a self-contained, reusable, and well-defined piece of business

functionality encapsulated in code.

Service Oriented Architecture

Page | 31

Services are indeed the holy grail of SOA. If properly designed, publicized, and self-

describing, services become assets that can be widely reused in a variety of applications.

This maximizes the investment in these assets and enables creation of a more agile

enterprise since every business process doesn’t have to be re-created from scratch.

 Software Architecture

[30]Definition of Software Architecture A software architecture is a set of

statements that describe software components and assigns the functionality of the system

to these components. It describes the technical structure, constraints, and characteristics

of the components and the interfaces between them. The architecture is the blueprint for

the system and therefore the implicit high-level plan for its construction.

 Service orientation

 a design paradigm intended for the creation of solution logic units that are individually

shaped so that they can be collectively and repeatedly utilized in support of the realization

of the specific strategic goals and benefits associated with SOA and service oriented

computing[31].

 Service-orientation design paradigm

is comprised of a set of design principles that are applied together to achieve the

goals of service-oriented computing[31].

 Principles of Service-Orientation

[31]There are eight distinct design principles that are part of the service-

orientation design paradigm. Each addresses a key aspect of service design by ensuring

that specific design characteristics are consistently realized within every service. service-

orientation design principles shape solution logic into something we can legitimately refer

to as “service-oriented.” Below are the eight service-orientation design principles

together with their official definitions:

Service Oriented Architecture

Page | 32

 Standardized Service Contract

 Services within the same service inventory are in compliance with the same contract

design standards.

 Service Loose Coupling

 Service contracts impose low consumer coupling requirements and are themselves

decoupled from their surrounding environment.

 Tightly Coupled

 (Consumer interact directly with a service)

Figure 11 tight coupeling

 Loosely Coupled

 (consumer and service interact via messaging and the ESB)

Figure 12 loose coupeling

 Service Abstraction

 Service contracts only contain essential information and information about services

is limited to what is published in service contracts.

Consumer Service

Consumer Service

Enterprise

Service

Bus

Service Oriented Architecture

Page | 33

 Service Reusability

 Services contain and express agnostic logic and can be positioned as reusable

enterprise resources.

 Service Autonomy

 Services exercise a high level of control over their underlying runtime execution

environment.

 Service Statelessness

 Services minimize resource consumption by deferring the management of state

information when necessary.

 Service Discoverability

 Services are supplemented with communicative meta data by which they can be

effectively discovered and interpreted.

 Service Composability

 Services are effective composition participants, regardless of the size and complexity of

the composition.

 Design patterns

Here in this section we are going to get through some of the important things about

patterns[31]

 Definition

The simplest way to describe a pattern is that it provides a proven solution to a

common problem individually documented in a consistent format and usually as part of a

larger collection.

"Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in such a way

that you can use this solution a million times over, without ever doing it the same way

twice".

Service Oriented Architecture

Page | 34

 Why design patterns?

• represent field-tested solutions to common design problems.

• organize design intelligence into a standardized and easily “referencable”

format.

• are generally repeatable by most IT professionals involved with design.

• can be used to ensure consistency in how systems are designed and built.

• can become the basis for design standards.

• are usually flexible and optional (and openly document the impacts of their

application and even suggest alternative approaches).

• can be used as educational aids by documenting specific aspects of system

design (regardless of whether they are applied)

• can sometimes be applied prior and subsequent to the implementation of a

system

• can be supported via the application of other design patterns that are part

of the same collection.

• Furthermore, because the solutions provided by design patterns are

proven, their consistent application tends to naturally improve the quality

of system designs.

 Categories of SOA design patterns

 Service inventory

Service inventory” is a term used to represent a collection on independently

standardized and governed services. Design patterns associated with the design of the

service inventory technology architecture.

 Service Design

a set of patterns specific to the design of services and service architecture.

Service Oriented Architecture

Page | 35

 Service Composition

Service composition design and runtime interaction are addressed by these

patterns.

 Design pattern catalog

A design pattern catalog is a collection of related design patterns documented

together.

 Pattern Profile

Each of the patterns is described using the same profile format and structure based

on the following parts:

 Pattern name

the pattern name is a handle we can use to describe a design problem, its solutions,

and consequences in a word or two. Naming a pattern immediately increases our design

vocabulary. It lets us design at a higher level of abstraction. Having a vocabulary for

patterns lets us talk about them with our colleagues, in our documentation, and even to

ourselves.

 Problem

The issue causing a problem and the effects of the problem are described in this

section, typically accompanied by a figure that further illustrates the “problem state.” It

is this problem for which the pattern provides a solution. Problem descriptions may also

include common circumstances that can lead to the problem (also known as “forces”).

 Solution

This represents the design solution proposed by the pattern to solve the problem

and fulfill the requirement. Often the solution is a short statement followed by a diagram

that concisely communicates the final solution state. “How-to” details are not provided in

this section but are instead located in the Application section.

