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Introduction

Humans were naked worms; yet they had an internal model of the world. In the course

of the time up to the present, this model has been updated many times, following the

development of new experimental possibilities or the devlopment of their intellect. Sometimes

the updating has been only quantitative, sometimes it has been qualitative. Inverse problem

theory tries to describe the rules human beings should use for quantitative updatings. In fact,

inverse problems are some of the most important mathematical problems in science and math-

ematics because they tell us about parameters (unknowns) that we cannot directly observe or

measure. It is called an inverse problem because it is the process of calculating from a set of

observations the causal factors that produced them in certain phenomenon. In other words, it

starts with the e¤ects and then calculates the causes. It is the inverse of a forward problem,

which starts with the causes and then calculates the e¤ects.

We �nd inverse problems in many scienti�c �elds:

- Medical imaging (calculating an image in X-ray, scan, computed tomography)

- Petroleum engineering (prospecting by seismic methods, magnetic)

- Hydrogeology (identi�cation of hydrolic permeabilities)

- Oceanography (underwater acoustics)

- Chemistry and physics (quantum mechicans)

- Geophysicss, radar, optics, astronomy, signal processing,...etc.
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Introduction

Inverse problems are challenging to solve because, according to Albert Tarantola[1] , the set

of observations usually overdetermines some parameters while leaving others underdetermined.

Schematically, there are two reasons for underdetermination: intrinsic lack of data and exper-

imental uncertainties. The second reason is uncertainty of knowledge(observed values always

have experimental uncertainties).

Underdetermination is handled easily by pure mathematicians like Jacques Hadamard, he

de�ned ill-posed problems in 1923, in his book "Lectures on Cauchy�s Problem in Linear

Partial Di¤erential Equations"[2] . In his opinion, ill-posed problems do not have physical sense,

so he introduced the notion of the well-posed problem which, according to him, must satisfy

three properties:

- The problem must have a solution;

- The solution must be unique, and;

- The solution must be stable under the small changes to the data.

The manuscriptis organized as follows:Chapter 1 talks about inverse problems in general

with some examples. Chapter 2 is dedicated to basic functional analysis. While Chapter 3

reviews regularization methods of ill-posed PDEs problems. For the last chapter (4) , it presents

a numerical illustration: inverse estimation of the initial condition for the heat equation.

2



Chapter 1

Generalities and some examples

In the late 1950�s and early 1960�s the theory of ill-posed problems attracted the attentionof many mathematicians, due to the appearance of series of new approaches that became

essential for this theory. Inverse and ill-posed problems gained popularity very rapidly, with

the advent of computers. By the present day, the theory of inverse and ill-posed problems

has developed into a powerful and �eld of science that has an impact on almost every area of

mathematics. In most cases, inverse and ill-posed problems have one important property in

common: instability.In these cases, inverse problems turn out to be ill-posed and, conversely,

an ill-posed problem can usually be reduced to a problem that is inverse to some well-posed

problem.

This chapter is an awarness of the consequences of ill-posed problems, it might be helpful to

explain in more precise terms exactly what is meant by a nonwell posed problem and to provide

an interesting examples of such a problem.

1.1 What is an inverse problem?

There are two types of inverse problems: linear and non-linear. Linear problems generally

come down to solving integral equations of the �rst kind. However, non-linear problems are

more di¢ cult to solve and they are often found in habit. Let�s explain on an example what is

3



Chapter 1. Generalities and some examples

an inverse problem:[4]

Consider a rectangular iron bar that we heat at one of its ends. The di¤usion of heat inside

the bar is modalized by a boundary problem for a heat equation. The questions to be asked

are: Can we determine the di¤usion coe¢ cient by measuring the temperature of the bar at

the other end? How many measurements are needed to ensure that we determine an unique

di¤usion coe¢ cient? In practice, we want to calculate this coe¢ cient. We start by replacing

the continuous model with a discrete model. So there is going to be a stability problem, that is

to say: How can we control the disturbances on the di¤usion coe¢ cients by the errors that we

make on the measurements?

Let 
 be a heated design domain fully occupied by conductive materials. We assume that


 is an open and bounded domain of Rd, d = 2; 3. This example can be modalized by the

following boundary value problem:

8>>>>>>><>>>>>>>:

@u
@t
� div (a(z)ru) = 0 in 
� (0; T ) ,

u = 0 in 
� f0g ,

u = f on �1 � (0; T ) ,
@u
@v
= 0 on �2 � (0; T ) ,

(1.1)

where f is a generated heat source on a smooth boundary �1, �2 is the rest of the boundary of


 and a(z) is the di¤usion coe¢ cient(assumed to be constant over time).

Can we then determine the coe¢ cient a(z) from the measurements u = g , M � (0; T ), M being

a part of �2? For this example,we �rst examine the uniqueness (i.e.the injectivity which has a

associates g ).

Then, we are interested in stability. More precisely, we wish to establish an estimate of the

form d1 (a1; a2) � !(d2 (g1; g2)) , for d1 (a1; a2) neighbor of zero, ! is an increasing function,

de�ned on ]0;+1[ such as ! (s) ! 0 when s converges to 0. d1 and d2 are distances de�ned

respectively on the set of co¢ cients and the set of measures.

Note that, due the regularizing e¤ect of elliptical and parabolic equations, the continuity

module !, here, is a logarithm or a power of this one. There are examples where it has been

4



Chapter 1. Generalities and some examples

shown to be optimal.

Hence the notion of Hadamard�s ill-posed problem[2] .For this reason, if we wish to calculate

a from g, minimizing for example a functional of the form:J (a) = ku� gk2L2(M�(0;T ))we have to

use a regularisation method, for example Tikhonov type[3] .

Regarding the measures there are several possibilities. We can for example replace the above

with:

u (:; ti) = gi , on M with ti , 1 � i � N , points of (0; T ) .

We can also vary f . We give a �nite or in�nite set J .For each j 2 J , we have a measure gi

.In this case the inverse problem consists in determining a by the application A : fj ! gj.

This problem is an inverse prolem which we try to determine a coe¢ cient.

1.2 Well-posed and Ill-posed problem

We can formulate the problem as follows: A : Z ! U such as (Z; �z) and (U; �u) are metric

spaces, the problem: given u 2 U , �nd z 2 Z such that

Az = u (1.2)

is said to be well posed if [3] :

-for u 2 U there is zu 2 Z such that Azu = u (the solution zu existes for all u from U ),

- zu is unique (injectivity of A);

-A has a continuous inverse (A�1is continuous: for all " � 0 there is �("; u) � 0 such that

�u(u; u1) � � implies �z(zu; zu1) � " ).

If not the problem (1.2) is called ill-posed.

If a solution exists it is perfectly conceivable that di¤erent parameters lead to the same

observations. The fact that the solution of an inverse problem may not exist is not a serious

di¢ culty.It is usually possible to restore existence by relaxing the notion of solution. Non-

uniquness is more serious problem.

5



Chapter 1. Generalities and some examples

If a problem has more several solutions, there must be a way to choose between them.

For this, it is necessary to have additional informations(a priori information). The lack of

continuity of A�1 is undoubtedly the most problematic, small disturbances on the data u can

generate large di¤erences on the solution z.

1.3 Examples of Ill-posed problems

Here are some examples of ill-posed problems:

Example 1.3.1 (algebra, systems of linear algebraic equations).[5]

Consider the system of linear algebraic equations

Aq = f , (1.3)

where A is an n�m matrix, q and f are n� and m�dimensional vectors, respectively. Let the

rank of A be equal to min (n;m). For m � n the system may have many solutions. For m � n

there may be no solutions. For m = n the system has a unique solution for any right-hand side.

In this case, there exists an inverse operator (matrix) A�1 . It is bounded, since it is a linear

operator in a �nite-dimensional space. Thus, all three conditions of well-posedness in the sense

of Hadamard are satis�ed.

We now analyze in detail the dependence of the solution on the perturbations of the right-

hand side f in the case where the matrix A is nondegenerate. Subtracting the original equation

(1.3) from the perturbed equation

A (q + �q) = f + �f ,

we obtain A�q = �f , which implies �q = A�1�f and k�qk � kA�1k k�fk . We also have

kAk kqk � kfk.

6



Chapter 1. Generalities and some examples

As a result, we have the best estimate for the relative error of the solution:

k�qk
kqk � kAk



A�1

 k�fkkfk

which shows that the error is determined by the constant � (A) = kAk kA�1k called the

condition number of the system (matrix). Systems with relatively large condition number are

said to be ill-conditioned. For normalized matrices (kAk = 1), it means that there are relatively

large elements in the inverse matrix and, consequently, small variations in the right-hand side

may lead to relatively large (although �nite) variations in the solution. Therefore, systems with

ill-conditioned matrices can be considered practically unstable, although formally the problem

is well-posed and the stability condition kA�1k <1 holds.

For example, In the system (1.3) ,where A =

0BBBBBBB@

10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

1CCCCCCCA
and f =

0BBBBBBB@

32

23

33

31

1CCCCCCCA
We �nd

q =

0BBBBBBB@

1

1

1

1

1CCCCCCCA
;

now we take a second member ~f very slightly di¤rent from f ,

let ~f =

0BBBBBBB@

32:1

22:9

33:1

30:9

1CCCCCCCA
, then we verify that the solution of Aq = ~f is q =

0BBBBBBB@

9:2

�12:6

4:5

�1:1

1CCCCCCCA
.

In this case, we see that small perturbations on f have led to large variations on q . In this

example � (A) = 2984:0942 (A is ill-conditioned matrix).If the determinant of A be zero. Then

the system (1.3) may either have no solutions or more than one solution. It follows that the

problem Aq = f is ill-posed for degenerate matrices A (detA = 0).

7



Chapter 1. Generalities and some examples

Example 1.3.2 (minimization problems).[6]

We consider the minimization problem:

� (u) = inf kAu� fk

Assume that ui is the in�nimum of � (u) : � (ui) � � (u) :If f is perturbed , thus:

�� (u) = inf kAu� f�k , kf� � fk � � ,

the in�nimum of �� (u) cannot be reached at an element u� which is far from ui, hence the

graphe of f 7! ui can be non-continuous. In this case this problem is ill-posed.

