

Democratic and Popular Republic of Algeria

Ministry of Higher Education and Scientific Research
University of Mohamed Khider – BISKRA

Faculty of Exact Science, Natural Sciences and Life

Computer Science Department

OrderNumber : GLSD2/M2/2019

Report

Presented to obtain the diploma of academic Master in

Computer Science

Option:Software Engineering and Distributed Systems

Formal verification of the

implementation of the MQTT
protocol in IoT devices

By:

ABID AOUATEF

Defended the 7juillet 2019, in front of the jury:

OuaarHanane MCB President

Hmidi Zohra MAA Supervisor

SahliSihem MAA Examiner

Signings

With the help of God Almighty, we have

now reached the end of the course of

study that we have been waiting for

throughout the academic years,

To our dear teachers ... for their continued

struggle and their great sacrifice

To my dear parents, for all their

sacrifices, their love, their tenderness,

their support and their prayers

throughout my studies,

To my dear brothers and my sisters for

their constant encouragement, and their

moral support,

To all my family for their support

throughout my university career,

May this work be the accomplishment of

your vows, so much so, and escape from

your infallible support,

Thank you for always being here for me

Abstract

Internet of Things (IoT) is a technology used to provide smarter services to

users by connecting various devices to the Internet and allowing these devices

to exchange information with each other. This connections run out depending on

certain protocols, including Message Queue Telemetry Transport (MQTT).

MQTT is a protocol suitable for application in Internet of Things (IoT) devices; it is

designed around requirements for low bandwidth and small code footprint. The count

of the embedded devices that make use of it is constantly increasing. Therefore, a

mistake in its implementation would be critical from both operational and security

perspective. For that, we need to implement a program with new test language for

verification of implementations of the MQTT protocol in IoT devices such as TTCN-

3. the main objective of our work is to provide a formal verification of

implementations of the MQTT protocol in IoT devices by using a modular language

TTCN-3.

Keywords:Internet of Things (IoT),Message Queue Telemetry Transport (MQTT),formal

verification, modular language TTCN-3.

https://www.sciencedirect.com/topics/computer-science/internet-of-things
https://www.sciencedirect.com/topics/computer-science/service-to-user
https://www.sciencedirect.com/topics/computer-science/service-to-user
https://www.sciencedirect.com/topics/engineering/connected-device
https://www.sciencedirect.com/topics/computer-science/exchange-information
https://www.sciencedirect.com/topics/computer-science/internet-of-things

A

AUTOSAR: Automotive Open System Architecture

D

DODAG: Destination Oriented Directed Acyclic Graph

DMR: Designated Marksman Rifle

DNS: Domain Name System

DTLS: Data Transport Layer Security

E

E-CARP: Enhanced CARP

ETSI-MTS: ETSI Methods for Testing and Specification

F

FTP: file transfer protocol

H

HTML: Hyper TextMarkup Language HTTP: Hyper Text TransferProtocol

I

IBM: International Business Machines

IP: Internet Protocol

IPv: Internet Protocol version

ISDN: Integrated Service Digital Network

L

LoWPAN: low-power Wireless Personal Area Network

L2CAP: Logical link Control and Adaptation Protocol

M

MAC: Medium AccessControl

MTV:Maximum Transmission Unit

Q

QoS: Quality of Service

R

RFID: Radio-Frequency Identification

S

SDN:Software-defined Network

SDLC: Software Development Life Cycle

SIP: Systematic Investment Plan

SMS: Short Message Service

SRS: Software Requirement Specification

STF: Smartphone Test Farm

T

TCP: Transmission Control Protocol

U

URL: Uniform Resource Locator

UDP:User Datagram Protocol

W

WiFi: wireless fidality

X

XML: ExtensibleMarkup Language

Figure1.1:Internet of things in four environments.. 4

Figure 1.2 : MQTT Architecture « Publish/ Subscribe »... 11

Figure 1.3 : MQTT Packet Structure.. 12

Figure 2.1 : An Overview of Testing Methods.. 23

Figure 2.2 : Black Box Testing.. 24

Figure 2.3 : White Box Testing.. 24

Figure2.4:Types of Performance Testing.. 26

Figure2.5:The TTCN-3 Module Structure.. 29

Figure2.6:Overview of TTCN-3 Types... 30

Figure 3.1 :Simplified model of the approach.. 46

Figure3.2:Declared the types.. 47

Figure3.3:Defined the imports of the message structure... 48

Figure 3.4:An Example of CONNECT Message with TTCN-3... 48

Figure 3.5:An Example of PUBLISH Message with TTCN-3.. 49

Figure 3.6:An Example of SUBSCRIBE Message with TTCN-3... 49

Figure 3.7:TTCN union type of MQTT message... 50

Figure 3.8:Describe figure of component type and port type in our system......................... 51

Figure 3.9: Function to verify the standards of CONNECT mqtt message........................... 51

Figure 3.10: Test Function using alt statement of the message.. 53

Figure 3.11: Test case of our system.. 54

Table 1.1: OSI Model Layers... 8
Table 1.2: TCP\IP Model Layers.. 8

Table 1.3: Application Layer Protocols.. 9
Table 3.1: Structure of an MQTT Control Packet... 34

Table 3.2: Fixed Header Format... 35
Table 3.3: MQTT Control Packet Type.. 35

Table 3.4: Flag Bits... 36
Table 3.5: The QoS Levels.. 37

Table 3.6: Remaining Length values... 38
Table 3.7: Packet Identifier.. 39

Table 3.8: MQTT Control Packet Type that contains Packet Identifier.................. 39
Table 3.9: Playload for each Message Type... 40

Table 3.10: Fixed Header of the CONNECT Packet... 41
Table 3.11: Variable Header of the CONNECT Packet... 41

Table 3.12: Fixed Header of the PUBLISH Packet.. 43
Table 3.13: Expected PUBLISH Packet Reponses.. 43

Table 3.14: Fixed Header of the SUBSCRIBE Packet... 44
Table 3.15: Fixed Header of the DISCONNECT Packet.. 45

 General introduction

General introduction

The need for connected devices has grown rapidly in the last few years.

Starting with personalcomputers using the internet, continuing with smartphones and

new wireless technologies and reaching a point where even small devices, not

necessarily controlled by a human, should be able to communicate. They will be able

to exchange any kind of data to enable new opportunities that we barely start to

foresee. The growth of this new domain of connected devices talking to one another

has been called the Internet of Things (IoT).

The Internet of Things (IoT) is a new paradigm with the aim of

creatingconnectivity for (everything) that can carry a minimum of storage and

computational power, such that these connected things can collaborate anytime,

anywhere and in any form, within applications in various domains such as personal

and social, transportation, enterprise businesses and service and utility monitoring .

Some recent estimates suggest that the number of IoT devices exceeds 30 billion with

more than 200 billion intermittent connections generating over 700B Euros in revenue

by 2020. [1]

Various protocols are used for communication in an IoTsystem. TCP/IPis a

popular protocol used in lower layers. Several protocols are adapted for the

application layer in an IoT system, among them is Message Queue Telemetry

Transport Protocol (MQTT).

This kind of implementations of networking protocol stacks is in need

ofthorough testing in order to ensure not only its security, but also its interoperability

and compliance to relevant standards and specifications. Implementing test suites for

verification of implementations of TCP/IP communications protocols in theInternet

Engineering Task Force (IETF) world has traditionally been done in any number of

ways, by using general-purpose programming languages such as C, C++, Java, Python

and others[2]. In theInternational Telecommunication Union(ITU)/ETSI world. [3],

TTCN-3 has been developed as a domain-specific language for the specific use case

of writing protocol conformance tests.

The objective of our project is to have answers for the questions below:

 How can we assure a proper protocol implementation?

 Could we make sure that it is correct in a more formal way?

 Can the MQTT protocol implementation in IoT devices be verified

formally?

And to reach this goal we will organize our project in three chapters:

 The first chapter presents an overview of IoT such as characteristics of the

internet of things, the IoT standards and protocols, IoT challenges and

solutions.

 The second chapter is devoted to software testing such as definition, principal,

objectives, levels, types of software testing and conformance testing. This

chapter also details all about TTCN-3.

 Finally in the third chapter we will detail the conception and implementation

of our system, the development environment and the tools used. To illustrate

our implementation, we will explain the different experiences of the realized

system and we will discuss the results obtained.

Chapter 1

Internet of things

1. Introduction

The rapid growth in technology and internet connected devices has enabled

Internet of Things (IoT) to be one of the important fields in computing. Standards,

technologies and platforms targeting IoT ecosystem are being developed at a very fast

pace. IoT enables things to communicate and coordinate decisions for many different types

of applications including healthcare, home automation, disaster recovery, and industry

automation.

In this chapter, we will discuss all aspects of the Internet of things, its

characteristics, its applications and its standards, all of that after we know what is the

definition of the Internet of things.We will also clarify some of the IoT’sprotocols and

challenges to finish this chapter by the solutions of IoT.

2. Internet of things (IoT)

2.1. WhatisIoT?

 According to ITU-T (International Telecommunication Union) [4], Iot is defined

as: A global infrastructure for the information society, enabling advanced services

by interconnecting (physical and virtual) things based on existing and evolving

interoperable information and communication technologies.

 According to IEEE (Institute of Electrical and Electronics Engineers) [5], Iot is

defined as: A network of items – each embedded with sensors – which are

connected to the internet.

 According to ETSI (European Telecommunication Standards Institute) [6]:

Machine-to-Machine communications is the communication between two or more

entities that does not necessarily need any direct human interventions. M2M

services intend to automate decision and communication process.

