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Introduction

umans were naked worms; yet they had an internal model of the world. In the course

Hof the time up to the present, this model has been updated many times, following the
development of new experimental possibilities or the devlopment of their intellect. Sometimes
the updating has been only quantitative, sometimes it has been qualitative. Inverse problem
theory tries to describe the rules human beings should use for quantitative updatings. In fact,
inverse problems are some of the most important mathematical problems in science and math-
ematics because they tell us about parameters (unknowns) that we cannot directly observe or
measure. It is called an inverse problem because it is the process of calculating from a set of
observations the causal factors that produced them in certain phenomenon. In other words, it
starts with the effects and then calculates the causes. It is the inverse of a forward problem,

which starts with the causes and then calculates the effects.

We find inverse problems in many scientific fields:

Medical imaging (calculating an image in X-ray, scan, computed tomography)

Petroleum engineering (prospecting by seismic methods, magnetic)

Hydrogeology (identification of hydrolic permeabilities)

Oceanography (underwater acoustics)

Chemistry and physics (quantum mechicans)

Geophysicss, radar, optics, astronomy, signal processing,...etc.



Introduction

Inverse problems are challenging to solve because, according to Albert Tara,ntola , the set
of observations usually overdetermines some parameters while leaving others underdetermined.
Schematically, there are two reasons for underdetermination: intrinsic lack of data and exper-
imental uncertainties. The second reason is uncertainty of knowledge(observed values always
have experimental uncertainties).

Underdetermination is handled easily by pure mathematicians like Jacques Hadamard, he
defined ill-posed problems in 1923, in his book "Lectures on Cauchy’s Problem in Linear
Partial Differential Equations"[2] . In his opinion, ill-posed problems do not have physical sense,
so he introduced the notion of the well-posed problem which, according to him, must satisfy

three properties:

- The problem must have a solution;
- The solution must be unique, and;

- The solution must be stable under the small changes to the data.

The manuscriptis organized as follows{Chapter 1 [alks about inverse problems in general
with some examples. is dedicated to basic functional analysis. While
reviews regularization methods of ill-posed PDEs problems. For the last chapter , it presents

a numerical illustration: inverse estimation of the initial condition for the heat equation.



Chapter 1

Generalities and some examples

n the late 1950’s and early 1960’s the theory of ill-posed problems attracted the attention
Iof many mathematicians, due to the appearance of series of new approaches that became
essential for this theory. Inverse and ill-posed problems gained popularity very rapidly, with
the advent of computers. By the present day, the theory of inverse and ill-posed problems
has developed into a powerful and field of science that has an impact on almost every area of
mathematics. In most cases, inverse and ill-posed problems have one important property in
common: instability.In these cases, inverse problems turn out to be ill-posed and, conversely,
an ill-posed problem can usually be reduced to a problem that is inverse to some well-posed
problem.
This chapter is an awarness of the consequences of ill-posed problems, it might be helpful to
explain in more precise terms exactly what is meant by a nonwell posed problem and to provide

an interesting examples of such a problem.

1.1 What is an inverse problem?

There are two types of inverse problems: linear and non-linear. Linear problems generally
come down to solving integral equations of the first kind. However, non-linear problems are

more difficult to solve and they are often found in habit. Let’s explain on an example what is



Chapter 1. Generalities and some examples

an inverse problem: 4]

Consider a rectangular iron bar that we heat at one of its ends. The diffusion of heat inside
the bar is modalized by a boundary problem for a heat equation. The questions to be asked
are: Can we determine the diffusion coefficient by measuring the temperature of the bar at
the other end? How many measurements are needed to ensure that we determine an unique
diffusion coefficient? In practice, we want to calculate this coefficient. We start by replacing
the continuous model with a discrete model. So there is going to be a stability problem, that is
to say: How can we control the disturbances on the diffusion coefficients by the errors that we
make on the measurements?

Let €2 be a heated design domain fully occupied by conductive materials. We assume that
Q2 is an open and bounded domain of R%, d = 2,3. This example can be modalized by the

following boundary value problem:

9u — div (a(z)Vu) =0 in Qx (0,7),
u =0 in Qx{0},
{0 (1.1)
u=f on I'y x (0,7),
| §e=0 on Ty x (0,7) ,

where f is a generated heat source on a smooth boundary I'y, I's is the rest of the boundary of
2 and a(z) is the diffusion coefficient(assumed to be constant over time).

Can we then determine the coefficient a(z) from the measurements u = g , M x (0,7, M being
a part of I';? For this example,we first examine the uniqueness (i.e.the injectivity which has a

associates g ).

Then, we are interested in stability. More precisely, we wish to establish an estimate of the
form d; (ay,a2) < w(d2(g91,92)) , for dy (a1, az) neighbor of zero, w is an increasing function,
defined on |0, +o00] such as w(s) — 0 when s converges to 0. d; and dy are distances defined
respectively on the set of cofficients and the set of measures.

Note that, due the regularizing effect of elliptical and parabolic equations, the continuity

module w, here, is a logarithm or a power of this one. There are examples where it has been
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shown to be optimal.

Hence the notion of Hadamard’s ill-posed problem .For this reason, if we wish to calculate
a from ¢, minimizing for example a functional of the form:J (a) = ||[u — g ||i2( Mx(0.7)yWe have to
use a regularisation method, for example Tikhonov type[3] .
Regarding the measures there are several possibilities. We can for example replace the above
with:

u(.,t;) =g ,on M witht; , 1 <7 =N, points of (0,7).

We can also vary f . We give a finite or infinite set J .For each j € J , we have a measure g;

In this case the inverse problem consists in determining a by the application A : f; — g;.

This problem is an inverse prolem which we try to determine a coefficient.

1.2 Well-posed and Ill-posed problem

We can formulate the problem as follows: A : Z — U such as (Z, p,) and (U, p,) are metric

spaces, the problem: given u € U, find z € Z such that
Az=u (1.2)

is said to be well posed if [3] :
-for u € U there is z, € Z such that Az, = u (the solution z, existes for all u from U ),
- 2, 18 unique (injectivity of A);
-A has a continuous inverse (A~'is continuous: for all € > 0 there is d(¢,u) = 0 such that
pu(u,ur) < 6 implies p,(zy, 2y, ) < € ).
If not the problem (|1.2)) is called ill-posed.

If a solution exists it is perfectly conceivable that different parameters lead to the same
observations. The fact that the solution of an inverse problem may not exist is not a serious
difficulty.It is usually possible to restore existence by relaxing the notion of solution. Non-

uniquness is more serious problem.
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If a problem has more several solutions, there must be a way to choose between them.
For this, it is necessary to have additional informations(a priori information). The lack of
continuity of A~! is undoubtedly the most problematic, small disturbances on the data u can

generate large differences on the solution z.

1.3 Examples of Ill-posed problems

Here are some examples of ill-posed problems:
Example 1.3.1 (algebra, systems of linear algebraic equations). [@/

Consider the system of linear algebraic equations

Ag=f, (1.3)

where A is an n X m matrix, ¢ and f are n— and m—dimensional vectors, respectively. Let the
rank of A be equal to min (n,m). For m < n the system may have many solutions. For m > n
there may be no solutions. For m = n the system has a unique solution for any right-hand side.
In this case, there exists an inverse operator (matrix) A~! . It is bounded, since it is a linear
operator in a finite-dimensional space. Thus, all three conditions of well-posedness in the sense
of Hadamard are satisfied.

We now analyze in detail the dependence of the solution on the perturbations of the right-

hand side f in the case where the matrix A is nondegenerate. Subtracting the original equation

(1.3) from the perturbed equation
Alg+dq)=f+4f,

we obtain Adq = df , which implies g = A7'0f and |[dg|| < ||[A7Y|||0f]] . We also have
IA[ gl = 11£1I
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As a result, we have the best estimate for the relative error of the solution:

gl 87
A~
T = AT

which shows that the error is determined by the constant p(A) = ||A]|||A7!]|| called the
condition number of the system (matrix). Systems with relatively large condition number are
said to be ill-conditioned. For normalized matrices (|| A|| = 1), it means that there are relatively
large elements in the inverse matrix and, consequently, small variations in the right-hand side
may lead to relatively large (although finite) variations in the solution. Therefore, systems with
ill-conditioned matrices can be considered practically unstable, although formally the problem

is well-posed and the stability condition [|A™!|| < oo holds.

