الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Mohamed Khider Biskra Faculté des Sciences et de la Technologie Département de Génie Mécanique Filière: Génie Mécanique Option: Génie Energétique

Réf:

Mémoire de Fin d'Etudes En vue de l'obtention du diplôme de:

MASTER

Thème

Etude thermique des performances d'un capteur solaire à

air muni des rugosités artificielles

Présenté par:

Kamel SEBBAHI

Soutenu publiquement le: 10 Juillet 2019

Devant le jury composé de:

Mr. Lamine BACI Mr.Nacer CHOUCHANE Mr. Adel BENCHABANE

M.C.B M.C.A Prof Président Encadreur Examinateur

Année universitaire : 2018 /2019

Dédicace

Je dédie ce modeste travail à mes chers parents pour leur encouragement et leur soutien affectif sans lesquels ce travail n'aurait pu être mené à bien.

A mes chers frères et sœurs A toute ma famille Sebbahi A mes amis A tous ceux qui me sont chers

Kamel Sebbahi

Remerciements

Je remercie énormément mon encadreur:

Dr.N.Chouchane pour son soutien et pour tout le bagage scientifique qu'il m'a, sans cesse, transmis durant toute la période d'encadrement.

Un grand merci et respect pour les enseignants du département de génie mécanique sans oublier Mr.Youssef Merabti chargé du Laboratoire des énergies renouvelables.

Symbole	Définition	Unité
TSM	Temps solaire moyen	(heure)
TSV	Temps solaire vrais	(heure)
TU	Temps universel	(heure)
λ	conductivité thermique	(w/mK)
Q_u	puissance utile	(w)
m	débit massique	(kg/s)
Ср	capacité calorifique	(j/kgK)
$T_{fs} = T_s$	température du fluide à la sortie	(°c)
$T_{fi} = T_e$	température du fluide à l'entrée	(°c)
η	rendement thermique	(%)
$I_g = I$	rayonnement solaire global	(w/m ²)
$A_p = A_c$	surface utile du capteur solaire	(m ²)
p	pas entre nervures	(m)
p/e = g/p	pas de rugosité relative	
$D=D_H=D_h$	diamètre hydraulique	(m)
$e/D = \varepsilon/D$	hauteur relative de rugosité	
$f = \lambda$	coefficient de frottement	
$e = \varepsilon$	hauteur de la rugosité artificielle	(m)
e^+	rugosité du nombre de Reynolds	
$P = P_{er} = P_{e-r}$	pas entre rangées des chicanes	(m)
<i>W/H</i>	facteur de forme du conduit du capteur	
W	largeur de la plaque absorbante	(m)
Н	profondeur du collecteur	(m)
α/90	angle relatif d'attaque	
$\alpha = A = \theta = \phi$	inclinaison des chicanes ou/et des nervures	degré
$P_{e-s.ch}/D_H = P_{e-s}/D_h$	pas relatif entre sommets des chicanes	
$P_{e\text{-}s.ch} = P_{e\text{-}s}$	pas entre sommets des chicanes	(m)
$w = L_{ch}$	longueur d'une chicane	(m)

W/w	étendue de rugosité relative	(m)
g/e	écart de la largeur relative d'espace libre	(m)
g = r	espace libre d'une côte d'une chicane en V cassée	(m)
d/x	écart de distance relative d'espace	
P'/P = P/p	pas relatif entre côtes en quinconce d'une chicanes en V	
<i>S'/S</i>	position relative de l'écart d'une chicane en V	
r/e	taille relative des côtes d'une chicane en V	
L_{v}	longueur de la côte d'une chicane en V	(m)
G_d	écart de distance discontinue	(m)
$G_d/L_v = d/w$	écart relatif de position	
N_g	nombre de trous de chaque côté d'une chicane en V	
n	nombre d'écarts de chaque côté de la nervure	
W_c/W_d	largeur relative des chicanes en creux	
e_d/d_d	diamètre d'impression	
P _{e-ch}	pas entre chicanes	(m)
P _{e-t}	pas entre trous	(m)
D_t	diamètre des trous	(m)
h_c	coefficient d'échange thermique par convection	(w/m^2k)
ρ	masse volumique de l'air	(kg/m^3)
$V = V_{int}$	vitesse intérieure de l'air	(m/s)
μ	viscosité dynamique de l'air	(kg/ms)
l_c	largeur de l'absorbeur	(m)
L_c	longueur de l'absorbeur	(m)
ΔT	écart de température	(°c)
R_e	nombre de Reynolds	
Br	nombre de Brink man	
E_c	nombre d'Eckert	
C_l	nombre de Clausius	
N_u	nombre de Nusselt	

t	temps de prélèvements de mesure	(heure)
$Q=Q_{\nu}$	débit volumique	(m ³ /s)
V _{ext}	vitesse extérieure de l'air	(m/s)

Liste des figures

CHAPITRE I

Figure. I.1. Structure du soleil	3
Figure.I.2. Cycle de vie du soleil	4
Figure. I.3. Filière de conversion de l'énergie solaire	6
Figure. I.4. Mouvement de la terre auteur du soleil	7
Figure I.5. Déclinaison du soleil	8
Figure. I.6. Variation mensuelle de la solaire	11
Figure. I.7. Azimut (orientation) et inclinaison d'un plan quelconque	12
Figure I.8.Moyenne annuelle de l'irradiation solaire globale reçue sur un plan incliné à la latitude du lieu	13
Figure.I.9. Capteur solaire sans vitrage	15
Figure.I.10. Capteur solaire à tubes sous vide	16
Figure.I.11. Capteur solaire plan à eau	16
Figure.I.12. Capteur solaire plan à air	17
Figure.I.13. Chauffages est climatisation des habitations	18
Figure.I.14. Séchage solaire	18
Figure.I.15. Isolation thermique du boitier	20

CHAPITRE.II

Figure.II.1 : rugosité avec fils métalliques continus transversaux	22
Figure.II.2 : rugosité avec fils métalliques discontinus transversaux	23
Figure.II.3 : rugosité avec fils métalliques continus inclinés	24
Figure.II.4 : rugosité avec fils métalliques continus en forme de V	25
Figure.II.5 : disposition d'une surface de rugosité avec petits fils métalliques	26
Figure.II.6 : rugosité par combinaison entre fils métalliques transversaux et inclinés	27
Figure.II.7 : rugosité avec fils métalliques en forme d'arc	28
Figure.II.8 : différentes configurations des chicanes étudiées	28
Figure.II.9 : disposition en rangée et en quinconce des chicanes	29
Figure.II.10 : schéma de rugosité avec nervures chanfreinés	31

<u>page</u>

Figure.II.11 : distribution de la rugosité sur la plaque absorbante en fonction du pas et	
de la hauteur de la rugosité	32
Figure.II.12 : rugosité en nervures et rainures	33
Figure.II.13 : plaque absorbante rugueuse avec différentes valeurs de W/w	34
Figure.II.14: plaque absorbante rugueuse avec	
(a):vue en 2-D et (b):vue en 3-D	35
Figur.II.15: vue de dessus des orientations des nervures étudiées	36
Figure.II.16 : schéma de principe de la rugosité	
avec nervures en forme de W à 60°	38
Figure.II.17 : plaque d'absorption avec rugosité en forme d'arc multiple39	
Figure.II.18 : vue imagée de la géométrie rugueuse en forme d'arc multiple	39
Figure.II.19 : (a) et (b) géométrie de la rugosité	
cassée de nervures en forme de V	41
Figure.II.20 : (a) schéma de la plaque absorbante	42
Figure.II.21 : (b) vue imagée de la plaque absorbante	42
Figure.II.22 : (a) géométrie rugueuse saillante en forme d'arc	44
Figure.II.23 : (b) vue imagée de la géométrie rugueuse	44
Figure.II.24 : rugosité avec multi nervures en forme de V avec écart	46
Figure.II.25 : écoulement de l'air dans le conduit muni de rugosité	
en forme de nervures en V avec des écarts symétriques	47
Figure.II.26: rugosité avec des nervures en forme de V à cavités	
multiples combinées à des nervures en quinconce	48
Figure.II.27 : rugosité avec nervures en forme de L'inverse	49
Figure.II.28 : rugosité avec nervures en forme d'arcs multiples avec écarts	51
Figure.II.29 : (a) arrangement général, (b) Photographie d'une plaque	
absorbante en forme d'arc cassé	52
Figure.II.30 : rugosité avec nervures en forme d'arc agencées en forme de«S»	53
Figure.II.31: vue d'une la plaque absorbante	54

Figure.II.32 : (A)obstacles alvéolés multiples en forme de V	
(B) vue photographique de plusieurs obstacles alvéolés en forme de V	55
CHAPITRE.III	
Figure.III.1: capteur solaire plan à air exposé au soleil en direction du Sud	57
Figure.III.2:partie interne de l'isolateur couvert d'une feuille mince en aluminium	58
Figure.III.3: plaque absorbante en acier galvanisé peinte en noir mat	58
Figure.III.4: chicanes rectangulaire-rectangulaires en aluminium	
perforées au centre du rectangle bas disposées en rangées	59
Figure.III.5: chicanes rectangulaire-rectangulaires en aluminium	
perforées au centre du rectangle bas en quinconces	60
Figure.III.6. Pyranomètre manuel avec écran d'affichage à cristaux liquides pour	
mesurer Le rayonnement solaire (Plage de mesure:	
0-1999W/m2.Résolution:0,1w/m2)	61
Figure.III.7. Aspirateur pour le pompage d'air (Type MPF.803, 1000W)	61
Figure.III.8. Variateur de vitesse d'écoulement de l'air	62
Figure.III.9. Thermocouples pour mesurer la température d'entrée et la	
température de sortie du Panneau	62
Figure.III.10. Anémomètre à coupelles pour mesurer la vitesse à la sortie du	
panneau (Plages de mesure: vitesse de 0-35m/s, Résolution 0,1m/s)	63
CHAPITRE.IV	
Figure.IV.1. Evolution de la température de sortie en fonction du temps(variable=A)	84
Figure.IV.2. Evolution de la température de sortie en fonction du temps	
(variable=disposition)	85
Figure.IV.3. Evolution de la température de sortie en fonction du temps	
(variable=Dt)	85
Figure.IV.4. Evolution de la température de sortie en fonction du temps	
(variable=Pe-ch)	85

Figure.IV.5. Evolution de la température de sortie en fonction du temps	
(variable=Pe-r)	85
Figure.IV.6. Evolution du rendement thermique en fonction débit volumique	
(variable=A)	87
Figure.IV.7. Evolution du rendement thermique en fonction débit volumique	
(variable=disposition)	87
Figure.IV.8. Evolution du rendement thermique en fonction débit volumique	
(variable=Dtr)	88
Figure.IV.9. Evolution du rendement thermique en fonction débit volumique	
(variable=Pe-ch)	88
Figure.IV.10. Evolution du rendement thermique en fonction débit volumique	
(variable=Per)	89
Figure.IV.11. Evolution de Nusselt en fonction de Reynolds définie par : régime	
Laminaire (ϵ =22.99mm; tr=4.5mm; Lch=50mm; Pe-r=50mm;	
Pe-tr=132.1mm; Pech=86.6mm;θ=60°;rangée)	89
Figure.IV.12. Evolution de Nusselt en fonction de Reynolds définie par : régime	
Turbulent (ϵ =22.99mm; tr=4.5mm; Lch=50mm; Pe-r=50mm;	
Pe-tr=132.1mm; Pech=86.6mm; θ =60°; rangée)	90

Liste des tableaux:	pag
CHAPITRE.I:	
Tableau.I.1. Caractéristiques principales du soleil	2
Tableau.I.2. Ensoleillement reçu en Algérie par régions climatiques	14
Tableau I.3.Caractéristiques thermo-physiques de quelques matériaux métalliques	19
<u>CHAPITRE.III :</u>	
TableauIII.1: caractéristiques géométriques des chicanes (1èrepériode de mesures)	63
TableauIII.2: caractéristiques géométriques des chicanes (2èmepériode de mesures)	64
TableauIII.3: caractéristiques géométriques des chicanes (3èmepériode de mesures)	64
<u>CHAPITRE.IV :</u>	
Tableau (IV.1) : Evolution des températures de sortie et du rendement thermique	
en fonction du débit volumique définie par un	
capteur sans chicanes (lisse)	68
Tableau (IV.2) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ε=17.5mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=100mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ=30°; Rangée)	69
Tableau (IV.3) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =17.5mm;	
Dtr=2.4mm;Lch=100mm; Pe-r=100mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ=30;rangée)	69
Tableau (IV.4) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =17.5mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=70mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ =30;rangée)	70
Tableau (IV.5) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =17.5mm;	

e:

Dtr=2.4mm; Lch=100mm; Pe-r=70mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ=30;rangée)	70
Tableau (IV.6) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =17.5mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=50mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ =30°;rangée)	71
Tableau (IV.7) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ε =17.5mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=50mm;	
Pe-tr=117.6mm;	
Pe-ch=20mm; θ =30°;rangée)	71
Tableau (IV.8) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =17.5mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=100mm; Pe-tr=115,5mm;	
Pe-ch=20mm; θ =30°;quinconce)	71
Tableau (IV.9) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =17.5mm;	
Dtr=2.4mm; Lch=100mm; Pe-r=100mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ =30°;quinconce)	72
Tableau (IV.10) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =17.5mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=70mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ =30°;quinconce)	72
Tableau (IV.11) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =17.5mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=50mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ =30°; quinconce)	72

Tableau (IV.12) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ε=22.99mm;	
Dtr=4.5mm; Lch=50mm; Pe-r=100mm; Pe-tr=132.1mm;	
Pe-ch=86.6mm; θ =60°; rangée)	73
Tableau (IV.13) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =22.99mm;	
Dtr=4.5mm; Lch=50mm; Pe-r=70mm; Pe-tr=132.1mm;	
Pe-ch=86.6mm; θ=60°;rangée)	73
Tableau (IV.14) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =22.99mm;	
Dtr=4.5mm; Lch=50mm; Pe-r=50mm; Pe-tr=132.1mm;	
Pe-ch=86.6mm; θ=60°;rangée)	73
Tableau (IV.15) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteursolaire à air définie par (ϵ =22.99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=100mm; Pe-tr=115.5mm;	
Pech=20mm; θ=60°;rangée)	74
Tableau (IV.16) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =22.99mm;	
Dtr=2.4mm; Lch=100mm; Pe-r=100mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ=60°; rangée)	74
Tableau (IV.17) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =22.99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=70mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ=60° : rangée)	75
Tableau (IV.18) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =22.99mm;	
Dtr=2.4mm; Lch=100mm; Pe-r=70mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ=60° : rangée)	75

Tableau (IV.19) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =22.99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=50mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ=60° : rangée)	75
Tableau (IV.20) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =22.99mm;	
Dtr=2.4mm; Lch=100mm; Pe-r=50mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ=60°; rangée)	76
Tableau (IV.21) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =17.5mm;	
Dtr=2.4mm; Lch=100mm; Pe-r=70mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ =30°;quinconce)	76
Tableau (IV.22) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =29,99mm;	
Dtr=4.5mm; Lch=50mm; Pe-r=100mm; Pe-tr=132.1mm;	
Pe-ch=86.6mm; θ =60°;quinconce)	76
Tableau (IV.23) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =29,99mm;	
Dtr=4.5mm; Lch=50mm; Pe-r=70mm; Pe-tr=132.1mm;	
Pe-ch=86.6mm; θ =60°;quinconce)	77
Tableau (IV.24) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =29,99mm;	
Dtr=4.5mm; Lch=50mm; Pe-r=50mm Pe-tr=132.1mm;	
Pe-ch=86.6mm; θ =60°;quinconce)	77
Tableau (IV.25) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =29,99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=100mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ =60°;quinconce)	78

Tableau (IV.26) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =29,99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=100mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ =60°;quinconce)	78
Tableau (IV.27) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =29,99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=70mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ =60°;quinconce)	78
Tableau (IV.28) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par (ϵ =29,99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=70mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ =60°;quinconce)	79
Tableau (IV.29) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =29,99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=50mm; Pe-tr=115.5mm;	
Pe-ch=20mm; θ =60°;quinconce)	79
Tableau (IV.30) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par(ϵ =29,99mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=50mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ=60°;quinconce)	80
Tableau (IV.31) : Evolution des températures et du rendement thermique en fonction	
du Temps pour un capteur solaire à air définie par : (ε=17,5mm;	
Dtr=4.5mm; Lch=100mm; Pe-r=50mm; Pe-tr=117.6mm;	
Pe-ch=20mm; θ =30°;quinconce)	80

SOMMAIRE

CHAPITRE.I : Technologie de la conversion thermique de

l'énergie solaire

Introduction	1
I.1. Le soleil	1
I.1.1. Présentation générale	2
I.1.2. Evolution du soleil	4
I.2. Gisement solaire	4
I.2.1. Origine	5
I.2.2. Caractères particuliers	5
I.2.3. Captation	5
I.2.3.1. L'énergie solaire thermique	5
I.2.3.2. L'énergie solaire thermodynamique	6
I.2.3.3. L'énergie solaire photovoltaïque	6
I.3. Généralités sur le rayonnement solaire	7
I.3.1. Mouvement de la terre autour du soleil	7
I.3.2. Direction du rayonnement solaire	7
I.3.2.1. La longitude	7
I.3.2.2. La latitude	7
I.3.2.3. L'altitude	8
I.3.2.4. Les coordonnées célestes horaires	8
I.3.2.5. Coordonnées célestes horizontales	9
I.3.2.6. Les paramètres de temps	9
I.3.2.7. Lever et coucher du soleil	10
I.4. Rayonnement solaire	10
I.4.1. Constante solaire	11
I.4.2. Rayonnement solaire reçu au niveau du sol	11
I.4.2.1 Rayonnement direct	11

I.4.2.2. Rayonnement diffus	11	
I.4.2.3. Rayonnement global		
I.4.2.4. Angle d'incidence de rayonnement solaire sur un plan quelque(θ)		
I.5. Angle d'inclinaison d'un capteur	13	
I.6. Le gisement solaire en Algérie	13	
I.7. Les capteurs solaires thermique	14	
I.7.1. Les différents techniques de captation	14	
I.7.2. Les types d'un capteur solaire thermique	15	
I.7.2.1. Capteur solaire plan sans vitrage	15	
I.7.2.2. Capteur solaire à tube sous vide	16	
I.7.2.3. Capteur solaire plan vitré	16	
I.7.2.3.1. Capteur solaire plan à eau	16	
I.7.2.3.2. Capteur solaire plan à air	17	
I.7.2.3.2.1. Applications des capteurs solaires plans à air	18	
I.7.3. Différents composants d'un capteur solaire plan	19	
I.7.3.1. L'absorbeur	19	
I.7.3.2. Le fluide caloporteur	19	
I.7.3.3. La couverture transparente	19	
I.7.3.4. L'isolant thermique	20	
I.7.4. Rendement thermique et énergie utile (récupérée par le fluide caloporteur	20	
Conclusion	20	
CHAPIRE.II : Synthèse bibliographique sur les capteurs solaires		
Introduction	21	
II. Travaux de recherche d'amélioration des performances d'un capteur solaire		
plan en fonction de rugosités artificielles	21	
Conclusion	56	
CHAPIRE.III : Etude expérimentale		
Introduction	57	

III.1. Description du dispositif expérimentale		
III.2. Description des instruments de mesure		
III.3. Tableaux des caractéristiques géométriques des chicanes	63	
Conclusion	65	
CHAPITRE.IV : Discussion et interprétation des résultats		
Introduction	66	
IV.1. Détermination de la corrélation du coefficient d'échange convectif (hc)	66	
IV.2. Tableaux d'évolution de la température de sortie et du rendement		
thermique en fonction du débit volumique	68	
IV.3.1. Résolution du système matriciel en régime laminaire	81	
IV.3.2. Résolution du système matriciel en régime turbulent		
IV.4. Représentations graphiques		
IV.4.1. Représentation graphique de l'évolution des températures de sortie		
en fonction du temps	84	
IV.4.2. Représentation graphique de l'évolution du rendement en fonction		
du débit volumique	87	
IV.4.3. Représentation graphique de l'évolution du Nusselt en fonction du Reynolds	88	
Conclusion	91	

Le procédé de transfert thermique entre l'absorbeur et l'air dans un capteur solaire à air peut être amélioré en augmentant la superficie de la surface thermique sans augmenter le coefficient de transfert thermique, ou en augmentant ce dernier, par introduction de promoteurs de turbulence sous forme de rugosité artificielle dits chicanes dans la veine du conduit d'air en écoulement sans augmenter la superficie de la surface thermique.

On sait que même dans le cas d'un écoulement turbulent, il y a toujours existence d'une sous-couche laminaire au voisinage immédiat de la paroi du capteur solaire.

L'insertion de cette rugosité artificielle sur la surface de transfert thermique détruit la sous-couche laminaire de l'écoulement turbulent et rend l'écoulement turbulent près de la paroi. Bien que la rugosité artificielle permette une augmentation considérable du transfert thermique, elle a également comme conséquence indésirable la chute de pression due au frottement. Par conséquent, la conception du conduit d'écoulement et de la surface de l'absorbeur dans les capteurs solaires à air doit avoir pour objectif l'amélioration du transfert thermique pour un minimum de pertes de charge par frottements.

La présente étude consiste à mener une étude sur l'effet aérodynamique imposé par la mise en place de chicanes de forme rectangulaire dont la partie supérieure est également rectangulaire mais inclinée en plaques d'aluminium très minces dans la conduite utile rectangulaire de l'insolateur, tout cela dans le but de modéliser des corrélations empiriques par la méthode d'analyse dimensionnelle (Vashy Bukingham), permettant d'évaluer les échanges thermiques occasionnés par la présence de ces chicanes, en fonction des paramètres géométriques, de la configuration, de la disposition de celles-ci et des régimes d'écoulement (laminaire et turbulent).

Le présent travail est structuré en quatre chapitres.

Le premier chapitre représente un aperçu sur la technologie de la conversion thermique de l'énergie solaire où l'on cite l'importance de celle-ci, des gisements solaires, des capteurs solaires et leurs principaux composants, les définitions de ceuxci et quelques illustrations. Le deuxième chapitre est réservé à une synthèse bibliographique sur les capteurs solaires plan muni de rugosités artificielles. Ce chapitre porte sur presque une trentaine de travaux de recherche réalisés préalablement sur le même sujet, où figurent des configurations de chicanes variées, leurs dispositions à l'intérieur des conduits utiles des différents capteurs solaires et les corrélations empiriques modélisées.

Le troisième chapitre est consacré à une étude expérimentale, en particulier, la description du dispositif expérimental utilisé dans notre étude, les différents instruments de mesure utilisés pour la mesure des températures d'entrée, des températures de sortie, des vitesses expérimentales de l'air ainsi que le rayonnement solaire. On expose, en plus, la forme des chicanes en aluminium (vu leur bonne conductivité thermique) étudiées dans notre recherche.

Le quatrième chapitre consiste à la discussion et à l'interprétation des résultats. A cet effet, on expose les deux différentes dispositions (rangée et quinconce) de la configuration des chicanes utilisée (rectangulaire-rectangulaire), les différentes valeurs des paramètres géométriques, la méthode utilisée (vaschy-Bukingham) pour les deux modélisations mathématiques(régime laminaire et régime turbulent) du coefficient d'échange thermique par convection, on dresse les tableaux de résultats obtenus. Enfin, on trace les graphes indispensables à la discussion et à l'interprétation des résultats expérimentaux obtenus.

