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الحاضر على  الوقت  المزارعون في  يعتمد  الزراعي.  المجال  (Smart Farming) هي مستقبل  الذكية  الزراعة  تعتبر 

التكنولوجيا لإكمال مهامهم الميدانية اليومية وتحسين جودة المحاصيل. من أهم جوانب الزراعة ملاءمة الأرض ، والتي 

تصف مدى ملاءمة أو عدم ملاءمة الأرض لنمو النباتات. عادة ما يتطلب تحديد صلاحية الأرض خبراء للتنبؤ بها 

أنه أداة فعالة  الذكاء الاصطناعي (Artificial Intelligence) في العصر الحديث  بشكل صحيح. ومع ذلك، أثبت 

للتنبؤات واتخاذ القرارات. مدعومًا بإنترنت الأشياء (Internet of �ings) والكميات الهائلة من البيانات المجمعة 

(Big Data)، يستطيع الذكاء الاصـطـناعي التعامل مع مثل هذه المهمة وتخفيـف العبء على المزارعيـن والخبـراء.

في هذا العمل ، نستخدم إنترنت الأشياء مدعومة بالذكاء الاصطناعي لتطوير نظام قوي وموثوق في نفس الوقت 

لتحليل البيانات المستنبطة من الحقل والتنبؤ بمدى ملاءمة الأرض بناءا على حالة الطقس و التربة. تتم العملية بنشر 

النظام خوارزمية  النظام. يستخدم  إلى  والتربة  الطقس  والتي ترسل معلومات  الزراعي،  الحقل  استشعار في  أجهزة 

التعلم العميق بالذاكرة (Long-Short Term Memory) للتنبؤ بمدى ملاءمة الأرض. و قد أظهر النموذج المقترح 

نتائج واعدة قد يكون لها تأثير على الزراعة في الجزائر من أجل تحسين و زيادة المحاصيل الزراعية من خلال حسن 

إختيار واستغلال الأراضي.

ملخص

الأشياء،  إنترنت  الضخمة،  البيانات  البيانات،  تحليل  الأرض،  الزراعة، ملاءمة  الذكية،  الزراعة  المفتاحية:  الكل�ت 

التعلم العميق، الشبكة العصبية المتكررة الإصطناعية، الذاكرة طويلة المدى الإصطناعية.
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Abstract

Smart farming (SF) is considered to be the next step for the agricultural field. Farmers nowadays

rely on technology to complete their daily field tasks and improve crops quality. One of the most

important aspects of agriculture is land suitability, which describes how suitable or unsuitable

the land is for plants to grow. The decision concerning land suitability usually requires experts

and mathematical tools to predict it correctly. However, in modern era Artificial Intelligence

proved to be an efficient tool for predictions and decision making. Empowered by the Internet

of Things (IoT) and the collected huge amounts of data (Big Data), AI is capable of handling

such task and ease the burden on farmers and experts. In this work, we make use of Internet of

Things combined with Artificial Intelligence to build a system that is both robust and reliable for

applying data analytics and predict land suitability based on weather data. We deploy sensors

on the farming field, that report back weather and soil information to the system. The system

then uses Deep Learning algorithm (Long-Short Term Memory model) to predict land suitabil-

ity. Our model showed promising results that may have an impact on agriculture in our country.

Keywords: smart farming, agriculture, land suitability, data analytics, big data, internet of

things, deep learning, recurrent neural network, long-short term memory.
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Résumé

L’agriculture intelligente (Smart Farming) est considérée comme la prochaine étape pour le do-

maine agricole. De nos jours, les agriculteurs comptent sur la technologie pour accomplir leurs

tâches quotidiennes sur le terrain et améliorer la qualité des cultures. L’un des aspects les plus

importants de l’agriculture est l’aptitude des terres, qui décrit dans quelle mesure la terre est

appropriée ou inadaptée à la croissance des plantes. La décision concernant l’aptitude des ter-

res nécessite généralement des experts et des outils mathématiques pour la prédire correcte-

ment. Cependant, à l’ère moderne, l’intelligence artificielle s’est avérée être un outil efficace

pour les prédictions et la prise de décision. Forte de l’Internet des objets (IoT) et des énormes

quantités de données collectées (Big Data), l’IA est capable de gérer cette tâche et d’alléger

le fardeau des agriculteurs et des experts. Dans ce travail, nous utilisons l’Internet des ob-

jets combiné à l’intelligence artificielle pour construire un système à la fois robuste et fiable

pour appliquer l’analyse de données et prédire l’aptitude des terres en fonction des données

météorologiques. Nous déployons des capteurs sur le terrain agricole, qui rapportent les infor-

mations météorologiques et pédologiques au système. Le système utilise ensuite un algorithme

d’apprentissage en profondeur (modèle de mémoire à long-court terme) pour prédire l’aptitude

des terres. Notre modèle a montré des résultats prometteurs qui pourraient avoir un impact sur

l’agriculture dans notre pays.

Mots clés : agriculture intelligente, agriculture, adéquation des terres, analyse de données, big

data, Internet des objets, apprentissage en profondeur, réseau de neurones récurrents, mémoire à

long-court terme.
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Chapter 1

General Introduction

1.1 General context

For many years, agriculture represents the main source of food for the human being and

animals due to its importance. Government and countries look always to enhance their profit

from it in order to increase the incoming resources and to cover the population needs. With the

technological development, we could enhance more and more the farming field. In fact, the

incorporation between traditional agriculture and technology produces a new concept untitled

Smart agriculture. Smart agriculture is an idea that stands on using the Internet of Things (IoT)

technologies in traditional agriculture. This combination will make field monitoring much eas-

ier than ever, especially in the production chain process. In the traditional vision of agriculture,

farmers cover almost every operation including aggregation, crops gathering, and so on. Be-

sides, experts suffer from limits on making studies on some phenomena or diseases that appear

on the crops itself.

The new vision of agriculture stands on the idea of installing some devices on the field to

work on different scenarios including those that depend on the climate. The generated data

from the devices could help experts and data analysts in the decision-making process. Also, it

could report on the circumstances about any phenomena whether related to the seeds or the

studied area.

1



General Introduction

1.2 Problematic and Objectives

One of the major issues in agriculture, and which farmers strive the most for, is land suitability

prediction. In order to have the best quality of crops, farmers need to know exactly when and

where to plant their seeds, considering different factors and criteria of water, weather, soil and

fertilization. Achieving the correct prediction often requires hard studies from experts and a lot

of historical data. For this matter, technology comes in help. With the latest tools and devices,

farmers can finally know more about their lands and crops with less efforts than traditional

ways. Thus, our work is about delivering an AI system with IoT technology that provides studies

about the farming field, and makes prediction about land suitability.

1.3 Outlines

Our work is organized as follows:

In the 2nd chapter, we talk about state of the art of Smart Farming. We start by giving some

definitions of smart farming and Internet of things, its architecture and some devices and sen-

sors used in IoT. We also discuss some important concepts such as Farm process, Big data, Data

analysis/analytics and Data streaming.

In the 3rd chapter, we discuss some related works in smart farming. People have been work-

ing on this field since the dawn of IoT, to solve different issues that farming field suffered from

in the past.