Example 1.3.3 (integral geometry on circles).[5]

Consider the problem of determining a function of two variables q (x; y) from the integral

of this function over a collection of circles whose centers lie on a �xed line.

Assume that q (x; y) is continuous for all (x; y) 2 R2 . Consider a collection of circles whose

centers lie on a �xed line (for de�niteness, let this line be the coordinate axis y = 0). Let L (a; r)

denote the circle (x� a)2+y2 = r2 , which belongs to this collection. It is required to determine

q (x; y) from the function f (x; y) such that

Z
L(x;r)

q (�; �) dl = f(x; r), (1.4)

and f (x; r)is de�ned for all x 2 (�1;+1) and r > 0.

The solution of this problem is not unique in the class of continuous functions, since for any

continuous function ~q (x; y) such that ~q (x; y) = �~q (x;�y) the integrals

Z
L(x;r)

~q (�; �) dl

8



Chapter 1. Generalities and some examples

vanish for all x 2 R and r > 0. Indeed, using the change of variables � = x+r cos', � = r sin',

we obtain

Z
L(x;r)

~q (�; �) dl =

Z 2�

0

~q (x+ r cos'; r sin') rd' (1.5)

=

Z �

0

~q (x+ r cos'; r sin') rd'+

Z 2�

�

~q (x+ r cos'; r sin') rd'

Putting �' = 2��' and using the condition ~q (x; y) = �~q (x;�y), we transform the last integral

in the previous formula:

Z 2�

�

~q (x+ r cos'; r sin') rd' =

Z 0

�

~q (x+ r cos �';�r sin �') rd �' = �
Z �

0

~q (x+ r cos �'; r sin �') rd �'

Substituting the result into (1.5) , we have

Z
L(x;r)

~q (�; �) dl = 0

for x 2 R, r > 0.

Thus, if q (x; y) is a solution to the problem (1.4) , then q (x; y) + ~q (x; y), where ~q (x; y) is any

continuous function such that ~q (x; y) = �~q (x;�y) is also a solution to(1.4) . For this reason,

the problem can be reformulated as the problem of determining the even component of q (x; y)

with respect to y. The �rst well-posedness condition is not satis�ed in the above problem:

solutions may not exist for some f(x; r).

Example 1.3.4 (Fredholm integral equation of the �rst kind).[3]

Consider the problem of solving a Fredholm integral equation of the �rst kind

Z b

a

K (x; s) q (s) ds = f (x) , c � x � d (1.6)

where the kernel K (x; s) and the function f (x) are given and it is required to �nd q (s). It is

assumed that f (x) 2 C [c; d], q (s) 2 C [a; b]and K (x; s) , Kx (x; s), and Ks (x; s) are continuous

in the rectangle c � x � d, a � s � b. The problem of solving equation (1.6) is ill-posed because

9



Chapter 1. Generalities and some examples

solutions may not exist for some functions f (x) 2 C [c; d] . For example, take a function f (x)

that is continuous but not di¤erentiable on [c; d]. With such a right-hand side, the equation

cannot have a continuous solution q (s) since the conditions for the kernel K (x; s) imply that

the integral in the left-hand side of (1.6) is di¤erentiable with respect to the parameter x for any

continuous function q (s). The condition of continuous dependence of solutions on the initial

data is also not satis�ed for equation (1.6) .

Example 1.3.5 (Volterra integral equations of the �rst kind).[3]

Consider the problem of solving a Volterra integral equation of the �rst kind

Z x

0

K (x; s) q (s) ds = f (x) , 0 � x � 1 (1.7)

For K = 1 the problem (1.7) is equivalent to di¤erentiation f 0 (x) = q (x) : The sequence

fn (x) = cos (nx)�
p
n demonstrates the instability of the problem.

Example 1.3.6 (calculus, summing a Fourier series).[3]

The problem of summing a Fourier series consists in �nding a function q (x) from its Fourier

coe¢ cients. We show that the problem of summation of a Fourier series is unstable with respect

to small variations in the Fourier coe¢ cients in the l2 metric if the variations of the sum are

estimated in the C metric. Let

q (x) =

1X
k=1

ck cos (kx)

and let the Fourier coe¢ cients ck of the function q (x) have small perturbations: ~ck = ck + "
k
.

Set

~q (x) =
1X
k=1

~ck cos (kx)

The coe¢ cients of these series in the l2 metric di¤er by

( 1X
k=1

(ck � ~ck)2
) 1

2

= "

( 1X
k=1

1

k2

) 1
2

= "

r
�2

6
,

10



Chapter 1. Generalities and some examples

which vanishes as "! 0. However, the di¤erence

q (x)� ~q (x) = "
1X
k=1

1

k
cos (kx)

can be as large as desired because the series diverges for x = 0.

Thus, if the C metric is used to estimate variations in the sum of the series, then summation of

the Fourier series is not stable.

Example 1.3.7 (di¤erential equation of the second order).

Suppose that a particle of unit mass is moving along a straight line. The motion is caused

by a force f (t) that depends on time. If the particle is at the origin x = 0 and has zero velocity

at the initial instant t = 0, then, according to Newton�s laws, the motion of the particle is

described by a function u (t) satisfying the Cauchy problem

8><>:
@2u
@t2
= f (t) , t 2 [0; T ] ,

u (0) = 0, @u
@t
(0) = 0,

(1.8)

where u (t) is the coordinate of the particle at the instant t. Assume now that the force f (t)

is unknown, but the coordinate of the particle u (t) can be measured at any instant of time (or

at certain points of the interval [0; T ]). It is required to reconstruct f (t) from u (t). Thus, we

have the following inverse problem: determine the function f (t) from the known solution u (t)

of the problem (1.8) .

We now prove that the inverse problem is unstable.

Let u (t) be a solution to the direct problem for some f (t). Consider the following perturbations

of the solution to the direct problem:

un (t) = u (t) +
1

n
cos (nt) :

These perturbations correspond to the right-hand sides fn (t) = f (t) � n cos (nt) : Obviously,

ku� unkC[0;T ] ! 0 as n!1, and kf � fnkC[0;T ] !1 as n!1:

11



Chapter 1. Generalities and some examples

Thus, the problem of determining the right-hand side of the linear di¤erential equation (1.8)

from its right-hand side is unstable.

Example 1.3.8 (retrograde heat equation)

Let the di¤erntial equation

8><>:
@u(x;t)
@t

+4u (x; t) = 0

u (x; 0) = v (x)
for x 2 Rd, t 2 R+ (1.9)

if d = 1 and v (x) = n�1 sin (nx), where n 2 N�, then the solution is given by:

u (x; t) = n�1en
2t sin (nx), checked by substituting in the equation of (1.9) :

kvk1 = n�1 ! 0 as n!1, ku (x; t)k1 = n�1en
2t !1 as n!1 , it follows that the problem

(1.9) is ill-posed.

In other words, �nding the subsequent temperature propagation, knowing the initial temper-

ature propagation, is a well-posed problem. However, �nding the temperature propagation at

�nal time is an ill-posed problem

Example 1.3.9 (Cauchy problem for Laplace equation).[2]

Consider Cauchy�s problem relating to the Laplace equation in two-dimentional case(the

example cited by Hadamard). Let u = u (x; y) be a solution to the following problem:

8>>>><>>>>:
4u = 0,

u jy=0= 0,
@u
@y
jy=0= 'n (x) = sin(nx)

n
, x 2 R,

y > 0 (1.10)

the solution of the problem (1.10) is given by

u (x; y) =
sin (nx)

2n2
�
eny � e�ny

�
(1.11)

and it is unique (by the uniquness of the Cauchy problem solution for elliptic equations).

J.Hadamard shows that for any �xed y > 0 and su¢ ciently large n, the value of the solu-

12



Chapter 1. Generalities and some examples

tion (1.11) can be as large as desired, while 'n (x) tends to zero as n ! 1. Therefore, small

variations in the data may lead to inde�nitely large variation in the solution, which means that

the problem (1.10) is ill-posed.

Example 1.3.10 :

Di¤erentiation and integration are two inverse problems of each other. It is more usual to

think of di¤erentiation as a direct problem, and integration as an inverse problem.

In fact, integration has good mathematical properties which lead to considering it as a direct

problem. And di¤erentiation is the prototype of the ill-posed problem, as we will see.

Consider the Hilbert space L2 (
), and the integral operator A de�ned by:

Af (x) =

Z x

0

f (t) dt.

It is clear that A is linear operator of L2 (0; 1). This operator is injective, hawever its image is

the vector subspace

Im (A) =
�
f 2 H1 (0; 1) ,u (0) = 0

	
where H1 (0; 1) is Soblov space.Indeed, the equation: Af = g , f (x) = g0 (x) et g (0) = 0:

The image of A is not closed in L2 (0; 1) (of course, it is in H1 (0; 1)). Consequently, the inverse

of A is not continuous on L2 (0; 1), as shown in the following example:

Consider a function g 2 C1 ([0; 1]), and n 2 N. Let gn (x) = g (x) + 1
n
sin (n2x) : Thus:

fn (x) = g
0
n (x) = g

0 (x) + n cos
�
n2x
�
:

kg � gnk22 =
Z 1

0

jgn (x)� g (x)j2 dx =
1

n2

Z 1

0

sin2
�
n2x
�
dx =

1

2n4
�
n2 + sinn2 + cosn2

�
,

(since
R
sin2 (x) dx = sin(x) cos(x)+x

2
+ cste), we �nd

kg � gnk2 =
1p
2n2

p
n2 + sinn2 + cosn2

13



Chapter 1. Generalities and some examples

thus

kg � gnk2 =
1p
2n2

r
1 +

sin (2n2)

2n2

kf � fnk22 =
Z 1

0

n2 cos2
�
n2x
�
dx =

n2 � sinn2 cosn2
2

so

kf � fnk2 =
r
n2

2
� sin (2n

2)

4

thus,

kf � fnk2 =
n

2

r
1� sin (2n

2)

2n2

So the di¤erence between f and fn may be large, even though the di¤erence between g and gn

is small. The derivation operator (the inverse of A) is not continuous, at least with the choice

of norms. Instability of the inverse is typical of ill-posed problems. A small perturbations on

the data (here is g) can have an arbitrarily large in�uence on the results (here f).

