
facial recognition using convolutional neural
networks

Mohamed Kheider University

Mohamed Zeghlache

Juin 2019

Abstract

Identifying a person from his or her face is an easy task for humans. Is it the
same for a machine? This defines the problem of automatic face recognition,
which has generated a great deal of research in recent years. Several tech-
niques have been developed for face recognition, The purpose of this memoir
is to implement a facial recognition application capable of recognizing faces
using the convolutional neural network technique. Given the amount of po-
tential software (security, social networks, ...) that can be based on this
application, it must meet the requirements of speed and robust results. In
this sense, the first part of the application is to locate the faces in the test
images. The second part of the application deals with the recognition of
localized faces using a version of the VggNet architecture which is one of the
CNN architectures. The results we have obtained are very encouraging.

Keywords: facial recognition, convolutional neural networks, deep learn-
ing.

Dedication

I dedicate this thesis to my dear parents for their

patience, support and sacrifices since my birth,

during my childhood and even in adulthood.

My dear mother. Thank you for your advice, your

sacrifices, your support and your encouragement,

this is your success before it is mine.

To my sisters and all of my family members.

To all my friends, who supported me in the

accomplishment of this humble work

To all my teachers and to all those who have

engaged in this modest works.

To all of those who helped me from near or far.

Acknowledgements

First of all, Praise Lord ”ALLAH ” who has endowed us with
the wonderful faculty of reasoning.

I want to express my thanks to my supervisor
Mrs BENCHABANE Moufida

To have supported and trusted me during my project with great
patience. With her experience in research and teaching, with

her advice, I was able to discover the world of scientific
research in the field of image processing and facial biometrics

techniques.

My thanks and my deepest gratitude are addressed to my
parents who have shown nothing but support and love, and also

to all of my family members.

I also extend my sincere thanks to all of the teachers of the
computer science department -Biskra- who gave us a lot of

knowledge.

I also thank my colleagues and students each and every one by
name who have always supported my efforts. In the end We
thank all the people who participated from near or far in the

realization of this work.

Contents

List of Contents vi

List of Figures viii

General Introduction 2

1 State of the art 3

I Biometry and facial recognition systems 4
I.1 Introduction . 5
I.2 Biometry . 5

I.2.1 Definition of biometry 5
I.2.2 Properties of a biometric modality 5
I.2.3 Biometric modalities 6
I.2.4 Biometric systems . 8
I.2.5 Structure of a biometric system 11
I.2.6 Performance of biometric systems 12

I.3 Facial recognition . 14
I.3.1 Why facial recognition ? 14
I.3.2 Facial recognition system 14

I.3.2.1 Image acquisition 15
I.3.2.2 Detection . 15
I.3.2.3 Preprocessing 15
I.3.2.4 Feature extraction 15
I.3.2.5 Classification 16
I.3.2.6 Learning . 16
I.3.2.7 Decision . 16

iv

I.3.3 Difficulties of facial recognition 16
I.4 Conclusion . 17

II Face detection and recognition methods 18
II.1 Introduction . 19
II.2 Face recognition techniques 19

II.2.1 Global methods . 19
II.2.2 Local methods . 19
II.2.3 Hybrid methods . 20

II.3 Face detection algorithms . 20
II.3.1 Viola-Jones (HAAR CASCADE) 20
II.3.2 Histogram of Oriented Gradients ”HOG” 21

II.4 Face databases . 23
II.4.1 Labeled faces in the wild (LFW) 23
II.4.2 FERET Database . 24
II.4.3 The AR Database . 24
II.4.4 ORL Database . 24

II.5 Conclusion . 25

IIINeural networks 26
III.1 Introduction . 27
III.2 Artificial neural network . 28

III.2.1 Definition of ANNs . 28
III.2.2 History and inspiration behind ANNs 29
III.2.3 Architecture of ANNs 30
III.2.4 Learning paradigms . 31
III.2.5 Modeling of ANNs . 32
III.2.6 A few models of ANNs 35

III.3 Convolutional neural network 36
III.3.1 What is and why CNN ? 36
III.3.2 Layers in CNN . 36

III.3.2.1 Convolution layer 37
III.3.2.2 Pooling layer 39
III.3.2.3 Fully connected layer 40

III.3.3 CNN architectures . 41
III.3.3.1 AlexNet (2012) 41
III.3.3.2 GoogLeNet/Inception(2014) 42
III.3.3.3 ResNet(2015) 43

v

III.3.3.4 VGGNet (2014) 44
III.3.4 VggNet CNN Classification 45

III.3.4.1 VggNet Model training 46
III.3.4.2 VggNet Model testing 47
III.3.4.3 Non Linearity 48
III.3.4.4 Softmax Function: 50
III.3.4.5 Cross Entropy Loss: 50

III.3.5 Conclusion . 51

2 Experimentations, Results and Discussions 52

IV Experimentation 53
IV.1 Introduction . 54
IV.2 Working environment . 55
IV.3 Required Packages and libraries 55
IV.4 Project Structure . 56
IV.5 Our Dataset . 56
IV.6 Our CNN Architecture . 58
IV.7 Training our CNN . 62
IV.8 Testing our CNN . 65
IV.9 Limitations of our model . 71
IV.10 Conclusion . 72

General Conclusion 73

vi

List of Figures

I.1 Examples of biometric characteristics 8
I.2 Block diagrams of enrollment, verification, and identification . 11
I.3 FAR and FRR diagram . 13
I.4 A ROC curve for a given biometric matching system 14

II.1 Common HAAR features . 21
II.2 Analyzing an image as a histogram of oriented gradients . . . 22
II.3 face database samples of the databases mentioned above . . . 25

III.1 Relation between AI, ML and DL 27
III.2 Basic structure of an ANN . 28
III.3 Representaion of a biological neuron 29
III.4 Recap of historical dates of the evolution of neural networks . 30
III.5 recurrent network and feedforward network 31
III.6 representation of a mathematical neuron 33
III.7 A few activation functions . 34
III.8 A simple CNN architecture . 37
III.9 The convolution operation . 38
III.10. Activation maps . 39
III.11. Pooling with a kernel of 2*2 and a stride of 2 40
III.12. AlexNet Architecture . 41
III.13. Compressed view of the Architecture of GoogLeNet (version

3) . 43
III.14. Compressed view of the Architecture of ResNet 44
III.15. ConvNet configurations. 45
III.16. A ReLU activation function 49
III.17. ReLU operation . 50

IV.1 Schema of the project . 54

vii

IV.2 A sample of the training images for some of the classes in our
dataset . 57

IV.3 Comparison between VGGNet and other CNN models 59
IV.4 The architecture of the CNN implemented in ou project 59
IV.5 training the CNN on my laptop 64
IV.6 The training and validation loss/accuracy plot of our CNN . . 65
IV.7 Classifying an example image on my laptop 67
IV.8 Classifying an input imageof Zoe Saldana using Keras and

Convolutional Neura Networks. 67
IV.9 Classifying an input image of Toni Kroos using Keras and

Convolutional Neural Networks. 67
IV.10. Classifying an input image using of Riyad MahreKeras and

Convolutional Neural Networks. 68
IV.11. Classifying an input image of Gad Elmaleh using Keras and

Convolutional Neural Networks. 69
IV.12. Two celebrities look alike . 70
IV.13. Classifying an input image of Chad smith against Will Ferrell. 70

viii

General Introduction

The security and safety of individuals, properties and information need to
be guaranteed , actually one of the major concerns of our societies, especially
after the great spread of terrorism around the world. In fact, people willing
to cross boundaries must prove their identities using their passports, people
willing to cross buildings or academic institution must validate their access
cards, people desiring access to banking services must login using a login and
a password. Nevertheless, these traditional methods show great weaknesses
for identity verification. Indeed, the identity of a person is directly related
to that they possess (such as passport, access card, etc.) or/and that they
know (password, PIN codes, etc.). Nonetheless, PIN codes and passwords
may be forgotten or compromised and access cards may be falsified or du-
plicated which lead to identity sponge. In this respect, experts are looking
for a technology which resolves these problems by giving more convenience
to persons and ensuring a highly secured access, by relating the identity of a
person to what they are and not to what they possess or know.

Biometry is the most suitable technology for identity verification and/or
person identification by employing their physiological features including bio-
logical, morphological and behavioral characteristics. This technology makes
identity data theft more difficult and thus, increases user confidence as the
physical presence is necessary during identification.[1]

In our work, we have chosen facial recognition as an average of identi-
fication compared to other methods because this identification is naturally
used by a human being, so this type of recognition does not stop with the
identification of the face, but can apply to the location of an individual in a
crowd, unlike other methods, and does not require very complex acquisition
equipment that is to say a simple camera can acquire the shape of an indi-
vidual’s face and then remove certain features. The essential features for face
recognition are eyes, mouth, face, nose, etc. Depending on the system used,

1

the individual must be positioned in front of the camera where they may be
moving at a distance. The biometric data that is obtained is compared to
the reference file. The software must be able to identify an individual despite
various physical devices (mustache, beard, glasses, etc.).[2]

This thesis deals with a topic of identification. An identification system
is intended to answer the question; ”who is this person?” You have to check
the biometrics against all others in the database. Which is simplified to 1:
Many It is, therefore, responsible for discovering the identity of an unknown
person in a dataset. Several methods have been developed in the literature
for face recognition. In our work, we have opted for a technique based on
neural networks called the Convolutional Neural Networks (CNN) which is
a type of neural network with deep learning, or Deep Neural Network. The
latter has several hidden layers. CNN consists of two very distinct parts,
part of extraction that can be used to simplify an input image, reducing its
size, and part of classification that classifies this data.[2]

We chose to articulate our study around four main chapters. The first
chapter is devoted to the general presentation of biometrics. It describes the
operating principle of biometric systems and then defines the tools used to
evaluate their performance. Then, the place of facial recognition among the
other biometric techniques is analyzed. Through this chapter, we want to
position the problem of facial recognition and present its issues and inter-
ests to other techniques. Finally, we highlight the difficulties faced by face
recognition systems. In the second chapter, we will discuss the state of the
art of face recognition techniques. We present just the most popular face
recognition and face detection algorithms, and quote some of the most used
databases for face recognition. The third chapter is composed of two parts.
We will first take on the artificial neural network basics (ANN), which is
the heart of the recognition system. Then we talk about recognition tech-
niques based on deep neural network (Deep Learning) of the convolutional
neural network-type (CNN) in the second part. In the fourth chapter, we
present the experimental results obtained by methods of face recognition that
we choose and analyze their performance, followed by a discussion with the
interpretation of the results.

Finally, the general conclusion will summarize the results obtained by our
approach.

2

Part 1

State of the art

3

Chapter I

Biometry and facial recognition
systems

4

I.1 Introduction

Biometry is a growing technology which has become increasingly used in
our daily life. It aims to establish the identity of a person as reliable as
possible using their biological features in order to guarantee the safety of
people in public places. In this chapter, we introduce firstly, the identity of
a biometric system, structure and the different biometric modalities.

Eventually, we will showcase one of the most efficient modalities to iden-
tify a subject; which is the face. And the whole process from taking a picture
of a person to identifying the person in it.

I.2 Biometry

I.2.1 Definition of biometry

Biometry is the verification of individual identity based on his biological
characteristics which are classified into two categories. The first one is physi-
cal characteristics which are most commonly used and rely on physical traits
of individuals such as iris, fingerprint, palmprint, face, etc., and the second
kind is behavioral characteristics which are less used and rely on individual
actions or behaviors such as walking, voice, dynamic signature, etc. These
physical and behavioral characteristics that allow persons identification are
called biometric modalities [1].