The 4th chapter is mainly about Design and Contribution. We present our proposed archi-

tecture to solve the issue of land suitability prediction, the proposed architecture is explained

along with UML diagram and the used deep learning algorithm.

Implementation and results are discussed in the 5th chapter. We present the development

tools and frameworks, with screenshots of the system (the web application). Then we discuss

and analyse the obtained results.

Finally, we conclude our work in the 6th chapter

2



Chapter 2

Smart Farming state of the art

2.1 Introduction

In our modern era, some nations are still suffering from hunger, the estimated number

of people who go to sleep hungry is 795 million. Despite the decrease it witnessed in the last

decade by 167 million, the situation still requires more attention for Agricultural Deve et al.

[2015]. As we are facing a great increase on global demand in the next 40 years, we are required

to improve our crop production by 60% Shankar et al. [2016]. And this seems to be a challenge

facing humanity, which needs modern and latest technologies. Smart Farming seems to be the

necessary alternative to traditional farming, that delivers sustainability and improves produc-

tivity to meet people needs in the most efficient way.

2.2 Smart farming Definition

As defined in Krintz et al. [2016]: "Smart farming is hybrid cloud technology designed to

enable small-holder growers and other agricultural professionals, researchers, and students to

use analytics to improve environmental sustainability and efficiencies in food production".

In more technical words, smart farming is defined as the combination and application of

modern Information and Communication Technologies (ICT) into agriculture, providing the

agricultural field with an infrastructure to leverage advanced technology, including cloud and

its services, big data, robotics, automation and the Internet of Things (IoT) for tracking, moni-

toring, automating and analyzing operations Gorli [2017].

3



Smart Farming state of the art

Figure 2.1: Technologies involved in Smart Farming

Applying all these technologies helps on establishing a machine-to-machine communica-

tion for deriving data. The derived data will be fed to a decision making or decision support

system that will provide farmers with a clear monitoring over their fields to a very detailed level.

or instance, measuring variations within a field in a precise way and adapting the strategy ac-

cordingly, this can help farmers in increasing the effectiveness of fertilizers and pesticides and

use them wisely. Smart farming also helps farmers in observing animals and their needs, to pro-

vide the necessary nutrition and monitor their health to prevent diseases. SF is widely used in

the USA, almost 80% of farmers adopted its techniques. However, that’s not the case in Europe,

only 24% of them are using it Gorli [2017].

Smart farming is mainly powered by IoT. Connecting machines and sensors to make farming

processes and tasks carried with data and automatation.

2.3 IoT definition and architectures

Human life went through different waves which are agriculture, industry and information

technology Jabraeil Jamali et al. [2020]. However, a new wave seems to appear in our life. Nowa-
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days, new technology allows everything to be connected to everyone in any place at anytime,

that technology is known as the "Internet of things". In this section we elaborate what IoT is and

its architecture.

2.3.1 Definition

According to Rayes and Salam IoT can be defined as: "the network of things, with clear

element identification, embedded with software intelligence, sensors, and ubiquitous connectivity

to the Internet" Rayes and Salam [2017].

For a simpler definition IoT can be considered as the intersection and interoperability of

things, internet, and data Jabraeil Jamali et al. [2020]. The internet has evolved from a net-

work of computers only to a network of devices of all kinds and sizes, smart phones, vehicles,

different home appliances all connected and communicating & sharing information based on

specific protocols, positioning, tracing, safe & even personal real time online monitoring, online

upgrade, process control & administration Patel et al. [2016].

IoT is now considered to be an essential part of almost every intelligent system, due to its

huge impact on different fields. This claim is powered by McKinsey’s report on the global eco-

nomic impact of IoT, the annual economic impact of IoT in 2025 would be in the range of $2.7

to $6.2 trillion Manyika et al. [2013].

2.3.2 Architectures

Different technologies are merged into the Internet of Thing such as sensors, actuators,

cloud services and IoT protocols. Thus IoT architecture consists of different layers which serve

to illustrate the communication and information exchange between the various technologies.

In this section we discuss IoT architecture and the functionality of each layer.

IEEE standard association considers three layers for IoT architecture Zouai et al. [2019], as

explained below:
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Figure 2.2: Internet of Things architecture

• Perception layer: sometimes referred to as Sensing layer, is the lowest level on IoT archi-

tecture Patel et al. [2016]. Perception layer is responsible for real-time sensing that allows

data collection from the surrounding environment for further process, analysis and shar-

ing. Environment sensing is achieved through smart objects integrated with small elec-

tronic devices called sensors Patel et al. [2016]. Sensors require connectivity to the upper

layer, and this is established through Local Area Networks (LAN) such as Ethernet and

Wi-Fi connections, or Personal Area Networks (PAN) such as ZigBee, Bluetooth and Ultra

Wideband (UWB).

• Network layer: perception layer produces massive volume of data from the physical en-

vironment Patel et al. [2016]; transferring and forwarding this data requires efficient con-

nectivity and protocols. The network layer ensures the secure transmission of information

from the sensing layer to the application layer Jabraeil Jamali et al. [2020]. This layer man-

ages packets forwarding and routing using different technologies such as wired, wireless

and satellite connections which are built to support the communication requirements for
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latency, bandwidth, security and delivering information to the addressed device or appli-

cation Patel et al. [2016].

• Application layer: this is considered as the top layer of the IoT architecture Patel et al.

[2016]. As its name indicates, it contains the software part of the system Zouai et al. [2019].

This layer offers different services that are destined for the user; they may vary depends

on the needs from health monitoring (E-healthcare) to transportation and so on.

2.4 Type of sensors

Sensors are small electronic devices that can detect and acquire information from physical

objects on the environment Merizig et al. [2018] and transform it into an electrical signal. The

acquired data is then transferred to a computer. Most sensors take analogue inputs and deliver

digital outputs Rayes and Salam [2017], sensing inputs can come from a variety of sources such

as light, temperature, motion and pressure, etc.

Some sensors that are used in the Internet of Things:

• Temperature Sensors: these sensors are used for measuring the amount of heat energy

in a source, changes are then converted into data and reported to the system. Machin-

ery used in manufacturing often requires environmental and device temperatures to be

at specific levels. Similarly, within agriculture, soil temperature is a key factor for crop

growth.

• Humidity Sensors: these sensors allow the measuring of the amount of water vapor in the

atmosphere of air or other gases. They are planted on different devices: air conditioning

(AC), heating...etc. Humidity sensors are used in both industrial and residential domains,

meteorology stations and hospitals.

• Pressure Sensors: these kind of sensors are responsible for detecting changes in gases

and liquids, then they report the change to the system. Pressure sensors are used in leak

testing, water manufacturing systems as they can sense fluctuations in pressure.
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• Proximity Sensors: they allow the detection of non-contact objects that are near the sen-

sor. These sensors are found in parking lots in companies, malls and airports for monitor-

ing available parking slots. Another field of use is security, proximity sensor are useful for

detecting movements in an area.