Example 1.3.11 (perception).[7]

Consider a mapping A from the distal stimulus X (e.g. a 3D object) to the proximal

stimulus Y (e.g. its retinal image). If the object and its image are represented by homogeneous

coordinates, the perspective mapping A is a linear transformation. Thus, one can write the

following equation:

Y = AX: (1.12)

Finding the proximal stimulus for a given distal stimulus is a direct (forward) problem and is

expressed in the rules of physics. In contrast to the problem(1.12) , an observer is faced with

an inverse problem. Namely, perception is about inferring the properties of the distal stimulus

X given the proximal stimulus Y :

X = A�1Y

This inverse problem is ill posed and/or ill-conditioned. This is related to the fact that �nding

a unique and stable A�1, which is needed to determine X, is di¢ cult.

For example, the image of a cube. This retinal image determines an in�nite number of objects

14



Chapter 1. Generalities and some examples

whose faces do not have to be planar, edges do not have to be straight-line segments, and the

object does not have to be symmetric. Clearly, the problem of visual interpretation of the retinal

image is ill posed.

15



Chapter 2

Some basic Functional Analysis

This chapter presents some basic mathematical tools, which we need to get into inverse

problems.

2.1 Vector Analysis

2.1.1 Scalar �eld or "Scalar function"

Typical applications of scalar �elds include:potential �elds, temperature, humidity, pressure.

Often these problems are governed by di¤erential equation.

Let the scalar �eld be a function from two- or three-dimensional �eld (Rn; n = 2 or 3)which

values in R; i.e: f : R3 ! R is a scalar �eld.

De�nition 2.1.1 (gradient)

We call the vector :

rf =

0BBBB@
@f
@x

@f
@y

@f
@z

1CCCCA (2.1)

the gradient of the function f (x; y; z) and we note it grad (f) or rf .

16



Chapter 2. Some basic Functional Analysis

De�nition 2.1.2 (directional derivative)

Let u a unit vector of R3. We call directional derivative of f in the direction u at point

M0 (x0; y0; z0) the number:

fu (M0) = rf (M0) :u

Remark 2.1.1 :

If the direction is given by a vector which is not unitary, it must be made unitary by dividing

it by its norm: fu (M0) = rf (M0) :
u
kuk .

2.1.2 Vector �eld or "Vector function"

The force which associates the potential energy is a vector �eld, it can be obtined as a factor

of the gradient. It includes for example:gravitational �eld, velocity, electric �els.

De�nition 2.1.3 (vector �eld)

A vector �eld on two-dimensional (or three-) space is a function V that assigns to each

point (x; y) (or(x; y; z)) a two (or three) dimensional vector.

2.1.3 Di¤erential operators

De�nition 2.1.4 (divergence)

The divergence of a vector �eld V =

0BBBB@
Vx

Vy

Vz

1CCCCAis noted by div (V )or r:V and it is given by

the expression:

div (V ) = r:V = @Vx
@x

+
@Vy
@y

+
@Vz
@z

(2.2)

Formally, we write:
h
@
@x
; @
@y
; @
@z

i
266664
Vx

Vy

Vz

377775 = (r:V ) :

17



Chapter 2. Some basic Functional Analysis

De�nition 2.1.5 (rotational)

The rotational is an di¤erential operator that transforms a vector �eld to another vector

�eld. We de�ne the rotational of a vector �ald V by the relation:

rotV = r^ V =

266664
@Vz
@y
� @Vy

@z

@Vx
@z
� @Vz

@x

@Vy
@x
� @Vx

@y

377775 (2.3)

Formally, we write:

266664
@
@x

@
@y

@
@z

377775 ^
266664
Vx

Vy

Vz

377775 = r^ V:

2.1.4 Gradient �eld "Laplacian"

For a real-valued function f (x; y; z), the laplacian of f ,denoted by �f , is given by:

�f = r:rf = @2f

@x2
+
@2f

@y2
+
@2f

@z2
(2.4)

We say that a vector �eld V is a gradient �eld if there exists a function f such that at any

point: V = grad (f)and we write �f = div (grad (f)).

2.2 LpSpaces and and Hölder Spaces

2.2.1 Elementary De�nitions of Lp Spaces

Let 
 a set from Rn. We denote by L1 (
) (or simply L1), the space of integrable functions

from 
 into R in the sense of Lebesgue.

18



Chapter 2. Some basic Functional Analysis

For f 2 L1 (
), we shall use the notation :

kfkL1(
) = kfk1 =
Z



jf (x)j dx:

De�nition 2.2.1 (Lpspace)

Let p 2 R with 1 � p <1 ; we set

Lp (
) =
�
f : 
! R; f measurable and jf jp 2 L1 (
)

	
with

kfkLp(
) = kfkp =
�Z




jf jp
� 1
p

:

kfkpis a norm.

De�nition 2.2.2 (L1space)

We set

L1 (
) =

8><>:f : 
! R

�������
f is measurable and there is a constant C

such that jf (x)j � C a:e on 


9>=>;
with

kfkL1(
) = kfk1 = inf fC; jf j � C a:e on 
g :

kfk1is a norm:

Remark 2.2.1 :

For all 1 � p � 1 ,Lp (
) is a Banach space for the norm k:kp(it is well known).

If f 2 L1 (
) then we have jf (x)j � kfk1 a.e on 
, this implies that kfk1 is a norm.

19



Chapter 2. Some basic Functional Analysis

Notation 2.2.1 :

Let 1 � p � 1, we denote by p0 the conjugate exponent of p,

1

p
+
1

p0
= 1:

Theorem 2.2.1 (Hölder�s inequality)[8]

Assume that f 2 Lp (
) and g 2 Lp0 (
) with 1 � p � 1: Then fg 2 L1 (
) and

kfgkL1(
) � kfkp kgkp0 : (2.5)

2.2.2 Lp (a; b;X) Spaces

Let X a Banach space and �1 < a < b < +1 .

De�nition 2.2.3 (simple function)

A function f : [a; b]! X is said a simple function if there exist measurable sets E1; :::; Em

from [a; b] and x1; :::; xm 2 [a; b] such that:

f (t) =
mX
i=1

�EI (t)xi

with �EI =

8><>: 1 if t 2 Ei

0 else
;8i 2 f1; 2; :::;mgand Ei disjoint two by two.

De�nition 2.2.4 (measurable function)

We say that a function f : [a; b] ! X is measurable if there exists a sequence of simple

functions (fk)k2N,fk : [a; b]! X, such that fk ! f a:e on [a; b] :
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Chapter 2. Some basic Functional Analysis

De�nition 2.2.5 (Bochner integrable function)

A measurable function f : [a; b] ! X is a Bochner integrable if there exists a sequence

of integrable simple functions (fk) such that:

lim
k

Z b

a

kf � fkkX dt = 0:

In this case, the Bochner integral is de�ned by:

Z
f (t) dt = lim

k

Z b

a

fk (t) dt:

Theorem 2.2.2 [4]

A measurable function f : [a; b]! X is integrable if and only if kfkX 2 L1 (a; b) :

For 1 � p � 1 ,let Lp (a; b;X) = ff : [a; b]! X integrable such that kfkX 2 Lp (a; b)g ;

provided with the norm

kfkLp(a;b;X) =

8><>:
�R
kfkpX

� 1
p , if p <1

inf fC; kf (t)kX � Ca:e on [a; b]g , if p =1

Lp (a; b;X) is a Banach space.

2.2.3 Hölder Spaces

Let 
 � Rn open, bounded , we say that f 2 C0
�
�

�
is 
-Hölderian if for 
 2 ]0; 1[:

[f ]
 = sup
x;y2�

x 6=y

jf (x)� f (y)j
jx� yj
 :
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Chapter 2. Some basic Functional Analysis

De�nition 2.2.6 (Hölder space)

The function space

Ck;

�
�

�
=
n
f 2 C0

�
�

�
j kfkCk;
(�
) <1

o

is called the Hölder space with exponent 
 such that for f 2 Ck
�
�

�
the Hölder norm

kfkCk;
(�
) =
X
j�j�k

k@�fkC0(�
) +
X
j�j=k

[@�f ]
 ; � 2 Nn

Theorem 2.2.3 :

The Hölder space with the Hölder norm is a Banach space, (i.e.Ck;

�
�

�
is a vector space,k:kCk;
(�
)

is a norm and any Cauchy sequence in the Hölder space converges).

Proposition 2.2.1 :

If T > 0 a given real number and Q = 
� (0; T ), we denote C
; 
2
�
�Q
�
the space of functions

f 2 C0
�
�Q
�
such that:

[f ]
; 

2
= sup

8<: f (x; t)� f (y; s)�
jx� yj2 + jt� sj

� 

2

; (x; t) ; (y; s) 2 Q; (x; t) 6= (y; s)

9=; <1;

and for k � 0 an integer we denote:

C2k+
;k+


2

�
�Q
�
=
n
f 2 C2k;k

�
�Q
�
; @�@�t f 2 C
;



2

�
�Q
�
; (�; �) 2 Nn � N; j�j+ 2� = 2k

o

C2k+
;k+


2

�
�Q
�
is a Banach space if we provide it with the norm

kfk
C
;



2 ( �Q)

=
X

j�j+2��2k




@�@�t f



C0( �Q)

+
X

j�j+2�=2k

h
@�@�t f

i

; 

2

; (�; �) 2 Nn � N:
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Chapter 2. Some basic Functional Analysis

2.2.4 Regular Open

(H.1)Let 
 an open boundary from Rn and its border �:

(H.2)The boundary � is an in�nitely di¤erentiable variety of dimension n� 1 , 
 being locally

on one side of � (i.e. we say that �
 is a variety with boundary of class C1).