0 7 8 7 32

7 5 6 5 23
For example, In the system (|1.3) ,where A = and f =

8 6 10 9 33

7 5 9 10 31
We find o

1

1

q= )
1
1

now we take a second member f very slightly diffrent from f |

32.1 9.2
- 22.9 - —12.6
let f = , then we verify that the solution of Aq = f is ¢ =
33.1 4.5
30.9 -1.1

In this case, we see that small perturbations on f have led to large variations on ¢ . In this
example p (A) = 2984.0942 (A is ill-conditioned matrix).If the determinant of A be zero. Then
the system (1.3) may either have no solutions or more than one solution. It follows that the

problem Aq = f is ill-posed for degenerate matrices A (det A = 0).
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Example 1.3.2 (minimization problems). [6]]

We consider the minimization problem:

¢ (u) = inf [ Au — ]|
Assume that w; is the infinimum of ¢ (u) : ¢ (u;) < ¢ (u) If f is perturbed , thus:

¢s (u) = inf [Au = f5l[, |lfs = fl <0,

the infinimum of ¢ (u) cannot be reached at an element us which is far from wu;, hence the

graphe of f +— u; can be non-continuous. In this case this problem is ill-posed.
Example 1.3.3 (integral geometry on circles).[5]

Consider the problem of determining a function of two variables ¢ (z,y) from the integral
of this function over a collection of circles whose centers lie on a fixed line.
Assume that ¢ (z,y) is continuous for all (z,y) € R? . Consider a collection of circles whose
centers lie on a fixed line (for definiteness, let this line be the coordinate axis y = 0). Let L (a, )
denote the circle (x — a)2 +y? = r? , which belongs to this collection. It is required to determine

q (z,y) from the function f (z,y) such that

/L L aET = ), (1.4)

and f (z,7)is defined for all € (—o0, +00) and r > 0.
The solution of this problem is not unique in the class of continuous functions, since for any

continuous function § (z,y) such that ¢ (z,y) = —¢ (x, —y) the integrals

R
L(z,r)
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vanish for all z € R and r > 0. Indeed, using the change of variables £ = x+1r cos ¢, 7 = rsin g,

we obtain

2T
/ c](ﬁ,T)dl:/ G (x4 rcosp,rsinp) rdp (1.5)
L(z,r) 0

2w

:/ d(a:+7“cosgo,rsin<p)rdgo+/ G (z + rcosp, rsing)rdp
0

s

Putting ¢ = 27 — ¢ and using the condition G (z,y) = —§ (z, —y), we transform the last integral

in the previous formula:

0

2m
/ q~(x+rcosg0,7“sing0)rdg0:/

™

G(x+rcosp,—rsing)rdp = —/ G (x4 rcosp,rsing)rdp
0

Substituting the result into (1.5 , we have

/ G, m)dl=0
L(z,r)

forx € R, r > 0.

Thus, if ¢ (z,y) is a solution to the problem , then ¢ (x,y) + ¢ (z,y), where ¢ (x,y) is any
continuous function such that ¢ (z,y) = —G (z, —y) is also a solution to(L.4) . For this reason,
the problem can be reformulated as the problem of determining the even component of ¢ (x, y)
with respect to y. The first well-posedness condition is not satisfied in the above problem:

solutions may not exist for some f(x,r).
Example 1.3.4 (Fredholm integral equation of the first kind).[3]

Consider the problem of solving a Fredholm integral equation of the first kind

b
/K(:z:,s)q(s)dSZf(x), c<zr<d (1.6)

where the kernel K (z,s) and the function f (x) are given and it is required to find ¢ (s). It is
assumed that f () € C'[c,d], ¢ (s) € Ca,bland K (x,s) , K, (x,s), and K (z, s) are continuous

in the rectangle ¢ < z < d, a < s < b. The problem of solving equation ({1.6)) is ill-posed because

9
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solutions may not exist for some functions f (z) € C'[c,d] . For example, take a function f ()
that is continuous but not differentiable on [c,d]. With such a right-hand side, the equation
cannot have a continuous solution ¢ (s) since the conditions for the kernel K (z,s) imply that
the integral in the left-hand side of is differentiable with respect to the parameter = for any
continuous function ¢ (s). The condition of continuous dependence of solutions on the initial

data is also not satisfied for equation (1.6)) .
Example 1.3.5 (Volterra integral equations of the first kind). [@/

Consider the problem of solving a Volterra integral equation of the first kind

/OIK(x,s)q(s)ds—f(m), 0<z<1 (1.7)

For K = 1 the problem (1.7 is equivalent to differentiation f’(z) = ¢(x). The sequence

fn () = cos (nz) /y/n demonstrates the instability of the problem.
Example 1.3.6 (calculus, summing a Fourier series).[5]

The problem of summing a Fourier series consists in finding a function ¢ (z) from its Fourier
coefficients. We show that the problem of summation of a Fourier series is unstable with respect
to small variations in the Fourier coefficients in the Iy metric if the variations of the sum are

estimated in the C' metric. Let

q(z) = Z ¢ cos (kx)

and let the Fourier coefficients c; of the function ¢ (x) have small perturbations: ¢, = ¢ + 7 .

Set

j(z) = Z ¢ cos (kx)

The coefficients of these series in the I, metric differ by

1

o} o 2 o0 1 % 7T2
R

k=1 k=1

10
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which vanishes as ¢ — 0. However, the difference

cos (k)

| =

(@) =) =<3

can be as large as desired because the series diverges for = = 0.
Thus, if the C' metric is used to estimate variations in the sum of the series, then summation of

the Fourier series is not stable.
Example 1.3.7 (differential equation of the second order).

Suppose that a particle of unit mass is moving along a straight line. The motion is caused
by a force f (t) that depends on time. If the particle is at the origin x = 0 and has zero velocity
at the initial instant ¢ = 0, then, according to Newton’s laws, the motion of the particle is

described by a function u (t) satisfying the Cauchy problem

%:f@)a tE[O,T],

u(0)=0, 2(0)=0,

(1.8)

where u (t) is the coordinate of the particle at the instant ¢. Assume now that the force f (t)
is unknown, but the coordinate of the particle u (t) can be measured at any instant of time (or
at certain points of the interval [0, 7). It is required to reconstruct f (¢) from u (¢). Thus, we
have the following inverse problem: determine the function f (¢) from the known solution wu (t)
of the problem .

We now prove that the inverse problem is unstable.

Let u (t) be a solution to the direct problem for some f (¢). Consider the following perturbations
of the solution to the direct problem:

un (1) = u (£) + %cos (nt).

These perturbations correspond to the right-hand sides f,, (t) = f (t) — ncos (nt). Obviously,

| = tnllgioq) = 0 asn — oo, and || f — fallgpq — 00 as n — oc.

11
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Thus, the problem of determining the right-hand side of the linear differential equation ([1.8))

from its right-hand side is unstable.
Example 1.3.8 (retrograde heat equation)

Let the differntial equation

—a"gf’t) + Au(z,t) =0

forz € RY t € Ry (1.9)
u(z,0) =v(x)

if d =1 and v (z) = n~!sin (nx), where n € N*, then the solution is given by:
u(z,t) = n~'e"'sin (nx), checked by substituting in the equation of (1.9) .

1,n2%t

|vl|, =n"t — 0asn— oo, |u(z,?) n-'e™" — oo as n — o0, it follows that the problem

oo =
(1.9) is ill-posed.
In other words, finding the subsequent temperature propagation, knowing the initial temper-

ature propagation, is a well-posed problem. However, finding the temperature propagation at

final time is an ill-posed problem
Example 1.3.9 (Cauchy problem for Laplace equation).[J]

Consider Cauchy’s problem relating to the Laplace equation in two-dimentional case(the

example cited by Hadamard). Let u = u (x,y) be a solution to the following problem:

Ay =0,
S — y>0 (1.10)
g_Z |y:0: Pn (J}) - %’ YIS R:

the solution of the problem (|1.10]) is given by

sin (nx)
2n?

u(z,y) = (e" —e™) (1.11)

and it is unique (by the uniquness of the Cauchy problem solution for elliptic equations).

J.Hadamard shows that for any fixed y > 0 and sufficiently large n, the value of the solu-

12
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tion ((1.11)) can be as large as desired, while p,, (x) tends to zero as n — oo. Therefore, small
variations in the data may lead to indefinitely large variation in the solution, which means that

the problem ({1.10)) is ill-posed.
Example 1.3.10 :

Differentiation and integration are two inverse problems of each other. It is more usual to
think of differentiation as a direct problem, and integration as an inverse problem.
In fact, integration has good mathematical properties which lead to considering it as a direct
problem. And differentiation is the prototype of the ill-posed problem, as we will see.