• Level Sensors: Level sensors are used to detect the level of substances including liquids,

powders and granular materials. Many industries including oil manufacturing, water treat-

ment and beverage, and food manufacturing factories use level sensors. Waste manage-

ment systems provide a common use case as level sensors can detect the level of waste in

a garbage can or dumpster.

2.5 Traditional farm and smart farm

Traditional farm relied more on physical human efforts. Farmers used to handle all tasks

manually and manage everything themselves. Fortunately, the advancement technology had

seen in the last decade, brought so much to the field. In this section we explore the impact of

technology on the agricultural domain.

2.5.1 IoT in Agriculture

Agriculture plays an important role in production and livelihoods. In order to increase

productivity and enhance crops quality, IoT technology was adopted and merged into agro-

industrial and agriculture Talavera et al. [2017]. IoT can add value to all areas of farming and

agriculture from growing crops to forestry. Applications may surpass ground floor automation

to decision making in the domain of agriculture Vincent et al. [2019].

The big spheres where IoT systems can revolutionize agriculture are: Precision farming, Agri-

culture drones, Live stockmonitoring and Smart greenhouse.

Precision farming

Precision farming is the process of making agriculture more accurate, precise and con-

trolled for animals husbandry and crop production. This is achieved through the use of IoT de-
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vices such as sensors, autonomous vehicles, automated hardware, control systems, and robotics.

In this sector IoT offers services like soil moisture probs and optimization of VRI (Variable

Rate Irrigation), etc. This had huge impact on improving crop production.

Agriculture drones

Drones are used to control the field and plant growth, by taking images that can be useful

for information collection about the entire farm land area. Combining the collected data from

drones and sensors will create detailed digital maps of specific field areas Hoeren and Kolany-

Raiser [2017].

Figure 2.3: Drones in Agriculture

Live stockmonitoring

Monitoring, tracking, and controlling farm animals (cows, goats, chickens, etc.) in open

grasslands or indoor locations such as cages or stables. IoT is also used to monitor animal toxic

gas levels, study ventilation, and warn on air quality to protect farm animals from harmful gases

emitted from excrements Rayes and Salam [2017].
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Figure 2.4: Livestock monitoring

Smart greenhouse

Smart greenhouse helps farmers to carry out the work in a farm automatically without the

use of much manual inspection and the least of human interventions Kodali et al. [2016]. Tasks

can be automated such as irrigation and water controlling, regulating temperature and weather

conditions Raviteja and Supriya [2020].

Figure 2.5: IoT in greenhouse (Smart Greenhouse)
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2.5.2 Smart farm architectures in literature

Researchers have worked on smart farming, and proposed different architectures. In Vin-

cent et al. [2019], the author proposed the following architecture for monitoring the field, which

consists of 3 layers as illustrated in Figure2.5.2:

Figure 2.6: Smart Farming architecture

• Sensors Layer: deploying sensors on the field for data collection (pH, soil moisture, salin-

ity, electromagnetic...).

• Controller layer: In this layer, we find the entity that is responsible for controlling the

field and manages the data, and then sends it to the next layer for further processing and

analysis. We distinguish different types of controllers: Raspberry Pi 3, Arduino, NodeMCU,

etc.

• Cloud layer: This layer is responsible for performing the cloud tasks such as: data ware-

housing, data processing and analysis, and then delivers insight and results to the user.

2.5.3 Comparison

Due to the population growth, traditional farm couldn’t fulfill the needs anymore, and the

agricultural sector suffered from different issues Ziska et al. [2016]:
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- Productivity was going slower, as almost everything relied on farmers and traditional ma-

chines.

- Climate change effects productivity, since agriculture is highly dependent on the climate.

- The need for water and a better controlling and management system for irrigation.

- Fewer people were going into the industry, due to the impact of urbanization on the rural

labor supply.

- Livestock difficulties such as the absence of full time monitoring, which also may reduce

the quality of their food supply.

- Shortage in arable lands due to the limited availability.

- High energy consumption and the inefficient approaches used in the domain.

Figure 2.7: Traditional farming vs. Smart farming

Dealing with the aforementioned issues using the traditional ways is difficult. Therefor, IoT

and smart farming concepts are important Hoeren and Kolany-Raiser [2017], for tackling the

challenges in the way of agricultural productivity Kamilaris et al. [2017].
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2.6 Farm process

Business process was defined in Wolfert et al. [2017] as a set of logically related tasks per-

formed to achieve a defined business outcome. Business processes are organized under two

sub-categories: primary and supporting business processes. Primary Business Processes con-

sist of creating the product, marketing and finally delivering to the buyer (client). In the other

hand, Supporting Business Processes facilitate the development, deployment and maintenance

of resources needed in primary processes.

In farming, business processes vary between different types of production, e.g. livestock

farming, arable farming and greenhouse cultivation. A common feature is that agricultural pro-

duction is depending on natural conditions, such as climate (day length and temperature), soil,

pests, diseases and weather.

2.7 Farm management

Management or control processes ensure achieving business process objectives regardless

of any disturbance. The process is based on a controller that measures system behavior and

corrects if measurements are not compliant with its objectives Wolfert et al. [2017]. Thus, the

process implies a feedback loop in which a norm, sensor, discriminator, decision maker are

present.

2.8 Big Data in smart farming

Big Data technologies are playing an essential, reciprocal role in this farming industry,

machines are equipped with all kind of sensors that measure data in their environment that is

used for the automation of machines’ behavior Wolfert et al. [2017]. Therefor, devices in smart

farming generate huge amounts of data everyday, hence producing big data as shown in the

Figure2.8 below.
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Figure 2.8: Data generated from farming

Chen et al, defined Big data in Chen et al. [2014] as: "the datasets that could not be perceived,

acquired, managed, and processed by traditional IT and software/hardware tools within a tolera-

ble time." Chen et al. [2014].

In Chi et al. [2016], Chi characterized big data with the 5 dimensions, as shown in figure 2.9
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Figure 2.9: 5 Vs of Big Data

• Volume: the size of the collected data, from terabytes (TB) to petabytes (PB) and also

exabytes (EB) Chi et al. [2014].

• Variety: big data can be collected from different sources, at different times and data varies

from one discipline to another depending on the application field Chi et al. [2016].

• Velocity: the rapidity is not only restricted to data generation from sources, it also involves

the efficiency of data processing and analysis Chi et al. [2016]. Sometimes data must be

analyzed at real time, e.g., critical systems, driverless cars and medical fields.

• Veracity: it represents the quality, accuracy and how reliable the data is Kamilaris et al.

[2017].

• Value: Although data is being produced in large volumes, it would be of no use if we don’t

extract knowledge and valuable information using data analysis methods Kamilaris et al.

[2017].
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However, IoT data is quiet different from the general big data. Accoridng to Mohammadi, in

Mohammadi et al. [2018] he characterized IoT data as following:

- Large-Scale Streaming Data, the enormous number of sensors deployed on the field and

the continuous streaming, results on producing huge volumes of data.

- High noise data due to its nature. Transmitting huge number of small pieces of data may

lead to errors and noise.

- Time and space correlation, as data is labeled with a timestamp and a location according

to the sensor.

- Heterogeneity due to the variety of IoT devices.