Service Oriented Architecture

Page | 36

 Application

This part is dedicated to describing how the pattern can be applied. In can include

guidelines, implementation details, and sometimes even a suggested process.

 Impacts

Most patterns come with trade-offs. This section highlights common consequences,

costs, and requirements associated with the application of a pattern. Note that these

consequences are common but not necessarily predictable. For example, issues related to

typical performance requirements are often raised; however, these issues may not impact

an environment with an already highly scalable infrastructure.

 Design Patterns and Design Principles

Specifically, the relationship between service-orientation design principles and

patterns can be defined as follows:

• Design principles are applied collectively to solution logic in order to

shape it in such a manner that it fosters key design characteristics that

support the strategic goals associated with service-oriented computing.

• Design patterns provide solutions to common problems encountered when

applying design principles—and—when establishing an environment

suitable for implementing logic designed in accordance with service-

orientation principles.

 Measures of Application

It is important to acknowledge that most patterns do not propose a black or white

design option. Design patterns can often be applied at different levels. Although the

effectiveness of a given pattern will generally be equivalent to the extent to which it is

realized, there may be practical considerations that simply limit the degree to which a

pattern can be applied in the real world.

This consideration affects both design patterns and design principles. For example,

individual service-orientation design principles can rarely be applied to their maximum

Service Oriented Architecture

Page | 37

potential. The point is to pursue the design goals of a design pattern or principle to

whatever extent feasible and to strive for an end-result that realizes the pattern or principle

to a meaningful extent.

 Conclusion

In this chapter we have presented the soa architecture and design patterns

In the next chapter we will introduce our system, its main components as well as a detailed

explanation about each phase of the proposed method and the steps followed to reach our

goal.

Pattern selection

Page | 38

Chapter 3: Pattern selection

Introduction

design patterns are solutions to programming problems that automatically

implement good design techniques. Someone has already faced the issues you’re facing,

solved them, and is willing to show you what the best techniques are. All without a lot of

memorization on your part; all you have to do is recognize which design pattern fits which

situation and lock it into place However, the existence of a large number of design patterns

makes the selection of a fit design pattern for a given design problem a difficult task to the

experienced developer, and makes it a challenging task for the inexperienced one who is

not familiar with design patterns. To overcome this difficulty, a supporting tool that

automatically suggests to the developer the right design pattern for a given design problem

during the design phase becomes a necessity.

 Our design pattern selection approach

we propose a two-phase method to select a right SOA design pattern. The proposed

method is based on a:

text classification approach that aims to show an appropriate way to suggest the right

design pattern(s) to developers for solving each given design problem.

 First phase

In this first phase we are going to predict only the class of the problem through

some machine learning technique.

 Dataset

 the input of our proposed method is the problem definitions of some SOA design

patterns and their classes.

Pattern selection

Page | 39

only Problem Domain of each design pattern document including problem, and

Applicability (called Problem Definition) sections is used to select automatically the right

design pattern.

Our data set consists of all the Soa design patterns profiles and from these we need only

the problem definition of each design pattern and the corresponding class.

See(Table 3)below.

 Problem definition Pattern class

(𝑨𝒑𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏 + 𝒑𝒓𝒐𝒃𝒍𝒆𝒎) 𝒊 𝑇ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖

 ⋮ ⋮

(𝑨𝒑𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏 + 𝒑𝒓𝒐𝒃𝒍𝒆𝒎) 𝒏 𝑇ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑛

Table 3 SOA patterns dataset

Our proposed approach is based on analyzing the corpus of pattern descriptions, then

transferring each one of them (we mean here the problem definition) into a vector of

features. The next step is vectorizing the classes as well, because we need to deal with

numbers instead of text data.

 Preprocessing

Each design pattern description and each design problem scenario are pre-

processed through three activities which are: Tokenization then Noise Removal then

Stemming as depicted by (Figure 13) below . Tokenization process splits each document

at the delimiters into unigrams (tokens). Afterwards, all the tokens are transferred into the

lower case such that words like “Object”, “object” and “OBJECT” are treated the same.

Noise removal stage disregards the non-descriptive words like linking verbs and pronouns.

These non-descriptive words are considered noise as they increase the size Finally, the

words are normalized to their root forms through Stemming. For example, a stemmer can

reduce each of the words “creating” and “created” to the word “create”. See (Document

Pre-Processing &Representation in page 2).

Pattern selection

Page | 40

Design pattern

description

 Or

Design Problem

Scenario

Figure 13 Preprocessing stages of each design pattern description and problem scenario

 VSM (Vector Space Model)

In this stage each pattern (DP) is represented as a vector of unigrams. All the

vectors have the same size which is equal to the number of unique words in the corpus of

pattern descriptions see (Constructing a Vector Space Model in p 7).

To build the Unigram VSM:

 Indexing

After the preprocessing of the pattern’s corpus all the unique words(also called

vocabulary) are collected as a bag of words(see Bag of words in page 8) and each word

is given an index see (Figure 14) below.