 According to OASIS (The Organization for the Advancement of Structured

Information Standards) [7], Iot is defined as: The System defined where the

Internet is connected to the physical world via ubiquitous sensors.

2.2. IoT general definition

https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://iot.ieee.org/definition.html
http://www.etsi.org/technologies-clusters/technologies/internet-of-things
https://www.oasis-open.org/committees/tc_cat.php?cat=iot

The IoT envisions hundreds or thousands of end-devices with sensing, actuating,

processing, and communication capabilities able to be connected to the Internet. These

devices can be directly connected using cellular technologies such as 2G/3G/Long Term

Evolution and beyond (5G) or they can be connected through a gateway, forming a local

area network, to get connection to the Internet. The latter is the case where the end-devices

usually form Machine to Machine (M2M) networks using various radio technologies[8].

IoT in four environments: Internet of Vehicles (IoV), Internet of Energy (IoE),

Internet of Sensors (IoS), and Machine to Machine Communications (M2M) showing

in the figure below.

Figure 1.1: Internet of Things (IoT).[9]

2.1. Characteristics of the internet of thing

The Fundamentals characteristics of the IoT are as follows[10]:

 Interconnectivity

With regard to the IoT, anything can be interconnected with the global

information and communication infrastructure.

 Things-related services

The IoT is capable of providing thing-related services within the constraints of

things, such as privacy protection and semantic consistency between physical

things and their associated virtual things. In order to provide thing-related

services within the constraints of things, both the technologies in physical world

and information world will change.

 Heterogeneity

The devices in the IoT are heterogeneous as based on different hardware

platforms and networks. They can interact with other devices or service platforms

through different networks.

 Dynamic changes

The state of devices change dynamically, e.g., sleeping and waking up,

connected and/or disconnected as well as the context of devices including

location and speed. Moreover, the number of devices can change dynamically.

 Enormousscale

The number of devices that need to be managed and that communicate with each

other will be at least an order of magnitude larger than the devices connected to

the current Internet.

 Safety

As we gain benefits from the IoT, we must not forget about safety. As both the

creators and recipients of the IoT, we must design for safety. This includes the

safety of our personal data and the safety of our physical well-being. Securing the

endpoints, the networks, and the data moving across all of it means creating a

security paradigm that will scale.

 Connectivity

Connectivity enables network accessibility and compatibility. Accessibility is

getting on a network while compatibility provides the common ability to consume

and produce data.

2.2. IoT Application

Most of the daily life applications that we normally see are al-ready smart but

they are unable to communicate with each otherand enabling them to communicate with

each other and share useful information with each other will create a wide range of

innovative applications.

Few of theseapplications are[11]:

 Smart Traffic System

 Traffic is an important part of a society therefore all the related problems must be

properly addressed. There is a need for a system that can improve the traffic

situationbased on the traffic information obtained from objects using IoT

technologies. For such an intelligent traffic monitoring system, realization of a

proper system for automatic identification of vehicles and other traffic factors is

very important for which weneed IoT technologies instead of using common

image processingmethods. The intelligent traffic monitoring system will providea

good transportation experience by easing the congestion. It willprovide features

like theft-detection, reporting of traffic accidents, less environmental pollution.

 Smart Home

IoT will also provide DIY solutions forHome Automation with which we will be

able to remotely control our appliances as per our needs. Proper monitoring of

utilitymeters, energy and water supply will help saving resources anddetecting

unexpected overloading, water leaks etc. There will beproper encroachment

detection system which will prevent burglaries. Gardening sensors will be able to

measure the light, humidity; temperature, moisture and other gardening vitals, as

well as it willwater the plants according to their needs.

 Smart Agriculture

 It will monitor Soil nutrition, Light, Humidity etc. and improve the green

housing experience by automatic adjustment of temperature to maximize the

production. Accurate watering and fertilization will help improving the

waterquality and saving the fertilizers respectively.

 Smart Retailing and Supply chain Management.

IoT withRFID (radio-frequency identification) provides many advantages to

retailers. With RFID equippedproducts, a retailer can easily track the stocks and

detect shoplifting. It can keep a track of all the items in a store and to prevent

themfrom going out-of-stock, it places an order automatically. Moreoverthe

retailer can even generate the sales chart and graphs for effective strategies.

2.3. IoT Standards and Protocols

For standardization and sake of implementation of protocols, these

technologies are arranged in different layers. Typical internet networks follow Open

Systems Interconnection (OSI) model [13] which is an ISO standard model for

internet. The OSI model architectures the internet into seven layers - Physical, Data

Link, Network, Transport, Session, Presentation and Application (table1.1). Though

the actual implementation of OSI model is done through TCP-IP model which

simplifies the seven-layer OSI model to four-layer internet protocol suite. In TCP-IP

model (realistic implementation of OSI Model), the physical and data link layer are

merged to form physical and network access layer and the session, presentation and

application layers of OSI model are merged to a single application layer, as show in

the table 1.2[12].

Number layer Name layer Explanation

Layer7 Application Specifies how a particular application uses a network.

Layer 6 Presentation Specifies how to represent data.

Layer 5 Session Specifies how to establish communication with a remote system.

Layer 4 Transport Specifies how to reliably handle data transfer.

Layer 3 Network Specifies addressing assignments and how packets areforwarded.

Layer 2 Data Link Specifies the organization of data into frames and how to send

frames over a network.

Layer 1 Physic Specifies the basic network hardware.

Table 1.1:OSI Model Layers[12].

Table 1.2:TCP\IP Model Layers[12].

2.3.1. Application Protocol

This is the highest layer within communication network. It is the interface

between the (IoT) devices and the network. This layer is implemented through a

dedicated application at the device end. Like for a computer, application layer is

implemented by the browser. It is the browser which implements application layer

protocols[14].

Number layer Name layer Explanation

Layer 4 Application Specifies how a particular application uses a network.

Layer 3 Transport Transport Specifies how to ensure reliable transport of data.

Layer 2 Internet Internet Specifies packet format and routing.

Layer 1 Network Access &

Physic

Specifies frame organization and transmittal and the basic

network hardware.

The major application protocols such as CoAP, MQTT, DDS, AMQP and

XMPP used in application protocol.

Protocols UDP/TCP Architecture Security

and QoS

Header

Size

(bytes)

Max

Length(bytes)

MQTT TCP Pub/Sub Both 2 5

AMQP TCP Pub/Sub Both 8 -

CoAP UDP Req/Res Both 4 20 (typical)

XMPP TCP Both Security - -

DDS TCP/UDP Pub/Sub QoS - -

Table 1.3:Application Layer Protocols.

a. CoAP (Constrained Application Protocol)

It is synchronousrequest/response application layer protocol that was

designed by the Internet Engineering Task Force (IETF) [16] to target constrained-

recourse devices. It was designed by using a subset of the HTTP methods making it

interoperable with HTTP; it makes use of the UDP protocol for lightweight

implementation.

It also makes use of RESTful architecture, which is very similar to the HTTP

protocol. It is used within mobiles and social network based applications and

eliminates ambiguity by using the HTTP get, post, put and delete methods. Apart

from communicating IoT data, CoAP has been developed along with DTLS for the

secure exchange of messages. It uses DTLS for the secure transfer of data in the

transport layer[15].

b. Extensible Messaging and Presence Protocol (XMPP)

Extensible messaging and presence protocol (XMPP) is a protocol that was

originally designed for chats and messages exchange applications.

It is based on XML language and was standardized by IETF [15] more than a

decade ago. Recently, its usage was extended for IoT and SDN applications due to

the standardized use of XML which makes it easily extensible. XMPP supports both

publish/subscribe and request/ response architecture. It is designed for near real-time

applications and, thus, efficiently supports low-latency small messages [17].

c. Advanced Message Queuing Protocol (AMQP)

 The Advanced Message Queuing Protocol (AMQP) is another session layer

protocol that was designed for financial industry. It runs over TCP and provides a

publish/ subscribe architecture which is similar to that of MQTT. The difference is

that the broker is divided into two main components: exchange and queues.

The exchange is responsible for receiving publisher messages and distributing

them to queues based on pre-defined roles and conditions. Queues basically represent

the topics and subscribed by subscribers which will get the sensory data whenever

they are available in the queue[17].

d. Data Distribution Service (DDS)

Data distribution service (DDS) is a messaging standards designed by the

Object Management Group (OMG) [19]. It uses a publish/subscribe architecture and

mostly used for M2M communications. It offers 23 qualities-of service levels which

allow it to offer a variety of quality criteria, including: security, urgency, priority,

durability, reliability, etc. It defines two sub layers: data-centric publish-subscribe

and data-local reconstruction sub layers.

The first takes the responsibility of message delivery to the subscribers while

the second is optional and allows a simple integration of DDS in the application

layer. Publisher layer is responsible for sensory data distribution.

Data writer interacts with the publishers to agree about the data and changes

to be sent to the subscribers. Subscribers are the receivers of sensory data to be

delivered to the IoT application. Data readers basically read the published data and

deliver it to the subscribers and the topics are basically the types of data that are

being published. In other words, data writers and data reader take the responsibilities

of the broker in the broker-based architectures[18].

e. MQTT (Message Queue Telemetry Transport)

MQTT was introduced by IBM[20] in 1999 and standardizedby OASIS [7]in

2013.It is designed to provide embedded connectivitybetween applications and

middleware’s on one side and networks and communications on theother side. It

follows a publish/subscribe architecture, as shown in Figure 1.2, where the

systemconsists of three main components: publishers, subscribers, and a broker.

From IoT point ofview, publishers are basically the lightweight sensors that

connect to the broker to send their dataand go back to sleep whenever possible.

