

ALGERIAN REPUBLIC DEMOCRATIC AND POPULAR MINISTRY OF

HIGH EDUCATION AND SCIENTIFIC RESEARCHES

University of Mohamed Khider Biskra

Faculty of Exact Science and Science of Life and

Nature Department of Computer Science

 Dissertation For Master Degree Graduation In Computer Science

Field Computer Graphics & Computer Vision

Title:

Weather Conditions Image

Classification

Using Deep Learning

Realized by:

Naassi Mohamed Salah

Defended the 14/09/2020, in front of the jury composed of:

Academic year 2019-2020

1

Dedication

I dedicate my dissertation work to my teachers in life my parents and my lovely grand mother

whose lessons still in my ears since my childhood, my only brother who is always in my side.

I also dedicate this dissertation to my many friends: Zaki, Omar, Oussama, Okba, Amine, Iliasse,

Abdelhak, Louai, Cherif, Nacer, khaled, zakaria who are always supported me. I will always

appreciate all they have done.

I dedicate this work to the distinguished friend Hatem who helped and accompanied me

throughout my five years of university.

2

Acknowledgement

First of all, I have to thank Allah for giving me strength and ability to complete this research

work. Throughout the writing of this dissertation I have received a lot of support and assistance.

I would like to thank my supervisor, Doctor Mokhtari Bilel, whose expertise was invaluable in

the final achievement of this research. Your insightful feedback made me focus and guide my

work to a higher level possible.

My thanks go to the member jury for their efforts to evaluate this work despite the hard time that

the world is going through.

3

Abstract

Weather Recognition directly or indirectly impacts our daily behaviors, it can decide whether if

we need to walk, take a bus, riding a bike, traveling, or even not go outside at all. Despite the

importance of this point, it is still not widely studied by deep learning and computer vision.

Weather conditions are often addressed with limited number of classes or in specific visual

condition. In this work, we take advantage of deep learning that automatically extract

information from images using one of the strongest algorithms in computer vision tasks

Convolutional neural networks without any pre-defined constraints or specific features in the

processed images. The proposed model shows strong performance in extracting this information

from user-defined images in five weather conditions from different kind of scenes like nature,

street-level, and surveillance camera.

Key-words: Deep learning, Weather recognition, Features, Convolution neural networks.

