Université Mohamed Khider de Biskra Faculté
ﬁ des Sciences et de la Technologie Département

de Génie électrique
D

"N
Rdd

MEMOIRE DE MASTER

UNIVERSITE
DE BISKRA

Filiere : Electrotechnique

Option : Commande Electrique

Réf :

Présenté et soutenu par :

MANSOURI Zakaria

Le : 06 juillet 2019

Realization of PWM control interface
for a single-phase full-bridge inverter
controlled by Arduino board

Jury :
Mr. GOLEA AMMAR Prof Université de Biskra Président
Mr. DENDOUGA ABDELHAKIM MCA Université de Biskra Encadreur
Mr. MOHAMMEDI MESSAOUD MCB Université de Biskra Examinateur

Année universitaire : 2018-2019

dpadd) &k jRagall &g i) Jad) Ay) ggand)
République Algérienne Démocratique et Populaire

ealad) Canll g Aad) andadl) 3) 3 g

Ministére de ’enseignement Supérieur et de la Recherche scientifique

Université Mohamed Khider Biskra
Faculté des Sciences et de la Technologie
Département de Génie Electrique
Fili¢re : Electrotechnique

Option : Commande Electrique

Mémoire de Fin d'Etudes
En vue de ’obtention du diplome :

MASTER
Theme

Realization of PWM control interface for a single-phase full-bridge
inverter controlled by Arduino board

Présenté par : Avis favorable de ’encadreur :

MANSOURI Zakaria Mr DENDOUGA Abdelhakim

Avis favorable du Président du Jury
GOLEA Ammar

Cachet et signature

dpadd) &k jRagall &g i) Jad) Ay) ggand)
République Algérienne Démocratique et Populaire

ealad) Canll g Aad) andadl) 3) 3 g

Ministére de ’enseignement Supérieur et de la Recherche scientifique

Université Mohamed Khider Biskra
Faculté des Sciences et de la Technologie
Département de Génie Electrique
Fili¢re : Electrotechnique

Option : Commande Electrique

Theme :
Réalisation d'une interface de commande MLI pour un onduleur

monophasé en pont controler par Arduino

Proposé par : MANSOURI Zakaria
Dirigé par: DENDOUGA Abdelhakim

Abstract

The current project has as major aim the design of a single-phase inverter for educational purposes.
The main distinctive feature is the digital implementation of the PWM modulation with a graphical user
interface.

Since it’s lunch in 2005, Arduino it is a highly recommended option for the first approach to digital
programming for students. In this work we aim to use the Arduino to make it easy to generating PWM
control signal for single-phase inverter.

There are already circuits available for generating PMW signals, we went further in customizing the
way PWM is generated, and made a desktop application that provides a complete control of the generated
PWM signal.

At first, complete theoretical analysis will be made, including its applications and basic elements.
Afterwards, we will be defined the specific characteristics of the desired inverter, and select components

required.

An essential part of the work relies on the programming desktop interface. For this reason, an insight
into the technologies available will be made. Some options for will be discussed and the most suitable
technology will be selected.

Finally, the circuit will be implemented in a protoboard. And measurement of the control signals will

be done, and compared with the theoretically calculated signals.

ueidls

Dlanal LS (oo s 5l 5 jaall Al Apadail) (il 23U shall salal 568 GSle apanai N el g 5 il gy
p23Aue dgal 5 PWM (A sall (a e dalad) 5L

At) Caagd 8 Saall oda 8 DUl pad 1) A) 3 3Ll 43 o 5 153 Arduino I 2 <2005 sle ool dia
skl galal (Sl PWM a8a3 5 L) ad 55 Jagasl Arduino)

Gl £LiL Ui g « PWMelid) 48 yha anads 8 Uked Jaall 138 4 « PMWI LS 0l il @l jla asa g e a2 e
L sli) &5 A PWM 58] 8 SlalS U gy aiSa s

Badaall (ailiadll Cay pad ats @l aay Zpull) o jualic 5 adlipdad @l 8 Lay (JalS (g ka3 il o) ja) sl cdglag) b
A staall Dl sSall ypaai g e sllaall (Sl

Alie pips Aaliall colyill B85 3 a0 00 2l ccamal) 3¢l SAl o dae Agal s o aaing Jead) o il £ 30
e Dla YT AE) Al al g <l JLall (axy

4 gl ol JLEY) pa 4 jlia g caSatll <l L8] (8 A s A0 5V A gl 35 lall 2 s gkl ¢ Sl (ha elgEY) ey
Lk

Thanks

Above all, we thank God Almighty for giving us courage, and health during all these years and that thanks
to him this work could be realized.

Our thanks also go to the Dr. DENDOUGA Abdelhakim, for helping me writing this memoir as well as
monitoring the process of this work and preaching us.

I also thank the members of the jury who increases the honor of residing my work

Dedications

Dedicate this work to the dearest people to my heart my mother and
my father who always helped me to consecrate.
To my brothers and sisters.
To my friends, my casemates.

To all my teachers.

List of tables

Chapter 1
TABLE |- 1 TYPES OF FILTERS AND MAIN FEATURES

Chapter 11

TaBLE II- 1 ARDUINO UNO TECH SPEcs [10]......

List of figures

Chapter 1

FIGURE |- 1 RING AUTOMOTIVE VOLTAGE TRANSFORMER INVERTER POWER SOURCE PRO 2100Wuiiiiiiiiiiiieieeiie et ceeie e eeee e evin e eaaans 2
FIGURE |- 2 EXAMPLES OF APPLICATIONS OF POWER INVERTERS ... uttttuuettutasesesunseresunsessunnsesssunsesssnnsesesnnsesssnnsesesnnsesssnnsesssnnsesesneesesnsessnnnns 3
FIGURE |- 3 VOLTAGE SOURCE INVERTER. [4] ciieieiieieee e e ettt ettt eeeeeeaeeeeeaeaaaeaeaaaaaeaaenns 3
FIGURE |- 4 SINGLE-PHASE CURRENT-SOURCE INVERTER 1vuuuttttuueetuunsertsunsesesunsesesunsesssnnsesssunsesssnnsesesnnsesssnnsesssnnsesssnssesssnnsesssnsesssnsenssonns 4
FIGURE |- 5 SQUARE WAVE, MODIFIED SINE WAVE AND PURE SINE WAVEuittuueiettrtneertuuseresuseresnsesssnesesesnsesesnnsesssnnsessmneessmonsesssonsesnmnns 4
FIGURE |- 6 MODIFIED SINE WAVE INVERTER OUTPUT . .tttuuittttueetttnseetsunsesesunsesssunsesssnnsesesunsesssnnsesssnnsesssnnsesesnnsesssnssesssnseresonsesssonsesnnonns 5
FIGURE |- 7 PURE SINE WAVE INVERTER OUTPUT ..ttttuietttneetttnseetsunsestsunsesssnnsesesunsesssnssesssunsesssnssesssnnsesesnnsesesnnsesssnesesssnsesssnsesssonsessnonns 5
FIGURE |- 8 SINGLE-PHASE HALF-BRIDGE VOLTAGE INVERTER 1vuuutttttusertuunsesesunsertsunsessunnsesesunsesssunsesesnnsesssnnsesesnnsesssnnsesssnnsesssonsesssnsensnonns 6
FIGURE |- 9 SINGLE-PHASE FULL H-BRIDGE VOLTAGE INVERTER ..uettttueetsunseeesunsestsunsestsnnsesesunsesssnnsesesnnsesssnsesssnnsesssnnsssssnssesssonsesssonsessnnns 7
FIGURE |- 10 FIXED DUTY CYCLE CONTROL SIGNAL «.vvtuueetuuuertuunsertsunsesesunsesssnnsesssunsesssussesssunsesssnnsesssnnsesssnnsssesnnsesssnnsssesnsesesonsesssonsessnonns 7
FIGURE |- 11 SHIFTED DUTY CYCLE CONTROL.ttuuutetttueetuunseetusnsesssunsesssnnsesssunsesssussesssunsesssunsesssnnsesssnnsesesnnsesesnnsesesnnsesssssesssansesssonsssnsonns 8
FIGURE |- 12 THE SINUSOIDAL PULSE-WIDTH MODULATION IMETHOD .uutttuuuetiuunsererunsereuunsesesunsesssnnsesesnnsesssnnsesesnnsesssnssesssnsesssnsesssnsessnnns 8
FIGURE |- 13 FUNCTIONAL SCHEMATIC OF A DRIVER .uuietvuuittutnsertsunsesesusesesunsesssunsesssunsesssunsesssnnsesssnnsesssnnsesessnsesssnesesssnseresonsesssonsesnnonns 9
Chapter 11

FIGURE l1- 1 ARDUINO UNO REV3 BOARD [10]...uuieieeieeeeeeeee ettt ettt eeeeeeeeeaeeaeeans 11
FIGURE II- 2 THE ATMEL” ATMEGA328P BLOCK DIAGRAM [11]..veetiitteeeeeeete et eete e see st teeaesae et eeaesaeseeeeeeaesaesasessessesaesasasesaesaeeanans 12
FIGURE I1- 3 ARDUINO UNO POWER SOURCES ... tttttuntettteeettueseettnnseesssesesssuesessssesessssnsesssunsessssnsssssunsssssnnsesssnsesssnesesesnesesesnesssssnnsessnns 13
FIGURE |1- 4 ATMEGA168/328P-ARDUINO PIN MAPPING [12] ..eeeeieeuirieieeeeeeeeiireeeeeeeeeeeittteeeeeeeeeeeistaseeeeeeseeesssseeeeeeesesssssseeseessesssrens 14
FIGURE [1- 5 THE ARDUINO IDE INTERFACE ...evtuuiiittieieittseettieeettteeeetuseesttasesesteseesssaesssunseessunssesssnsssssnnseessnnsesssunsesesnnsesesnnsesesnnsessnns 15
FIGURE I1- 6 THE BUTTONS UNDER THE MEENU TAB IN ARDUINO IDE ... ciiiiiiiiiie ettt e et s e e et s e e et s e e et s e s et s e eaaa s eeaaen 16
FIGURE I1- 7 THE TEXT EDITOR IN ARDUINO IDE .. ittt ettt e e et e e ettt e e e et e e e et s e e eta s e e eta s eeasanseaesnnsaeasnnsaennnn 17
FIGURE I1- 8 THE OUTPUT PANE IN ARDUINO IDE . .oiuiiiiiiiiiiiiie ettt ettt s e et e e ettt s e e et e e e et e e e et e e e eaaa s eeettnsaeasansasasnnsaeesnnsaensen 17
FIGURE I1- 9 SERIAL COMMUNICATION BETWEEN COMPUTER AND ARDUINO ...etttuuietttnertutnreettusertutesesssusesssnesesssnsesssnesesssnnsesssnesesssnnsesenns 20
FIGURE I1- 10 A SIMPLE RECURSIVE JAVASCRIPT FUNCTION ...etttuniettuuseetuueseeesuesesessnsesssnssesssunsesssunsesssunsssssnnsesssnnsesssnsesssnnsesssnnsesssnnssssnns 21
Chapter 111