Consider the Hilbert space L? (€2), and the integral operator A defined by:

Af@ = [ e

It is clear that A is linear operator of L? (0, 1). This operator is injective, hawever its image is
the vector subspace

Im(A)={feH"(0,1) ,u(0)=0}

where H' (0,1) is Soblov space.Indeed, the equation: Af =g < f(x) = ¢ (z) et g(0) = 0.
The image of A is not closed in L? (0, 1) (of course, it is in H' (0,1)). Consequently, the inverse
of A is not continuous on L? (0, 1), as shown in the following example:

Consider a function g € C* ([0,1]), and n € N. Let g, (z) = g (z) + = sin (n’z) . Thus:

fn (@) =g, (x) =g (z) +ncos (an) )

1 1
1 1
lo = gulli= [ lon ) = g () do = =5 [ sind (n20) do = o (0 sinn + cosn?),
0 n= Jo n

since [ sin? (z)dp = Sn@es@r 4 oghe) we find
2

vVn?2 + sin n2 + cosn2

1
lg = gnlly = a2

13
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thus
w—%m:7%51+%§§2
If - fn“é = /1 n? cos? (n2x) dr = n’ — SmQTLQ cos n?
0
SO
5 s (002
I = fully = ) - 22

thus,

_
I = fuly = 1 - 22D

So the difference between f and f,, may be large, even though the difference between ¢ and g,
is small. The derivation operator (the inverse of A) is not continuous, at least with the choice
of norms. Instability of the inverse is typical of ill-posed problems. A small perturbations on

the data (here is g) can have an arbitrarily large influence on the results (here f).
Example 1.3.11 (perception).[7]

Consider a mapping A from the distal stimulus X (e.g. a 3D object) to the proximal
stimulus Y (e.g. its retinal image). If the object and its image are represented by homogeneous
coordinates, the perspective mapping A is a linear transformation. Thus, one can write the
following equation:

Y = AX. (1.12)

Finding the proximal stimulus for a given distal stimulus is a direct (forward) problem and is
expressed in the rules of physics. In contrast to the problem , an observer is faced with
an inverse problem. Namely, perception is about inferring the properties of the distal stimulus
X given the proximal stimulus Y:

X =AY

This inverse problem is ill posed and/or ill-conditioned. This is related to the fact that finding
a unique and stable A~!, which is needed to determine X, is difficult.

For example, the image of a cube. This retinal image determines an infinite number of objects

14
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whose faces do not have to be planar, edges do not have to be straight-line segments, and the
object does not have to be symmetric. Clearly, the problem of visual interpretation of the retinal

image is ill posed.

15



Chapter 2

Some basic Functional Analysis

r I \his chapter presents some basic mathematical tools, which we need to get into inverse

problems.

2.1 Vector Analysis

2.1.1 Scalar field or "Scalar function"

Typical applications of scalar fields include:potential fields, temperature, humidity, pressure.
Often these problems are governed by differential equation.
Let the scalar field be a function from two- or three-dimensional field (R™,n = 2 or 3)which

values in R, i.e: f :R® — R is a scalar field.
Definition 2.1.1 (gradient)

We call the vector :

of
ox

vi=|u (2.1)

of
0z

the gradient of the function f (x,y, 2) and we note it grad (f) or Vf.

16



Chapter 2. Some basic Functional Analysis

Definition 2.1.2 (directional derivative)

Let u a unit vector of R3. We call directional derivative of f in the direction u at point

My (29, Yo, 20) the number:

Remark 2.1.1 :

If the direction is given by a vector which is not unitary, it must be made unitary by dividing

it by its norm: f, (My) = Vf (Mp) .75

[[ull*

2.1.2 Vector field or "Vector function"

The force which associates the potential energy is a vector field, it can be obtined as a factor

of the gradient. It includes for example:gravitational field, velocity, electric fiels.
Definition 2.1.3 (vector field)

A vector field on two-dimensional (or three-) space is a function V' that assigns to each

point (x,y) (or(z,y,2)) a two (or three) dimensional vector.

2.1.3 Differential operators

Definition 2.1.4 (divergence)

Ve
The divergence of a vector field V' = [ 1/ |is noted by div(V)or V.V and it is given by

V,
the expression:
ov, oV, IV,
=+ Yy

div(V)=V.V o T, T o,

(2.2)

Formally, we write: [8%, a%, %] V| = (V.V).
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Definition 2.1.5 (rotational)

The rotational is an differential operator that transforms a vector field to another vector

field. We define the rotational of a vector fiald V' by the relation:

v, _ 9Vy
Oy 0z
rotV=VAV Ve _ OF. (2.3)
oy _ Ve
ox oy

0
s Vi
Formally, we write: a% ANV, | =VAV
0
32 V.

2.1.4 Gradient field "Laplacian"

For a real-valued function f (z,y, z), the laplacian of f ,denoted by Af , is given by:

Af=VVf=Z5+55+55 (2.4)

We say that a vector field V' is a gradient field if there exists a function f such that at any
point: V' = grad (f)and we write Af = div (grad (f)).

2.2 [LPSpaces and and Holder Spaces

2.2.1 Elementary Definitions of L” Spaces

Let © a set from R™. We denote by L' (Q) (or simply L'), the space of integrable functions

from €2 into R in the sense of Lebesgue.

18



Chapter 2. Some basic Functional Analysis

For f € L' (), we shall use the notation :

wmﬁzwma@ﬂmm

Definition 2.2.1 (LPspace)

Let p e R with 1 < p < 00 ; we set
LP(Q) = {f: Q — R; f measurable and |f|" € L' (Q)}

with

-

wm@zwm:Mud5

| f]l,is a norm.

Definition 2.2.2 (L*space)
We set

f is measurable and there is a constant C
L Q)= f: Q=R
such that |f (z)] < C a.e on Q

with

Hf”Loo(Q) = ||fllo =inf{C;|f] < C a.e on Q}.

| fll .is & norm.
Remark 2.2.1 :

For all 1 < p < oo ,LP () is a Banach space for the norm ||.[| (it is well known).

If fe L*>* () then we have |f (z)| < || f||,, a.e on €, this implies that || f||, is a norm.
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Notation 2.2.1 :

Let 1 < p < oo, we denote by p’ the conjugate exponent of p,

Theorem 2.2.1 (Holder’s inequality)[d]

Assume that f € LP () and g € L” (Q) with 1 < p < co. Then fg € L' (Q) and

19l ) < 171, Mgl - (2.5)

2.2.2 [P (a,b; X) Spaces

Let X a Banach space and —oco < a < b < 400 .

Definition 2.2.3 (simple function)

A function f : [a,b] — X is said a simple function if there exist measurable sets Ey, ..., E,,
from [a,b] and x4, ...,z € [a,b] such that:

F@&)=> xu )

i=1

lifte B,
with xg, = Vi € {1,2,...,m}and E; disjoint two by two.

0 else

Definition 2.2.4 (measurable function)

We say that a function f : [a,b] — X is measurable if there exists a sequence of simple

functions (f),cn»fx : [a,b] — X, such that fi, — f a.e on [a,b].
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Definition 2.2.5 (Bochner integrable function)

A measurable function f : [a,b] — X is a Bochner integrable if there exists a sequence

of integrable simple functions (f;) such that:

b
im [ 17 fll de = 0.

In this case, the Bochner integral is defined by:

b
/f (t)dt = liin/ fr (t) dt.
Theorem 2.2.2 [4]

A measurable function f : [a,b] — X is integrable if and only if || f||y € L' (a,b).
For 1 < p < oo Jet LP(a,b;X) = {f:[a,b] — X integrable such that | f||, € L? (a,b)},

provided with the norm

(JIIfI)7 i p < oo

||f||LP(a,b;X) -
inf {C, || f )]y < Ca.eon [a,b]}, if p=o0

L? (a,b; X) is a Banach space.

2.2.3 Holder Spaces

Let Q C R" open, bounded , we say that f € C° (Q) is y-Holderian if for v € ]0, 1

_ f () = f ()]
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Definition 2.2.6 (Holder space)

The function space
Cr (@) = {1 € C° () [ Ifllows(a) < o0}

is called the H6lder space with exponent ~ such that for f € C* (Q) the Holder norm

Hf”ck,'v((z) = Z “aafHCo(Q) + Z [ao‘f]v, ae N

|| <K la|=k

Theorem 2.2.3 :

The Holder space with the Holder norm is a Banach space, (i.e.C*? (€2) is a vector space,||. ||Ck’Y(Q)

is a norm and any Cauchy sequence in the Holder space converges).
Proposition 2.2.1 :

If T > 0 a given real number and @ = Q x (0,7), we denote Crz2 (Q) the space of functions
f € C°(Q) such that:

/1,3 = sup f(x’t)z i 8)1; (z,1), (y,s) € Q, (x,1) # (y,5) p <00,
o —yI" + [t = sl]®

and for £ > 0 an integer we denote:
CHRE (Q) = {f € C*M(Q); 079/ f € C72(Q), (a,B) EN"XN, |a|+28 = Zk}

C2etrhts (Q) is a Banach space if we provide it with the norm

fleiigy= > |

|| +28<2k

aaaffHCO( _ [aaaEfL . (a,8) e N" x N.

) J
Q) |a|4+28=2k 2
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2.2.4 Regular Open

(H.1)Let © an open boundary from R" and its border T'.