Under the hypotheses (H:1) and (H:2) there exist a �nite family of couples(Oi; 'i)i=1;Nsuch

that:

a. (Oi)
i=1;N

is a family of bounded open sets covering �( � �
NS
i=1

Oi ).

b. ('i)i=1;N is a family of C
1-di¤eomorphisms of (Oi) into the open set Q of Rn de�ned by

Q =
�
y = (y0; yn) 2 Rn�1 � R; jy0j < 1 and � 1 < yn < 1

	
:

with

'i (Oi \ 
) = Q+
def
= fy = (y0; yn) 2 Q; yn > 0g

and so

'i (Oi \ �) = Q0
def
= fy = (y0; yn) 2 Q; yn = 0g

and with the following compatibility conditions: if Oi \ Oj 6= ?; there exists a di¤eo-

morphism J ij : 'i (Oi \ Oj) ! 'j (Oi \ Oj) ; of class C1 with positive Jacobian such

that:

'j (x) = J ij ('i (x)) ; 8x 2 Oi \ Oj:

We say that 
 is open lipschitzian if we replace 'j a C1-di¤eomorphism from Oj onto Q with

'j a bijection from Oj onto Q such that 'j and '�1j are lipschitzians for all j:

By modifying the regularity of functions 'j ,we can easily guess how to de�ne other regularity

types of the open 
 : Ck; Ck;
; k integer and 1 < 
 < 0;etc.
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2.3 Distributions

Let 
 an open subspace from Rn and ' : 
! C:

De�nition 2.3.1 (space of functions with compact support)

We de�ne the space of continuous functions on 
 with compact support by:

Cc (
) = f' 2 C (
) ; ' (x) = 0 8x 2 
 nK; K � 
 is a compactg ;

we denote the support of function ' on 
 by supp(') = fx 2 
; ' (x) 6= 0g:

Notation 2.3.1 :

For a compact K � 
 ,we pose: DK (
) = f' 2 C1 (
) ; supp (') � 
g :

DK (
) is Fréchet space when it is provided with the topology which is de�ned by a family of

seminorms: pK;m (') = sup
j�j�m;x2K

j@�' (x)j :

Let D (
) =
S
DK (
) ,the union of all compacts K on 
. We note that D (
) is space of C1

functions with compact support.

Theorem 2.3.1 :

D (
) is dense in Lp (
).That is to say: there exists a sequence ffkg � D (
) such that

fk ! f in Lp (
), or:

8f 2 Lp (
) ; 8" > 0; 9g 2 D (
) such that kf � gkp < ":

We consider D0 (
) the topological dual of D (
),that is to say the space of linear continuous

forms on D (
) :

Here is a simple criteria which veri�es if a linear form on D (
) is continuous:
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Proposition 2.3.1 [9]

A linear form u on D (
) is in D0 (
) if and only if, for any compact K � 
, there exists

a positive constant C and a positive integer k such that:ju (')j � C sup
j�j�k;x2K

j@�' (x)j ; ' 2

DK (
) ;where � = (�1; :::; �n) 2 Nn is a multi-index, its length (or module): j�j = �1+ :::+�2:

If u 2 D0 (
), we denote: @�u (') = (�1)j�j u (@�') ; ' 2 D (
) :

It is clear that @�u 2 D0 (
) according to the previous proposition.

Usually, we denote C1by E (
) ; we shall recall that E (
) is Fréchet space if we provide it with

a topology which is de�ned by a family of seminorms: k'km;K = sup
j�j�m;x2K

j@�' (x)j where m

takes N and K takes a countable family of increasing compacts whose thier union aquals 
:

We can prove that E 0 (
) the topological dual of E (
) ; is subspace from distributions of E 0 (Rn)

which are with compact support on 
:;for more details on distributions theory see[9] .

2.3.1 Convolution Product

Let Ckc (Rn) the space of functions of Ck (Rn) with compact support, for k � 0 an integer

and g 2 L1loc (Rn) .

De�nition 2.3.2 (convolution product)

Let f 2 C0c (Rn) , the convolution product of f and g is de�ned by:

(f � g) (x) =
Z
Rn

f (x� y) g (y) dy: (2.6)

Theorem 2.3.2 [9]

If f 2 Ckc (Rn) and g 2 L1loc (Rn) then we have f �g 2 Ck (Rn) and:@� (f � g) = @�f �g ; � 2

Nn; j�j � k:

And if g 2 C l (Rn) then f � g 2 Ck+l (Rn) and:

@�+� (f � g) = @�f � @�g; �; � 2 Nn; j�j � k and j�j � l:
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Theorem 2.3.3 [9]

Let u 2 D0 (Rn) and v 2 E 0 (Rn) . Then there exists a unique element from D0 (Rn) ,noted

by u � v such that:

(u � v) � ' = u � (v � ') ; ' 2 D (Rn) :

2.3.2 Fourier Transformation

De�nition 2.3.3 (Fourier transformation)

Let f 2 L1 (Rn), the Fourier transformation of f is given by:

Ff (�) =
Z
Rn

e�ix�f (x) dx; � 2 Rn: (2.7)

De�nition 2.3.4 (Schwartz space)

A function f is part of the space S (Rn) when it is inde�nitely di¤erentiable, and if f

and all its derivatives are rapidly decreasing, that is to say that

S (Rn) =
�
f 2 C1 (Rn) j lim

jxj!+1
x�@�f (x) = 0; �; � 2 Nn

�
:

Up next, we will use the derivation operator: Dj = �i@j .

Thus, we intuitively visualize why S (Rn) is invariant by Fourier transformation. Indeed, we

have the following theorem:

Theorem 2.3.4 [9]

The operator f ! Ff is an isomorphism from S (Rn) onto S (Rn) which veri�es:

F (Djf) = �jFf and F (xjf) = �DjFf

and we have inversion formula: F�1f = (2�)n ~f ,where ~f (�) = f (��) .
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Proposition 2.3.2 [9]

Let f; g 2 S (Rn) . Then :

Z
Rn

Ffg=
Z
Rn

fFg;

Z
Rn

fg = (2�)�n
Z
Rn

FfFg;

F (f � g) = FfFg;

F (fg) = (2�)�nFf � Fg:

We recall that S 0 (Rn) is the set of continuous linear formes on S (Rn) :

If u 2 S 0 (Rn), we de�ne Fu the unique element from S 0 (Rn) such that:Fu (f) = u (Ff) ;

f 2 S (Rn) :

We de�ne ~u 2 S 0 (Rn) the unique element from S 0 (Rn) such that: ~u (f) = u
�
~f
�
; f 2 S (Rn) :

Theorem 2.3.5 [9]

f 2 S (Rn) ! Ff 2 S (Rn) extends into an isomorphism over L2 (Rn) . Plus, we have the

Parceval formula:
R
Rn
fg = (2�)�n

R
Rn
FfFg; f; g 2 L2 (Rn) :

2.4 Sobolev Spaces

2.4.1 Hs (Rn)Spaces

De�nition 2.4.1 (Sobolev space)

Let s 2 R: By Hs (Rn) we denote the space of all functions u 2 S 0 (Rn) with the property:

�
1 + j�j2

� s
2 Fu 2 L2 (Rn) ;

for the Fourier transformation Fu of u,with j�j2 = �21+�22+ :::+�2n: Hs (Rn) is called a Sobolev

space. Frequently we will abbreviate Hs = Hs (Rn) :
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Theorem 2.4.1 [10]

The Sobolev space Hs is a Hilbert space with the scalar product de�ned by

hu; vis =
Z
Rn

�
1 + j�j2

�sFu (�)Fv (�)d�;
for u; v 2 Hs with Fourier tranformations Fu and Fv,respectively. Note that the norm on Hs

is given by:

kuks =

0@Z
Rn

�
1 + j�j2

�s jFu (�)j2 d�
1A 1

2

:

Proof. It is clear that the space Hs is linear space and that h�; �is is a scalar product. That

h�; �is is well de�ned can be concluded from the Cauchy-Schwartz inequality

������
Z
Rn

�
1 + j�j2

�sFu (�)Fv (�)d�
������
2

�
Z
Rn

�
1 + j�j2

�s jFu (�)j2 d� Z
Rn

�
1 + j�j2

�s jFv (�)j2 d�:
To prove that Hs is complete, let (uj)j be a Cauchy sequence from Hs, i.e., given " > 0, there

exists � (") 2 N such that kum � ukks � " for all m; k � � (").

kum � ukks � ",
Z
Rn

�
1 + j�j2

�s jFum (�)�Fuk (�)j2 d� � "2
) (

�
1 + j�j2

� s
2 Fuj (�) )j is a Cauchy sequence in L2

and because L2 is complete then there exists Fu0 2 L2 such that

�
1 + j�j2

� s
2 Fuj (�)! Fu0inL2;

that is to say that: 8" > 0;9� (") 2 N;8m � � (") ;
R
Rn

�
1 + j�j2

�s jFum (�)�Fu0 (�)j2 d� �
"2.
�
1 + j�j2

��sFu0 (�) 2 S 0, let v 2 S 0 such that Fv (�) = �
1 + j�j2

��sFu0 (�), then: 8" >
0;9� (") 2 N;8j � � (") ;

R
Rn

�
1 + j�j2

�s jFuj (�)�Fv (�)j2 d� � "2 (uj converges to v in Hs).

Hence, Hs is complete.
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Theorem 2.4.2 [4]

If s � t ,Hs (Rn) injects continuously into H t (Rn) :

For all s;D (Rn) is dense in Hs (Rn) :

H0 (Rn) = L2 (Rn) which is identi�ed by his dual, for all s > 0; we have (Hs (Rn))0 algebrically

and topologically coinsides with H�s (Rn) :

2.4.2 Wm;p Spaces

In this section we will give some basic results on the generalized Lebesgue-Sobolev space

Wm;p (
), where 
 is a bounded open of Rnwith boundary �:

Wm;p (
) is de�ned as Wm;p (
) = ff 2 Lp (
) ; @�f 2 Lp (
) ; � 2 Nn; j�j � mg :

Remark 2.4.1

If m = 0; W 0;p (
) = Lp (
) :

If p = 2; Wm;2 (
) = Hm (
)which is an Hilbert space.

Wm;p (
) can be equipped with the norm kfkWm;p(
)as Banach space, where

kfkWm;p(
) =
X
j�j�m

k@�fkLp(
) :

Theorem 2.4.3 [4]

Let 
 � Rn a boundary open, if W 1;p
0 (
) is the closure of D (
) in W 1;p (
) then:

i/ W 1;p
0 (
) can be embedded into L

np
n�p (
)continuously for p < n; and into C0

�
�

�
for p > n:

ii/ There exists a constant c = c (n; p) such that 8u 2 W 1;p
0 (
) :

kuk
L

np
n�p (
)

� c krukLp(
)n ,if p < n;

sup


juj � c j
j

1
n
� 1
p krukLp(
)n ,if p > n:
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Theorem 2.4.4 [4]

Let 
 � Rn a boundary of class C0;1:

i/ Assume that mp < n , q < np
n�mp then there is a continuous and compact imbedding

Wm;p (
)! Lq (
), and if p� = np
n�mp then we have the continuous embeddingW

m;p (
)!