FIGURE 11 1 DIAGRAM OF THE PROJECT tutuueetttuneetuuueetsunseessunseessunsessssesessssasessssnsessssssesssunsessssnssessunsssssnnsesssnnsesesnesesesnnsesssnesssssesesenns 23
FIGURE 11 2 THE DESKTOP INTERFACE 1etvtuueetttuneettteeessnnseessunsesssunsessssnssesssssessssnsessssssessssnsessssnssssssnsssssnnsesssnnsesssnnsesesnnsesssnesssssnesessnns 24
FIGURE I1l- 3 THE DESKTOP INTERFACE: SEND TO ARDUINO BUTTON ..uuiiiiiiiiiiiieieiiiseeiiieeeettieestttsesetteeesssnnsesssnnsesssnnsesesnnsesssnnsesssnnsesenns 24
FIGURE I11- 4 THE DESKTOP INTERFACE: SIGNALS PARAMETERS ...uutettuueetuunseessunseeesnnsesssunsesssunsesssusessssnsesssusesssunsesssnsesssnnsesssnesesssnnsessnns 25
FIGURE I1l- 5 THE DESKTOP INTERFACE: SIGNALS PARAMETERS: THE GENERAL PARAMETERS ...eetvuuneetutnserreunseresnnserssnsesssnnsesesnnsesssnesesssnnsesenns 25
FIGURE I1l- 6 THE DESKTOP INTERFACE: COMPARISON RESULT OUTPUT 1.ttttunietuuneeeutnserrsunsesssunsesssuesesssnnsesssnnsesssnnsesssnsesesnnsesssnesesssnesessnns 26
FIGURE I11- 7 111.4 ARDUINO PROGRAM: VARIABLES SECTION ..tvuuueetuuueeruuneerssnsesesunsesssnnsesssnnsesssunsessssnsesssunsesssnnsesssnnsesssnnsesssnesesssnnsessnns 26
FIGURE I11- 8 ARDUINO PROGRAM: SETUP SECTION 11tuutetuuuneetuuneessunsessssesessssasessssssessssnsessssnsesssnnssssssnsssssnnsesssnnsesssnsesssnnsesssnesssssnnsessnns 27
FIGURE I11- 9 ARDUINO PROGRAM: LOOP FUNCTION SECTION «evtuuietuuuneeruunseersuneeeessnsesssnnsesssunsessssnsessssnsesssunsesssnnsesssnnsesssnnsesssnnsssssnnsessnns 27
FIGURE I11- 10 ARDUINO PROGRAM: SERIAL LISTENING SECTION ..utettuuneeruunnseruunsesessnsesssnnsesssunsesssnnsesssunsesssnnsesssunsesssnnsesssnnsesssnesesssnessssnns 28

FIGURE [11= 11 THE CONTROL CIRCUIT 1uvvunettnertueetsneesueessneesuessnesssnsssnesssnsssnesssnssssnsssnssssnsssnssssnsssnesssnsssnesssnsesnesssnsessnessneessnssseessneennns 29

FIGURE [l1- 12 SCHEMATIC REPRESENTATION OF THE CONTROL CIRCUIT 1vvuuettnertuneesnersuersneesnessneessnessnesssnsssnesssnsesnesssnsessnessnesssnsssnesssnsennns 29

FIGURE 111- 13 THE CIRCUIT FOR TR2L1I0 DRIVER «.evtuuueeeeetttttiiaeeeeeettteiiaeeeeeeeettsuaa s s eeeeetassaa s e e eaeeeasaa e e eeeeeeeanna e eeeeeeessnanseeeeeeeesnnnnn 30
FIGURE 111- 14 THE SCHEMATIC FOR H-BRIDGE CIRCUIT ...t eetttttuuieeeettttntuieeeeetetnsuuaaeeeseeassuaaaeeeeteessuaaaeeaeeessnnaaaeeeeeeessnannseeeeeensnnnnn 30
FIGURE 111- 15 PROJECT SETUP IN THE LABORATORYeeeeetetutuuueeeerettssuuaeeeeseeassuuasseeeseeessunaneeeeeeessnnnnsaeeesetssnnanaeeeeeeessnnnnsseeeeeeesnnnns 31
FIGURE I11- 16 DESKTOP INTERFACE PREVIEW: SQUARE WAVES ... uteeettttntuuaeeeeetttunuuaeeeeeetassuaesseeeeetessuuaaeeeeeessnnanseeeeeeessnnnsseeeeeeesnnnnn 31
FIGURE [l1- 17 OSCILLOSCOPE OUTPUT (LOMS): SQUARE WAVES ..eeeeeeuuurrreeeeeesssaersseeeeeessssssssseeesssssssssssssessssssssssssssssessssnssssssssesssssnssssnnes 32
FIGURE [11- 18 OSCILLOSCOPE OUTPUT (5MS): SQUARE WAVES ...eeeeeieuutrreeeeeessssersseeeeeesssssssssseesssssssssssesssssssssssssssesessssnsssssssesesssnsssnnes 32
FIGURE [11- 19 OSCILLOSCOPE OUTPUT (LOUS): SQUARE WAVES ...ceeeeeeuurrreereeesssaerrseeeesessssssssseeesssssssssssseessssssnsssssssssessssssssssssesssssnssssnes 32
FIGURE I11- 20 DESKTOP INTERFACE PREVIEW: IMIODIFIED SINE WAVE ...ctitttuiieeeeeetttnuueeeeeeetastuaaseeeeeeessauaseeeeeessnuaaseeeeeeesnnnnsseeeeeessnnnnn 33
FIGURE I11- 21 OSCILLOSCOPE OUTPUT (10MS): IMIODIFIED SINE WAVE «..ceeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeaeaaaaaeaeeaasaseeeaeesesesessseeseasesaeaesaenanns 33
FIGURE I11- 22 OSCILLOSCOPE OUTPUT (5MS): IMIODIFIED SINE WAVE «..ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeaeaaaeaeeaeeeaeaeaeeaaeaeesaseeeeesesasaeseeneens 33
FIGURE I11- 23 OSCILLOSCOPE OUTPUT (1MS): IMODIFIED SINE WAVE ...cceeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeeeaeaeaeaeeaaeaeaaaeeasaeeeesaaeeseesesasasseasaens 34
FIGURE Ill- 24 DESKTOP INTERFACE PREVIEW: PURE SINE WAVE (CARRIER PERIOD=0002S) ...ccceee e 34
FIGURE Ill- 25 OsCILLOSCOPE OUTPUT (1MS): PURE SINE WAVE (CARRIER PERIOD=0002S5)ccceeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 35
FIGURE Ill- 26 OscCILLOSCOPE OUTPUT (100US): PURE SINE WAVE (CARRIER PERIOD=0002S)....ccceeeeeeiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 35
FIGURE Ill- 27 OsCILLOSCOPE OUTPUT (10US): PURE SINE WAVE (CARRIER PERIOD=0002S)......cceeeieeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 35
FIGURE I11- 28 DESKTOP INTERFACE PREVIEW: PURE SINE WAVE (CARRIER PERIOD=002S)cceeeieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 36
FIGURE Il1- 29 OsCILLOSCOPE OUTPUT (10MS): PURE SINE WAVE (CARRIER PERIOD=002S)cceeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e 36
FIGURE I11- 30 OsCILLOSCOPE OUTPUT (1MS): PURE SINE WAVE (CARRIER PERIOD=002S)ccceeeieeieeeeeeeeeeeeeeeeeeeee e 36

FIGURE Il1- 31 OscILLOSCOPE OUTPUT (100US): PURE SINE WAVE (CARRIER PERIOD=002S).....ccceeiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 37

List of abbreviations

PWM: Pulse width modulation.

AC: Alternative current.

DC: Direct current.

IGBT: Insulated-gate bipolar transistor.

MOSFET: Metal-oxide—semiconductor field-effect transistor.
SPI: Serial Peripheral Interface.

USB: Universal Serial Bus.

Abstract

The current project has as major aim the design of a single-phase inverter for educational purposes.
The main distinctive feature is the digital implementation of the PWM modulation with a graphical user
interface.

Since it’s lunch in 2005, Arduino it is a highly recommended option for the first approach to digital
programming for students. In this work we aim to use the Arduino to make it easy to generating PWM
control signal for single-phase inverter.

There are already circuits available for generating PMW signals, we went further in customizing the
way PWM is generated, and made a desktop application that provides a complete control of the generated
PWM signal.

At first, complete theoretical analysis will be made, including its applications and basic elements.
Afterwards, we will be defined the specific characteristics of the desired inverter, and select components
required.

An essential part of the work relies on the programming desktop interface. For this reason, an insight
into the technologies available will be made. Some options for will be discussed and the most suitable
technology will be selected.

Finally, the circuit will be implemented in a protoboard. And measurement of the control signals will

be done, and compared with the theoretically calculated signals.

Key words: single-phase inverter, PWM, Arduino, desktop user interface.

Table of Contents

GENERAL INTRODUCGTION.cciiiiiittiiisitesiisssressssssessssssessssssssssssssssssssssesssesssssssssssssssssssssessss 1
CHAPTER I: SINGLE PHASE INVERTERcuetiiiiiitiiiiiieiiisinntiiisssessissssessssssssssssssssssssssessssssssssssssssssssssssssssssesssssssssssssnssssssasessas 2
S N 20016 1 o PP PPPPPPPPPPPPTPPPNE 2
L1 1= N T] PP PPPPPPPPPPTPPPNE 2
LIRS T - o7 0 PP PPPPPPPPPPPPTPPPRE 2
1.4 TYPES OF INVERTERS BY POWER SOURCE NATUREcettttttttttttttttrtttettttteteeteeeeeettettesteeeteseeeteeeseteseeesesteeeeeeeeeeeetteeeeeeeeeeeeeeeeeeeeeene 3
L1 T © 10 1 11U o PP PPPPPPPPPPPPPPNE 4
1.5.1 SQUOIE WOVE........cooeeeeeeeeeeee ettt e et ettt e e e et ettt e e e e e e ettt a e e e e e e e ettt e e e e e e e eeeassaaaaaeeaaeeassns 5
1.5.2 MOGIfIEA SINE WOV ...cooeeeeieeeis ettt ettt e e ettt e e e e e e e sttt et e e e e sa s ttaeaaaeeeassstaseaaaaessssasssnaaaessssnnases 5
1.5.3 PUIE SINE WAVE ... s 5
1.6 INVERTER TOPOLOGIES: HALF-BRIDGE AND FULL-BRIDGEcciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiecitiee e te e ee e s s ee s s s e e e e e e e s e eseeeeseees 6
1.6.1 o] T o Lo TSP UPPPPRP 6
1.6.2 LT[o =T 1o o =SOSR PPPPRPN 6