Biometry is the science to understand how to measure these person-
specific Characteristics and how to use them to distinguish individuals. Re-
searchers in biometrics try to automatize such processes and make them
suitable To be run on a computer or a device by a biometric system [3].

I.2.2 Properties of a biometric modality

Principal properties of a biometric modality are the following:

• Universality : The whole population should possess this modality (phys-
ical or behavioral characteristic).

• Distinctiveness: Two different individuals must have different biometric
representations.

5

• Stability : To ensure individual authentication success, biometric modal-
ity should be relatively stable over time and it also has to be stable re-
gardless conditions of acquisition (external conditions, emotional con-
ditions of the person, etc.).

• Collectability : The biometric modality must be acquired.

• Acceptance : The acceptance and the facility of usage are related to
the acquisition constraints of a biometric modality.

• Circumvention : The biometric modality must not be easily falsified.

• Performance : Biometric recognition should be accurate, fast and ro-
bust with regards to operational and environmental changes.

All modalities do not possess all these properties, or may possess them with
different degrees. Hence, there is no ideal or perfect modality. The trade-
off between presence and absence of some of these properties is required
according to each system needs, regarding the choice of biometric modality
[1].

I.2.3 Biometric modalities

There are many different biometric modalities that are used to acquire in-
formation about personal traits of humans, and they are classified into three
main categories (biological, behavioral and morphological), the modalities
that are used the most today are fingerprint, face, iris, and voice. These
happen to be the biometric modalities that, today, best meet the tests for
uniqueness, permanence, and consistency let alone the ease of capturing them
using sensing devices. This section discusses some examples of different bio-
metric modalities that are based on either biological, behavioral or morpho-
logical analysis.

• Biological : This category is based on the analysis of the biological
characteristics of the individual. The premise to this type of analysis
is that the biological data of each individual is a personal signature.
Biological analysis includes: odor, DNA, and physiological signals [4].
However in biometrics for automated user authentication, DNA analy-
sis is not yet used mainly due to two reasons. First, extraction of the
DNA sequences still requires biochemical processing, which cannot be

6

fully automated today and is quite time consuming. The second reason
is the fact that organic material carrying DNA may be lost easily. Con-
sequently, it may be collected and re-used by other subjects easily, for
example by collecting a sample of a lost hair from a brush or leavings
of saliva from a glass [5].

• Behavioral : This category is based on the analysis of an individual’s
behavior, such as signature dynamics, demarche, typing, and voice [4].
It is mainly characterized by three categories of individual traits: the
biological construction of the organs producing behavior, the learned
characteristics of how to produce behavior and the purpose or inten-
tion, which action exactly to be produced. For example in speech based
biometrics, various aspects of the biological construction of mouth, vo-
cal cords and glottis influence the individual sound characteristics of
speech generation. On the other side learned characteristics include
linguistic aspects like vocal tones, pronunciation and speech tempo,
which are heavily influenced by the way the speaking capability has
been acquired [5].

• Morphological : This category is based on the use of physical traits
that are unique and permanent in the individual. Several modalities
have been used to extract this information such as the face, the fin-
gerprint, the geometry of the hand, the iris, etc [4]. Physiological
traits of persons represent biological structures, which are individual
and which may be acquired without taking physical samples, e.g. by
optical means. These can be seen as visible or at least measurable
physical results, naturally grown as programmed by the genetic con-
struction code. For example, the structure of the ridges on fingertips
has proven to be individual and persistent for most human beings [5].

7

Figure I.1: Examples of biometric characteristics
(a) DNA, (b) ear, (c) face, (d) facial thermogram, (e) hand thermogram, (f) hand vein,

(g) fingerprint, (h) gait, (i) hand geometry, (j) iris, (k) palmprint, (l) retina, (m)
signature, and (n) voice. [6]

I.2.4 Biometric systems

A biometric system is essentially a pattern recognition system that oper-
ates by acquiring biometric data from an individual, extracting a feature set
from the acquired data, and comparing this feature set against the template
set in the database (see Fig. I.2). Depending on the application context,
a biometric system may operate either in verification mode or identification
mode.

• In the verification mode, the system validates a person’s identity by
comparing the captured biometric data with her own biometric tem-
plate(s) stored in the system database. In such a system, an individual
who desires to be recognized claims an identity, usually via a personal
identification number (PIN), a user name, or a smart card, and the
system conducts a one-to-one comparison to determine whether the
claim is true or not(e.g., “Does this biometric data belong to Bob?”).
Identity verification is typically used for positive recognition, where the

8

aim is to prevent multiple people from using the same identity.

The verification problem may be formally posed as follows: given an
input feature vector XQ (extracted from the biometric data) and a
claimed identity I, determine if (I, XQ) belongs to class w1 or w2,
where w1 indicates that the claim is true (a genuine user)and w2 indi-
cates that the claim is false(an impostor). Typically, XQ is matched
against XI , the biometric template corresponding to user I, to deter-
mine its category. Thus

(I,XQ) ∈

{
w1, if S(XQ, X1) ≥ t

w2, otherwise
(I.1)

where S is the function that measures the similarity between feature
vectors XQ and XI ,and t is a predefined threshold.The value S(XQ, X1)
is termed as a similarity or matching score between the biometric
measurements of the user and the claimed identity. Therefore, every
claimed identity is classified into w1 or w2 based on the variables XQ,
I, XI , and t and the function S. Note that biometric measurements
(e.g., fingerprints) of the same individual taken at different times are
almost never identical. This is the reason for introducing the threshold
t.

• In the identification mode, the system recognizes an individual by
searching the templates of all the users in the database for a match.
Therefore, the system conducts a one-to-many comparison to estab-
lish an individual’s identity (or fails if the subject is not enrolled in
the system database) without the subject having to claim an iden-
tity (e.g., “Whose biometric data is this?”). Identification is a critical
component in negative recognition applications where the system es-
tablishes whether the person is who she (implicitly or explicitly) denies
to be. The purpose of negative recognition is to prevent a single per-
son from using multiple identities. Identification may also be used in
positive recognition for convenience (the user is not required to claim
an identity). While traditional methods of personal recognition such as
passwords, PINs, keys, and tokens may work for positive recognition,

9

negative recognition can only be established through biometrics .

The identification problem, on the other hand, may be stated as fol-
lows. Given an input feature vector XQ, determine the identity IK ,
K ∈ {1, 2....N,N + 1}. Here I1,I2,...,IN are the identities enrolled in
the system and IN+1 indicates the reject case where no suitable identity
can be determined for the user. Hence

XQ ∈

{
IK , if maxk{S(XQ, XIK)} ≥ t,K = 1, 2, ..., N

IN+1, otherwise
(I.2)

where XIK is the biometric template corresponding to identity IK , and
t is a predefined threshold [6].

Before we move on to the structure of the biometric system, we have to
know that in order to identify/verify a subject we should have a database of
templates of individuals, which is filled in the enrollement phase :

• Enrollment is common for both verification and identification modes.
It is the preliminary phase where the biometric data of a user is reg-
istered for the first time in the system. During this phase, one or
more biometric modalities are captured and stored as templates in the
database. This phase is very crucial since it influences, later, the whole
recognition process. In fact, the quality of enrolled data is essential for
ulterior identification phases because acquired data are considered as
references for the person. A set of samples should be captured to take
into account the variability of biometric modality of a person [1].

10

Figure I.2: Block diagrams of enrollment, verification, and identification

[1]

I.2.5 Structure of a biometric system

The structure of a biometric system is composed of four modules. A bio-
metric system is designed using the following four main modules (see Fig.
I.2).

• Sensor module, which captures the biometric data of an individual.
An example is a fingerprint sensor that images the ridge and valley
structure of a user’s finger.

• Feature extraction module, in which the acquired biometric data
is processed to extract a set of salient or discriminatory features. For
example, the position and orientation of minutiae points (local ridge
and valley singularities) in a fingerprint image are extracted in the
feature extraction module of a fingerprint-based biometric system.

• Matcher module, in which the features extracted during recogni-
tion are compared against the stored templates to generate matching
scores. For example, in the matching module of a fingerprint-based
biometric system, the number of matching minutiae between the input
and the template fingerprint images is determined and a matching score
is reported. The matcher module also encapsulates a decision making

11

module, in which a user’s claimed identity is confirmed (verification) or
a user’s identity is established (identification) based on the matching
score.

• System database module, which is used by the biometric system
to store the biometric templates of the enrolled users. The enrollment
module is responsible for enrolling individuals into the biometric system
database. During the enrollment phase, the biometric characteristic of
an individual is first scanned by a biometric reader to produce a digital
representation of the characteristic. The data capture during the enroll-
ment process may or may not be supervised by a human depending on
the application. A quality check is generally performed to ensure that
the acquired sample can be reliably processed by successive stages. In
order to facilitate matching, the input digital representation is further
processed by a feature extractor to generate a compact but expressive
representation, called a template. Depending on the application, the
template may be stored in the central database of the biometric sys-
tem or be recorded on a smart card issued to the individual. Usually,
multiple templates of an individual are stored to account for variations
observed in the biometric trait and the templates in the database may
be updated over time [6].

I.2.6 Performance of biometric systems

To evaluate the performance of a biometric system, there are two types of
errors to check for :

• False Acceptance Rate (FAR) : which is when the system erro-
neously recognizes two different samples as samples from the same
source

FAR =
number of accepted imposters (False Accept)

total number of imposters’ accesses
(I.3)

• False Rejection Rate (FRR) : which is when the system erroneously
recognizes two samples from the same source as samples from different
sources.

FRR =
number of rejected clients (False Reject)

total number of client accesses
(I.4)

12

After calculating the FAR and FRR, we can calculate the Equal Error
Rate (EER), This rate is calculated from the first two criteria and consti-
tutes a point of measurement of current performance. This point corresponds
to the place where FRR = FAR, that is to say the best compromise between
the false rejections and the false acceptances [7].

EER =
number of false acceptance + number of false rejection

total number of accesses
(I.5)

Figure I.3: FAR and FRR diagram

[8]

The system performance at all the operating points (thresholds) can
be depicted in the form of a Receiver Operating Characteristic(ROC)
curve.A ROC curve is a plot of FMR against or FNMR for various threshold
values [6] . The more this curve fits the mark shape the more the system is
efficient with a high Recognition Rate (RR) [1].

13

Figure I.4: A ROC curve for a given biometric matching system

[8]

I.3 Facial recognition

I.3.1 Why facial recognition ?

So many biometric modalities are used to identify subjects (see figure
I.1),and facial recognition is one of the most used biometrics in the world
today because of its efficiency. The reason after using the face biometric is
not only its efficiency but also :

• The ease of use : facial recognition does not require any process from
the user, it’s enough to just hold still or walk in front of a camera.

• availability of equipment : the equipment used for the acquisition of
images and its simplicity and its low price.

I.3.2 Facial recognition system

A facial recognition system must have the ability to identify faces in an
image or video automatically. The basic operating principle of a facial recog-
nition system can be summarized in the following steps :

14

I.3.2.1 Image acquisition

This is the first step in identifying subjects, the sensor used for acquiring
face images is digital cameras. We must succeed in capturing information rel-
evant without noise. The image in this step is in a raw state which generates
a risk of noise that can degrade the performance of the system [9].

I.3.2.2 Detection

Face detection can be done by detecting the color of the skin, the shape of
the head or by methods detecting the different characteristics of the face.This
step is dependent on the quality of the images acquired. The overall perfor-
mance of any automatic system recognition largely depend on the perfor-
mance of face detection. In the detection step, we identify and locate the
face in the image acquired at the beginning, regardless of position, scale,
orientation and lighting [9].