4

Contents

1 Image Classification in Computer Vision 13

 1.1 Introduction ..13

 1.2 Image basics and color Terminology ...13

 1.2.1 Digital Image ...13

 1.2.1.1 What is a pixel? ..13

 1.2.1.2 Image types ...14

 1.2.2 Human visual system ..15
 1.2.2.1 Description of the visual system15

 1.2.2.2 Human Eye Anatomy ..16

 1.2.2.3 How Do We See Color? ...17

 1.2.3 A quick look about Color ...19

 1.2.3.1 What is a color? ..19

 1.2.3.2 Color vision ...19

 1.2.3.3 What is the visible light spectrum?19

 1.2.3.4 Additive, subtractive models ...21

 1.3 Computer Vision ..22

 1.3.1 Computer vision what does it mean? ..22

 1.3.1.1 Computer vision and human vision22

 1.3.1.2 Applications ..23

 1.3.2 Computer vision vs. image processing ..26

 1.4 Image Classification ...26

 1.4.1 Definition ...26

 1.4.2 Features and classifiers ..26

 1.4.2.1 Features extraction (hand-engineered)...............................27

 1.4.2.2 Features extraction (automatic-engineered).........................28

 1.4.3 Classification process ...28

 1.4.3.1 Image collection ...28

 1.4.3.2 Image preprocessing ...28

 1.4.3.3 Training ...28

 1.4.3.4 Classifying..28

 1.4.3.5 Evaluation...29

 1.5 Weather conditions image Classification ..29

 1.5.1 Introduction..29

 1.5.2 Description...29

 1.5.3 Features examples...29

5

 1.5.4 Possible applications ..30

 1.6 Conclusion ..31

2 Deep Learning 32

 2.1 Introduction..32

 2.2 Introduction to neural networks ...32
 2.2.1 Definition ...32

 2.2.2 Principal architectures ...32

 2.2.2.1 Single-Layer Feedforward Networks...................................32

 2.2.2.2 Multi-Layer Feedforward Networks....................................33

 2.2.3 Learning process (types) ..34

 2.2.2.1 Supervised learning ..34
 2.2.2.2 Unsupervised learning..34

 2.2.2.3 Reinforcement learning ..35

 2.2.2.4 Semi-supervised learning..35

 2.3 Deep learning..36

 2.3.1 Introduction..36

 2.3.2 Definition..36

 2.3.3 The deep learning revolution ...36

 2.3.4 Deep learning models ...37

 2.3.4.1 Autoencoders...37

 2.3.4.2 Deep Belief Network (DBN) ... 37

 2.3.4.3 Generative Adversarial Networks (GANs) 38

 2.3.4.4 Recurrent Neural Network (RNNs) 39

 2.3.4.5 Long Short-Term Memory (LSTM) 40

 2.3.4.6 Recursive Neural Networks (RNNs)40

 2.3.4.7 Convolutional Neural Networks (CNNs) 41

 2.3.5 Generalization in deep neural networks..50

 2.3.5.1 Definition...50

 2.3.5.2 Cross-validation.. 50

 2.3.5.3 Dropout.. 51

 2.3.5.4 L1 and L2 Regularizations ..51

 2.3.6 Deep learning applications...52

 2.3.6.1 Entertainment..52

 2.3.6.2 Fraud detection..52

 2.3.6.3 Healthcare..52

 2.3.6.4 Virtual assistants..53

 2.3.7 Related works..53

 2.3.7.1 Music genre classification...53

6

 2.3.7.2 Lung cancer detection and classification..............................53

 2.3.7.3 Photo-realistic facial Details synthesis from single image..........54

 2.3.7.4 Deepfakes creation and detection......................................54

 2.3.7.5 Human activity recognition...54

 2.3.7.6 Weather image recognition..55

 2.4 Conclusion...55

3 System Architecture, Implementation and Results 56

 3.1 Introduction..56

 3.2 System Architecture...56

 3.2.1 Introduction...56

 3.2.2 System Architecture...56

 3.2.2.1 Back-end..58

 3.2.2.2 Front-end ...70

 3.3 Environments and Implementation..70

 3.3.1 Environments and tools ...70

 3.3.1.1 Back-end Environments and tools71

 3.2.1.2 Front-end Environments and tools.....................................75

 3.3.2 Back-end development ...76

 3.3.2.1 Import libraries ... 76

 3.3.2.2 Dataset loading.. 77

 3.3.2.3 Dataset pre-processing..78

 3.3.2.4 Model training ...79

 3.3.2.5 Model evaluation..80

 3.3.3 Front-end development.. 80

 3.4 Results and discussion.. 85

 3.4.1 Results...85

 3.4.2 Results discussion and comparison... 88

 3.4.3 Limitation.. 89

 3.4.4 Future Work ..89

 3.5 Conclusion .. 89

7

List of Tables

3.1 Image2Weather Dataset [115]…………………………………....59

3.2 RESIDE Dataset [119]………………………………………...62

3.3 Snow100k Dataset [107]……………………………………….63

3.4 New Dataset………………………………………………64

3.5 Final Dataset………………………………………………65

3.6 One Hot Encoding…………………………………………..67

3.7 Weather conditions classification tests………………………………85

3.8 Comparison weather recognition works……………………………...88

8

List of Figures