(H.2)The boundary I is an infinitely differentiable variety of dimension n — 1 , © being locally
on one side of I' (i.e. we say that Q is a variety with boundary of class C™).
Under the hypotheses (H.1) and (H.2) there exist a finite family of couples(O;, ¢;);_1wsuch

that:

N
__is a family of bounded open sets covering I'( I € |J O; ).

i=1,N i=1

b. (i) . is a family of C*°-diffeomorphisms of (O;) into the open set ) of R™ defined by
Q={y=( ') eR"' xR, |y <land —1 <y, <1}.

with

0 (0,NQ) =Qy Z {y=(/,00) €Q, yo >0}

and so

0 (0:iNT) = Qo™ {y=(/,y) €Q, yu =0}

and with the following compatibility conditions: if O; N O; # &, there exists a diffeo-
morphism J;; : ¢, (O;NO;) — ¢; (0;NO,), of class C* with positive Jacobian such
that:

pj () =Jij (i (x)), VeeO;NO;.

We say that (2 is open lipschitzian if we replace ¢; a C'*°-diffeomorphism from O; onto () with

¢, a bijection from O; onto () such that ¢; and goj_l are lipschitzians for all ;.
By modifying the regularity of functions ¢, ,we can easily guess how to define other regularity

types of the open Q : C*, C*7: k integer and 1 < v < 0,etc.
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2.3 Distributions

Let €2 an open subspace from R" and ¢ : 2 — C.

Definition 2.3.1 (space of functions with compact support)

We define the space of continuous functions on 2 with compact support by:

Cc()={peC(Q); p(x)=0Vr e Q\ K, K CQisacompact},

we denote the support of function ¢ on Q by supp(¢) = {z € Q; ¢ (z) # 0}.
Notation 2.3.1 :

For a compact K C Q ,we pose: D () = {p € C> () ; supp (p) C Q}.
Dk () is Fréchet space when it is provided with the topology which is defined by a family of

seminorms: pr ., (p) = sup  |0% (x)].
|a|<m,zeK

Let D () = UDk () ,the union of all compacts K on Q. We note that D () is space of C'*

functions with compact support.
Theorem 2.3.1 :

D () is dense in LP (). That is to say: there exists a sequence {fiy} C D(Q) such that

fr = fin LP (), or:

Vf e L (Q), Ve >0, Jg € D(Q) such that |f —g|, <e.

We consider D’ (€2) the topological dual of D (£2),that is to say the space of linear continuous
forms on D () .

Here is a simple criteria which verifies if a linear form on D () is continuous:

24



Chapter 2. Some basic Functional Analysis

Proposition 2.3.1 [9]

A linear form u on D () is in D’ (2) if and only if, for any compact K C €, there exists

a positive constant C' and a positive integer k such that:|u (¢)] < C sup [0% (z)], ¢ €
Dk () ,where a = (v, ..., ;) € N is a multi-index, its length (or modf{eg)l?xa =a1+...+ .
If u € D' (), we denote: °u (@) = (1) u (8°¢), p € D(Q).

It is clear that 0“u € D' (2) according to the previous proposition.

Usually, we denote C*by &€ (§2) ; we shall recall that £ (2) is Fréchet space if we provide it with

a topology which is defined by a family of seminorms: |¢||, » = sup [0% (z)| where m
’ |a|<m,zeK

takes N and K takes a countable family of increasing compacts whose thier union aquals €.

We can prove that £’ (£2) the topological dual of £ (€2), is subspace from distributions of £’ (R™)

which are with compact support on €2.;for more details on distributions theory seeﬂgﬂ .

2.3.1 Convolution Product

Let C* (R") the space of functions of C* (R") with compact support, for k& > 0 an integer
and g € L}, (R") .

loc

Definition 2.3.2 (convolution product)

Let f € C°(R"™) , the convolution product of f and g is defined by:
(fxg)(z) = /f (z—y)g(y)dy. (2.6)
R

Theorem 2.3.2 [9]

If feCF(R") and g € L}, (R") then we have fxg € C* (R") and:0% (f xg) = 0°fxg ,a €

loc

N |a| < k.

And if g € C' (R") then f * g € C*!(R") and:

M (fxg)=0"fx0%, a,B €N, |a| <kand |B| <I.
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Theorem 2.3.3 ﬂgﬂ

Let u € D' (R™) and v € £ (R") . Then there exists a unique element from D’ (R™) ;noted
by u * v such that:

(uxv)xp=ux(vxp), p € D(R").

2.3.2 Fourier Transformation

Definition 2.3.3 (Fourier transformation)

Let f € L' (R™), the Fourier transformation of f is given by:

Ff(€) = /eing (x)dz, £ € R"™. (2.7)

Rn”

Definition 2.3.4 (Schwartz space)

A function f is part of the space S (R™) when it is indefinitely differentiable, and if f

and all its derivatives are rapidly decreasing, that is to say that

S(R”)z{feCOO(R”H lim 2%0°f (z) =0, a,BEN”}.

|z| =400

Up next, we will use the derivation operator: D; = —i0; .

Thus, we intuitively visualize why S (R") is invariant by Fourier transformation. Indeed, we

have the following theorem:
Theorem 2.3.4 [9]

The operator f — Ff is an isomorphism from S (R") onto S (R™) which verifies:
F(Djf)=&Ff and F(x;f) = —D;Ff

and we have inversion formula: F~'f = (27)" f ,where f(:) = f (=) .
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Proposition 2.3.2 [9]
Let f,g € S(R™) . Then :

/ngz/ffg,

R R»

fg=02n)™" | FfFy,
o]

F(f*g)=FfFg,

F(fg)=@2m) " FfxFyg.

We recall that S’ (R") is the set of continuous linear formes on S (R") .

If w e & (R"), we define Fu the unique element from S’ (R") such that:Fu(f) = u(Ff),
feSRY).

We define 4 € &' (R") the unique element from S’ (R™) such that: @ (f) = u (f) . feSR).
Theorem 2.3.5 [9]

fe€SR") — Ff € S(R") extends into an isomorphism over L? (R™) . Plus, we have the

Parceval formula: [ fg= (2m)™" [ FfFg, f,g € L* (R").
Rn R"

2.4 Sobolev Spaces

2.4.1 H°*(R")Spaces
Definition 2.4.1 (Sobolev space)

Let s € R. By H® (R™) we denote the space of all functions v € S’ (R") with the property:
(1+1¢%) Fue I* (R,

for the Fourier transformation Fu of u,with |€]* = €24+ & + ...+ £2. H* (R") is called a Sobolev

space. Frequently we will abbreviate H* = H* (R").
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Theorem 2.4.1

The Sobolev space H?® is a Hilbert space with the scalar product defined by

(o), = [ (4 1€P)" Fule) Forgi
R’ﬂ
for u,v € H® with Fourier tranformations Fu and Fuv,respectively. Note that the norm on H*

is given by:

2

full, = { [ (1P 1P ag

n

Proof. It is clear that the space H* is linear space and that (-,-), is a scalar product. That

(-,-), is well defined can be concluded from the Cauchy-Schwartz inequality

2

/ (1+1€2)" Fu (&) Fo@de| < / (14 1€)" | Fu (©) de / (14 1¢2)° |1 Fo () de.

n R

To prove that H*® is complete, let (Uj)j be a Cauchy sequence from H?, i.e., given € > 0, there

exists 7 (¢) € N such that ||u, — ||, < € for all m, k> n(e).

it — ], < & / (14 1€[2)" [Pt (€) — Fu ()2 de < &
Rn

= ((1+ |£|2)% Fu; (§)); is a Cauchy sequence in L?
and because L? is complete then there exists Fuy € L? such that
(1+ |f|2)‘E Fu; (€) — FuginL?,

that is to say that: Ve > 0,3n(e) € N,Vm > n(e), [ (1+\5]2)s|.7:um (&) — Fuo (6)]7de <

n

E2.(1+€%) " Fup (€) € &, let v € S such that Fv(€) = (1+[¢°) " Fuo (), then: Ve >
0,3n(e) € N,Yj > n(e), [ (1+1€%) |Fu; (€) — Fo(€))*de < &2 (u; converges to v in H?).

Rn
Hence, H® is complete. m
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Theorem 2.4.2 [4]

If s >t ,H* (R") injects continuously into H* (R").
For all s, D (R") is dense in H* (R").
H° (R") = L? (R") which is identified by his dual, for all s > 0, we have (H* (R"))" algebrically

and topologically coinsides with H~* (R").

2.4.2 W™P Spaces

In this section we will give some basic results on the generalized Lebesgue-Sobolev space

WP (§2), where Q is a bounded open of R"with boundary T'.

WP () is defined as W™P (Q) = {f € LP (Q);0°f € L* (), € N" |a] < m}.
Remark 2.4.1

Ifm=0, W (Q) =LP(Q).
If p=2, W™2(Q) = H™ (Q)which is an Hilbert space.

W (Q) can be equipped with the norm || f[|yym.»(q)as Banach space, where

||f||Wm,p(Q) = Z HaafHLP(Q) .

o <rm
Theorem 2.4.3
Let Q C R” a boundary open, if W, ” () is the closure of D () in W* (Q) then:
i/ Wy"(Q) can be embedded into Lo (Q)continuously for p < n, and into C° (Q) for p > n.

ii/ There exists a constant ¢ = ¢ (n,p) such that Yu € W, (Q) :

lull 2, ) < IVl uay P <mn.