I.3.2.3 Preprocessing

Preprocessing consists in eliminating the parasites caused by the quality of
the sensors used during the acquisition of the image to keep the essential in-
formation alone [2].and also dealing with lighting conditions and the posture
of the subject...etc

I.3.2.4 Feature extraction

Mainly two categories of feature extraction can be found in face recogni-
tion today: global and component based approaches. In the first category,
typically all or part of the original image is used as one single feature vector,
which requires alignment between the images in all cases. Such an alignment
can be performed for example by detection of corresponding key points in the
facial part of the photograph and a subsequent warping of one of the images
towards the other(s). The other category of features addresses geometrical
properties of the face, such as relation and size of eyes, nose and mouth in
the image. Another approach is to identify additional key points on the face
and expand an elastic graph model between them [5].

15

I.3.2.5 Classification

It consists of modeling the parameters extracted from a face or a set of
faces of an individual based on their common characteristics. A model is a
set of useful, discriminant and non-redundant information that characterizes
one or several individuals with similarities, they will be grouped in the same
class, and these classes vary depending on the type of decision [9].

I.3.2.6 Learning

After extraction and classification, a learning step consists of memorizing
the parameters in a well-ordered database to facilitate the recognition and
decision-making phase [2].

I.3.2.7 Decision

This is the step that makes the difference between a system of identification
and a verification system . In this step, an identification system is to find
the model that best fits the face taken from those stored in the database, it
is characterized by its recognition rate. On the other hand, in a verification
system it is a question of deciding whether the face in entry is indeed that
of the individual (model) proclaimed or he is an impostor. To estimate the
difference between two images, it is necessary to introduce a measure of
similarity [9].

I.3.3 Difficulties of facial recognition

For the human brain, the process of face recognition is a high-level visual
task. Although human beings can detect and identify faces in a scene with-
out much trouble, building an automatic system that performs such tasks
is a serious challenge. This challenge is hard as the conditions for acquiring
images are very variable. There are two types of variations associated with
face images: inter and intra-subject. Inter-subject variation is limited be-
cause of the physical resemblance between individuals. On the other hand,
the intra-subject variation is larger. It can be attributed to several factors
that we analyze here.

• Change of illumination : The change of illumination of a face is
a critical task and this leads to make the facial recognition task very
difficult and also lead to misclassification.

16

• Pose variations : The pose variation is another problem for facial
recognition systems, if there are pose variations in the images, it affects
facial recognition rate.

• Facial expressions : The appearance of a face varies greatly in the
presence of facial expressions, the facial elements such as the mouth
or the eyes can suffer significant deformations that can cause a failure
of a facial recognition system, it necessarily causes a decrease in the
recognition rate.

• Structural components : The presence of structural components
(beard, mustache, or glasses) can significantly alter the facial features,
these components can hide the basic facial features causing a failure of
the recognition system.

• Partial occlusions : Partial occlusions can be caused by a hand hiding
a part of the face, by long hair, glasses, the sun, by any other object
(scarf ...), or by another person [2].

I.4 Conclusion

In this chapter, we have chiefly described the general context of biometry
by describing the different biometric modalities and their properties. We
outlined the structure of a biometric system and how to calculate the per-
formace of such a system. And then we focused on one of the modalities to
identify subjects which is the face, and we showed both why face recognition
is one of the most used modalities today and how a facial recognition system
is structered.

The following chapter will introduce the steps and methods and the
needed tools of making a face recognition operation.

17

Chapter II

Face detection and recognition
methods

18

II.1 Introduction

Face Recognition is a central topic in Face Analysis research. A biometric
system may be used for verification or identification. The system in iden-
tification must find the identity of the individual presented to the system
and the system in verification receives an identity and must make the de-
cision whether or not the image corresponds to the identity, In both cases,
the problem comes back, however, to a problem of classification. Many face
recognition techniques have been proposed over the past 30 years. In this
chapter, we briefly describe some of the most important or popular techniques
used in face recognition.

II.2 Face recognition techniques

The ultimate goal of facial recognition is to compete, or even exceed, hu-
man abilities of recognition. Several face identification methods have been
proposed during the twenty last years. There are three categories of methods:
global methods , local methods and hybrid methods .

II.2.1 Global methods

The principle of these approaches is to use the entire surface as a source
of information without taking into account local characteristics such as the
eyes, the mouth ...etc. Global algorithms are based on well known statistical
properties and use linear algebra. They are relatively fast to implement but
are sensitive to variations in illumination, pose and expression face [9]. One
of the approaches used here is the artificial neural networks (which we will
be talking more in depth about in the next chapter).

II.2.2 Local methods

They are also called line, geometric, local characteristics, or analytic. This
type involves applying transformations in specific areas of the image, most
often around the characteristic points (corners eyes, mouth, nose, ...), the
focus will be given to small local details avoiding the noise caused by hair,
glasses, hats, beard, etc. But their difficulty is present when it comes to tak-
ing into consideration several views of the face as well as the lack of precision

19

in the ”extraction” phase of the points constitute their major disadvantage.
Specifically, these methods extract local face characteristics such as eyes,
nose and mouth, then use their geometry and / or appearance as given input
of the classifier [9].

II.2.3 Hybrid methods

The robustness of a recognition system can be increased by merging several
methods. It is also possible to use a combination of classifiers based on various
techniques in order to unite the strengths of each and thus overcome their
weaknesses. Hybrid techniques combine the two previous methods for better
characterization of face images [9].

II.3 Face detection algorithms

II.3.1 Viola-Jones (HAAR CASCADE)

The core basis for Haar classifier object detection is the Haar-like features.
These features, rather than using the intensity values of a pixel, use the
change in contrast values between adjacent rectangular groups of pixels. The
contrast variances between the pixel groups are used to determine relative
light and dark areas. Two or three adjacent groups with a relative contrast
variance form a Haar-like feature. Haar-like features, as shown in figure II.1
are used to detect an image. Haar features can easily be scaled by increasing
or decreasing the size of the pixel group being examined. This allows features
to be used to detect objects of various sizes.[10]

Due to the nature of the algorithm, the Viola-Jones method is restricted
to binary classification tasks (such as object detection) and has a very long
training period. However, it classifies images quickly because each weak
classifier requires only a small number of parameters, and with a sufficient
number of weak classifiers, it has a low rate of false positives.[11]

Rectangle features can be computed very rapidly using an intermediate
representation for the image which we call the integral image.The integral
image at location x; y contains the sum of the pixels above and to the left of
x; y, inclusive:

20

Figure II.1: Common HAAR features

[10]

ii(x; y) =
∑

x′≤x,y′≤y

i(x′, y′) (II.1)

where ii(x; y) is the integral image and i(x; y) is the original image. Using
the following pair of recurrences:

s(x; y) = s(x, y − 1) + i(x, y) (II.2)

ii(x; y) = ii(x− 1, y) + s(x, y) (II.3)

(where s(x; y) is the cumulative row sum, s(x; 1) = 0, and ii(1; y) = 0)

The integral image can be computed in one pass over the original image.
Using the integral image any rectangular sum can be computed in four array
references.[12]

II.3.2 Histogram of Oriented Gradients ”HOG”

For the histogram of oriented gradients, or HOG, algorithm, to detect faces
in a photograph, the first step is to convert the input image to black-and-
white. The HOG algorithm does not need color information, it only looks

21

at changes between light and dark areas in an image. basicaly, it devides
the image into small cells and compares the pixels in that area to each other
and try to measure the variation of darkness, and then find the direction
where the biggest change happens. This shows the movement of lighting
at this exact point. If we repeat this process for every single pixel in the
image, the image turns into a map of transitions from light to dark areas.
These lines are called gradients. Each gradient shows how the image flows
from a light area to a dark area at that point. But, that’s still not enough
because the image is still pretty complex and detailed. to detect the face
we only need the overall structures. so, the image will be further simplified
by going over it again with a bigger block this time and we’ll count up how
many gradients point in each major direction. Instead of keeping track of
all separate gradients within this block, we’ll just store a count of how many
gradients point in each direction. and the direction that has the most counts
is the strongest factor that represents that area of the image. There are
also gradients pointing in other directions that we’ll keep track of. We’ll
represent those other directions here as lines that are less bold. Now, this
can be repeated for the entire image. The original image is now a simple
representation that captures the basic structure. We can use this simplified
representation to easily train a face detection model.

Figure II.2: Analyzing an image as a histogram of oriented gradients

After converting the images to HOG representations, we will start training
a machine learning face detection model by giving it lots of examples of HOG
representations of faces so it can learn what this pattern looks like. HOG
simplifies the image in a way that still retains the key information needed to
spot faces. By simplifying the problem this way, it makes it easier for the
machine learning model to solve it. But HOG has some other nice advantages,
as well, that make it work better for small training sets. First, the HOG
representation of an image doesn’t change even when you lighten or darken
the image. Since HOG only looks for changes in brightness and not absolute
brightness, making an image a little brighter or a little darker doesn’t change
the HOG representation at all. Second, the HOG representation of an image

22

doesn’t change even if you change the shapes in the image a little bit. Because
it is only looking at broad changes in the intents the over large areas of the
image, small changes in shape don’t matter. This is great for face detection
because it means that two faces that don’t look exactly the same will still
have nearly the same HO representation.[13]

II.4 Face databases

Many databases containing information that enables the evaluation of face
recognition systems are available on the market. However, these databases
are generally adapted to the needs of some specific recognition algorithms,
each of which has been constructed with various image acquisition conditions
(changes in illumination, pose, facial expressions) as well as the number of
sessions for each individual. These databases range in size, scope and pur-
pose.

II.4.1 Labeled faces in the wild (LFW)

The primary contribution of LFW is providing a large set of relatively
unconstrained face images. By unconstrained, we mean faces that show a
large range of the variation seen in everyday life. This includes variation
in pose, lighting, expression, background, race, ethnicity, age, gender, cloth-
ing, hairstyles, camera quality, color saturation, and other parameters. The
reason we are interested in natural variation is that for many tasks, face
recognition must operate in real-world situations where we have little to no
control over the composition, or the images are pre-existing. For example,
there is a wealth of unconstrained face images on the Internet, and develop-
ing recognition algorithms capable of handling such data would be extremely
beneficial for information retrieval and data mining. Since LFW closely ap-
proximates the distribution of such images, algorithms trained on LFW could
be directly applied to web IR applications.[14]
this database contains 13233 images of 5749 persons, and was all collected
directly from Yahoo’s website.