1.1 Pixel square in image example [2] ………………………………...14

1.2 Binary image [3] …………………………………………...14

1.3 Grayscale image [4] …………………………………………14

1.4 Color image [3] …………………………………………... 15

1.5 Human visual system [5]……………………………………… 16

1.6 The human eye anatomy [6] …………………………………….17

1.7 How human visualize color [7]…………………………………...18

1.8 Visible light spectrum [10]……………………………………...20

1.9 RGB color mode [13] ………………………………………...21

1.10 CMYK color mode [13]... 22

1.11 Human vision system [22]……………………………………...23

1.12 Computer vision system [22]…………………………………….23

1.13 Cancer detected/ not detected [21] …………………………….…..24

1.14 Traffic sign example [23]………………………………………24

1.15 Object detection [16]…………………………………………25

1.16 Image creation [15]..25

1.17 Features example [25]………………………………………...27

1.18 Hand-engineered features extraction ……………………………….27

1.19 Automatic-engineered features extraction ……………………………28

2.1 Single-Layer Feedforward Networks [47] ……………………………33

2.2 Multi-Layer Feedforward Networks [48] …………………………….33

2.3 Supervised learning scheme [49] ………………………………….34

2.4 Unsupervised learning scheme [49] ………………………………..34

2.5 Reinforcement learning scheme [52] ……………………………….35

2.6 Autoencoders architecture [59] …………………………………..37

2.7 Deep Belief Network architecture [63] ……………………………...38

2.8 GAN architecture [65]………………………………………...39

9

2.9 Simple RNN architecture [69]...39

2.10 Simple LSTM architecture [69]... 40

2.11 Recursive neural networks architecture [72]...41

2.12 CNN architecture example [90]..41

2.13 CNN Input shape [77]...42

2.14 Filter of size 3x3 [79]...43

2.15 Convolution operation [80]..43

2.16 Feature maps [82]..44

2.17 ReLU activation function [86] ...44

2.18 Applying ReLU after convolution operation [87].....................................45

2.19 Convolution operation example with difference strides [83]...........................45

2.20 Convolution operation example with padding=2 [15].................................46

2.21 Illustration of max pooling with a pooling area of size 2x2 and stride of 2 [88].........46

2.22 Fully connected layer [89]. ...47

2.23 Simple CNN architecture with main layers [75]......................................47

2.24 LetNet architecture [91] ..48

2.25 AlexNet architecture [91] ..48

2.26 GoogLeNet architecture [92]..49

2.27 VGG-16 architecture [91] ..49

2.28 ResNet architecture [92]...50

2.29 Cross-validation idea [96] ..51

2.30 Dropout some neurons randomly with certain probability [97].........................51

2.31 L1 and L2 equations [98]..52

3.1 System General Architecture ..57

3.2 Back-end Architecture...58

3.3 Re-sampling dataset [116] ..60

3.4 FRIDA dataset [117] ..61

10

3.5 LIVE Image Defogging Database [118]...61

3.6 Samples of RESIDE dataset [119]..62

3.7 Samples of snow100k dataset [107] ...63

3.8 Samples of the new dataset ..64

3.9 Samples of the final dataset ..65

3.10 Pre-processing pipeline..66

3.11 Normalization formula [120] ..68

3.12 Confusion matrix example .……………………………………..69

3.13 Prediction example .………………………………………….70

3.14 Front-end system ...70

3.15 Python logo ...71

3.16 Pycharm logo ...71

3.17 TensorFlow 2.0 logo ..72

3.18 Keras logo ..72

3.19 OpenCV logo ..73

3.20 Matplotlib logo ..73

3.21 Numpy logo ...73

3.22 Scikit-learn logo ... 74

3.23 Flask logo ..74

3.24 Google Colab Logo ..75

3.25 JavaScript logo ...75

3.26 HTML5 logo ...75

3.27 CSS3 logo ..76

3.28 Sublime text logo ...76

3.29 Front-end architecture ...81

3.30 App Page 1 .………………………………………………82

11

3.31 App Page 2A ………………………………………………82

3.32 App Page 2B ………………………………………………83

3.33 App Page 3.……………………………………………….83

3.34 App Page 4..84

3.35 Accuracy and Loss graphs..87

3.36 Confusion matrix...87

12

General Introduction

In the past decade human life has begun to be more connected to digital technologies and

this association is developing daily, so why not? Every day we hear and see new technology.

Digital technologies are permeating our lives; we hardly see a home or a child without a tech

device. The success of digital systems depends on the progress made in computer vision which

has been a subject of increasing interest and rigorous research for decades now, the purpose of

computer vision is to program a computer to "understand" a scene or features in an image.