Subscribers are applications that are interested in a certain topic, or sensory

data, so they connect to brokers to be informed whenever new data are received.

The brokers classify sensory data in topics and send them to subscribers

interested in the topics[21].

Figure 1.2: MQTT Architecture “Publish/Subscribe”. [22]

 MQTT Packet Structure

 The MQTT protocol control Packet, consists of three parts; Fixed

Header, Variable Header and Payload.

Figure 1.3: MQTT Packet Structure. [23]

 MQTT messaging

MQTT has 14 types of control signal, namely:

 CONNECT — Client request to connect to Server

 CONNACK — Connection Acknowledgement

 PUBLISH — A message which represents a new/separate publish

 PUBACK — QoS 1 Response to a PUBLISH message

 PUBREC — First part of QoS 2 message flow

 PUBREL — Second part of QoS 2 message flow

 PUBCOMP — Last part of the QoS 2 message flow

 SUBSCRIBE — A message used by clients to subscribe to specific

topics

 SUBACK — Acknowledgement of a SUBSCRIBE message

 UNSUBSCRIBE — A message used by clients to unsubscribe from

specific topics

 UNSUBACK — Acknowledgement of an UNSUBSCRIBE message

 PINGREQ — Heartbeat message

 PINGRESP — Heartbeat message acknowledgement

 DISCONNECT — Graceful disconnect message sent by clients before

disconnecting

From those signals, there are only four main signals which are used directly

by the client, namely PUBLISH, SUBSCRIBE, UNSUBSCRIBE, CONNECT.

Other signals are part of the publish/subscribe mechanism[21].

 MQTT QoS

MQTT supports three service levels qualities:

 QoS = 0: means one delivery at most. The message is delivered

according to the capabilities of the underlying network. No response is

sent by the receiver and no retry is performed by the sender. The receiver

gets the message either once or not at all.

 QoS = 1: means one delivery at least. This quality of service ensures

that the message arrives at the receiver at least once, but there’s a

probability of duplicating messages on the receiver’s side. If the publisher

has not received the acknowledgment of delivery from the message

broker, it sends the message again. After the duplicated message is

received by the broker, the latter sends it again to all subscribers.

 QoS = 2: means one delivery exactly. This is the highest quality of

service. It is used when neither loss nor duplication of messages are

acceptable.[14]

2.3.2. Other IoT Protocols

 IEEE 802.15.4e

IEEE 802.15.4 is a data link standard that is commonly used in the MAC layer.

The standard specifies the frame format, headers, destination and source

addresses and identifies how the communication between the nodes can happen.

The traditional frame formats used in networking are not suitable for power

constrained IoT devices. In 2008, IEEE 802.15.4e was created to extend IEEE

802.15.4 and support low power communication. It uses time synchronization

and channel hopping to enable high reliability, low cost communication in IoT

data links [24].

 IEEE 802.11 ah

IEEE 802.11ah is a light (low-energy) version of the original IEEE 802.11

wireless medium access standard. It has been designed with less overhead to

meet IoT requirements. IEEE 802.11 standards (also known as Wi-Fi) are the

most commonly used wireless standards. They have been widely used and

adopted for all digital devices including laptops, mobiles, tablets, and digital

TVs. However, the original WiFi standards are not suitable for IoT applications

due to their frame overhead and power consumption. Hence, IEEE 802.11

working group initiated 802.11ah task group to develop a standard that supports

low overhead, power friendly communication suitable for sensors and

motes[24].

 Bluetooth Low Energy

Bluetooth low energy, or Bluetooth smart it is another short-range

communication standard for data link layer that is widely used in IoT. It is

mostly used in in-vehicle networking. It has a small latency that is 15 times

smaller than original Bluetooth standards. Its low energy can reach ten times

less than the classic Bluetooth. Its access control uses a contention-less MAC

with low latency and fast transmission. It adopts master/slave architecture and

offers two types of frames: adverting and data frames. The advertising frame is

used for discovery and is sent by slaves on one or more of dedicated

advertisement channels. Master nodes sense advertisement channels to find

slaves and connect them. After connection, the master tells the slave it’s waking

cycle and scheduling sequence. Nodes are awake usually only when they are

communicating and they go to sleep otherwise to save their power [25].

 Zigbee Smart Energy

ZigBee smart energy is designed for a large range of IoT applications including

smart homes, remote controls and healthcare systems. It supports a wide range

of network topologies including star, peer-to-peer, or cluster-tree. A coordinator

controls the network and is the central node in a star topology, the root in a tree

or cluster topology and may be located anywhere in peer-to-peer. ZigBee

standard defines two stack profiles: ZigBee and ZigBee Pro. These stack

profiles support full mesh networking and work with different applications

allowing implementations with low memory and processing power. ZigBee Pro

offers more features including security using symmetric-key exchange,

scalability using stochastic address assignment, and better performance using

efficient many-to-one routing mechanisms [26].

 6LoWPAN

6LoWPAN, an acronym for IPv6 over low power wireless personal area

networks, is a very popular standard for wireless communication. It enables

communication using IPv6 over the IEEE 802.15.4 protocol. This standard

defines an adaptation layer between the 802.15.4 link layer and the transport

layer. 6LoWPAN devices can communicate with all other IP based devices on

the Internet. The choice of IPv6 is because of the large addressing space

available in IPv6. 6LoWPAN networks connect to the Internet via a gateway

(WiFi or Ethernet), which also has protocol support for conversion between

IPv4 and IPv6 as today’s deployed Internet is mostly IPv4. IPv6 headers are not

small enough to fit within the small 127 byte MTU of the 802.15.4 standard.

Hence, squeezing and fragmenting the packets to carry only the essential

information is an optimization that the adaptation layer performs [12].

 IPv6 over Bluetooth Low Energy

RFC 7668 specifies the format of IPv6 over Bluetooth low energy, which was

discussed in Subsection II-E. It reuses most of the 6LowPAN compression

techniques. Fragmentation is done at the logical link control and adaptation

protocol (L2CAP) sub layer in Bluetooth. Thus, the fragmentation feature of

6LowPAN is not used here. Further, Bluetooth low energy does not currently

support formation of multi-hop networks at the link layer. Instead, a central

node acts as a router between lower-powered peripheral nodes. Thus, multi-hop

feature in 6LowPAN is not used as well [24].

 RPL

Routing protocol for low-power and lossy networks (RPL) is an open routing

protocol,based on distance vectors. It describes how a destination oriented

directed acyclic graph (DODAG) is built with the nodes after they exchange

distance vectors.

A set of constraints and an objective function is used to build the graph with the

best path.

 The objective function and constraints may differ with respect to their

requirements. For example, constraints can be to avoid battery powered nodes

or to prefer encrypted links. The objective function can aim to minimize the

latency or the expected number of packets that need to be sent [12].

 CORPL

An extension of RPL is CORPL, or cognitive RPL, which is designed for

cognitive networks and uses DODAG topology generation but with two new

modifications to RPL. CORPL utilizes opportunistic forwarding to forward the

packet by choosing multiple forwarders (forwarder set) and coordinates between

the nodes to choose the best next hop to forward the packet to. DODAG is built

in the same way as RPL. Each node maintains forwarding set instead of its

parent only and updates its neighbor with its changes using DIO messages.

Based on the updated information, each node dynamically updates its neighbor

priorities in order to construct the forwarder set [24].

 CARP

Channel-Aware Routing Protocol is a nonstandard distributed routing protocol

used in Underwater Wireless Sensor Networks (UWSNs).

Its assets include

delivering packets in reasonable time with low energy demands. In addition, it

is able to support link quality information that is calculated from historical

successful data transfers.

The history is collected from adjacent sensors in order to choose the forwarding

nodes. The main weakness of CARP is that it does not allow reusing previously

gathered data.

An enhancement of CARP is denoted as E-CARP.

E-CARP allows the sink node to save previously received sensor data.

Hence; ECARP drastically decreases the communication overhead [26].

 DNS-SD (DNS-Service Discovery)

This protocol stack uses standard DNS messages to discover services in an IOT

network. Based on mDNS, DNS-SD is used to resolve services available in a

network. The service discovery is implemented in two steps - in the first step,

host names of the service providers are resolved and in the next step, IP

addresses are paired with the host names using mDNS. It is important to

identify host names as IP addresses can change in the network [27].

 mDNS (Multicast Domain Name System)

 Multicast Domain Name System (mDNS) is a DNS like service discovery

protocol to resolve host names to IP addresses in a local network without using

any unicast DNS server. It can be used without any additional infrastructure or

DNS server in the network. The protocol operates on IP multicast UDP packets

through which a node in the local network enquires the names of all other

nodes. The client node sends a query message to respond by a node with

specific name. When the node with the corresponding name receives the query,

it responds with a multicast response message containing its IP address. Being a

multicast response, the target device IP address and name is also saved by all

the devices (nodes) of the network in their local caches [27].

3. Advantages and Disadvantages of IoT

 Advantages [28]

 Information: To make better decision, we need to have more

information. So as we all know that knowledge will help us take better

and faster decisions. Suppose vegetables in the vegetable basket are going

to get empty soon, so out smart basket will send us an SMS to informing

us to get vegetables from the stores.

 Tracking:Another advantageof IoT is tracking. It provides advance

level information that could not have been possible before this so easily.

Let us take an example of medical store, the application will inform the

store keeper about the upcoming expiration dates of the medicines, so that

they can get replaced or whatever.

 Time:IoT saves more time which we generally used to get it wasted on

gathering and processing information so that they can be accurately

analyzed, in order to get better decision.