23

II.4.2 FERET Database

The FERET database was collected as part of the Facial Recognition Tech-
nology program conducted by the US National Institute of Standards and
Technology (NIST). This is the largest base available for researchers that
were acquired with different poses and during 15 sessions between 1993 and
1996. The images, initially collected from a 35mm camera, were then digi-
tized. The first version of this database was produced in 2001 and contains
14051 grayscale facial images with a resolution of 256 x 384 pixels. The
latest version, made in 2003, contains higher quality color digital images
with a resolution of 512 x 768 pixels and lossless compression of data, unlike
the first grayscale images. In addition, multiple image name, identify and
capture date errors, which appear on the first grayscale base, have been cor-
rected. This last database contains 11338 images representing 994 different
people.[15]

II.4.3 The AR Database

The AR base was established in 1998 at the Computer Vision Center
(CVC) laboratory in Barcelona, Spain. 116 people (63 men and 53 women)
are registered. The images are in color of size 768 x 576 pixels. 13 views on
each topic were collected. For the majority of these people, 13 other views
were acquired during a second session two weeks apart. Image views contain
changes in facial expression, lighting, and partial occlusions of the eyes (sun-
glasses) and the lower part of the face (neck cover). In the second session,
the 13 views are collected under the same conditions as for the first one.[16]

II.4.4 ORL Database

Designed by AT n T Laboratories at the University of Cambridge in
England, the ORL database (Olivetti Research Laboratory) is a reference
database for automatic face recognition systems. In fact, all face recognition
systems found in the literature have been tested in relation to the ENT, this
popularity is due to the number of constraints imposed by this base because
most of the possible and foreseeable changes in the face have been taken into
account. count, such as change of heart, beard, glasses, changes in facial
expressions, etc. As well as the acquisition conditions such as the change of
illumination and the change of scale due to the distance between the acquisi-

24

tion device and the individual. The ORL database consists of 40 individuals,
each individual has 10 poses, so the database contains 400 images. The poses
were taken over different time intervals of up to three months. The extrac-
tion of faces from the images was done manually.[15]

Figure II.3: face database samples of the databases mentioned above

[17][18][19]

For this project, we are not going to use any of these databases. we will
collect our own database using a google chrome extension to get the images
of certain people from google image search. after collecting a good amount
of images for each person in our database, we will put the images into a
program to detect the faces in those images using the histogram of oriented
gradients, and replace the old ones with the new cropped ones to make the
features extraction in the CNN better.

II.5 Conclusion

In this chapter, we covered the characteristics of the techniques and meth-
ods of detecting and recognizing faces. Now, we will head to our main subject
which is neural networks, and more precisely convolutional neural network
and it’s role in facial recognition.

25

Chapter III

Neural networks

26

III.1 Introduction

Inventors have long dreamed of creating machines that think, this desire
dates back to at least the time of ancient Greek. When programmable com-
puters were first conceived, people wondered whether such machines might
become intelligent. Today, artificial intelligence is a thriving field with many
applications and active research topics. We look to intelligent software to
automate routine labor, understand speech or image, make diagnoses in
medicine and support basic scientific research. The true challenge to ar-
tificial intelligence proved to be solving the tasks that are easy for people to
perform, but hard to describe formally problems that we solve intuitively,
that feel automatic, like recognizing spoken words or faces in images [20].
The term Machine Learning (ML) refers to the automatic detection of sig-
nificant patterns in the data. Over the past two decades, it has become a
common tool in almost every task that requires extracting information from
large data sets [21]. Deep learning is a subset of Machine learning, it is a
way to extract useful patterns from data in an automated way which is done
by the optimization of artificial neural network.

Figure III.1: Relation between AI, ML and DL

[22]

27

III.2 Artificial neural network

III.2.1 Definition of ANNs

Artificial Neural Networks (ANNs) are computational processing systems
of which are heavily inspired by way biological nervous systems (such as the
human brain) operate. ANNs are mainly comprised of a high number of
interconnected computational nodes (referred to as neurons), of which work
entwine in a distributed fashion to collectively learn from the input in order
to optimise its final output. The basic structure of an ANN can be modelled
as shown in Figure III.2 . We would load the input, usually in the form
of a multidimensional vector to the input layer of which will distribute it
to the hidden layers.The hidden layers will then make decisions from the
previous layer and weigh up how a stochastic change within itself detriments
or improves the final output, and this is referred to as the process of learning
.Having multiple hidden layers stacked upon each-other is commonly called
deep learning.[23]

Figure III.2: Basic structure of an ANN

[2]

There is no universally accepted definition of neural network. It is gen-
erally considered that a neural network consists of a large set of units (or

28

neurons), each having a small local memory. These units are connected by
communication channels (connections, also called synapses in the correspond-
ing biological term), which carry digital data. Units can only act on their
local data and the inputs they receive through their connections.[24]

III.2.2 History and inspiration behind ANNs

Figure III.3: Representaion of a biological neuron

[25]

The physiology of the brain shows that it consists of interconnected
cells (neurons). Neurons receive signals (electrical impulses) through highly
branched extensions of their cell bodies (dendrites) and send the information
through long extensions (axons). Electrical impulses are regenerated during
the course along the axon. The duration of each pulse is of the order of 1
ms and its amplitude of about 100 mV. The contacts between two neurons,
from the axon to a dendrite, are via the synapses Here is some information
about the neurons of the human brain:

• the brain contains about 100 billion neurons.

• There are only a few dozen distinct categories of neurons. - no category
of neurons is unique to humans.

• The propagation capacity of the nervous impulses is in the range of
100m / s, which is much less than the speed of transmission of infor-
mation in an electronic circuit.[26]

You can see the evolution of the neural networks through history in the
table III.4 bellow:

29

Figure III.4: Recap of historical dates of the evolution of neural networks

[27]

III.2.3 Architecture of ANNs

Layered networks are the most commonly used connectionist models. Their
architecture, organized in successive layers, comprises an input layer and an
output layer and one or more intermediate layers called hidden layers because
they are not seen from the outside. Each layer is composed of a number of
neurons. The connections are established between the neurons belonging to
successive layers but the neurons of the same layer can not communicate with
each other in the case of layered networks.

There are two types of ANNs: feedforward Networks and recurrent Net-
works:

• Feedforward neural networks: in a feedforward neural network,
the information flowing from the inputs to the outputs without ”going
back”; if we represent the network graphically, the graph of a network
is acyclic, if we move in the network, from any neuron, following the
connections, we can not go back to the starting neuron The majority
of feedforward neural networks are implemented for automatic classifi-
cation tasks are organized in several layers, some of which are hidden.

• Recurrent neural networks: A network of looped or recurrent con-

30

nection neurons means that one or more neuron outputs of a down-
stream layer are connected to the inputs of the neurons of the upstream
layer. These recurrent connections bring the information back to the
meaning of defined in an feedforward network. Unlike feedforward neu-
ral networks, the connection graph of the recurrent neural networks is
cyclic: when one moves in the network, following the direction of the
connections, it is possible to find at least one way back to its point of
departure (such path is referred to as ”Cycle”).[2]

Figure III.5: recurrent network and feedforward network

[24]

III.2.4 Learning paradigms

A characteristic of neural networks is their ability to learn (for example to
recognize a letter, a sound ...). But this knowledge is not acquired from the
beginning. Most neural networks learn by example by following a learning
algorithm. There are two main algorithms: supervised learning and unsu-
pervised learning[24]:

• Supervised learning is learning through pre-labelled inputs, which
act as targets. For each training example there will be a set of input
values (vectors) and one or more associated designated output values.
The goal of this form of training is to reduce the models overall classifi-
cation error, through correct calculation of the output value of training
example by training.

31

• Unsupervised learning differs in that the training set does not in-
clude any labels.Success is usually determined by whether the network
is able to reduce or increase an associated cost function. However, it is
important to note that most image-focused pattern-recognition tasks
usually depend on classification using supervised learning.[23]

III.2.5 Modeling of ANNs

The mathematical model of an artificial neuron, or ”perceptron”, is illus-
trated in the figure below. A neuron essentially consists of an integrator
that performs the weighted sum of its inputs (as the statistical expectancy!).
The result n of this sum is then transformed by a transfer function f which
produces the output a of the neuron. The R inputs of the neuron correspond
to the vector noted traditionally in line :

~P =



P1

P2

.

.

.
PR


while :

~W =



W1,1

W1,2

.

.

.
W1,R


represents the vector of neuron weights.[28]

Weights are how neural networks learn. We adjust the weights to deter-
mine the strength of the signal.

Weights help us come up with different outputs. we randomly initialize
the weightsw and multiply them with the inputsp and add the bias term b,
so for the hidden layer, a compact version is to calculate n and then apply
the activation function f . [29]

32

Figure III.6: representation of a mathematical neuron

[28]

The output n of the integrator is defined (because it is a technique of the
engineer) by the following equation:

n =
R∑

j=1

W1,jPj − b = W1,1P1 + W1,2P2 + ... + W1,RPR − b (III.1)

This output corresponds to a weighted sum of weights and inputs less
than what we call ”the bias of the neuron” (corrective factor decided by
trial and error). The result n of the weighted sum is called the ”activation
level of the neuron”. The bias b is also called the ”activation threshold of
the neuron”. When the activation level reaches or exceeds the threshold
b, then the argument of f becomes positive or obviously positive (or zero).
Otherwise, it is negative.

As formulated by the preceding equation and adding the activation func-
tion f to obtain the output of the neuron: [28]

33

a = f(n) = f(~w~p− b) (III.2)

Activation function helps decide if we need to fire a neuron or not . If we
need to fire a neuron then what will be the strength of the signal.

Activation function is the mechanism by which neurons process and pass
the information through the neural network.

There are different types of activation functions and some very common
and popular ones are:[29]

Figure III.7: A few activation functions

[2]

• Back-Propagation : After forward propagation we get an output
value which is the predicted value. To calculate error we compare the

34

predicted value with the actual output value. Then we calculate the
derivative of the error value with respect to each and every weight in
the neural network. Back-Propagation uses chain rule of Differential
Calculus. In chain rule first we calculate the derivatives of error value
with respect to the weight values of the last layer. We call these deriva-
tives, gradients and use these gradient values to calculate the gradients
of the second last layer. We repeat this process until we get gradients
for each and every weight in our neural network. Then we subtract this
gradient value from the weight value to reduce the error value. In this
way we move closer (descent) to the Local Minima(means minimum
loss). [30]

III.2.6 A few models of ANNs

As we have seen in the previous sections how the neural networks have
evolved through history and that J.McCulloch and W.Pitts have established
the first logical model of a neural network which gave D.Hebb the chance to
elaborate a mathematical formula for it. All of this has led to the emergence
of the first technical model wich is the perceptron By FRANK ROSEN-
BLATT (we have talked about the perceptron in the previous section), and
after that a lot of new models have emerged in this field, a few of them are :

• MultiLayer Perceptron is a perceptron enhancement that includes
one or more hidden layers that make the MLP network a robust tool
for complex tasks. It is widely used for the decision in the field of fa-
cial recognition. MLP networks are generally fully connected networks.
The neurons of the first layer receive the input vector, they calculate
their outputs which are transmitted to the neurons of the second layer
which themselves calculate their outputs and so on from layer to layer
to that of output. In the MLP network there is no connection between
the cells of the same layer. Multilayer perceptrons are used with super-
vised learning and also with the backpropagation technique for error
correction.[2]

• Hopfield network It is a network consisting of two state neurons (-1
and 1, or 0 and 1), whose learning law is the Hebb rule (1949), which
states that a synapse improves its activity if and only if the activity
of its two neurons is correlated (that is, the weight of a connection

35

between two neurons increases when both neurons are activated at the
same time). [24]

• Convolutional neural network One of the most impressive forms of
ANN architecture is that of the Convolutional Neural Network (CNN).
CNNs are primarily used to solve difficult image-driven pattern recogni-
tion tasks. [23] In the following sections we’ll be talking more precisely
about convolutional neural networks because they are the best solution
out there for facial recognition tasks which is after all the title of this
thesis.

III.3 Convolutional neural network

III.3.1 What is and why CNN ?

CNNs, like neural networks, are made up of neurons with learnable weights
and biases. Each neuron receives several inputs, takes a weighted sum over
them, pass it through an activation function and responds with an output.
The whole network has a loss function and all the tips and tricks that we
developed for neural networks still apply on CNNs.[31]

The only notable difference between CNNs and traditional ANNs is that
CNNs are primarily used in the field of pattern recognition with in im-
ages.This allows us to encode image-specific features into the architecture,
making the network more suited for image-focused tasks[23]

This choice was motivated mainly by implicitly incorporating a feature
extraction phase and has been used successfully in many applications.[32]

One of the largest limitations of traditional forms of ANN is that they
tend to struggle with the computational complexity required to compute
image data.[23] That is the reason behind implementing CNNs, the properties
that CNNs have such as feature extraction make them more efficient when
handling images.