Figure 14 indexing

And then we give each class of the patterns a number to be represented in a numeric

format. Since we have 3 types of classes that’s mentioned in (Categories of SOA design

patterns page number 34) so a number is given to each of them. See (Figure 15) below.

Tokenization Stop word

removal
Stemming Bag of key

words

Pattern

corpus

𝑤1 𝑤2 𝑤3
𝑤𝑖 𝑤... 𝑤𝑚

index 0 1 2 3 ⋯ n

Word 𝑤1 𝑤2 𝑤3 𝑤𝑖 ⋯ 𝑤𝑚

preprocessing

Bag of words

Pattern selection

Page | 41

Class of design patterns Corresponding numbers

Service inventory

 0

Service Composition

 1

Service Design

 2

Figure 15 numerizing the pattern classes

 Vectorizing

This vectorizing processes is applied to both the design problem of the user and to

each design pattern of the corpus using the vocabulary and applying the rules in

 (Figure 16)below.

The pattern vector will have the weight in the cells that correspond to each word of the

vocabulary it’s to mean that the cell that has the same index as the word will have the

weight of the word in that pattern see(Feature weighting in page 6). for instance the word

𝑤1 that exist in the index 0 has the score (𝑤1) in the vector at the same index 0.

see(Figure 17) below .

the same thing applies to the user problem so it will be vectorized using that same

vocabulary see(Figure 18) below where each cell will contain the weight of the matching

word in the vocabulary.

Here we used term frequency as weighting method(weight(w)=tf(w)).

{𝑖𝑛𝑑𝑒𝑥𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦(𝑤𝑖) == 𝑖𝑛𝑑𝑒𝑥𝑣𝑒𝑐𝑡𝑜𝑟(𝑠𝑐𝑜𝑟𝑒(𝑤𝑖)) } 1 ≤ 𝑖 ≤ 𝑚

{𝑖𝑛𝑑𝑒𝑥𝒖𝒔𝒆𝒓 𝒑𝒓𝒐𝒃𝒍𝒆𝒎(𝑤𝑖) == 𝑖𝑛𝑑𝑒𝑥𝑣𝑒𝑐𝑡𝑜𝑟(𝑠𝑐𝑜𝑟𝑒(𝑤𝑖)) } 1 ≤ 𝑖 ≤ 𝑚

Figure 16 indexing Rules

Pattern selection

Page | 42

Figure 17 turning a pattern into a Vector

Figure 18 turning the user problem into a vector

The Equation (8.1) of design patterns in a space of m unique words(vocabulary) where

each row corresponds to a pattern vector 𝑑𝑃𝑖 and each cell corresponds to the weight of a

term 𝑡𝑗 from the vocabulary.

 𝑉𝑆𝑀 𝑓𝑜𝑟 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 =

(

𝐷/𝑇 𝑡1 𝑡𝑗 … 𝑡𝑚
𝑑𝑃1 𝑤11 𝑤1𝑗 … 𝑤1𝑚
𝑑𝑃𝑖 𝑤𝑖1 𝑤𝑖𝑗 … 𝑤𝑖𝑚
: : : … :
𝑑𝑃𝑛 𝑤𝑛1 𝑤𝑛𝑗 … 𝑤𝑛𝑚)

 (8.1)

Below the Equation (8.2) for the user problem in the vsm (vector space model) where the

row represents the user problem vector and the cells the weight 𝑤𝑗of each word 𝑡𝑗 from the

vocabulary in the user problem.

 𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 = (
𝑝𝑟𝑜𝑏𝑙𝑒𝑚/𝑡𝑒𝑟𝑚𝑠 𝑡1 𝑡𝑗 … 𝑡𝑚
𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑤1 𝑤𝑗 … 𝑤𝑚

) (8.2)

index 0 1 2 … n

Vocabulary 𝑤1 𝑤2 𝑤3 … 𝑤𝑚

𝒗𝒆𝒄𝒕𝒐𝒓 (𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒊) 𝒔𝒄𝒐𝒓𝒆(𝒘𝟏) 𝒔𝒄𝒐𝒓𝒆(𝒘𝟐) 𝒔𝒄𝒐𝒓𝒆(𝒘𝟑) … 𝒔𝒄𝒐𝒓𝒆(𝒘𝒎)

index 0 1 2 … n

Vocabulary 𝑤1 𝑤2 𝑤3 … 𝑤𝑚

𝒗𝒆𝒄𝒕𝒐𝒓(𝒖𝒔𝒆𝒓 𝒑𝒓𝒐𝒃𝒍𝒆𝒎) 𝒔𝒄𝒐𝒓𝒆(𝒘𝟏) 𝒔𝒄𝒐𝒓𝒆(𝒘𝟐) 𝒔𝒄𝒐𝒓𝒆(𝒘𝟑) … 𝒔𝒄𝒐𝒓𝒆(𝒘𝒎)

Pattern selection

Page | 43

Now both the user problem and the pattern corpus are represented in the vector space

model.