After collecting the big data, it requires a set of specific techniques, technologies and ana-

lytical methods for its transformation into value Hashem et al. [2015], in order to reveal insights

from data sets that are diverse, complex, and of a massive scale.

2.9 Data Streaming and Data Analytics

2.9.1 Data Streaming

As mentioned earlier, the data must be collected, analyzed and then processed through

various techniques and methods Hoeren and Kolany-Raiser [2017], which enable large-scale

data processing based on real-time streams of data coming from a variety of sources.

Data streaming has become an essential part of all data based systems. Modern data is gen-

erated by an infinite amount of sources whether it’s from hardware sensors, servers, mobile

devices, applications, web browsers, internal and external and it’s almost impossible to regulate

or enforce the data structure or control the volume and frequency of the data generated. Re-

lying on old ordinary methods can lead to failures and data loss. Applying data streaming new

techniques and technologies is beneficial in such scenarios, where data is generated on a con-

tinual basis. Initially, applications process data streams to produce simple reports, and perform

simple actions in response. Eventually, those applications perform more sophisticated forms

of data analysis, like applying machine/deep learning algorithms, and extract deeper insights

from the data.
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Data Streaming examples

• Sensor based systems and environments: IoT and sensors can be found on transporta-

tion vehicles, industrial equipment, and farm machinery (Smart Farming). Those ma-

chines are responsible for collecting data and forwarding it to the application for further

processing.

• Online streaming services: Streaming services are taking over most of the internet traf-

fic Cullen [VP of Global Marketing], while providing different applications such as: Video

streaming (Netflix & YouTube) and Gaming (online gaming & streaming) . They also col-

lect (upload) data about their users and feed it back to the platform for data analysis and

enriching users data base.

New methods and frameworks have been developed for applying Data streaming on differ-

ent fields, as it is considered as the first step toward an efficient Data analytics process. Deliv-

ering a complete data sets with fault tolerance systems will produce more accurate results and

insights.

2.9.2 Data Analytics

Analytics and its related, more recent term, data science, are key factors by which Big Data

capabilities can actually contribute to improved performance in the agricultural sector, which

aim to extract information and insights, that could not be easily achieved previously Kamilaris

et al. [2017]. Thus, improving productivity and reducing environmental footprint Kamilaris et al.

[2016].

In Manyika et al. [2013], the author applied data analysis on the collected data set, he divided

the process into 4 steps as follows:

• Data pre-processing: the captured data may be incomplete or inconsistent, which may

affect the results. Thus, this step is required to enhance the quality of data and to improve

accuracy and efficiency.

• Data reduction: Reduce the data to a smaller representation that has the same integrity

as the original data.
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• Data modeling/discovery: For identifying patterns, algorithms can be used e.g., Apriori

algorithm, that helps discover relationships between subjectively unrelated agriculture

data.

• Data Solution analysis: Analysis of the results made by the data modeling/discovery step.

Therefore, knowledge from science will need to be effectively integrated within efforts to

accomplish the goals of predictive and prescriptive analytics. Even with this additional compli-

cation, the potential of tools based upon emerging data science capabilities offers significant

promise to more effectively optimize operations and create value within the agricultural sector.

2.10 Conclusion

The process of moving toward a better and more efficient productivity in the agricultural

sector required the implication of modern technologies. Agriculture field can be understood,

controlled and improved with these technologies such as IoT and Big data analysis.
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Related work in smart farming

3.1 Problem Statement: Land suitability

Usually new farmers to the agriculture field lack enough knowledge about the characteris-

tics of soil for crop cultivation Somov et al. [2018]. They are not aware of the fact that agriculture

land needs to be assessed before cultivation. Therefore, analyzing the land suitability becomes

a mandatory prerequisite for crop cultivation, which leads to maximizing production. Farmers

used to rely on manual data collection and soil testing labs, in order to acquire the properties of

the soil, such method may not be sufficient enough to help them, and sometimes the data lacks

accuracy.

Land suitability for agriculture and plantation can be determined by its elements. However,

land elements are overused and exploited. Many lands are facing different problems like soil

erosion, water logging, groundwater depletion, heavy run-off, productivity losses, etc. These

lands degrades are threatening the food and energy securities, water availability and quality,

biodiversity, and human life.

3.2 Weather factor in land suitability

Weather condition can significantly affect agricultural lands. The effect is because a change

in the weather condition affects agricultural practices to thrive and yield increase. Some of these

parameters include temperature, nutrient levels, soil moisture, and water availability to crops

and livestock. Studies of crop yields have indicated that high temperature extremes, which lead
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to high vapor pressure deficits, can decrease rainfed crop yields in a variety of crops and regions.

Also, the concentration of CO2 increases light intensity Bradford et al. [2017]. The climate has

effects on them, though in different ways. These effects should be appropriately understood. As

to know the extent of their influence on agricultural output and possible ways to curtail these

effects. Climate change is expected to have a negative impact and decrease agricultural suitabil-

ity at the global scale, although many studies considered the most negative outcomes are likely

to occur in tropical and sub-tropical systems. However, in temperate regions, climate change

impacts on agricultural suitability are uncertain, as in temperate regions that support a major-

ity of global agricultural land tend to have higher yields than tropical areas due in large part to

higher soil fertility, as shown in the figure below.

Figure 3.1: Climate change impact on crop yields

The map shows projected national productivity increase/decrease by 2080 (compared to

2003 levels). It is likely that some divergence will occur among regions concerning agricultural
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production. Under bird’s eye view, countries falling within the tropics and sub tropical zones,

with developing economies (e.g. Algeria), shall be losing in terms of agricultural production,

whereas countries in temperate zones, sharing developed economies, are considered to gain.

Most of the developing countries are highly dependent on developed economies for the pro-

duction and exports of agricultural goods, and climate change is anticipated to cause significant

losses in terms of growth as well as export opportunities Wheeler and Von Braun [2013].

Another factor that can affect land suitability and agriculture productivity is Humidity. In

order to keep the stomata open, it is important to reduce the evaporation of the plant when

there is more irradiation. By keeping the humidity in the environment high, evaporation will

be reduced. In addition, the temperature can be lowered by introducing humidity, as a result of

which the plant has to cool less through evaporation. Finally, the crop can be slightly moistened

so that the evaporating water can cool the crop or the farm temperature De Goeij and Soeters

[2016].

Figure 3.2: Stomata opening from Bad to Good

3.3 Related work

Some of the related works, and which our project is based on, are the following:
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3.3.1 Sensors Driven AI-Based Agriculture Recommendation Model for As-

sessing Land Suitability

In Vincent et al. [2019], the author introduced a solution for integrating AI in the agricul-

ture domain specifically in land suitability analysis, to improve productivity. In order to achieve

this goal, he proposed a model (Neural network, MLP) combined with IoT. The output would

be the affiliation of the land to one of the classes (Most suitable, Suitable, Moderately suitable,

Unsuitable). The proposed solution consists of three layers:

• Sensors: they are responsible for collecting data (input data) from the farm. The used

sensors are: pH, soil moisture, salinity, and electromagnetic sensor.

• Raspberry Pi 3: handles the collected data from the sensors installed on the field, and

moves it to a cloud storage through the internet.