CHAPITRE I

Introduction

L'énergie solaire thermique est la transformation de rayonnement solaire en énergie thermique. Cette énergie thermique peut être soit utilisée directement (système passif) ou indirectement (système actif). Le principe de capter le rayonnement solaire et le stocker dans les systèmes passifs (véranda, serre, façade vitrée) ou à redistribuer cette énergie par le biais d'un fluide caloporteur qui peut être de l'eau, un liquide antigel, ou même de l'air s'il s'agit de système actif [1]

Les ressources énergétiques mondiales peuvent être classées en : [2,3]

• Ressources fossiles et fissiles non renouvelables qui se sont accumulées dans l'écorce terrestre au cours des ères géologiques, du fait de processus biologiques ou physico-chimiques.

• Ressources renouvelables qui trouvent leur origine dans les différents flux énergétiques naturels incidents à la surface de la terre, qui sont:

- ▶ Le rayonnement solaire qui fournit 99.97% de sa densité thermique.
- La chaleur interne terrestre qui fournit 0.03% de sa densité thermique.
- Le travail des forces de gravitation.

Le premier chapitre présente un aperçu théorique général sur la technologie de la conversion thermique de l'énergie solaire où on expose la notion de gisements et de capteurs solaires :

I.1. Le soleil :

Le soleil est la seule étoile du système solaire et la plus proche de la terre, sa lumière met environ 8 min à nous atteindre. La deuxième étoile la plus proche est Proxima de Centaure située à 4.23 années lumières du soleil mais la grande distance qui nous sépare de cette étoile fait que le soleil soit la seule étoile qui assure la vie sur terre [2,4]. Sur le plan humain, le soleil a une importance primordiale car il est à l'origine de la vie sur terre, en lui fournissant d'énormes quantités d'énergie, qui permet la présence de l'eau à l'état liquide et la photosynthèse des végétaux. Le rayonnement solaire est aussi responsable du climat et des phénomènes météorologiques [2].

I.1.1. Présentation générale :

Le soleil est une étoile naine de forme pseudo-sphérique comparable à une immense boule de gaz très chauds qui se compose de 80% d'hydrogène et de 19% d'hélium, le 1% restant étant un mélange de plus de 100 éléments, soit pratiquement tous les éléments chimiques connus [2,5].

Bien que le soleil soit une étoile de taille moyenne, il représente à lui seul 99.9% de lamasse du système solaire qui est dominé par les effets gravitationnels de l'importante masse du soleil [2,5].

Les caractéristiques principales du soleil sont regroupées dans le tableau I.1 :

Diamètre (km)	1392000
Masse (kg)	2.10 ³⁰
Surface (km ²)	6.09.10 ¹²
Volume (km ³)	1.41.10 ¹⁸
Masse volumique moyenne (kg/m ³)	1408
Vitesse (km/s)	217
Distance du centre de la voie lactée (km)	2.5.1017

Tableau.I.1. Caractéristiques principales du soleil[6].

Le soleil n'est pas une sphère homogène, il est constitué de :

Le noyau contient 40% de la masse du soleil, c'est là où se crée 90% de son énergie sous forme de rayons gamma et X, tout le rayonnement émis dans cette région est totalement absorbé par les couches supérieures, cette zone s'étend sur une épaisseur de 25.104 km, elle présente les caractéristiques suivantes :

≻Une température de 15.10⁶°C.

Une densité est de 1015 kg/ m^3 .

≻Une pression de 109 atm.

-La zone radiative où la chaleur produite se propage par une diffusion radiative,elle présente les propriétés suivantes [9]:

≻Une épaisseur de244160 km.

>Une température variant de 10.10^{6} °C à 50.10^{4} °C.

-La zone de convection où la chaleur produite se propage par une convection turbulente, elle présente les propriétés suivantes [7,8] :

> Une température comprise entre 50.10^{4} °C à 6400 °C.

≻Une épaisseur de l'ordre 199758 km. [7,8]

- La photosphère est une couche opaque, les gaz qui la constituent sont fortement ionisés et capables d'absorber et d'émettre un spectre continu de radiations, elle émet 99% du rayonnement total principalement dans le visible et c'est elle que l'œil humain perçoit. Elle présente les caractéristiques suivantes [10] :

- La température de surface décroit de 6400 °C à 4500 °C.

≻Une épaisseur de 500 km.

≻Une pression de 1/100 atm.

- La chromosphère constitue avec la couronne l'atmosphère du soleil, cette couche présente les caractéristiques suivantes [9,10] :

➤Une épaisseur 2000 km

>Une température augmentant de 4200 °C à 10^{4} °C.

-La couronne est la dernière couche du soleil, ses caractéristiques sont [8] :

Elle est sans limite précise.

>La température augmente de 10^{6} °C à 2.10^{6} °C.

La figure I.1 montre la structure du soleil.

Figure. I.1. Structure du soleil [1]

I.1.2. Evolution du soleil :

Le soleil s'est contracté jusqu'à atteindre approximativement sa taille actuelle. L'énergie gravitationnelle libérée par ce mouvement a chauffé l'intérieur de l'astre et, lorsque le noyau s'est révélé suffisamment chaud, la contraction a cessé pour laisser place à la réaction de fusion thermonucléaire.

La durée de vie du soleil dépend de la quantité d'hydrogène qui reste à consommer, on estime qu'il existe depuis environ 4.5 milliards d'années, et subsistera, tel qu'il est, pendant au moins encore 5 milliards d'années.

Lorsque le soleil aura épuisé ses réserves d'hydrogène, il changera de structure. Sa surface externe s'étendra au-delà de l'orbite actuelle de la terre ou il se transformera en une géante rouge, légèrement plus froide en surface qu'actuellement, mais 10 000 fois plus brillante en raison de[5]sa taille gigantesque. Le soleil demeurera une géante rouge, brûlant l'hélium dans son noyau, pendant un demi-milliard d'années seulement, après ce stade, le noyau résiduel du soleil s'effondrera pour former une étoile naine blanche petite de la taille de la terre environ, il se refroidira alors lentement pendant plusieurs milliards d'années [5].

La figure I.2 donne le cycle de vie du soleil.

Figure. I.2.Cycle de vie du soleil [1]

I.2. Gisement solaire :

Le gisement solaire est une science qui propose l'étude radiométrique et météorologique de l'atmosphère, en effet les aspects de l'environnement relèvent immédiatement de l'objet précité, les niveaux d'énergies au sol et leur rythmes de fluctuation saisonnière, les variations dans l'espace et dans le temps de l'humidité et de la pression atmosphérique, le régime du vent avec d'autres paramètres avec moins ressentis, reflètent le concept propre du climat, l'Algérie offre des possibilités considérables pour le développement des applications solaire et[13]éolienne

via l'exploitation du gisement solaire sous ses différentes formes selon les diverses modes de captation[13].

I.2.1. Origine :

L'énergie solaire est l'énergie électromagnétique liée au rayonnement émis par lesoleil (150 millions de kilomètres environ, parcourus en quelques 8 minutes par la lumière). La puissance rayonnée par les réactions thermonucléaires au sein du soleil se traduit, sur notre planète, par un apport énergétique important qui peut atteindre 1.000 W/ m2 au niveau du sol, sous forme de lumière visible et de proche infrarouge .

Sur la Terre, l'énergie solaire est à l'origine du cycle de l'eau, du vent et règne végétal, dont dépend le règne animal. A l'exception de l'énergie nucléaire, de la géothermie et de l'énergie marémotrice, l'énergie solaire est en fait à l'origine de toutes les énergies sur terre[14].

I.2.2 Caractères particuliers :

L'énergie solaire est la seule source d'énergie externe de la terre, elle présente les propriétés suivantes :[13,15]

Elle est universelle, sa densité de puissance maximale est de $(1KW/m^2)$ à midi par ciel bleu sur toute la planète.

La densité de puissance maximale reçue au niveau du sol (1KW/m²) est peu dense on parle alors d'énergie diffuse.

Elle est abondante, notre planète reçoit plus de 104 fois l'énergie que l'humanité consomme.

Elle est intermittente et variable à cause de l'alternance du jour et de la nuit, des variations saisonnières et quotidiennes de l'ensoleillement.

L'énergie reçue par une surface donnée n'est pas récupérable en totalité ceci est dû aux pertes d'énergie sous formes conductrice, convective ou rayonnante.

Elle est propre.

I.2.3 Captation :

Il existe différentes techniques pour capter une partie de cette énergie comme il est éclairci sur la figure I.3 :

I.2.3.1. L'énergie solaire thermique

Le solaire thermique est un procédé de transformation de l'énergie solaire en une forme thermique, qu'on peut utiliser : [1]

- En usage direct de la chaleur : chauffe-eau solaire, chauffage solaire, cuisinière et séchoir solaire.

- En usage indirect où la chaleur sert pour un autre usage : centrales solaires thermodynamiques, froid solaire.[1]

I.2.3.2. L'énergie solaire thermodynamique

L'énergie solaire thermodynamique utilise le solaire thermique pour produire de l'électricité selon le même principe qu'une centrale électrique classique mais en utilisant des centrales hélios thermoélectriques [13,15]

Trois types principaux de centrales sont utilisés :

- Les centrales à capteurs cylindro-paraboliques pour atteindre des températures entre 300 et 350°C.

- Les centrales à capteurs paraboliques pour atteindre des températures de 1000°C ou plus.[13]

- Les centrales à tour pour atteindre 1000 °C.[13]

I.2.3.3. L'énergie solaire photovoltaïque

Elle est issue de l'électricité produite par transformation d'une partie du rayonnement solaire avec une cellule photovoltaïque. Les photopiles utilisent l'effet photovoltaïque, elles sont formées d'une couche d'un matériau semi-conducteur et d'une jonction semi conductrice. Le silicium est le plus employé ; cependant, l'arséniure de gallium offre des meilleures performances, mais reste beaucoup plus onéreux. [1]

Figure. I.3. Filière de conversion de l'énergie solaire. [1]

I.3. Généralités sur le rayonnement solaire :

I.3.1. Mouvement de la terre autour du soleil :

Le mouvement de la terre sur son axe et autour du soleil est schématisé sur la figure (I.4), les quartes positions de la terre représentées sur cette figure correspondent aux solstices et aux équinoxes, on notera en particulier que l'axe de rotation de la terre est incliné par rapport à la normale du plan de l'écliptique d'un angle de 23°27'. [16]

Figure. I.4. Mouvement de la terre auteur du soleil. [16]

I.3.2. Direction du rayonnement solaire :

Les cordonnées géographique repèrent tout point de la surface terrestre :

Longitude et latitude, ainsi que par son altitude.

I.3.2.1. La longitude :

La longitude d'un lieu correspond à l'angle que fait le plan méridien passant par ce lieu avec un plan méridien retenu comme origine. On a choisi pour méridien origine 0° le plan passant par l'observatoire de Greenwich, Par conversion, on affecte le signe+ les méridiens situés à l'Est de ce méridien, et de signe-les méridiens situés à l'Ouest. La longitude sera désignée ici par la lettre (1), elle peut ainsi être comprise entre $-180^\circ et + 180^\circ$.

I.3.2.2. La latitude :

La latitude d'un lieu correspondant à l'angle que fait le rayon joignant le centre de la Terre à ce lieu, avec le plan équatorial.

La latitude qui est égale à 0° , le pôle nord par latitude $+90^{\circ}$ et le pôle sud par la latitude -90° , caractérisent donc l'équateur terrestre. Cette convention de signe affecte le signe +0 tous les[17]

lieux de l'hémisphère nord et l'signe - à tous les lieux de l'hémisphère sud. La latitude sera désignée ici par la lettre(ϕ).Elle peut ainsi être comprise entre -90° et +90°.

I.3.2.3. L'altitude :

L'altitude d'un point correspond à la distance verticale entre ce point et une surface de référence théorique, le niveau moyen de la mer. On l'exprime généralement end mètre.[17]

I.3.2.4. Les coordonnées célestes horaires :

> Angle horaire (ω)

C'est l'angle compris entre la méridienne origine passant par le sud et la projection dusoleil sur le plan équatorial, il mesure la course du soleil dans le ciel, il est donné par la relation suivante :

$$\omega = 15. (TSV-12) (I.1)$$

Il vaut 0° à midi solaire, ensuite chaque heure correspond à une variation de 15°, car la période de la terre dans sa rotation sur elle-même est égale à 24 h, compté négativement le matin lorsque le soleil est vers l'est et positivement le soir [18]

> Déclinaison (δ)

La déclinaison du soleil est l'angle entre le plan de l'équateur terrestre avec la direction terresoleil. Elle varie suivant l'équation de Cooper (figure I.5) [19]

$$\delta = 23,4 \sin\left[\frac{360}{365}(J-81)\right](I.2)$$

J : Nombre du jour de l'année à partir du premier janvier.

On représente sur la figure la variation de l'angle « δ » pendant l'année au cours des mois de l'année.

Figure I.5.Déclinaison du soleil [20]

I.3.2.5. Coordonnées célestes horizontales :

Le repérage du soleil se fait par l'intermédiaire de deux angles qui sont :

> hauteur (h)

Angle compté entre l'horizon astronomique et l'axe issu du point considéré au soleil.

Il est compté de0° à90° si le soleil se trouve dans l'hémisphère Nord (Zénith) et de0° à-90° si le soleil se trouve dans l'hémisphère Sud (Nadir).

Elle est donnée par la formule.

 $\sin(h) = \cos \phi \cos \delta \cos \omega + \sin \phi \sin \delta(I.3)$

> Azimut (α)

L'azimut est l'angle compris entre le méridien du lieu et le plan vertical passant par le soleil . Il est donné par la relation suivante[21,22]

$$\sin(\alpha) = \frac{\cos(\delta)\sin(\omega)}{\cos(h)}(I.4)$$

I.3.2.6. Les paramètres de temps :

Le temps solaire vrai (TSV)

Le temps solaire vrai (TSV) est l'angle horaire entre le plan méridien passant par le centre du soleil et le méridien du lieu considéré, il est donné par l'expression. [18]

TSV=12+ $\frac{\omega}{15}$ (I.5)

> Le temps solaire moyen (TSM)

Le temps solaire moyen c'est le temps qui correspondrait à une rotation uniforme de la terre autour du soleil, il diffère peu du « TSV » (écart maximal ET =16 minutes) donc :

TSM =TSV -ET

(I.6)

ET : est l'équation du temps qui corrige le TSV par rapport au TSM (voir la figure.5)

 $ET=9,87 \sin(2.N') -7,53 \cos(N') -1,5 \sin(N')(I.7)$

> Temps universel (TU)

Le temps universel (TU) est le temps moyen de Greenwich:

TU = TSM(I.8)

Temps légal (TL)

Le temps légal (TL) est le temps officiel d'un état, il est donné par:

 $TL = TU + \Delta H$

(I.9)

 ΔH : Le décalage horaire entre le méridien de Greenwich et l'état considéré.[23]

I.3.2.7. Lever et coucher du soleil :

On s'intéresse ici à deux instants particuliers de la journée, le lever et le coucher du soleil donné par les relations (10) et (11) [16]:

$$(TSV)_{lever} = 12 + \frac{\omega_s}{15} (I.10)$$
$$(TSV)_{coucher} = 12 - \frac{\omega_s}{15} (I.11)$$

L'angle solaire au lever « - » et au coucher « » est donne par l'équation suivante : remplaçons h par la valeur zéro, alors l'équation de la hauteur du soleil (équation 3) se simplifié en :

$$\cos(\omega_s) = -tg(\phi).tg(\delta) \quad (I.12)$$

$$\omega_s = \arccos(-tg(\phi).tg(\delta)) \quad (I.13)$$

Durée du jour

La durée du jour « dj » est donnée par la relation suivante [16]:

$$d_j = \frac{2}{15} \operatorname{arc} \cos(-tg(\phi).tg(\delta))(I.14)$$

Fraction d'insolation

La durée d'insolation est une variable qui présente une grandeur non stationnaire, celle ci trouve son explication dans la variation de sa moyenne au cours de l'année, à cause de la saisonnalité du processus, en effet elle varie d'un jour à l'autre, l'ensoleillement d'un site est exprimé par la fraction d'insolation « σ » définie par le rapport [18]

$$\sigma = \frac{S_h}{d_j} (I.15)$$

Où « S_h » est le nombre d'heures ensoleillées ou durées d'insolation et « » la durée du jour

I.4.Rayonnement solaire:

Le rayonnement électromagnétique émis par le soleil est la manifestation externe des interactions nucléaires qui se produisent au coeur du soleil et de l'ensemble des interactions secondaires qu'elles génèrent dans son enveloppe, il constitue la quasi-totalité de l'énergie expulsée par le soleil, le rayonnement solaire est défini par différentes caractéristiques dont la plus importante est la constante solaire, qui est une donnée fondamentale indépendante des conditions météorologiques [24]

La deuxième caractéristique du rayonnement solaire est sa répartition spectrale, qui est à peu près celle d'un corps noir à 5800 K, le rayonnement solaire est une superposition d'ondes dont les longueurs vont de 0,25 micromètres à 4 micromètres [24,25]

I.4.1. Constante solaire :

La valeur du rayonnement solaire « I », reçu par une surface perpendiculaire aux rayons solaires placée à la limite supérieure de l'atmosphère terrestre (soit à environ 80 km d'altitude) varie au cours de l'année avec la distance terre-soleil, sa valeur moyenne « Io» appelée constante solaire est de l'ordre de 1354 W.m-2, en première approximation, on peut calculer la valeur de «I» (voir figure I.6),en fonction du numéro du jour de l'année « j » parla relation suivante [26] $I = 1354 \times (1+0.033 \cos(J))$

Figure. I.6. Variation mensuelle de la solaire [19]

I.4.2. Rayonnement solaire reçu au niveau du sol :

I.4.2.1. Rayonnement direct :

Le rayonnement direct est celui qui traverse l'atmosphère sans subir de modifications, il provient du disque solaire seulement à l'exclusion de tout rayonnement diffusé, réfléchi ou réfracté par l'atmosphère [24,25].

I.4.2.2. Rayonnement diffus :

Le rayonnement diffus, issu du ciel, à exception du disque et du sol, est très difficile à analyser. Avant tout, le sol réfléchi en moyenne le tiers du rayonnement qu'il reçoit et il faut compte également de la diffusion de ce rayonnement Rennequin.

Le rayonnement diffus est le rayonnement émis par des obstacles (nuages, sol, bâtiments) et provient de toutes les directions. La part du rayonnement diffus n'est pas négligeable et peut atteindre 50% du rayonnement global (selon la situation géographique du lieu) [17].

I.4.2.3. Rayonnement global :

Le rayonnement global est le rayonnement reçu sur une surface horizontale provenantdu soleil et de la totalité de la voûte céleste, il est la somme du rayonnement direct et du rayonnement diffus. La figure 8 illustre les différents composants du rayonnement solaire au niveau du sol [24,25].

I.4.2.4. Angle d'incidence du rayonnement solaire sur un plan quelconque(θ) :

C'est comment calculer l'angle (θ) entre un rayon arrivant directement du soleil et la normale à un plan quelconque (souvent ce plan représente la force avant réceptrice du rayonnement solaire (insolateur par exemple) l'orientation du capteur solaire est définie par:

-Son inclinaison(i) : angle que fait le capteur avec le plan horizontal

Son azimut (γ) : angle que fait la normale à la surface du capteur et le plan méridien.[25]
 (figure I.7)

 $cos(\theta) = cos(h)sin(i)cos(\alpha-\gamma) + cos(i)sin(h)$ (I.16)

Figure. I.7. Azimut (orientation) et inclinaison d'un plan quelconque [25]

 $\gamma > 0$ vers l'ouest

```
\gamma < 0 vers l'est
```

 $\gamma = 0$, direction sud

L'angle peut être exprimé en fonction de φ, ω, δ .

 $Cos(\theta) = sin(\delta)sin(\varphi - i) + cos(\delta) cos(\varphi - i) cos(\omega) \quad (I.17)$

Au Cours d'une journée(θ) est minimale au midi solaire vrai où l'angle(ω) est égal à0°.

La surface de Captage devrait toujours être orientée autant que possible perpendiculairement au rayonnement pour une exploitation optimale du rayonnement solaire. Cependant Comme la position du soleil par rapport à la terre varie continuellement au cours d'une journée et d'une année, l'angle d'incidence du rayonnement sur le capteur (fixé sur un socle ou sur une toiture) varie également.[25]

I.5. Angle d'inclinaison d'un capteur :

Surface horizontale : $i = 0^{\circ}$, surface verticale : $i = 90^{\circ}$

Cet angle est souvent pondéré en fonction de l'application et de l'utilisation souhaite [27] :

Un système qui fonctionne toute l'année devra être dimensionné en prenant les valeurs d'ensoleillement les plus pessimistes. L'angle d'inclinaison sera égal à l'altitude du lieu augmentée de 12° afin d'optimiser la performance hivernale. Un champ solaire destiné à fonctionner en période estivale verra son angle d'inclinaison positionné à la latitude du lieu minorée de 12°, Des inclinaisons moins fortes favorisent le gain solaire en été. Des inclinaisons plus fortes favorisent le gain solaire en hiver [25]

I.6. Le gisement solaire en Algérie :

Le gisement solaire c'est des données qui décrivent l'évolution des radiations solaires disponibles pendant une durée donnée. Il est utilisé afin de simuler le

Fonctionnement d'un système énergétique solaire et aussi pour faire un dimensionnement le plus exact possible compte tenu de la demande à satisfaire

L'Algérie dispose d'un gisement solaire de par sa situation géographique, énorme comme le montre la figure I.8 :[29]

Figure I.8. Moyenne annuelle de l'irradiation solaire globale reçue sur un plan incliné à la latitude du lieu [28]

L'Agence spatiale allemande (ASA) a fait des calcules, et elle a conclu que l'Algérie représente le potentiel solaire le plus important de tout le bassin méditerranéen, suite à une évaluation par satellites, soit 169,000 TWh/an pour le solaire thermique, 13,9 TWh/an[29]

pour le solaire photovoltaïque. Le potentiel solaire algérien est égale aux 10 grands gisements de gaz naturel qui auraient été découverts à Hassi R'Mel.

Le tableau I.1 suivant représente la répartition du potentiel solaire par région climatique au niveau du territoire algérien selon l'ensoleillement reçu annuellement [29].

Régions	Régions Côtières	Haute plateaux	Sahara
	Cotteres		
Superficie(%)	4	10	86
Durée moyenne d'ensoleillement	2650	3000	3500
(h/an)			
Energie moyenne reçue	1700	1900	2650
(KWh/m ² /an)			

Tableau.I.2. Ensoleillement reçu en Algérie par régions climatiques [29].

I.7. Les capteurs solaires thermique :

Les capteurs thermo-solaires sont pour fonction de transformer, avec le meilleur rendement possible, l'énergie électromagnétique du rayonnement solaire en énergie thermique, à un niveau de température convenable pour l'utilisateur, et à transmettre cette chaleur au fluide caloporteur. Dans ce but, l'énergie solaire est absorbée par un corps, l'absorbeur, dans lequel circule le fluide caloporteur. Autour de l'absorbeur, divers dispositifs sont placés pour[31]diminuer les pertes de chaleur qui ne seraient pas transmises au fluide et pour augmenter le niveau de température. On peut distinguer plusieurs grandes catégories de capteurs solaires :

Selon le fluide caloporteur : les capteurs à eau, à air, à huile, à ébullition. Suivant la géométrie du capteur: les capteurs plans ou à concentration. Les premiers permettent d'atteindre des températures moyennes mais captent la totalité du flux solaire, alors que les seconds conduisent à de hautes températures mais ne captent que le rayonnement solaire direct.