1.7 CONTROLLING THE SINGLE-PHASE INVERTER 1.eetttttttttttetteteeereereeeeteteeeeeeeeeeeeeeeeteeteseeeeeeeeeeeseeeeteteeteeeeeeeeeeteeeeeeeeeeetteereeeeeeeeeeeeeen 7
1.7.1 FIXEA QULY CYCIE CONTIOL ...ttt ettt e ettt et e e e e s sttt e e e e e e asattbaeaaeaeesssstsneaaeeessnsases 7
1.7.2 SRIftEd AULY CYCIE CONTIOL...ocviaeeeiieiie ettt ettt e e e e e sttt e e e e e e ss bttt e e e e e e sssstttaeaaeeessssssssnees 8
1.7.3 Variable duty CYcle CONTIOI (SPWM)ueeeeeieeeeeeeeee ettt e ettt e e e e e s sttt e e e e e e s s sstttaeaaeessssasssseaaaaeeas 8
LIRS T LY PP PPPPPPPPPPPPTPPPNE 9
LI T 1 1 =1 PP PPPPPPPPPPPPPPRt 9
1.10 L0 o] 0N 10
CHAPTER II: ARDUINO AND THE DESKTOP INTERFACE........ccccotvtiiiiiuniiiissuniissssesssssssessessas 11
1.1 LT] 51U ot T PP PPPPPPPPPPPPPPPPPPRE 11
H.1.DZ WRGE IS AFQUINO ...ttt et ettt ettt e et e e ettt e e ettt e et e e e et e e e amtneaeeatnes 11
11.2 FAL {0101 o 2 O TR 11
1.2.1 OVEIVIEW.....eeiiiiiiiiiiiiiiii s 11
H.2.2 TRE ATIMEGA328P ...t ettt ettt ettt e e e+ttt e ettt e e ettt e e ettt e et e e e ettt e e e aateeeeaenes 12
[1.2.3 FOOTUIES ...ttt 844t s e b a et e e e et bttt seatabbbbaannnannannnnnne 13
1.2.4 Powering the Arduing UNO [10]............uuueiiieeeieiiieeie e e eeeetteet e e e ettt e e e e e ettt aaaaeesssstbtaeasaesassstsnnaaaaessnssnes 13
R 11T o TV &Y Lo YV L1 o1V < OSSR 14
1.3 PROGRAMMING THE ARDUINO .evvttttttttttertittttttettetttteteteestteetessessseeesssssssesetetesssstestestesssssssesseeseesesetssetesesteseeeeeeeeeseeseees 15
H.3. 1 TREAIAUINO IDE.........ccoeieieeee ettt ettt ettt ettt e e e ettt e e e ettt e et e e e et e e e atneaeeaenes 15
11.3.2 Basics Of Arduino I0NGUOGE [13]...cccuuuuuiiiiieeeeeeeiiieet e ettt et e e e e sttt e e e e e e ettt e e e e e esssststaeaaaessssstsneaaeaeessnanes 17
1.4 THE DESKTOP INTERFACE ...cetttitiiitiitiiiiiiitieeeeee ittt e ettt e e ettt et ettt et e e ee ettt e et et e eee et et e e e e e e et e ee et e ee ettt ee et eeeeeeeeeeeeeeeeeeeteeeaeeeeeneeeeenens 20
1.4.1 Connecting to the Arduino board (SEriQI POIT)ceeeieeuuiieiie ettt e e et ee e e e e e st a e e e e sssetaaeaaaeeesssanes 20
1.4.2 Available technologies for application deVEeIOPMENT..............cuieeeeieciiiiiiieeeesecieea e e e eesectaea e e e e ssssiaeaaaeeessnaes 21

[T T 3 U= Tot 1 o] ¢ B A YU OO U 21

[N [+ Vo Yol [o) OO OO OO U TP P TR PPUPPPPPPPPRPN 21

1.5 L0000] 0N 22
CHAPTER IlI: REALIZATION AND RESULTScuutiiiiiiiiiiiiniiiissseisssssesssssssessssssssssssssesssanes 23
1.1 LT] 51U ot T PP PPPPPPPPPPPPPPPPPPRE 23
1.2 DIAGRAM OF THE PROJECT .eevtttttttttttetttttttttetetteseeettsesssesssssssesssssssssssesssssesssss e s ee s e e s e e e e e s e s e s e e s e eeeeeeeeseeeanes 23
1.3 DIESKTOP INTERFACE ...eettttttttttttttttttteettteetteeeeteetetetttseeeteesse s e ee s e e s e e s e s e e e e seeeeeeeeeeeeeaees 24
HE3.1 SENA EO AFGUINO. ...ttt ettt ettt et e et e e ettt e et e e e et e e e atneeeenaenes 24
L3 A Y [T Yo | K3 o T [T=1 =] YOO OO UTPR R UPPPPRRN 25
H1.3.3 GONEIAI PIOPEITIES. ...ceveeeessiiiiete e ettt e e ettt et e e e e e sttt e e e e e s sttt e e e e e eesa st ttaaaaaeesssssssnaaaaesassastsnnaaaaessnnases 25
HEL3.4 COMPAIISON FESUILS....cveeeessiiiiesseeeeetee e e ettt e e e et ettt e e e e e e ss bt e e e e e e e s st ttaaaaaeeasssssssnaaaaesasnasssnnaaaaessnnanes 26

1.4 ARDUINO PROGRAM L.ttt s e e e e e e s e e e s s e s e e e s s e e e e e e e s s e e s s s e s e e s s s s s e e s e e e e s s e eeeesseesaeeseeennss 26
HLA.D Variables ACIAIGLIONSoeeiiieeeeee ettt et ettt e e ettt e ettt e e et e e e atbeeeeaanes 26
L B Y- V]) {1 ot o o] ¢ B UURRPPPRRRN 27

L 3 B U o T o Yo T Iy £V Lot o o ¢ OO UURR R PPPRRRN 27
HL4.4 SeriQl lISLENING fUNCLIONvvveiieeeieieeees ettt e e e e e ettt e e e e ettt eeaeeessasstttaeaaeesssnastsnnaaaaessnnanes 28

1.5 (00T 2T ol N 29
1.6 POWER CIRCUIT ttttiiiiiitiiiiiiiiieittttitetitttetetetteeeteeee ettt et e e e et et e et e e e e et e e e et et e e e e e e e s e s e e s e s eeseeeeeseeeaeeaaees 30
1.7 RESULTS 1t tttttttttttittttttttt ittt ettt ettt ettt ettt ettt ettt et ettt et et ettt e et e et e e e e e e e et et e et et e et et e e e e e e e e e e eeeeees 31
HI.7.1 SQUOIE WOVES ...ttt ettt e e e+ ettt e e e e e e ettt e e e e e e e eetta e e e e e e eeattnaaeeeeaeennssanns 31
HI.7.2 MOGIfIEA SINE WOVE ..ottt ettt e ettt e e e e e e ettt e e e e e e sttt eaaeeessaststaaaaaesasssstsnnaaaaesssnnses 33
HI.7.3 PUIE SINE@ WOV ...ttt sttt 44444444 s s b s s s s st s e s s s e s s s s ssssasasnasansanannnnns 34

1.8 L0700 N 37
GENERAL CONCLUSIONouutiiiiiueiiiisiseiissssessissssssssssessssssssssssssssssssssessessssssssssssssssss 38
1. OBJECTIVES ACHIEVED ..eeveiititiitiereeitteeeeeeeeeeeeteetteeeeeeeeseesteseeeeeeeseeseeeses et e te e s s e e e s e s e e e e e teee e et e e e e e e e ae e e e e e e e e et e e eeeeeeseeeeeeeseeeeeneenees 38

2. FURTHER DEVELOPIMENTS .iiiiiiiiiiiiiiie et e e e e e e e e e s e e e e e e e e e e e e s e e e e s e e e e e e s e s e e e e e e s e s s e e s s s s s s e s e s e e s e e e e seeeeeessesannnenns 38
BIBLIOGRAPHYuuuiiiiiiiuniiiiiiniiisiueiisisssetssssssesssessssssssssssssssssssssessssssssssssns 39

General introduction

The main objective of this work is the design and testing a full-bridge single-phase inverter on the
one hand, and on the other hand the practical implementation of the MLI control using an Arduino board.
In this context, a graphical interface has been created to control the Arduino.

Since the development of the first Arduino board in 2005, digital control in power electronics has
grown considerably. For those reasons, this work has the aim to apply this tool to ease the PWM
implementation on a single-phase inverter, substituting analogical circuitry.

Although nowadays it is possible to find integrated circuits with single — phase inverters, the circuit
will be designed and built piece by piece. Thus, it is easier to understand and visualize all the components
required, as well as to check the waveforms obtained on the internal elements.

In this context, a first theoretical analysis will be carried out, including its applications and its basic
elements. Then, the specific characteristics of the desired inverter will be defined, thus allowing the
calculation and selection of the required components.

A fundamental part of the work is the development of a control interface for the Arduino to generate
the PWM signal for the inverter. For this reason, a general overview on the PWM control and its
characteristics, as well as on the programming side of the Arduino was presented in detail.

After the theoretical approach, the complete circuit will be implemented in a protoboard. Some

measurements and tests will be also done in order to check the performance of the device and its efficiency.

Chapter 1 Single phase inverter

Chapter I: Single phase inverter

I.1 Introduction
This chapter presents a general overview of the inverter concerning its operating principle, its
different topologies, as well as the various control strategies, etc. In addition, the PWM control strategy has

been studied in detail.

I.2 Definition

A power inverter, or inverter, is an electronic device or circuitry that changes direct current (DC) to
alternating current (AC) [1]. Inverters, are constructed from power switches and the AC output waveforms
are therefore made up of discrete values. This leads to the generation of waveforms that feature fast
transitions rather than smooth ones. [2]
Depending on the number of phases of the AC output, there are several types of device the famous ones

are: single-phase and three-phase inverters.

Figure I- 1 Ring Automotive Voltage Transformer Inverter Power Source Pro 2100W

1.3 Applications

Inverters are used to convert DC electricity from sources like solar panels, batteries, or fuel cells to
AC electricity.
Solar inverters convert DC power from solar panels to AC for the electric grid. Grid-tied inverters are
designed to feed into the electric power distribution system [3]. They transfer synchronously with the line
and have as little harmonic content as possible. Uninterrupted power supplies use inverters to power
programmable logic controllers (PLC) and to supply AC power when main power is not available. Given

that direct connection is not possible, an inverter is required as an intermediate device.

Chapter 1 Single phase inverter

There is a growing demand for power in a wide range of applications: portable consumer devices,
hybrid/electric vehicles, industrial control systems, and solar power systems. This has led to increasing
adoption of inverters to ensure a better supply of high efficiency, high reliability power.

Inverters provide increased energy savings over conventional on/off control. Faster switching times mean
more precise temperature control. In fan motors, inverters reduce audible noise.

The most widespread converters are the voltage inverters, also called power-reducers, as the output voltage

is lower than the input.

Figure I- 2 Examples of applications of power inverters

1.4 Types of inverters by power source nature

There are serval types of inverters that can be grouped together by number of considerations. In this
section, we classify them by some of those considerations: the power source nature.
I.4.1.1 Voltage inverter

A voltage inverter is an inverter that is powered by a DC voltage source.