Computer vision is considered as an eye of the game changer in technology revolution: artificial

intelligence (AI).

Artificial intelligence now is touching most of the big new technologies; we can say that AI

is leader for anything is new right now. With the great achievements feats by AI with computer

vision technology the future of computer vision appears to be more promised than ever. Behind

the scenes of the success of computer vision systems stand one of the most exciting subfields of

AI namely deep learning which take control over computer vision new applications powered by

one of deep neural networks: Convolutional neural networks (CNN) which show greater

capabilities for image recognition, due to that CNN has become the mainstream deep model

in computer vision.

Between the applications of computer vision we find image recognition. Weather

recognition from a single image is a challenging subject to study. The challenge to solve this

problem is that weather conditions are various in nature and there is an absence of discriminate

features to distinguish from weather condition to another. Weather classification in images is a

process to categorize images based on the conditions of weather; severe weather conditions

will have a great impact on our daily lives, urban traffic and many other things due to these

reasons an automatic recognition of weather condition system can help due to his important

value in agriculture, traffic condition warning, driver assistant system, surveillance cameras, and

other aspects.

In this project, we focus on weather conditions image classification using deep learning

algorithm CNN, in order to make our system accurate on extract weather information from

images. We propose some CNN architectures that detect the weather class from the image for five

weather conditions: cloudy, foggy, rainy, snowy, and sunny.

Beside a general introduction and a conclusion, our master thesis is organized in 3 chapters. In

the first chapter, we present the subject of image classification in computer vision. For the second

chapter, we yield the concept of deep learning and its models and applications. Finally, the third

chapter presents our system architecture, our CNN architecture implementation and the discussion

of the achieved results.

13

Chapter 1

Image Classification In Computer Vision

1.1 Introduction

Today, the field of computer vision flourishing so fast, and taken great leaps thanks to

advances of deep learning and artificial neural networks. These advances have paved the way

for boosting the use of computer vision in existing domains and introducing it to new ones. In

many cases, computer vision algorithms have become a very important component of the

applications we use every day.

This chapter discusses how computer vision inspires from our visual system, also talking

about one of its application which is image classification task, and the relationship between

computer vision and image processing.

1.2 Image basics and color terminology

1.2.1 Digital image

To understand what’s a digital image is, we have to first realize that what we see when we look

at a “digital image” is actually a physical image reconstructed from a digital image. The digital

image itself is really a data structure within the computer, containing a number or code for each

pixel in the image. This code determines the color of that pixel. Each pixel can be thought of as a

discrete sample of a continuous real image. It is helpful to think about the common ways that a

digital image is created. Some of the main ways are via a digital camera, a page or slide scanner,

a 3D rendering program, or a paint or drawing package. The simplest process to understand is

the one used by the digital camera [1].

1.2.1.1 What is a pixel ?

A pixel, or picture element is a physical point in a raster image, or the smallest addressable

element in an all points addressable display device; so it is the smallest controllable element of a

picture represented on the screen.

Each pixel is a sample of an original image; more samples typically provide more accurate

representations of the original. The intensity of each pixel is variable. In color imaging systems,

a color is typically represented by three or four component intensities such as red, green, and

blue, or cyan, magenta, yellow, and black [2].

https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/All_points_addressable
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Intensity_(physics)
https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/CMYK_color_model

14

In a digital image, all the coordinates on 2-d function and the corresponding values are finite.

Each value available in every location is considered as a pixel. In other words, a pixel is the

smallest part of an image. So a digital image can be thought as 2-d array of pixels

 Figure 1.1: Pixel square in image example [2]

1.2.1.2 Image types

A- Binary image:

A binary image has only two possible gray values or intensities 0 and 255, there are no

intermediate values. Binary images are used as masks for indicating the pixels of interest in many

image processing tasks. Figure1.2 gives an example of binary image [3].

 Figure 1.2: Binary image [3]

B- Grayscale image:

Grayscale image has range of values from 0 to 255. Each pixel location can have any value

between 0 and 255. If you watch old films around the 1950s, you are watching grayscale images

(films are nothing but videos which are collection of individual images in proper sequence) [3].