La chaleur produite par les capteurs peut ensuite être utilisée pour: chauffage, séchage.

I.7.1. Les différentes techniques de captation

On peut capter directement le rayonnement solaire au moyen de panneaux solaires plans réceptifs, convenablement équipés et dénommés insolateurs, ou au moyen de miroirs ou de lentilles, qui modifient la direction des rayons solaires et généralement les concentrent avant la conversion en énergie utilisable, (captation indirecte). [31]
Les appareils de captation sont fixes, ou orientables, l'orientation étant généralement assurée par un dispositif automatique. On peut aussi utiliser des appareils semi fixes, qu'on oriente de façon discontinue selon la direction du rayonnement incident.

I.7.2. Les types d'un capteur solaire thermique :

I.7.2.1. Capteur solaire plan sans vitrage :

Généralement ils sont constitués de plastique polymère, aucun revêtement sélectif, pas de cadre ni d'isolation en arrière. Ils sont posés sur un toit ou sur un support en bois. Ces capteurs de faible coût présentent néanmoins des pertes thermiques vers l'environnement qui augmentent rapidement avec la température de l'eau, (particulièrement dans les endroits venteux).Les capteurs sans vitrage sont couramment utilisés pour des applications demandant une fourniture d'énergie à basse température (piscines, eau d'appoint en pisciculture, chaleur industrielle, etc.) ; dans les climats froids, ils sont habituellement utilisés exclusivement durant l'été à cause de leurs pertes thermiques élevées (figure I.9). [31]

Figure.I.9. Capteur solaire sans vitrage[31]

I.7.2.2. Capteur solaire à tube sous vide :

Les capteurs solaires à tubes sous vide sont des capteurs solaires qui ont une meilleure performance que les capteurs plans pour un fonctionnement à haute température dans l'intervalle de 77 à 170 °C. Ils sont bien adaptés pour les applications de chauffage commercial et industriel ainsi que pour les applications de refroidissement par des cycles de réfrigération régénérâtes.

Figure.I.10. Capteur solaire à tubes sous vide [31]

I.7.2.3. Capteur solaire plan vitré :

I.7.2.3.1. Capteur solaire plan à eau :

Les capteurs à liquide avec vitrage comprennent une plaque absorbante noire munied'un revêtement sélectif fixée dans un cadre entre un vitrage simple ou double et un panneauisolant arrière (figure I.11). L'énergie solaire est ainsi emprisonnée dans le capteur (effet deserre).

Ces capteurs sont couramment utilisés pour des applications à températures modérées (chauffage de l'eau sanitaire, chauffage de locaux, chauffage de piscines intérieures ouvertes toute l'année et chauffage pour procédés industriels) [31].

Figure.I.11. Capteur solaire plan à eau [31]

I.7.2.3.2. Capteur solaire plan à air :

Les capteurs solaires plans à air, ont presque tous le même principe de fonctionnement; mais leurs différences résident dans le choix des éléments qui lesconstituent (Fig.I.12).[32]

Figure.I.12. Capteur solaire plan à air. [32]

En peignant en noir mat une surface devant être exposée au soleil, on augmente son pouvoir absorbant, les pertes thermiques par réflexion et diffusion sont très réduites et la température de cette surface peut atteindre 60° à 70°C. Une surface noircierayonne beaucoup plus au soleil que si elle n'était pas noire et, quand l'équilibre thermique est atteint, elle perd par rayonnement obscur de grande longueur d'onde (en même temps que par conduction et convection) la chaleur reçue. Pour capter l'énergie solaire, il suffit d'utiliser "l'effet de serre". Grâce à une couverture en verre placée sur un châssis, on réalise un " piège à calories". On peut augmenter l'intensité de l'effet de serre en plaçant sur le châssis 2 à 3 lames de verre séparées par des couches d'air, pour chauffer de l'eau on peut atteindre 80°C avec 2 lames de verre, avec 3 vitres on peut porter la température de l'eau à 90° ou 100°C.[34]

I.7.2.3.2.1. Applications des capteurs solaires plans à air :

Plusieurs applications de l'énergie solaire captée par des capteurs solaires plans à air sont utilisées. Parmi les plus répandues, le chauffage, la climatisation, le séchage, la production de l'énergie mécanique, etc.

Chauffages et climatisation des habitations :

Le principe est présenté sur la figure I.14, consiste à chauffer le fluide dans le capteur solaire, l'air est véhiculé par ventilateur vers des points d'utilisations.[17]

- 1. Capteur solaire plan à air
- 2. Filtre
- 3. Ventilateur
- 4. Entrées d'air.
- 5. Sorties d'air

Figure.I.13. Chauffages est climatisation des habitations.[17]

Séchage :

Le séchage est un procédé d'extraction d'eau d'un solide, d'un semi-solide ou d'un liquide par évaporation. Cette opération nécessite une source de chaleur. Plusieurs techniques sont possibles pour sécher et conserver nos produits.

La technique de séchage courante, est généralement réalisée sur sol, elle est la plus utilisée dans les pays en voix de développement afin de préserver les denrées alimentaires, telles que les céréales, les légumes, la viande et le poisson, etc. [35]

Figure.I.14. Séchage solaire. [35]

I.7.3. Différents composants d'un capteur solaire plan :

I.7.3.1. L'absorbeur :

L'absorbeur est une surface d'une couleur sombre, souvent noire, c'est le siège de la conversion thermique et sert au transfert de la chaleur au fluide à chauffer, par conduction et convection quand le liquide circule à l'arrière de la surface absorbante (cas des insolateurs à lame d'eau et de certains insolateurs à tubes d'eau) ou juste un transfert par convection si le fluide à chauffer se trouve du coté où arrive le rayonnement (cas des insolateurs japonais du type "bassin", très répandu au Japon pour produire de l'eau chaude).[34]

Métal	Conductivité	Chaleur	Masse	Diffusivité
	thermique	Massique	Volumique	$(10^{-6} m^2/s)$
	(w /m. k)	(j/kg. k)	(kg/m. ³)	
Cuivre	384	398	8900	108
AcierInoxydable	14	460	7800	4
Aluminum	204	879	2700	86

Tableau I.3. Caractéristiques thermo-physiques de quelques matériaux métalliques [31]

I.7.3.2. Le fluide caloporteur :

Le fluide caloporteur a pour mission de transporter la chaleur de la source àl'utilisation. Le fluide idéal devrait avoir les propriétés suivantes :

- Être assez fluide pour diminuer les pertes de charge.
- Avoir une grande capacité thermique par unité de volume, pour transporter la chaleuravec le plus petit débit possible.[31]
- Ne pas être corrosif pour les différentes parties du circuit.
- Supporter les températures limites dans le système -25 à 140 °C pour les capteurs solaires plans, 0 à 110 °C dans les installations de chauffage.
- Ne pas porter atteinte à l'environnement en cas de fuites.
- Être disponible à un prix abordable.

I.7.3.3. La couverture transparente :

La couverture est la surface à travers laquelle le rayonnement solaire non concentré est admis dans le capteur. On ne peut utiliser que des matériaux transparents. L'intérêt d'une couverture transparente habituelle pour le rayonnement solaire est d'autant plus grand que la température de fonctionnement du convertisseur est élevée. C'est donc pour des températures dépassant 70°C qu'on peut envisager d'installer un double vitrage afin d'accroître le rendement. [31]

I.7.3.4. L'isolant thermique :

L'isolation joue un rôle très important dans les applications thermiques de l'énergie solaire, pour limiter les pertes par conduction et convection vers le milieu environnant, sur les côtés latéraux et en bas du capteur(Fig.I.15).

Un bon isolant doit avoir les qualités suivantes:

- une faible conductivité thermique

- une chaleur massique qui doit être basse

-une résistance thermique dans l'intervalle des températures de service.[34]

Figure.I.15. Isolation thermique du boitier. [32]

I.7.4. Rendement thermique et énergie utile (récupérée par le fluide caloporteur)

A condition que, les températures d'entrée et de sortie d'air sont connues, l'équation suivante peut être utilisée pour représenter l'énergie utile:

 $Q_u = \dot{m}C_p \left(T_{fs} - T_{fi} \right) \tag{I.18}$

Ainsi, le rendement thermique n du collecteur peut être calculée par:[1]

$$\eta = \frac{Q_u}{I_g A_p} = \frac{\dot{m} c_p (T_{fs} - T_{fi})}{I_g A_p} \tag{I.19}$$

[1]

Conclusion :

L'étude théorique ci-dessus, nous a donné une idée générale sur les gisements solaires en Algérie, les différents types de capteurs solaires plans leurs composants et leurs applications. D'après tout ce qu'a précédé, on peut conclure que l'énergie solaire prend de l'ampleur, jour après jour, dans le Monde vueses dénombrables avantages par rapport aux énergies fossiles.

[1] F AISSAOUI., Contribution à l'étude du transfert de chaleur d'un capteur solaire placé dans un climat aride : cas de la région de Biskra, Mémoire de Doctorat LMD en génie mécanique, 2016.

[2] J,Bernard. Energie solaire calculs et optimisation, Ellipse Edition Marketing. (2004).

[3]C, Vauge. Introduction générale sur les différentes énergies renouvelables, Techniques de l'Ingénieur, B263. (1982).

[4] A, H, Khedim. Energie solaire et son utilisation sous forme thermique et photovoltaïque, Centre de Publication Universitaire. (2003).

[5] Z, Sen. Solar energy fundamentals and modeling techniques, Springer. (2008).

[6] Saadi S., Effect des paramètres opérationnels sur les porformances d'un capteur solaire plan, Mémoire de Magister en physique, UMC, 2010.

[7] Bernard R., menguy G., Schwartz M., Le rayonnement solaire, convection thermique et applications, technique et Documentation ,1979.

[8] Duffiej.A., Beckman W.A., solar engineering of thermal processus, john Wiley and sons.1980.

[9] Sfeir A., Guarracino G., Ingénierie des systèmes solaires, Technique et Documentation, Paris,1981).

[10] Perrin C., Vauge C., Le gisement solaire, Technique et Documentation, Paris, 1982.

[13]P. R. Jean Bonal, Écrin, Energies alternatives, Omniscience, 2007.

[14] Ch. P. De Brichambaut, Ch. Vauge. Le gisement solaire évaluation de la ressource énergétique. Edit Technique et Documentation, Paris (1981).

[15] D. K. Edwards, Capteurs solaires, Paris: S.C.M., 1979.

[16] A. A. Sfeir and G. Guarracino, Ingénierie des systèmes solaires : applications à l'habitat,

Paris: Technique et documentation, 1981.

[17] Moummi N., Le gisement solaire, Elément de cours 'les énergies renouvelables', université de Biskra, 2006.

[18] M. Capderou, Atlas solaire de l'Algérie, Office des publications Universitaires, 1987.

[19] J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes, 1980.

[20 J. Braun and J. Mitchell, Solar geometry for fixed and tracking surfaces, *Solar Energy*, vol. 31 5, pp. 439-444, 1983.

[21] C. P. de Brichambaut and C. Vauge, Le gisement solaire : Evaluation de la ressource énergétique, Lavoisier, Paris. ; Tec & Doc, 1982.

[22] U.Eicker, Solar technologies for buildings, John Wiley & Sons, 2001.

[23] J. Bernard, Énergie solaire: calculs et optimisation, Ellipses, 2004.

[24] J. A. Duffie and W. A. Beckman, Solar Energy Thermal Processes, Wiley : New York., 1974.

[25] J. M. Chassériaux, Conversion thermique du rayonnement solaire, Dunod, 1984.

[26] C. Chauliaguet, P. Baratçabal and J. P. Batellier, L'Energie solaire dans le bâtiment, Eyrolles, 1981.

[27] J. M. Chassériaux, Conversion thermique du rayonnement solaire, Dunod, 1984.

[28] A. Mefti and H. Mimouni, Evaluation du potentiel énergétique solaire, *Bulletin des énergies renouvelables*, vol. 2, pp. 2002.

[29] Bouzaffa M., Les capteurs solaires plans, mémoire de magister, option énergétique, université de Ouargla, 2012.

[30] Abbaz D., Optimisation des paramètres de fonctionnement d'un plancher solaire direct (PSD), mémoire de magister, option Energies Renouvelables, université de CONSTANTINE 1 (2013).

[31] C. A. Roulet. Energétique du bâtiment I, Interactions entre le climat et le bâtiment. Edité par Presses Polytechniques Romandes (1987).

[32] A .Moumi (2007-2008) Elément de cours de 1ère année Magister de Mécanique Energétique, Université de Biskra, Algérie.

[33] M. BENAMRA Mostefa Lamine, Intégration des systèmes solaires photovoltaïques dans le bâtiment: Approche architecturale, Magister(2013)

[34] N. Hatami and M. Bahadorinejad, "Experimental determination of natural convection heat transfer coefficient in a vertical flat-plate solar air heater,"*Solar Energy*, vol. 82, pp. 903-910, 2008. DOI: 10.1016/j.solener.2008.03.008.

[35] H. Rakotondramiarana, D. Morau, L. Adelard and J.-C. Gatina, Modélisation du séchage solaire: application au séchage en couche mince des boues solides des stations d'épuration, *12ème journees internationales de thermique JITH*, vol. pp. 2005.

CHAPITRE II

Introduction :

Dans le mode de vie actuel, la disponibilité en énergie devient une préoccupation et une priorité majeure pour la vie quotidienne des habitants. L'épuisement des énergies classiques (pétrole, gaz et charbon) et leur atteinte à l'environnement ont obligé les gouvernements du monde à rechercher d'autres sources d'énergies telles que les énergies renouvelables propres, gratuites et disponibles dont l'énergie solaire fait partie qui doit être convertie en énergie thermique en utilisant des moyennes adéquates tels que les capteurs solaires plans à air.

Le faible rendement de ceux-ci a obligé les chercheurs à mettre en place des rugosités artificielles dites « chicanes » dans le conduit utile des capteurs. Dans ce chapitre, on va tenter d'avancer une recherche bibliographique des travaux qui traitent des différentes formes géométriques de la rugosité artificielle qui permettent l'amélioration des performances des capteurs solaires plan à air.

II. Travaux de recherche d'amélioration des performances d'un capteur solaire plan en fonction de rugosités artificielles :

Prasad et Saini(1988), ont tenté d'améliorer le coefficient de transfert de chaleur par convection entre la plaque absorbante et l'air dans un panneau solaire à plaque plane en dotant la plaque absorbante d'une rugosité artificielle. Ils ont réalisé une étude d'un flux complètement turbulent dans un conduit de panneau solaire à air avec des fils de métal saillants de petit diamètre sur la plaque absorbante. Ils ont développé, ainsi,des expressions pour prédire le nombre *Nusselt*et le coefficient de frottement. Ils ont comparé, en outre, les résultats de ces expressions aux résultats disponibles. Ils se sont avérés comparables avec un écart moyen de 6.3% pour le facteur de frottement et 10.7% pour le nombre de *Nusselt*. Enfin, ils ont également étudié l'effet de la hauteur et du pas des éléments de rugosité sur le taux de transfert de chaleur et le frottement pour une gamme de paramètre décrite comme suit:[1]

 $\begin{cases} pas \ de \ rugosit\acute{e} \ relative \ \left(\frac{P}{e}\right) de \ 10.15 \ et \ 20\\ hauteur \ de \ rugosit\acute{e} \ relative \ \left(\frac{e}{D}\right) de \ 0.020 \ ; \ 0,027 \ \grave{a} \ 0.033\\ nombre \ de \ Reynolds: \ 5000 - \ 50000 \ [1] \end{cases}$

Le coefficient de frottement et le nombre de Nusselt sont exprimés par :

$$f = \frac{2}{\left[0.95\left(\frac{P}{e}\right)^{0.53} + 2.5\ln\left(\frac{D}{2e}\right) - 3.75\right]^2}$$

 $N_u = 0.014 \times (P_r)^{0.5} (f)^{0.5} R_e$

Une amélioration du nombre de *Nusselt* et du coefficient de frottement dans le conduit rendu rugueux est d'environ 2.38; 2.14; 2.01 et 4.25; 3.39; 2.93 fois par rapport à ceux du conduit lisse pour un pas de rugosité relatif de 10,15 et 20 respectivement.[1]

Figure .II.1 : rugosité avec fils métalliques continus transversaux[1]

Sahu et Bhagoria(2005), ont étudié la performance thermique d'un capteur solaire à air, en introduisant dans le canal utile 90fils transversaux discontinus.

hauteur (e) égal à 1.5 mm rapport de forme $\left(\frac{W}{H}\right)$ égal à 8 pas entre rangées (P): 10 – 30 mm nombre de Reynolds: 3000 – 12000

Les résultats expérimentaux ont montré que le coefficient de transfert thermiqueest passé de 1.25 à 1.4 fois par rapport à un capteur solaire lisse.L'efficacité thermique peut atteindre 83.5% pour une plaque ayant un pas de rugosité de 20mm.[2]

Figure.II.2 : rugosité avec fils métalliques discontinus transversaux [2]

Guptaet al.(1997),ont étudié l'effet de la hauteur relative de la rugosité (e/D), l'inclinaison de la nervure par rapport à la direction d'écoulement (α) et le nombre de *Reynolds(Re)* sur les performances thermo-hydrauliques d'un capteur solaire à air renforcé dansla région d'écoulement transitoire (5<e+<70) selon la gamme des paramètres de rugosité et de fonctionnement suivante:

 $\begin{cases} e/D = 0.023 - 0.050 \\ P/e = 7.5 \ et \ 10 \\ \alpha = \ 30^{\circ} - 90^{\circ} \\ Re = 5000 - 30000 \ [3] \end{cases}$

Le coefficient de frottement et le coefficient de transfert de chaleur sont respectivement donnés par les expressions:

Figure.II.3 : rugosité avec fils métalliques continus inclinés [3]

Les résultats expérimentaux ont montré que pour un capteur solaire à air durci, le maximum d'amélioration du nombre de *Nusselt* et du coefficient de frottement sont rapportés à l'ordre de 1.8 et 2.7 fois correspondant à des valeurs d'angle d'inclinaison de 60° et 70° respectivement. Les performances thermo-hydrauliques (thermiques et hydrauliques) ont été rapportées pour une hauteur de rugosité relative (e/D) de 0.023 et pour un Nombre de *Reynolds*, *Re*, de 14000.[3]

Momin et al.(2002), ils ont rapporté les résultats d'une étude expérimentale de l'effet des paramètres géométriques des nervures en forme de V sur le transfert de chaleur et les caractéristiques d'écoulement de fluide du conduit rectangulaire du capteur solaire avec plaque absorbante comportant des nervures en forme de V sur sa face inférieure. Ils ont choisi pour cette étude une gamme de paramètres sur la base de considérations pratiques du système et des conditions de fonctionnement. L'étude a[4] porté sur un nombre de *Reynolds* (R_e) compris entre 2500 et 18000, une hauteur de rugosité relative (e/D_h) de 0.02 à 0.034 et un angle d'attaque de l'écoulement de 30° à 90 ° pour un pas relatif fixe de 10. Les résultats ont également été comparés à ceux de conduits lisses dans des conditions d'écoulement similaires afin de déterminer l'amélioration du coefficient de transfert de chaleur et du coefficient de frottement.

Les corrélations ont été développées pour l'efficacité du transfert de chaleur et le coefficient de frottement pour le conduit rendu rugueux.

Les expressions du coefficient de frottement et le nombre de *Nusselt* sont respectivement données par:

Figure.II.4 : rugosité avec fils métalliques continus en forme de V[4]

Karmare et Tikekar (2009), ont constaté que la rugosité artificielle améliore le transfert de chaleur de la plaque collectrice à l'air dans un capteur solaire. Cependant, cela entraînerait une augmentation des pertes par frottement et donc de la puissance requise par le ventilateur ou la soufflante. Cet article présente les résultats d'une étude expérimentale sur les performances thermo-hydrauliques de capteurs solaires à air durcis avec des grains de métal. La plage de variation du système de paramètres et de fonctionnement est étudiée dans les limites de:(e/D_h) de 0.035 à 0.044, (p/e) de15-17.5 et (l/s) de 1.72, pour une variation de *Reynolds* (*Re*) de 3600 à 17000. L'étude montre une amélioration substantielle de l'efficacité thermique (10 à 35%) par rapport à un capteur solaire à air avec plaque collectrice lisse. L'amélioration de l'efficacité thermique s'accompagne également d'une augmentation considérable de la puissance de pompage requise en raison de l'augmentation du coefficient de frottement (80-250%). Les conditions optimales de conception et de fonctionnement ont été[5]

déterminées sur la base de considérations thermo-hydrauliques. Il a été constaté que les systèmes fonctionnant dans une plage spécifiée du nombre de Reynolds présentent de meilleures performances thermo-hydrauliques en fonction de l'insolation. Une relation entre le système et les paramètres de fonctionnement qui combinent des performances optimales de rendement optimal a été développée.

Le coefficient de frottement et celui du transfert de chaleur pour cette configuration sont respectivement données par:

Figure.II.5 : disposition d'une surface de rugosité avec petits fils métalliques[5]

Varun et al.(2008), ont réalisée une expérience pour étudier les caractéristiques de transfert de chaleur et de frottement en utilisant une combinaison de nervures inclinées et transversales sur la plaque absorbante d'un capteur solaire à air. L'étude expérimentale a porté sur un nombre de *Reynolds (Re)* compris entre 2000 et 14000, un pas relatif de rugosité (p/e) de 3 à 8 et une hauteur relative de rugosité (e/D) de 0.030. La discussion de l'effet de ces paramètres sur le coefficient de transfert de[6]

chaleur et le coefficient de frottement a permis de conclure que les meilleures performances sont obtenues avec un pas de rugosité relative égal à 8.

L'expression du coefficient de frottement et celle du nombre de Nusselt sont données par:

 $f = 1.0858 \times Re^{-0.3685} (p/e)^{0.0114}$

 $Nu = 0.0006 \times Re^{1.213} (p/e)^{0.0114} [6]$

Figure.II.6 : rugosité par combinaison entre fils métalliques transversaux et inclinés[6]

Saini SK et Saini RP(2008), ont étudié expérimentalement l'amélioration du coefficient de transfert de chaleur d'un capteur solaire ayant un conduit d'air doté d'une rugosité artificielle sous la forme de fils parallèles en forme d'arcs servant d'éléments de rugosité. L'effet des paramètres du système tels que la hauteur de rugosité relative (e/d) de 0.0213 à 0.0422;l'angle d'arc (α /90) de 0.3333 à 0.6666; pas de rugosité relative(p/e) égal à 10 et le facteur de forme(W/H) de 12, sur le nombre de *Nusselt* (*Nu*) et le coefficient de frottement (*f*) à été étudié avec un nombre de Reynolds (*Re*) de 2000 à17000. Une amélioration considérable du coefficient de transfert de chaleur a été obtenue avec un tel élément de rugosité.