Lp
�
(
) :

ii/ Assume k is an integer, if 0 � k < m � n
p
< q + 1 then Wm;p (
) can be embedded con-

tinuously into Ck;�
�
�

�
; with � = m� n

p
� k; and the embedding Wm;p (
)! Ck;�

�
�

�
is

compact for all � < �:

Theorem 2.4.5 (trace embedding and extention theorem)

Assuming that 
 � Rn is a bounded domain of class Ck; k � 1. Let the application


ju : D
�
�

�
! (D (�))k

u!
�
u; @vu; :::; @

k�1
v u

�
(where @jvu ,j = 0; :::; k � 1 are �normal� derivatives of u). Then the map 
ju can be extended

(uniquely) to linear continuous map noted by


j : Hk (
)!
k�1Y
j=0

Hk�j� 1
2 (�)

u!
�
u; @vu; :::; @

k�1
v u

�
and there exists a linear continuous operator

P :
k�1Y
j=0

Hk�j� 1
2 (�)! Hk (
)

such that, if ' = ('0; :::; 'k�1) ; 'j 2
k�1Q
j=0

Hk�j� 1
2 (�) ; and u = P', then 
ju = 'j; j = 0; :::; k�1:
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Theorem 2.4.6 [4]

Let 
 be an open set. If u 2 H1 (
) then

u+ = sup (u; 0) ; u� = sup (�u; 0) ; juj = u+ + u� 2 H1 (
) ;

and ru+ = �[u>0]ru ;ru� = �[u<0]ru :

2.4.3 Hk (a; b;X) Spaces

Let X Banach space and �1 � a < b � +1. We call vector distribution on (a; b), any

continuous linear map on D (a; b) in X ,that is to say: D0 (a; b;X) = L (D (a; b) ; X) :

Assume k � 0 an integer, u 2 D0 (a; b;X). The map '! (�1)k u
�
'(k)

�
such that ' 2 D (a; b)

de�nes a distribution which we note as u(k):

For k � 1 an integer, the space Hk (a; b;X) is de�ned as:

Hk (a; b;X) =
�
u 2 L2 (a; b;X) ; uj 2 L2 (a; b;X) ; j = 1; :::; k

	
:

Hk (a; b;X) is a Hilbert space with the norm kukHk(a;b;X) =
�Pk

j=0



u(j)

2
L2(a;b;X)

� 1
2
:

2.4.4 Some formulas of integration by parts:

Let 
 bounded open set of class C1 and � its boundary. The �rst classic formula of intrgra-

tion by parts is:
R



@iuv = �
R



u@iv +
R
�

uv�i , u; v 2 H1 (
) : From this formula, we can easily

deduce the following:

Z



�uv = �
Z



ru:rv +
Z
�

@�uv , u 2 H2 (
) and v 2 H1 (
) ; (2.8)

Z



(�uv � u�v) =
Z
�

(@�uv � u@�v ) , u; v 2 H2 (
) : (2.9)
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And if Q = 
� (0; T ) ; � = �� (0; T ) then

Z
Q

(�� @t)uv �
Z
Q

u (� + @t) v =

Z
�

(@�uv � u@�v )�
Z



[u (:; T ) v (:; T )� u (:; 0) v (:; T )] ;

(2.10)

for u; v 2 L2
�
0; T ;H2 (
)

�
\H1

�
0; T ;L2 (
)

�
:

2.4.5 H� Spaces

Let 
 bounded open set and � its boundary. We de�ne the H� space as:

H� (
) =
�
u 2 H1 (
) ; �u 2 L2 (
)

	
;

provided with the norm kukH�(
) =
�
kukH1(
) + k�ukL2(
)

� 1
2
:

H� (
) is an Hilbert space. The intrest of this space lies in the following theorem:

Theorem 2.4.7 [4]

Assuming that 
 is of class C1 .

i/ The map

@� : C
1
�
�

�
! C (�) : u! @�uj�

extends into continuous map, de�ned on H� (
) into H� 1
2 (�) ; noted @� as well.

ii/ For all u 2 H� (
) and v 2 H1 (
), we have the formula:

Z



�uv = �
Z



ru:rv + h@�u; viH� 1
2 (�);H

1
2 (�)
:

2.4.6 Poincaré Inequalities

We consider a �xed, open and bounded subset 
 of Rn. Let us recall some notations which

are needed below.
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Let � be a vector in Rn such that j�j = 1, a; b 2 R and d = b � a. The set de�ned by

�d (�) = fx 2 Rn; a < x:� < bg is called the strip of thickness d in thedirection �.

Proposition 2.4.1 (Poincaré inequality)[4]

Assume that 
 open subset of Rn such that there exits a strip �d (�) with 
 2 �d (�) : Then

kuk2L2(
) �
d2

2
kjrujk2L2(
) ; 8u 2 H1

0 (
) : (2.11)

In the case of 
 is a bounded domain, we have the following Poincaré inequality:

Proposition 2.4.2 [4]

Let 
 open bounded set of Rn and �1 (
) the �rst eigenvalue of Laplacian-Dirichlet. Then

kuk2L2(
) �
1

�1 (
)
kjrujk2L2(
) ; 8u 2 H1

0 (
) : (2.12)

2.5 Generalities on Partial Derivative Equations (PDEs)

A partial derivative equation (PDE) is an equation for some quantity u (dependent variable)

which depends on the independent variablesx1; :::; xn; n � 2, and involves derivatives of u with

respect to at least some of the independent variables.

F
�
x1; :::; xn; u; @x1u; :::; @xnu; @

2
x1
u; @2x1x2u; :::; @

n
x1:::xn

u
�
= 0: (E)

Note:

1. In applications xi are often space variables (e.g. x; y; z) and a solution may be required in

some region 
 � Rd of space. In this case there will be some conditions to be satis�ed on

the boundary @
 such that @
 = �
=
; these are called boundary conditions (BCs).
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2. Also in applications, one of the independent variables can be time(t say), then there will

be some initial conditions (ICs) to be satis�ed (i.e.,u is given at t = 0 everywhere in
).

3. The order n 2 N of the PDE is the order of the highest (partial) direvative coe¢ cient in

the equation.

4. A linear equation is one in which F is a linear function of u and its derivatives, and it is

called quasilinear of order n if f is linear on all partial derivatives of highest order.

5. If u satis�es the equation (E) then it is a solution of the PDE in 
 � Rd.

Here are some propreties that we will need:

- Principle of superposition: A linear equation has the useful property that if u1 and u2

both satisfy the equation(E) then so does �u1 + �u2 for any �; � 2 R. This is often used

in constructing solutions to linear equations (for example, so as to satisfy boundary or

initial conditions; c.f. Fourier series methods). This is not true for nonlinear equations.

- If uh is solution of the linear homogeneous equation and up is solution of linear non-homogeneous

equation, then uh + up is the solution of the complet equation.

- The general solution of a PDE is the one which makes it possible to �nd all the solutions of

the equation by giving particular values to the arbitrary functions.

- To �nd particular solutions of PDE, starting from the general solution, we will impose re-

strictive conditions on the set of solutions.

Moving on now to see the most frequent constraints:

1/ Initial conditions (ICs):If u is a function of (x; t) 2 Rd � R giving: u (x; t0) = �0 (x)

where @pu(x;t0)
@xp

= �p (x).

2/ Boundary conditions (BCs):There are three types of boundary conditions for well-posed

boundary value problems (BVPs), if u is a function of x 2 
 � Rd :
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� Dirichlet condition: u takes prescribed values on the boundary @
, (u=@
 = g);

� Neumann conditions: the normal derivative is prescribed on the boundary @
,(du
dn
=@
 = g);

� Robin conditions: a combination of u and its normal derivative such as c (x)u + �c (x) du
dn

is prescribed on the boundary @
,(c (x)u+ �c (x) du
dn
= g on @
).

If g = 0 we have boundary homogeneous conditions.

3/ Conditions at in�nity: 
 is unbounded, we must impose conditions with the forme

u (x) s � (x) when jxj ! 1, such that kuk2 <1:

4/ Conditions on interfaces: if 
 = 
1[
2 with �
1\ �
2 = @
1\@
2, if we have determined

u on 
1 and 
2 then detrmining u on 
 needs conditions for u, (resp du
dn
on @
1 \ @
2).

Second order PDEs:

The general forme of a linear, scalar of second order PDE is:

au+ c:ru+ div (Aru) = f; (2.13)

where a : 
! R; c : 
! Rd; A : 
! Rd�d and f : 
! R are the coe¢ cients of the PDE.

In case d = 1 , u is a scalar and the coe¢ cients are constants, PDE becomes:

�
@2u

@x2
+ �

@2u

@x@y
+ 


@2u

@y2
+ �

@u

@x
+ �
@u

@y
+ �u = f; (2.14)

where �; �; 
; �; � and � are scalars.

We shall summarize the type of equation (2.14) in the following table:

Classi�cation Type of (2.14) Example

�2 � 4�
 < 0 Elliptic Laplace equation on 
: ��u = f

�2 � 4�
 = 0 Parabolic Heat conduction(di¤usion equation)on Q = R+ � 
: @tu��u = f

�2 � 4�
 > 0 Hyperbolic Wave equation on Q = R+ � 
: @ttu��u = f
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Chapter 3

On the Regularization of Ill-Posed

PDEs Problems

For a long time it was assumed that mathematical problems which do not satisfy the

correctness conditions due to Hadamard generally make no physical sense. This point

of view changed and it can be stated (Tikhonov with Arsenin in1976): all problems which are

related to real phenomena have stable solutions if proper regularization methods are applied.

In this chapter we will concentrate on this technique, however, there are other regularization

methods:

1. Discrete methods: Least squares method; Singular Value Decomposition method (SVD).

2. Iterative methods: Landweber method ,see[11] ; Conjugate gradient (CG) type methods,

see [11] ;Truncated Singular Value Decomposition (TSVD).