 Figure 1.3: Grayscale image [4]

15

C- Color image:

Both binary image and grayscale image are 2-dimensional arrays, where at every location, you

have one value to represent the pixel. Remember to represent a color image; we need more than

one value for each pixel. But how many values we need to represent a color? Typically you need

3 values for each pixel to represent any color. This came from the idea that any color can be

formed by combining 3 basic colors Red, Blue and Green. Ex: you get yellow by mixing red and

green, violet can be formed by combining red and blue etc., This is actually called RGB color

space. There are many other ways to create color images which we will discuss in further. Figure

1.4 is an example of a color image [3].

 Figure 1.4: Color image [3]

1.2.2 Human visual system

1.2.2.1 Description of the visual system

The human visual system constantly adapts to different luminance levels when viewing

natural scenes. We present a model of the visual adaptation, which supports displaying the

high dynamic range content on the low dynamic range displays. In this solution, an eye

tracker captures the location of the observer’s gaze. Temporary adaptation luminance is then

determined as the impact of the light area surrounding the gaze point. Finally, the high

dynamic range video frame is tone mapped and displayed on the screen in real time. We use a

model of local adaptation, which predicts how the adaptation signal is integrated in the retina,

including both time-course and spacial extent of the visual adaptation. The applied tone

mapping technique uses a global compression curve, the shape of which is adapted to the

local luminance value. This approach mimics a natural phenomenon of the visual adaptation

occurring in human eyes [5].

The human visual system comprises three main parts: the eye, the lateral geniculate nucleus

(LGN), and the part of the cortex brain that processes the visual information – the visual

cortex. Fig. 1.5 shows a schematic structure of the visual pathway [5].

https://www.sciencedirect.com/topics/engineering/luminance-level
https://www.sciencedirect.com/topics/engineering/compression-curve

16

 Figure 1.5: Human visual system [5]

1.2.2.2 The human eye anatomy

Figure 1.6 illustrates a cross sectional view of the human eye with various ocular structures

indicated. Basically, the human eye functions in a sequential manner. Firstly, the lights

perceived will pass through the cornea and pupil to the lens. Secondly, the lens will focus the

lights onto the retina. Thirdly, the captured light is converted into signals. Finally the signals

are transmitted to the brain, through the optic nerve, where the signals are perceived as

images. The retina is a thin layer located on the inside wall at the back of human eye, between

the choroid and the vitreous body.

 The retina is composed of photoreceptors (rods and cones) and neural tissues that

receives light, converts it into neural signals, and sends the signals to the optic nerve.

 The optic disc is where the retinal blood vessels converge and communicate perceived

signals to the brain through the optic nerve. Its horizontal and vertical “diameters” are

approximately 1.7 mm and 1.9 mm respectively.

 The macula is a small area at the centre of the retina where high concentration of

photoreceptors can be found. In a healthy retinal image, the macula appears as a

darkened circular region [6].

17

 Figure 1.6: The human eye anatomy [6]

1.2.2.3 How do we see color?

When light hits an object, the object absorbs some of the light and reflects the rest of it. Which

wavelengths are reflected or absorbed depends on the properties of the object. For a ripe banana,

wavelengths of about 570 to 580 nanometers bounce back. These are the wavelengths of yellow

light. When you look at a banana, the wavelengths of reflected light determine what color you

see. The light waves reflect off the banana's peel and hit the light-sensitive retina at the back of

your eye. That's where cones come in.

Cones are one type of photoreceptor, the tiny cells in the retina that respond to light. Most of us

have 6 to 7 million cones, and almost all of them are concentrated on a 0.3 millimeter spot on the

retina called the fovea centralis [7].

18

 Figure 1.7: How human visualize color [7]

Not all of these cones are alike. About 64 percent of them respond most strongly to red light,

while about a third are set off the most by green light. Another 2 percent respond strongest to

blue light. When light from the banana hits the cones, it stimulates them to varying degrees. The

resulting signal is zapped along the optic nerve to the visual cortex of the brain, which processes

the information and returns with a color: yellow.