Le maximum de *Nu* obtenu a été de 3.80 fois celui du conduit lisse pour un angle d'attaque relatif ($\alpha/90$) de 0.333 et une hauteur de rugosité relative (e/D) de 0.0422. Cependant, l'augmentation du coefficient de frottement correspondant à ces paramètres n'a été que de 1.75 fois seulement. [7]

Pour cette configuration l'expression du coefficient de frottement et celle du nombre de *Nusselt* sont données respectivement par les corrélations suivantes:

Figure.II.7 :rugosité avec fils métalliques en forme d'arc [7]

N.Chouchane et al.(2009).En vue d'optimiser les échanges convectifs et les performances thermiques des échangeurs de chaleur et des capteurs solaires à eau et à air, ils ont introduit dans le conduitutile des ailettes de formes diverses dites chicanes. Cependant, leur présence induit une augmentation considérable des pertes de charge qui nécessite une puissance mécanique importante pour le pompage du fluide.

Dans ce travail expérimental, ils se sont intéressés à quatre configurations de chicanes. Plusieurs rangées sont introduites à l'intérieur du canal rectangulaire. Les chicanes sont munies d'une partie supérieure inclinée, qui ont pour rôle, la création des écoulements désordonnés et à structure tourbillonnaire développée, à axe vertical et horizontal due aux rétrécissements et aux élargissements brusques, notamment en présence de la disposition en quinconce.

Figure.II.8 : différentes configurations des chicanes étudiées [8]

Figure.II.9 : disposition en rangée et en quinconce des chicanes [8]

Cas de chicanes rectangulo-triangulaires disposées en rangées:

• régimeturbulent:

$$\lambda = Re^{-1.2060} {\binom{\varepsilon}{D_H}}^{-0.0043} {\binom{P_{e-ch}}{D_H}}^{-7.1129} {\binom{P_{e-r}}{D_H}}^{-0.0949} \times {\binom{L_{ch}}{D_H}}^{-7.2345} {\binom{P_{e-s.ch}}{D_H}}^{12.3519}$$

• régime laminaire:

$$\begin{split} \lambda &= Re^{-1.2060} \left(\frac{\varepsilon}{D_H} \right)^{0.7207} \left(\frac{P_{e-ch}}{D_H} \right)^{-6.7089} \left(\frac{P_{e-r}}{D_H} \right)^{-0.3428} \\ &\times \left(\frac{L_{ch}}{D_H} \right)^{-6.3749} \left(\frac{P_{e-s.ch}}{D_H} \right)^{11.2249} \end{split}$$

Cas des chicanes rectangulo-triangulaire disposées en quinconce

• Régime turbulent:

$$\lambda = Re^{-1.1312} \left(\frac{\varepsilon}{D_H} \right)^{0.0244} \left(\frac{P_{e-ch}}{D_H} \right)^{-8.7666} \left(\frac{P_{e-r}}{D_H} \right)^{-0.0805} \times \left(\frac{L_{ch}}{D_H} \right)^{-8.81849} \left(\frac{P_{e-s.ch}}{D_H} \right)^{15.0836}$$
[8]

• Régime laminaire:

$$\begin{split} \lambda &= Re^{-1.16915} \left(\frac{\varepsilon}{D_H} \right)^{0.6319} \left(\frac{P_{e-ch}}{D_H} \right)^{-9.6765} \left(\frac{P_{e-r}}{D_H} \right) \\ &\times \left(\frac{L_{ch}}{D_H} \right)^{-9.2643} \left(\frac{P_{e-s.ch}}{D_H} \right)^{16.4783} \overset{-0.1881}{-0.1881} \end{split}$$

Les résultats obtenus montrent que les pertes de charge enregistrées sont de plus en plus accentuées avec le nombre de rangées des chicanes, notamment pour les incidences de 60° et de 120° de la partie supérieure inclinée, lorsque le pas relatif entre les chicanes et les rangées se trouve réduit, particulièrement, elles sont plus importantes en présence de la disposition en quiconque, que lorsque celles-ci sont alignées en rangées. [8]

Karwa et al.(1999)ont étudié l'effet des nervures chanfreinées comme rugosité artificielle. l'étude a couvert les paramètres suivants :

 $\begin{cases} e/D = 0.014 - 0.0328\\ P/e = 4.5 - 8.5\\ W/H = 4.8 - 12\\ \emptyset = -15^{\circ} à 18^{\circ}\\ Re = 3000 - 20000 \end{cases}$

Le facteur de frottement et le nombre de Stanton ont augmenté respectivement jusqu'à 3 et 2 fois. Valeur maximale obtenue à la fois pour le nombre de Stanton et le facteur de frottement à un angle de 15°. Les expressions du coefficient de frottement sont:

$$f = 1.66e^{-0.0078\emptyset} \left(\frac{W}{H}\right)^{-0.4} \left(\frac{P}{e}\right)^{2.695} \times \exp\left[-0.762\left\{\ln\left(\frac{P}{e}\right)\right\}^2\right] (e^+)^{-0.075}$$
Pour 7 $\leq e^+ \leq 2$

$$f = 1.325e^{-0.0078\emptyset} \left(\frac{W}{H}\right)^{-0.4} \left(\frac{P}{e}\right)^{2.695} \exp\left[-0.762\left\{\ln\left(\frac{P}{e}\right)\right\}^2\right] (e^+)^{-0.075}$$
Pour 20 $\leq e^+ \leq 60$ [9]

Figure.II.10 : schéma de rugosité avec nervures chanfreinés [9]

Verma et Prasad (2000). Les capteurs solaires munis de rugosité artificielles fonctionnent mieux que les capteurs lisses dans les mêmes conditions de fonctionnement. Cependant, la rugosité artificielle entraîne une pression de fluide encore plus grande, ce qui augmente la puissance de pompage. Les paramètres de rugosité, à savoir, le pas relatif de rugosité(p/e), la hauteur relative de rugosité(e/D), le débit massique (de 0.01 à 0.06 Kg/s) et le nombre de Reynolds ont un effet combiné sur le transfert de chaleur ainsi que sur la pression du fluide (coefficient de frottement). L'étude a été menée dans la gamme de paramètres suivants:

 $\begin{cases} R_e = 5000 - 20000 \\ P/e = 10 - 40 \\ e/D = 0.01 - 0.03 \\ e^+ = 8 - 42 \end{cases}$

Les expressions de Nusselt et du coefficient de frottement sont données par:

$$Nu = 0.08596 \times {\binom{p}{e}}^{-0.054} {\binom{e}{D}}^{0.072} Re^{0.723} poure^+ \le 24$$
$$Nu = 0.02954 \times {\binom{p}{e}}^{-0.016} {\binom{e}{D}}^{0.021} Re^{0.802} \qquad pour e^+ > 24$$

$$f = 0.245 \times {\binom{p}{e}}^{-0.206} {\binom{e}{D}}^{0.243} Re^{-1.25} [10]$$

Figure.II.11: distribution de la rugosité sur la plaque absorbante en fonction du pas et de la hauteur de la rugosité[10]

Les résultats expérimentaux ont montré que les performances thermiques de tels capteurs se sont avérées supérieures aux capteurs plans pour les mêmes paramètres de fonctionnement. [10]

Jaurker et al. (2006) ont créé une rugosité à rainure de nervure par usinage de la plaque absorbante et ont exploré son effet sur la performance thermique d'un capteur solaire. Les données expérimentales ont été collectées pour la hauteur de rugosité relative (e/D); le pas de rugosité relative (p/e) et la position relative de la gorge (g/p), en variant le nombre de *Reynolds*. Le transfert de chaleur maximal a été observé pour un pas de rugosité relative (p/e) d'environ 6 et une position de gorge relative (g/p) de 0.4. L'étude a révélé que la combinaison des nervures et des rainures peut entraîner une augmentation considérable du nombre de *Nusselt* et du coefficient de frottement.

$$\begin{cases} e'/D = 0.0181 - 0.0363 \\ p'_e = 4.5 - 10 \\ g'/p = 0.3 - 0.7 \\ Re = 3000 - 21000 \\ Nu = 0.002062 \times Re^{0.936} (e'/D)^{0.349} (p'/e)^{3.318} exp \left[-0.868 \{Ln(p'/e)\}^2\right] (g'/p)^{1.108} \\ \times exp \left[2.486 \{Ln(g'/p)\}^2 + 1.406 \{Ln(g'/p)\}^3\right] [11] \end{cases}$$

$$f = 0.001227 \times Re^{-0.199} (e/D)^{0.585} (P/e)^{7.19} (g/p)^{0.645} exp(-1.854\{Ln(P/e)\}^{2} \times exp(1.513\{Ln(g/p)\}^{2} + 0.8662\{Ln(g/p)\}^{3})[11]$$

Figure.II.12 : rugosité en nervures et rainures[11]

Hans et al.(2010).L'utilisation d'une rugosité artificielle sur la face inférieure de la plaque absorbante est un moyen efficace et économique pour améliorer les performances thermiques d'un capteur solaire. Plusieurs études expérimentales, impliquant différents types d'éléments de rugosité, ont été menées pour améliorer le transfert de chaleur de la plaque absorbante à l'air circulant dans les capteurs solaires. Cette recherche expérimentale a été réalisée pour étudier l'effet de la rugosité multiple de nervures en V sur le coefficient de transfert de chaleur et le coefficient de frottement dans un conduit de capteur solaire à air .L'expérience comprenait un nombre de *Reynolds(Re)*, des valeurs relatives de hauteur de rugosité (e/D), pas de rugosité relative (p/e), angle d'attaque (α) et étendue de rugosité relative (W/w).Des corrélations du nombre de *Nusselt* et du coefficient de frottement en termes de géométrie de rugosité et de paramètres d'écoulement ont été développées avec la gamme de paramètres suivante:

 $\begin{cases} Re = 2000 - 20000(10 \text{ valeurs}) \\ e_{/D} = 0.019 - 0.043(4 \text{ valeurs}) \\ W_{/W} = 1 - 10(8 \text{ valeurs}) \\ \propto = 30^{\circ} - 75^{\circ} \\ p_{/e} = 6 - 12(4 \text{ valeurs}) [12] \end{cases}$

$$Nu = 3.35 \times 10^{-5} \times Re^{0.92} {\binom{e}{D}}^{0.77} {\binom{W}{W}}^{0.43} {\binom{\alpha}{90}}^{-0.49} exp^{\left[-0.1177 \left(Ln(W/_W)\right)^2\right]} \times exp^{\left[-0.61 \left(Ln(\alpha/_{90})\right)^2\right]} {\binom{p}{e}}^{8.54} exp^{\left[-2.0407 \left(Ln(p/_e)\right)^2\right]}$$

$$f = 4.47 \times 10^{-4} \times Re^{-0.3188} {(^{e}/_{D})}^{0.73} {(^{W}/_{W})}^{0.22} {(^{\alpha}/_{90})}^{-0.39} \times exp^{\left[-0.52(Ln(\alpha/90))^{2}\right]} {(^{p}/_{e})}^{8.9} exp^{\left[-2.133\left(Ln(^{p}/_{e})\right)^{2}\right]} [12]$$

Figure.II.13 : plaque absorbante rugueuse avec différentes valeurs de W/w[12]

Pandey et al.(2016), ont réalisé, expérimentalement, une étude sur un conduit rectangulaire d'un capteur solaire à air d'une rugosité artificielle ayant la forme d'arcs multiples avec des espaces vides. Les paramètres inclus dans cette étude, à savoir, le nombre de *Reynolds (Re)*, la hauteur de rugosité relative (e/D), le pas de rugosité relative (p/e), l'angle de l'arc (α), la largeur de rugosité relative (W/w), les valeurs de distance relative d'espace (d/x) et la largeur d'espace libre (g/e) sont résumés dans la gamme suivante:

$$\begin{cases}
R_e = 2100 - 21000 \\
P/e = 4 - 16 \\
e/D = 0.016 - 0.044 \\
\propto = 30^\circ - 75^\circ \\
g/e = 0.5 - 2 \\
d/x = 0.25 - 0.85 \\
W/H = 10 \\
W/w = 1 - 7
\end{cases}$$
[13]

Cette étude a permis de développer deux corrélations correspondant respectivement au nombre de *Nusselt* et au coefficient de frottement comme indiqué ci-dessous:[13]

$$= 2.11 \times 10^{\circ} \times \kappa_{e}^{\circ} \left(\frac{1}{x}\right)^{\circ} \left(\frac{1}{e}\right)^{\circ} \left(\frac{1}{w}\right)^{\circ} \left(\frac{1}{e}\right)^{\circ} \left(\frac{1}{60}\right)^{\circ} \left(\frac{1}{D}\right)^{\circ}$$
$$\times \exp\left\{-0.662\left(Ln\left(\frac{d}{x}\right)\right)^{2}\right\} \exp\left\{-0.496\left(Ln\left(\frac{g}{e}\right)\right)^{2}\right\}$$
$$\times \exp\left\{-0.160\left(Ln\left(\frac{P}{e}\right)\right)^{2}\right\} \exp\left\{-3.96\left(Ln\left(\frac{\alpha}{60}\right)\right)^{2}\right\}$$

Figure.II.14 : plaque absorbante rugueuse avec

(a):vue en 2-D et (b):vue en 3-D[13]

Les résultats obtenus ont révélé que l'augmentation maximale du nombre de *Nusselt* (*Nu*) et du coefficient de frottement (f) est de 5.85 et 4.96 fois respectivement par rapport au conduit lisse.[13]

Han et Zhang(1992), ont étudié l'effet de l'orientation des nervures brisées sur les distributions de transfert de chaleur locales et la pression dans un canal carré à deux parois striées en ligne opposées pour des nombres de *Reynolds* compris entre 15000 et 90000. Le canal carré est composé de dix sections de cuivre isolées et a une longueur - rapport de diamètre hydraulique de 20. Le rapport hauteur/diamètre de la côte au diamètre hydraulique est de 0.0625 et le pas de la côte est égal à 10.

$$\begin{cases} W/H = 1 \\ P/e = 10 \\ e/D = 0.625 \\ \alpha = 90^{\circ}, 60^{\circ}et \ 45^{\circ} \\ R_e = 15000 - 90000 \end{cases}$$

Figur.II.15 : vue de dessus des orientations des nervures étudiées [14]

Les résultats montrent que la nervure brisée parallèle de 60° ou la nervure brisée en forme de V de 60° offre une augmentation supérieure du transfert de chaleur que les 45° côtes parallèles brisées ou 45° en forme de V brisées et, par la suite, plus hautes que les 90° côtes brisées. La «côte brisée» parallèle ou la «côte brisée» en forme de V offre une augmentation de transfert de chaleur de 2.5 à 4fois supérieure à celle de la «côte continue» ou d'une «côte continue» en V parallèle précédente avec une augmentation de transfert de chaleur de 2 à 3 fois pour la même quantité. 7-8 fois la pénalité sous pression.[14]

Lanjewar et al.(2011).La rugosité artificielle sous forme de nervures est une méthode pratique pour améliorer le coefficient de transfert de chaleur dans un capteur solaire. Leur recherche présente une étude expérimentale du transfert de chaleur et du coefficient de frottement caractéristiques du conduit rectangulaire dépoli avec des nervures en forme de W sur la face inférieure d'une paroi large disposée à une inclinaison par rapport à la direction de l'écoulement. La gamme de paramètres pour cette étude a été décidée sur la base de considérations pratiques relatives au système et aux conditions de fonctionnement. Le conduit a un rapport de largeur à la hauteur (W/H), un pas de rugosité relative (p/e) , une hauteur de rugosité relative (e/D_h) et un angle d'attaque de l'écoulement (α). Le débit d'air correspond à un nombre de *Reynolds* variable.

Les corrélations ont été développées pour le coefficient de transfert de chaleur et le coefficient de frottement vis-à-vis des conduits rugueux, avec la gamme de paramètres suivante:

$$\begin{cases} e/D_h = 0.018 - 0.03375 \\ P/e = 10 \\ \propto = 30^\circ - 75^\circ \\ Re = 2300 - 140000 \\ W/H = 8 \end{cases}$$

$$N_{u} = 0.0631 \times (R_{e})^{0.9079} \left(\frac{e}{D_{h}}\right)^{0.4487} \left(\frac{\alpha}{60}\right)^{-0.1331} exp\left\{-0.5307 \left(Ln\frac{\alpha}{60}\right)^{2}\right\}$$
$$f = 0.6182(R_{e})^{-0.2254} \left(\frac{e}{D_{h}}\right)^{0.4622} \left(\frac{\alpha}{60}\right)^{0.0817} exp\left\{-0.28 \left(Ln\frac{\alpha}{60}\right)^{2}\right\} [15]$$

Figure.II.16 :schéma de principe de la rugosité avec nervures en forme de W à 60°[15]

Les résultats de transfert de chaleur et du coefficient de frottement ont été comparés à ceux obtenus pour un conduit lisse sous conditions de débit et de paramètres thermiques similaires pour déterminer les performances thermohydrauliques. [15]

Singh et al.(2014).L'incorporation d'une rugosité artificielle sur la face inférieure de la plaque absorbante est une méthode efficace et économique pour améliorer les performances thermiques d'un capteur solaire. Leur présente étude expérimentale a pour but d'analyser l'effet de divers paramètres géométriques pour plusieurs formes d'arc sur les caractéristiques de transfert de chaleur et de frottement. Les expériences effectuées englobent un nombre de *Reynolds(Re)* variable, une hauteur de rugosité relative (e/D), un angle d'arc (α), une largeur de rugosité relative (W/w)et un pas de rugosité relative (p/e). Ils ont mené des expériences approfondies pour accumuler des données sur les caractéristiques de transfert de chaleur et de frottement d'un capteur solaire à gaine rectangulaire. À l'aide de ces données expérimentales, des corrélations du nombre de *Nusselt* et du coefficient de frottement sont également développées avec la gamme de paramètres suivante:

$$\begin{cases} Re = 2200 - 22000 \\ p/e = 4 - 16 \\ e/D = 0.018 - 0.045 \\ \propto = 30^{\circ} - 75^{\circ} \\ W/H = 11 \\ W/w = 1 - 7 [16] \end{cases}$$

$$Nu = 1.564 \times 10^{-4} \times (e/D)^{0.048} Re^{1.343} (W/w)^{0.407} exp \left(-0.099 (Ln(W/w))^2\right)$$
$$\times (p/e)^{0.572} \times exp \left(-0.148 (Ln(p/e))^2\right) \times (\alpha/90)^{-0.355}$$
$$\times exp \left(-0.272 (Ln(\alpha/90))^2\right)$$
$$f = 0.063 \times (e/D)^{0.102} Re^{-0.16} (W/w)^{0.277} (p/e)^{0.562} (\alpha/90)^{0.023}$$
$$\times exp \left(-0.140 (Ln(p/e))^2\right) exp \left(-0.013 (Ln(\alpha/90))^2\right)$$

Figure.II.17 :plaque d'absorption avec rugosité en forme d'arc multiple[16]

Figure.II.18 :vue imagée de la géométrie rugueuse en forme d'arc multiple[16]

Sur la base de l'étude expérimentale, les flux de chaleur et de fluide dansun conduit rectangulaire ayant plusieurs géométries de rugosité en forme d'arcsur la plaque absorbante, Ilsont conclu qu'une amélioration considérable du transfert de chaleur a eu lieu lors de l'utilisation de ce type de configuration.Le maximum obtenu de Nusselt en coefficient de frottement 5.07 nombre et est et en 3.71[16]respectivement pour plusieurs géométries de rugosité en forme d'arc par rapport à un capteur solaire lisse.[16]

Patil et al.(2012).La performance thermique du capteur solaire à air s'est avérée sensiblement améliorée par la mise en place de la rugosité artificielle sur la face inférieure de la surface de l'absorbeur. Ils ont entrepris une étude sur l'effet d'une rugosité cassée de nervures en V, combinée à des nervures décalées, sur le transfert de chaleur et de frottement dans un écoulement à travers une gaine de chauffage d'air solaire rendue rugueuse artificiellement. Ce travail a couvert un ensemble varié de paramètres tels que le nombre de*Reynolds (Re)*,le pas relatif des côtes décalées (p'/p), la taille relative des côtes décalées (r/e), position relative de l'écart (s'/s), le pas de rugosité relative (p/e), la hauteur de rugosité relative (e/D_h), la distance relative (g/e) et l'angle d'attaque (α) de 60°. Des données expérimentales relatives au transfert de chaleur et au frottement ont été générées et les performances thermo-hydrauliques ont été déterminées pour différents ensembles de paramètres de rugosité et d'écoulement.

$$\begin{cases} p/e = 10 \\ e/D_h = 0.043 \\ A_r = 12 \\ \propto = 60^{\circ} \\ s'/s = 0.2 - 0.8 \\ p'/p = 0.2 - 0.8 \\ r/e = 1 - 2.5 \\ Re = 3000 - 17000 \end{cases}$$

$$Nu = 0.0089 \times Re^{0.97} exp \left[\frac{0.12}{1 + \{20.42Ln(p'/p) + 1.19\}^2} + \frac{0.11}{1 + \{20.5Ln(p'/p) + 1.41\}^2} + 0.14(Ln(r/e))^{0.71} \right]$$

$$f = 0.09 \times Re^{-0.18} exp \left[\frac{0.10}{1 + \{30.18Ln(s'/s) + 1.56\}^2} + \frac{0.11}{1 + \{20.6Ln(p'/p) + 1.40\}^2} + 0.17(Ln(r/e))^{2.5} \right] [17]$$

Figure.II.19 : (a) et (b) géométrie de la rugosité cassée de nervures en forme de V[17]

Les résultats obtenus ont révélé que les valeurs maximales du nombre de *Nusselt* et du coefficient de frottement ont été observées pour la position de l'écart relatif de 0.6, la position relative des côtes décalées de 0.6 et pour la taille relative des côtes décalées de 2.5.[17]

Sethi et al.(2012), ont réalisé une étude expérimentale pour une gamme de paramètres du système et du fonctionnement afin d'analyser l'effet de la rugosité artificielle sur les caractéristiques de transfert de chaleur et de frottement dans un conduit de capteur solaire à air comportant des éléments en forme de fossettes disposés angulairement (arc) entant qu'éléments de rugosité sur la plaque absorbante. La gaine a été étudiée en tenant compte des paramètres: un facteur de forme (W/H), un pas de rugosité relative (p/e), une hauteur de rugosité relative (e/D_h), un angle d'arc (α) et un nombre de *Reynolds (Re)*, dont les plages de variation sont résumées cidessous. Une augmentation considérable du transfert de chaleur et des paramètres par frottement a été observée. Des corrélations du nombre de *Nusselt* et du coefficient de frottement en fonction des paramètres de rugosité et des paramètres de fonctionnement ont été développées. [18]

Figure.II.20 : (a) schéma de la plaque absorbante [18]

Figure.II.21 : (b) vue imagée de la plaque absorbante [18]

Les résultats expérimentaux ont montré que:

- ✓ Le nombre de *Nusselt* augmente alors que le coefficient de frottement diminue avec l'augmentation du nombre de *Reynolds*.
- ✓ La valeur maximale du nombre *Nusselt* trouvée correspond à une hauteur de rugosité relative de 0.036, un pas de rugosité relative de 10 et un angle d'arc de 60°.
- ✓ les valeurs du coefficient de frottement et du nombre de *Nusselt* sont plus élevés que celles d'un capteur solaire lisse.[18]

Yadav et al.(2013), ont effectué une étude expérimentale pour examiner l'effet des caractéristiques de transfert de chaleur et de frottement d'un flux d'air turbulent traversant des conduits rectangulaires rendus rugueux par des saillies circulaires disposées en arc angulaire. La paroi rugueuse est chauffée uniformément tandis que les trois autres sont isolées. Les caractéristiques thermiques et de frottement sont déterminées par le rapport de forme du conduit (W/H), le diamètre hydraulique (D), le pas relatif de rugosité (p/e), la hauteur relative de rugosité (e/D), l'angle de l'arc (α) et le nombre de *Reynolds(Re)*. Les expériences ont été menées en variant ces caractéristiques comme indiqué ci-dessous.