 Money: If the cost of tagging and monitoring equipment goes down

than the market for IoT will cross-skies in a very short period.

 Disadvantages [28]

 Compatibility: In current time, there is no universal standard of

compatibility and facility for the tagging and monitoring devices or

equipment. So the disadvantages ofIoTis that as the number and nature of

devices available in market, soon it will be getting tough to connect them

using IPv4.

 Complexity: With the help of all complex systems, there are more and

more chances of failure, suppose in the vegetable market app, if the

application send message about vegetable basket getting empty to two or

more people with whom it is associated with them. Then both the people

will go to the shop to get the vegetable as asked by app. In such a case, it

may be possible that the unnecessarily double purchase of the item may be

done by the people.

 Safety: It is necessary to provide safety, else if it expired product id

medicated to the patient then the ill reaction will responded by the body

and damaging health.

 Bandwidth: It can be a problem for IoT applications, as it is limited.

4. IoT Challenges

 Architecture Challenge

Architectures should be open, and following standards, they should not restrict

users to use fixed, end-to-end solutions. IoT architectures should be flexible to

cater for cases such as identification (RFID, tags), intelligent devices, and smart

objects (hardware and software solutions).

 Technical Challenge

IoT technology can be complex for variety of reasons. First, there are legacy

heterogeneous architectures. Second, communication technologies, including

fixed and mobile communication systems, power line communications, wireless

communication, and short-range wireless communication technologies. At last,

there are thousands of different applications; it is in natural to have different

requirements on what parties need to communicate with each other, what kind

of security solutions are appropriate, and so on.

 Hardware Challenge

Smart devices with enhanced inter-device communication will lead to smart

systems with high degrees of intelligence. Its autonomy enables rapid

deployment of IoT applications and creation of new services. Therefore,

hardware researches are focusing on designing wireless identifiable systems

with low size, low cost yet sufficient functionality. Hardware and protocol code

sign for sleeping has been thus the first hardware challenge of IoT.

 Privacy and Security Challenge

Compared with traditional networks, security and privacy issues of IoT become

more prominent. Much information includes privacy of users, so that protection

of privacy becomes an important security issues in IoT. Because of the

combinations of things, services, and networks, security of IoT needs. Existing

security architecture is designed from the perspective of human communication,

may not be suitable and directly applied to IoT system. Using existed security

mechanisms will block logical relationship between things in IoT.

 Standard Challenge

Standards play an important role in forming IoT. standards developed by

cooperated multiparties, and information models and protocols in the standards,

shall be open. The standard development process shall also be open to all

participants, and the resulting standards shall be publicly and freely available. In

today’s network world, global standards are typically more relevant than any

local agreements.

 Business Challenge

For a mature application, its business model and application scenario are clear

and easy to be mapped into technical requirements. So the developers do not

need to spend much time on business-related aspects. But for IoT, there are too

many possibilities and uncertainties in business models and application

scenarios. It is thus inefficient in terms of business-technology alignment, and

one solution will not fit possibilities for all. The IoT is a challenging traditional

business model [29].

5. Solutions for IoT

As far as we are concerned with the traditional storage of the data. Now as we

are dealing with the decreasing inefficiency of cloud computing, there is increase of

burden on the cloud servers due to IoT data being processed over there. So the

solution to the big data problem is to replace cloud computing with fog computing, in

which all the processing and analytics works are Internet of Things (IoT): In a Way of

Smart World done on its respective routers instead of cloud severs, as a result all the

data in the cloud become structured data. And the duty of the cloud server will get

limited to making the data reachable the application device. For the challenge of

security and privacy, we will have to increase the number of bytes being encrypted

[28].

6. Conclusion

In this chapter, we have discussed in generally the concept of the four trends

of the Internet of things, first of all we have defined in the first part Internet of thing,

and its Characteristics. In the second part we have defined the Standards and

Protocols of IoTand the definition of each protocol. In the third partwe address some

challenges of IoT.

In the next chapter, we will define in details software testing in details,

conformance testing and TTCN-3.

Chapter 2

Software testing

1. Introduction

Testing is a fundamental step in any development process. It is a process of

executing a program with the aim of finding error. To make our software perform

well, it should be error free. If testing is done successfully, it will remove all the

errors from the software.

2. Softwaretesting

Test is the search for mismatches between the behavior of the program and the

expected behavior calculated from pre-established.Testing is defined as a process of

evaluation that either the specific system meets its originally specified requirements

or not. It is mainly a process encompassing validation and verification process that

whether the developed system meets the requirements defined by user. Therefore, this

activity results in a difference between actual and expected result.

Software testing refers to finding bugs, errors or missing requirements in the

developed system or software [30].

3. Objectives of software testing

 To ensure that application works as specified in requirements document.

 To provide a bug free application.

 To achieve the customer satisfaction.

 To ensure that error handling has been done gracefully in the application.

 To establish confidence in software.

 To evaluate properties of software.

 To discuss the distinctions between validation testing and defect testing.

 To describe strategies for generating system test cases.

 To understand the essential characteristics of tool used for test automation[30].

4. Verification and Validation

It would not be right to say that testing is done only to find faults. Faults will

be found by everybody using the software. Testing is a quality control measure used

to verify that a product works as desired. Software testing provides a status report of

the actual product in comparison to product requirements (written and implicit).

Testing process has to verify and validate whether the software fulfills conditions laid

down for its release/use. Testing should reveal as many errors as possible in the

software under test, check whether it meets its requirements and also bring it to an

acceptable level [31].

5. Levels of testing

Software testing integrates software test case design methods into a well-

planned series of steps that result in successful construction of software that result in

successful construction of software. Software testing levels gives the road map for

testing. A software testing level should be flexible enough to promote a customized

testing approach at same time it must be right enough. It is generally developed by

project managers, software engineer and testing specialist. There are four different

software testing strategies [32].

5.1. Unit testing

This type of testing is performed at the bottom level by the developers before

it is moved to the team of testing to execute the test cases. It is the smallest module

that can be tested and verified at the each section or lines of code. In this output of

one module becomes the input of another module. If the output of any one of the

module fails so then the output to which we give the input also fails[33].

5.2. Integration testing

Integration testing is performed immediately after the unit testing. In this all

the modules are merged together to form a larger module and deter mine are they

functioning in a proper way and then the testing is implemented on the modules.

Testing is done so that in case if any bug remained in the unit testing it can be again

tested in this testing so as to removeall the bugs[34].

5.3. System testing

System testing of software or hardware is testing conducted on a complete,

integrated system to evaluate the system's compliance with its specified requirements.

System testing falls within the scope of black box testing, and as such, should require

no knowledge of the inner design of the code or logic System testing is actually a

series of different tests whose primary purpose is to fully exercise the computer-based

system. Although each test has a different purpose, all work to verify that system

elements have been properly integrated and perform allocated function [35].

5.4. Acceptance testing

Acceptance is used to conduct operational readiness of a product, service or

system as part of a quality management system. It is a common type of non-functional

software testing, used mainly in software development and software maintenance

projects. This type of testing focuses on the operational readiness of the system to be

supported. It is done when the completed system is handed over from the developers

to the customers or users. The purpose of acceptance testing is rather to give

confidence that the system is working than to find errors [36].

6. Categories of testing types

Test procedures often differ greatly between functional, structural tests and

Non-functional testing. Traditionally, functional tests have been termed Black box

tests, and structural tests White box tests. Between the two, one finds a large group of

tests which do not fit into either category. These tests employ both functional and

structural approaches as needed for test case selection and for developing test

procedures, these increasingly important methods are called Gray box tests [37].

Figure 2.1: An overview of testing methods. [37]

6.1. Black box testing

Black box testing is named so because as we know that in the tester’s eyes it is

named black box but inner side no one sees.

With black box testing, the outside world comes into contact with the test item (a

program or program unit) only through a specified interface. This interface can be the

application interface, an internal module interface, or the INPUT/OUTOUT

description of a batch process.Black box tests check whether interface definitions are

adhered to in all situations[38]

Figure 2.2: Black box testing. [38]

6.2. White box testing

In the case of white box testing, the inner workings of the test item are known.

The test cases are created based on the knowledge. White box tests are thus developer

tests. They ensure that each implemented function is executed at least once and

checked for correct behavior.Examination of White box testing results can be done

with the system specifications in mind [38].

Figure 2.3: White box testing. [38]

6.3. Gray box testing

Gray box testing, like black box testing, is concerned with the accuracy and

dependability of the input and output of the program or module.

Grey-box testing is a technique to test the application with having a limited

knowledge of the internal workings of an application. In software testing, the phrase

the more you know, the better carries a lot of weight while testing an application [39].

6.4. Non-Functional testing

Non-functional testing describes the tests used to measure the software

characteristics such as response time, page load times, peak load limit, threshold limit

for optimum performance of the software product on varying scale etc[40].

Non-functional testing includes different testing types as mentioned below:

6.4.1. Performance testing

Performance testing involves all the phases as the mainstream testing life cycle

as an independent discipline which involve strategy such as plan, design, execution,

analysis and reporting. Not all software has specification on performance explicitly.

But every system will have implicit performance requirements. Performance has

always been a great concern and driving force of computer evolution. The goals of

performance testing can be performance bottleneck identification, performance

comparison and evaluation. By performance testing we can measure the

characteristics of performance of any applications. One of the most

importantobjectives of performance testing is to maintain a low latency of a website,

high throughput and low utilization[41].

Performance testing is in general a testing practice performed to determine

how a system performs in terms of responsiveness and stability under a particular

workload. It can also serve to investigate measure, validate or verify

other quality attributes of the system, such as scalability, reliability and resource

usage[41].