• AWS Cloud network: the proposed model performs the classification of the land suitabil-

ity based on the collected data, after the training phase.

The proposed model was accurate at 99%, and the MLP (Multi Layer Perceptron with 4 hid-

den layers) offered better results and more accuracy for classification of land suitability when

compared to NN (Neural Network).

3.3.2 IoT and agriculture data analysis for smart farm

Another work has been done by Muangprathub in this field. In Muangprathub et al. [2019],

the author applied optimization on agriculture in order to enhance productivity, improve qual-

ity and reduce cost, by monitoring temperature, pressure and soil moisture. In order to achieve

this goal, the author used the Internet of Things (IoT) technology to construct a Wireless Sensor

Network (WSN). The system is mainly composed of three parts:

• Control Box (Hardware): controller of IoT devices implemented on the crop fields, such

as sensors (temperature, humidity, soil moisture and MCUnode. . . etc.).

• Web-based application: this application is used to visualize real-time data captured by

“IoT” devices (sensors) and to manage watering for the agriculture fields.
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• Mobile application: this is an end user application for the farmer to allow Automatic/-

Manual control of watering on the fields. It can be automated based on the analyzed data,

or manually by switching on/off by the farmer.

In order to extract knowledge from the data captured by the system, the author applied data

analysis methods. The process of data analysis goes through four major steps:

• Data pre-processing: The captured data may be incomplete or inconsistent, which may

affect results. Thus, this step is required to enhance the quality of data and to improve

accuracy and efficiency.

• Data reduction: Reduce the data to a smaller representation that has the same integrity

as the original data using numerosity reduction.

• Data modeling/discovery: For data analysis and identifying patterns, the author used

Apriori algorithm to extract Association rules (if/then statements) that help discover re-

lationships between subjectively unrelated agriculture data.

• Solution analysis: Analysis of the results made by the data modeling/discovery step.

The author contribution was applying data mining using Association rules technique to

extract knowledge and information about the effects of environment and climate on the crop

yields.

3.4 Synthesis

In this section, we present a comparison between the mentioned work presented in this

chapter. This comparison stands on five different parameters which are : domain, objective of

the work, criterion which covers the additional setting to the approach such as sensors and so

on. In addition, we add the used method and data type for each work which are the main point

in our work due to their importance especially in the process of decision making.
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Table 3.1: Related work comparison

Muangprathub et al.

[2019]

Vincent et al. [2019] Our work

Domain Agriculture Agriculture Agriculture

Objective Water automation Land suitability classi-

fication

Land suitability classifi-

cation and field moni-

toring

Criterion Temperature and hu-

midity

pH, soil moisture,

salinity

Temperature, humidity,

pressure, and precipita-

tion

Data type Real time and stored

data

Stored data Real time and stored

data

Method Association rules

(if/then)

Neural Network and

Multi-layer perceptron

Long-Short Term Mem-

ory (LSTM RNN)

3.5 Conclusion

We deduce that land suitability is a major field of studies that affects agriculture produc-

tivity. Finding the best land ensures better crops quality. Therefor, our work focuses on studying

the properties of the land and defining its suitability for the plant.
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Chapter 4

Design and Contribution

4.1 Introduction

Our aim is to construct a robust system that delivers real time analytics, historical analysis

and data visualization in an intelligent way by combining artificial intelligence with IoT and

Data analytics. In this chapter, we are going to discuss our system architecture and the role of

each layer in details, also the algorithm used to achieve land suitability prediction.

4.2 Proposed architecture

In order to achieve our goal, we proposed an architecture composed of three layers, inter-

acting with each other and exchanging data in real time. Each layer is responsible for a specific

task that outputs data for the next layer starting from the physical field of the plant (the farm).

The first layer acquires the data as numerical values from the farming field, and then it passes

it to the second layer for analytics and data visualization. This last, stores the historical data

to the cloud, while doing the real time analytics locally. The third layer is considered as a stor-

age facility that also provides the historical data analysis/analytics service. The global system

architecture is illustrated in the figure below.
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Figure 4.1: The proposed architecture

This approach prioritizes real-time analytics over the historical one. It delivers information

based on the received streams of data. The process and the role of each layer will be discussed

in the next section.

4.2.1 Architecture description

1. Sensing layer: This layer represents the physical part of the system. It is responsible for

sensing the environment of the farm and reporting back to the server. The sensing process

is achieved, as mentioned earlier, through the deployed sensors on the field (Temperature

sensor, Humidity sensor, Soil moisture sensor, UV sensor). All the sensors are controlled

by the Raspberry Pi, which gathers all the data and redirects it to the server. It can be

scheduled to collect data weekly, daily, hourly...etc. The plant will be monitored all the

time, which results in generating huge amounts of data that will be passed to the next

layer for analytics and processing.
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Figure 4.2: 1 - Sensing layer (collecting data from the field)

The sensing layer produces streams of data that are generated in real time, which describe

the current status of the environment of the plant. These streams are outputted directly to

the server using streaming methods, such as KAFKA to be handled by the Data Analytics

layer.

2. Data analytics layer: After the data acquisition process, all information will be passed to

this layer which is responsible for data analytics and field monitoring. The collected data

must be stored locally at this layer, data structures are required such as Data bases. The

data base contains tables that defines different types of the stored data, the main historical

part is structured in Fig 4.3.
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Figure 4.3: Historical data of the field

At this level, the farmer has the ability to monitor the farming field through the web plat-

form. The web platform provides different services, such as a dashboard for visualizing

and monitoring the field, giving real time information about the weather, the land, and

crops production. The data analytics layer also provides the land suitability service, which

decides whether the land is suitable for a specific plant or not using artificial intelligence

(Deep Learning), based on the collected data earlier (the process will be discussed in de-

tails in the next section).
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Figure 4.4: 2 - Data Analytics layer

3. Cloud layer: The third layer, is cloud based. It is a cloud server, which extends the local

server abilities, providing the platform with more functionalities and features that can be

used through the internet, such as:

• Cloud storage: The sensing layer produces huge amounts of data that cannot be

stored on a local server only. Thus, having a cloud server, Google Drive in our case,

allows the farmer to further extend the storage capacity of the platform.

• Historical data analytics: The stored data on the cloud will be used for historical

analytics/analysis by extracting meaningful patterns from the collected data over the

years. The larger the dataset is, the longer the process takes.

• Access data through API: Having the data stored on the cloud allows the platform to

access it from anywhere through the internet with API requests. The data will then

be sent in structured data format for later use (JSON, XML...).
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Figure 4.5: 3 - Cloud layer

4.2.2 Land suitability process

In order to make a decision about the land suitability, the process must run through 4

steps.
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Figure 4.6: Land suitability process

1. Data collection: The decision system relies on the collected data. In our case the data is

the numerical values which describe our farming environment. The output of this process

is the collected data (raw data), it is stored as JSON format and then sent to the local server

via streaming framework (KAFKA).