DC link

+ Inc Iy +
O QO

Figure I- 3 Voltage source inverter. [4]

Chapter 1 Single phase inverter

Single-phase voltage source inverters (VSIs) can be found as half-bridge and full-bridge topologies.
Although the power range they cover is the low one, they are widely used in power supplies, single-phase
UPSs, and currently to form elaborate high-power static power topologies [5]
1.4.1.2 Current-source inverter

In single-phase current-source inverter, the DC source is provided by a bridge rectifier and is
connected by a DC link inductor in series, and the RL load is connected by a capacitor in parallel. The
purpose of the capacitor is to make the current of the effective load lead that of the voltage so that the load

commutation of the thyristors can be realized. [6]

N&PY\ X
I | h A\JX
1 A
ay Q "X & R
b\ [
Lys U G S W 50 Hz
g P :
|
E,/gz _____ = %,‘Ed ______ -/gfoz _\ZS ‘\ZS ‘\ZS

Figure I- 4 Single-phase current-source inverter

The circuit is generally utilized for high-frequency induction heating applications. It is assumed that the
DC link inductance is sufficiently large to smooth the DC current-source ripples and the capacitor has near

perfect filtering of harmonic currents. [2]

I.5 Output

With regard to their output, three different types of power inverters can be found: square wave,

modified sine wave and pure sine.

Voltage 1
1 1 ,Pure Sine Wave
|
+ e N
\ Square Wave
90° 360°
0 Times,
0 =] 2700\&
Phase
- Modified Sine Wave
180°|

|
I
1
Figure I- 5 square wave, modified sine wave and pure sine wave

4

Chapter 1 Single phase inverter

I.5.1 Square wave
This is the basic type of inverter. Its output is an alternating square wave. The harmonic content in
this wave is very large. This inverter is not efficient and can give serious damage to some of the electronic

equipment. But due to low cost, it has some limited number of applications in household appliances.

1.5.2 Modified sine wave

A modified sine wave inverter actually has a waveform more like a square wave, but with an extra
step or so. Because the modified sine wave is noisier and rougher than a pure sine wave, clocks and timers
may run faster or not work at all. A modified sine wave inverter will work fine with most equipment,

although the efficiency or power will be reduced with some. But with most of the household appliances it

works well.
<—— 1/60 second —
120V V. d £ % |
/ \ PureSine / \
/ %Wave / \
T VY XV
o qVve \‘ ,I '\‘ ,I

Figure I- 6 Modified sine wave inverter output

1.5.3 Pure sine wave

This type of inverter provides output voltage waveform which is very similar to the voltage waveform
that is received from the Grid. The sine wave has very little harmonic distortion, what makes it ideal for
running electronic systems such as computers and other sensitive equipment without causing problems or

noise.

Modified sine wave output

Pure sine wave output

Time

Figure I- 7 Pure sine wave inverter output

5

Chapter 1 Single phase inverter

Benefits of using pure sine wave Inverter:
e Most of the electrical and electronic equipments are designed for the sine wave.
e Electronic clocks are designed for the sine wave.
e Lesser harmonic distortion.
1.6 Inverter topologies: Half-Bridge and Full-Bridge
There are several topologies available, in this section we will briefly explain the two most common
ones: Half Bridge and Full Bridge.
1.6.1 Half-Bridge
Only two switchers are required in this topology. The DC input is divided in two identical sources

and the output is referenced to the middle point.

S—
i i[S. D.
Vi /2 C| .

Figure I- 8 Single-phase Half-Bridge voltage inverter

A capacitor divisor is used to achieve the medium voltage point (N). By controlling the voltage in N, direct
current injected in the alternate side is assured to be zero.

In order to obtain the same value of power, higher currents are required, as voltage is lower. In case a high
voltage is needed in the output, an elevator is commonly used as first step, as the input voltage must be
double than the output desired. Regarding switching losses, the semiconductors must be designed for 2V,.

This fact makes this topology the worst in performance, as switching losses become excessively high. [2]

1.6.2 Full H-Bridge

In a Full H-Bridge, the alternate output voltage (V,) is obtained by the difference between two
branches of switching cells. Therefore, four switchers are needed. To maximize the fundamental component
of the output voltage, the fundamental component of the voltage on each branch (Vi and Vo) must be 180°
out of phase. The semiconductors of each branch are complementary in performance, which is to say when
one is conducting the other is cut-off and vice versa. This topology is the most widely used for inverters.
The semiconductors must be designed only for V,, but as a disadvantage, four switchers are required and

therefore, losses can become elevate. [2]

Chapter 1 Single phase inverter

vi/2+-: C. Sis Jl +Dl+ Sz+¥ D».

——

- S l 0
V; (*) N o > V,
T b

v;/2 _:: C. s, J

Dl- SZ- J Dz-

Figure I- 9 Single-phase Full H-Bridge voltage inverter

1.7 Controlling the single-phase inverter
The idea is to compare a modulation signal with a signal of the type "triangle" or "sawtooth". The
result of this comparison creates a control signal for the triggers of the switches (MOSFET) in a
complementary manner.
For a single-phase voltage inverter, two types of modulation are mainly distinguished:
e The fixed cyclic ratio (plain wave, shifted) modulations, or the duty cycle of each of the switching
cells is kept constant.
e Pulse width modulations (PWM), or duty cycle, are sinusoidally variable.
I.7.1 Fixed duty cycle control
The control signal is generated by comparing a constant signal (Vm: modulation signal) with

triangular one (Vc carrier signal)

Ve

0 U ap U

5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04
N
ol |

5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04
; ,
0

5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04

Figure I- 10 fixed duty cycle control signal

This will produce a control signal that can be modeled this algorithm:
e When V¢ > Vm: S1 switch is on, and S2 is off
e When Ve < Vm: S1 switch is off, and S2 is on

Chapter 1 Single phase inverter

1.7.2 Shifted duty cycle control
The control signal is generated the same way, by comparing a constant modulation signal (Vm) with

triangular one (Ve), but this time, there a dead time where the output signal settle at the null value for a bit

of time
0 ’7{.". - — _,/7. —
Vm /
5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04
1 ‘ Null value time
S1
0 I |
5.00e-3 0.02 0.02 0.03 0.03 0.04
1 r - !
S2
¢ 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04

Figure I- 11 Shifted duty cycle control

I.7.3 Variable duty cycle control (SPWM)

One of the methods used to reduce the low frequency harmonics in the inverter waveform is
sinusoidal pulse-width modulation. In this method, a reference copy of the desired sinusoidal waveform,
the modulating wave, is compared to a much higher frequency triangular waveform, called the carrier wave.
The resulting drive signals cause multiple turn-on of the inverter switches in each half-cycle with variable
pulse width to produce a quasi-sine wave of load voltage. The pulse width increases from a very narrow
width at the start of each cycle to a maximum width in the middle of each cycle. Then the pulse width

reduces again after maximum until its minimum width at the end of the half-cycle period. [7]

Ve

/\ A

‘v A A A
A A A

Ry \/ \/ 2 »*‘ /\ /\ A /\ \/ \/ \/ \,

500e-3 VM 001 0.02 003 0.03
1 | | [| | [‘
S1
5.00e-3 0.01 0.02 003 0.03 0.04
| — ‘ ' '
0 5.00e-3 0.01 0.02 003 0.03 0.04

Figure I- 12 the sznusozdal pulse-width modulation method

Chapter 1 Single phase inverter

SPWM is a special case when the modulating signal Vi is a sinusoidal at frequency fm and amplitude Vi,
and the triangular signal V. is at frequency f. and amplitude V.. In this case, the modulation index m, (also

known as the amplitude-modulation ratio) is defined as [2]

Vi
m, = =
a VC
and the normalized carrier frequency my (also known as the frequency-modulation ratio) is
A
" I

1.8 Driver
A driver is a device which adapts the connection function to the requirements of the semiconductors.
As the connection function only oscillates between two values, sometimes it is necessary to modify the
signal in order not to damage the semiconductors.
Main functions:
e Amplification of the control signal in order to adapt it to the desired levels of voltage and current.
e Galvanic isolation: to avoid electrical contact between two parts of the circuit.

e Protection against low feeding voltages or current that could damage the semiconductors.

Isolated
DC

Source 1GBT

Signal
Digital control Amplificator (&
:

>_ Rg
Input coupling

L

h 4

Digital |
control 1
System -
Ref control
P Error signal coupling
< Anomaly
Digital error detection Measurement Vdc
w C >

Figure I- 13 Functional schematic of a driver

1.9 Filter

Because the output voltage waveform is squared, a filter is required in order to obtain a sine wave
form, as well as helping in reducing harmonics, which may disturb the correct operation of the output load
connected.
A filter is, in its most basic sense, a device that enhances and/or rejects certain components of a signal [8].

It can be analogic or digital and depending on its behavior, there are mainly four types.

Chapter I Single phase inverter

T
Low pass They let pass low frequencies and attenuate the ones over a cut point

High pass They attenuate frequencies below a cut point

Band pass They let pass frequencies between a range

Band rejection They block frequencies between a range

Table I- 1 Types of filters and main features.

Once the type of circuit is selected, the cut point and the ranges of frequencies can be chosen by modifying
the components.
As in this case the objective is to attenuate harmonics, a low pass filter will be selected. For a low pass

filter, there are two options regarding circuitry: RC (resistor - capacitance) or LC (inductance - capacitance).

1.10 Conclusion

In this chapter, we explained the general operating principle of the inverter and the applications that
used it, as well as the different control techniques of the inverter. In the next chapter we will try to explain
the operating principle of the Arduino board which will be used as a control platform of our inverter. Also,

we will talk about the desktop interface that let us change the control techniques.

10

Chapter 11 Arduino and the desktop interface

Chapter II: Arduino and the desktop interface

II.1 Introduction

In this chapter, we will get an overview of what the Arduino is, and see its diagram, inputs and
outputs, and how to power up the board. Then, we will get more specific and talk about Arduino Uno board
mentioning its characteristics and operating principle. We will take a look at how programming the Arduino
is done, then move on to the desktop interface programming, and explore the technologies that will let us

develop the desired application.