Iterative methods are used for large values problems. These methods construct a sequence of

iterates approximating-for exact data-the solution; regularization is introduced by stopping the

iteration based on a suitable discrepancy principle.
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3.1 Least Squares Method (LS)

Consider the following system of linear equations:

Ax = b (3.1)

where the matrix A 2Mm�n (R) and the vector b 2 Rm, our aim is to �nd solution x 2 Rn for

the system (3.1) .

As we mentioned in example (1.3) in the �rst chapter, for m > n there may be no solutions,

even if there is a solution it will not be unique. But in practical cases we privilegier a solution

and we choose x in order to approuch Ax to b:

The LS method leads to minimizing the residualkAx� bk2 where k�k2 is the Euclidean norm

of Rn, which is the sum of the squares (hence the name least squares).

Let A 2Mm�n (R) and b 2 Rm given. The LS problem is given by:

min
x2Rn

kAx� bk22 (3.2)

We note by ~x the solution of problem (3.2) .

Assume that:

E (x) = kAx� bk22

E (x) = (Ax� b)t (Ax� b) = xtAtAx� btAx� xtAtb+ kbk22 ;

di¤erentiating E (x) yields the necessary condition AtAx = Atb; necessary the solution of LS

problem ~x veri�es this condition, that is to say:

AtA~x = Atb (3.3)

(3.3) is called normal equations.
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Proof. We can reformulate the LS problem (3.2) by:

min
x2Rn

J (x) = xtGx� 2htx;

where G = AtA is symetric and h = Atb given vector.

Recalling that the quadratic function is a function de�ned by

J : Rn ! R

J (x) = xtGx� 2htx; (3.4)

where G 2Mn�n (R) symetric and h 2 Rna given vector.

Now,we know that if J : R ! R is continuously derivable, has a minimum ~x 2 R then

J 0 (~x) = 0: Same thing for J : Rn ! R continuously derivable, then:

J (~x) � J (x) ; 8x 2 Rn =) rJ (~x) = 0; where r is gradient operator.

Calculating the gradient of function J represented in (3.4) :rJ (x) =
�
@J
@x1
; @J
@x2
; :::; @J

@xn

�t
:

Developping J :

J (x) =
Xn

i=1
xi (Gx)i � 2

Xn

i=1
hixi;

=) @J

@xk
= (Gx)k +

Xn

i=1
xi
@

@xk
(Gx)i � 2hk;

and
@J

@xk
(Gx)i =

@

@xk

�Xn

j=1
gijxj

�
= gik = gki:

Then @J
@xk

= (Gx)k +
Pn

i=1 xigki � 2hk = (Gx)k + (Gx)k � 2hk = 2 (Gx)k � 2hk;

It results: rJ (x) = 2 (Gx� h) ; and if ~x is a solution of LS problem then G~x = h, it follows:

AtA~x = Atb:

Back to our problem(3.2) , If the columns of A are linearly independent, then AtA is positive

de�nite, i.e.E is strictly convex and the LS problem has unique solution ~x given by: AtA~x = Atb.
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Indeed, if A has full rank n then G = AtA is positive de�nite,i.e.xtGx = kAxk22 � 0;8x 2 Rn;

in other side, if G is positive de�nite then it is inversible, it follows that thers exists an unique

solution ~x which veri�es: AtA~x = Atb:

Geometrically, ~x is a solution of (3.2) if and only if the residual b � Ax at ~x is orthogonal to

the range of A (r = b� A~x ? R (A)), this is illustrated in Figure3.1 .

Figure 3.1: Projection of r onto R (A)

If the columns of A are linearly independent, the solution ~x can be obtained solving the

normal equation(3.3) by the Cholesky factorization of AtA > 0. However, AtA may be badly

conditioned, and then the solution obtained this way can be useless. In �nite arithmetic the

QR-decomposition of A is a more stable approach, for more details see[12] . A powerful tool

for the analysis of the least squares problem is the singular value decomposition (SVD) of A,

see[13] .

Theorem 3.1.1 (Perturbation Theorem )

Let A 2 Mm�n (R), m � n have full rank n, let x be the unique solution of the LSP(3.2) ,

and let ~x be the solution of a perturbed LS problem:

min
x2Rn

k(A+ �A)x� (b+ �b)k2 (3.5)

where the perturbation is not too large in the sense � : = max
�
k�Ak
kAk ;

k�bk
kbk

�
< 1

k2(A)
, where
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k2 (A) : = �1=�2 denotes the condition number of A. Then it holds that

kx� ~xk
kxk � �

�
2k2 (A)

cos (�)
+ tan (�) � k22 (A)

�
+O

�
�2
�

(3.6)

where � is the angle between b and its projection ontoR (A).

For a proof see the book of J. Demmel, Applied Linear Algebra.

Proposition 3.1.1 (3)

Let x 2 Rn a solution of a LS problem. 8y 2 Rn we have: kAx� bk22 � kAy � bk
2
2 :

Example 3.1.1 (Linear Regression)

Let the line (D) : y (t) = �+ �t; the problem is �nding a line (or curve) that best �ts a set

of data-in the standard formulation-a set of observations (ti; yi)i=1;:::;m :

We write forme matricielle:

0BBBBBBB@

1 t1

1 t2
...

...

1 tm

1CCCCCCCA
0B@�
�

1CA =

0BBBBBBB@

y1

y2
...

ym

1CCCCCCCA
;the normal equation is:

0B@1 1 � � � 1

t1 t2 � � � tm

1CA
0BBBBBBB@

1 t1

1 t2
...

...

1 tm

1CCCCCCCA
0B@�
�

1CA =

0B@1 1 � � � 1

t1 t2 � � � tm

1CA
0BBBBBBB@

y1

y2
...

ym

1CCCCCCCA
,

0B@ m
Pm

i=1 tiPm
i=1 ti

Pm
i=1 t

2
i

1CA
0B@�
�

1CA =

0B@ Pm
i=1 yiPm
i=1 yiti

1CA

Solving these equations gives the LS estimates of � and � as: � = �y � ��t , � =
Pm
i=1 yiti�m�y�tPm
i=1 t

2
i�m�t2

;

where �y =
Pm
i=1 yi
m

and �t =
Pm
i=1 ti
m

.
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3.2 Tikhonov Method

Tikhonov regularization is the most used method for solving inverse problems that are

ill-posed.

We assume throughout this section that K is a compact operator, let the inverse problem

Kx = y; K : X ! Y where X and Y are Hilbert spaces. We make the assumption that there

exists a solution x 2 X of the unperturbed equation Kx = y .

In other words, we assume that y 2 R (K). The injectivity of K implies that this solution is

unique.

In practice, the right-hand side y 2 Y is never known exactly but only up to an error of,say,

� > 0: Therefore, we assume that we know � > 0 and y� 2 Y with


y � y�



Y
� �:

It is our aim to solve the perturbed equation

Kx� = y�: (3.7)

in general, (3.7) is not solvable because we cannot assume that the measured data y� are in

R (K). Therefore, the best we can hope is to detrmine an approximation x� 2 X to the exact

solution x and x� should depend continuously on the data y�:

In other words, it is our aim to construct a suitable bounded approximation R : Y ! X of the

(unbounded) inverse operator K�1 : R (K)! X:

De�nition 3.2.1 (regularization strategy)

A regularization strategy is a family of linear and bounded operators

R� : Y ! X ;� > 0

such that

lim
�!0

R�Kx = x for all x 2 X;

that is, that operator R�K converge pointwise to the identity.
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From this de�nition and the compactness of K, we conclude the following:

Theorem 3.2.1 [11]

Let R� be a regularization strategy for a compact operator K : X ! Y where dimX =1:

Then we have:

(1) The operators R� are not uniformly bounded; that is, there exists a sequence (�j) � R+

with lim
j!1



R�j

L(Y;X) =1.
(2) The sequence (R�Kx) does not converge uniformly on bounded subsets of X; that is, there

is on convergence R�K to the identity I in the operator norm.

Now, we de�ne x�;� : = R�y� as an approximation of the solution x of Kx = y: The error

splits into two parts, by the triangle inequality:



x�;� � x


X
�


R�y� �R�y

+ kR�y � xk � kR�k

y� � y

+ kR�Kx� xk

and thus


x�;� � x



X
� � kR�kL(Y;X) + kR�Kx� xkX : The �rst term on the right-hand side

describes the error in the data multiplied by the�condition number�kR�k of the regularized

problem, which tends to 1 as � tends to 0, by Theorem3.2.1 The second term denotes the

approximation error k(R� �K�1)yk at the exact right-hand side y = Kx, which is by the

de�nition of regularization strategy tends to 0 with �: Figure3.2 illusrates the situation:

Figure 3.2: Behavior of the total error.
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We need a regularization strategy in order to keep the total error as small as possible, this

means that we would like to minimize � kR�kL(Y;X) + kR�Kx� xkX : A regularization strategy

� 7�! � (�) is called admissible if � (�)! 0 and for every x 2 X :

sup
y�2Y

�

R�(�)y� � x

X : y� 2 Y;

Kx� y�

Y � �	! 0; � ! 0 (3.8)

In Tikhonov regularization, the approximate solution x� 2 X is de�ned as minimizer of

the quadratic functional:

kKx� yk2Y + � kxk
2
X ; (3.9)

the basic idea of Tikhonov regularization is minimizing the functional in(3.9) , means to

search for some x�, providing at the same time a small residual kKx� yk2Y and a moderate

value of the penalty function x 7! kxk2X . The existance and uniquness of the minimum is

assured by the convexity of x 7! kxk2X :

If the regularization parameter � is chosen too small, (3.9) is too close to the original

problem and instabilities have to be expected. If � is chosen too large, the problem we solve

has only little connection with the original problem. Finding the optimal parameter is a tough

problem.

Theorem 3.2.2 [10]

Let K : X ! Y be a bounded linear operator and let � > 0. Then for each y 2 Y there

exists a unique x� 2 X such that

kKx� � yk2 + � kx�k2 = inf
x2X

�
kKx� yk2 + � kxk2

	
; (3.10)

the minimizer x� is given by the unique solution of the equation

�x� +K
�Kx� = K

�y; (3.11)

and depends continuously on y .
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Proof. From the equation

kKx� yk2 + � kxk2 = kKx� � yk2 + � kx�k2 + 2Re (x� x�; �x� +K� (Kx� � y))

+ kK (x� x�)k2 + � kx� x�k2 ;

which is valid for all x 2 X, we observe that the condition(3.11) is necessary and su¢ cient for

x� to minimize the Tikhonov functional de�ned by(3.10) .