Some of the main goals of performance testing are[41]:

 Measuring response time of end to end transactions.

 Measurement of the delay of network between client and server.

 Monitoring of system resources which are under various loads.

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Quality_(business)
https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Scalability
https://en.wiktionary.org/wiki/reliability

Some of the common mistakes which happen during performance testing are:

 Ignoring of errors in input.

 Analysis is too complex.

 Erroneous analysis.

 Level of details is inappropriate.

 Ignore significant factors.

 Incorrect Performance matrix.

 Important parameter is overlooked.

 Approach is not systematic.

 The focus of performance testing is checking a software program[41]:

Speed: Determines whether the application responds quickly.

 Scalability: Determines maximum user load the software application can

handle.

Stability: Determines if the application is stable under varying loads.

There are two kinds of performance testing:

Figure 2.4: Types of performance testing.[42]

 Load testing

Load testing is an industry term for the effort of performance testing. The

main feature of the load testing is to determine whether the given system is able to

handle the anticipated no of users or not. The main objective of load testing is to

check whether the system can perform well for specified user or not.

Load testing is also used for checking an application against heavy load or

inputs such as testing of website in order to find out at what point the website or

applications fails or at what point its performance degrades[42].

Examples:

 Testing a word processor by editing a very large document.

 For web application load is defined in terms of concurrent users or HTTP

connections

 Stress testing

We can define stress testing as performing random operational sequence, at

larger than normal volume, at faster than normal speed and for longer than normal

periods of time, as a method to accelerate the rate of finding defects and verify the

robustness of our product, or we can say stress testing is a testing, which is conducted

to evaluate a system or component at or beyond the limits of its specified

requirements to determine the load under which it fails and how.

Stress testing also determines the behavior of the system as user base

increases. It is trying to break the system under test by overwhelming its resources or

by taking resources away from it.Purpose is to make sure that the system fails and

recovers gracefully[42].

Example:

 Double the baseline number for concurrent users/HTTP connections.

 Randomly shut down and restart ports on the network switches/routers that

connect servers.

6.4.2. Security testing

Software quality, reliability and security are tightly coupled. Flaws in software

can be exploited by intruders to opens security holes. Security testing makes sure that

only the authorized personnel can access the program and only the authorized

personnel can access the functions available to their security level. The security

testing is performed to check whether there is any information leakage in the sense by

encrypting the application or using wide range of software’s and hardware's and

firewalls etc[40].

6.4.3. Recovery testing

Recovery testing is a system test that forces the software to fail in a variety of

ways and verifies that recovery is properly performed. If recovery is automatic, re-

initialization, check pointing mechanisms, data recovery, and restart are evaluated for

correctness. If recovery requireshuman intervention, the mean-time-to-repair is

evaluated to determine whether it is within acceptable limits[40].

7. Limitations of testing

Limitations are principles that limit the extent of something. Testing also has

some limitations that should be taken into mind to set realistic expectations about its

benefits. In spite of being most dominant verification technique, software testing has

following limitations:

 Testing can be used to show the presence of errors, but never to show their

absence. It can only identify the known issue or errors. It gives no idea about

defects still uncovered. Testing cannot guarantee that the system under test is

error free.

 Testing provides to help when we have to make a decision to either “release

the product with errors for meeting the deadline” or to “release the product late

compromising the deadline”.

 Testing cannot establish that a product functions properly under all conditions

but can only establish that it does not function properly under specific

conditions [43].

8. TTCN-3 language

TTCN was originally called the Tree and Tabular combined Notation, but has

since been renamed to the Test and Testing Control Notation. It is a purpose-built

language with the sole purpose of implementing testing.

TTCN-3 is a flexible and powerful language applicable to the specification of

all types of reactive system tests over a variety of communication interfaces. Typical

areas of application are protocol testing (including mobile and Internet protocols),

service testing (including supplementary services), module testing, testing of CORBA

based platforms, API testing, etc. TTCN-3 is not restricted to conformance testing and

can be used for many other kinds of testing including interoperability, robustness,

regression, system and integration testing[44].

8.1. Key TTCN-3 language features

TTCN-3 is a high-level, abstract language. The code itself is platform

independent, as well as test environment independent. In TTCN-3, you define only

the abstract messages/signals as they are exchanged between the test system and the

tested entity. The transport layers and connections are provided and handled by the

tools Message encoding (serialization) and decoding (deserialization) is part of the

tool/environment, and not part of the test definition itself[45].

The strong points of TTCN-3 for use in protocol tests are:

 A rich data/type system

 Parametric templating and powerful template matching

 Behavior specification using the alt and default behaviors

8.2. Language basics

The most basic construct in TTCN-3 is the module. A module can contain a

whole test suite or it may contain library code. Such library code can be used in other

modules through

Figure 2.5: The TTCN-3 Module Structure. [46]

The import statement can be specified finely grained and the reforeallows

minimal interfaces between modules. Modules consist of a definitions part and a

control part (of which both are optional). The definitions part contains declarations1

for constants, types, templates, functions, altsteps, testcases, signatures and module

parameters..

TTCN-3 contains a very large number of built-in types. The most basic data

types and most widely used ones are the type’s integer, boolean, charstring, float and

record. The built-in data types can be used to declare user-defined types. Both, built-

in data types as well as userdefined types can be used to declare templates (data

descriptions) which are subsequently used for the message-based communication

using the send and receive operations on the ports of a test component.

Constants, types, functions and basic statements (such as conditionals, assignments or

loops) are similar to other well-known programming languages[46].

8.3. The concepts of TTCN-3

The TTCN-3 core language is a modular language which has a similar look

and feel to a typical programming language like, e.g. C or C++. In addition to the

typical programming language constructs, it contains all important features necessary

to specify test procedures and campaigns like test verdicts to assess test runs,

matching mechanisms to compare the reactions of the SUT with the expected outputs,

timer handling to specify time restrictions, the handling of test components to support

distributed testing, the ability to specify encoding information, supportfor different

kinds of communication (i.e. synchronous and asynchronous communication) and the

possibility to log test information during a test run[47].

8.3.1. Subtypes

Subtypes are used to restrict the allowed range of an existing type declaration.

This can avoid manual value verifications as subtype violations automatically lead to

an error either at compile time or runtime. The TTCN-3 types are summarized in

Figure 2.7[48].

Figure 2.6: Overview of TTCN-3 types.[49]

8.3.2. Components

A test configuration in TTCN-3 consists of one or more test components. Each

component contains one or more communication ports which describe its

interface[48].

Example [49]:

type port MyPort message {

incharstring }

type component MyComponent {

portMyPortmsgInPort ; }

type component MyExtendedComponent extends MyComponent {

var integer myValue ;}

8.3.3. Test cases

A test case is complete and independent specification of the actions required to

achieve a specific test purpose. It typically starts in a stable testing state and ends in a

stable testing state.

In TTCN-3, test cases are a special kind of function. Test cases define the

behavior, which have to be executed to check whether the SUT passes a test or not.

This behavior is performed by the MTC which is automatically created when a test

case is being executed[49].

Example [48]:

testcasemyTestcase () runs on myComponent {

setverdict (f a i l) ;

 }

control {

varverdicttype v := execute (myTestcase) ;

 }

8.3.4. Templates

Templates are used to either transmit a set of distinct values or to test whether

a set of received values matches the template specification. Templates can be defined

globally or locally[49].

Example[48]:

type record PersonType {

charstring f i r s tName ,

charstringmiddleName optional ,

charstringlastName

 }

templatePersonType Turing {

f i r s tName := " Alan " ,

middleName := omit ,

lastName := " Turing "

 }

templatePersonTypeTuringFul l modifies Turing {

middleName := Mathison }

templatePersonTypeMyPerson (charstring p f i r s tName , charstring p lastName) {

f i r s tName := p f i r s tName ,

middleName := omit ,

lastName := p lastName

8.3.5. Alt statements

An alt statement expresses sets of possible alternatives that form a tree of

possible execution paths[49].

Example[48]:

testcasemyTestcase () runs on myComponent {

alt {

[] pt .receive (expectedMes sage) ;

pt .send(answerMessage) ;

 }

 [] any port .receive {

setverdict (f a i l) ;

 }

 }

 }

9. Conclusion:

Software testing is very important phase of Software Development Life Cycle

(SDLC). Software testing is vital element in the SDLC and can furnish excellent

results if testing is done properly and effectively. Unfortunately, software testing is

often less formal and rigorous than it should and a main reason for that is because we

have struggled to define best principles, standards for optimal software testing.

To perform software testing effectively and efficiently, everyone involved with

testing should be familiar with basic software testing importance, types and levels and

categories. Already lot of work has been done in this chapter, and even continues by

define all concepts of TTCN-3 language.

In the next chapter which is the last one, we willspecify the standards of MQTT and

its messages, then we will explain how we transfer these messages in TTCN-3, finally

we will represent our im

Chapter 3

Conception and implementation of

system

1. Introduction

The MQ Telemetry Transport (MQTT) is a lightweight publish/subscribe

protocol flowing over TCP/IP for remote sensors and control devices through low

bandwidth communications. MQTT is used by specialized applications on small

footprint devices that require a low bandwidth communication, typically for remote

data acquisition and process control.This kind of implementations of networking

protocol stacks is in need ofthorough testing in order to ensure not only its security,

but also its interoperability and compliance to relevant standards and specifications.

 In this chapter we will present the conception of MQTT messages Packet,

and the implementation of our project. First, we will present the specification of

MQTT version 3-1-1, then how to verify a MQTT message using TTCN-3.Finally,

wewilldescribe the implementation of our system.