III.3.2 Layers in CNN

CNNs are comprised of three types of layers. These are convolutional lay-
ers, pooling layers and fully-connected layers. When these layers are stacked,
a CNN architecture has been formed.[23]

36

Figure III.8: A simple CNN architecture

[29]

III.3.2.1 Convolution layer

The convolutional layer plays a vital role in how CNNs operate. The layers
parameters focus around the use of learnable kernels.

These kernels are usually small in spatial dimensionality, but spreads
along the entirety of the depth of the input. When the data hits a convolu-
tional layer, the layer convolves each filter across the spatial dimensionality
of the input to produce a 2D activation map. As we glide through the input,
the scalar product is calculated for each value in that kernel. (figure III.9)
From this the network will learn kernels that ’fire’ when they see a specific
feature at a given spatial position of the input. These are commonly known
as activations.

37

Figure III.9: The convolution operation

[33]

Every kernel will have a corresponding activation map, of which will be
stacked along the depth dimension to form the full output volume from the
convolutional layer.[23]

We perform numerous convolutions on our input, where each operation
uses a different filter. This results in different feature maps. In the end, we
take all of these feature maps and put them together as the final output of
the convolution layer.[33]

Feature map and activation map mean exactly the same thing. It is called
an activation map because it is a mapping that corresponds to the activation
of different parts of the image, and also a feature map because it is also a
mapping of where a certain kind of feature is found in the image.

38

Figure III.10: . Activation maps

[29]

III.3.2.2 Pooling layer

Pooling layers aim to gradually reduce the dimensionality of the represen-
tation, and thus further reduce the number of parameters and the computa-
tional complexity of the model.[23]

Pooling works very much like convolution, where we take a kernel and
move the kernel over the image, the only difference is the function that is
applied to the kernel and the image window is not linear.

Max pooling and Average pooling are the most common pooling func-
tions. Max pooling takes the largest value from the window of the image
currently covered by the kernel, while average pooling takes the average of
all values in the window.[34]

39

Figure III.11: . Pooling with a kernel of 2*2 and a stride of 2

[21]

In most CNNs, these come in the form of max-pooling layers with ker-
nels of a dimensionality of 2*2 applied with a stride of 2 along the spatial
dimensions of the input. This scales the activation map down to 25% of the
original size - whilst maintaining the depth volume to its standard size. [23]

stride : is The distance the window moves each time.

III.3.2.3 Fully connected layer

After the feature extraction phase there is a classification phase, which is
done by a fully connected layer. A fully connected layer is basically a layer
that has neurons that are fully connected to the previous layer (feature map)
without being connected to each other.

In the case of supervised learning, This last layer contains N neurons
(number of classes in the database), and a sigmoid-type activation function
is used to obtain probabilities of belonging to each class.[2]

40

III.3.3 CNN architectures

Many CNN architectures have been used in image classification through
the years, and each one of the them has maximized the performance of image
classification in its own way. some of the famous CNN architectures are the
following :

III.3.3.1 AlexNet (2012)

AlexNet uses ReLu activation function instead of tanh to add non-linearity,
which accelerated the speed of training (by 6 times) and increased the ac-
curacy. It also uses dropout regularisation (a technique prevents complex
co-adaptations on training data to reduce overfitting). Another feature of
AlexNet is that it overlaps pooling to reduce the size of the network. It
reduces the top-1 and top-5 error rates by 0.4 per cent and 0.3 per cent,
respectively.[35]

The net contains eight layers with weights; the first five are convolutional
and the remaining three are fully connected. The output of the last fully-
connected layer is fed to a 1000-way softmax which produces a distribution
over the 1000 class labels. Our network maximizes the multinomial logistic
regression objective, which is equivalent to maximizing the average across
training cases of the log-probability of the correct label under the prediction
distribution. [36]

Figure III.12: . AlexNet Architecture
An illustration of the architecture of AlexNet CNN, explicitly showing the delineation of
responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the
figure while the other runs the layer-parts at the bottom. The GPUs communicate only
at certain layers. The network’s input is 150, 528-dimensional,and the number of neurons
in the network’s remaining layers is given by 253, 440–186, 624–64, 896–64, 896–43, 264–

4096–4096–1000. [37]

41

III.3.3.2 GoogLeNet/Inception(2014)

GoogLeNet is developed based on the idea that several connections be-
tween layers are ineffective and have redundant information due to the cor-
relation between them. Accordingly, it uses an “Inception module”, a sparse
CNN, with 22 layers in a parallel processing workflow, and benefits from
several auxiliary classifiers within the intermediate layers to improve the dis-
crimination capacity in the lower layers. In contrast to conventional CNNs
such as AlexNet and VGG, wherein either a convolutional or a pooling op-
eration can be used at each level, the Inception module could benefit from
both at each layer. Furthermore, filters (convolutions) with varying sizes are
used at the same layer, providing more detailed information and extracting
patterns with different sizes.

Importantly, a 1 x 1 convolutional layer, the so-called bottleneck layer,
was employed to decrease both the computational complexity and the number
of parameters. To be more precise, 1 x 1 convolutional layers were used just
before a larger kernel convolutional filter (e.g., 3 x 3 and 5 x 5 convolutional
layers) to decrease the number of parameters to be determined at each level
(i.e., the pooling feature process).

In addition, 1 x 1 convolutional layers make the network deeper and add
more non-linearity by using ReLU after each 1 x 1 convolutional layer. In
this network, the fully connected layers are replaced with an average pooling
layer. This significantly decreases the number of parameters since the fully
connected layers include a large number of parameters. Thus, this network is
able to learn deeper representations of features with fewer parameters relative
to AlexNet while it is much faster than VGG.[38]

42

Figure III.13: . Compressed view of the Architecture of GoogLeNet (version 3)

[38]

III.3.3.3 ResNet(2015)

Residual Neural Network (ResNet) by Kaiming He et al introduces an ar-
chitecture which consists of 152 layers with skip connections(gated units or
gated recurrent units) and features heavy batch normalization. The whole
idea of ResNet is to counter the problem of vanishing gradients. By preserv-
ing the gradients, Vanishing gradients is the problem that occurs in networks
with high number of layers as the weights of the first layers cannot be updated
correctly through the backpropagation of the error gradient (the chain rule
multiplies error gradient values lower than one and then, when the gradient
error comes to the first layers, its value goes to zero).[35]

The deep ResNet configuration addresses the vanishing gradient problem
by employing a deep residual learning module via additive identity transfor-
mations. Specifically, the residual module uses a direct path between the
input and output and each stacked layer fits a residual mapping rather than
directly fitting a desired underlying mapping. Notably, the optimization is
much easier on the residual map relative to the original, unreferenced map.
Similar to VGG, 3 x 3 filters were mostly employed in this network; however,
ResNet has fewer filters and less complexity relative to the VGG network.[38]

43

Figure III.14: . Compressed view of the Architecture of ResNet

[38]

III.3.3.4 VGGNet (2014)

VGGNet was invented by VGG (Visual Geometry Group) from the Uni-
versity of Oxford.
The image is passed through a stack of convolutional layers, where we use
filters with a very small receptive field: 3 x 3 (which is the smallest size to
capture the notion of left/right, up/down, center). the padding is 1 pixel for
3 x 3 conv layers. Spatial pooling is carried out by five max-pooling layers,
which follow some of the conv. layers (not all the conv. layers are followed
by max-pooling). Max-pooling is performed over a 2 x 2 pixel window, with
stride 2. A stack of convolutional layers (which has a different depth in dif-
ferent architectures) is followed by three Fully-Connected (FC) layers. All
hidden layers are equipped with the rectification (ReLU) non-linearity. All
configurations follow the generic design presented above, and differ only in
the depth: from 11 weight layers in the network (8 conv. and 3 FC layers)
to 19 weight layers in the network (16 conv. and 3 FC layers).[17]

44

Figure III.15: . ConvNet configurations.
The convolutional layer parameters are denoted as “conv (receptive field size)-(hnumber

of channels)”. The ReLU activation function is not shown for brevity. [17]

The Convolutional neural network that we will be using is the VGG-
NET, we will be using a much smaller version of it, but it will have the main
characterestics of the full resolution network:

• Using 3 x 3 convolutional layers.

• reducing volume size by max pooling.

• fully connected layers at the end.

• a softmax classifier.

III.3.4 VggNet CNN Classification

CNN image classifications takes an input image, process it and classify it
under certain categories (classes). Computers sees an input image as array of

45

pixels and it depends on the image resolution. Based on the image resolution,
it will see h x w x d(h = Height, w = Width, d = Depth).

III.3.4.1 VggNet Model training

The ConvNet training procedure generally follows Krizhevsky et al. (2012)
(except for sampling the input crops from multi-scale training images, as ex-
plained later). Namely, the training is carried out by optimising the multi-
nomial logistic regression objective using mini-batch gradient descent (based
on back-propagation (LeCun et al., 1989)) with momentum. The batch size
was set to 256, momentum to 0.9. The training was regularised by weight
decay (the L2 penalty multiplier set to 5 · 10-4) and dropout regularisation
for the first two fully-connected layers (dropout ratio set to 0.5).

The learning rate was initially set to 10-2 , and then decreased by a
factor of 10 when the validation set accuracy stopped improving. In total,
the learning rate was decreased 3 times, and the learning was stopped after
370K iterations (74 epochs). We conjecture that in spite of the larger number
of parameters and the greater depth of our nets compared to (Krizhevsky
et al., 2012), the nets required less epochs to converge due to (a) implicit
regularisation imposed by greater depth and smaller conv. filter sizes; (b)
pre-initialisation of certain layers. The initialisation of the network weights
is important, since bad initialisation can stall learning due to the instability
of gradient in deep nets. To circumvent this problem, we began with training
the configuration A (Table III.15), shallow enough to be trained with random
initialisation. Then, when training deeper architectures, we initialised the
first four convolutional layers and the last three fully connected layers with
the layers of net A (the intermediate layers were initialised randomly). We
did not decrease the learning rate for the pre-initialised layers, allowing them
to change during learning.

For random initialisation (where applicable), we sampled the weights from
a normal distribution with the zero mean and 10-2 variance. The biases were
initialised with zero. It is worth noting that after the paper submission we
found that it is possible to initialise the weights without pretraining by using
the random initialisation procedure of Glorot and Bengio (2010). To obtain
the fixed-size 224x224 ConvNet input images, they were randomly cropped
from rescaled training images (one crop per image per SGD iteration). To
further augment the training set, the crops underwent random horizontal
flipping and random RGB colour shift (Krizhevsky et al., 2012). Training

46

image rescaling is explained below.
Training image size. Let S be the smallest side of an isotropic-ally

rescaled training image, from which the ConvNet input is cropped (we also
refer to S as the training scale). While the crop size is fixed to 224 x 224,
in principle S can take on any value not less than 224: for S = 224 the crop
will capture whole-image statistics, completely spanning the smallest side of
a training image; for S ¿¿ 224 the crop will correspond to a small part of
the image, containing a small object or an object part. We consider two
approaches for setting the training scale S. The first is to fix S, which corre-
sponds to single-scale training (note that image content within the sampled
crops can still represent multiscale image statistics). In our experiments,
we evaluated models trained at two fixed scales: S = 256 (which has been
widely used in the prior art (Krizhevsky et al., 2012; Zeiler and Fergus, 2013;
Sermanet et al., 2014)) and S = 384. Given a ConvNet configuration, we
first trained the network using S = 256. To speed-up training of the S = 384
network, it was initialised with the weights pretrained with S = 256, and we
used a smaller initial learning rate of 10-3 . The second approach to setting
S is multi-scale training, where each training image is individually rescaled
by randomly sampling S from a certain range [Smin, Smax] (we used Smin
= 256 and Smax = 512). Since objects in images can be of different size,
it is beneficial to take this into account during training. This can also be
seen as training set augmentation by scale jittering, where a single model is
trained to recognise objects over a wide range of scales. For speed reasons,
we trained multi-scale models by fine-tuning all layers of a single-scale model
with the same configuration, pre-trained with fixed S = 384.[17]

III.3.4.2 VggNet Model testing

At test time, given a trained ConvNet and an input image, it is classified in
the following way. First, it is isotropically rescaled to a pre-defined smallest
image side, denoted as Q (we also refer to it as the test scale). We note
that Q is not necessarily equal to the training scale S (as we will show in
Sect. 4, using several values of Q for each S leads to improved performance).
Then, the network is applied densely over the rescaled test image in a way
similar to (Sermanet et al., 2014). Namely, the fully-connected layers are
first converted to convolutional layers (the first FC layer to a 7 x 7 conv.
layer, the last two FC layers to 1 x 1 conv. layers).