 Learning the model

Using machine learning techniques for text classification see (Text-classification

in page 1)and (Machine learning algorithms in page 11).what we are aiming here is to

classify a design pattern problem using one of these techniques (naïve Bayesian,svm,knn

and decision tree).

we have our dataset that’s the vector space model of the corpus of design patterns see

Equation (8.1),And the class of each design pattern that has been vectorized as mentioned

in (Figure 15) above, so our dataset will be as in Equation (8.3).

 dataset in the vsm =

(

𝑐𝑙𝑎𝑠𝑠
𝐶1
𝐶𝑖
⋮
𝐶𝑛)

(

𝐷𝑃 𝑇⁄ 𝑡1 𝑡𝑗 … 𝑡𝑚
𝑑𝑃1 𝑤11 𝑤1𝑗 … 𝑤1𝑚
𝑑𝑃𝑖 𝑤𝑖1 𝑤𝑖𝑗 … 𝑤𝑖𝑚
⋮ ⋮ ⋮ … ⋮
𝑑𝑃𝑛 𝑤𝑛1 𝑤𝑛𝑗 … 𝑤𝑛𝑚)

 (8.3)

Before we feed our dataset to the learning model we have to split it up into a training and

testing dataset the first set is for training the model and the second for testing the efficiency

of the trained model see (Figure 19) below.

Figure 19 training and testing the model

Dataset in the vsm Training dataset

 Test dataset Machine

learning algorithm

Model
Accuracy of

Our model

Pattern selection

Page | 44

 Prediction

After learning the model, we are going to use it to predict the class of patterns that

the user problem belongs to see (Figure 20) below.

 The user problem is vectorized as we have mentioned before in (Vectorizing in page 41)

It’s to mean that it is represented in the vector space model as vector see Equation (8.2).

Figure 20 predicting the problem class

After knowing the class of patterns that the user problem belongs to. now we have to get

the specific pattern label so we can retrieve the solution (design pattern) to that problem,

for that we use cosine similarity.

 Second phase

 Dataset

 Our dataset in that second phase will contains only the patterns that belong to the

class that we have predicted before and their labels see (Figure 21)below.

Class Pattern problem Label

Predicted class (Application + problem) 1 𝑙𝑎𝑏𝑒𝑙𝑖

Predicted class ⋮ ⋮

Predicted class (Application + problem) 𝑛 𝑙𝑎𝑏𝑒𝑙𝑛

Figure 21 dataset for second phase

First we are going to use the vsm to represent our dataset as mentioned in(VSM (Vector

Space Model) page 40) but instead of the pattern class here we have the pattern labels .

Since we are dealing with numbers the labels as well are going to be indexed by numbers

as mentioned in (Figure 22) below.

The user

problem in vsm

Learned

model
Pattern

Class

Pattern selection

Page | 45

 Pattern label Index

 𝒍𝟏 0

 𝒍𝟐 1

 ⋮ ⋮

 𝒍𝒏 n-1

Figure 22 indexing labels

So, in the end our dataset is going to be represented in the vector space model as in

Equation (8.4) where (𝑡1 𝑡𝑗 … 𝑡𝑚) are the patterns vocabulary and 𝑤𝑖𝑗 is the weight

of the word j in the pattern i. as weighting method we are going to use tf-idf see (TF-IDF

weighting in page 7).

 dataset in the vsm =

(

𝑙𝑎𝑏𝑒𝑙𝑠
𝑙1
𝑙𝑖
⋮
𝑙𝑛)

(

𝐷

𝑇
𝑡1 𝑡𝑗 … 𝑡𝑚

𝑑𝑃1 𝑤11 𝑤1𝑗 … 𝑤1𝑚
𝑑𝑃𝑖 𝑤𝑖1 𝑤𝑖𝑗 … 𝑤𝑖𝑚
⋮ ⋮ ⋮ … ⋮
𝑑𝑃𝑛 𝑤𝑛1 𝑤𝑛𝑗 … 𝑤𝑛𝑚)

 (8.4)

the user problem also will be represented in the vector space model using that same

vocabulary used in the data set vector space model as in Equation (8.5).

 𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 = (
𝑝𝑟𝑜𝑏𝑙𝑒𝑚/𝑡𝑒𝑟𝑚𝑠 𝑡1 𝑡𝑗 … 𝑡𝑚
𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑤1 𝑤𝑗 … 𝑤𝑚

) (8.5)

Here we are going to use cosine similarity as mentioned in (Cosine-Based Similarity page

25). As in(Figure 23)below, we have our dataset represented in the vector space model as

(

𝑑𝑝1
⋮
𝑑𝑝𝑖
𝑑𝑝𝑛

) along with the user problem that’s (p) and now the cosine similarity is calculated

using Equation (8.6).