2. Structure of an MQTT control packet

The MQTT protocol works by exchanging a series of MQTT Control Packets

in a defined way. This section describes the format of these packets.

An MQTT Control Packet consists of up to three parts, always in the following order

as illustrated in Table 3.1[50]:

Fixed header, present in all MQTT Control Packets

Variable header, present in some MQTT Control Packets

Payload, present in some MQTT Control Packets

Table 3.1:Structure of an MQTT Control Packet[51].

3. MQTT message format

As mentioned in the previous sentence, the message header for each MQTT

command message is contained a fixed header. Some messages also require a variable

header and a payload. We will describe all of that in detailsin the following

sections[50].

3.1. Fixed header

The message header for each MQTT command message contains a fixed

header. The table below shows the fixed header format.

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type Flags specific to each MQTT

Control Packet type

byte 2… Remaining Length

Table 3.2: Fixed Header Format[51].

Byte 1: Contains the MQTT Control Packet typeandFlags specific to each MQTT

Control Packet type.

Byte 2: (At least one byte) contains the Remaining Length field.

The fields are described in the following sections. All data values are in big-

endian order: higher order bytes precede lower order bytes. A 16-bit word is presented

on the wire as Most Significant Byte (MSB), followed by Least Significant Byte

(LSB)[51].

MQTT Control Packet type (Position: byte 1, bits 7-4)

Represented as a 4-bit unsigned value, the values are listed inthe table

below[51].

Name Value Direction of

flow

Description

Reserved 0 Forbidden Reserved

CONNECT 1 Client to Server Client request to connect to Server

CONNACK 2 Server to Client Connect acknowledgment

PUBLISH 3 Client to Server

 or

Server to Client

Publish message

PUBACK 4 Client to Server

 or

Server to Client

Publish acknowledgment

PUBREC 5 Client to Server

 or

Server to Client

Publish received (assured delivery part 1)

PUBREL 6 Client to Server

 or

Server to Client

Publish release (assured delivery part 2)

PUBCOMP 7 Client to Server

 or

Server to Client

Publish complete (assured delivery part 3)

SUBSCRIBE 8 Client to Server Client subscribe request

SUBACK 9 Server to Client Subscribe acknowledgment

UNSUBSCRIBE 10 Client to Server Unsubscribe request

UNSUBACK 11 Server to Client Unsubscribe acknowledgment

PINGREQ 12 Client to Server PING request

PINGRESP 13 Server to Client PING response

DISCONNECT 14 Client to Server Client is disconnecting

Reserved 15 Forbidden Reserved

Table 3.3:MQTT Control Packet type[50].

Flags

The remaining bits [3-0] of byte 1 in the fixed header contain flags specific to

each MQTT Control Packet type as listed in the Table 3.4 below[50].

Control Packet Fixed header flags Bit 3 Bit 2 Bit 1 Bit 0

CONNECT Reserved 0 0 0 0

CONNACK Reserved 0 0 0 0

PUBLISH Used in MQTT 3.1.1 DUP QoS QoS RETAIN

PUBACK Reserved 0 0 0 0

PUBREC Reserved 0 0 0 0

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Table_2.2_-

PUBREL Reserved 0 0 1 0

PUBCOMP Reserved 0 0 0 0

SUBSCRIBE Reserved 0 0 1 0

SUBACK Reserved 0 0 0 0

UNSUBSCRIBE Reserved 0 0 1 0

UNSUBACK Reserved 0 0 0 0

PINGREQ Reserved 0 0 0 0

PINGRESP Reserved 0 0 0 0

DISCONNECT Reserved 0 0 0 0

Table 3.4:Flag Bits[50].

Where a flag bit is marked as “Reserved” in Table 3.4, it is reserved for future use.

DUP (Position: byte 1, bit 3)

This flag is set when the client or broker attempts to re-deliver

a PUBLISH message. This applies to messages where the value of QoS is greater than

zero (0), and an acknowledgment is required. When the DUP bit is set, the variable

header includes a Message ID.

QoS (Position: byte 1, bits 2-1)

This flag indicates the level of assurance for delivery of a PUBLISH message.

The QoS levels are shown in the table below[50].

QoS value bit 2 bit 1 Description

0 0 0 At most once Fire and Forget <=1

1 0 1 At least once Acknowledged delivery >=1

2 1 0 Exactly once Assured delivery =1

3 1 1 Reserved

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Table_2.2_-
http://stanford-clark.com/MQTT/#publish
http://stanford-clark.com/MQTT/#publish

Table 3.5:The QoS levels[50].

RETAIN (Position: byte 1, bit 0)

When set, the Retain flag indicates that the broker holds the message, and

sends it as an initial message to new subscribers to this topic. This means that a new

client connecting to the broker can quickly establish the current number of topics.

This is useful where publishers send messages on a "report by exception" basis, and it

might be some time before a new subscriber receives data on a particular topic. The

data has a value of retained or Last Known Good (LKG)[50].

Remaining Length (Position: byte 2)

Represents the number of bytes remaining within the current message,

including data in the variable header and the payload.

The variable length encoding scheme uses a single byte for messages up to

127 bytes long. Longer messages are handled as follows. Seven bits of each byte

encode the Remaining Length data, and the eighth bit indicates any following bytes in

the

representation. Each byte encodes 128 values and a "continuation bit". For example,

the number 64 decimal is encoded as a single byte, decimal value 64, hex 0x40. The

number 321 decimal (=128x2 + 65) is encoded as two bytes, least significant first.

The first byte is 2+128 = 130. Note that the top bit is set to indicate at least one

following byte. The second byte is 65.

The protocol limits the number of bytes in the representation to a maximum of

four. This allows applications to send messages of up to 268 435 455 (256 MB). The

representation of this number on the wire is: 0xFF, 0xFF, 0xFF, 0x7F.

The table below shows the Remaining Length values represented by increasing

numbers of bytes[50].

Digits From To

1 0 (0x00) 127 (0x7F)

Digits From To

2 128 (0x80, 0x01) 16 383 (0xFF, 0x7F)

3 16 384 (0x80, 0x80, 0x01) 2 097 151 (0xFF, 0xFF, 0x7F)

4
2 097 152 (0x80, 0x80, 0x80,

0x01)

268 435 455 (0xFF, 0xFF, 0xFF,

0x7F)

Table 3.6:Remaining Length values[51].

Remaining Length encoding is not part of the variable header. The number of

bytes used to encode the Remaining Length does not contribute to the value of the

Remaining Length. The variable length "extension bytes" are part of the fixed header,

not the variable header.

3.2. Variable header

Some types of MQTT Control Packets contain a variable header component. It resides

between the fixed header and the payload. The content of the variable header varies

depending on the Packet type. The Packet Identifier field of variable header is

common in several packet types[51].

 Packet identifier

The variable header component of many of the Control Packet types includes a 2 byte

Packet Identifier field. These Control Packets are PUBLISH (where QoS> 0),

PUBACK, PUBREC, PUBREL, PUBCOMP, SUBSCRIBE, SUBACK,

UNSUBSCRIBE, UNSUBACK.

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

Table 3.7:Packet Identifier bytes[50].

MQTT Control Packet types that require a Packet Identifier are listed in Table 3.8:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Table_2.5_-

MQTT Control Packet type Packet Identifier field

CONNECT NO

CONNACK NO

PUBLISH YES (If QoS> 0)

PUBACK YES

PUBREC YES

PUBREL YES

PUBCOMP YES

SUBSCRIBE YES

SUBACK YES

UNSUBSCRIBE YES

UNSUBACK YES

PINGREQ NO

PINGRESP NO

DISCONNECT NO

Table 3.8:MQTT Control Packet typethat contains a Packet Identifier[50].

3.3. Payload

Some MQTT Control Packet types contain a payload as the final part of the

packet, as described in Chapter 3. In the case of the PUBLISH packet this is the

Application Message.

MQTT Control Packet type Payload

CONNECT Required

CONNACK None

PUBLISH Optional

PUBACK None

PUBREC None

PUBREL None

PUBCOMP None

SUBSCRIBE Required

SUBACK Required

UNSUBSCRIBE Required

UNSUBACK None

PINGREQ None

PINGRESP None

DISCONNECT None

Table 3.9: Payload for each Message Types[51].

4. Some of command messages

4.1. CONNECT(Client requests a connection to a Server)

After a Network Connection is established by a Client to a Server, the first

Packet sent from the Client to the Server MUST be a CONNECT Packet.

A Client can only send the CONNECT Packet once over a Network

Connection. The Server MUST processes a second CONNECT Packet sent from a

Client as a protocol violation and disconnects the Client[50].

 The fixed header is represented in the table below:

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (1) Reserved

 0 0 0 1 0 0 0 0

byte 2… Remaining Length

Table 3.10: Fixed Header of the CONNECT Packet[51].

The variable header for the CONNECT Packet consists of four fields in the

following order: Protocol Name, Protocol Level, Connect Flags, and Keep Alive.

 Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (4) 0 0 0 0 0 1 0 0

byte 3 ‘M’ 0 1 0 0 1 1 0 1

byte 4 ‘Q’ 0 1 0 1 0 0 0 1

byte 5 ‘T’ 0 1 0 1 0 1 0 0

byte 6 ‘T’ 0 1 0 1 0 1 0 0

Protocol Level

byte 7 Level(4) 0 0 0 0 0 1 0 0

Connect Flag

 User

Name

Flag

Password

Flag

Will

Retain

Will QoS Will

Flag

Clean

Session

Reserved

byte 8 X X X X X X X 0

Keep Alive

byte 9 Keep Alive MSB

byte 10 Keep Alive LSB

Table 3.11: Variable Header of the CONNECT Packet[51].