 $\begin{cases} Re = 366 - 18100 \\ p/e = 12 - 24 \\ e/D = 0.015 - 0.03 \\ \alpha = 45^{\circ} - 75^{\circ} \\ W/H = 11 \\ e/d = 0.3 \end{cases}$

Les résultats expérimentaux ont été utilisés pour développer des corrélations pour le nombre de *Nusselt* et pour le coefficient de frottement.

 $Nu = 0.154 \times Re^{1.017} (e/D)^{0.521} (p/e)^{-0.38} \times (\alpha/60)^{-0.213} \times exp \left[-2.023 (Ln(\alpha/60))^2 \right]$

$$f = 7.207 \times Re^{-0.56} (e/D)^{0.176} (p/e)^{-0.18} (\alpha/60)^{0.38} \times exp \left[-1.412 (Ln(\alpha/60))^2 \right] [19]$$

Figure.II.22 : (a) géométrie rugueuse saillante en forme d'arc [19]

Figure.II.23 : (b) vue imagée de la géométrie rugueuse [19]

Les résultats expérimentaux ont montré que l'amélioration maximale du transfert de chaleur et du coefficient de frottement est respectivement de 2.89 et 2.93 fois par rapport au conduit lisse.[19]

Kumar et al.(2013), ont réalisé une étude expérimentale sur le transfert de chaleur et le frottement dans l'écoulement de l'air dans des conduits rectangulaires à nervures multiples en forme deV avec intervalle de rugosité sur une paroi large. Ce travail de recherche a été effectué pour une gamme de paramètres de système et de fonctionnement tels que: le nombre de *Reynolds* (*Re*),l'écart relatif (G_d/L_v), la largeur d'écartement (g/e), la hauteur relative de rugosité (e/D), le pas relatif de rugosité(P/e), le rapport largeur/rugosité relative (W/w) et l'angle d'attaque (α).

 $\begin{cases} Re = 2000 - 20000 \\ G_d/L_v = 0.24 - 0.80 \\ g/e = 0.5 - 1.5 \\ e/D = 0.022 - 0.043 \\ p/e = 6 - 12 \\ W/w = 1 - 10 \\ \alpha = 30^\circ - 75^\circ \end{cases}$

Sur la base des données expérimentales, des corrélations pour Nu et f ont été développées en fonction des paramètres de rugosité de plusieurs formes en V avec un nombre de *Reynolds* en échancrure et écoulement.

$$f = 3.1934 \times Re^{-0.3151} (e/D)^{0.268} (W/w)^{0.1132} exp \left(0.0974 (Ln(W/w))^2 \right) \\ \times (G_d/L_v)^{0.0610} \\ \times exp \left(-0.1065 (Ln(G_d/L_v))^2 \right) (g/e)^{-0.1769} exp \left(-0.6349 (Ln(g/e))^2 \right) \\ \times (\alpha/60)^{0.1553} \times exp \left(-0.1527 (Ln(\alpha/60))^2 \right) \times (p/e)^{-0.7941} \\ \times exp \left(0.1486 (Ln(p/e))^2 \right)$$
[20]

Figure.II.24 : rugosité avec multi nervures en forme de V avec écart [20]

Les résultats expérimentaux ont révélé que pour le nombre de *Nusselt (Nu)*, l'augmentation maximale de l'ordre de 6.74 fois de la valeur correspondant au canal lisse a été obtenue, mais le facteur de frottement (*f*) a également été vu augmenter de 6,37 fois par rapport à celui du canal lisse. Les paramètres des côtes correspondant à l'augmentation maximale de *Nu* et de*f* étaient (G_d/L_v) = 0.69, (g/e) =1.0, (e/D) = 0.043, (p/e) = 8, (W/w) = 6 et $\alpha = 60^{\circ}$.[20]

Maithani et Saini(2015),ont réalisé une étude expérimentale pour améliorer le coefficient de transfert de chaleur et le coefficient de frottement d'un capteur solaire à air ayant un conduit muni de rugosité artificielle sous la forme de nervures en V avec des écarts symétriques comme promoteur de turbulence. L'expérience a porté sur des paramètres de système et de fonctionnement comme indiqué ci-dessous.

 $\begin{cases} N_{\rm g} = 1 - 5 \\ {\rm g/}e = 1 - 5 \\ p/e = 6 - 12 \\ {\rm a} = 30^{\circ} - 75^{\circ} \\ e/D = 0.043 \\ Re = 4000 - 18000 \ [21] \end{cases}$

Des corrélations pour Nu et f ont été développées en fonction des paramètres de rugosité des nervures en V à intervalles symétriques et du nombre de *Reynolds* d'écoulement.

$$Nu = 1.8 \times 10^{-6} Re^{0.9635} N_g^{0.126} (g/e)^{0.111} (p/e)^{5.7419} (\alpha/60)^{0.1307} \times exp \left[-0.055 \left(Ln(N_g) \right)^2 \right] exp \left[-0.0401 \left(Ln(g/e) \right)^2 \right] \times exp \left[-1.299 \left(Ln(p/e) \right)^2 \right] exp \left[-0.895 \left(Ln(\alpha/60) \right)^2 \right]$$

$$f = 3.6 \times 10^{-7} Re^{-0.1512} N_g^{0.1484} (g/e)^{0.072} (p/e)^{9.24} (\alpha/60)^{0.07} \\ \times exp \left[-0.0763 \left(Ln(N_g) \right)^2 \right] exp \left[-0.0249 \left(Ln(g/e) \right)^2 \right] \\ \times exp \left[-2.08 \left(Ln(p/e) \right)^2 \right] exp \left[-0.3364 \left(Ln(\alpha/60) \right)^2 \right]$$

Figure.II.25 :écoulement de l'air dans le conduit muni de rugosité en forme de nervures en V avec des écarts symétriques [21]

Les résultats expérimentaux ont montré que pour le nombre de *Nusselt* (*Nu*), une amélioration maximale de l'ordre de 3.6 fois celle du canal lisse a été obtenue, de même le coefficient de frottement (*f*) a également augmenté de 3.67 fois celui du canal lisse. Les paramètres des côtes correspondant à l'augmentation maximale de *Nu* et *f* étaient Ng=3, g/e=4, p/e=10 et α =60°.[21]
Deoet al.(2016), ont mené une étude expérimentale pour examiner les caractéristiques de transfert de chaleur, de frottement et thermo-hydrauliques d'un écoulement dans un conduit rectangulaire rendu rugueux artificiellement d'un côté avec des nervures en V à cavités multiples combinées à des nervures en quinconce.

Les paramètres du système, du fonctionnement et de l'expérimentation considérés ont été: le rapport de forme du conduit rectangulaire de 12, le nombre de *Reynolds* basé sur le débit massique d'air à l'entrée du conduit, le pas relatif de rugosité(p/e), la hauteur relative de rugosité (e/D_h), l'angle d'attaque (α), la largeur relative de l'écart (g/e), le rapport longueur/largeur des côtes décalés (w/e), le pas relatif des côtes décalée (P/p),deux nombres d'écart (n) de chaque côté de la jambe en V.

 $\begin{cases} p/e = 4 - 14 \\ e/D_h = 0.026 - 0.057 \\ \propto = 40^{\circ} - 80^{\circ} \\ nombred'écarts \ de \ chaque \ côté \ de \ la \ nervure \ V, n = 2 \\ g/e = 1 \\ w/e = 4.5 \\ P/p = 0.65 \\ Re = 4000 - 12000 \quad [22] \end{cases}$

Sur la base des résultats expérimentaux des corrélations pour le nombre de *Nusselt* et pour le coefficient de frottement ont respectivement été développées:

$$Nu = 0.02253 \times Re^{0.98} (P/e)^{-0.06} (e/D_h)^{0.18} (\alpha/60)^{0.04}$$

Figure.II.26 : rugosité avec des nervures en forme de V à cavités multiples combinées à des nervures en quinconce[22]

Les résultats montrent deux pics pour le nombre de *Nusselt* correspondant aux valeurs de (P/e) de 6 et de 12 et une diminution du nombre de *Nusselt* a été observée pour une augmentation de la valeur de (e/D_h) au-delà de 0.044. L'amélioration maximale obtenue en nombre de *Nusselt* et de paramètre de performance thermohydraulique était de 3.34 et 2.45 fois, respectivement. [22]

Gawande et al.(2016), ont mené une étude sur un capteur solaire qui utilise une rugosité artificielle sous la forme de nervures répétées sur la plaque absorbante pour améliorer le taux de transfert de chaleur. Le transfert de chaleur par convection forcée de l'air dans un capteur solaire avec des nervures inversées en forme de L a été[23] effectué de manière expérimentale et numérique. Les performances thermiques du capteur solaire à air sont étudiées avec des variables de conception tels que le pas relatif de rugosité (P/e), le nombre de *Reynolds (Re)*, le flux de chaleur (1000 W/m²) et la hauteur de rugosité relative (e/D). Une simulation CFD bidimensionnelle utilisant un code CFD, ANSYS FLUENT et le modèle de turbulence RNG k– ε , permet de résoudre les termes de turbulence dans les équations de gouvernance.

 $\begin{cases} e/D = 0.042 \\ p/e = 7.14 - 17,86 \\ Re = 3800 - 18000 \end{cases}$

Des corrélations du nombre de *Nusselt* et du coefficient de frottement ont été développées en fonction des paramètres de rugosité et de débit.

$$Nu = 0.032 \times Re^{0.8332} (P/e)^{0.3479} exp(-0.1004 Ln(P/e)^2)$$

$$f = 0.2805 \times Re^{-0.2617} (P/e)^{0.0815} exp(-0.0319 Ln(P/e)^2)$$

Figure.II.27 : rugosité avec nervures en forme de L inversé[23]

Cette étude a révélé que la présence d'une nervure en forme de L inversée présente un effet significatif sur les caractéristiques de transfert de chaleur et du coefficient de frottement, par rapport à la modification du pas relatif de rugosité (P/e) et du nombre de *Reynolds* (*Re*). Le paramètre de performance thermo-hydraulique de 1.90 tenant compte de l'augmentation du transfert de chaleur avec la même puissance de pompage a été évalué pour la configuration optimale de l'élément de rugosité (nervure en forme de L inversée) pour le capteur solaire à air durci artificiellement. Il a été constaté que les résultats numériques concordaient bien avec les résultats expérimentaux pour la gamme de paramètres étudiés. [23]

Pandey et al.(2016)Dans cette recherche, ils ont réalisé une étude expérimentale sur le coefficient de frottement et de transfert de chaleur dans un canal rectangulaire qui présente une forme en arcs multiples avec des écarts entant qu'élément de rugosité. L'expérience a porté sur les paramètres suivants: le nombre de *Reynolds (Re)*, la hauteur de rugosité relative (e/D), le pas de rugosité relative (P/e), l'angle d'attaque de l'arc (α), la largeur de rugosité relative (W/w), les écarts de distances relatives(d/x) sont égales et l'écart de la largeur relative (g/e).

$$\begin{cases} Re = 2100 - 21000 \\ P/e = 4 - 16 \\ e/D = 0.016 - 0.044 \\ \propto = 30^{\circ} - 75^{\circ} \\ g/e = 0.5 - 2 \\ d/x = 0.25 - 0.85 \\ W/H = 10 \\ W/w = 1 - 7 \end{cases}$$

En utilisant ces données, des corrélations ont été développées pour Nu et f.

$$Nu = 1.39 \times 10^{-4} Re^{1.3701} (d/x)^{-0.4997} (g/e)^{-0.0292} (W/w)^{0.4017} (P/e)^{0.5854} \times (\alpha/60)^{-0.2235} (e/D)^{0.0931} exp \left(-0.3989 (Ln(d/x))^2\right) \times exp \left(-0.2013 (Ln(g/e))^2\right) exp \left(-0.129 (Ln(W/w))^2\right) \times exp \left(-0.142 (Ln(P/e))^2\right) exp \left(-0.5614 (Ln(\alpha/60))^2\right)$$

$$f = 2.11 \times 10^{-1} \times Re^{-0.25} (d/x)^{-0.888} (g/e)^{-0.079} (W/w)^{0.032} (P/e)^{0.643} (\alpha/60)^{-2.546} \times (e/D)^{0.145} exp \left(-0.662 \left(Ln(d/x)\right)^2\right) exp \left(-0.496 \left(Ln(g/e)\right)^2\right) \times exp \left(-0.160 \left(Ln(P/e)\right)^2\right) exp \left(-3.96 \left(Ln(\alpha/60)\right)^2\right) [24]$$

Figure.II.28 : rugosité avec nervures en forme d'arcs multiples avec écarts[24]

L'augmentation maximale du nombre de *Nusselt* (*Nu*) et du coefficient de frottement (*f*) est de 5.85 et 4.96 fois par rapport au conduit lisse.[24]

Hans et al.(2017), ont effectué une recherche expérimentales sur un conduit de capteursolaire à air, avec un facteur de forme de 12, rendu rugueux avec une nervure en arc cassé. Il a été formé en créant un espace symétrique en arc continu. Pour étudier l'influence des paramètres de rugosité de la nervure d'arc cassée sur le nombre de *Nusselt* ainsi que sur le coefficient de frottement, trente-sept plaques rendues rugueuses par des nervures d'arc cassés ayant un pas de rugosité relative (P/e), une largeur d'écart relative (g/e) et un écart de position relative (d/w), une hauteur de rugosité relative (e/D_h) et un angle d'arc (α) pour un nombre de *Reynolds(Re)* ont été mise en place.

$$\begin{cases} Re = 2000 - 16000 \\ d/w = 0.20 - 0.80 \\ \propto = 15^{\circ} - 75^{\circ} \\ g/e = 0.5 - 2.5 \\ P/e = 4 - 12 \\ e/D_h = 0.022 - 0.043 \quad [25] \end{cases}$$

Les résultats expérimentaux de transfert de chaleur et de frottement dans l'écoulement ont été corrélés en termes de paramètres d'écoulement et de géométrie de la rugosité.

$$Nu = 1.014 \times 10^{-3} \times Re^{1.036} (P/e)^{2.522} (\alpha/90)^{-0.293} (d/w)^{-0.078} (g/e)^{-0.016} \\ \times (e/D_h)^{0.412} exp \left[-0.567 (Ln(P/e))^2 \right] exp \left[-0.114 (Ln(\alpha/90))^2 \right] \\ \times exp \left[-0.077 (Ln(d/w))^2 \right] exp \left[-0.133 (Ln(g/e))^2 \right]$$

 $0.696 \leq Pr \leq 0.705$

$$f = 8.1921 \times 10^{-2} \times Re^{-0.147} (P/e)^{1.191} (\alpha/90)^{-0.292} (d/w)^{-0.067} (g/e)^{-0.006} \\ \times (e/D_h)^{0.528} exp \left[-0.255 (Ln(P/e))^2 \right] exp \left[-0.110 (Ln(\alpha/90))^2 \right] \\ \times exp \left[-0.063 (Ln(d/w))^2 \right] exp \left[-0.158 (Ln(g/e))^2 \right]$$

Figure.II.29 : (a) arrangement général (b) Photographie d'une plaque absorbante en forme d'arc cassé[25]

En conservant des conditions d'écoulement similaires, les résultats d'un conduit rugueux à nervures d'arc cassé ont été comparés à des conduits rugueux à nervures d'arc lisses et continues. Les augmentations maximales du nombre de *Nusselt* et du coefficient de frottement par rapport à celles du conduit rendu rugueux par des arcs en arc continu étaient respectivement de 1.19 et 1.14. Les valeurs correspondantes à celles du conduit lisse étaient respectivement de 2.63 et 2.44.[25]

Kumar et al.(2017).Leur travail présente une recherche expérimentale sur le transfert de chaleur et le coefficient de frottement pour un conduit de capteur solaire à air rendu rugueux artificiellement avec un facteur de forme de 12. Des nervuresen forme d'arc agencées en forme de «S» ayant des paramètres de rugosité correspondant au pas de rugosité relative(P/e), à la hauteur de rugosité relative (e/D_h), à l'angle d'arc (α), à la largeur de rugosité relative (W/w) et au nombre de *Reynolds* (*Re*).

 $\begin{cases} Re = 2400 - 20000 \\ W/H = 12 \\ e/D_h = 0.022 - 0.054 \\ \alpha = 30^\circ - 75^\circ \\ P/e = 4 - 16 \\ W/w = 1 - 4 \end{cases}$

Sur la base des données collectées lors des essais pour des conduits rugueux pour diverses combinaisons de paramètres de rugosité, des corrélations ont également été développées pour le transfert de chaleur et le coefficient de frottement en termes des paramètres de rugosité et des paramètres de fonctionnement (nombre de *Reynolds*).

Figure.II.31 : vue d'une la plaque absorbante[26]

Il a été constaté que la performance du conduit du capteur solaire à air durci était meilleure que la performance du conduit lisse pour la gamme de paramètres de rugosité étudiés. Les résultats expérimentaux montrent que l'amélioration maximale du nombre de *Nusselt (Nu)* et du facteur de frottement (*f*) correspond à la largeur relative de la rugosité (W/w) de 3, au pas de la rugosité relative (P/e) de 8, à l'angle de l'arc (α) de 60° et à la hauteur de la rugosité relative (e/D_h) de 0.043.[26]

Kumar et al.(2017). Leur travail présente les résultats d'une étude expérimentale sur le nombre de *Nusselt* (*Nu*) et les coefficients de frottement (*f*) d'un passage d'air solaire avec de multiples obstacles alvéolés de type V. Ils ont réalisé une étude pour examiner les données thermiques et hydrauliques d'un passage d'air solaire avec de multiples obstacles alvéolés de type V sur la paroi chauffée. Le nombre de *Reynolds* (*Re*) basé sur le diamètre hydraulique du passage d'air solaire, la largeur relative des obstacles en creux (W_c/W_d), le rapport entre la profondeur en creux et le diamètre d'impression (e_d/d_d), le pas relatif entre alvéoles (P_b/e_d), la hauteur relative d'alvéoles (e_d/D_h)et l'angle d'attaque (α_a).

 $\begin{cases} Re = 5000 - 17000 \\ W_c/W_d = 1 - 6 \\ e_d/d_d = 0.5 - 2 \\ P_b/e_d = 8 - 11 \\ e_d/D_h = 0.037 \\ \propto_a = 35^\circ - 75^\circ \end{cases}$

Les corrélations de Nu et def sont établies en termes de Re et des paramètres géométriques de multiples obstacles en forme de V avec passage alvéolaire del'air[27]

solaire peuvent être utilisés pour prédire les valeurs de Nu et de f avec une précision considérablement meilleure.

$$Nu = 9.35 \times 10^{-14} \times Re^{1.0655} (W_c/W_d)^{2.9832} exp \left(-0.91 (Ln(W_c/W_d))^2\right)$$

× $(P_b/e_d)^{2.99} exp (Ln(P_b/e_d)^2) (e_d/d_d)^{-0.248}$
× $exp \left(-0.1906 (Ln(e_d/d_d))^2\right) (\propto_a/55)^{-1.096}$
× $exp \left(-2.563 (Ln(\propto_a/55))^2\right)$
$$f = 2.05 \times 10^{-5} \times Re^{-0.6307} (W_c/W_d)^{0.0853} exp \left(0.0676 (Ln(W_c/W_d))^2\right)$$

× $(P_b/e_d)^{19.13} exp (Ln(P_b/e_d)^2) (e_d/d_d)^{-0.162}$
× $exp \left(-0.341 (Ln(e_d/d_d))^2\right) (\propto_a/55)^{-0.2254}$
× $exp \left(-2.303 (Ln(\propto_a/55))^2\right)$

Figure.II.32 : (A)obstacles alvéolés multiples en forme de V (B) vue photographique de plusieurs obstacles alvéolés en forme de V[27]

Les résultats expérimentaux ont montré que les données optimales des performances thermiques et hydrauliques sont obtenues à $W_c/W_d=5$, $e_d/d_d=1$, $P_b/e_d=9$, $e_d/D_h=0.037$ et $\alpha_a=55^\circ$. Leur étude montre également que les performances thermohydrauliques des structures en forme d'obstacles à motifs en forme de V multiple sont environ 7% plus élevées que celles des autres obstacles, qui déterminent le passage de l'air solaire. [27]

Conclusion :

Les nombreuses recherches ci-dessus portant sur la mise en place des rugosités artificielles à l'intérieur des conduits utiles des capteurs solaires plans à air perfectionne considérablement les échanges thermiques entre l'air en écoulement et l'absorbeur, d'une part, et les chicanes, d'autre part, tout cela en prenant en considération les paramètres géométriques des chicanes, de fonctionnement et les données expérimentales.

[1]Prasad, B.N., et Saini, J.S.(1988). Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Solar Energy, 41(6), 555–560.

[2]Sahu, M.M., et Bhagoria, J.L.(2005). Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater. Renewable Energy, 30(13), 2057–2073.

[3]Gupta, D., Solanki, S.C., et Saini, J.S.(1997). Thermohydraulic performance of solar air heaters with roughened absorber plates. Solar Energy, 61(1), 33–42.

[4] Ebrahim Momin, A.M., Saini, J. et Solanki, S.(2002). Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. International Journal of Heat and Mass Transfer, 45(16), 3383–3396.

[5] Karmare, S.V. et Tikekar, A.N.(2009). Experimental investigation of optimum thermohydraulic performance of solar air heaters with metal rib grits roughness. Solar Energy, 83(1), 6– 13.

[6]Varun, Saini, R.P. et Singal, S. K.(2008). Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate. Renewable Energy, 33(6), 1398–1405.

[7]Saini, S.K. et Saini, R.P.(2008). Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Solar Energy, 82(12), 1118–1130.

[8]N.Chouchane et al. Modèles empiriques de calcul des pertes de charge dans un conduit rectangulaire muni de rugosités artificielles – Cas des insolateurs à air. Revue des Energies Renouvelables Vol. 12 N°3 (2009) 385 - 394.

[9]R.Karwa et al.Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangular ducts. International Journal of Heat and Mass Transfer 42 (1999) 1597-1615]

[10]Verma, S., et Prasad, B.(2000). Investigation for the optimal thermo-hydraulic performance of artificially roughened solar air heaters. Renewable Energy, 20(1), 19-36.

[11]Jaurker, A.R., Saini, J.S., et Gandhi, B.K.(2006). Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. Solar Energy, 80(8), 895–907.

[12]Hans, V.S., Saini, R.P., et Saini, J.S.(2010). Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs. Solar Energy, 84(6), 898–911.

[13]Pandey, N.K., Bajpai, V.K., et Varun.(2016). Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater. Solar Energy, 134, 314–326.

[14]Han, J.C., et Zhang, Y.M.(1992). High performance heat transfer ducts with parallel broken and V-shaped broken ribs. International Journal of Heat and Mass Transfer, 35(2), 513–523.

[15]Lanjewar, A., Bhagoria, J.L., et Sarviya, R.M. (2011). Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy, 36(7), 4531–4541.