The resulting fully-convolutional net is then applied to the whole (un-

47

cropped) image. The result is a class score map with the number of channels
equal to the number of classes, and a variable spatial resolution, dependent
on the input image size. Finally, to obtain a fixed-size vector of class scores
for the image, the class score map is spatially averaged (sum-pooled). We
also augment the test set by horizontal flipping of the images; the soft-max
class posteriors of the original and flipped images are averaged to obtain the
final scores for the image.

Since the fully-convolutional network is applied over the whole image,
there is no need to sample multiple crops at test time (Krizhevsky et al.,
2012), which is less efficient as it requires network re-computation for each
crop. At the same time, using a large set of crops, as done by Szegedy et al.
(2014), can lead to improved accuracy, as it results in a finer sampling of the
input image compared to the fully-convolutional net.

Also, multi-crop evaluation is complementary to dense evaluation due to
different convolution boundary conditions: when applying a ConvNet to a
crop, the convolved feature maps are padded with zeros, while in the case
of dense evaluation the padding for the same crop naturally comes from the
neighbouring parts of an image (due to both the convolutions and spatial
pooling), which substantially increases the overall network receptive field, so
more context is captured. While we believe that in practice the increased
computation time of multiple crops does not justify the potential gains in
accuracy, for reference we also evaluate our networks using 50 crops per scale
(5 x 5 regular grid with 2 flips), for a total of 150 crops over 3 scales, which
is comparable to 144 crops over 4 scales used by Szegedy et al. (2014).[17]

III.3.4.3 Non Linearity

Activation functions are really important for a Artificial Neural Network
to learn and make sense of something really complicated and Non-linear
complex functional mappings between the inputs and response variable.They
introduce non-linear properties to our Network.Their main purpose is to con-
vert a input signal of a node in a A-NN to an output signal. That output
signal now is used as a input in the next layer in the stack.

If we do not apply a Activation function then the output signal would
simply be a simple linear function.A linear function is just a polynomial of
one degree. Now, a linear equation is easy to solve but they are limited in
their complexity and have less power to learn complex functional mappings
from data. A Neural Network without Activation function would simply be

48

a Linear regression Model, which has limited power and does not performs
good most of the times. We want our Neural Network to not just learn and
compute a linear function but something more complicated than that. Also
without activation function our Neural network would not be able to learn
and model other complicated kinds of data such as images, videos , audio ,
speech etc.
Hence it all comes down to this, we need to apply a Activation function
f(x) so as to make the network more powerfull and add ability to it to
learn something complex and complicated form data and represent non-linear
complex arbitrary functional mappings between inputs and outputs. Hence
using a non linear Activation we are able to generate non-linear mappings
from inputs to outputs[39]

ReLU (Rectified Linear Unit): ReLU stands for Rectified Linear
Unit for a non-linear operation. The output is f(x) = max(0, x). Why
ReLU is important : ReLU’s purpose is to introduce non-linearity in our
ConvNet. There are other non linear functions such as tanh or sigmoid can
also be used instead of ReLU. Most of the data scientists use ReLU since
performance wise ReLU is better than the other two.[40]

Figure III.16: . A ReLU activation function

[40]

Hence for output layers we should use a Softmax function for a Classifi-
cation problem to compute the probabilites for the classes[39]

49

Figure III.17: . ReLU operation

[40]

III.3.4.4 Softmax Function:

Softmax function takes an N-dimensional vector of real numbers and trans-
forms it into a vector of real number in range (0,1) which add upto 1.

pi =
eai∑N
K=1 e

a
k

(III.3)

As the name suggests, softmax function is a “soft” version of max func-
tion. Instead of selecting one maximum value, it breaks the whole (1) with
maximal element getting the largest portion of the distribution, but other
smaller elements getting some of it as well.

This property of softmax function that it outputs a probability distribu-
tion makes it suitable for probabilistic interpretation in classification tasks.[41]

III.3.4.5 Cross Entropy Loss:

Cross entropy indicates the distance between what the model believes the
output distribution should be, and what the original distribution really is.
It is defined as, H(y, p) = −

∑
i yilog(pi) Cross entropy measure is a widely

used alternative of squared error. It is used when node activations can be
understood as representing the probability that each hypothesis might be
true, i.e. when the output is a probability distribution. Thus it is used as a
loss function in neural networks which have softmax activations in the output
layer.[41]

50

III.3.5 Conclusion

After we had an idea of how ANNs basically work and their role in the deep
learning field, we know that CNNs are the most used and the best neural
networks to deal with image recognition and pattern detection because of
their features.

In the next part we will see an implementation of CNNs to do a facial
recognition task on a certain database.

51

Part 2

Experimentations, Results and
Discussions

52

Chapter IV

Experimentation

53

IV.1 Introduction

This chapter is about the implementation of a face recognition applica-
tion with convolutional neural networks, two main libraries are used in the
implementation are Keras and OpenCv.

The application will be able to identify faces of subjects that it is trained
on from a database that contains 11 persons, more than 150 images each.
The application will recieve an image that contains a person as input and
it will detect the face of that person and then pass it to our trained CNN
model to identify the subject, the application will return the image of the
person with the predicted subject name on it, with a probability value of it
being correct.

Figure IV.1: Schema of the project

54

IV.2 Working environment

To implement this application, the materials with the following character-
istics have been used :

• Processor : Intel(R) CoreTM i5-5200U CPU @2.20 GHZ

• RAM : 4.00 GB

• OS : Windows 10 Pro

• GPU : AMD Radeon R5 M255

IV.3 Required Packages and libraries

For this project we will be using the Python programming language (ver-
sion 3.6.8). There are two main libraries that we will be using in order to
implement the facial recognition application. these libraries are :

OpenCv and face-recognition:

(Open Source Computer Vision) is a library of programming functions
mainly used for Image Processing in computer vision. It is mainly used to
do all the operation related to Images:

• Read and Write Images.

• Detection of faces and its features.

• Detection of shapes like Circle,rectangle etc in a image.

• Text recognition in images.

• Modifying image quality and colors.

etc...
Keras:

Keras is a high-level neural networks API, written in Python and ca-
pable of running on top of TensorFlow which is the most famous library used

55

in production for deep learning models. Keras is used more often than Ten-
sorFlow lately because it’s more user friendly and easy to use. With Keras,
you can build simple or very complex neural networks within a few minutes.

IV.4 Project Structure

The structure (directory) of our project is the following :

• dataset: This folder contains the eleven classes, each class is its own
respective subdirectory to make parsing class labels easy.

• examples: This folder contains images that we’ll be using to test our
CNN.

• VGGNET module: This folder contains our vggnet model class

And, plus five files in the main directory :

• plot.png: Our training/testing accuracy and loss plot which is gen-
erated after the training script is ran.

• lb.pickle: Our LabelBinarizer serialized object file — this contains a
class index to class name lookup mechamisn.

• model.model: This is our serialized Keras Convolutional Neural
Network model file (i.e., the “weights file”).

• train.py: We will use this script to train our Keras CNN, plot the
accuracy/loss, and then serialize the CNN and label binarizer to disk.

• classify.py: Our testing script.

IV.5 Our Dataset

Our deep learning dataset consists of 3232 images of 11 famous people,
(Players, Actors, TV show hosts, etc...).

Our goal is to train a Convolutional Neural Network using Keras and
deep learning to recognize and classify each of these subjects.

The people included in our dataset are :

56

− Chad Smith (242 images)

− Ellen Degeneress (245 images)

− Gad Elmaleh (328 images)

− Jada Pinkett Smith (445 images)

− Oparh Winfrey (378 images)

− Ryad Mahrez (146 images)

− Stephen Curry (158 images)

− Toni Kroos (175 images)

− Will Ferrell (460 images)

− Will Smith (166 images)

− Zoe Saldana (495 images)

A sample of the training images for some of the classes can be seen in the
following figure.

Figure IV.2: A sample of the training images for some of the classes in our dataset

57

This dataset was collected using a google chrome extension called ”FatKun
batch download image” on a google image search, and then has been cleaned
manually to keep only good images in the database After collecting them.

They were inputted into a program that i have found on GitHub to crop
and keep the faces only, so that our convolutional neural network trains only
on the face features which will make it more precise and even faster.

Link to the GitHub source code for cropping images : https://github.
com/kb22/Create-Face-Data-from-Images

IV.6 Our CNN Architecture

The CNN architecture that we will be using in this project is a smaller
version of a VggNet architecture.

We chose this particular CNN model, first because of it’s simplicity, and
for several other reasons that we cite below.

In this series of experiments, we investigate the impact of Gaussian and
salt-and-paper noise on the verification performance of the four deep models
(AlexNet, VGGNet, GoogLeNet, and SqueezeNet). the models behave sim-
ilarly for both types of noise. The VGG-Face model performs the best and
more robustly.

In absolute terms the VGG-Face model is the top performer ensuring the
highest verification accuracy at all brightness factors.

In other experiments, While VGGFace is the top performer in terms of av-
erage verification accuracy on the original images, it falls behind SqueezeNet
and GoogLeNet when data around the eye, nose or periocular regions is
missing

the VGG-Face model has overall a slight advantage in term of robustness
over the remaining three models.[42]

58

https://github.com/kb22/Create-Face-Data-from-Images
https://github.com/kb22/Create-Face-Data-from-Images

Figure IV.3: Comparison between VGGNet and other CNN models

Our particular VGGNet has the following architecture:
CONV => RELU => POOL

(CONV => RELU) x 2 => POOL
(CONV => RELU) x 2 => POOL
FC => RELU => SoftMax.

our version is showed in the following figure :

Figure IV.4: The architecture of the CNN implemented in ou project

59

The reason behind choosing the VGGNet is, firstly, it’s the most simple
CNN architecture that exists so far, and it’s the best way to start imple-
menting CNNs. Secondly, the VGGNet performs very well on noisy images
which results in a better identification accuracy. Especially that our images
have been collected only from a google image search.