II.1.1 What is Arduino

Arduino is an open-source electronics platform based on easy-to-use hardware and software. Arduino
boards are able to read inputs - light on a sensor, a finger on a button, or a Twitter message - and turn it into
an output - activating a motor, turning on an LED, publishing something online. You can tell your board
what to do by sending a set of instructions to the microcontroller on the board. To do so you use the Arduino

programming language (based on Wiring), and the Arduino Software (IDE), based on Processing. [9]
I.2 Arduino Uno

I1.2.1 Overview

Arduino Uno is a microcontroller board based on the ATmega328P. It has 14 digital input/output pins
(of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a
power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller;
simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get
started. You can tinker with your UNO without worrying too much about doing something wrong, worst

case scenario you can replace the chip for a few dollars and start over again. [10]

Figure II- 1 Arduino Uno Rev3 board [10]

11

Chapter 11 Arduino and the desktop interface

I1.2.2 The ATmega328P

The Arduino Uno is based on the ATmega328P, which is a low-power CMOS 8-bit microcontroller
based on the AVR® enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega328P achieves throughputs approaching IMIPS per MHz allowing the system designer to

optimize power consumption versus processing speed. [11]

GND VCC
B S |
1 I
1 Watchdo: |
: Timer 9 - Powglt debugWIRE I
| Supervision |
| A POR/ BOD v :

[and |
Watchdog _»| RESET Program |
: Oscillator Logic '
1 I
| + / |
! Oscillator :
| | Circuits/ Flash SRAM
! o Clock .
: Generation @ @ :
1 I
1 I
! AVR cru !
' AN !
! EEPROM |
I
: : il .
| \ N T AVCC
[
: i i o4 I AREF
| Y Y Y [CGND
2
! 8-bit T/C 0 16-bit T/C 1 A/D Conv. [:
1
| [} [} boA |
| [%)] |
| 3 Analog Internal |) |
- o . — 4
| fl: - > 8-bit T/C 2 Comp. - Bandgap 1
! 3 1 :
1 —\ |
1 I
I
| USART 0 SPI ™WI ,
1 A A A A A A I
1 I
1 \ Y \ !
1 > I
1 A A “ |
1 Yyvy yvy Yy I
1 I
| A PORT D (8) PORT B (8) PORT C (7) |
! A A A !
1 I
: : RESET
1 I
XTAL[1..2)
Y A Y
PDI[0..7] PBI[0..7] PCI0..6] ADCI6..7]

Figure II- 2 The Atmel® ATmega328P Block Diagram [11]

12

Chapter 11

Arduino and the desktop interface

11.2.3 Features

The table below summarizes the features of the Arduino Uno:

Microcontroller

Operating Voltage

Input Voltage (recommended)

Input Voltage (limit)
Digital I/O Pins

PWM Digital 1/0 Pins
Analog Input Pins

DC Current per 1/0 Pin
DC Current for 3.3V Pin
Flash Memory

SRAM

EEPROM

Clock Speed
LED_BUILTIN

Length

Width

Weight

11.2.4 Powering the Arduino Uno [10]

The Arduino Uno board can be powered via the
USB connection or with an external power supply. The
power source is selected automatically. External (non-
USB) power can come either from an AC-to-DC
adapter (wall-wart) or battery. The adapter can be
connected by plugging a 2.1mm center-positive plug
into the board's power jack. Leads from a battery can

be inserted in the GND and Vin pin headers of the

POWER connector.

The power pins are as follows:

ATmega328P

5V

7-12V

6-20V

14 (of which 6 provide PWM output)
6

6

20 mA

50 mA

32 KB (ATmega328P) of which 0.5 KB used by bootloader
2 KB (ATmega328P)

1 KB (ATmega328P)

16 MHz

13

68.6 mm

53.4 mm

25¢g

Table II- 1 Arduino Uno Tech Specs [10]

Figure II- 3 Arduino Uno power sources

e Vin. The input voltage to the Arduino/Genuino board when it's using an external power source (as

opposed to 5 volts from the USB connection or other regulated power source). You can supply

voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.

13

Chapter 11 Arduino and the desktop interface

11.2.5

5V. This pin outputs a regulated 5V from the regulator on the board. The board can be supplied
with power either from the DC power jack (7 - 12V), the USB connector (5V), or the VIN pin of
the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the regulator, and can
damage your board. We don't advise it.

3V3. A 3.3-volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
GND. Ground pins.

IOREF. This pin on the Arduino/Genuino board provides the voltage reference with which the
microcontroller operates. A properly configured shield can read the IOREF pin voltage and select
the appropriate power source or enable voltage translators on the outputs to work with the 5V or

3.3V.

Inputs/outputs

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(),

digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive 20 mA

as recommended operating condition and has an internal pull-up resistor (disconnected by default) of 20-

50k ohm. A maximum of 40mA is the value that must not be exceeded on any I/O pin to avoid permanent

damage to the microcontroller. [10]

Arduino function

Atmega168 Pin Mapping

Arduino function

reset (PCINT14/RESET) PC6 L1 28]] PC5 (ADCS5/SCL/PCINT13) analog input 5
digital pin 0 (RX) (PCINT16/RXD) PDO[]2 27] PC4 (ADC4/SDA/PCINT12) analog input 4
digital pin 1 (TX) (PCINT17/TXD) PD1[]3 2611 PC3 (ADC3/PCINT11) analog input 3
digital pin 2 (PCINT18/INTO) PD2[}+ 2511 PC2 (ADC2/PCINT10) analog input 2
digital pin 3 (PWM) (PCINT19/0C2B/INT1) PD3[}s 24] PC1 (ADC1/PCINT9) analog input 1
digital pin 4 (PCINT20/XCK/T0) PD4[]s 23]] PCO (ADCO/PCINTS) analog input 0
VvCC veeyr 2] GND GND
GND GND[Je 21"] AREF analog reference
crystal (PCINT6/XTAL1/TOSC1) PB6 [0 20[] AVCC VCC
crystal (PCINT7/XTAL2/TOSC2) PB7 J10 19]] PB5 (SCK/PCINTS) digital pin 13

digital pin 5 (PWM) (PCINT21/0OCOB/T1) PD5[n
digital pin 6 (PWM) (PCINT22/OCOA/AINO) PD6
digital pin 7 (PCINT23/AIN1) PO7[]13
digital pin 8 (PCINTO/CLKO/ICP1) PBO[]14

18]] PB4 (MISO/PCINT4) digital pin 12
17]] PB3 (MOSI/OC2A/PCINT3) digital pin 11(PWM)
16f] PB2 (SS/OC1B/PCINT2) digital pin 10 (PWM)
15 7] PB1 (OC1A/PCINT1) digital pin 9 (PWM)

Digital Pins 11,12 & 13 are used by the ICSP header for MOSI,
MISO, SCK connections (Atmega168 pins 17,18 & 15). Avold low-
impedance loads on thesa pins when using the ICSP header.

Figure II- 4 ATmegal 68/328P-Arduino Pin Mapping [12]

14

Chapter 11 Arduino and the desktop interface

In addition, some pins have specialized functions: [10]
e Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are
connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.
o External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value,
a rising or falling edge, or a change in value using the attachlnterrupt() function.
e PWM:3 5 6,9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
e SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication using the
SPI library.
e LED: 13. There is a built-in LED driven by digital pin 13. When the pin is HIGH value, the LED
is on, when the pin is LOW, it's off.
e TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the Wire library.
II.3 Programming the Arduino
The Arduino Uno can be programmed with the (Arduino Software (IDE)). Select "Arduino/Genuino
Uno from the Tools > Board menu (according to the microcontroller on your board).
The ATmega328 on the Arduino Uno comes preprogrammed with a bootloader that allows you to upload
new code to it without the use of an external hardware programmer. It communicates using the original
STKS500 protocol. [10]
I1.3.1 The Arduino IDE
Arduino IDE is a software that is mainly used for writing and compiling the code into the Arduino

Module. It’s a cross-platform application (for Windows, macOS, Linux) that is written using Java.

The IDE environment is mainly Open
. . . . Save
distributed into three sections: |
@ sketch_octd2p | Arduino 1.8.5 —_ m] X
1- Menu Bar. File Edit Sketch| Tools | Help < A— Menu Bar
2- Text Editor. Verify
3- Output Pane. Upload

| Output Pane

Arduino/Genuine Uno on €

Figure II- 5 The Arduino IDE interface

15

Chapter 11 Arduino and the desktop interface

11.3.1.1 Menu Bar

The bar appearing on the top is called Menu Bar that comes with five different options as follow

File - You can open a new window for writing the code or open an existing one.

Edit - Used for copying and pasting the code with further modification for font

Sketch - For compiling and programming

Tools - Mainly used for testing projects. The Programmer section in this panel is used for burning
a bootloader to the new microcontroller.

Help - In case you are feeling skeptical about software, complete help is available from getting

started to troubleshooting.

The Six Buttons appearing under the Menu tab are connected with the running program as follow:

Figure II- 6 The Buttons under the Menu tab in Arduino IDE

The check mark appearing in the circular button is used to verify the code. Click this once you have
written your code.

The arrow key will upload and transfer the required code to the Arduino board.

The dotted paper is used for creating a new file.

The upward arrow is reserved for opening an existing Arduino project.

The downward arrow is used to save the current running code.

The button appearing on the top right corner is a Serial Monitor

16

Chapter 11 Arduino and the desktop interface

11.3.1.2 Text Editor

The main screen below the Menu bard is known as a simple text editor used for writing the required code.

I main_PORT-noDT

unsigned long CurrentTime; // = micros(); current time of Arduino

unsigned long Period; // our pules global period

unsigned long* IPoints; // intersection points: for each intersection, we have tv
unsigned long HalfDeadTime; // Dead time

bool* IPValues; // values for each IPoint, ON || OFF

unsigned int IPMaxIndex; // the number of IPoints - 1

unsigned int IPIndex; // the index of the current IPoint

unsigned long PTime; // the current time in Period, which = CurrentTime % Period
long Diff; // difference between upcomming IPoint and PTime

void setup(Q) {
Serial.begin(11520@); // to enable receiving new signal paramaters via USB port
DDRB = B11111111; // using the Registers for faster output pin switching
| error_var
// sample data:
Period = 1000; // micro seconds
IPoints = new unsigned long[4];
IPoints[@] = 25@; IPoints[1] = 50@; IPoints[2] = 750; IPoints[3] = 100@; // mir
IPValues = new bool[4];
IPValues[@] = true; IPValues[1l] = false; IPValues[2] = true; IPValues[3] = fals
IPIndex = @;
IPMaxIndex = 3;
HalfDeadTime = 1@; // micro seconds

}
void loop() {
CurrentTime = micros(); // get the current time in micro seconds

PTime = CurrentTime % Period - HalfDeadTime; // get the current time in Period
Diff = IPoints[IPIndex] - PTime; // difference between upcomming IPoint and PTi

Figure II- 7 The text editor in Arduino IDE

11.3.1.3 Output Pane
The bottom of the main screen is described as an Output Pane that mainly highlights the compilation
status of the running code: the memory used by the code, and errors occurred in the program. You need to

fix those errors before you intend to upload the hex file into your Arduino Module.

‘error_var' was not declared in this scope Copy error messages

Figure II- 8 The output pane in Arduino IDE

I1.3.2 Basics of Arduino language [13]
Arduino programming language can be divided in three main parts: functions, values (variables and

constants), and structure.

17

Chapter 11

Arduino and the desktop interface

11.3.2.1 Functions

For controlling the Arduino board and performing computations.