2. Data pre-processing: Collecting huge amounts of small numerical values will surely pro-

duce incomplete datasets. The raw data can have missing values which will result in error

if directly fed to the model. Therefor, a pre-processing phase is necessary for cleaning the

data. For increasing accuracy and efficiency, the data must be normalized into the range

(0, 1). The output will be clean consistent dataset ready to be used with the model.

3. Model construction: Choosing the best model and architecture has a major impact on

prediction results. Among the various Machine/Deep learning methods and algorithms,

we chose an algorithm with time series consideration. This phase goes on 2 steps:

(a) Constructing the model and architecture (number of layers, number of neurones,

activation functions...etc.).

(b) Training the model and testing it (making predictions to test the model).

The algorithm will be discussed in details in "Used Algorithm" section.

4. Save/Use model: After creating the model, it must be saved (exported) and deployed to

the web platform so that users can have access to the Land suitability service. After the
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training and testing phases with the datasets, the model should now be able to make the

decision about the suitability of the land for a specific plant, the output will be one of the

4 classes: "Best suitability", "Suitable", "Moderately suitable" or "Unsuitable".

4.2.3 UML Diagram

In this section, we illustrate our platform functionalities which the user can benefit from.

Services and features are shown in the use case diagram below.

Figure 4.7: Use case diagram of the platform
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4.3 Used Algorithm

4.3.1 Deep learning

Modern Artificial Intelligence systems rely on Neural Networks for decision making and

predicitons. Deep learning or deep structured learning can be defined as special kind of neural

networks composed of multiple layers, these layers perform better than the traditional Neural

Networks (used in machine learning) when it comes to information persisting. Kumar et al.

[2018]. One of the major advantages and differences of DL over ML, is the feature extraction step,

which is achieved automatically as information propagates through the deep layers. However,

DL still requires a lot more data than ML, which can be hard to provide in some situations.

Figure 4.8: Machine Learning vs. Deep Learning
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4.3.2 Reccurent Neural Network (RNN)

Reccurent Neural Network, in contrast to ordinary Neural Network, employs feedback

loops where the output from each step (e.g. step n-1) is fed back to the network to affect the

outcome of the current step (e.g.step n) based on parameters that define the impact of the pre-

vious outputs, this process is repeated for each subsequent step Al-Smadi et al. [2018]. RNNs

have proven to achieve good results on sentence level sentiment analysis, speech recognition,

time series data...etc.

4.3.3 Long-Short Term Memory network

Long-Short Term Memory (LSTM) Networks are a special kind of RNN. They were de-

signed to address the issue of long term dependency in RNN. LSTMs are good in remembering

information for long time. Since more previous information may affect the accuracy of model,

LSTMs become a natural choice of use Al-Smadi et al. [2018]. LSTM is composed of a module

called "Repeating Module", it has four neural network layers interacting in a unique way. Re-

peating module also has three gate activation functions: σ1, σ2, σ3 and two output activation

functions φ1 and φ2 as shown in Figure 4.9.

Figure 4.9: LSTM Repeating Module

Basically, choosing LSTM architecture was based on the type of data we have. Since we are

dealing with time series, which means a data related to time and was recorded in a sequential
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way. LSTM proved to be the best in such scenarios, where it can remember some information

from past records. This can be beneficial in our situation, because land suitability cannot be

predicted based on scattered or unsorted data.

4.3.4 LSTM pseudocode and architecture

Process

Our algorithm works as follows:

1. Gathering data: this process is accomplished as explained earlier, through IoT devices

(Sensors and Raspberry Pi).

2. Preparing data: before feeding the data to the model, it must run through preparation

methods, filling missing values, data cleaning, normalization and finally reshape it ac-

cording to the LSTM input (a 3-dimensional array).

3. Creating the model: choosing the right model is important for creating an efficient learn-

ing model. The creation process is accomplished with some parameters: number of neu-

rons, number of layers, activation functions...etc.

4. Training: The dataset will be splitted in 2 parts. The first part will be used for training

the model, in other words adjusting the weight in order for the predictions to match the

expected results.

5. Evaluation: The second part of the dataset, will be used for testing and evaluating the

model. The testing data is smaller and different from the training data.

6. Prediction: After the training and testing phases, the model can be used for making pre-

dictions, in our case about land suitability.
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PseudoCode

Algorithm 1 LSTM prediction model pseudocode
1: nor mali ze_d at a(0,1) .Normalizing data values in range 0 and 1

2: x_tr ai n, y_tr ai n, x_test , y_test ← spl i t_d at a(d at a,25) . Split data to training and

testing sets (25% testing)

3: r eshape_d at a(d at a) . Reshape data according to LSTM input

4: model ←Cr eateSequenti al Model () . Creating and configuring the model

5: model .add_LST M_l ayer (nbr _l stm, si g moi d)

6: model .add_N N _l ayer s(nbr _nn)

7: model .compi l e()

8: for nbr _epochs do . Training LSTM model

9: for batch_si ze do

10: model . f i t ()

11: end for

12: end for

13: r esul t s ← model .pr edi ct (x_test ) . Testing the model and making predictions

Architecture

Our model was created with an input layer, 3 hidden layers and 1 output layer. The input layer

receives a 3-dimensional array of 4 features (4 columns), each feature is a 1-dimensional array.

Figure 4.10: LSTM model architecture and layers
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4.4 Conclusion

In this chapter we explained our architecture and the used algorithm. Our system is com-

posed of Hardware part (Internet of Things) and a Software part (Web Platform with Deep learn-

ing, LSTM-RNN specifically), in order to bring a new approach for enhancing the farming field.

In the next chapter we discuss the implementation and results.
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Chapter 5

Implementation and results

5.1 Introduction

Application development process comes after a set of steps which their main goal is to

develop a product capable of responding to the farmers and expert needs.

After presenting and discussing the theory part of our project and the details about the used

approaches. We shall now go through our developed idea and the results obtained from it.

In this chapter, we present the used tools including the platforms used to implement our

system. Next, we give some system’s interfaces which give the obtained results. In the end, we

give some discussions and analysis of the results given by the constructed models.

5.2 Development tools and used platforms

Our system is composed, as mentioned earlier, of two main parts: Hardware and Soft-

ware. The hardware represents the physical part of the system deployed on the field, and the

Software represents the core system and the server which resides on a computer or data cen-

ters.

In order to make a robust and an efficient system, we combined some of the best advanced

technologies and programming languages in both parts, Hardware and Software. The used tech-

nologies are listed below with a brief definition and explanation.
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5.2.1 Hardware

The hardware part is mostly composed of three entities:

Raspberry Pi 2 model B

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer mon-

itor or TV, and uses a standard keyboard and mouse ras [2015]. In our system, the Raspberry Pi

is considered as the controller of all sensors, and the data collector.
• 100 Base Ethernet

• 4 USB ports

• 40 GPIO pins

• Full HDMI port

• Combined 3.5mm audio jack

• Micro SD card slot

• VideoCore IV 3D graphics core Figure 5.1: Raspberry Pi 2 model B

The connection between the Raspberry Pi and sensors is established with electricity wires

using the Breadboard as an intermediate linking tool. An example of the device connected to

the DHT11 sensor (temperature and humidity sensor) is illustrated below:

Figure 5.2: Raspberry Pi 2 connected to DHT11 sensor via the Breadboard
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Arduino Uno R3

Arduino is an open-source electronics platform based on easy-to-use hardware and soft-

ware. Arduino boards are able to read inputs - light on a sensor, a finger on a button and turn it

into an output - activating a motor, turning on an LED, publishing something online. The board

can be told what to do by sending a set of instructions to the microcontroller. To do so we use

the Arduino programming language (based on Wiring), and the Arduino Software (IDE), based

on Processing.