𝑠𝑖𝑚(𝑑𝑝𝑖, 𝑝) =

𝑑𝑝𝑖. 𝑝

||𝑑𝑝𝑖|| ||𝑝||

(8.6)

= cos 𝜃𝑖

Pattern selection

Page | 46

That’s for each and every design pattern vector 𝑑𝑝𝑖with the vector of the user problem p

and the vector with the least difference is going to have the smallest cosine it’s to mean it’s

more similar to the user problem than the others so that pattern will be retrieved as the

appropriat solution to the user problem.

 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖

Figure 23 cosine similarity measure

All these are demonstrated in the figure (Figure 24)below

 Figure 24 getting the appropriat design pattern

 The whole processes

In the end the whole process of selecting the right design pattern is demonstrated

in the following diagram.

𝑑𝑝1

𝑑𝑝𝑖

𝑝

𝑑𝑝𝑛

𝑓𝑒𝑎𝑡𝑢𝑟𝑒0

Vector Space model 𝑓𝑒𝑎𝑡𝑢𝑟𝑒k

Cosine similarity

 Appropriat

Design pattern

𝜃𝑛

𝜃𝑖
𝜃1

 User problem Vector Design patterns vectors

Pattern selection

Page | 47

Vector

of the

problem

Vector

of the

proble

m

Figure 25 the processes of selecting design pattern

Designer

Design pattern

description

corpus

 Preprocessing

Design

Problem

Scenario

Vector space model

Problem

bag of

words

Corpus

bag of

words

Machine learning

algorithm

Vsm of the pattern corpus

Learned model

Design

pattern

class

All the patterns

that belong to

that class

Preprocessing
patterns

bag of

words

Vector space model

Cosine similarity

Vsm of

the

pattern

s

The appropriat

design pattern

D
eterm

in
atio

n
 o

f d
esig

n
 p

attern
 class

S
u
g
g
es

ti
o
n
 o

f
d
es

ig
n
 p

at
te

rn

Pattern selection

Page | 48

 Conclusion

In this chapter we have presented the proposed method in details which means the

way to predict the appropriat design pattern by classifying the user problem using learning

teckniques and cosine similarity and we have talked brievly about each of the phases and

have also explained all the steps followed to achieve our objective.

In the next chapter, we will see all the implementation details then the evaluation and

results which are briefly discussed and the interfaces of our system.

Implementation, results and comparaison

Page | 49

Chapter 4: Implementation, results and comparaison

Introduction

This chapter is structured in four main parts. In the first part, we will present

the programming language Python, the libraries, and the dataset in the second part then

in the third part we are going to show the results and compare the accuracy of the 4 models

and test some real world examples that is in experimentation part, and Next, we are going

to show the execution of the application by showing some snapshots of the interface during

this process.

 Implementation

The implementation of proposed models is constructed based on using Python

programming language working on visual studio code platform. Python has a large

number of scientific libraries for data processing and machine learning approaches.

 Visual studio code platform

Visual Studio Code combines the simplicity of a code editor with what developers

need for their core edit-build-debug cycle. It provides comprehensive code editing,

navigation, and understanding support along with lightweight debugging, a rich

extensibility model, and lightweight integration with existing tools.

 Scientific Python

One of the advantages of implementing with Python is that the simplicity of Python

is matched with the speed of compiled programming languages. Therefore, highly complex

algorithms can be applied in a very short period of time.

https://code.visualstudio.com/

Implementation, results and comparaison

Page | 50

 Scikit-learn

Is a free software machine learning library for the python programing language.

 One of the features that contributes to the popularity of Scikit-learn is that a uniform

interface is available for all algorithm classes. All classification algorithms have the

functions: fit and predict. The fit function trains the algorithm and predict executes the

predictions after training.

 Nltk

NLTK is a leading platform for building Python programs to work with human

language data. It provides easy-to-use interfaces to over 50 corpora and lexical

resources such as WordNet, along with a suite of text processing libraries for

classification, tokenization, stemming…

 Bulma

Bulma is a very popular Beautiful, free and open source, lightweight and

stylish CSS framework made by Jeremy Thomas.

that allow developers to quickly build web interfaces easy. The modern design and layout

features Bulma offer were the main reasons we chose to use it.

 Electron

http://nltk.org/nltk_data/
http://nltk.org/nltk_data/
https://jgthms.com/

Implementation, results and comparaison

Page | 51

The electron as a framework is used for creating desktop applications in

collaboration with other popular technologies such as JavaScript and CSS. developed and

maintained by GitHub. It does the dirty work so you can focus on the significant areas of

your application.

 SQLite

SQLite is a C-language library that implements a small, fast, self-contained, high-

reliability, full-featured, SQL database engine. SQLite is the most used database engine in

the world. SQLite is built into all mobile phones and most computers and comes bundled

inside countless other applications that people use every day.

 Python-shell

You can use python-shell to communicate between Python and Node.js/Electron.

python-shell provides an easy way to run Python scripts from Node.js with basic and

efficient inter-process communication and better error handling.