The payload contains one or more encoded fields. They specify a unique

Client identifier for the Client, a Will topic, Will Message, User Name and Password.

All but the Client identifier are optional and their presence is determined based on

flags in the variable header.

Response

The broker sends a CONNACK message in response to a CONNECT message

from a client.If the client does not receive a CONNACK message from the broker

within a "reasonable" amount of time, the client closes the TCP/IP socket connection,

and restarts the session by opening a socket to the broker and issuing a CONNECT

message. A "reasonable" amount of time depends on the type of application and the

communications infrastructure[50].

4.2. PUBLISH (Publish message)

A PUBLISH Control Packet is sent from a Client to a Server or from Server to

a Client to transport an Application Message.

Fixed header

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (3) DUP

flag

QoS level RETAIN

 0 0 1 1 X X X X

byte 2 Remaining Length

Table 3.12: Fixed Header of the PUBLISH Packet[50].

Variable header

The variable header contains the following fields in the order: Topic Name,

Packet Identifier.

Payload

The Payload contains the Application Message that is being published. The

content and format of the data is application specific. The length of the payload can be

calculated by subtracting the length of the variable header from the Remaining Length

field that is in the Fixed Header. It is valid for a PUBLISH Packet to contain a zero

length payload[51].

 Response

The receiver of a PUBLISH Packet MUST respond according to Table below

Expected Publish Packet response as determined by the QoS in the PUBLISH

Packet[50].

QoS Level Expected Response

QoS 0 None

QoS 1 PUBACK Packet

QoS 2 PUBREC Packet

Table 3.13:Expected Publish Packet response[51].

 Actions

The Client uses a PUBLISH Packet to send an Application Message to the

Server, for distribution to Clients with matching subscriptions.

The Server uses a PUBLISH Packet to send an Application Message to each

Client which has a matching subscription.

4.3. SUBSCRIBE (Subscribe to topics)

The SUBSCRIBE Packet is sent from the Client to the Server to create one or

more Subscriptions. Each Subscription registers a Client’s interest in one or more

Topics. The Server sends PUBLISH Packets to the Client in order to forward

Application Messages that were published to Topics that match these Subscriptions.

The SUBSCRIBE Packet also specifies (for each Subscription) the maximum QoS

with which the Server can send Application Messages to the Client[50].

Fixed header

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (8) Reserved

 1 0 0 0 0 0 1 0

byte 2 Remaining Length

 Table 3.14: Fixed Header of the SUBSCRIBE Packet[51].

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Table_3.3_-
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Table_3.3_-

Bits 3,2,1 and 0 of the fixed header of the SUBSCRIBE Control Packet are reserved

and MUST be set to 0,0,1 and 0 respectively. The Server MUST treat any other value

as malformed and close the Network Connection.

 Variable header

The variable header contains a Packet Identifier

Payload

The payload of a SUBSCRIBE Packet contains a list of Topic Filters

indicating the Topics to which the Client wants to subscribe. The Topic Filters in a

SUBSCRIBE packet payload MUST be UTF-8 encoded strings.

A Server SHOULD support Topic filters that contain the wildcard

characters. If it chooses not to support topic filters that contain wildcard characters it

MUST reject any Subscription request whose filter contains them.

Each filter is followed by a byte called the Requested QoS. This gives the maximum

QoS level at which the Server can send Application Messages to the Client.

 The payload of a SUBSCRIBE packet MUST contain at least one Topic Filter / QoS

pair. A SUBSCRIBE packet with no payload is a protocol violation.

The requested maximum QoS field is encoded in the byte following each

UTF-8 encoded topic name, and these Topic Filter / QoS pairs are packed

contiguously[51].

 Response

When the Server receives a SUBSCRIBE Packet from a Client, the Server

MUST respond with a SUBACK Packet.

 The SUBACK Packet MUST have the same Packet Identifier as the

SUBSCRIBE Packet that it is acknowledging[50].

4.4. DISCONNECT (Disconnect notification)

The DISCONNECT Packet is the final Control Packet sent from the Client to

the Server. It indicates that the Client is disconnecting cleanly.

Fixed header

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (14) Reserved

 1 1 1 0 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

Table 3.15:Fixed Header of the DISCONNECT Packet[50].

The Server MUST validate that reserved bits are set to zero and disconnect the Client

if they are not zero.

Variable header

The DISCONNECT Packet has no variable header.

Payload

The DISCONNECT Packet has no payload.

Response

After sending a DISCONNECT Packet the Client:

 MUST close the Network Connection.

 MUST NOT send any more Control Packets on that Network Connection.

5. Development environment used

To realize our system, we used TTCN-3 language, and some tools of

development. We will describe our development environment in the following

subsections:

 TITAN eclipse

Eclipse Titan is a TTCN-3 compilation and execution environment with an

Eclipse basedIDE.

Titan consists of a core part, executing in a Unix/Linux-like environment and a set of

Eclipse plug-ins.[52]

In the figure 3.1 show the approach how it work:

1- Translate the standards of MQTT to TTCN-3 language, with eclipse

titan.

2- Titan sends the test of the MQTT messages to the system under test

(SUT).

3- SUT response to the test message and send the response to titan.

4- When titan receives the response from SUT, it will send a verdict

(pass/fail/over time) to show the result.

Figure 3.1:Simplified model of the approach[53]

6. Deriving the tests

As we mentioned earlier, the goal of our system is to do a formal verification of the

implementation of the MQTT using TTCN-3. The implementation of the system will

be done by the TTCN-3 language through Eclipse Titan.

We have followed the following steps:

 Specify the standards of MQTT packet and message by TTCN-3

The first step in our implementation is specified the standards of

(MQTT_v3_1_1_Message), as we know MQTT is a binary based protocol were the

control elements are binary bytes and not text strings, for that we declared the types:

octetstring and bitstring.

Figure 3.2: Declared the types.

We need to defined the QoS (we choose enumerate type for it) , the UTF-8 encoding

(because the topic names, Client ID, User names and Passwords are encoded as UTF-

8 strings) , the header and MQTT identifier.

Figure 3.3: Defined the imports of the message structure.

Now we move to specify the connect message as show in figure bellow:

Figure 3.4: An Example of CONNECT Message with TTCN-3.

The description of each different type of message is not the some even though they

share the same control packet structure.

The data of publish and subscribe message is different than the data of connect

message.

Figure 3.5: An Example of PUBLISH Message with TTCN-3.

Figure 3.6: An Example of SUBSCRIBE Message with TTCN-3.

 Create the union type for the MQTT message

After we specify the messages of MQTT, we create the union type which collect all

the 14 massage and create another union type (MQTT_v3_1_1_ReqResp) for the 14

types of valid MQTT messages.

Each possible MQTT messagefalls within the scope of the TTCN-3 unions defined in

figure 3.7. More specifically, the message can either be treated as an octet (byte)

string, or as a structure, which on its own is one of the 14 types of valid MQTT

messages.

Figure 3.7: TTCN union type of MQTT messages

 Port type

Ports facilitate communication between test components and between test

components and the test system interface. In our implementation we used port type for

the communication between the TTCN-3 code and the implementation of MQTT.

We introduce two port types: IntegerInputPortType is the type of a port that acts as

input for integers (we will represent sendingpacket request as

integers). CharstringOutputPortType is the type of a port that serves to output integer

(we will represent a receiving packet).

The component type defines which ports are associated with a component, he port

names in a component type definition are local to that component type.

MQTTComponentType is the type of the MQTT message. aMQTT message has two

ports: one to send packet message (integers) and one to receive packet message

(integers).

Figure 3.8:Describe figure of component type and port type in our system

 Declared function

1) Function VerifyConnectMsgFunction()

 It runs on a component of type MyMQTT and therefore has access to the ports of a

MQTT message. In this function we put the correct message packet and compared

with the message packet which we will test (MQTT implementation already exist).

Figure 3.9: Function to verify the standards of CONNECT mqtt message

In an infinite loop the MQTT message performs the following steps:

while (true) {

InputPort.receive(integer:?) ->value client;

//We test each byte using if else statement.

...

int:= 0;

OutputPort.send(int);

 }

}else{

int:= 1;

OutputPort.send(int);

 }

 };

Receives an arbitrary integer from the port InputPort its value is redirected to the

variable client to check if the client sent a correct message format of the CONNECT

message

If the client send CONNECT message correctly, the variable int (integer) will take the

value 0 else it will the value 1 that means the client not respect the standards of the

message.

2) functionTestFunction():

The alt construct, similar to theswitch/case construct in some programming languages.

In the case of TTCN-3, it waits for one of the specified events to happen - either a

response is received, the session is disconnected or a timer expires.

Figure 3.10:Test Function using alt statement of the message

For simplicity, the code as signing the int variable to the value of the Return Code in

the CONNACK message is skipped.

The test verdict to pass in the component is means that is everything is ok.