Figure 5.3: Arduino Uno R3

We used the Arduino along with the Raspberry Pi in order to handle the Analog outputs of

some sensors with the Arduino and forward it back to the Rasoberry Pi.
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Sensors

For the system to work on real-time, sensors are required. As mentioned in the previous

chapters, sensors are small electronic devices deployed (or planted) on the field of the plant. We

used these devices to capture different weather and land properties, to be used in the process of

land suitability classification. The used sensors are listed in the table below:

Sensor Place Type of value

Temperature Air ◦ C

Humidity Air %

Pressure Air %

Soil moisture Planted in soil %

pH Planted in soil 0-14

Table 5.1: Used sensors

We should notice that the data provided by the sensors is not identical to the historical data,

and some properties cannot be collected in real-time, that’s due to the lack of availability of

sensors in our country (Biskra).

Server (personal computer)

For running the web platform (the server), we used a personal laptop with the following

specs:

• Ram: 16 GB

• CPU: Intel Core i5-8350U

• Storage: 256 SSD

The laptop is able to handle all the coming streams of data from the Raspberry Pi, and pro-

cess it. However, scaling the app for a large number of devices and sensors to cover a whole field

may need a bigger server.

41



Implementation and results

5.2.2 Software

Google Colab

Training a deep learning model can require extensive

CPU/GPU workload, that’s why we used Google Colab cloud plat-

form for this task. Colaboratory is a Google research project created

to help disseminate machine learning education and research. It’s

a Jupyter notebook environment that requires no setup to uses and

runs entirely on cloud.
Figure 5.4: Google Colab

Visual Studio Code (Code Editor):

VS Code is a code editor made by Microsoft, it’s a light-weight

tool that allows the editing of source code files. It comes with a

huge library of extensions that ease the work for developers. Our

choice landed on VS Code, since our project contains different pro-

gramming languages (python, html, js, css).
Figure 5.5: VS Code

Python & Django:

For developing the model (Deep learning model) and the web

application, we used Python programming language. Python is

an interpreted, object-oriented, high-level programming language

with dynamic semantics pyt [2020].

It’s high-level data structures, dynamic typing and the huge set of

libraries makes it the best choice for AI and IoT programming. Figure 5.6: Python
Some of the most important libraries we used:

• Django: is a web framework for creating dynamic and scalable web apps, we used it to

create the server web app Smart Green.

• Tensorflow & Keras: are used for machine/deep learning to create and train the model.

• Pandas: used for all kind of data pre-processing, data analysis, data analytics, etc.
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• Kafka: provides an easy API to interact with the kafka server from both parties (producer

and consumer), for creating topics, sending and receiving messages.

• Websockets: used for exchanging data between the back-end server and the front-end

dashboard, updating charts, accessing historical data api page, etc.

Charts.JS:

For the data visualization, we used a JavaScript library called

"Chart.js". It is a free open-source JavaScript library for creating

plots and charts, which supports 8 chart types: bar, line, area, pie

(doughnut), bubble, radar, polar, and scatter. Created by London-

based web developer Nick Downie in 2013.
Figure 5.7: Chrat.js

5.3 System interfaces

As mentioned in previous chapters, our app is Web based, farmers interact with different

app interfaces. Each services has its own interface, which is designed specifically to be easy to

use and to interact with.

5.3.1 Home page

The Home page is the first page to land on. It presents features and services of the system,

the home page also provides access to other interfaces of the system. The navigation bar allows

the user to Log in or Sign up, or to navigate to the dashboard...etc.
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Figure 5.8: Smart Green Home page

5.3.2 Log in/Sign up

Users are able to log in to access the system services, if the user does not have an account,

he can then Sin up.
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Sign in/Log in

Figure 5.9: Sign in / Log in form

The login method allows the user to access the dashboard for the different services. All user

data is stored on the local storage database. Information may contain: Full name, username,

password, email, profile image.
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Sign up

Figure 5.10: Sign up form

5.3.3 Dashboard

Real-time data visualization

Real time visualization allows the farmer to monitor the crop fields, receiving live stream-

ing data from the deployed sensors. The Raspberry Pi sends sensors collected information
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through the Kafka framework, acting as a Producer of data. The code snippet below elaborates

how Raspberry Pi is programmed to send the data to the server:

1 """
2 This code resides on the Raspberry Pi
3 """
4 from kafka import KafkaProducer
5 from json import dumps
6 # start the producer
7 producer = KafkaProducer(bootstrap_servers=’localhost :9092 ’,

value_serializer=lambda msg: dumps(msg).encode(’utf -8’))
8 # collect data from sensors
9 data = {

10 ’Temperature ’: getTemperature (),
11 ’Humidity ’: getHumidity (),
12 ’Moisture ’: getMoisture (),
13 ’pH’: getPH()
14 }
15 # send data to consumer (server app)
16 producer.send(’WeatherData ’, data)
17 producer.flush()
18

Listing 5.1: Raspberry Pi producer code

The collected data is then displayed as charts on the dashboard. This last, receives data

from the field by listening to the kafka broker, whenever a message (data) arrives, the server

automatically displays and updates charts on real-time, this task is illustrated on the code below:

1 """
2 This code resides on the Server app.
3 """
4 from kafka import KafkaConsumer
5 from json import loads
6 from .websocket.websocket import start_websocket , updateCharts
7 #
8 def consumer_kafka ():
9 # start kafka Consumer to receive data from the raspberry pi

10 # Raspberry pi (producer) ====> Server app (consumer)
11 topic = ’WeatherData ’
12 consumer = KafkaConsumer(topic , bootstrap_servers =[’localhost :9092

’])
13 # start websocket
14 # Server app ====> farmers dashboard
15 start_websocket(updateCharts)
16 print(’Kafka Consumer started ...’)
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17 # receiving messages from producer
18 for message in consumer:
19 data = loads(message.value)
20 # send data to the dashboard to update charts
21 send_charts_data(data)
22

Listing 5.2: Server consumer code

The received streams of data are also stored on the local database of the server. Database

management is done through Django ORM (Object Relational Mapping), which uses Object

Oriented paradigm for manipulating databases, tables are structured as classes called Models,

records as objects, etc. When the server receives data it creates a new object and stores it on the

databases table.