Consider the operator K� : X ! X; given by K� : = �I +K
�K: Since

� kxk2 � � kxk2 + kKxk2 = Re (K�x; x) ; x 2 X;

the operator K� is strictly coercive and has a bounded inverse K�1
� : X ! X ,we can prove

that K�has a bounded inverse by the next theorem.

The equation (3.11) , of course, coincides with the Tikhonov regularization introduced in

the following theorem:

Theorem 3.2.3 [10]

Let K : X ! Y be a compact linear operator. Then for each � > 0 the operator K� : X !

X; given by K� : = �I +K
�K has a bounded inverse. Furthermore,if K is injective then

R� : = (�I +K
�K)�1K�

describes a regularization scheme with kR�kL(Y;X) � 1
2
p
�
:

3.3 Regularization Method of Fourier

3.3.1 Homogenous Retrograde Heat Problem

We presente this method passing by an ill-posed problem which is homogenous retrograde

heat problem, we mentioned it before in example (1.3.8) .

44



Chapitre 3. On the Regularization of Ill-Posed PDEs Problems

In general, the solution of this problem exists but with restrictive conditions on the �nal

situation. We �nd the exacte solution and we search for an approuch one using the regularization

of Fourier. Let the following problem:

8><>: ut = uxx

u (x; T ) = 'T (x)
�1 < x < +1; 0 � t < T: (3.12)

We search the solution u of this problem by the Fourier transformation, we can rewrite the

problem (3.12) as:

8><>:
@u
@t
(x; t)� @2u

@x2
(x; t) = 0

u (x; T ) = 'T (x)
;

)

8><>:
F
�
@u
@t
(x; t)� @2u

@x2
(x; t)

�
(�)
= F (0)(�) = 0

F (u (x; T ))(�) = F ('T (x))(�)
;

)

8><>:
F
�
@u
@t
(x; t)

�
(�)
�F

�
@2u
@x2
(x; t)

�
(�)
= 0

F (u (x; T ))(�) = F ('T (x))(�)
: (3.13)

We know that: F (u (x; t))(�) = 1p
2�

R
R e

�i�xu (x; t) dx

) F
�
@u
@t
(x; t)

�
(�)
= 1p

2�

R
R e

�i�x @u
@t
(x; t) dx = 1p

2�

R
R
@
@t

�
e�i�xu (x; t)

�
dx, thus

F
�
@u

@t
(x; t)

�
(�)

=
@

@t
F (u (x; t))(�) : (3.14)

We choose supp(u) � R) 9R > 0 such that supp(u) � [�R;R] ; so:

F
�
@2u
@x2
(x; t)

�
(�)
= 1p

2�

R R
�R e

�i�x @2u
@x2
(x; t) dx, using integration by parts on 1p

2�

R R
�R e

�i�x @u
@x
(x; t) dx

we �nd:

1p
2�

Z R

�R
e�i�x

@u

@x
(x; t) dx =

1p
2�

��
e�i�xu (x; t)

�R
�R + i�

Z R

�R
e�i�xu (x; t) dx

�
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and because u (�R; t) = u (R; t), we have:

F
�
@u

@x
(x; t)

�
(�)

=
1p
2�

Z R

�R
e�i�x

@u

@x
(x; t) dx =

1p
2�
i�

Z R

�R
e�i�xu (x; t) dx

= i�

�
1p
2�

Z R

�R
e�i�xu (x; t) dx

�
= i�F (u (x; t))(�)

) F
�
@2u

@x2
(x; t)

�
(�)

= ��2F (u (x; t))(�) : (3.15)

Replacing (3.14) and (3.15) in (3.13) , we obtain:

8><>:
@
@t
F (u (x; t))(�) + �2F (u (x; t))(�) = 0

F (u (x; T ))(�) = F ('T (x))(�)
)

8><>: @tû (�; t) + �
2û (�; t) = 0

û (�; T ) = '̂T (�)
;

from the equation @tû (�; t) + �2û (�; t) = 0; we have:
@tû(�;t)
û(�;t)

= ��2

)
R @tû(�;t)

û(�;t)
dt =

R
��2dt) û (�; t) = e��

2tc (�), so

8><>: û (�; T ) = e��
2T c (�)

û (�; T ) = '̂T (�)
) c (�) = e�

2T '̂T (�) ;

thus û (�; t) = e�
2(T�t)'̂T (�) ; where û (�; t) is the Fourier transformation of u (x; t) such that

u (x; t) = 1p
2�

R +1
�1 ei�xû (�; t) d� and û (�; 0) = c (�) = e�

2T '̂T (�), thus the solution of the

problem (3.12) is:

u (x; t) =
1p
2�

Z +1

�1
ei�xe�

2(T�t)'̂T (�) d�: (3.16)

3.3.2 Regularization of Fourier and Error Estimation

We assume for t = T the exacte solution 'T (x) and the perturbed solution is '�T (x), then

there exists a contante � > 0 such that:


'T � '�T

 � 0: We note '0 (x) = u (x; 0) and C a

constante such that: k'0kHs =
�R +1

�1 j'̂0 (�)j2 (1 + �2)s d�
� 1
2 � C, 8s � 0:

We have kukL2(R) = kûkL2(R), where u (x; t) is the exacte solution given by (3.16) .
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Let:

u�;�max (x; t) =
1p
2�

Z +1

�1
ei�xe�

2(T�t)'̂�T (�)�maxd� (3.17)

be the approuch solution to the exacte one u, such that �max is a positive constante and �max

is the characteristic function of the compact [��max; �max], and u�;�max (x; t) exists, unique and

stable. We have:

ku (x; t)� u�;�max (x; t)k � C(1�
t
T )�

t
T

�
ln
C
�

�� (T�t)s
2T

241 + ln C
�

1
T
ln C

�
+ ln

�
ln C

�

�� s
2T

! s
2

35 (3.18)

where �max =
�
ln
��

C
�

� 1
T
�
ln C

�

�� s
2T

�� 1
2

and ln C
�
> 1, 8s > 0, this chiose of �max is to �nd a

stability estimation of Hölder for the best approuch. For the proof, see[14].
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Chapter 4

Application: Inverse Estimation of the

Initial Condition for the Heat Equation

The direct (forward) problem consists of a transient heat conduction problem in a slab

with adiabatic boundary condition and initially at a temperature denoted by f (x).

The mathematical formulation of this problem is given by the following heat equation:

8>>>>>>><>>>>>>>:

@u
@t
= D @2u

@x2
0 < x < L; t > 0;

u (0; t) = 0 t > 0;

u (L; t) = 0 t > 0;

u (x; 0) = f (x) 0 � x � L;

(4.1)

where u (x; t): temperature, f (x): initial condition, x: spatial variable, t: time variable and D

denotes the dispersion coe¢ cient.

For the direct problem where the initial condition f (x) is speci�ed, the problem given by

equation (4.1) is concerned with the determination of the temperature distribution u (x; t) in

the interior region of the solid as a function of time and position.

Now, for the inverse problem, the initial condition f (x) is regarded as being unknown.

In addition, an overspeci�ed condition is also considered available. To estimate the unknown
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coe¢ cient f (x), the additional information

u (x; T ) = g (x) (4.2)

is given at time T , over a speci�ed space interval 0 � x � L. We note that the measured over-

speci�ed condition u (x; T ) = g (x) should contain measurement errors. Therefore the inverse

problem can be stated as follows: by utilizing the above mentioned measured data, estimate

the unknown function f (x) :

In this chapter, we are going to demonstrate some numerical results for determining f (x)

in the inverse problem (4:1) � (4:2). But �rst let us know the algorithm used for solving the

problem.

The solution of the direct problem for a given initial condition f (x) is explicitly obtained using

separation of variables, for 0 < x < L, t � 0 is:

u (x; t) =

Z L

0

K (x; y; t) f (y) dy;

where

K (x; y; t) =
2

L

1X
n=1

e�
(n�)2Dt

L2 sin
�n�x
L

�
sin
�n�y
L

�
is an in�nite series. Numerically, we can�t handle in�nite sums. Limit the sum to a �nite

number of expansion terms 100 which guarantees the convergence of the series. So

K (x; y; t) =
2

L

100X
n=1

e�
(n�)2Dt

L2 sin
�n�x
L

�
sin
�n�y
L

�
:

Thus initial inverse problem is reduced to solving integral equation of the �rst kind:

u (x; T ) = g (x) =

Z L

0

K (x; y; T ) f (y) dy: (4.3)

The �rst step in the numerical treatment used in this research consists in discretiztion of

equation (4.3) by the quadrature formula. The interval [0; L] can be subdivided into equal

49



Chapitre 4.Inverse Estimation of the Initial Condition for the Heat

intervals of width h = �y = L
N
. Since the variable is either y or x, let x0 = y0 = 0, xN = yN = L

and xi = i�y (i:e:xi = yi), yj = j�y. Also denote f (xi) as fi, g (xi) as gi and K (xi; yj; T ) as

Kij.