We declared a timer variable t starts a one second timer (Timer t). if t pass than 1

second it will fall in case of time is over as showing bellow:

[] t.timeout {

 log(" no answer received");

 setverdict(fail);

 }

 Test cases

In TTCN-3, test cases are a special kind of function. Test cases define the

behaviour, which have to be executed tocheck whether the SUT passes a test or not

In the test case definition we create, connect and start the components:

Figure 3.11: Test case of our system

 Creates a component of type MQTTComponentType :

MQTT :=MQTTComponentType.create;

 Connects the output port and with the input port of the MQTT message:

connect(MQTT:OutputPort, Mqtt:InputPort);

 Starts the MQTT component and defines TestFunction() as its behavior:

MQTT.start(TestFunction());

 Because the exchanging message is in an infinite loop, we wait 6.0 seconds

and shut it down:

timer t; t.start(6.0); t.timeout;

MQTT.stop;

7. Conclusion

The purpose of the implementation chapter is to present the different practical

aspects of our system. Despite the difficulties we encountered in connecting the

"Eclipse Titan" environment and the "TTCN-3", which was a new language for us,

but we provided appropriate solutions for achieve our goal.

General conclusion

General conclusion

The Internet of Things (IoT) is defined as a paradigm in which objects

equipped with sensors, actuators, and processors communicate with each other to

serve a meaningful purpose.

In order to achieve the full potential of IoT, several software components have to be

(re)engineeredwith adequate quality of service levels taking into consideration the IoT

context constraints. Forexample, several communication protocols already exist and

have been designed exclusively for small devices than previous protocols. One of

these protocols is the message-queue telemetry transport(MQTT), which is designed

to work on any quality of network and where the largest part of the processing is done

by the server, not by the devices, the things, which can and should remain fairly small

and simple.It’s have different implementations.

This kind of implementations of networking protocol stacks is in need ofthorough

testing in order to ensure not only its security, also its conformance.

For that we use a new methods to formally assess the implementation of a

communication protocol of MQTT adhere to the standard, this methods is testing by

TTCN-3.

In our research:

 We identified several possible formal methods which were shown to be

suitable for testing of communication protocols (MQTT).

 We specify the details of the protocol MQTT from the structure control

packet of each message packet to facilate programming with TTCN-3

whichhas the ability not only to describe the expected behaviour of a given

protocol, but also to execute the defined tests.

 We discussed the standards of the MQTT messages and how to interpret it

into TTCN-3 Modules with examples to test the power of our system.

 We use as possible the cases of test to give our system more reliable.

 We don’t verify all the MQTT messages, we just verify: CONNECT,

PUBLISH and SUBSCRIBE command message.

We can cite some perspectives for researchers who want to use our work where they

can improve our verification by implementing with another programming languageor

to complete our working which we set it in the first of our research but we can’t make

it because we fall in the difficulties.

Another perspective to move to a very recent and very interesting area is any other

protocol governing data exchange of the Internet of Things can be testedDepending

onwhat we explained. The modeled message exchange can be mapped into a TTCN-3

test case and fired against a real system.

Bibliography

Thanks…………………………………………………………………………............

Abstract………………………………………………………………………………...

Glossary………………………………………………………………………………...

List of Figure…………………………………………………………………………...

List of Table………………………………….....……………………………………...

« General introduction »

General introduction…………………………………………………………………... 1

« Chapter 1: Internet of things »

1. Introduction……………………………………………………………………...... 3

2. Internet of things (IoT)…………………………………………………………...... 3

2.1. Characteristics of the IoT…………………………………………………….... 5

2.2. IoT Application……………………………………………………………........ 6

2.3. IoT Standards and Protocols…………………………………………………... 7

2.3.1. Application Protocols…………………………………………………….. 9

a. Coap……………………………………………………………….................... 9

b. XMPP………………………………………………………………................. 10

c. AMQP………………………………………………………………................ 10

d. DDS………………………………………………………………..................... 10

e. MQTT…………………………………………….. 11

3.2.2. Other protocols……………………………………………...........…........ 13

3. Advantages and Disadvantages of IoT…………………………………….……..... 17

4. IoT challenges…………………………………………………………………......... 19

5. Solutions for IoT…………………………………………………………………..... 20

6. Conclusion……………………………………………………………...................... 20

« Chapter 2: Software Testing »

1. Introduction………………………………………………………........................... 21

2. Software testing………………………………………………………………......... 21

3. Objectives of testing……………………………………………........ 21

4. Verification and Validation……………………………………………...…............ 21

5. Levels of testing………………………………………………...............………..... 22

5.1. Unit testing…………………………………………... 22

5.2. Integration testing………………………………... 22

5.3. System testing…………………………………..…... 22

5.4. Acceptance testing…………………………………………………………….. 23

6. Categories of testing types…………………………………………………………. 23

6.1. Black box testing………………………………………………………………. 23

6.2. White box testing……………………………………………………………..... 24

6.3. Gray box testing……………………………………………………………....... 24

6.4. Non-Functional testing………………………………………………………..... 25

6.4.1. Performance testing……………………………………………………...... 25

6.4.2. Security testing…………………………………………………………..... 27

6.4.3. Recovery testing…………………………………………………………... 27

7. Limitations of testing………………………………………………………............. 28

8. TTCN-3 language………………………………………………………................ 28

8.1. Key TTCN-3 language features………………………………………........... 28

8.2. Language basics…………………………………………………………….. 29

8.3. The concepts of TTCN-3……………………………………………............. 30

8.3.1. Subtype………………………………………………………………..... 30

8.3.2. Components……………………………………………………......….... 30

8.3.3. Test case………………………………………………………............... 31

8.3.4. Templates……………………………………………………….............. 31

8.3.5. Alt statement………………………………………………………........ 32

9. Conclusion……………………………………………………………......................... 33

« Chapter 3: Conception and

Implementation of system »

1. Introduction…………………………………………………………….................. 34

2. Structure of an MQTT control packet…………………………………………...... 34

3. MQTT message format………………………………………………………….... 35

3.1. Fixed header………………………………………………………….............. 35

3.2. Variable header………………………………………………………............. 39

3.3. Payload………………………………………………………………............. 40

4. Some of command message……………………………………………................. 41

4.1. CONNECT………………………………………………………………....... 41

4.2. PUBLISH………………………………………………………………......... 42

4.3.SUBSCRIBE………………………………………………………..............… 44

4.4. DISCONNECT…………………………………………………………........ 45

5. Development environment used..

46

6. Deriving the test………………………………………………................……......

47

7. Conclusion……………………………………………………………................... 54

« General conclusion »

General conclusion…………………………………………….......………………… 55

« Bibliography»

Bibliography…………………………………………………….......…………………

	Abstract
	A
	D
	E
	E-CARP: Enhanced CARP
	ETSI-MTS: ETSI Methods for Testing and Specification
	F
	H
	S
	W
	WiFi: wireless fidality
	X
	General introduction
	General introduction

	Chapter 1
	Internet of things
	1. Introduction
	2. Internet of things (IoT)
	2.1. Characteristics of the internet of thing

	a. CoAP (Constrained Application Protocol)
	b. Extensible Messaging and Presence Protocol (XMPP)
	c. Advanced Message Queuing Protocol (AMQP)
	d. Data Distribution Service (DDS)
	e. MQTT (Message Queue Telemetry Transport)
	 Architecture Challenge
	 Technical Challenge
	 Hardware Challenge
	 Privacy and Security Challenge
	 Standard Challenge
	 Business Challenge

	Chapter 2
	Software testing

	Chapter 3
	Conception and implementation of system
	Table 3.1:Structure of an MQTT Control Packet[51].

	3.1. Fixed header
	Table 3.2: Fixed Header Format[51].
	MQTT Control Packet type (Position: byte 1, bits 7-4)
	Table 3.3:MQTT Control Packet type[50].

	Flags
	Table 3.4:Flag Bits[50].
	Table 3.5:The QoS levels[50].

	Remaining Length (Position: byte 2)
	Table 3.6:Remaining Length values[51].

	3.2. Variable header
	Some types of MQTT Control Packets contain a variable header component. It resides between the fixed header and the payload. The content of the variable header varies depending on the Packet type. The Packet Identifier field of variable header is comm...
	1.
	2.
	3.
	3.1.
	3.2.
	 Packet identifier
	Table 3.7:Packet Identifier bytes[50].

	MQTT Control Packet types that require a Packet Identifier are listed in Table 3.8:
	Table 3.8:MQTT Control Packet typethat contains a Packet Identifier[50].

	3.3. Payload
	Some MQTT Control Packet types contain a payload as the final part of the packet, as described in Chapter 3. In the case of the PUBLISH packet this is the Application Message.
	Table 3.9: Payload for each Message Types[51].
	4. Some of command messages

	4.1. CONNECT(Client requests a connection to a Server)
	Response

	1.
	2.
	3.
	4.
	4.1.
	4.2. PUBLISH (Publish message)
	Fixed header
	Variable header
	Payload
	Response
	Table 3.13:Expected Publish Packet response[51].

	Actions
	Fixed header (1)
	Payload (1)
	Response (1)

	1. (1)
	2. (1)
	3. (1)
	4. (1)
	4.1. (1)
	4.2.
	4.3.
	4.4. DISCONNECT (Disconnect notification)
	Fixed header
	Variable header
	Payload
	Response
	To realize our system, we used TTCN-3 language, and some tools of development. We will describe our development environment in the following subsections:
	1.
	2.
	3.
	4.
	5.
	As we mentioned earlier, the goal of our system is to do a formal verification of the implementation of the MQTT using TTCN-3. The implementation of the system will be done by the TTCN-3 language through Eclipse Titan.
	We have followed the following steps:
	 Specify the standards of MQTT packet and message by TTCN-3
	 Test cases
	In the test case definition we create, connect and start the components:
	Figure 3.11: Test case of our system
	7. Conclusion
	The purpose of the implementation chapter is to present the different practical aspects of our system. Despite the difficulties we encountered in connecting the "Eclipse Titan" environment and the "TTCN-3", which was a new language for us, but we prov...

	General conclusion
	General conclusion
	Bibliography