11 :
sgp ul < clQ»"» [Vl g Aif p>n.
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Theorem 2.4.4 [4]
Let Q C R™ a boundary of class C%1.

i/ Assume that mp < n, ¢ < L& - then there is a continuous and compact imbedding

WmP (Q) — L7(Q), and if p* = —— then we have the continuous embedding W™ (Q) —

—mp

¥ (Q).

ii/ Assume k is an integer, if 0 < k <m — % < ¢+ 1 then W™ (Q) can be embedded con-
tinuously into C** (Q) , with o = m — % —k, and the embedding W™ (Q) — CH8(Q) is

compact for all 5 < a.

Theorem 2.4.5 (trace embedding and extention theorem)

Assuming that 2 C R™ is a bounded domain of class C*, k > 1. Let the application

vu : D (Q) — (D (F))k

u — (u, Oyl ..., 85_1u)

(where &7u ,j =0, ...,k — 1 are ,normal® derivatives of u). Then the map v;u can be extended

(uniquely) to linear continuous map noted by
k-1
-1
v HENQ) = [[HED)
j=0
U — (u, o, ..., &f’lu)

and there exists a linear continuous operator

k-1
such that, if o = (o, ..., pr-1) , v; € [] HF=i-3% ('), and u = Py, then yju = ¢;, j =0, ..., k—1.
7=0

30



Chapter 2. Some basic Functional Analysis

Theorem 2.4.6 [4]

Let © be an open set. If u € H' () then
ut =sup (u,0), v~ =sup (—u,0), |ul=ut+u € H (Q),

and Vu' = X[u>0}vu ,Vu™ = X[u<0]vu :

2.4.3 H*(a,b; X) Spaces

Let X Banach space and —oo < a < b < 4+00. We call vector distribution on (a,b), any
continuous linear map on D (a,b) in X ,that is to say: D' (a,b; X) = L (D (a,b),X).
Assume k > 0 an integer, u € D’ (a,b; X). The map ¢ — (—1)"u (¢™) such that ¢ € D (a,b)
defines a distribution which we note as u(®.

For k > 1 an integer, the space H* (a,b; X) is defined as:

H* (a,b; X) = {uELQ(a,b;X); uw € L? (a,b; X), jzl,...,k}.

=

H* (a,b; X) is a Hilbert space with the norm el o pxy = (Z?:o Hu(j)H;(a b,X)) .

2.4.4 Some formulas of integration by parts:

Let € bounded open set of class C! and I its boundary. The first classic formula of intrgra-
tion by parts is: [ Quv = — [udv + [wvy; , u,v € H' (). From this formula, we can easily
Q Q r

deduce the following:

/Auv:—/Vu.Vv—l—/@,,uv, u€ H*(Q) and v € H' (Q), (2.8)
/(Auv — ulv) = / (Ouv —ud,v) , u,v € H*(Q). (2.9)
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Andif Q =Q % (0,7),® =T x (0,7) then

/(A—&t)uv—/u(A—i—at)v:/(&,uv —u&,v)—/[u(.,T)v(.,T)—u(.;O)v(.,T)],
) ) (2.10)

for u,v € L* (0,T; H* () N H' (0, T; L* () .

2.4.5 Ha Spaces

Let €2 bounded open set and I its boundary. We define the Ha space as:

Ha(Q) = {uec H'(Q); Auc L2(Q)},

[un

2

provided with the norm |[ul| 5, ) = (HuHHl(Q) + ||AuHL2(Q))

Ha () is an Hilbert space. The intrest of this space lies in the following theorem:
Theorem 2.4.7 [4]
Assuming that € is of class C* .

i/ The map
9, : C! (Q) —C([):u— dur

extends into continuous map, defined on Hx (€2) into H~2 ('), noted 9, as well.

ii/ For all u € Ha () and v € H* (Q2), we have the formula:
/Auv = —/Vu.Vv + (81,u,v>H_%(F)7H%(F).
Q 0

2.4.6 Poincaré Inequalities

We consider a fixed, open and bounded subset €2 of R". Let us recall some notations which

are needed below.
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Let £ be a vector in R™ such that || = 1, a,b € R and d = b — a. The set defined by

7q (§) ={r € R"; a < z.£ < b} is called the strip of thickness d in thedirection &.

Proposition 2.4.1 (Poincaré inequality)[]

Assume that € open subset of R" such that there exits a strip 74 (§) with 2 € 74 (§) . Then
2 d’ 2 1
lullza) < 5 MVulllzag), Vu € Hy (). (2.11)

In the case of (2 is a bounded domain, we have the following Poincaré inequality:
Proposition 2.4.2 [4]

Let © open bounded set of R™ and A; (€2) the first eigenvalue of Laplacian-Dirichlet. Then

1
72y < o) IVullfzgy . Yu€ Hg (9). (2.12)

2.5 Generalities on Partial Derivative Equations (PDEs)

A partial derivative equation (PDE) is an equation for some quantity u (dependent variable)
which depends on the independent variablesxq, ..., x,,n > 2, and involves derivatives of u with

respect to at least some of the independent variables.

F (1, ooy Ty 0, Oy 0y oy O, 02w, 02ty oy O ) = 0. (E)

)Xy Y i Y Y Y. T

Note:

1. In applications z; are often space variables (e.g. x,y, z) and a solution may be required in
some region 2 C R? of space. In this case there will be some conditions to be satisfied on

the boundary 9 such that 99 = Q/Q; these are called boundary conditions (BCs).
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2. Also in applications, one of the independent variables can be time(¢ say), then there will

be some initial conditions (ICs) to be satisfied (i.e.,u is given at t = 0 everywhere in{2).

3. The order n € N of the PDE is the order of the highest (partial) direvative coefficient in

the equation.

4. A linear equation is one in which F' is a linear function of u and its derivatives, and it is

called quasilinear of order n if f is linear on all partial derivatives of highest order.

5. If u satisfies the equation then it is a solution of the PDE in  C R<.

Here are some propreties that we will need:

Principle of superposition: A linear equation has the useful property that if u; and wus
both satisfy the equation then so does auy + fuy for any «, f € R. This is often used
in constructing solutions to linear equations (for example, so as to satisfy boundary or

initial conditions; c.f. Fourier series methods). This is not true for nonlinear equations.

If uy, is solution of the linear homogeneous equation and w,, is solution of linear non-homogeneous

equation, then wuy, + u, is the solution of the complet equation.

The general solution of a PDE is the one which makes it possible to find all the solutions of

the equation by giving particular values to the arbitrary functions.

To find particular solutions of PDE, starting from the general solution, we will impose re-

strictive conditions on the set of solutions.
Moving on now to see the most frequent constraints:

1/ Initial conditions (ICs):If u is a function of (z,t) € R? x R giving: u (x,ty) = ¢p ()

OPu(x,
where % = ¢, (2).

2/ Boundary conditions (BCs):There are three types of boundary conditions for well-posed

boundary value problems (BVPs), if u is a function of z € Q C R? :
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e Dirichlet condition: u takes prescribed values on the boundary 02, (u/sq = g);

e Neumann conditions: the normal derivative is prescribed on the boundary 9Q,(2% /0 = g);

e Robin conditions: a combination of u and its normal derivative such as ¢ (z)u + ¢ (z) 2

is prescribed on the boundary 9, (¢ (z) u + & (z) % = g on 9Q).

If g = 0 we have boundary homogeneous conditions.

3/ Conditions at infinity: 2 is unbounded, we must impose conditions with the forme

u(z) ~ ¢ (r) when |z| — oo, such that |jul|, < co.

4/ Conditions on interfaces: if QO = Q; UQ, with Q;NQ, = 90NNy, if we have determined

u on p and €y then detrmining u on 2 needs conditions for u, (resp g—;‘on 0y N 08y).

Second order PDEs:

The general forme of a linear, scalar of second order PDE is:
au + c.Vu+div (AVu) = f, (2.13)

wherea: Q) =R, c: Q — R4 A:Q — R and f:Q — R are the coefficients of the PDE.

In case d =1, u is a scalar and the coefficients are constants, PDE becomes:

0%u e 0%u 0%u
0x?

«

ou

where «, 3,7, 0, € and £ are scalars.

We shall summarize the type of equation (2.14) in the following table:

Classification | Type of ([2.14 Example

B2 —4ay <0 Elliptic Laplace equation on Q: —Au = f

B% —4ay =0 Parabolic Heat conduction(diffusion equation)on @ = R, x Q: du — Au = f

B? —4ay > 0| Hyperbolic Wave equation on Q = R, x Q: Oyu — Au = f
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Chapter 3

On the Regularization of Ill-Posed

PDEs Problems

or a long time it was assumed that mathematical problems which do not satisfy the
Fcorrectness conditions due to Hadamard generally make no physical sense. This point

of view changed and it can be stated (Tikhonov with Arsenin in1976): all problems which are
related to real phenomena have stable solutions if proper regularization methods are applied.
In this chapter we will concentrate on this technique, however, there are other regularization

methods:

1. Discrete methods: Least squares method; Singular Value Decomposition method (SVD).

2. Iterative methods: Landweber method ,see ; Conjugate gradient (CG) type methods,
see ;Truncated Singular Value Decomposition (TSVD).