Digital I/O
digitalRead()
digital Write()
pinMode()

Analog 1/0
analogRead()
analogReference()

analogWrite()

Zero, Due & MKR Family
analogReadResolution()

analogWriteResolution()

Advanced 1/0
noTone()
pulseln()
pulselnLong()
shiftIn()
shiftOut()
tone()

Time

delay()
delayMicroseconds()
micros()

millis()

Math
abs()
constrain()
map()
max()
min()
pow()

sq()

sqrt()

Trigonometry
cos()
sin()

tan()

Characters
isAlpha()
isAlphaNumeric()
isAscii()
isControl()
isDigit()
isGraph()
isHexadecimalDigit()
isLowerCase()
isPrintable()
isPunct()
isSpace()
isUpperCase()
isWhitespace()

18

Random Numbers
random()

randomSeed()

Bits and Bytes
bit()

bitClear()
bitRead()
bitSet()
bitWrite()
highByte()
lowByte()

External Interrupts
attachInterrupt()
detachInterrupt()

Interrupts
interrupts()

nolnterrupts()

Communication
Serial

Stream

USB
Keyboard

Mouse

Chapter 11

Arduino and the desktop interface

11.3.2.2 Variables

Arduino data types and constants. They are grouped in 5 main groups:

Constants Data Types
Floating Point Constants String()
Integer Constants array
HIGH | LOW bool
INPUT | OUTPUT | INPUT PULLUP boolean
LED BUILTIN byte
true | false char

double
Conversion float
(unsigned int) int
(unsigned long) long
byte() short
char() size t
float() string
int() unsigned char
long() unsigned int
word() unsigned long

11.3.2.3 Structure

void

word

Variable Scope & Qualifiers
const
scope
static

volatile

Utilities
PROGMEM

sizeof()

The elements of Arduino (C++) code. They are grouped in 9 main groups:

Sketch

loop()
setup()

Control Structure
break

continue

do...while

else

Arithmetic Operators
% (remainder)

* (multiplication)

+ (addition)

- (subtraction)

/ (division)

= (assignment operator)

Comparison Operators

19

Pointer Access Operators
& (reference operator)

* (dereference operator)

Bitwise Operators
& (bitwise and)

<< (bitshift left)
>> (bitshift right)

~ (bitwise xor)

Chapter 11 Arduino and the desktop interface
for != (not equal to) | (bitwise or)

goto < (less than) ~ (bitwise not)

if <= (less than or equal to)

return == (equal to) Compound Operators

switch...case

while

Further Syntax
#define (define)
#include (include)

/* */ (block comment)
// (single line comment)
; (semicolon)

{} (curly braces)

I1.4 The Desktop Interface

> (greater than)

>= (greater than or equal to)

Boolean Operators
! (logical not)

&& (logical and)

|| (logical or)

I1.4.1 Connecting to the Arduino board (Serial port)

For our application to connect to the Arduino board, there must be a way to send data back and forth

between both ends, for this we will use the USB on the computer with the serial pin on the Arduino Uno

0(RX), I(TX), and establish a serial port communication.

%= (compound remainder)
&= (compound bitwise and)
*= (compound multiplication)
++ (increment)

+= (compound addition)

-- (decrement)

-= (compound subtraction)

/= (compound division)

A= (compound bitwise xor)

|= (compound bitwise or)

10010100110 ...

UL

Information passes between the computer
and Arduino through the USB cable.
Information is transmitted as zeros (‘0’) and
ones (‘1)... also known as bits!

Figure I1- 9 Serial communication between computer and Arduino

A serial port is a serial communication interface through which information transfers in or out one bit at a

time (in contrast to a parallel port). [14] Throughout most of the history of personal computers, data was

transferred through serial ports to devices such as modems, terminals, and various peripherals

20

Chapter 11 Arduino and the desktop interface

11.4.2 Available technologies for application development
Currently there are many different technologies that can be used to develop a desktop application,
each has its own advantage and limits, here are some of the most common ones:

- Java SE: Java Platform, Standard Edition (Java SE) lets you develop and deploy Java applications
on desktops and servers. Java offers the rich user interface, performance, versatility, portability, and
security that today's applications require. [15]

- .NET Framework: A programming infrastructure created by Microsoft for building, deploying,
and running applications and services that use .NET technologies, such as desktop applications and
Web services. [16]

- Electron JS: Electron is an open source library developed by GitHub for building cross-platform
desktop applications with HTML, CSS, and JavaScript.

11.4.3 Electron JS

Electron JS is chosen here, mainly because of the ease of use and the fast development time, thanks
to the web technologies (HTML, CSS, and JavaScript), Electron accomplishes this by combining
Chromium and Node.js into a single runtime and apps can be packaged for Mac, Windows, and Linux. [17]
11.4.4 JavaScript

JavaScript (JS) is a high-level, interpreted programming language that conforms to the ECMAScript
specification. JavaScript has curly-bracket syntax, dynamic typing, prototype-based object-orientation, and
first-class functions.

Alongside HTML and CSS, JavaScript is one of the core technologies of the World Wide Web. [18]

function factorial(n) {
if (n === 0) {
return 1; // 0! = 1
}

return n * factorial(n - 1);

}

factorial(3); // returns 6

Figure II- 10 A simple recursive JavaScript function

11.4.4.1 Nodejs

Node.js is an open-source, cross-platform JavaScript run-time environment that executes JavaScript
code outside of a browser. As an asynchronous event driven JavaScript runtime, Node is designed to build
scalable network applications. [19]
11.4.4.2 NPM

NPM is a package manager for the JavaScript programming language. And it is the default package

manager for the JavaScript runtime environment Node.js.

21

Chapter 11 Arduino and the desktop interface

NPM is the world’s largest software registry. Open source developers from every continent use NPM to
share and borrow packages, and many organizations use NPM to manage private development as well.
For developing the application, we use serval NPM packages, including:

- ReactJS: for designing the graphical user interface

- Dygraphs: for visualizing the graphs.

- Node Serialport: for managing communication with Arduino via serial port.
IL.S Conclusion

In this chapter we presented the main diagram of the Arduino, then talked specifically about Arduino

Uno, we also gave the tools of development of a program especially for the Arduino C. Then discussed the
technologies available for developing the desktop application, and got an overview of the chosen

technology: Electron JS.

22

Chapter 111 Realization and results

Chapter III: Realization and Results

III.1 Introduction

This chapter is devoted to the experimental validation of the studies and simulation presented in the
first and second chapters. We will present the results of the control application and the main experimental
results to confirm the validation of the control algorithms.
An oscilloscope is employed for the display and measurement of the results. Furthermore, some pictures of
the circuits built can also be found in these pages.
I11.2 Diagram of the project

This diagram below shows the flow of information from the Desktop interface, to the Arduino, that
connect to the control circuit where the control signal gets amplified, then sent to the gates of the inverter

switches, which in turn operates according the control signal sent by the Arduino.

The desktop interface

Arduino Uno

Control circuit

Power circuit

Figure I1I- 1 Diagram of the project

23

Chapter 111 Realization and results

III.3 Desktop interface
The first step is to define the control signal, and to do that, we have to setup the PWM parameters

using the desktop interface.

[JON | PWM Desktop Interface

Send to Arduino

Modulation Signal ‘
The signal Sine Wave ;
shape: 0
Period Amplitude Offset
0.02 0.8 0 0 0.01 0.02 0.03
Carrier Signal “! YT
The signal Triangular = o\ ‘*‘ “ \ \ |
shape: \/ RIRTRIR /A ‘
Period Amplitude Offset AREERERRENERRERRREEN
0.002 1 0 0 0.01 0.02 0.03
0 0]
Sampling Time: 0.000001 Dead Time: 0.00001 Duration: 0.04
0
' V—Y V ' —~— V
0 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04
1= L . . m | .
0 | Il
0 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04
1 ’—| +— - . (—
0 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04
: 0

Figure I1I- 2 The desktop interface

After entering the parameters of both the modulation and the carrier signals, as well as general parameters
like sampling time. The app will automatically generate a preview of the comparison, and the output results
for both direct and inverse pulses signals.
The PWM desktop interface is divided into 4 main components: send to Arduino, signals parameters,
general parameters, comparison results.
I11.3.1 Send to Arduino

After entering all the necessary parameters, we need to send the control signal parameters to the

Arduino, and that can be done by clicking the “Send to Arduino” button.

Send to Arduino

Figure I1I- 3 The desktop interface: Send to Arduino Button
24

Chapter 111 Realization and results

What happens is that, the application sends the necessary information to the Arduino board, and this
information is basically the intersection points resulted from the comparison between both the modulation
and carrier signals, in one period.
I11.3.2 Signals parameters

The first step in setting up the control signal is to define the parameters for both modulation and

carrier signals.

Modulation Signal

The signal Sine Wave v b
shape: 0
Period Amplitude Offset
0.02 0.8 0 0 0.01 0.02 0.03
Carrier Signal
The signal . . |
Triangular v 0
shape:
Period Amplitude Offset '
0.002 1 0 0 0.01 0.02 0.03
0 0]

Figure I1I- 4 The desktop interface: signals parameters

For both signals, we have to enter the following parameters:
- Signal shape: we need to choose the shape of each signals, for modulation signal we have: sine
wave, cosine wave, constant. For carrier signal, we only have the triangular shape for now.
- Period: the period of each signal in seconds, this value is ignored when constant shape signal.
- Amplitude: the amplitude value for each signal, typically from O to 1. This is not the actual
amplitude value of the control signal.
- Offset: the offset for each signal if needed, defaults to 0.
I11.3.3 General properties
After setting up the parameters for each signal, three other parameters needed to be defined, sampling

time, deadtime, duration.

Sampling Time: 0.000001 Dead Time: 0.00001 Duration: 0.04

Figure I1I- 5 The desktop interface: signals parameters: the general parameters

These parameters represent:
- Sampling time: the sampling time used to calculate the intersection points that will eventually be
sent to the Arduino board.
- The deadtime: a small interval during which both the upper and lower switches in a phase-leg are

off [20], so that short circuit can be avoided and switches are not damaged due to high current.

25

Chapter 111 Realization and results

I11.3.4 Comparison results
Immediately after entering all the necessary parameters, the application automatically generates a

preview of the control results in three graphs synchronized by time.

NIRRT RN
| A A D] AEFEEAn L] LE

0 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04

Figure I1I- 6 The desktop interface: comparison result output

The first graph is basically the two signals: modulation and carrier in top of each other, this will let us see
the intersection point easily.
The second two graphs are the result of the comparison, with the dead time value in mind. The first is the

direct pulses signal, the second is inverse pulses signal.