To start implementing our own version of VGGNet.we will Create a new
file named vggnet.py inside the VGGNET module and begin by importing
all of the modules that we will be needing for building our CNN model :

1 # import the nece s sa ry packages
2 from keras . models import Sequent i a l
3 from keras . l a y e r s . norma l i za t i on import BatchNormalizat ion
4 from keras . l a y e r s . c on vo lu t i on a l import Conv2D
5 from keras . l a y e r s . c on vo lu t i on a l import MaxPooling2D
6 from keras . l a y e r s . core import Act ivat ion
7 from keras . l a y e r s . core import F lat ten
8 from keras . l a y e r s . core import Dropout
9 from keras . l a y e r s . core import Dense

10 from keras import backend as K

Now, we will start building our CNN (the vggnet.py class):

1 c l a s s VGGNet :
2 @staticmethod
3 de f bu i ld (width , height , depth , c l a s s e s) :
4 # i n i t i a l i z e the model a long with the input shape
5 model = Sequent i a l ()
6 inputShape = (height , width , depth)
7 chanDim = −1

The width, height and depth are the dimensions of the image (the depth
is the number of channels. And classes is The number of classes in our datase
(number of subjects).

The first block is CONV => RELU => POOL.

1 # CONV => RELU => POOL
2 model . add (Conv2D(32 , (3 , 3) , padding=”same” , input shape=

inputShape))
3 model . add (Act ivat ion (” r e l u ”))
4 model . add (BatchNormalizat ion (a x i s=chanDim))

60

5 model . add (MaxPooling2D (p o o l s i z e =(3 , 3)))
6 model . add (Dropout (0 . 2 5))

The convolution layer has 32 filters with a 3 x 3 kernel. We’re using
RELU the activation function followed by batch normalization.

Our POOL layer uses a 3 x 3 POOL size to reduce spatial dimensions
quickly from 96 x 96 to 32 x 32.
After that, we’ll add (CONV => RELU) x 2 layers before applying another
POOL layer, in the same way as we did the previous block.
we will add the same block as the previous one.

1 # (CONV => RELU) ∗ 2 => POOL
2 model . add (Conv2D(64 , (3 , 3) , padding=”same”))
3 model . add (Act ivat ion (” r e l u ”))
4 model . add (BatchNormalizat ion (a x i s=chanDim))
5 model . add (Conv2D(64 , (3 , 3) , padding=”same”))
6 model . add (Act ivat ion (” r e l u ”))
7 model . add (BatchNormalizat ion (a x i s=chanDim))
8 model . add (MaxPooling2D (p o o l s i z e =(2 , 2)))
9 model . add (Dropout (0 . 2 5))

this stacking of CONV and RELU layers together before the pooling
allows us to learn a richer set of features.

And Now, the final block in our CNN is a fully connected layer followed
with a SoftMax classifier.

1 #FC => RELU l a y e r s
2 model . add (Flat ten ())
3 model . add (Dense (1024))
4 model . add (Act ivat ion (” r e l u ”))
5 model . add (BatchNormalizat ion ())
6 model . add (Dropout (0 . 5))
7

8 # softmax c l a s s i f i e r
9 model . add (Dense (c l a s s e s))

10 model . add (Act ivat ion (” softmax ”))
11

12 # return the cons t ruc ted network a r c h i t e c t u r e
13 re turn model

61

After we have finished building our CNN, we will start training it using
Keras.

IV.7 Training our CNN

For this step, we will start writing the train.py file, and import our packages
:

1 # import the nece s sa ry packages
2 import matp lo t l i b
3 matp lo t l i b . use (”Agg”)
4

5 from keras . p r e p r o c e s s i n g . image import ImageDataGenerator
6 from keras . op t im i z e r s import Adam
7 from keras . p r e p r o c e s s i n g . image import img to ar ray
8 from s k l ea rn . p r e p r o c e s s i n g import Labe lB ina r i z e r
9 from s k l ea rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

10 from VGGNET. vggnet import VGGNet
11 import matp lo t l i b . pyplot as p l t
12 from i m u t i l s import paths
13 import numpy as np
14 import argparse
15 import random
16 import p i c k l e
17 import cv2
18 import os

The ImageDataGenerator class will be used for data augmentation, a
technique used to take existing images in our dataset and apply random
transformations to generate more training data which will decrease overfit-
ting.

The LabelBinarizer is an important class, this class will enable us to:

• Input a set of class labels (i.e., strings representing the human-readable
class labels in our dataset).

• Transform our class labels into one-hot encoded vectors.

• Allow us to take an integer class label prediction from our Keras CNN
and transform it back into a human-readable label.

62

The train-test-split will be used to create our training and testing datasets.
After importing the necessary packages, we will initialize some variables :

1 # i n i t i a l i z e the number o f epochs to t r a i n for , i n i t i a l l e a r n i n g
rate ,

2 # batch s i z e , and image dimensions
3 EPOCHS = 100
4 INIT LR = 1e−3
5 BS = 32
6 IMAGE DIMS = (96 , 96 , 3)
7

8 # i n i t i a l i z e the data and l a b e l s
9 data = []

10 l a b e l s = []

• EPOCHS: The total number of epochs we will be training our network
for (i.e., how many times our network “sees” each training example and
learns patterns from it).

• INIT-LR: The initial learning rate — a value of 1e-3 is the default
value for the Adam optimizer, the optimizer we will be using to train
the network.

• BS: We will be passing batches of images into our network for training.
There are multiple batches per epoch. The BS value controls the batch
size. IMAGE-DIMS: Here we supply the spatial dimensions of our
input images.

• data and labels: are two lists which will hold the preprocessed images
and labels, respectively.

We will split the data to a 80 percent training set and 20 percent testing
set.

1 # p a r t i t i o n the data in to t r a i n i n g and t e s t i n g s p l i t s us ing 80%
of

2 # the data f o r t r a i n i n g and the remaining 20% f o r t e s t i n g
3 (trainX , testX , trainY , testY) = t r a i n t e s t s p l i t (data ,
4 l a b e l s , t e s t s i z e =0.2 , random state =42)

63

Finaly, we save the label binarizer file and the model that will be built
after the training is done.
To start training our CNN, we will use the following command on the CMD:

1 python t r a i n . py −−datase t datase t −−model model . model −−l a b e l b i n
lb . p i c k l e

Figure IV.5: training the CNN on my laptop

Looking at the output of the training, we see that our Keras CNN had a
result of:

96.21% classification accuracy on the training set 95.22% accuracy on
the testing set
These resuls were obtained after training the model for 100 epochs, if we had
more training data we could have obtained even higher accuracy.

The training and validation loss/accuracy plot follows:

64

Figure IV.6: The training and validation loss/accuracy plot of our CNN

On our plot we see that the training/validation loss is decreasing, with a
few peaks along the way in the validation loss (especially in ”around” epoch
number 50); and the reason behind that is that the predicted probability di-
verges from the actual label which would result in high loss value like the ones
we see on the plot. And this goes back to several factors which are the learn-
ing rate, the batch size and the momentum. Also, the training/validation
accuracy in increasing as the loss value decreases.

IV.8 Testing our CNN

After training our CNN we will start implementing the testing script (clas-
sify.py) that will be used to classify the images that our model has not been
exposed to yet.

65

After importing the necessary packages, we will load the image and pre-
process it for classification :

1 # load the image
2 image = cv2 . imread (args [” image”])
3 output = image . copy ()
4

5 #l o c a t e the f a c e in the image
6 cropped img = f a c e r e c o g n i t i o n . l o a d i m a g e f i l e (args [” image”])
7 f a c e l o c a t i o n = f a c e r e c o g n i t i o n . f a c e l o c a t i o n s (cropped img)
8 top , r i ght , bottom , l e f t = f a c e l o c a t i o n [0]
9

10 #pass the cropped f a c e
11 image=image [top : bottom , l e f t : r i g h t]
12

13 # pre−proce s s the image f o r c l a s s i f i c a t i o n
14 image = cv2 . r e s i z e (image , (96 , 96))
15 image = image . astype (” f l o a t ”) / 255 .0
16 image = img to ar ray (image)
17 image = np . expand dims (image , a x i s =0)

After this, all we have to do is load the model + label binarizer and then
classify the image:

1 # load the t ra in ed co nv o l u t i o na l neura l network and the l a b e l
2 # b i n a r i z e r
3 pr in t (” [INFO] load ing network . . . ”)
4 model = load model (args [”model”])
5 lb = p i c k l e . l oads (open (args [” l a b e l b i n ”] , ” rb”) . read ())
6

7 # c l a s s i f y the input image
8 pr in t (” [INFO] c l a s s i f y i n g image . . . ”)
9 proba = model . p r e d i c t (image) [0]

10 idx = np . argmax (proba)
11 l a b e l = lb . c l a s s e s [idx]

To run our classificaion script, we need to run the following command:

1 python c l a s s i f y . py −−model model . model −−l a b e l b i n lb . p i c k l e −−
image examples /example . jpg

66

Figure IV.7: Classifying an example image on my laptop

The output of the classification script is the same image that has been
inputed to our network, but with a label referring to the predicted person’s
name with a percetage value of certainty and a box drawn around the face
of the subject.

Figure IV.8: Classifying an input imageof Zoe Saldana using Keras and Convolutional
Neura Networks.

Figure IV.9: Classifying an input image of Toni Kroos using Keras and Convolutional
Neural Networks.

67

One of the subjects in our dataset is ”Riyad Mahrez”, an Algerian footbal
player. The amount of pictures for this particular person is very low (146
images only) which will affect the efficiecy of our convolutional neural network
when trying to predict one of his images.

Figure IV.10: . Classifying an input image using of Riyad MahreKeras and Convolu-
tional Neural Networks.

As it is shown in the figure above, the accuracy of predicting Mahrez’s
face is low in comparison to other classes that have a significantly higher
amount of images.

Clearly, the convolutional neural networks or deep learning in general
needs relatively a very big dataset of subject in order for it to become able
to generelize on the existing classes in pretty accurate way.

Now,we will try our CNN on an image where the subject has something
covering some parts of his face. The subject in this image is the Morro-
can/French comedian ”Gad Elmaleh” and he is wearing a hat and sunglasses
which will not make his face clear enough for our classifer to predict a label
for it easily. Gad has less than 400 face images in our dataset.

68

Figure IV.11: . Classifying an input image of Gad Elmaleh using Keras and Convolu-
tional Neural Networks.

And as you can see, our classifier did a pretty good job on predicting
the class of our subject with a 83.55% prediction accuracy, although the face
detection was a little bit off. But i think that the reason behind that is the
hat and the sunglasses that are covering the face, which makes a hard job
for our HOG to recognize those parts as face parts.

Apparently, our model is doing pretty good for a relatively low amount
of images in our dataset especially for some subjects.

These are two different celebrities that look alike:

69

Figure IV.12: . Two celebrities look alike

And yet, our model predicted the following image of ”Chad Smith” with
a correct accuracy of 85.93%

Figure IV.13: . Classifying an input image of Chad smith against Will Ferrell.

I think that what makes our CNN ”the least to say is” OK although we
have a very small database in comparison to what a CNN should normally
have, and yet we received good results is that we don’t have many subjects
in our database (only 11), which will probably make it a little bit of an easier

70

task for the classifier to make generalizations on the subjects.

Another note to point out, is that, these results were generated in between
30 to 50 seconds, which is a long period to classify a face in such a small
dataset. But beside taking a very long time training, they are also well known
of one big downside which is being very slow because of executing thousands
if not millions of operations and matrix multiplications. With that being
said, the reason behind CNNs being so popular although being in the age
of speed is that they are incredibly accurate and they perform very complex
operations.

Convolutional neural networks in general have so many weight parame-
ters, the models are very heavy, 550 MB + of weight size. Which means long
inference time

IV.9 Limitations of our model

Our model contains several limitations, and the first limitation is having
a small amount of training data, which resulted in a few incorrect output
image labels

Ideally, we should have at least 500-1,000 images per class when training
a Convolutional Neural Network. which is significantly higher than what we
have in our training dataset.