Iterative methods are used for large values problems. These methods construct a sequence of
iterates approximating-for exact data-the solution; regularization is introduced by stopping the

iteration based on a suitable discrepancy principle.
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3.1 Least Squares Method (LS)

Consider the following system of linear equations:
Az =b (3.1)

where the matrix A € M,,x, (R) and the vector b € R™, our aim is to find solution = € R" for
the system (3.1)) .

As we mentioned in example in the first chapter, for m > n there may be no solutions,
even if there is a solution it will not be unique. But in practical cases we privilegier a solution
and we choose x in order to approuch Az to b.

The LS method leads to minimizing the residual|| Az — bl|, where ||-||, is the Euclidean norm

of R™, which is the sum of the squares (hence the name least squares).

Let A € M« (R) and b € R™ given. The LS problem is given by:

: 2
min Ax — b5 (3.2)

We note by 2 the solution of problem ((3.2)) .

Assume that:

E (z) = || Az — b3

E (z) = (Azx — b)' (Azx — b) = 2' A" Az — bt Az — 2" A'b + ||b])3,

differentiating E (z) yields the necessary condition A*Ax = A'b, necessary the solution of LS

problem 7 verifies this condition, that is to say:
A'Az = A% (3.3)

(3.3]) is called normal equations.
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Proof. We can reformulate the LS problem (3.2)) by:

minJ () = 2'Gx — 2h'z,

reR™

where G = A'A is symetric and h = A'b given vector.

Recalling that the quadratic function is a function defined by

J: R" =R

J(z) = 2'Gx — 2h'x, (3.4)

where G € M, «,, (R) symetric and h € R™a given vector.
Now,we know that if J : R — R is continuously derivable, has a minimum z € R then

J'(Z) = 0. Same thing for J : R™ — R continuously derivable, then:

J(z) < J(x), Vx € R" = V.J (&) = 0, where V is gradient operator.

Ox1’ Oz’ """ Oxn

t
Calculating the gradient of function J represented in 1' VJ (z) = (8‘7 9L 9J ) :

Developping J :

J(@) =" wi(Gr), =2 hi,
oJ n 0
-~ = o —92
— 9 (Gz), + E T B (Gx), — 2hy,

oJ 0 n
and — (Gx), = pr. <Zj:1 gij:Bj) = Gik = Gki-

axk

Then % = (Go), + Y iy Tigri — 2hy, = (Gx),, + (Gx), — 2hy, = 2 (Gx), — 2hy,
It results: VJ () = 2(Gx — h), and if T is a solution of LS problem then GZ = h, it follows:
AtAz = A'b. =

Back to our problem(3.2) , If the columns of A are linearly independent, then A*A is positive

definite, i.e.F is strictly convex and the LS problem has unique solution Z given by: A'Az = A'D.
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Indeed, if A has full rank n then G' = A’A is positive definite,i.e.2'Gr = ||Az|2 > 0,Vz € R",
in other side, if G is positive definite then it is inversible, it follows that thers exists an unique
solution Z which verifies: A'Az = A'.

Geometrically, = is a solution of if and only if the residual b — Az at 7 is orthogonal to

the range of A (r =b— A% L R (A)), this is illustrated in Figurd3.1] .

b= -2

R(A)

Figure 3.1: Projection of r onto R (A)

If the columns of A are linearly independent, the solution Z can be obtained solving the
normal equation by the Cholesky factorization of A*A > 0. However, A’A may be badly
conditioned, and then the solution obtained this way can be useless. In finite arithmetic the
QR-decomposition of A is a more stable approach, for more details see . A powerful tool

for the analysis of the least squares problem is the singular value decomposition (SVD) of A,

see .

Theorem 3.1.1 (Perturbation Theorem )

Let A € M,,xn (R), m > n have full rank n, let  be the unique solution of the LSP(3.2) ,

and let  be the solution of a perturbed LS problem:

rrel]%{n |(A+0A)x — (b4 0b)], (3.5)
x n
where the perturbation is not too large in the sense €: = max <%, H||(STb\|”> < m, where
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ks (A) : = 01/0, denotes the condition number of A. Then it holds that

le — 2l <iﬁi(<?)) + tan () . k3 (A)> +0 (¢ (3.6)

where 6 is the angle between b and its projection ontoR (A).

For a proof see the book of J. Demmel, Applied Linear Algebra.
Proposition 3.1.1 (3]

Let z € R™ a solution of a LS problem. Vy € R™ we have: || Az — b||5 < || Ay — b])3.
Example 3.1.1 (Linear Regression)

Let the line (D) : y (t) = a + ft, the problem is finding a line (or curve) that best fits a set

of data-in the standard formulation-a set of observations (¢;,v;);_,

I 4 (7
We write forme matricielle: 1 t.z “ = 3{2 ,the normal equation is:
&)
1 i, Ym
1 ¢4 n
11 - 1 1 t « 11 - 1 Yo
t it tm 6] - t1 to tm
Lt Ym

m D ti o D i1 Yi
2211 ti 27;1 t? B 2?;1 Yit;

Solving these equations gives the LS estimates of & and § as: « =5 — 8t , B = %,
=1 "%

m m
_ Y . — mot.
where y = Lizi¥i and ¢t = Lt L,
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3.2 Tikhonov Method

Tikhonov regularization is the most used method for solving inverse problems that are
ill-posed.

We assume throughout this section that K is a compact operator, let the inverse problem
Kr=y, K: X —Y where X and Y are Hilbert spaces. We make the assumption that there

exists a solution z € X of the unperturbed equation Kx =y .

In other words, we assume that y € R (K). The injectivity of K implies that this solution is

unique.

In practice, the right-hand side y € Y is never known exactly but only up to an error of say,

§ > 0. Therefore, we assume that we know 6 > 0 and y° € Y with Hy — y‘SHY < 4.

It is our aim to solve the perturbed equation
Ka® = 4. (3.7)

in general, (3.7) is not solvable because we cannot assume that the measured data y° are in
R (K). Therefore, the best we can hope is to detrmine an approximation z° € X to the exact

solution = and z° should depend continuously on the data 7°.

In other words, it is our aim to construct a suitable bounded approximation R : Y — X of the

(unbounded) inverse operator K': R (K) — X.
Definition 3.2.1 (regularization strategy)

A regularization strategy is a family of linear and bounded operators
R,:Y =X, ,a>0

such that

limR, Kz =x forall z € X,

a—0
that is, that operator R, /K converge pointwise to the identity.
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From this definition and the compactness of K, we conclude the following:
Theorem 3.2.1

Let R, be a regularization strategy for a compact operator K : X — Y where dim X = oo.

Then we have:

(1) The operators R, are not uniformly bounded; that is, there exists a sequence (a;) C Rt

with lim || R,

j—oo

”L(Y,X) = 0.

(2) The sequence (R, K x) does not converge uniformly on bounded subsets of X; that is, there

is on convergence R, K to the identity I in the operator norm.

Now, we define 2%9: = R,y° as an approximation of the solution = of Kz = y. The error

splits into two parts, by the triangle inequality:
29 il < [1Ratf ~ Ratl] + 1Raty = ol < IRal 1 — 1] + | Ru — 2]

and thus ||z*° — 2| < §||Rally.x) + [[RaKz — 2| . The first term on the right-hand side
describes the error in the data multiplied by the“condition number”||R,|| of the regularized
problem, which tends to oo as a tends to 0, by Theore The second term denotes the
approximation error ||(R, — K ')y| at the exact right-hand side y = K=, which is by the

definition of regularization strategy tends to 0 with «. Figurd3.2] illusrates the situation:

errol 1

Figure 3.2: Behavior of the total error.
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We need a regularization strategy in order to keep the total error as small as possible, this
means that we would like to minimize § || Ral[},y x) + [ RaK2 — || . A regularization strategy

d — «a (0) is called admissible if « (§) — 0 and for every = € X :

sup {|Raer’ — 2| v° € V.|| Kz — |, <6} —0, 6§ >0 (3.8)
y°ey

In Tikhonov regularization, the approximate solution x, € X is defined as minimizer of
the quadratic functional:

1Kz = ylly + ol (3.9)

the basic idea of Tikhonov regularization is minimizing the functional in(3.9) , means to
search for some z,, providing at the same time a small residual | Kz — y||?> and a moderate
value of the penalty function z +— ||x||§( . The existance and uniquness of the minimum is

assured by the convexity of 2 — ||z/% .