[16]Singh, A.P., Varun, et Siddhartha.(2014). Heat transfer and friction factor correlations for multiple arc shape roughness elements on the absorber plate used in solar air heaters. Experimental Thermal and Fluid Science, 54, 117–126.

[17]Patil, A.K., Saini, J.S., et Kumar, K.(2012). Heat transfer and friction characteristics of solar air heater duct roughened by broken V-shape ribs combined with staggered rib piece. Journal of Renewable and Sustainable Energy, 4(1), 013115.

[18]Sethi M, Varun , Thakur NS. Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. Sol Energy 2012;86:2852–61.

[19]Yadav S, Kaushal M, Varun , Siddhartha . Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate. ExpTherm Fluid Sci2013;44:34–41.

[20]Kumar A., Saini R.P., Saini J.S. Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness. Renew Energy 2013;58:151–63.

[21]Maithani R., Saini J.S. Heat transfer and friction correlations for a solar air heater duct roughened artificially with V-ribs with symmetrical gaps. ExpTherm Fluid Sci2015;70:220–7.

[22]Deo N.S., Chander S., Saini J.S. Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs. Renew Energy 2016;91:484–500.

[23]Gawande V.B., Dhoble A.S., Zodpe D.B., Chamoli S. Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L shaped ribs. Sol Energy 2016;131:275–95.

[24]Pandey N.K., Bajpai V.K., Varun. Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater. Sol Energy 2016;134:314–26.

[25]Hans V.S., Gill R.S., Singh S. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with broken arc ribs. ExpTherm Fluid Sci2017;80:77–89.

[26]Kumar, K., Prajapati, D.R., et Samir, S.(2017). Heat transfer and friction factor correlations development for solar air heater duct artificially roughened with "S" shape ribs. Experimental Thermal and Fluid Science, 82, 249–261.

[27]Kumar A., Kumar R., Maithani R., Chauhan R., Sethi M., Kumari A., Kumar S. Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage. Renew Energy 2017;109:461–79.

CHAPITRE III

Introduction :

Dans ce troisième chapitre on s'intéresse particulièrement à l'étude expérimentale dans lequel on présente le dispositif expérimental et les différents instruments de mesure utilisés pour l'évaluation des températures d'entrée, des températures de sortie, des vitesses expérimentales, de l'air et le rayonnement solaire. On présente, aussi, la forme des chicanes en aluminium conçues pour cette étude à cause de sa bonne conductivité thermique.

III.1. Description du dispositif expérimentale :

Le panneau avec lequel on a réalisé cette étude un panneau solaire plan à air à simple passe entre l'absorbeur et la plaque absorbante en acier galvanisé, réalisé au hall de technologie du département de génie mécanique de l'université Mohamed Khider – Biskra. Ce capteur compose d'un boitier de forme rectangulaire en bois rouge ayant 1.5 m de longueur, 0.50 m de largeur et une hauteur de 0.025 m. Pour l'isolation thermiques du côté arrière, on met en place deux plaques de polystyrène de 02 cm chacune. Toutefois, la couverture transparente est en verre d'une épaisseur égale à 5mm.

Figure.III.1: capteur solaire plan à air exposé au soleil en direction du Sud.

Figure.III.2:partie interne de l'isolateur couvert d'une feuille mince en aluminium

Figure.III.3: plaque absorbante en acier galvanisé peinte en noir mat.

Dans cette partie expérimentale on s'intéresse particulièrement à la modélisation des températures du capteur solaire. Si bien qu'on introduit des obstacles de très faibles épaisseur en aluminium considérés comme rugosités artificielles dites chicanes dans le conduit d'air utile du capteur.

Figure.III.4: chicanes rectangulaire-rectangulaires en aluminium perforées au centre du rectangle bas disposées en rangées

Figure.III.5: chicanes rectangulaire-rectangulaires en aluminium perforées au centre du rectangle bas en quinconces

Le principe de cette étude expérimentale consiste à effectuer des prises de mesure des températures enregistrées entre l'amant et l'aval du canal pour différentes valeurs de débit volumique, et ceci pour deux modes de dispositions (rangées et quinconces) et configurations de chicanes rectangulaire-rectangulaire.

Un aspirateur assure l'écoulement de l'air et les échanges thermiques sont mesurés par le moyen de thermocouples à l'entrée et à la sortie du capteur.

III.2. Description des instruments de mesure :

Figure.III.6. Pyranomètre manuel avec écran d'affichage à cristaux liquides pour mesurer le rayonnement solaire (Plage de mesure:0-1999W/m².Résolution:0,1w/m²)

Figure.III.7. Aspirateur pour le pompage d'air (Type MPF.803, 1000W)

Figure.III.8. Variateur de vitesse d'écoulement de l'air.

Figure.III.9. Thermocouples pour mesurer la température d'entrée et la température de sortie du panneau.

Figure.III.10. Anémomètre à coupelles pour mesurer la vitesse à la sortie du panneau (Plages de mesure: vitesse de 0-35m/s, Résolution 0,1m/s)

III.3. Tableaux des caractéristiques géométriques des chicanes :

Dans cette étude expérimentale, une seule configuration de chicanes introduites dans le conduit utile est utilisée pour trois périodes de prises de mesure respectivement :

configuration	disposition	3	D_{tr}	L _{ch}	Pe-r	Pe-tr	Pe-ch	θ
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(degré)
Lisse								
Rectangulaire-	rangée	17,5	4,5	100	100	115,5	20	30
Rectangularie								
	rangée	17,5	2,4	100	100	117,6	20	30
		17,5	4,5	100	70	115,5	20	30
		17,5	2,4	100	70	117,6	20	30
Rectangulaire-		17,5	4,5	100	50	115,5	20	30
Rectangulaire		17,5	4,5	100	50	117,6	20	30
		17,5	4,5	100	100	115,5	20	30
	quinconce	17,5	2,4	100	100	117,6	20	30
		17,5	4,5	100	70	115,5	20	30
		17,5	4,5	100	50	115,5	20	30

1èrepériodede mesures de 08H-30min à 10H-45min :

TableauIII.1: caractéristiques géométriques des chicanes (1^{ère}période de mesures)

configuration	disposition	3	Dtr	Lch	Pe-r	Pe-tr	Pe-ch	θ
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(degré)
		22,99	4,5	50	100	132,1	86,6	60
		22,99	4,5	50	70	132,1	86,6	60
		22,99	4,5	50	50	132,1	86,6	60
		22,99	4,5	100	100	115,5	20	60
Rectangulaire-	rangée	29,99	2,4	100	100	117,6	20	60
Rectangulaire	e	29,99	4,5	100	70	115,5	20	60
		29,99	2,4	100	70	117,6	20	60
		29,99	4,5	100	50	115,5	20	60
		22,99	2,4	100	50	117,6	20	60
	quinconce	17,5	2,4	100	70	117,6	20	30

2^{ème}période de mesuresde 11H:15min à 13H-15min:

TableauIII.2: caractéristiques géométriques des chicanes (2^{ème}période de mesures)

3^{ème}période de mesure de 13H:45min à 16H-00min:

configuration	disposition	3	Dtr	Lch	Pe-r	Pe-tr	Pe-ch	θ
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(degré)
		29,99	4,5	50	100	132,1	86,6	60
		29,99	4,5	50	70	132,1	86,6	60
		29,99	4,5	50	50	132,1	86,6	60
		29,99	4,5	100	100	115,5	20	60
Rectangulaire-	quinconce	29,99	2,4	100	100	117,6	20	60
Rectangulaire		29,99	4,5	100	70	115,5	20	60
		29,99	2,4	100	70	117,6	20	60
		29,99	4,5	100	50	115,5	20	60
		29,99		100	50	117,6	20	60
		17.5	2.4	100	50	117.6	20	30

TableauIII.3: caractéristiques géométriques des chicanes (3^{ème}période de mesures)

Les expériences sont effectuées en plein air, à proximité du laboratoire des énergies renouvelables du département d'électrotechnique. Pour mener à bien les expériences, les relevées sont effectuées au cours de journées bien ensoleillées.

Pour suivre l'évolution des paramètres mesurables nécessaires pour notre étude expérimentale, tels que les températures de l'air à l'entrée et à la sortie du capteur et le rayonnement solaire sur le plan capteur incliné(i=34,8°). On a dressé des tableaux de mesure, où les relevées sont réalisées chaque 15 min, depuis 08H30min du matin à 16H00min.

Pour varier le débit d'air dans le conduit utile, on utilise un variateur de tension qui permet d'ajuster le moteur électrique de l'aspirateur d'air relié au capteur solaire.

Deux thermomètres placés en amont et en aval du capteur solaire permettent de relever les températures de sortie et d'entrée de l'air en écoulement.

Conclusion :

Le capteur solaire plan à air, destiné à cette étude, que les étudiants de Master des promotions des années passées ont conçu, est testé au hall de technologie du département de génie mécanique de l'université de Biskra, trente et une configurations ont été étudiées, pour chacune d'elles, on mesure la température d'entrée, la température de sortie du capteur solaire en variant le débit volumique. La variation du débit est estimée par un variateur de vitesse qui permet d'ajuster le nombre de tour de la pompe à air utilisée pour aspirer le fluide caloporteur(l'air). Les chicanes ont pour rôle le transfert thermique au fluide caloporteur, l'obtention de l'écoulement turbulent à proximité de la plaque chaude et le prolongement de séjour du fluide caloporteur dans la veine de conduite.

CHAPITRE IV

Introduction:

Le présent chapitre est réservé à la modélisation du coefficient d'échange thermique par convection, à la discussion et à l'interprétation des résultats expérimentaux. D'abord, on détermine le coefficient d'échange par convection par la méthode de l'analyse dimensionnelle (méthode de Vaschy-Bukingham), ensuite on résout le système d'équation obtenu en utilisant le Matlab R2014a. Enfin, on compare les résultats obtenus relatifs au coefficient d'échange, au rendement thermique par le dressage des tableaux des valeurs et le traçage des courbes de la température de sortie en fonction du temps de l'expérience effectuée du capteur solaire étudié, le rendement thermique en fonction du débit volumique et le nombre de Nusselt en fonction de Reynolds, en utilisant l'Excel 2016 ainsi que l'Origine.6 et cela pour un régime laminaire et un régime turbulent.

IV.1. Détermination de la corrélation du coefficient d'échange convectif (hc) :

En utilise la méthode de Vaschy-Bukingham pour déterminer h_c

$$h_{c} = h_{c} (\rho, V, D_{h}, \mu, \varepsilon, P_{e-r}, P_{e-ch}, L_{ch}, L_{c}, l_{c}, I, \lambda, C_{p}, \Delta T, D_{tr}, P_{e-tr}) (IV.1)$$

$$\frac{h_{c}}{L_{c} l_{c}} = \rho^{a} V^{b} D_{h}^{\ c} \mu^{d} \varepsilon^{e} P_{e-r}^{\ f} P_{e-ch}^{\ g} L_{ch}^{\ h} D_{tr}^{\ i} I^{j} \lambda^{k} C_{p}^{\ m} \Delta T^{n} P_{e-tr}^{\ w}$$

$$(IV.2)$$

On peut déduire donc une relation basée sur les dimensions fondamentales, tel que :

$$M.L^{-2}.T^{-3}\theta^{-1} = (M.L^{-3})^a (L.T^{-1})^b (L)^c (M.L^{-1}T^{-1})^d (L)^e (L)^f (L)^g (L)^h (L)^i (M.T^{-3})^j (M.T^{-3}.L.\theta^{-1})^k (L^2.T^{-2}.\theta^{-1})^m (\theta)^n (L)^w (IV.3)$$

Après le développement on aura :

$$M. L^{-2}. T^{-3} \theta^{-1} = (M)^{a+d+j+k} (L)^{-3a+b+c-d+e+f+h+i+k+2m+w} (T)^{-b-d-3j-3k-2m} (\theta)^{-k-m+n}$$
(IV.4)

$$\begin{cases} a = 1 - d - j - k \\ b = 3 - d - 3j - 3k - 2m \\ c = -2 + 3a - b - e + d - f - g - h - i - k - 2m - w \\ n = -1 + k + m \end{cases}$$
(IV.5)

L'équation (IV.2), compte tenu des dimensions fondamentales, après développement de (IV.3) à (IV.4) et identification on obtient un système d'équation (IV.5) de 04 équations, dont la résolution aboutit à une expression générale sous la forme :

$$\frac{h_c}{L_n . l_n} = \rho^{1-d-j-k} . V^{3-d-3j-3k-2m} . D_h^{-2-d-e-f-g-i-h-k-w} . \mu^d . \varepsilon^e . P_{e-r}{}^f P_{e-ch}{}^g . L_{ch}{}^h . D_{tr}{}^i$$

$$. I^j . \lambda^k C_p{}^m . \Delta T^{-1+k+m} . P_{e-tr}{}^w$$
(IV.6)

Après simplification, en considérant que l'équation précédente redevient :

$$\frac{h_c}{L_n \cdot l_n} = \rho \cdot V^3 \cdot D_h^{-2} \cdot \Delta T^{-1} \cdot \left(\frac{\mu}{\rho \cdot D_H \cdot V}\right)^d \left(\frac{I}{\rho \cdot V^3}\right)^j \left(\frac{\lambda \cdot \Delta T}{\rho \cdot D_h V^3}\right)^K \left(\frac{\Delta T \cdot C_p}{V^2}\right)^m \left(\frac{\varepsilon}{D_h}\right)^e \left(\frac{D_{tr}}{D_h}\right)^i \left(\frac{L_{ch}}{D_h}\right)^h \left(\frac{P_{e-ch}}{D_h}\right)^g \left(\frac{P_{e-r}}{D_h}\right)^f \left(\frac{P_{e-tr}}{D_h}\right)^w$$
(IV.7)

Sachant que :

$$R_{e} = \left(\frac{\rho D_{H} V}{\mu}\right), \text{ étant le nombre de } Reynolds.$$

$$B_{r} = \left(\frac{\mu V^{2}}{\lambda \Delta T}\right), \text{ étant le nombre de } Brink man$$

$$E_{c} = \left(\frac{V^{2}}{\Delta T C_{p}}\right), \text{ étant le nombre d'Eckert.}$$

$$Cl = \left(\frac{\rho D_{h} V^{3}}{\lambda \Delta T}\right), \text{ étant le nombre de } Clausius$$

$$h_{c} = L_{n} \cdot l_{n} \rho \cdot V^{3} \cdot D_{h}^{-2} \cdot \Delta T^{-1} \cdot \left(\frac{\mu}{\rho D_{H} V}\right)^{d} \left(\frac{l}{\rho \cdot V^{3}}\right)^{j} \left(\frac{\lambda \Delta T}{\rho \cdot D_{h} V^{3}}\right)^{K} \left(\frac{\Delta T \cdot C_{p}}{V^{2}}\right)^{m} \left(\frac{\varepsilon}{D_{h}}\right)^{e} \left(\frac{D_{tr}}{D_{h}}\right)^{i} \left(\frac{L_{ch}}{D_{h}}\right)^{h}$$

$$\left(\frac{P_{e-ch}}{D_{h}}\right)^{g} \left(\frac{P_{e-tr}}{D_{h}}\right)^{f} \left(\frac{P_{e-tr}}{D_{h}}\right)^{W} \qquad (IV.8)$$

$$\frac{h_{c} D_{h}}{\lambda} = L_{n} \cdot l_{n} \rho \cdot V^{3} \cdot D_{h}^{-1} \cdot \Delta T^{-1} \cdot \left(\frac{\mu}{\rho \cdot D_{H} V}\right)^{d} \left(\frac{l}{\rho \cdot V^{3}}\right)^{j} \left(\frac{\lambda \Delta T}{\rho \cdot D_{h} V^{3}}\right)^{K} \left(\frac{\Delta T \cdot C_{p}}{V^{2}}\right)^{m} \left(\frac{\varepsilon}{D_{h}}\right)^{e} \left(\frac{D_{tr}}{D_{h}}\right)^{i}$$

$$\left(\frac{L_{ch}}{D_{h}}\right)^{h} \left(\frac{P_{e-ch}}{D_{h}}\right)^{g} \left(\frac{P_{e-tr}}{D_{h}}\right)^{f} \left(\frac{P_{e-tr}}{D_{h}}\right)^{W} \qquad (IV.9)$$

Soit, le nombre de Nusselt donné par l'expression :

$$N_u = \frac{h_c \cdot D_H}{\lambda} \tag{IV.10}$$

$$N_{u} = \frac{A_{c}}{D_{h}^{2}} \left(\frac{\rho.V.D_{h}}{\mu}\right) \left(\frac{\mu.V^{2}}{\lambda.\Delta T}\right) \left(\frac{\mu}{\rho.D_{H}.V}\right)^{d} \left(\frac{I}{\rho.V^{3}}\right)^{j} \left(\frac{\lambda.\Delta T}{\rho.D_{h}V^{3}}\right)^{K} \left(\frac{\Delta T.C_{p}}{V^{2}}\right)^{m} \left(\frac{\varepsilon}{D_{h}}\right)^{e} \left(\frac{D_{tr}}{D_{h}}\right)^{i} \left(\frac{L_{ch}}{D_{h}}\right)^{h} \left(\frac{P_{e-ch}}{D_{h}}\right)^{g} \left(\frac{P_{e-tr}}{D_{h}}\right)^{f} \left(\frac{P_{e-tr}}{D_{h}}\right)^{W}$$
(IV.11)

$$N_{u} = \frac{A_{c}}{D_{h}^{2}} B_{r} \cdot R_{e}^{1-d} C l^{-k} E_{c}^{-m} \left(\frac{l}{\rho \cdot V^{3}}\right)^{j} \left(\frac{\varepsilon}{D_{h}}\right)^{e} \left(\frac{D_{tr}}{D_{h}}\right)^{i} \left(\frac{L_{ch}}{D_{h}}\right)^{h} \left(\frac{P_{e-ch}}{D_{h}}\right)^{g} \left(\frac{P_{e-r}}{D_{h}}\right)^{f} \left(\frac{P_{e-tr}}{D_{h}}\right)^{w}$$
(IV.12)

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	I(w/m ²)	η(%)	Vint(m/s)	Vext(m/s)
8:30	24.5	32.7	8.2	0.006	539	14.968	0.48	0.63
8:45	25.2	33.3	8.1	0.01	560	23.719	0.8	1.05
9:00	25.3	33.6	8.3	0.011	577	25.948	0.88	1.15
9:15	25.6	34.1	8.5	0.012	594	28.159	0.96	1.26
9:30	26	34.9	8.9	0.013	615	30.850	1.04	1.36
9:45	26.4	35	8.6	0.014	636	31.044	1.12	1.47
10:00	26.8	35.3	8.5	0.015	663	31.535	1.2	1.57
10:15	27	35.9	8.9	0.016	719	32.478	1.28	1.68
10:30	27.3	36.1	8.8	0.017	756	32.450	1.36	1.78
10:45	27.8	36.1	8.3	0.018	781	31.369	1.44	1.89
11:00	28	36.9	8.9	0.006	822	10.653	0.48	0.63
11:15	28.2	39.8	11.6	0.01	840	22.645	0.8	1.05
11:30	28.4	40.4	12	0.011	868	24.938	0.88	1.15
11:45	28.7	41.3	12.6	0.012	896	27.672	0.96	1.26
12:00	29.1	41.7	12.6	0.013	921	29.165	1.04	1.36
12:15	29.5	42.5	13	0.014	952	31.350	1.12	1.47
12:30	29.9	42.9	13	0.015	959	33.344	1.2	1.57
12:45	30.4	43.4	13	0.016	953	35.791	1.28	1.68
13:00	30.7	43.7	13	0.017	922	39.307	1.36	1.78
13:15	30.9	44	13.1	0.018	892	43.349	1.44	1.89
13:30	30.6	41.8	11.2	0.006	844	13.056	0.48	0.63
13:45	30.1	41	10.9	0.01	801	22.315	0.8	1.05
14:00	29.4	39.7	10.3	0.011	791	23.488	0.88	1.15
14:15	29	38.5	9.5	0.012	726	25.75	0.96	1.26
14:30	28.5	37.7	9.2	0.013	704	27.859	1.04	1.36
14:45	28.1	36.9	8.8	0.014	678	29.798	1.12	1.47
15:00	27.6	36.3	8.7	0.015	658	32.523	1.2	1.57

IV.2. Tableaux d'évolution de la température de sortie et du rendement thermique en fonction du débit volumique :

15:15	27.2	35.4	8.2	0.016	641	33.564	1.28	1.68
15:30	26.6	34.7	8.1	0.017	614	36.776	1.36	1.78
15:45	26.3	34	7.7	0.018	602	37.755	1.44	1.89
16:00	26.1	34.1	8	0.018	589	40.091	1.44	1.89

Tableau (IV.1) : Evolution des températures de sortie et du rendement thermique en fonction du débit volumique définie par un capteur sans chicanes (lisse).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	24.9	33.6	8.7	0.006	548	15.620	1.07836	0.63
8:45	25.6	34	8.4	0.01	580	23.749	1.79727	1.05
9:00	25.6	34.9	9.3	0.011	595	28.194	1.97699	1.15
9:15	26	35.1	9.1	0.012	608	29.452	2.15672	1.26
9:30	26.4	35.6	9.2	0.013	622	31.531	2.33645	1.36
9:45	26.8	35.8	9	0.014	640	32.284	2.51618	1.47
10:00	27.1	36.2	9.1	0.015	667	33.559	2.6959	1.57
10:15	27.4	36.9	9.5	0.016	724	34.428	2.87563	1.68
10:30	27.7	37.1	9.4	0.017	763	34.344	3.05536	1.78
10:45	28.1	37	8.9	0.018	788	33.338	3.23508	1.89

Tableau (IV.2) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =17.5mm; Dtr=4.5mm; Lch=100mm; Pe-r=100mm;
Pe-tr=115.5mm; Pe-ch=20mm; θ =30°;rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	24.9	34	9.1	0.006	537	16.673	1.08735	0.63
8:45	25.6	34.6	9	0.01	566	26.075	1.81225	1.05
9:00	25.8	35.3	9.5	0.011	583	29.393	1.99348	1.16
9:15	26.2	35.8	9.6	0.012	601	31.433	2.1747	1.26
9:30	26.7	36.1	9.4	0.013	627	31.960	2.35593	1.36
9:45	27.1	36.7	9.6	0.014	643	34.276	2.53715	1.47
10:00	27.4	36.8	9.4	0.015	672	34.407	2.71838	1.58
10:15	27.6	37.5	9.9	0.016	727	35.729	2.8996	1.68
10:30	27.9	37.8	9.9	0.017	766	36.03	3.08083	1.79
10:45	28.1	38	9.9	0.018	790	36.990	3.26205	1.89

Tableau (IV.3) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par(ϵ =17.5mm; Dtr=2.4mm; Lch=100mm; Pe-r=100mm;
Pe-tr=117.6mm; Pe-ch=20mm; θ =30;rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
------	--------	--------	-----------------------	------------	------------	------	-----------	-----------

8:30	25.2	34.6	9.4	0.006	522	17.718	1.078361	0.63
8:45	25.5	34.9	9.4	0.01	565	27.282	1.797268	1.05
9:00	26.1	35.8	9.7	0.011	576	30.377	1.976995	1.16
9:15	26.5	36.2	9.7	0.012	593	32.188	2.156722	1.26
9:30	27.1	36.7	9.6	0.013	615	33.277	2.336449	1.36
9:45	27.3	37.2	9.9	0.014	631	36.019	2.516175	1.47
10:00	27.6	37.6	10	0.015	663	37.101	2.695902	1.58
10:15	28	38.2	10.2	0.016	716	37.377	2.875629	1.68
10:30	28.3	38.6	10.3	0.017	754	38.082	3.055356	1.79
10:45	28.4	38.8	10.4	0.018	783	39.206	3.235083	1.89