 Dataset

I used an SQLite database that I made of the 78 soa pattern profiles, these profiles

in the database are distributed over 3 genres.

Each event in the database contains at least the following informations: pattern class,

problem, solution and lable. (Table 4) below shows an example of the raw content of an

event from the database.

Pattern component Content

Id 56

https://www.sqlite.org/footprint.html
https://www.sqlite.org/fasterthanfs.html
https://www.sqlite.org/selfcontained.html
https://www.sqlite.org/hirely.html
https://www.sqlite.org/hirely.html
https://www.sqlite.org/fullsql.html
https://www.sqlite.org/mostdeployed.html

Implementation, results and comparaison

Page | 52

Pattern class Service composition

Problem
The intermediary processing layers

generally required by service

compositions can expose sensitive data

when security is limited to point-to-point

protocols, such as those used with

transport layer security.

A digital signature algorithm is applied to

the message to provide “proof of origin,”

allowing sensitive message contents to be

protected from tampering. This

technology must be supported by both

consumer and service.

Solution
A message can be digitally signed so that

the recipient services

can verify that it originated from the

expected consumer and

that it has not been tampered with during

transit.

Label Data Origin Authentication

Table 4 raw content

 Results and comparaison

In this section, we will first discuss how the results are presented by explaining the

performance measures. After that, the final results in(Table 7) below will be explained in

(Section 4.3.2.).

 Performance measures

There are various methods to determine effectiveness; however, precision, recall,

confusion matrix and accuracy are most often used. To determine these, one must first

begin by understanding if the classification of a document was a true positive (TP), false

positive (FP), true negative (TN), or false negative (FN).

TP Determined as a document being classified

correctly as relating to a category.

Implementation, results and comparaison

Page | 53

FP Determined as a document that is said to

be related to the category incorrectly.

FN Determined as a document that is not

marked as related to a category but should

be.

TN Documents that should not be marked as

being in a particular category and are not.

Table 5 Classification of a document

 Confusion Matrix

A confusion matrix can be used as a way to visualize the results of a classification

algorithm. For the binary case where 1 and 0 is the two possible outcomes, the algorithm

can be used to predict whether a test sample is either 0, or 1. As a way to measure how

well the algorithm performs, we can count four different metrics, here 1 defined as positive

and 0 defined as negative:

The confusion matrix is simply these four values visualized in one table

 1

 0

Table 6 Confusion matrix

 Precision and Recall

As a way to evaluate the performance of a machine learning algorithm, one can

use precision and recall. Precision is defined as:

 True positive False positive

 True negative False negative

 Predicted class

Actual

class

 0 1

Implementation, results and comparaison

Page | 54

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9.1)

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9.2)

A very high precision means that the algorithm classifies almost no inputs as positive

unless they are positive. A high recall would mean that the algorithm misses almost no

positive values.

 F-score

The f-score (or F1-Score) is the harmonic mean of precision and recall. The f-score

is defined as:

 𝐹1 = 2
precision . recall

 precision + recall
 (9.3)

 Classifier Recall Precision F1-score

Naïve Bayesian

Service Design 0.67 0.40 0.50

Service Composition 0.86 0.86 0.86

Service inventory 0.67 1.00 0.80

Decision tree

Service Design 0.50 0.33 0.40

Service Composition 0,50 0.80 0.62

Service inventory 0.75 0.60 0.67

K-nearest neighbor

Service Design 0.40 0.67 0.50

Service Composition 0.50 0.25 0.33

Service inventory 0.50 0.33 0.40

Support-vector-machine

Service Design 0.41 0.33 0.37

Service Composition 0.51 0.47 0.49

Service inventory 0.54 0.37 0.44

Table 7 Results across classifiers

Implementation, results and comparaison

Page | 55

 Classification results

A comparison between the results obtained with models using Naïve Bayesian

,SVM, Knn and Decision Tree is shown in (Table 7) above.

Looking at the F-1 score of these models, we can observe that the F-1 yield by Service

Design is =0.50 higher for the Naive Bayes and K-nearest neighbor.

 while for the Service Composition the F-1 score is =0.86 for the Naive Bayes and equal

to 0.62 for the decision tree classifier which are the best results for this category.

 for Service inventory the F-1 score is 0.80 for Naive Bayes and 0.67 for Decision tree

these are the biggest for service inventory.

 Conclusion

From the comparison, Naïve Bayesian classifier produces the best results, significantly.,

the decision tree classifier produces good results but Support vector machine and knn give

the worst results among them.

 Four examples of real-world problems

Here we have 4 real worlds example with the result of using each one of the four algorithms

See (Table 8) below.

Implementation, results and comparaison

Page | 56

Real

world

Design

problem

Algorithms Naïve

Bayesian

Knn Svm Decision

tree

Real design

pattern

How can business rules be

abstracted and centrally

governed?

 + - - + Rules

Centralization

How can a service inventory

overcome the limitations of its

canonical protocol while still

remaining standardized ?