If the regularization parameter « is chosen too small, (3.9) is too close to the original
problem and instabilities have to be expected. If « is chosen too large, the problem we solve
has only little connection with the original problem. Finding the optimal parameter is a tough

problem.

Theorem 3.2.2

Let K : X — Y be a bounded linear operator and let & > 0. Then for each y € Y there

exists a unique z, € X such that
1Kz —yl* + allza]® = inf {[|Kz =yl + o 2]}, (3.10)
the minimizer z, is given by the unique solution of the equation
axr, + K*Kz, = K'y, (3.11)

and depends continuously on v .
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Proof. From the equation

1Kz —y|” + alzl* = [|Kza — ylI* + allzal® + 2Re (2 — 2o, azq + K* (K20 —y))

2 2
HIE (2 =)™ + alz = zall7,

which is valid for all z € X, we observe that the condition(3.11)) is necessary and sufficient for
T, to minimize the Tikhonov functional defined by (3.10) .

Consider the operator K, : X — X, given by K,: = al + K*K. Since
alz|® < alle|® + [|Ke|® = Re (Kow,2) 2 € X,

the operator K, is strictly coercive and has a bounded inverse K;' : X — X ,we can prove

that K, has a bounded inverse by the next theorem. m

The equation (3.11]) , of course, coincides with the Tikhonov regularization introduced in

the following theorem:
Theorem 3.2.3

Let K : X — Y be a compact linear operator. Then for each o > 0 the operator K, : X —

X, given by K,: = al + K*K has a bounded inverse. Furthermore,if K is injective then

Ry: = (ol + K*K) ' K*

describes a regularization scheme with || R ||,y x) < #&

3.3 Regularization Method of Fourier

3.3.1 Homogenous Retrograde Heat Problem

We presente this method passing by an ill-posed problem which is homogenous retrograde

heat problem, we mentioned it before in example (1.3.8)) .
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In general, the solution of this problem exists but with restrictive conditions on the final
situation. We find the exacte solution and we search for an approuch one using the regularization

of Fourier. Let the following problem:

Ut = Ugy

u(@,T) = ¢r(z)

—oco<r<+oo, 0<t<T. (3.12)

We search the solution u of this problem by the Fourier transformation, we can rewrite the

problem (3.12)) as:

% (q,t) — T4 (2,t) = 0
u(z,T) = pr ()
F(% @0 -2 t))(g) — F(0) =0
Fu(n,T)) g = F(or <x>>@
F (5 @) = F (52 © (3.13)

F(u(z, T)) =F (¢ (x))(g)

We know that: F (u (z,t)) e %%y (x,t) dx

- \/Lg* fR
= F (% (x, t))(é) = \/%? Jpe € (2, 1) do = \/127 Je 2 (e u(z,t)) d, thus

ou 0
F (8t (z, t))(g) = 0t.7—"( u (z, ))(5). (3.14)

We choose supp(u) C R = 3R > 0 such that supp(u) C [-R, R], so

F (g%‘ (z, t)) 0" \/%7 ffR e*ifmg%‘ (z,t) dz, using integration by parts on \/Lz? f_RR e~ 0 (g ) d

we find:

R
\/—2_77/R6_i£x8_z (x,t)der = o [e 7 u (z,1)] —i—zf/ (x,t) dx}
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and because u (—R,t) = u (R, t), we have:

ou ) / B 8u
F | =— (z,t ’5‘”
(31’( ) © Vor

— it (\/_/ (z,1) dx) = i{F (u(z,1)) g

0“u

= F (6’ 5 (7, t))({) =—EF (u (@,0)) (e -

Replacing (3.14) and (3.15) in (3.13)) , we obtain:

SF (u(x,1)) )+ EF (u(z,1)) e = 0 _ o (€,1) + 20 (&,t) =

F(u (-TaT))(g) =F (¢r (x))(g) (&, T) =¢r(¢)

from the equation 0,4 (¢,t) + €24 (€,t) = 0, we have: 6;%5{;) =&

= [ 2RED Gt = [ —2dt = @ (€,1) = e e (€), so

u(&,T = e T¢ )
&%) © L =T (e),
B(ET) = ¢ (6)

1 B
= i e %%y (x,t) dx
Ver g/_R (@9)

(3.15)

thus @ (£,t) = ¢T3, (€), where 4 (€,t) is the Fourier transformation of u (x,¢) such that

u(z,t) = mfroo erq (&,1)de and 0 (€,0) = ¢(€) = e Tor (€), thus the solution of the

problem (3.12]) is:
1 oo i€x _£2(T—t)
u(w,t) = \/—2—7/ e T Dor (¢) de.

3.3.2 Regularization of Fourier and Error Estimation

(3.16)

We assume for ¢ = T' the exacte solution @7 (x) and the perturbed solution is ¢% (), then

there exists a contante § > 0 such that: ||ng — ¢%|| < 0. We note ¢ (z) = u(z,0) and C a

w= (1@ a+e ) < vs >0

We have [|ul| .2y = ||| j2(gy, Where u (z,t) is the exacte solution given by (3 .
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Let:
) = o= [T € vt (3.17)
u x,t) = — e~"e max .
0,&max \/% - SOT X
be the approuch solution to the exacte one u, such that &, is a positive constante and Y pax

is the characteristic function of the compact [—&max, Emax)s and usg,,. (z,t) exists, unique and

stable. We have:

(T—t)s s
Lyt —a In € 2
o) = s (0 < 837 (0 E) 7 1 ( h D)7 ) (3.18)

where & = (ln <(%)% (ln %7)_%))§ and ln%j > 1, Vs > 0, this chiose of &« is to find a

stability estimation of Holder for the best approuch. For the proof, see[14].
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Chapter 4

Application: Inverse Estimation of the

Initial Condition for the Heat Equation

r I \he direct (forward) problem consists of a transient heat conduction problem in a slab

with adiabatic boundary condition and initially at a temperature denoted by f (x).

The mathematical formulation of this problem is given by the following heat equation:

%:D% 0<z<L,t>0,
u(0,t) =0 t>0, (4.1)
u(L,t)=0 t>0,

u(z,0)=f(z) 0<x<L,

0
where u (z,t): temperature, f (z): initial condition, x: spatial variable, t: time variable and D
denotes the dispersion coefficient.

For the direct problem where the initial condition f (z) is specified, the problem given by
equation (4.1]) is concerned with the determination of the temperature distribution u (z,t) in

the interior region of the solid as a function of time and position.

Now, for the inverse problem, the initial condition f (z) is regarded as being unknown.

In addition, an overspecified condition is also considered available. To estimate the unknown
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coefficient f (), the additional information

u(e,T) = g(2) (4.2)

is given at time 7', over a specified space interval 0 < x < L. We note that the measured over-
specified condition u (x,T) = g (z) should contain measurement errors. Therefore the inverse
problem can be stated as follows: by utilizing the above mentioned measured data, estimate
the unknown function f (z).

In this chapter, we are going to demonstrate some numerical results for determining f (z)
in the inverse problem (4.1) — (4.2). But first let us know the algorithm used for solving the
problem.

The solution of the direct problem for a given initial condition f (z) is explicitly obtained using

separation of variables, for 0 < x < L, t > 0 is:

u(a:,w:/o K (2.5.t) £ () dy.

where

2 b n7r2t
K ont) = 7 3o sn () sn ()

n=1
is an infinite series. Numerically, we can’t handle infinite sums. Limit the sum to a finite

number of expansion terms 100 which guarantees the convergence of the series. So

100

2 n7T2 t
K lont) = 23 e 5 g (25 in (T2,

Thus initial inverse problem is reduced to solving integral equation of the first kind:
u(z,T) / K (z,y,7T) f (y) dy. (4.3)

The first step in the numerical treatment used in this research consists in discretiztion of

equation (4.3) by the quadrature formula. The interval [0, L] can be subdivided into equal
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intervals of width h = Ay = % Since the variable is either y or z, let xg = yo =0, ay = yy = L
and z; = iAy (i.e.x; = y;), y; = jAy. Also denote f (x;) as f;, g (x;) as ¢; and K (z;,y;,T) as
Kij~

Now if the trapezoid rule is used to approximate the given equation, then:

g<x>:/0 K (2,9.T) f (y) dy

~ Ay |G 000, T) ) 4 B (o0, T) S () 4+

1
+K ('r7yN—17T) f (yN—1> + §K (JI, YN, T) f (yN)
or moretersely:

1
g(l‘) :Ay §K(x7y07T)fO+K($7yl7T>fl+

1
+K (mayN—hT) fN—l + §K ('Tay]\ﬁT) fN:| .