Tableau (IV.4) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par(ϵ =17.5mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=70mm;
P_{e-tr}=115.5mm; P_{e-ch}=20mm; θ =30;rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	25	35	10	0.006	526	18.705	1.08735	0.63
8:45	26.2	35.3	9.1	0.01	562	26.553	1.812251	1.05
9:00	26.4	36.3	9.9	0.011	574	31.111	1.993476	1.16
9:15	26.6	36.7	10.1	0.012	596	33.347	2.174701	1.26
9:30	27.4	37.5	10.1	0.013	617	34.897	2.355926	1.36
9:45	27.6	37.8	10.2	0.014	633	36.994	2.537151	1.47
10:00	27.9	38.5	10.6	0.015	665	39.208	2.718376	1.58
10:15	28.2	38.9	10.7	0.016	718	39.101	2.899601	1.68
10:30	28.5	39.3	10.8	0.017	756	39.825	3.080826	1.79
10:45	28.8	39.8	11	0.018	785	41.362	3.262051	1.89

Tableau (IV.5) : Evolution des températures et du rendement thermique en fonction du Temps pour un capteur solaire à air définie par (ϵ =17.5mm; D_{tr}=2.4mm; L_{ch}=100mm; P_{e-r}=70mm; P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =30;rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	25.4	35.8	10.4	0.006	521	19.640	1.078361	0.63
8:45	26.5	36.1	9.6	0.01	559	28.162	1.797268	1.05
9:00	26.6	36.9	10.3	0.011	579	32.089	1.976995	1.16
9:15	26.8	37.5	10.7	0.012	592	35.567	2.156722	1.26
9:30	27.7	38.5	10.8	0.013	606	37.992	2.336449	1.36
9:45	27.9	38.8	10.9	0.014	626	39.975	2.516175	1.47
10:00	28.3	39.2	10.9	0.015	649	41.312	2.695902	1.58
10:15	28.5	39.5	11	0.016	713	40.479	2.875629	1.68
10:30	28.8	40.5	11.7	0.017	761	42.860	3.055356	1.79
10:45	29	40.7	11.7	0.018	785	43.994	3.235083	1.89

Tableau (IV.6) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par(ε=17.5mm; Dtr=4.5mm; Lch=100mm; Pe-r=50mm;
$P_{e-tr}=115.5$ mm; $P_{e-ch}=20$ mm; $\theta=30^{\circ}$; rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	25.1	36	10.9	0.006	521	20.584	1.08735	0.63
8:45	26.6	36.7	10.1	0.01	557	29.735	1.812251	1.05
9:00	26.7	37.5	10.8	0.011	579	33.647	1.993476	1.16
9:15	27	38.1	11.1	0.012	592	36.897	2.174701	1.26
9:30	27.8	38.6	10.8	0.013	610	37.743	2.355926	1.36
9:45	28.3	39.4	11.1	0.014	630	40.450	2.537151	1.47
10:00	28.6	40	11.4	0.015	661	42.423	2.718376	1.58
10:15	28.9	40.8	11.9	0.016	719	43.425	2.899601	1.68
10:30	29.3	41.4	12.1	0.017	766	44.036	3.080826	1.79
10:45	29.2	41.3	12.1	0.018	791	45.153	3.262051	1.89

Tableau (IV.7) : Evolution des températures et du rendement thermique en fonction du Temps pour un capteur solaire à air définie par(ϵ =17.5mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=50mm; P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =30°;rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	25.2	36.6	11.4	0.006	509	22.036	1.07836	0.63
8:45	26.9	37	10.1	0.01	544	30.446	1.79727	1.05
9:00	27	37.8	10.8	0.011	568	34.298	1.97699	1.16
9:15	27.4	38.7	11.3	0.012	590	37.689	2.15672	1.26
9:30	28	39.5	11.5	0.013	605	40.522	2.33645	1.36
9:45	28.5	40.1	11.6	0.014	639	41.676	2.51618	1.47
10:00	28.8	40.7	11.9	0.015	655	44.689	2.6959	1.58
10:15	29.1	41.3	12.2	0.016	725	44.152	2.87563	1.68
10:30	29.4	41.8	12.4	0.017	769	44.952	3.05536	1.79
10:45	29.6	42	12.4	0.018	784	46.686	3.23508	1.89

Tableau (IV.8) : Evolution des températures et du rendement thermique en fonction du Temps pour un capteur solaire à air définie par(ϵ =17.5mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=100mm; P_{e-tr}=115,5mm; P_{e-ch}=20mm; θ =30°;quinconce).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	25.3	36.9	11.6	0.006	535	21.333	1.08735	0.63
8:45	27.1	37.5	10.4	0.01	551	30.952	1.81225	1.05
9:00	27.3	38.4	11.1	0.011	579	34.581	1.99348	1.16
9:15	27.8	39.4	11.6	0.012	594	38.429	2.1747	1.26
9:30	28.2	39.7	11.5	0.013	610	40.190	2.35593	1.36

9:45	28.7	40.8	12.1	0.014	641	43.337	2.53715	1.47
10:00	29.1	41.1	12	0.015	653	45.203	2.71838	1.58
10:15	29.4	41.9	12.5	0.016	730	44.927	2.8996	1.68
10:30	29.5	42.6	13.1	0.017	771	47.366	3.08083	1.79
10:45	29.6	42.7	13.1	0.018	785	49.258	3.26205	1.89

Tableau (IV.9) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =17.5mm; Dtr=2.4mm; Lch=100mm; Pe-r=100mm;
Pe-tr=117.6mm; Pe-ch=20mm; θ =30°;quinconce).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	25.1	37.3	12.2	0.006	513	23.399	1.07836	0.63
8:45	26.9	37.9	11	0.01	553	32.619	1.79727	1.05
9:00	27.5	38.9	11.4	0.011	574	35.825	1.97699	1.16
9:15	28	40.1	12.1	0.012	589	40.425	2.15672	1.26
9:30	28.4	40.9	12.5	0.013	612	43.542	2.33645	1.36
9:45	29	41.6	12.6	0.014	645	44.848	2.51618	1.47
10:00	29.3	42.2	12.9	0.015	651	48.742	2.6959	1.58
10:15	29.4	42.6	13.2	0.016	722	47.969	2.87563	1.68
10:30	29.7	43.1	13.4	0.017	761	49.088	3.05536	1.79
10:45	29.6	43.3	13.7	0.018	788	51.318	3.23508	1.89

Tableau (IV.10) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =17.5mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=70mm;
P_{e-tr}=115.5mm; P_{e-ch}=20mm; θ =30°;quinconce).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
8:30	25.4	37.8	12.4	0.006	507	24.064	1.07836	0.63
8:45	27.7	39	11.3	0.01	544	34.063	1.79727	1.05
9:00	28	39.8	11.8	0.011	578	36.826	1.97699	1.16
9:15	28.5	41	12.5	0.012	596	41.271	2.15672	1.26
9:30	28.9	41.8	12.9	0.013	615	44.716	2.33645	1.36
9:45	29.2	42.4	13.2	0.014	651	46.551	2.51618	1.47
10:00	29.6	42.8	13.2	0.015	655	49.571	2.6959	1.58
10:15	29.7	43.5	13.8	0.016	725	49.942	2.87563	1.68
10:30	29.9	43.8	13.9	0.017	767	50.521	3.05536	1.79
10:45	30.3	44	13.7	0.018	790	51.188	3.23508	1.89

Tableau (IV.11) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =17.5mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=50mm;
P_{e-tr}=115.5mm; P_{e-ch}=20mm; θ =30°;quinconce).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
11:15	28.6	41.9	13.3	0.006	823	15.900	0.75339	0.63

11:30	28.7	44.6	15.9	0.01	839	31.077	1.25565	1.05
11:45	29.3	45.2	15.9	0.011	870	32.967	1.38122	1.15
12:00	30	45.9	15.9	0.012	897	34.881	1.50678	1.26
12:15	30.3	46.8	16.5	0.013	923	38.109	1.63235	1.36
12:30	31.3	47.3	16	0.014	950	38.666	1.75791	1.47
12:44	31.8	47.7	15.9	0.015	958	40.825	1.88348	1.57
13:00	31.7	47.9	16.2	0.016	952	44.648	2.00904	1.68
13:15	32.9	48	15.1	0.017	919	45.805	2.13461	1.78

 $\begin{array}{l} \textbf{Tableau} \ (\textbf{IV.12}): \text{Evolution des températures et du rendement thermique en fonction du Temps} \\ \text{pour un capteur solaire à air définie par}(\epsilon=22.99\text{mm}; D_{tr}=4.5\text{mm}; L_{ch}=50\text{mm}; P_{e\text{-}r}=100\text{mm}; \\ P_{e\text{-}tr}=132.1\text{mm}; P_{e\text{-}ch}=86.6\text{mm}; \theta=60^{\circ}; \text{rangée}). \end{array}$

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
11:15	28.7	42.5	13.8	0.006	826	16.438	0.75339	0.63
11:30	29.4	45	15.6	0.01	867	29.506	1.25565	1.05
11:45	29.9	45.5	15.6	0.011	886	31.760	1.381215	1.15
12:00	30.2	45.9	15.7	0.012	910	33.950	1.506781	1.26
12:15	30.4	46.5	16.1	0.013	925	37.101	1.632346	1.36
12:30	30.8	46.8	16	0.014	945	38.870	1.757911	1.47
12:44	31	47.4	16.4	0.015	958	42.109	1.883476	1.57
13:00	31.3	47.4	16.1	0.016	962	43.911	2.009041	1.68
13:15	31.5	47.5	16	0.017	960	46.462	2.134606	1.78

Tableau (IV.13) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par(ϵ =22.99mm; Dtr=4.5mm; Lch=50mm; Pe-r=70mm;
Pe-tr=132.1mm; Pe-ch=86.6mm; θ =60°;rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
11:15	28.7	42.8	14.1	0.006	828	16.755	0.75339	0.63
11:30	29.3	45.8	16.5	0.01	840	32.211	1.25565	1.05
11:45	29.8	46.6	16.8	0.011	860	35.238	1.38122	1.15
12:00	30.2	47.3	17.1	0.012	888	37.894	1.50678	1.26
12:15	31.7	48	16.3	0.013	938	37.045	1.63235	1.36
12:30	31.7	48.6	16.9	0.014	947	40.970	1.75791	1.47
12:44	32	49.1	17.1	0.015	953	44.13	1.88348	1.57
13:00	32.1	49.2	17.1	0.016	948	47.327	2.00904	1.68
13:15	32.5	49.2	16.7	0.017	930	50.06	2.13461	1.78

Tableau (IV.14) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =22.99mm; Dtr=4.5mm; Lch=50mm; Pe-r=50mm;
Pe-tr=132.1mm; Pe-ch=86.6mm; θ =60°;rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
11:15	28.8	43.2	14.4	0.006	830	17.070	1.78359	0.63
11:30	29.4	46.4	17	0.01	843	33.069	2.97265	1.05
11:45	29.9	47.1	17.2	0.011	862	35.993	3.26992	1.15
12:00	30.4	47.9	17.5	0.012	892	38.606	3.56718	1.26
12:15	31.1	48.7	17.6	0.013	930	40.344	3.86445	1.36
12:30	32	49.2	17.2	0.014	947	41.698	4.16171	1.47
12:44	32.2	50.1	17.9	0.015	956	46.056	4.45898	1.57
13:00	32.5	50	17.5	0.016	954	48.130	4.75624	1.68
13:15	32.2	50	17.8	0.017	928	53.472	5.05351	1.78

Tableau (IV.15) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =22.99mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=100mm;
P_{e-tr}=115.5mm; P_{ech}=20mm; θ =60°;rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
11:15	28.9	43.5	14.6	0.006	835	17.203	1.80832	0.63
11:30	29.5	47	17.5	0.01	848	33.841	3.01386	1.05
11:45	30	48	18	0.011	866	37.493	3.31525	1.15
12:00	30.6	48.8	18.2	0.012	895	40.016	3.61664	1.26
12:15	31.3	49.3	18	0.013	932	41.172	3.91802	1.36
12:30	32.1	50.6	18.5	0.014	950	44.707	4.21941	1.47
12:44	32.5	50.9	18.4	0.015	959	47.195	4.5208	1.57
13:00	32.7	51.1	18.4	0.016	956	50.499	4.82218	1.68
13:15	32.8	51	18.2	0.017	931	54.497	5.12357	1.78

Tableau (IV.16) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =22.99mm; D_{tr}=2.4mm; L_{ch}=100mm; P_{e-r}=100mm;
P_{e-t}=117.6mm; P_{e-ch}=20mm; θ =60° ; rangée)

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vexp(m/s)
11:15	29	43.8	14.8	0.006	832	17.502	1.7835	0.63
11:30	29.6	47.9	18.3	0.01	844	35.556	2.9726	1.05
11:45	30.1	49.1	19	0.011	861	39.806	3.2699	1.15
12:00	30.7	50	19.3	0.012	891	42.625	3.5671	1.26
12:15	31.5	51.2	19.7	0.013	927	45.304	3.8644	1.36
12:30	32.2	51.4	19.2	0.014	945	46.645	4.1617	1.47

12:44	32.7	52.2	19.5	0.015	948	50.597	4.4589	1.57
13:00	32.9	52	19.1	0.016	946	52.975	4.7562	1.68
13:15	33	51.8	18.8	0.017	924	56.720	5.0535	1.78

Tableau (IV.17) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =22.99mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=70mm;
P_{e-tr}=115.5mm; P_{e-ch}=20mm; θ =60° : rangée) .

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	$I(w/m^2)$	η(%)	Vint(m/s)	Vexp(m/s)
11:15	29.1	44.1	15	0.006	828	17.824	1.80832	0.63
11:30	29.7	48.7	19	0.01	848	36.742	3.01386	1.05
11:45	30.3	49.8	19.5	0.011	866	40.617	3.31525	1.15
12:00	30.9	50.9	20	0.012	897	43.876	3.61664	1.26
12:15	31.7	51.9	20.2	0.013	930	46.304	3.91802	1.36
12:30	32.4	52.4	20	0.014	948	48.434	4.21941	1.47
12:44	32.9	52.9	20	0.015	951	51.730	4.5208	1.57
13:00	33.1	52.8	19.7	0.016	949	54.466	4.82218	1.68
13:15	32.7	52.7	20	0.017	919	60.669	5.12357	1.78

Tableau (IV.18) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =22.99mm; D_{tr}=2.4mm; L_{ch}=100mm; P_{e-r}=70mm;
P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =60° : rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vexp(m/s)
11:15	29.1	44.4	15.3	0.006	830	18.137	1.78359	0.63
11:30	29.8	49.5	19.7	0.01	850	38.006	2.97265	1.05
11:45	30.4	50.9	20.5	0.011	867	42.651	3.26992	1.15
12:00	31	51.5	20.5	0.012	900	44.823	3.56718	1.26
12:15	31.9	52.6	20.7	0.013	932	47.348	3.86445	1.36
12:30	32.5	53.3	20.8	0.014	953	50.108	4.16171	1.47
12:44	33	53.9	20.9	0.015	957	53.719	4.45898	1.57
13:00	33.2	54	20.8	0.016	953	57.266	4.75624	1.68
13:15	32.9	53.7	20.8	0.017	922	62.891	5.05351	1.78

Tableau (IV.19) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =22.99mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=50mm;
P_{e-tr}=115.5mm; P_{e-ch}=20mm; θ =60° : rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vexp(m/s)
11:15	29.3	45	15.7	0.006	832	18.566	1.88679	0.63

11:30	30	50.4	20.4	0.01	851	39.310	3.14465	1.05
11:45	30.6	51.6	21	0.011	872	43.441	3.45912	1.15
12:00	31.2	52.7	21.5	0.012	905	46.749	3.77358	1.26
12:15	32	53.6	21.6	0.013	936	49.19	4.08805	1.36
12:30	32.7	54.4	21.7	0.014	957	52.057	4.40252	1.47
12:44	33.2	54.8	21.6	0.015	960	55.345	4.71698	1.57
13:00	33.4	55.3	21.9	0.016	958	59.980	5.03145	1.68
13:15	33	54.7	21.7	0.017	925	65.399	5.34591	1.78

Tableau (IV.20) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par(ϵ =22.99mm; D_{tr}=2.4mm; L_{ch}=100mm; P_{e-r}=50mm;
P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =60° ; rangée).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
11:15	29.4	45.6	16.2	0.006	835	19.089	1.08735	0.63
11:30	30.1	50.8	20.7	0.01	855	39.702	1.81225	1.05
11:45	30.7	52.5	21.8	0.011	876	44.890	1.99348	1.15
12:00	31.4	53.2	21.8	0.012	911	47.089	2.1747	1.26
12:15	32.2	54.5	22.3	0.013	940	50.574	2.35593	1.36
12:30	32.9	54.9	22	0.014	960	52.612	2.53715	1.47
12:44	33.5	55.6	22.1	0.015	962	56.508	2.71838	1.57
13:00	33.4	55.9	22.5	0.016	959	61.559	2.8996	1.68
13:15	33.5	55.5	22	0.017	935	65.594	3.08083	1.78

Tableau (IV.21) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =17.5mm; D_{tr}=2.4mm; L_{ch}=100mm; P_{e-r}=70mm;
P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =30°;quinconce).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	33	48.8	15.8	0.006	890	17.467	0.75339	0.63
14:00	32.4	46.3	13.9	0.01	843	27.039	1.25565	1.05
14:15	32.2	45.3	13.1	0.011	803	29.427	1.38122	1.15
14:30	32.1	44	11.9	0.012	788	29.717	1.50678	1.26
14:45	31.9	42.7	10.8	0.013	722	31.888	1.63235	1.36
15:00	31.8	42.1	10.3	0.014	701	33.733	1.75791	1.47
15:15	31.7	41.2	9.5	0.015	680	34.364	1.88348	1.57
15:30	31.6	41	9.4	0.016	660	37.369	2.00904	1.68
15:45	31.4	40.4	9	0.017	643	39.020	2.13461	1.78
16:00	31.3	40	8.7	0.018	616	41.688	2.26017	1.89

Tableau (IV.22): Evolution des temperatures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par(ε=29,99mm; Dtr=4.5mm; Lch=50mm; Pe-r=100mm;
$P_{e-tr}=132.1$ mm; $P_{e-ch}=86.6$ mm; $\theta=60^{\circ}$; quinconce).

T 11

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	33.3	49.1	15.8	0.006	885	17.566	0.75339	0.63
14:00	32.8	47.2	14.4	0.01	866	27.267	1.25565	1.05
14:15	32.6	45.8	13.2	0.011	810	29.396	1.38122	1.15
14:30	32.8	44.7	11.9	0.012	785	29.830	1.50678	1.26
14:45	32.5	43.3	10.8	0.013	720	31.977	1.63235	1.36
15:00	32.4	42.6	10.2	0.014	694	33.742	1.75791	1.47
15:15	32.4	42	9.6	0.015	668	35.350	1.88348	1.57
15:30	32	41.4	9.4	0.016	653	37.769	2.00904	1.68
15:45	32	40.8	8.8	0.017	635	38.633	2.13461	1.78
16:00	32.1	40.2	8.1	0.018	609	39.259	2.26017	1.89

Tableau (IV.23) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =29,99mm; D_{tr}=4.5mm; L_{ch}=50mm; P_{e-r}=70mm;
P_{e-tr}=132.1mm; P_{e-ch}=86.6mm; θ =60°;quinconce).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	33.2	50	16.8	0.006	889	18.593	0.75339	0.63
14:00	33.1	47.9	14.8	0.01	873	27.800	1.25565	1.05
14:15	32.9	46.5	13.6	0.011	834	29.415	1.381215	1.15
14:30	32.8	45.4	12.6	0.012	780	31.788	1.506781	1.26
14:45	32.6	44	11.4	0.013	729	33.337	1.632346	1.36
15:00	32.3	43.3	11	0.014	702	35.974	1.757911	1.47
15:15	32	42.6	10.6	0.015	684	38.119	1.883476	1.57
15:30	31.9	41.9	10	0.016	657	39.935	2.009041	1.68
15:45	31.7	41.3	9.6	0.017	641	41.751	2.134606	1.78
16:00	31.6	40.8	9.2	0.018	616	44.084	2.260171	1.89

 $\begin{array}{l} \textbf{Tableau} \ (\textbf{IV.24}): Evolution \ des \ températures \ et \ du \ rendement \ thermique \ en \ fonction \ du \ Temps \\ pour \ un \ capteur \ solaire \ à \ air \ définie \ par \ (\epsilon=29,99mm; \ D_{tr}=4.5mm; \ L_{ch}=50mm; \ P_{e-r}=50mm; \\ P_{e-tr}=132.1mm; \ P_{e-ch}=86.6mm; \ \theta=60^{\circ}; quinconce). \end{array}$

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	33.4	49.8	16.4	0.006	893	18.069	1.783591	0.63
14:00	33.3	48.7	15.4	0.01	878	28.763	2.972652	1.05
14:15	33.1	47	13.9	0.011	839	29.885	3.269917	1.15

14:30	32.9	46.2	13.3	0.012	789	33.171	3.567182	1.26
14:45	32.8	44.7	11.9	0.013	740	34.282	3.864447	1.36
15:00	32.5	44	11.5	0.014	711	37.133	4.161712	1.47
15:15	32.2	43.2	11	0.015	690	39.214	4.458977	1.57
15:30	32.1	42.4	10.3	0.016	660	40.946	4.756243	1.68
15:45	31.9	41.8	9.9	0.017	642	42.989	5.053508	1.78
16:00	31.8	41.2	9.4	0.018	620	44.752	5.350773	1.89

Tableau (IV.25) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =29,99mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=100mm;
P_{e-tr}=115.5mm; P_{e-ch}=20mm; θ =60°;quinconce).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	33.5	50.8	17.3	0.006	896	18.997	1.80832	0.63
14:00	33.4	49.1	15.7	0.01	883	29.157	3.01386	1.05
14:15	33.2	47.6	14.4	0.011	842	30.849	3.31525	1.15
14:30	33	46.6	13.6	0.012	794	33.706	3.61664	1.26
14:45	32.9	45.3	12.4	0.013	741	35.674	3.91802	1.36
15:00	32.7	44.4	11.7	0.014	707	37.992	4.21941	1.47
15:15	32.5	43.7	11.2	0.015	687	40.101	4.5208	1.57
15:30	32.3	42.8	10.5	0.016	654	42.125	4.82218	1.68
15:45	32.1	42.2	10.1	0.017	638	44.132	5.12357	1.78
16:00	32	41.7	9.7	0.018	615	46.556	5.42495	1.89

Tableau (IV.26) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =29,99mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=100mm;
P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =60°;quinconce).