 +

 -

 +

 +

Dual protocol

How can a large business

problem be solved without

having to build a standalone

body of solution logic?

 +

 +

 +

 -

Functional

Decomposition

Table 8 real world examples

 Interfaces of our system

Figure 26 Application Home

Implementation, results and comparaison

Page | 57

We developed GUI (Graphical User Interface) to facilitate the use of the application.

The application contains text area, drop-down menu, buttons (search, delete, resizing and

exit button.

The Text area is for the user to enter the problem and we have the delete button

to clear it just in case.

Figure 27drop-down menu

 drop-down menu

offers to the user four algorithms (naïve Bayesian, svm,

decision tree, k-nearest-neighbor) to choose from.so the model

will be created using the user choice see (Figure 27)above.

Implementation, results and comparaison

Page | 58

 The search button

 Once the user clicks the search button:

 If the text area is empty then a warning message

box will be displayed see (Figure 28)below.

 Figure 28 text area message warning

 If there no algorithm has been selected a

warning message box will be displayed see.

 (Figure 29) below.

 Figure 29 algorithm selection warning

✓ Otherwise

The text is ready and the algorithm is selected (Figure 30) below once the search

button is clicked the model will be created and the pattern will

be displayed with the used algorithm and the accuracy of the model see

(Figure 31) below.

Implementation, results and comparaison

Page | 59

Figure 30 text and algorithm are set

 Solution using naïve Bayesian

Figure 31solution using naive bayesian

Implementation, results and comparaison

Page | 60

And we can use other algorithms like svm, knn and decision tree

 Using decision tree

Figure 32 solution using decision tree

 Solution using knn

Figure 33 solution using knn

 Using svm

Figure 34 solution using svm

Implementation, results and comparaison

Page | 61

There's this delete buttons that appears with the solution and we can

use it to delete it.

Conclusion and future work

Page | 62

Conclusion and future work

 In our work, we find the appropriat design pattern using several machine learning

and natural language processing techniques. We collected SOA design patterns from

Thomas Erl book [31] , where there is a notable presence of design pattern profiles . after

extracting structured data from the book content that's about patterns. We saved the

retrieved data in a relational database that reflects the natural data structure presented in

the profile of the design pattern. then we used several database queries to retrieve

information to build design pattern profile dataset. we extracted text features and we built

4 classifiers using this dataset.

Once all our experiments have been exposed and their results analyzed, and due mainly to

the large variety of them, it is time to summarize key points found during this research,

underlining major issues covered by present work. It is, of course, agreed that many open

issues remain in the horizon, Text Categorization research is a richness area where several

computer-based techniques meet to propose a wide variety of solutions. We believe that

the success of a system resides not only on the excellence of proven learning algorithms,

or specific natural language-based methods, but also on a closer observation of the matter

under study: the collection of documents of soa design pattern profile.

From our entire study, we observe that the standard precision and recall values of naïve

Bayesian are better than knn, svm and decision tree so we conclude that naïve Bayesian

works better for this type of classification due to the type of our dataset known that in that

case our dataset is relatively small and the features are relatively independent .

In this dissertation, we presented SOA design pattern selection approach using learning

teckniques. We illustrated our approach through a pattern example. In order to reach the

generality and the validity of our approach, we have applied it to more real design patterns

examples within the "Service inventory design patterns" category, service design and

"service composition design patterns" categories.

In real applications, problems are complex and their solutions can be represented

by compound or composite patterns that require the combination and reuse of other design

patterns. So, as future work, we are working on specifying pattern language or set of

Conclusion and future work

Page | 63

patterns that can work together to increase some quality measurement instead of just a

pattern as a solution.

Bibliography

Page | 64

Bibliography
[1] “Design patterns selection: An automatic two-phase method,” J. Syst. Softw., vol. 85,

no. 2, pp. 408–424, Feb. 2012.

[2] C. Kanakslakshmi and M. chezian, “Analysis on Text Mining and Text Classification

teckniques,” in Proceedings of the National Conference on Information and Image

Processing, 2015, vol. 1, pp. 132–135.

[3] M. chezian and K. C, “Performance Evaluation of Machine Learning Techniques for

Text Classification,” presented at the Proceedings of the UGC Sponsored National

Conference on Advanced Networking and Applications, 2015, p. 53.

[4] R. R.P, K. Juliet, and A. hana, “Text Classification for Student Data Set using Naive

Bayes Classifier and KNN Classifier,” International Journal of Computer Trends and

Technology, vol. 43, no. 1, pp. 8–9, Jan. 2017.

[5] E. Ikonomakis, S. Kotsiantis, and V. Tampakas, “Text Classification Using Machine

Learning Techniques,” WSEAS transactions on computers, vol. 4, no. 8, p.

section2,section 3, Aug. 2005.

[6] M. Karaca and S. BAYIR, “Examining the Impact of Feature Selection Methods on

Text Classification,” Int. J. Adv. Comput. Sci. Appl., vol. 8, p. 381 |, Jan. 2017.