Now if the trapezoid rule is used to approximate the given equation, then:

g (x) =

Z L

0

K (x; y; T ) f (y) dy

� �y
�
1

2
K (x; y0; T ) f (y0) +K (x; y1; T ) f (y1) + � � �

+K (x; yN�1; T ) f (yN�1) +
1

2
K (x; yN ; T ) f (yN)

�

or moretersely:

g (x) = �y

�
1

2
K (x; y0; T ) f0 +K (x; y1; T ) f1 + � � �

+K (x; yN�1; T ) fN�1 +
1

2
K (x; yN ; T ) fN

�
:

There are N + 1 values of fi,as i = 0; 1; 2; :::; N , therefore the equation becomes a set of N + 1

equations in fi

gi = �y

�
1

2
Ki0f0 +Ki1f1 + � � �+Ki(N�1)fN�1 +

1

2
KiNfN

�

that give the approximate solution to f (xi) at x = xi. This may also be written in matrix form

KF = G (4.4)

where K is the matrix of coe¢ cients

K = �y

266666664

1
2
K (x0; y0; T ) K (x0; y1; T ) � � � 1

2
K (x0; yN ; T )

1
2
K (x1; y0; T ) K (x1; y1; T ) � � � 1

2
K (x1; yN ; T )

� � � � � � � � � � � �
1
2
K (xN ; y0; T ) K (xN ; y1; T ) � � � 1

2
K (xN ; yN ; T )

377777775
;
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F is the matrix of solutions F = [f (y0) ; � � � ; f (yi) ; � � � ; f (yN)]Tand G is the matrix of the

nonhomogeneous part G = [g (x0) ; � � � ; g (xi) ; � � � ; g (xN)]T :

The problem (4.4) is ill-posed in the sense that the inverse operator A�1 of A exists but it

is not continuous. Hence, although the problem (4.4) has a unique solution, solving it directly

will not give a right solution. Indeed, the linear operator A is so badly conditioned that any

numerical attempt to directly solve (4.4) may fail. So we go to regularization methods, see

section 2 in chapter 3 (3.2) .

4.1 Numerical Examples:

We use the L1 error norm and the relative error to measure the di¤erence between the nu-

merical and analytical solutions. The L1 error norm is de�ned by: L1 = max
0�j�N

���f (xj)� ~f (xj)
���

and the relative error RE is de�ned by: RE =

vuuut NP
j=0
jf(xj)� ~f(xj)j2

NP
j=0

jf(xj)j2
where xj are test points and

N is the total number of uniformly distributed points on [0; 1]. f (x) is the exact solution and

~f (x) is the numerical solution. In our computations, we always take N = 40: The noisy data�
g� (xj)

	�� N
j=0 were assumed to contain some random errors. However, in practical applications,

the reduplicated measurements are fairly di¢ cult and even are impossible. Hence, in the next,

we consider the deterministic errors.

Assume the observed data has the following noised form: g� (xj) = g (xj) + � sin (10�xj) ;

j = 0; 1; 2; � � � ; N:

Example 4.1.1 In this example let us consider the following inverse problem:

8>>>>>>><>>>>>>>:

@u
@t
= @2u

@x2
0 < x < 1; t > 0;

u (0; t) = 0 t � 0;

u (1; t) = 0 t � 0;

u (x; 0) = f (x) 0 � x � 1;
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the over speci�ed condition: u (x; 1) = g (x) = e��
2
sin (�x).

The analytical solution of this example is

u (x; t) = e��
2t sin (�x) and f (x) = sin (�x)

The regularization parameter � is chosen using Newton�s method (see [11]), the L1 error

norm and relative error RE are presented in Table 4.1 . Also, the corresponding errors between

the analytical and the estimated functions f (x) in xj = 0:1j when � = 0:1 are listed in Table

4.2 .

� � L1 RE
0:1
0:05
0:01
0:001

5:73185� 10�14
8:72765� 10�15
2:54233� 10�15
9:81035� 10�16

2:14202� 10�5
3:26344� 10�6
9:53403� 10�7
3:69100� 10�7

2:14247� 10�5
3:26231� 10�6
9:50310� 10�7
3:66705� 10�7

Table 4.1: The error norm and relative error RE for f(x)

j Exact f (xj) Numerical ~f (xj)
���f (xj)� ~f (xj)

���
1
2
3
4
5
6
7
8
9
10

0:309016994374947
0:587785252292473
0:809016994374947
0:951056516295154

1
0:951056516295154
0:809016994374947
0:587785252292473
0:309016994374948

1:22464679914735� 10�16

0:309016994374947
0:587772658514349
0:808999662566453
0:951036138131767
0:999978579729737
0:951036139325882
0:80899966217245
0:587772660016492
0:309010373872585

6:12310280754787� 10�17

6:621267118533� 10�6
1:259377812457� 10�5
1:733180849472� 10�5
2:037816338640� 10�5
2:142027026342� 10�5
2:037696927137� 10�5
1:733220249233� 10�5
1:259227598149� 10�5
6:620502362109� 10�6
6:123365183926� 10�17

Table 4.2: The analytical and numerical results for f(x)

Example 4.1.2 Let us consider the following inverse problem:

8>>>>>>><>>>>>>>:

@u
@t
= D @2u

@x2
0 < x < 1; t > 0;

u (0; t) = 0 t > 0;

u (1; t) = 0 t > 0;

u (x; 0) = f (x) 0 � x � 1;
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the initial condition

f (x) =

8><>: 2x 0 � x � 0:5

2 (1� x) 0:5 � x � 1

where D = 0:01, the exact solution is given by using the separation of variables

u (x; t) =
1X
n=0

8

�2 (2n+ 1)2
cos

�
(2n+ 1) � (2x� 1)

2

�
e[�D�

2(2n+1)2t]:

The experimental data u (x; T ) = g (x) (measured temperatures at T = 1) is obtained from

the exact solution by taking the sum of the �rst one hundred terms. The L1 error norm

and relative error RE are presented in Table 4.3 . Also, the corresponding errors between the

analytical and the estimated functions f (x) in xj = 0:1j when � = 0:1 are listed in Table 4.4 .

� � L1 RE
0:1
0:05
0:01
0:001

0:00036282
0:00021836
0:00005996
0:00001008

0:0634335
0:0611471
0:0547497
0:0478144

0:0312757
0:0287479
0:0237954
0:0203349

Table 4.3: The error norm and relative error RE for f(x)

j Exact f (xj) Numerical ~f (xj)
���f (xj)� ~f (xj)

���
1
2
3
4
5
6
7
8
9
10

0:2
0:4
0:6
0:8
1
0:8
0:6
0:4
0:2
0

0:203285479287456
0:399171118110754
0:590641061060895
0:818696676546333
0:945250250199793
0:818696676542829
0:590641061065385
0:399171118106812
0:203285479288568

3:39804782379576� 10�17

0:0032854792874559
0:0008288818892464
0:0093589389391055
0:0186966765463328
0:0547497498002067
0:0186966765428294
0:0093589389346149
0:0008288818931877
0:0032854792885684

3:39804782379576� 10�17

Table 4.4: The analytical and numerical results for f(x)

The graph of the analytical and the estimated functions for f(x) with � = 0:1 for Example 1 is

given in Figure4.1 , for Example 2, the graph is given in Figure4.2 . This chapter is based on

the article [14] :
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Figure 4.1: The comparison between exact and numerical solutions of f (x) with noise � = 0:1,
for Example 1.

Figure 4.2: The comparison between exact and numerical solutions of f (x) with noise � = 0:1,
for Example 2.
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Conclusion

Usually, an inverse problem is a situation in which we don�t know the system (informa-

tions about matrials, initial conditions...), most of these problems are modeled (which

is a di¢ cult step, made with specialist in the studied �eld) in systems of partial de¤erential equa-

tions, hence the interest in deepening of PDEs notions (existence, regularity,...etc) something

we provided in this memory.

Also, we presented in this memory some examples to explain ill-posed inverse problems

and some regularization methods (LS method, Tikhonov method and method of Fourier). In

fact, this work is indexed on regularization methods (insurance of existence and uniqueness of

solution) and an application on estimation of the initial condition for heat equation.

Why this estimation?

In engineering, we have to solve heat transfer problems involving di¤rent conditions such as cyl-

indrical nuclear fuel element which involes internal heat source. Knowledge of temperture �eld

is very important in thermal conduction, this estimation is to investigate the inverse problem

in the heat equation involving the recovery of the initial temperture from measurements of the

�nal temperture.

Eventually, inverse problems have a very wide domain, they constitute a branch of math-

ematical research whose importance continues to grow.
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Appendix: Index of Symbols

The various symbols used throught this thesis are explained below:

Symbol Explication

R

R2

R3

k�k

div

^

r

a:e

�E

Ck

C1

L1loc (Rn)

R (A)

Real numbers.

Tow-dimensional space.

Three-dimensional space.

Norm.

Divergence.

Vector product.

Nabla.

almost everywhere.

characteristic function.

The set of k-di¤erentiable functions.

The set of in�nitly di¤erentiable functions(smooth functions).

The set of locally 1-integrable on Rn functions.

range of A:
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Abstract 

Inverse problems for partial differential equations (PDEs in short) arise naturally in many 

areas, in geophysics, oil prospecting, in the design of optical devices and many other areas. 

Many of these problems may be regarded as the study of attempting an inversion of a 

mapping from the coefficients of PDEs to trace of same PDEs solutions on the boundary. 

This leads to the study of the existence, uniqueness and stability. 

Key words: Inverse problems, PDEs, existence and uniqueness, stability, ill-posed 

problems, regularization methods, Heat equation.  

 

 

 الملخص

 التنقُب عن ، فٍ الجُىفُزَاء،تنشأ المشاكل العكسُت للمعادلاث التفاضلُت الجزئُت بشكل طبُعٍ فٍ العذَذ من المجالاث

و َمكن اعتبار العذَذ من هذه المشاكل بمثابت دراست .  فٍ تصمُم الأجهزة البصزَت و العذَذ من المجالاث الأخزي،النفط

و هذا َؤدٌ . لمحاولت عكس رسم الخزائط من معاملاث المعادلاث التفاضلُت الجزئُت إلً تتبع بعض حلىلها علً الحذود

.     الىحذانُت و الاستقزار،إلً دراست الىجىد  

 مشبكل أسيئث ، الاستقرار، الىجىد و الىحذانية، المعبدلات التفبضلية الجزئية، المشبكل العكسية:الكلمبت المفتبحية

  . معبدلة الحرارة، طرق التسىية،صيبغتهب

 

 

Résumé 

Les problèmes inverses pour les équations aux dérivés partielles (EDP en abrégé) se posent 

naturellement dans nombreux domaines, en géophysique, en prospection pétrolière, dans la 

conception de dispositifs optiques et dans de nombreux autres domaines. Nombre de ces 

problèmes peuvent être considérés comme l’étude de la tentative d’inversion d’un mappage 

des coefficients des EDP à la trace de solutions d’EDP sur la frontière. Cela conduit à 

l’étude de l’existence, de l’unicité et de la stabilité. 

Mots clés: Problèmes inverses, EDP, existence et unicité, stabilité, problèmes mal-

posés, méthodes de régularisation, équation de Chaleur.  
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