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	33.6	51.3	17.7	0.006	897	19.415	1.78359	0.63
14:00	33.5	49.5	16	0.01	880	29.815	2.97265	1.05
14:15	33.3	48.5	15.2	0.011	847	32.371	3.26992	1.15
14:30	33.2	47.4	14.2	0.012	797	35.060	3.56718	1.26
14:45	33	46.1	13.1	0.013	743	37.586	3.86445	1.36
15:00	32.9	45.4	12.5	0.014	710	40.419	4.16171	1.47
15:15	32.7	44.2	11.5	0.015	690	40.996	4.45898	1.57
15:30	32.5	43.3	10.8	0.016	656	43.196	4.75624	1.68
15:45	32.3	42.7	10.4	0.017	640	45.301	5.05351	1.78
16:00	32.1	42.2	10.1	0.018	620	48.085	5.35077	1.89
Tableau (IV.27) : Evolution des températures et du rendement thermique en fonction du Temps								

pour un capteur solaire à air définie par (ɛ=29,99mm; Dtr=4.5mm; Lch=100mm; Pe-r=70mm;								
$P_{e-tr}=115.5$ mm; $P_{e-ch}=20$ mm; $\theta=60^{\circ}$; quinconce).								

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	33.8	51.9	18.1	0.006	895	19.898	1.80832	0.63
14:00	33.7	50.2	16.5	0.01	882	30.677	3.01386	1.05
14:15	33.5	49	15.5	0.011 851 32.855 3.315		3.31525	1.15	
14:30	33.4	47.9	14.5	0.012	804	35.489	3.61664	1.26
14:45	33.2	46.7	13.5	0.013 744 38.682 3.9180		3.91802	1.36	
15:00	33.1	46	12.9	0.014	715	41.420	4.21941	1.47
15:15	33	45	12	0.015	694	42.532	4.5208	1.57
15:30	32.8	43.9	11.1	0.016	665	43.795	4.82218	1.68
15:45	32.6	43.2	10.6	0.017	649	45.532	5.12357	1.78
16:00	32.4	43.1	10.7	0.018	629	50.212	5.42495	1.89

Tableau (IV.28) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par (ϵ =29,99mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=70mm;
P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =60°;quinconce)

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	$Q(m^3/s)$	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)	
13:45	34	52.1	18.1	0.006	892	19.965	1.783591	0.63	
14:00	33.8	50.7	16.9	0.01	886	31.279	2.972652	1.05	
14:15	33.7	49.8	16.1	0.011	0.011 851 34.126 3.269917		1.15		
14:30	33.6	48.4	14.8	0.012	12 805 36.178 3.567182		3.567182	1.26	
14:45	33.5	47.3	13.8	3.8 0.013 736 39.971		3.864447	1.36		
15:00	33.4	46.4	13	0.014	710	42.036	4.161712	1.47	
15:15	33.3	45.4	12.1	0.015	686	43.387	4.458977	1.57	
15:30	33	44.5	11.5	0.016	660	45.717	4.756243	1.68	
15:45	32.9	43.5	10.6	0.017	640	46.172	5.053508	1.78	
16:00	32.7	43.4	10.7	0.018	625	50.534	5.350773	1.89	

Tableau (IV.29) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par(ϵ =29,99mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=50mm;
P_{e-tr}=115.5mm; P_{e-ch}=20mm; θ =60°;quinconce)

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	34.1	52.6	18.5	0.006	06 898 2		1.80832	0.63
14:00	33.9	51.6	17.7	0.01	889	32.649	3.01386	1.05
14:15	33.8	50.3	16.5	0.011	855	34.811	3.31525	1.15

14:30	33.8	48.2	14.4	0.012	815	34.769	3.61664	1.26
14:45	33.7	48	14.3	0.013	741	41.140	3.91802	1.36
15:00	33.6	47.2	13.6	0.014	713	43.791	4.21941	1.47
15:15	33.4	46	12.6	0.015	690	44.918	4.5208	1.57
15:30	33.1	45.2	12.1	0.016	663	47.885	4.82218	1.68
15:45	33	44.4	11.4	0.017	649	48.968	5.12357	1.78
16:00	32.8	44.1	11.3	0.018	635	52.527	5.42495	1.89

Tableau (**IV.30**) : Evolution des températures et du rendement thermique en fonction du Temps pour un capteur solaire à air définie par(ϵ =29,99mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=50mm; P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =60°;quinconce)

t(h)	Te(°C)	Ts(°C)	$\Delta T(^{\circ}C)$	Q(m ³ /s)	$I(w/m^2)$	η(%)	Vint(m/s)	Vext(m/s)
13:45	34.4	53.1	18.7	0.006	892	20.627	1.08735	0.63
14:00	34.2	52.1	17.9	0.01	893	32.8708	1.81225	1.05
14:15	34.1	50.9	16.8	0.011	858 3	35.3202	1.99348	1.15
14:30	34	49.9	15.9	0.012	819	38.2035	2.1747	1.26
14:45	33.9	48.8	14.9	0.013	745	42.6365	2.35593	1.36
15:00	33.9	47.6	13.7	0.014	720	43.6842	2.53715	1.47
15:15	33.7	46.5	12.8	0.015	695	45.3028	2.71838	1.57
15:30	33.5	45.6	12.1	0.016	670	47.3848	2.8996	1.68
15:45	33.3	44.7	11.4	0.017	655	48.52	3.08083	1.78
16:00	32.8	44.3	11.5	0.018	640	53.0394	3.26205	1.89

Tableau (IV.31) : Evolution des températures et du rendement thermique en fonction du Temps
pour un capteur solaire à air définie par : (ϵ =17,5mm; D_{tr}=4.5mm; L_{ch}=100mm; P_{e-r}=50mm;
P_{e-tr}=117.6mm; P_{e-ch}=20mm; θ =30°;quinconce)

IV.3. Détermination du nombre de *Nusselt*(N_u) et du coeffiicent d'échange thermique par convection (h_c) :

Pour déterminer N_u et h_c on est appelé à déterminer les coefficients : d, k, m, j, e, i, h, g, f, w, en introduisant l Logarithme népérien, en s'appuiyant sur résultats expérimentaux obtenus, l'usage de l'outil informatique(le Matlab) pour la résolution d'un système de 15 équations pour un régime laminaire et un régime turbulentd'écoulement de l'air.

Pour la suite de notre étude, on considère constantes , la conductivité thermique (λ), la masse volumique(ρ), la chaleur massique(C_p), la viscosité dynamique(μ) du fluide caloporteur(l'air dans notre cas).

En introduisant le Logarithme néperien dans l'équation (IV.12), on obtient :

$$ln\left(\frac{N_{u}.D_{h}^{2}}{R_{e}A_{c}.B_{r}}\right) = -dlnR_{e} + jln\left(\frac{l}{\rho.V^{3}}\right) - mlnE_{c} - k lnCl + eln\left(\frac{\varepsilon}{D_{h}}\right) + iln\left(\frac{D_{tr}}{D_{h}}\right)$$

 $+hln\left(\frac{L_{ch}}{D_{h}}\right)+gln\left(\frac{P_{e-ch}}{D_{h}}\right)+fln\left(\frac{P_{e-r}}{D_{h}}\right)+wln\left(\frac{P_{e-tr}}{D_{h}}\right)$ (IV.13)

En remplaçant les valeurs expérimentaux des tableaux ci-dessus dans l'équation(IV.13), on obtient un système de 15 équations dont la résolution par « Matlab » pour un régime laminaire et un régime turbulent de l'air en écoulement dans la veine de conduite du capteur solaire plan à air.

IV.3.1. Résolution du système matriciel en régime laminaire : Re≤2300

- 7.1779	5.8770	2.0707	8.9241	- 0.0200	-1.3781	1.7229	0.1135	1.7229	1.8670			-3.8525
- 7.6888	4.4012	0.5031	7.8674	- 0.0200	-1.3781	1.7229	0.1135	1.7229	1.8670			-5.0114
- 7.7841	4.1408	0.3189	7.7786	- 0.0200	-1.3781	1.7229	0.1135	1.7229	1.8670		1	-5.1193
- 7.1994	5.8318	2.0776	8.9525	-0.0331	- 2.0198	1.7098	0.1003	1.7098	1.8719	$\begin{vmatrix} -a \\ \vdots \end{vmatrix}$		-3.8022
- 7.7102	4.3519	0.5341	7.9198	-0.0331	- 2.0198	1.7098	0.1003	1.7098	1.8719	J		-4.9370
- 7.8055	4.0956	0.3022	7.7832	-0.0331	- 2.0198	1.7098	0.1003	1.7098	1.8719	$-\kappa$		-5.0927
- 7.1433	7.3595	3.2470	10.065	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	-m		-6.7752
- 7.6541	5.8463	1.8931	9.2227	-0.0710	-1.0720	0.7058	1.2251	1.3990	1.6774	× e	=	-3.0013
- 7.7494	5.5966	1.6072	9.0321	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	l h		-3.2109
- 7.1433	7.4377	3.4193	10.238	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	n		-1.8837
- 7.6541	5.8510	1.7587	9.0883	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774			-3.1357
- 7.7494	5.5165	1.4134	8.8384	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	J		-3.4046
- 7.1639	4.8178	1.7382	8.5776	0.7838	-1.4757	2.2539	0.6445	2.2539	2.4160			-5.2582
- 7.6747	3.2707	0.1087	7.4589	0.7838	-1.4757	2.2539	0.6445	2.2539	2.4160			-6.4791
-7.7700	2.9372	0.2630	7.1819	0.7838	-1.4757	2.2539	0.6445	2.2539	2.4160			-2.0560

La résolution de ce système est obtenue par la méthode de pseudo inverse :

x = pinv(a) * (b)

La solution permet d'obtenir le système d'équation suivant :

$$\begin{cases} d = 8.951 \\ j = -4.777 \\ k = 8.951 \\ m = -8.951 \\ e = 1.283 \\ i = -1.1279 \\ h = 5.6551 \\ g = -3.2889 \\ f = -6.682 \\ w = -8.6153 \end{cases}$$

En remplaçant dans les équations (IV.8) et (IV.12), on aboutit à :

$$N_{u} = \frac{A_{c}}{D_{h}^{2}} B_{r} R_{e}^{-7.951} \left(\frac{I}{\rho V^{3}}\right)^{-4.777} Cl^{-8.951} E_{c}^{-8.951} \left(\frac{\varepsilon}{D_{h}}\right)^{1.283} \left(\frac{D_{tr}}{D_{h}}\right)^{-1.1279} \left(\frac{L_{ch}}{D_{h}}\right)^{5.6551}$$

$$\left(\frac{P_{e-ch}}{D_{h}}\right)^{-3.2889} \left(\frac{P_{e-r}}{D_{h}}\right)^{-6.682} \left(\frac{P_{e-tr}}{D_{h}}\right)^{-8.6153}$$

$$IV.14)$$

$$h_{c} = \frac{\lambda A_{c}}{D_{h}^{-3}} B_{r} R_{e}^{-7.951} \left(\frac{I}{\rho V^{3}}\right)^{-4.777} Cl^{-8.951} E_{c}^{-8.951} \left(\frac{\varepsilon}{D_{h}}\right)^{1.283} \left(\frac{D_{tr}}{D_{h}}\right)^{-1.1279} \left(\frac{L_{ch}}{D_{h}}\right)^{5.6551}$$

$$\left(\frac{P_{e-ch}}{D_{h}}\right)^{-3.2889} \left(\frac{P_{e-r}}{D_{h}}\right)^{-6.682} \left(\frac{P_{e-tr}}{D_{h}}\right)^{-8.6153}$$

$$(IV.15)$$

IV.3.2. Résolution du système matriciel en régime turbulent : Re≥3100

-8.1588	3.2130	-0.7838	7.0504	-0.0200	-1.3781	1.7229	0.1135	1.7229	1.8670			[-5.9223]
-8.2194	3.0836	-0.9762	6.9186	0.7838	-1.4757	2.2539	0.6445	2.2539	2.4160			-6.0663
-8.2766	2.9443	-1.2024	6.7496	-0.200	-1.3781	1.7229	0.1135	1.7229	1.8670	۲ م ⁻	1	-6.2467
-8.1802	3.1922	-0.7805	7.0751	-0.0331	-2.0198	1.7098	0.1003	1.7098	1.8719	-u		-5.8757
-8.2408	3.6026	-0.9624	6.9538	-0.331	-2.0198	1.7098	0.1003	1.7098	1.8719			-6.1349
-8.2980	2.9220	-1.1339	6.8395	-0.331	-2.0198	1.7098	0.1003	1.7098	1.8719			- 6.009
-8.0596	4.7625	0.67670	8.4118	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	-m		-3.8933
-8.1241	4.5626	0.5015	8.3014	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	×	=	-4.0166
-8.1847	4.3454	0.2496	8.1098	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	h		-4.2203
-8.1241	4.1963	-0.0424	7.7571	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774			-4.5609
-8.1847	3.9883	-0.2678	7.5924	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	g f		-4.7377
-8.2419	3.7739	-0.4732	7.4441	-0.0710	-1.7020	0.7058	1.2551	1.3990	1.6774	J		-4.8974
-8.1447	1.5604	-1.7035	6.1166	0.7838	-1.4157	2.2539	0.6445	2.2539	2.4160]	-8.2537
-8.2053	1.3538	-1.9243	5.9565	0.7838	-1.4757	2.2539	0.6445	2.2539	2.4160			-8.0876
-8.2625	1.1456	-2.1361	5.8018	-0.0200	-1.3781	1.7229	0.1135	1.7229	1.8670			_ 7.9154

La résolution de ce système est obtenue par la méthode de pseudo inverse :

y = pinv(a) * (b)

La solution permet d'obtenir le système d'équation suivant :

 $\begin{cases} d = -1.0883 \\ j = 0.70526 \\ k = 1.0883 \\ m = 1.0883 \\ e = -1.56 \\ i = 1.3713 \\ h = 6.8756 \\ g = 3.9987 \\ f = 8.1241 \\ w = 1.0475 \end{cases}$

En remplaçant dans les équations (IV.8) et (IV.12), on aboutit à :

$$N_{u} = \frac{A_{c}}{D_{h}^{2}} B_{r} R_{e}^{-0.0883} \left(\frac{I}{\rho V^{3}}\right)^{0.70526} Cl^{-1.0883} E_{c}^{-1.0883} \left(\frac{\varepsilon}{D_{h}}\right)^{-1.56} \left(\frac{D_{tr}}{D_{h}}\right)^{1.3713} \left(\frac{L_{ch}}{D_{h}}\right)^{6.8756}$$

$$\frac{P_{e-ch}}{D_{h}}^{3.9987} \left(\frac{P_{e-r}}{D_{h}}\right)^{8.1241} \left(\frac{P_{e-tr}}{D_{h}}\right)^{1.0475}$$
(IV.16)

$$h_{c} = \frac{\lambda A_{c}}{D_{h}^{3}} B_{r} R_{e}^{-0.0883} \left(\frac{l}{\rho V^{3}}\right)^{0.70526} C l^{-1.0883} E_{c}^{-1.0883} \left(\frac{\varepsilon}{D_{h}}\right)^{-1.56} \left(\frac{D_{tr}}{D_{h}}\right)^{1.3713} \left(\frac{L_{ch}}{D_{h}}\right)^{6.8756} \left(\frac{P_{e-rh}}{D_{h}}\right)^{3.9987} \left(\frac{P_{e-r}}{D_{h}}\right)^{8.1241} \left(\frac{P_{e-tr}}{D_{h}}\right)^{1.0475}$$
(IV.17)

IV.4. Représentations graphiques :

IV.4.1. Représentation graphique de l'évolution des températures de sortie en fonction du temps :

Figure.IV.1. Evolution de la température de sortie en fonction du temps(variable=A)

Figure.IV.2. Evolution de la température de sortie en fonction du temps (variable=disposition)

Figure.IV.3. Evolution de la température de sortie en fonction du temps $(variable=D_t)$

Figure.IV.4. Evolution de la température de sortie en fonction du temps

```
(variable=Pe-ch)
```


Figure.IV.6. Evolution du rendement thermique en fonction débit volumique(variable=A)

Figure.IV.7. Evolution du rendement thermique en fonction débit volumique (variable=disposition)

Figure.IV.8. Evolution du rendement thermique en fonction débit volumique (variable= D_{tr})

Figure.IV.9. Evolution du rendement thermique en fonction débit volumique (variable= P_{e-ch})

Figure.IV.10. Evolution du rendement thermique en fonction débit volumique (variable= P_{er})

IV.4.3. Représentation graphique de l'évolution du Nusselt en fonction du Reynolds :

Figure.IV.11. Evolution de Nusselt en fonction de Reynolds définie par :régime laminaie(ε=22.99mm; D_{tr}=4.5mm; L_{ch}=50mm; P_{e-r}=50mm; P_{e-tr}=132.1mm; P_{ech}=86.6mm; θ=60°;rangée).

Figure.IV.12. Evolution de Nusselt en fonction de Reynolds définie par : régime turbulent (ε=22.99mm; D_{tr}=4.5mm; L_{ch}=50mm; P_{e-r}=50mm; P_{e-tr}=132.1mm; P_{ech}=86.6mm; θ=60°; rangée).

Les tableaux de valeurs expérimentaux et les représentations graphiques ci-dessus traduisent, d'abord, que la température de sortie (T_s) du panneau solaire plan à air muni de chicanes augmente en fonction du débit volumique de l'air en écoulement (prises de mesure chaque 15 minutes du temps de l'expérience), Fig.IV.2, Fig.IV.3, Fig.IV.4, Fig.IV.5. Par contre, elle diminue durant la 3^{ème} période des prises de mesure (de 13h:45min à 16h:00min), Fig.IV.1(à cause de la décroissance du flux solaire). Ensuite, la diminution du pas entre rangées(P_{e-r}), Fig.IV.1, des pas entre chicanes(P_{e-ch}), Fig.IV.5, des diamètres des trous de perçage(D_t), Fig.IV.2 et la disposition en quinconce (Fig.IV.3) des chicanes favorisent considérablement les échanges thermiques, au sein de la veine de conduite, entre l'air en écoulement, les chicanes et l'absorbeur. Ce qui produit, donc la croissance de la température de sortie (T_s). Cependant, l'augmentation de l'angle d'inclinaison de 30° à 60° (Fig.IV.2) de la partie supérieure des chicanes provoque la diminution de T_s , tout cela en comparaison avec un panneau solaire plan à air lisse (sans chicanes).Les mêmes remarques sont faites pour l'évolution du rendement thermique (η) en fonction du débit volumique(Q_v),Fig.IV.7, Fig.IV.8, Fig.IV.9, Fig.IV.6, le rendement thermique ne

diminue pas mais croit avec le débit volumique, contrairement à la température de sortie (Fig.IV.1.).

Selon les graphes ci-dessus représentant le nombre de *Nusselt* en fonction du nombre de *Reynolds*, on constate que le nombre de *Nusselt* augmente avec le nombre de Reynolds. Ce qui traduit que le passage d'un régime laminaire à un régime turbulent favorise d'une manière incontestable l'échange thermique (h_c) entre l'air en écoulement, les chicanes et l'absorbeur.

Conclusion :

D'après les résultats expérimentaux et les graphes obtenus, on peut conclure que l'introduction de la rugosité artificielle (chicanes) dans le conduit utile d'un panneau solaire plan à air favorise énormément l'échange thermique. En effet, ce procédé s'avère rentable suite à l'augmentation du rendement thermique observée lors du passage d'une configuration à une autre. Cela consiste à un profit économique très remarquable par diminution de la consommation de l'énergie électrique pour des besoins variés.

L'insertion des rugosités artificielles dans la veine de conduite du capteur solaire à air a pour but l'amélioration des performances thermiques. Cela se traduit par une augmentation importante du coefficient d'échange thermique et du rendement thermique. Toutefois, ces bienfaits sont confrontés à un accroissement des pertes de charge qui fait appel à une puissance mécanique, supplémentaire, nécessaire pour garantir une alimentation pour l'écoulement permanent du fluide caloporteur dans le panneau solaire.

Cette recherche représente l'étude de l'influence des rugosités artificielles sur les échanges thermiques dans la veine de conduite de l'insolateur. Pour cette fin, on a élaboré un modèle de chicanes de formes rectangulaires avec une partie supérieure rectangulaire inclinée. Ces chicanes sont conçues de telle sorte à satisfaire une amélioration des échanges thermiques.

Une série d'expériences a été réalisée en présence de chicanes, ce qui a permis d'obtenir un nombre important de tableaux de mesure à traiter pour estimer l'augmentation du coefficient d'échange thermique par convection engendrée en fonction du débit volumique.

Pour mettre en corrélation les caractéristiques géométriques de la configuration de chicanes en fonction du régime d'écoulement et des paramètres physiques du fluide caloporteur, on a adopté à la méthode de l'analyse dimensionnelle (Vashy Bukingham). Elle permet d'obtenir des relations empiriques, qui expriment les échanges thermiques par convection et le coefficient correspondant, qui vérifient les résultats expérimentaux trouvés. Pour la configuration considérée on a établi deux modèles empiriques selon la nature et le régime d'écoulement.

La comparaison des représentations graphiques qui représentent l'évolution du rendement thermique en fonction du débit volumique, montre que c'est le cas de la Figure (IV.6), η =54%, qui occasionne le plus d'échange thermique par convection.

Les résultats trouvés peuvent être une occasion favorable pour aller vers l'avant, en matière de compréhension du comportement aérodynamique du fluide caloporteur en son contact avec les obstacles.

Résumé

Le présent travail représente une étude théorique et expérimentale d'un capteur solaire plan à air. L'objectif principal de cette étude est l'évaluation de l'effet de la mise en place des rugosités artificielles, dans la veine de conduite, dites chicanes de formes géométriques diversifiées, sur les performances thermiques du capteur, par création d'un écoulement turbulent. Les chicanes considérées sont en aluminium très mince, disposées selon le cas étudié en rangée ou en quinconce et colées sur le plan d'écoulement inférieur également en aluminium. Pour cette étude, on a choisi de jouer sur la variation du débit d'écoulement, les caractéristiques géométriques et la disposition des chicanes. Enfin, on est abouti à deux corrélations empiriques, pour deux régimes d'écoulement: laminaire et turbulent, exprimant le coefficient d'échange thermique par convection, en utilisant la méthode d'analyse dimensionnelle.

Mots clé:

capteur solaire, chicanes, rugosité artificielle, coefficient d'échange thermique, convectif, veine de conduite, écoulement laminaire, écoulement turbulent, quinconce,

ملخص

يمثل العمل الحالي دراسة نظرية وتجريبية للاقط شمسي. الهدف الرئيسي من هذه الدراسة هو تقييم تأثير إنشاء خشونة اصطناعية ، داخل الممر الهوائي، تسمى عوائق وهي ذات أشكال هندسية متنوعة على الأداء الحراري لللاقط ، عن طريق إنشاء تدفق مضطرب. العوائق التي تم اعتبارها من الألمنيوم الرفيع، مرتبة حسب الحالة المدروسة في صفوف او صفوف متراكبة بالتداخل على مستوي التدفق السفلي أيضًا من الألمنيوم. في هذه الدراسة ، اخترنا أن نلعب على اختلاف معدل التدفق ، والخصائص الهندسية و وضعية العوائق. أخيرًا ، تم الحصول على ارتباطين تجريبيين لنسقي السريان: الصفيحي والمضطرب ، معبرًا عن معامل التبادل الحراري للحمل الحراري ، باستخدام طريقة التحليل البعدي.

كلمات البحث:

لاقط شمسي، عوائق، خشونة اصطناعية، معامل التبادل الحراري للحمل الحراري، الممر الهوائي، النسق الصفيحي، النسق المضطرب، صفوف متراكبة بالتداخل