I11.4 Arduino Program

After defining the control signal, and sending its information to the Arduino board, the last will have
all the information needed to generate the control signal.
The code that is used to generate the control signal using Arduino Uno and serial port, can be divided into

4 parts: variables declarations, setup function, the loop function, serial listening function

111.4.1 Variables declarations

Here we declare the necessary variables, we note the main ones: CurrentTime, [Points, IPValues.
- -

unsigned long CurrentTime; // = micros(); current time of Arduino

unsigned long Period; // our pules global period

unsigned long* IPoints; // intersection points: for each intersection, we have two points wit

unsigned long HalfDeadTime; // Dead time

bool* IPValues; // values for each IPoint, ON || OFF

unsigned int IPMaxIndex; // the number of IPoints - 1

unsigned int IPIndex; // the index of the current IPoint

unsigned long PTime; // the current time in Period, which = CurrentTime % Period

long Diff; // difference between upcomming IPoint and PTime

Figure IlI- 7 II11.4 Arduino Program: variables section

26

Chapter 111 Realization and results

I11.4.2 Setup function

In the setup function, we begin by setting up the serial port to listen for incoming parameters. Then
we initialize the registry state of the pins, we use the registry method instead of digitalWrite() for speed.
And finally, we define a default signal with a period of 1ms, this signal is generated for the first time the

Arduino board boots, and gets replaced when new control parameters comes via the serial port.

void setup() {
Serial.begin(115200); // to enable receiving new signal paramaters via USB port
DDRB = B11111111; // using the Registers for faster output pin switching

// sample data:

Period = 1000; // micro seconds

IPoints = new unsigned long[4];

IPoints[@] = 250; IPoints[1l] = 50@; IPoints[2] = 75@0; IPoints[3] = 1000;

IPValues = new bool[4];

IPValues[@] = true; IPValues[1l] = false; IPValues[2] = true; IPValues[3] = false;
IPIndex = @;

IPMaxIndex = 3;

HalfDeadTime = 1@; // micro seconds

Figure IlI- 8 Arduino Program: setup section

I11.4.3 The loop function
The loop function is where the signal generation algorithm takes place, this algorithm insures two things:
- Ineach intersection point, the board pins values get updated according the current intersection value.
- Between every update on pins values, there’s a small interval of time where all the pins values are
OFF, this interval is called the dead time.

void loop() {
CurrentTime = micros(); // get the current time in micro seconds
PTime = CurrentTime % Period - HalfDeadTime; // get the current time in Period
Diff = IPoints[IPIndex] - PTime; // difference between upcomming IPoint and PTime

// the time - the half of deadtime reached the upcomming IPoint
// also, if the upcomming IPIndex is @, and we still in the last IPIndex interval, then pas
if (Diff <= @ || (IPIndex == IPMaxIndex &% Diff >= Period - IPoints[IPMaxIndex - 1])) {

// set both pins off for deadtime:
PORTB = BOO00O00O0OD;
delayMicroseconds(HalfDeadTime * 2);

// set the upcomming IPValue to the pins

if (IPValues[IPIndex]) { // direct pulse ON, opposite pulse OFF
PORTB = BOOOOOOOL; // pin 8

} else { // direct pulse OFF, opposite pulse ON
PORTB = BO@OO0O10; // pin 9

}

// move to the next point

1f (IPIndex < IPMaxIndex) {
IPIndex++;

} else {
IPIndex = @;

}

}
}

Figure IlI- 9 Arduino Program: loop function section

27

Chapter 111 Realization and results

I11.4.4 Serial listening function
This function waits for incoming parameters information via serial port from the desktop interface,

and updates the control signal parameters according to the new information.

// when new signal paramaters recieved
vold serialEvent() {

// update: Period, IPoints, IPValues, IPCount, IPIndex = @, Diff=0

int inChar = Serial.read();

if (isDigit(inChar)) {
// convert the incoming byte to a char and add it to the string:
inString += (char)inChar;

}

if (inChar == '|') { // new paramaters are comming
IPMaxIndex = inString.toInt() - 1;
Serial.println("clearing...");
delete[] IPoints;
delete[] IPValues;
IPoints = new unsigned long[IPMaxIndex + 1];
IPValues = new bool[IPMaxIndex + 1];
IPIndex = @;
NewIPIndex = @;
// clear the string for new input:
inString = "";
Serial.println("updating...");

}
if (inChar = 'h' || inChar == '1") {
IPoints[NewIPIndex] = inString.toInt();
if (inChar = 'h') {
IPValues[NewIPIndex] = true;
} else {
IPValues[NewIPIndex] = false;
}

NewIPIndex++; // move the index to the next new IPoint
// clear the string for new input:
inString = "";
}
if (inChar = 'd') {
HalfDeadTime = inString.toInt() / 2;
// clear the string for new input:
inString = "";
}
if (inChar = 'p') {
Period = inString.toInt();
// clear the string for new input:
inString = "";
}
// if you get a newline, then it's done
if (inChar == '""\n") {
IPIndex = @;
NewIPIndex = @;
// clear the string for new input:
inString = "";|
Serial.println("done.");
Serial.print("Count "); Serial.println(IPMaxIndex + 1);
Serial.print("Period "); Serial.println(Period);
Serial.print("DeadTime "); Serial.println(HalfDeadTime * 2);

Figure I1I- 10 Arduino Program: serial listening section

28

Chapter 111 Realization and results

IILI.5S Control circuit
the signal generated by the Arduino board, can’t be directly use on the switches triggers of the

Inverter, instead, in needs to go through a circuit that contains a driver, with a voltage regulator as shown

below:

Figure I1I- 11 the control circuit

this is the schematic for the control circuit, where PWM1 and PWM1d are the Arduino pins 8 and 9:

HO —F1)
62 Voo U1 ve =
lc1 PWM1)~ HIN vs a7y O1
T)
[a70n s 1y 9]
L____ - u2
[Pwmid> L vee
== I 15V In Out B>
VSS IR2110 com - 2u EI V8 |c21 uA7805C c22
Lo —F1d) - 0.p3p GND 0.01p
Y
v v

Figure I1I- 12 schematic representation of the control circuit

The driver has the aim to adapt the voltage from the microcontroller’s output (5V) to the requirements of
the switch gate of the inverter (15V). Having a look into the recommendations in the datasheet, the above

schematic is chosen.

HIN and LIN are the logic inputs, corresponding to the PWM signal that comes from pins 8 and 9. Vs, SD

and COM are set into ground.

29

Chapter 111

Realization and results

Figure IlI- 13 the circuit for IR2110 driver

II1.6 Power circuit

The power circuit uses a Full-Bridge configuration. A capacitor voltage divisor is set and the output

is referred to the middle point. The load used in this case a is a resistor of 500 Q and the input voltage is

15V. The drivers’ Vs pin is connected to the middle point of the leg of each Half Bridge. The schematic is
shown below.

Figure I1I- 14 the schematic for H-bridge circuit

30

Chapter 111 Realization and results

II1.7 Results

These results are from the laboratory, the setup doesn’t include the power circuit, instead we used an

oscilloscope to visualize the two control signals as shown below.

‘m"‘-‘“ VE;E | \ﬁ \Il I ? // .
nr— . e

/

NNNM@W

o ! F %
e il e

Ty

\

Figure I1I- 15 project setup in the laboratory

we used three deferent control signals: square waves, modified sine wave, and pure sine wave. On the
oscilloscope, the first channel is for direct pulses signal, and the second channel is for the inverse pulses
signal. The results are as follows:
I11.7.1 Square waves
This is the result of a square wave control signal, with the parameters:

- Modulation signal: constant signal with the amplitude of 0.

- Carrier signal: a triangular signal with amplitude of 1 and period of 0.02s.

- Dead time: 0.00001s.

Sampling Time: 0.000001 Dead Time: 0.00001 Duration: 0.04
0
0 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04
; 1]
0
0 5.00e-3 0.01 002 0.02 0.03 0.03 0.04
1
% s500e3 oo1 002 002 003 003 o004

Figure I1I- 16 Desktop interface preview: square waves

31

Chapter 111 Realization and results

G=181.017Hz

CH1= 588U CH2= 5,881 CH1 14,8V
M Pos:-18.88ps

Figure I1I- 17 Oscilloscope output (10ms): square waves

6 =185989Hz
CH1 7148V

6 =185.989Hz

CH1 7148V

Figure I1I- 19 Oscilloscope output (10us): square waves

The results are exactly the same as the preview on the desktop interface. We can see the dead time (10us)
when zooming on the oscilloscope. We can also see the oscillation when switching from 0 to 15V (or vice

versa) due the fast response from the driver.

32

Chapter 111 Realization and results

I11.7.2 Modified sine wave
The modified since wave control signal has the same as square wave parameters, with a much bigger
dead time value:
- Modulation signal: constant signal with the amplitude of 0.
- Carrier signal: a triangular signal with amplitude of 1 and period of 0.02s.

- Dead time: 0.003s.

Sampling Time: 0.000001 Dead Time: 0.003 Duration: 0.08

or — — — -
0 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04

1

ol 1 | 1 1

0 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04

1 | !

0(J 5.00e-3 0.01 0.02 0.02 0.03 0.03 0.04

Figure I1I- 20 Desktop interface preview: Modified sine wave

=184.931Hz
CH1 7148V

=179.860Hz

CH1 714,28V

Figure IlI- 22 Oscilloscope output (5ms): Modified sine wave

33

Chapter 111 Realization and results

1§

=179.866Hz
CH1= 588U CH2= 5,880 4 CH1 14,8V
M Pos:-18.88ps

Figure IlI- 23 Oscilloscope output (Ims): Modified sine wave

The results are almost the same as the preview on the desktop interface. Now we can see the dead time
(0.003s) on a 10ms oscilloscope zoom. As we can see the direct pulses signal has a bit lesser duty cycle
than the inverse pulses signal, and that’s due to the algorithm is not well optimized.
I11.7.3 Pure sine wave

On pure sine wave, we tested the output on two different values of the carrier signal, one with a period
of 0.0002s, and other with a period of 0.002s.
I11.7.3.1 Pure sine wave with carrier period of 0.0002s
This is the result of a Pure sine wave control signal, with the parameters:

- Modulation signal: sine wave signal with the amplitude of 0.8 and period of 0.02s.

- Carrier signal: a triangular signal with amplitude of 1 and period of 0.0002s.

- Dead time: 0.00001s.

o
T HHO I um T @ Il
i

Figure I1I- 24 Desktop interface preview: pure sine wave (carrier period=0002s)

34

Chapter 111 Realization and results

B

CH1= 588U

CH1= 5,88V CH2= 5.68\ Al o CHz £19.8V

Figure I1I- 27 Oscilloscope output (10us): Pure sine wave (carrier period=0002s)

As expected, the results are exactly the same as the preview on the desktop interface. We can see the dead
time (10us) when zooming on the oscilloscope. We can also see the oscillation when switching from 0 to

15V (and vice versa) due the fast response from the driver.

35

Chapter 111 Realization and results

I11.7.3.2 Pure sine wave with carrier period of 0.002s

This is the result of a Pure sine wave control signal, with the parameters:
- Modulation signal: sine wave signal with the amplitude of 0.8 and period of 0.02s.
- Carrier signal: a triangular signal with amplitude of 1 and period of 0.002s.

- Dead time: 0.00001s.