Having a small training dataset is the number one reason behind over-
fitting, overfitting is when our model can’t generalize well on unseen data
which is exactly the case in those peaks in our training/validation loss and
accuracy plot where the loss on the testing set is much greater than the loss
on the training set.

The second limitation is time consuming, but this one is not only for our
model but for neural networks and CNNs in general.

71

IV.10 Conclusion

In this chapter, we presented the implementation of the face recognition
approach based on convolutional neural networks, for which we used a smaller
version of the VggNet architecture model and several experiments and pre-
sented different results obtained in terms of accuracy and error. The com-
parison of the results found has shown that the number of epochs, the size
of the base and the learning rate, are important factors for obtaining better
results.

The proposed approach for facial recognition works for low resolutions
(the images are 96 x 96 in size), interesting for future extensions of the
technique. The approach uses a particular architecture of the convolutional
neural network. This projects a face in a space of smaller dimensions, where
the actual recognition is performed. Tests on such a limited database are
encouraging.

You can find the implementation of the project on my GitHub repository :
https://github.com/Mohamed-Zeghlache/CNN-Face-Recofnition-withe-Keras

72

https://github.com/Mohamed-Zeghlache/CNN-Face-Recofnition-withe-Keras

General Conclusion

Over the last years, mainly because of advances in deep learning, more
specifically convolutional networks, the quality of image recognition and ob-
ject detection has increased dramatically. One of the encouraging news is
that most of this progress is not only the result of more powerful hardware,
larger data sets and larger models, but mainly a consequence of new ideas, al-
gorithms and improved network architectures. None of the new data sources
were used, for example, by the best contributions to the ILSVRC compe-
tition, in addition to the classification dataset of the same competition at
the same time. This motivates and encourages us to embark on this journey
of deep learning in order to overcome challenges. The purpose of this dis-
sertation is to implement a facial recognition application that is capable of
recognizing faces using the convolutional neural network. Most facial recogni-
tion techniques go through different steps (feature extraction step, and other
for classification) and they sometimes require a preprocessing step, which
makes the recognition system complex and increases the learning time. For
these reasons we opted for the use of convolutional neuron networks, they
combine the two stages of extraction and classification.

The thesis was divided into two parts (State of the art and Experimen-
tations). The first part was focused on biometry, face recognition systems,
basic notions of network artificial neurons, and the principle of CNN. In the
third part, we have discussed the steps and the tools both are needed and
used to conduct our project, the limitations of the model studied, as well as
a walk through the execution of our face recognition system and the results
obtained from our implementation of CNN. Although our CNN showed a
good prediction accuracy, it has a long execution time which is actually a
downside for the CNNs.

73

Bibliography

[1] Nesrine Charfi. Biometric recognition based on hand schape and palm-
print modalities. PhD thesis, Ecole nationale supérieure Mines-Télécom
Atlantique, 2017.

[2] Samiha BEGGARI and Khaoula KHAMRA. Système de reconnaissance
de visage par un réseau de neurone convolutionnel (cnn), master thesis,
universite kasdi merbah ouargla, 2017.

[3] Xuran Zhao. Multi-view dimensionality reduction for multi-modal bio-
metrics. PhD thesis, Télécom ParisTech, 2013.

[4] Mohamad El-Abed. Évaluation de système biométrique. PhD thesis,
Université de Caen, 2011.

[5] Claus Vielhauer. Biometric modalities: Different traits for authenti-
cating subjects. Biometric User Authentication for it Security: From
Fundamentals to Handwriting, pages 33–75, 2006.

[6] Anil K Jain, Arun Ross, and Salil Prabhakar. An introduction to bio-
metric recognition. IEEE Transactions on circuits and systems for video
technology, 14(1):4–20, 2004.

[7] Sif Eddine ZITOUNI and Abdelmoumen SACI. Authentification et iden-
tification biométrique des personnes par les empreintes palmaires, mas-
ter thesis, universite kasdi merbah ouargla, 2016.

[8] What are biometrics, www.aware.com/wpcontent/uploads/2015/05/wp-
whatarebiometrics.pdf, accessed: 2018-12-12.

[9] Mébarka Belahcen. Authentification et identification en biométrie. PhD
thesis, Université Mohamed Khider Biskra, 2013.

74

[10] Phillip Ian Wilson and John Fernandez. Facial feature detection using
haar classifiers. Journal of Computing Sciences in Colleges, 21(4):127–
133, 2006.

[11] Understanding and implementing the viola-jones image classifi-
cation algorithm, medium.com/datadriveninvestor/understanding-
and-implementing-the-viola-jones-image-classification-algorithm-
85621f7fe20b, accessed: 2019-06-20.

[12] Paul Viola, Michael Jones, et al. Robust real-time object detection.
International journal of computer vision, 4(34-47):4, 2001.

[13] Accessed: 2019-06-20 Adam Geitgey, www.linkedin.com/learning/deep-
learning-face-recognition. Deep learning: Face recognition.

[14] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller.
Labeled faces in the wild: A database forstudying face recognition in
unconstrained environments. In Workshop on faces in’Real-Life’Images:
detection, alignment, and recognition, 2008.

[15] Bouchra Khefif. Mise au point d’une une application de reconnaissance
faciale. PhD thesis, Universite Abou Bakr Belkaid a Tlemcen, 2013.

[16] AM Martinez and R Benavente. The ar face database, computer vision
center, barcelona. Technical report, Spain, Technical Report 24, 1998.

[17] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition, conference paper, university of
oxford. 2014.

[18] P Jonathon Phillips, Hyeonjoon Moon, Patrick Rauss, and Syed A Rizvi.
The feret evaluation methodology for face-recognition algorithms. In
Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 137–143. IEEE, 1997.

[19] Aleix Martinez and Robert Benavente. The ar face database. 1999.

[20] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. na-
ture, 521(7553):436, 2015.

[21] Tolgui Hocine. Deep learning pour reconnaissance du visage, master
thesis, université mohamed khider biskra, 2018.

75

[22] Ai-vs-machine-learning-vs-deep-learning, https://www.edureka.co/blog/ai-
vs-machine-learning-vs-deeplearning, accessed: 2019-02-05.

[23] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks, article, lancaster university, lancashire. 2015.

[24] Timothée COUR, Guillaume GIRAUD, Antoine KODSI, Tuan-Anh
LUONG, Rémy LAURANSON, Clémentine MARCOVICI, and Kolia
SADEGHI. Reconnaissance de formes par reseau de neurones, arti-
cle,ecole polytechnique. 2002.

[25] neural network, https://github.com/trekhleb/machine-learning-
octave/blob/master/neural-network/readme.md, accessed: 2019-02-21.

[26] Djeffal abdelhamid. neural networks, master 2 ”fouile de donnees
avancees” course materials, université mohamed khider biskra. 2018.

[27] Mounib Noura. une approche co-évolutionnaire proie-prédacteur pour le
réhaussement d’images, master thesis, université colonel hadj lakhdar-
batna, 2007.

[28] Réseaux de neurones formels, http://informatique.coursgratuits.
net/methodes-numeriques/reseaux-de-neurones-formels.php, ac-
cessed: 2019-03-13.

[29] Neural network simplified, medium.com/datadriveninvestor/neural-
network-simplified-c28b6614add4, accessed: 2019-03-13.

[30] Everything you need to know about neural networks,
hackernoon.com/everything-you-need-to-know-about-neural-networks-
8988c3ee4491, accessed: 2019-03-13.

[31] The best explanation of convolutional neural networks on the
internet!, medium.com/technologymadeeasy/the-best-explanation-of-
convolutional-neural-networks-on-the-internet-fbb8b1ad5df8, accessed:
2019-03-17.

[32] S. NECIB. Fusion de face 3d couleur,profondeur et profil pour srv3d,
master thesis, université mohamed khider biskra, 2013.

76

http://informatique.coursgratuits.net/methodes-numeriques/reseaux-de-neurones-formels.php
http://informatique.coursgratuits.net/methodes-numeriques/reseaux-de-neurones-formels.php

[33] An intuitive guide to convolutional neural networks,
medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-
networks-260c2de0a050, accessed: 2019-03-18.

[34] Visualizing parts of convolutional neural networks using keras
and cats, hackernoon.com/visualizing-parts-of-convolutional-neural-
networks-using-keras-and-cats-5cc01b214e59, accessed: 2019-03-19.

[35] Computer vision: A study on different cnn architectures and their
applications, medium.com/alumnaiacademy/introduction-to-computer-
vision-4fc2a2ba9dc, accessed: 2019-06-18.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[37] Alexnet and imagenet classification with deep convolutional neu-
ral networks, neurohive.io/en/popular-networks/alexnet-imagenet-
classification-with-deep-convolutional-neural-networks, accessed:
2019-06-20.

[38] Masoud Mahdianpari, Bahram Salehi, Mohammad Rezaee, Fariba Mo-
hammadimanesh, and Yun Zhang. Very deep convolutional neural net-
works for complex land cover mapping using multispectral remote sens-
ing imagery. Remote Sensing, 10:1119, 07 2018.

[39] Activation functions and it’s types which is better?,
towardsdatascience.com/activation-functions-and-its-types-which-
is-better-a9a5310cc8f, accessed: 2019-06-21.

[40] Understanding of convolutional neural network (cnn)-deep learning,
medium.com/@raghavprabhu/understanding-of-convolutional-neural-
network-cnn-deep-learning-99760835f148, accessed: 2019-06-21.

[41] Classification and loss evaluation - softmax and cross entropy loss,
deepnotes.io/softmax-crossentropy, accessed: 2019-06-21.

[42] Klemen Grm, Vitomir Štruc, Anais Artiges, Matthieu Caron, and
Hazım K Ekenel. Strengths and weaknesses of deep learning models for
face recognition against image degradations. Iet Biometrics, 7(1):81–89,
2017.

77

	List of Contents
	List of Figures
	General Introduction
	1 State of the art
	Biometry and facial recognition systems
	Introduction
	Biometry
	Definition of biometry
	Properties of a biometric modality
	Biometric modalities
	Biometric systems
	Structure of a biometric system
	Performance of biometric systems

	Facial recognition
	Why facial recognition ?
	Facial recognition system
	Image acquisition
	Detection
	Preprocessing
	Feature extraction
	Classification
	Learning
	Decision

	Difficulties of facial recognition

	Conclusion

	Face detection and recognition methods
	Introduction
	Face recognition techniques
	Global methods
	Local methods
	Hybrid methods

	Face detection algorithms
	Viola-Jones (HAAR CASCADE)
	Histogram of Oriented Gradients "HOG"

	Face databases
	Labeled faces in the wild (LFW)
	FERET Database
	The AR Database
	ORL Database

	Conclusion

	Neural networks
	Introduction
	Artificial neural network
	Definition of ANNs
	History and inspiration behind ANNs
	Architecture of ANNs
	Learning paradigms
	Modeling of ANNs
	A few models of ANNs

	Convolutional neural network
	What is and why CNN ?
	Layers in CNN
	Convolution layer
	Pooling layer
	Fully connected layer

	CNN architectures
	AlexNet (2012)
	GoogLeNet/Inception(2014)
	ResNet(2015)
	VGGNet (2014)

	VggNet CNN Classification
	VggNet Model training
	VggNet Model testing
	Non Linearity
	Softmax Function:
	Cross Entropy Loss:

	Conclusion

	2 Experimentations, Results and Discussions
	Experimentation
	Introduction
	Working environment
	Required Packages and libraries
	Project Structure
	Our Dataset
	Our CNN Architecture
	Training our CNN
	Testing our CNN
	Limitations of our model
	 Conclusion

	General Conclusion