[7] A. Basarkar, “DOCUMENT CLASSIFICATION USING MACHINE LEARNING,”

Master’s Theses and Graduate Research, San Jose State University, SAN JOSE

STATE ,pp.22, 2017.

[8] J. Ababneh, O. Almanmomani, W. Hadi, N. El-Omari, and A. Alibrahim, “Vector

Space Models to Classify Arabic Text,” Int. J. Comput. Trends Technol. IJCTT, vol.

7, p. 219 introduction, Feb. 2014.

[9] M. Kumari, A. Jain, and A. Bhatia, “Synonyms Based Term Weighting Scheme: An

Extension to TF.IDF,” Procedia Comput. Sci., vol. 89, p. 556, Jan. 2016.

[10] J. Kaur and J. Saini, “A Study of Text Classification Natural Language Processing

Algorithms for Indian Languages,” VNSGU J. Sci. Technol., vol. 4, no. 1, pp. 163–

164, Jul. 2015.

[11] R. A. Sinoara, J. Antunes, and S. O. Rezende, “Text mining and semantics: a

systematic mapping study,” Journal of the Brazilian Computer Society, vol. 23, no.

1, p. 13, Jun. 2017.

[12] R. Malviya and P. Jain, “A Novel Text Categorization Approach based on K-means

and Support Vector Machine,” International Journal of Computer Applications, vol.

130, pp. 1–3, Nov. 2015.

[13] M. R and S. R, “Machine learning algorithms for text-documents classification: A

review,” International Journal of Academic Research and Development, vol. 3, no.

2, p. 384, Mar. 2018.

[14] N. Rani, A. Sharma, and D. S. Pathak, “Text Classification Using Machine Learning

Techniques: A Comparative Study,” International Journal on Future Revolution in

Computer Science & Communication Engineering, vol. 4, no. 3, p. 553, Mar. 2018.

[15] C. C. Aggarwal, Data Classification: Algorithms and Applications, 1st ed. Chapman

& Hall/CRC, 2015.

[16] P. Perner, Ed., Machine Learning and Data Mining in Pattern Recognition: 10th

International Conference, MLDM 2014, St. Petersburg, Russia, July 21-24, 2014,

Proceedings, vol. 8556. p. 516: Springer International Publishing, 2014.

Bibliography

Page | 65

[17] R. Changala, A. Gummadi, G. Yedukondalu, and U. S. N. Raju, “Classification by

Decision Tree Induction Algorithm to Learn Decision Trees from the class-Labeled

Training Tuples,” International Journal of Advanced Research in Computer Science

and Software Engineering, vol. 2, no. 4, pp. 427–428, Apr. 2012.

[18] C. C. Aggarwal, Data Mining: The Textbook, 1st ed. New York USA: Chapman &

Hall/CRC, 2014.

[19] O. Ardhapure, L. S. Patil, D. L. Udani, and K. Jetha, “COMPARATIVE STUDY OF

CLASSIFICATION ALGORITHM FOR TEXT BASED CATEGORIZATION,”

International Journal of Research in Engineering and Technology, vol. 5, no. 2, p.

218, Feb. 2016.

[20] M. A. Wajeed and T. Adilakshmi, “Using KNN Algorithm for Text Categorization,”

in Computational Intelligence and Information Technology, 2011, p. 798.

[21] S. Tong and D. Koller, “Support Vector Machine Active Learning with Applications

to Text Classification,” p. 47.

[22] T. Joachims, “Text Categorization with Support Vector Machines,” Proc Eur. Conf

Mach. Learn. ECML98, pp. 3–4, Jan. 1998.

[23] Y. Ahuja and S. K. Yadav, “Multiclass Classification and Support Vector Machine,”

Global Journal of Computer Science and Technology Interdisciplinary, vol. 12, no.

11, pp. 16–17, 2012.

[24] G. Madzarov and D. Gjorgjevikj, “Multi-Class Classification Using Support Vector

Machines In Decision Tree Architecture,” presented at the IEEE EUROCON 2009,

EUROCON 2009, 2009, pp. 414–415.

[25] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. San

Francisco, CA, USA,p77-78: Morgan Kaufmann Publishers Inc., 2011.

[26] C. C. Aggarwal, Machine Learning for Text. Cham: Springer International

Publishing, 2018.

[27] N. M. Josuttis, SOA in practice, 1st ed. Beijing ; Sebastopol: O’Reilly, 2007pp12.

[28] E. Hewitt, Java SOA Cookbook, 1 edition. Beijing ; Farnham ; Sebastopol, Calif,pp10:

O’Reilly Media, 2009.

[29] J. Davis, Open source SOA. Greenwich, Conn,pp 61-62: Manning, 2009.

[30] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented Architecture

Best Practices (The Coad Series). pp 76: Prentice Hall PTR, 2004.

[31] T. Erl, SOA design patterns. 2008.

Bibliography

Page | 66