1 """
2 Database model for daily values recorded from the raspberry pi
3 """
4 class Daily_real_time(models.Model):
5 date = models.DateTimeField(db_column=’Date’, auto_now=True)
6 temperature = models.IntegerField(db_column=’Temperature ’)
7 pressure = models.FloatField(db_column=’Pressure ’)
8 humidity = models.FloatField(db_column=’Humidity ’)
9 pH = models.FloatField(db_column=’pH’)

10 moisture = models.FloatField(db_column=’Moisture ’)
11

Listing 5.3: Real time data model
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Figure 5.11: Smart Green Dashboard 1

Historical data

Data is collected and stored on the database, thus users will have access to it. In order to display

historical data about the field, the user selects Month and Year corresponding to the date and

the server will fetch the data from the database stored on the local server, and send back all

information to the dashboard to be displayed in charts.
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Figure 5.12: Historical Data

All previous records and values are stored in a table described in the following code snippet:

1 """
2 Database model for historical recorded from the raspberry pi
3 """
4 class Monthly_records(models.Model):
5 date = models.DateTimeField(db_column=’Date’, auto_now=False)
6 # temperature
7 min_temp = models.FloatField(db_column=’min_temp ’)
8 avg_temp = models.FloatField(db_column=’avg_temp ’)
9 max_temp = models.FloatField(db_column=’max_temp ’)

10 # precipitation
11 min_prec = models.FloatField(db_column=’min_prec ’)
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12 avg_prec = models.FloatField(db_column=’avg_prec ’)
13 max_prec = models.FloatField(db_column=’max_prec ’)
14 # humidity
15 min_rel_humid = models.FloatField(db_column=’min_rel_humid ’)
16 avg_rel_humid = models.FloatField(db_column=’avg_rel_humid ’)
17 max_rel_humid = models.FloatField(db_column=’max_rel_humid ’)
18 # pressure
19 min_pressure = models.FloatField(db_column=’min_Pressure ’)
20 avg_pressure = models.FloatField(db_column=’avg_Pressure ’)
21 max_pressure = models.FloatField(db_column=’max_Pressure ’)
22

Listing 5.4: Historical data model

Land suitability prediction

The most important service is Land Suitability Prediction. Farmers can have a prediction about

their land, whether it is suitable, needs more work (fertilization...etc) or completely unsuitable

for growing the plants. The farmer needs to specify weather condition in order for the model to

predict. The input data in sent to the server with POST method. As shown in the figure below.

Figure 5.13: Land Suitability service

The following code is responsible for adapting the data to the model input shape, and make
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the prediction.

1 """
2 Prepare data before feeding it to the model
3 - convert to numpy array
4 - Reshape data to a 3D arrray
5 """
6 def prepare_data(data):
7 _data = np.array(data)
8 return np.reshape(_data , (1, 4, 1))
9

10

11 """
12 Make a prediction about land suitability
13 using the given data
14 """
15 def make_prediction(model , data):
16 _input = prepare_data ([data])
17 results = model.predict(_input)
18 # select the class with highest probability
19 results = np.argmax(results , axis =1)
20 return results
21

Listing 5.5: Prepare input data and make predictionl

5.4 Obtained results and discussion

Input data is normalized in the range of 0 and 1 which is useful in Deep Learning for identifying

patterns between features. Land suitability label (output) is coded in a 1-dimensional array of 4

columns, representing the affiliation to one of the 4 classes as shown in the table below.

Class Encoding Output

Unsuitable [1, 0, 0, 0] 0

Moderately suitable [0, 1, 0, 0] 1

Suitable [0, 0, 1, 0] 2

Best suitability [0, 0, 0, 1] 3

Table 5.2: Classes and output encoding
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The training process of the model, was carried in google colab. Training went for 200 epochs

with a batch size of 5. Our LSTM model was trying to learn the pattern between weather data

and the land suitability label, in order to define and predict correctly whether the land will be

suitable or not. We can see at the beginning of the training, accuracy was very low with a high

loss value, as show in the figure below.

Figure 5.14: Beginning of the training with LSTM model

After 200 epochs, at the end of the training, accuracy has a higher value (0.97), and a lower

loss value (0.06) comparing to the beginning.

Figure 5.15: Ending of the training with LSTM model

The improved accuracy over time, from 0.44 to 0.97 means that the LSTM model was able to

fit the data. Predicting correctly most of the time the land suitability, the validation accuracy is

also considered very high, it ranges between 0.95 and 0.97. The trained model uses a different

set of data for validation that was not included in the training set, thus it was able to predict

correctly for completely different set of data.
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Figure 5.16: LSTM accuracy

For calculating the loss, we used Categorical Cross Entropy function. It’s the most common

function when it comes to classification problems. Categorical Cross Entropy increases as the

predicted probability diverges from the actual label. The model works on minimizing the loss

function, which distills all aspects of our algorithm into a single numerical value that describes

how efficient our model is.

At the earlier stages of the training, loss function had a high value (1.2), LSTM tries to learn

form the data and thus minimizing the loss by using the back propagation as training goes. After

few epochs the value drops significantly to 0.06, which indicates that the model succeeded at

extracting features from the data set and identifying the pattern to correctly predict the land

suitability.
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Figure 5.17: LSTM loss

Prediction results are stored on an array and plotted with the training labels as scattered dots

on the same figure to demonstrate the accuracy of our model (Figure 5.18).

The X axis represents the testing set, which is composed of more than 1000 row (25% of all

the data). Whereas the Y axis represents Land suitability classes, and the output is mapped to

one of these classes (0, 1, 2 or 3) corresponding the to highest probability of affiliation.

Figure 5.18: LSTM prediction results
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We can see that the predicted results and the desired output are almost stacked upon each

other, which indicates that our model was able to predict the output nearly identical to the test-

ing data. At some points the model predicted wrong results and that is illustrated on the dots

plotted in different places, and that can be beneficial for avoiding over fitting.

5.5 Conclusion

In this chapter we presented the implementation of our system as well as the obtained re-

sults. We carefully chose the best combination between hardware and software tools in order

to achieve our goal. The results were promising, our model had a high accuracy in prediction,

which reflects the well structured system and architecture.
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Chapter 6

Conclusion and Perspectives

6.1 Conclusion

Land suitability presents a very important side of agriculture and farming, our work mainly fo-

cuses on providing the best prediction on that matter. The proposed architecture which is a

combination of Deep Learning and Internet of Things showed efficiency in predicting land suit-

ability based on the collected data about weather and soil. Compared to the related works on

smart farming and land suitability, our solution also focused on data streaming method. Col-

lecting data the best way will surely improve results. Our solution also uses Long-Short Term

Memory (LSTM) model for making the prediction with time series data instead of classic Arti-

ficial Neural Networks, as patterns emerge in time series rather than considering the data just

scattered values. However, our solution suffered from shortage in data. The historical data was

only for the past 9 years, which is considered relatively low at the count of 1 value per day.

6.2 Perspectives

Our work can be extensible and enhanced for better improving the farming field. As a future

work, we are willing to introduce more features to our system, such as cameras for monitoring

plants health. Images will be captured on a daily basis and stored on the server databases. All the

stored images will then be fed to a Convolutional Neural Networks (CNN) for image processing

and extracting useful information about plants health. Enriching the dataset will surely result in

higher accuracy in prediction by adding more sensors on the field (UltraViolet...).
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From another perspective, we wish to embed GPS trackers in all farming vehicles in order to

be able to locate each one on the field from the app on the server. Providing farmers with full

control over their fields will surely enhance crop yields and ease the task even more.
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