Sampling Time: 0.000001 Dead Time: 0.00001 Duration: 0.04

/\/\/\/\f\/\/\/\/\"/\/\/ \;\/\/\/\/\

00T 1N AEERE L {10
| MEERT LT 1 R]

Figure I1I- 28 Desktop interface preview: pure sine wave (carrier period=002s)

Figure I1I- 29 Oscilloscope output (10ms): Pure sine wave (carrier period=002s)

[

CH1= 5.88Y CH2= 5,88V J CHz2 £19.8U
M Pos:-3.68

Figure I11I- 30 Oscilloscope output (Ims): Pure sine wave (carrier period=002s)

36

Chapter 111 Realization and results

G =500,000Hz

CH1= 588U =k CHz £19.8U
M Pos:-268.8

Figure I1I- 31 Oscilloscope output (100us): Pure sine wave (carrier period=002s)

Same as the previews signal, the results are exactly the same as the preview on the desktop interface.

II1.8 Conclusion

This chapter was dedicated to the presentation of the results of control signals of the inverter, allowed
us to confirm, the reliability of the control technic realized with the association of the control board
(Arduino), programmed in Arduino C, which allowed the simplification of the implementation of the

control algorithm (fixed duty cycle, SPWM) using a desktop interface on the computer.

37

General conclusion

As part of the preparation of the Master's degree in Electrical Engineering, this work aims to present
a theoretical study of the single-phase inverter, and practical realization of its control signals, that took
place at the laboratory of the department of electrical engineering at the university of Mohammed Khider
Biskra.

This work is organized in three chapters, starting with an introduction. In the first chapter, after the
presentation we presented general notions about inverters and its control strategies and its applications.

The second chapter was devoted to explain the operation of the Arduino board and the desktop
interface, and how they connect together; we gave the diagram of the internal structure of the board and
talked about the Arduino Uno features. We used the environment to create a sketch, which the main
objective of the sketch is to control the inverter. We discussed the technologies available for the developing
a desktop application, including Electron JS. We gave an overview of Electron JS and explained why we
choose it.

The third chapter we talked about the realization of the project, we gave an overview diagram, then
went through each part of the project, from desktop interface, to Arduino board, passing by the control
circuit, and finally to the power circuit. We presented the results of experimental in three different control
technique (both fixed duty cycle controls, and the SPWM technique).

1. Objectives achieved

The control strategies (square wave pulse, PWM), are successfully realized and tested, and proved to
be working, despite the limitation of the Arduino board. The power circuit has not been realized because
of the lack of power components required at the laboratory on the one hand, and secondly the short time
allocated to the completion of this work.

2. Further developments

There are some parts of this project that can be improved even more. The Arduino code algorithm
can be optimized, when looking for intersection points. The desktop interface can also add other features,
like the automatic calculation of signal parameters based on a specific control target e.g.: Electric motor

speed control.

38

Bibliography

[1] L o.E.a. E. Engineers, "I[EEE 100: The Authoritative Dictionary of IEEE Standards Terms,"
Standards Information Network, IEEE Press, 2000, p. 588.

[2] M. H. Rashid, Power electronics handbook, Butterworth-Heinemann, 2017.

[3] R. Du and P. Robertson, "Cost-Effective Grid-Connected Inverter for a Micro Combined Heat and
Power System," IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5360-5367, 2017.

[4] H. Abdi, R. R. Nezhad and M. Salehimaleh, "Chapter 5 - Fuel Cells," in Distributed Generation
Systems, Butterworth-Heinemann, 2017, pp. 221-300.

[5] M. H. Rashid, Electric Renewable Energy Systems, Academic Press, 2015.

[6] M. H. Rashid, "16 - DC-AC inverters," in Electric Renewable Energy Systems, Boston, Academic
Press, 2016, pp. 354 - 381.

[7] D. Fewson, "4 - DC to AC inverters," in Introduction to Power Electronics, Oxford, Butterworth-

Heinemann, 1998, pp. 66-94.

[8] S. K. Mitra and J. F. Kaiser, Handbook for digital signal processing, John Wiley \& Sons, Inc.,
1993.

[9] A.LLC, "Arduino - Introduction," Arduino LLC, [Online]. Available:
https://www.arduino.cc/en/Guide/Introduction. [Accessed 30 6 2019].

[10] A. LLC, "Arduino Uno Rev3," Arduino LLC, [Online]. Available: https://store.arduino.cc/arduino-
uno-rev3. [Accessed 30 6 2019].

[11] Atmel®, 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash, Atmel®,
2015.

[12] A. LLC, "Arduino - PinMapping168," Arduino LLC, [Online]. Available:
https://www.arduino.cc/en/Hacking/PinMapping168. [Accessed 30 6 2019].

[13] A. LLC, "Arduino Reference," Arduino LLC, [Online]. Available:
https://www.arduino.cc/reference/en/. [Accessed 06 30 2019].

[14] V. Beal, "What is serial port? - A Word Definition From the Webopedia Computer Dictionary,"
webopedia, [Online]. Available: https://www.webopedia.com/TERM/S/serial_port.html. [Accessed
712019].

[15] Oracle, "Java SE | Oracle Technology Network | Oracle," Oracle, [Online]. Available:

https://www.oracle.com/technetwork/java/javase/overview/index.html. [Accessed 1 07 2019].

39

[16] V. Beal, "What is .NET Framework? Webopedia Definition," webopedia, [Online]. Available:
https://www.webopedia.com/TERM/D/dot NET Framework.html. [Accessed 01 07 2019].

[17] electronjs.org, "About Electron | Electron," Github, [Online]. Available:
https://electronjs.org/docs/tutorial/about. [Accessed 01 07 2019].

[18] D. Flanagan, "Introduction to JavaScript," in JavaScript - The definitive guide (6 ed.), O'Reilly
Media, 2011, p. 1.

[19] nodejs.org, "About | Node.js," Node.js Foundation, [Online]. Available:
https://nodejs.org/en/about/. [Accessed 01 07 2019].

[20] L. Chen and F. Z. Peng, "Dead-Time Elimination for Voltage Source Inverters," IEEE Transactions
on Power Electronics, vol. 23, no. 2, pp. 574-580, 2008.

40

Annex

The Arduino code:

unsigned long CurrentTime; // = micros(); current time of Arduino

unsigned long Period; // our pules global period

unsigned long* IPoints; // intersection points: for each intersection, we have two points with a distance of
DeadTime between them

unsigned long HalfDeadTime; // Dead time

bool* IPValues; // values for each IPoint, ON || OFF

unsigned int [PMaxIndex; // the number of [Points - 1

unsigned int [PIndex; // the index of the current [Point

unsigned long PTime; // the current time in Period, which = CurrentTime % Period

long Diff; // difference between upcomming [Point and PTime

void setup() {
Serial.begin(115200); // to enable receiving new signal paramaters via USB port

DDRB =BI11111111; // using the Registers for faster output pin switching

// sample data:

Period = 1000; // micro seconds

[Points = new unsigned long[4];

[Points[0] = 250; [Points[1] = 500; [Points[2] = 750; IPoints[3] = 1000;
IPValues = new bool[4];

[PValues[0] = true; IPValues[1] = false; [PValues[2] = true; [PValues[3] = false;
IPIndex = 0;

IPMaxIndex = 3;

HalfDeadTime = 10; // micro seconds

void loop() {
CurrentTime = micros(); // get the current time in micro seconds
PTime = CurrentTime % Period - HalfDeadTime; // get the current time in Period

Diff = IPoints[IPIndex] - PTime; // difference between upcomming IPoint and PTime

41

// the time - the half of deadtime reached the upcomming [Point
// also, if the upcomming [PIndex is 0, and we still in the last IPIndex interval, then pass to the next loop

if (Diff <= 0 || (IPIndex == [PMaxIndex && Diff >= Period - [Points[[PMaxIndex - 1])) {

// set both pins off for deadtime:
PORTB = B00000000;
delayMicroseconds(HalfDeadTime * 2);

// set the upcomming [PValue to the pins

if (IPValues[IPIndex]) { // direct pulse ON, opposite pulse OFF
PORTB =B00000001; // pin 8

} else { // direct pulse OFF, opposite pulse ON
PORTB =B00000010; // pin 9

}

// move to the next point

if (IPIndex < IPMaxIndex) {
IPIndex++;

} else {
IPIndex = 0;

}

}
}

String inString = "";

unsigned int NewIPIndex = 0; // the index of the new [Points

// ' when new signal paramaters recieved
void serialEvent() {
/I update: Period, [Points, IPValues, IPCount, [PIndex = 0, Diff=0
int inChar = Serial.read();
if (isDigit(inChar)) {
// convert the incoming byte to a char and add it to the string:
inString += (char)inChar;

}

42

if (inChar =="|') { // new paramaters are comming
[PMaxIndex = inString.tolnt() - 1;
Serial.println("clearing...");
delete[] IPoints;
delete[] IPValues;
[Points = new unsigned long[IPMaxIndex + 1];
[PValues = new bool[I[PMaxIndex + 1];
IPIndex = 0;
NewlIPIndex = 0;
// clear the string for new input:
inString ="";

Serial.println("updating...");

}

if (inChar =="h' || inChar == ') {
[Points[NewIPIndex] = inString.toInt();
if (inChar =="h") {

IPValues[NewlIPIndex] = true;
} else {
IPValues[NewIPIndex] = false;

}
NewlPIndex++; // move the index to the next new [Point
// clear the string for new input:
inString ="";

}

if (inChar =="'d") {
HalfDeadTime = inString.tolnt() / 2;
// clear the string for new input:
inString ="";

}

if (inChar =="p") {
Period = inString.toInt();
// clear the string for new input:

inString ="";

}

43

// if you get a newline, then it's done
if (inChar =="\n") {
IPIndex = 0;
NewlIPIndex = 0;
// clear the string for new input:
inString ="";
Serial.println("done.");
Serial.print("Count "); Serial.printin(IPMaxIndex + 1);
Serial.print("Period "); Serial.println(Period);
Serial.print("DeadTime "); Serial.printin(HalfDeadTime * 2);

Desktop interface code: the intersection calculation code:

export const getlntersections =

(payload: { modSignal: ISignal, carSignal: ISignal, globalParams: IGlobalParams }) => {

const intersections = [];

const refSignal = payload.modSignal;

const compSignal = payload.carSignal;

const samplingTime = payload.globalParams.samplingTime;
const deadTime = payload.globalParams.deadTime;

const period = refSignal.width;

const refSignalFunction = getFuncByShape(refSignal.shape);
const compSignalFunction = getFuncByShape(compSignal.shape);

let rp: number;

let cp: number;

let dpp: number;

let oldDpp: number;

for (let i = 0; i <= period + samplingTime; 1 += samplingTime) {

rp = refSignalFunction(refSignal.width, refSignal.height, i, refSignal.offset);

44

cp = compSignalFunction(compSignal.width, compSignal.height, i, compSignal.offset);
dpp=(cp>1p?1:(cp<1p?0:dpp));
if (oldDpp !==dpp || 1 === period) { // intersection point found !!
intersections.push(((i) * 1000000).toFixed(0) + (dpp ? 'h' : '1"));
}
oldDpp = dpp;
}
// add the period
intersections.push((period * 1000000).toFixed(0) + 'p");
// add the deadtime
intersections.push((deadTime * 1000000).toFixed(0) + 'd");
intersections.shift();

return intersections;

}s

45