There are N + 1 values of f;,as 7 =0,1,2,..., N, therefore the equation becomes a set of N + 1

equations in f;
1 1
gi = Ay iKz'ofo + Kafi+-+ Kynv-nyfvo1 + iKiNfN

that give the approximate solution to f (z;) at x = x;. This may also be written in matrix form

KF=G (4.4)
where K is the matrix of coefficients
_%K(xo,yo,T) K (zo,11,T) %K(xo,yN,T)-
K = Ay sK (1,90, T) K (z1,11,T) -+ 3K (21,yn,7T) |
3K (v, y0,T) K (wnpn, T) -+ 5K (an,yn, T)|
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F' is the matrix of solutions F = [f (yo),---,f(y),---,f(yx)] and G is the matrix of the

nonhomogeneous part G = [g (z0) -+ g () -~ ,g (ax)]”

The problem (4.4) is ill-posed in the sense that the inverse operator A~! of A exists but it

is not continuous. Hence, although the problem 1) has a unique solution, solving it directly
will not give a right solution. Indeed, the linear operator A is so badly conditioned that any
numerical attempt to directly solve (4.4) may fail. So we go to regularization methods, see

section 2 in chapter 3 (3.2) .

4.1 Numerical Examples:

We use the L., error norm and the relative error to measure the difference between the nu-

merical and analytical solutions. The L, error norm is defined by: Lo, = max |f (z;) — f (z;)

0<j<N
N ~ 2
> | @)= f ()|
and the relative error RE is defined by: RE = |Z=-———— where z; are test points and
> 1f ()P
=0

N is the total number of uniformly distributed points on [0,1]. f (z) is the exact solution and
f (x) is the numerical solution. In our computations, we always take N = 40. The noisy data
{ q° (mj)}‘ ;V:O were assumed to contain some random errors. However, in practical applications,
the reduplicated measurements are fairly difficult and even are impossible. Hence, in the next,
we consider the deterministic errors.

Assume the observed data has the following noised form: ¢°(z;) = g(z;) + sin (107x;),
j=0,1,2,--- /N.

Example 4.1.1 In this example let us consider the following inverse problem:

u—%u §<a<1,t>0,
w(0,t)=0 t>0,
w(l,)=0 t>0,
u(@,0)=f(r) 0<z<1,
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the over specified condition: u (z,1) = g (z) = e~ sin (7).

The analytical solution of this example is
u(z,t) =e " tsin(rz) and f(z) = sin (1)

The regularization parameter « is chosen using Newton’s method (see [L1]), the Lo error
norm and relative error RE are presented in Table . Also, the corresponding errors between
the analytical and the estimated functions f (x) in z; = 0.1j when ¢ = 0.1 are listed in Table
4.2 .

) a Lo RE

0.1 5.73185 x 1071 2.14202 x 107°  2.14247 x 10~°
0.05 8.72765 x 1071°  3.26344 x 1076  3.26231 x 1076
0.01 2.54233 x 107  9.53403 x 10°7  9.50310 x 1077
0.001  9.81035 x 10716 3.69100 x 10~7  3.66705 x 1077

Table 4.1: The error norm and relative error RE for f(x)

Exact f (z;)

Numerical f (z;)

f(x;) = f(z))

J

1 0.309016994374947
2 0.587785252292473
3 0.809016994374947
4 0.951056516295154
) 1

6 0.951056516295154
7 0.809016994374947
8 0.587785252292473
9 0.309016994374948

0.309016994374947
0.587772658514349
0.808999662566453
0.951036138131767
0.999978579729737
0.951036139325882
0.80899966217245
0.587772660016492
0.309010373872585

6.621267118533 x 107°
1.259377812457 x 107°
1.733180849472 x 107°
2.037816338640 x 10~°
2.142027026342 x 10~°
2.037696927137 x 10~°
1.733220249233 x 107°
1.259227598149 x 10~°
6.620502362109 x 10~°

10 1.22464679914735 x 10716 6.12310280754787 x 10717 6.123365183926 x 10717

Table 4.2: The analytical and numerical results for f(x)

Example 4.1.2 Let us consider the following inverse problem:

u— pPy g <a<1,t>0,
u(0,t)=0 t>0,
u(l,t)=0 t>0,

u(w,()) = f(.%)

0<z<1,
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the initial condition
2x 0<z<0.5

f(x) =
2(1—x) 05<zx<1

where D = 0.01, the exact solution is given by using the separation of variables

ulz,t) =) : 5 COS <<2n T Um(2e - 1)) el=Pm* @t 1)t
2 (2n+1) 2

The experimental data u (z,T) = g (z) (measured temperatures at 7' = 1) is obtained from

the exact solution by taking the sum of the first one hundred terms. The L. error norm

and relative error RE are presented in Table . Also, the corresponding errors between the

analytical and the estimated functions f (z) in z; = 0.1j when § = 0.1 are listed in Table .

) « L RE
0.1 0.00036282 0.0634335 0.0312757
0.05 0.00021836 0.0611471 0.0287479
0.01 0.00005996 0.0547497 0.0237954
0.001 0.00001008 0.0478144  0.0203349

Table 4.3: The error norm and relative error RE for f(x)

Jj  Exact f(z)) Numerical f (z;) f(z;) = f ()

1 0.2 0.203285479287456 0.0032854792874559
2 0.4 0.399171118110754 0.0008288818892464
3 0.6 0.590641061060895 0.0093589389391055
4 0.8 0.818696676546333 0.0186966765463328
5 1 0.945250250199793 0.0547497498002067
6 0.8 0.818696676542829 0.0186966765428294
7 0.6 0.590641061065385 0.0093589389346149
8 0.4 0.399171118106812 0.0008288818931877
9 0.2 0.203285479288568 0.0032854792885684
10 0 3.39804782379576 x 10717 3.39804782379576 x 1017

Table 4.4: The analytical and numerical results for f(x)

The graph of the analytical and the estimated functions for f(x) with § = 0.1 for Example 1 is
given in Figurdd.1], for Example 2, the graph is given in Figurdd.2]. This chapter is based on

the article )
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Comparison between the exact results and numerical results, 6=0.1 for Example 1
T T T

Exact

& Numeric [

=2
=

f3) and its approximations
[}
m
T

=

0.2

0.1

Figure 4.1: The comparison between exact and numerical solutions of f (x) with noise 6 = 0.1,
for Example 1.

Comparison between the exact results and the numerical results, §=0.1 for Example 2
1 T T T T T T T

+ Exact
0.3 4 Numeric []

081 .

0.7

0.6

0.5

04

f(x) and its approximations

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.2: The comparison between exact and numerical solutions of f (z) with noise § = 0.1,
for Example 2.
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Conclusion

sually, an inverse problem is a situation in which we don’t know the system (informa-

Utions about matrials, initial conditions...), most of these problems are modeled (which
is a difficult step, made with specialist in the studied field) in systems of partial defferential equa-
tions, hence the interest in deepening of PDEs notions (existence, regularity,...etc) something
we provided in this memory.

Also, we presented in this memory some examples to explain ill-posed inverse problems
and some regularization methods (LS method, Tikhonov method and method of Fourier). In
fact, this work is indexed on regularization methods (insurance of existence and uniqueness of
solution) and an application on estimation of the initial condition for heat equation.

Why this estimation?

In engineering, we have to solve heat transfer problems involving diffrent conditions such as cyl-
indrical nuclear fuel element which involes internal heat source. Knowledge of temperture field
is very important in thermal conduction, this estimation is to investigate the inverse problem
in the heat equation involving the recovery of the initial temperture from measurements of the
final temperture.

Eventually, inverse problems have a very wide domain, they constitute a branch of math-

ematical research whose importance continues to grow.
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Appendix: Index of Symbols

The various symbols used throught this thesis are explained below:

Symbol  Explication

R Real numbers.

R? Tow-dimensional space.

R3 Three-dimensional space.

|-l Norm.

div Divergence.

A Vector product.

\Y Nabla.

a.e almost everywhere.

XE characteristic function.

Ck The set of k-differentiable functions.

C> The set of infinitly differentiable functions(smooth functions).
Li,.(R™)  The set of locally 1-integrable on R" functions.

R (A) range of A.
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Abstract

Inverse problems for partial differential equations (PDEs in short) arise naturally in many
areas, in geophysics, oil prospecting, in the design of optical devices and many other areas.

Many of these problems may be regarded as the study of attempting an inversion of a

mapping from the coefficients of PDEs to trace of same PDEs solutions on the boundary.

This leads to the study of the existence, uniqueness and stability.

Key words: Inverse problems, PDEs, existence and uniqueness, stability, ill-posed
problems, regularization methods, Heat equation.
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Résumeé

Les problemes inverses pour les équations aux dérivés partielles (EDP en abrégé) se posent
naturellement dans nombreux domaines, en géophysique, en prospection pétroliere, dans la
conception de dispositifs optiques et dans de nombreux autres domaines. Nombre de ces
problemes peuvent étre considérés comme [’étude de la tentative d’inversion d’un mappage
des coefficients des EDP a la trace de solutions d’EDP sur la frontiere. Cela conduit a

[’étude de 1’existence, de [’unicité et de la stabilité.

Mots clés: Problemes inverses, EDP, existence et unicité, stabilité, problemes mal-
posés, méthodes de régularisation, équation de Chaleur.
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