Humans, with our three cone types, are better at discerning color than most mammals, but plenty

of animals beat us out in the color vision department. Many birds and fish have four types of

cones, enabling them to see ultraviolet light, or light with wavelengths shorter than what the

human eye can perceive.

Some insects can also see in ultraviolet, which may help them see patterns on flowers that are

completely invisible to us. To a bumblebee, those roses may not be so red after all [7].

19

1.2.3 A quick look about colors

1.2.3.1 What is a color?

Color is the characteristic of human visual perception described through color categories,

with names such as red, orange, yellow, green, blue, or purple. This perception of color

derives from the st imulat ion of cone cells in the human eye by electromagnet ic

radiat ion in the visible spectrum. Color categories and physical specificat ions of

color are associated with objects through the wavelength of the light that is reflected from

them. This reflection is governed by the object's physical properties such as light absorption,

emission spectra, etc [8].

1.2.3.2 Color vision

Color vision is an ability of animals to perceive differences between light composed of

different wavelengths (i.e., different spectral power distributions) independently of light

intensity. Color perception is a part of the larger visual system and is mediated by a complex

process between neurons that begins with differential stimulation of different types

of photoreceptors by light entering the eye. Those photoreceptors then emit outputs that are

then propagated through many layers of neurons and then ultimately to the brain. Color vision

is found in many animals and is mediated by similar underlying mechanisms with common

types of biological molecules and a complex history of evolution in different animal taxa. In

primates, color vision may have evolved under selective pressure for a variety of visual tasks

including the foraging for nutritious young leaves, ripe fruit, and flowers, as well as detecting

predator camouflage and emotional states in other primates [9].

1.2.3.3 What is the visible light spectrum?

The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human

eye. Electromagnetic radiation in this range of wavelengths is called visible light or simply light.

A typical human eye will respond to wavelengths from about 380 to 740 nanometers. In terms of

frequency, this corresponds to a band in the vicinity of 430–770 THz.

The spectrum does not contain all the colors that the human eyes and brain can distinguish.

Unsaturated colors such as pink, purple variations like magenta, for example, are absent because

they can only be made from a mix of multiple wavelengths. Colors containing only one

wavelength are also called pure colors or spectral colors [10].

https://en.wikipedia.org/wiki/Spectral_power_distribution
https://en.wikipedia.org/wiki/Visual_system
https://en.wikipedia.org/wiki/Photoreceptor_cell
https://en.wikipedia.org/wiki/Eye
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Evolution_of_color_vision
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Human_eye
https://en.wikipedia.org/wiki/Human_eye
https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Visible_light
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Human_eye
https://en.wikipedia.org/wiki/Nanometers
https://en.wikipedia.org/wiki/Hertz#_blank
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Excitation_purity
https://en.wikipedia.org/wiki/Pink
https://en.wikipedia.org/wiki/Purple
https://en.wikipedia.org/wiki/Magenta
https://en.wikipedia.org/wiki/Excitation_purity

20

 Figure 1.8: Visible light spectrum [10]

The wavelengths of visible light are:

 Violet: 380–450 nm

 Blue: 450–495 nm

 Green: 495–570 nm

 Yellow: 570–590 nm

 Orange: 590–620 nm

 Red: 620–750 nm

A- Colors human see that aren't on the spectrum

The visible spectrum does not encompass all the colors humans perceive because the brain also

perceives unsaturated colors (e.g., pink is an unsaturated form of red) and colors that are a

mixture of wavelengths (e.g., magenta). Mixing colors on a palette produces tints and hues not

seen as spectral colors [11].

B- Colors only animals can see

Just because humans can't see beyond the visible spectrum doesn't mean animals are similarly

restricted. Bees and other insects can see ultraviolet light, which is commonly reflected by

flowers. Birds can see into the ultraviolet range (300–400 nm) and have plumage visible in UV.

Humans see further into the red range than most animals. Bees can see color up to about 590

nm, which is just before orange starts. Birds can see red, but not as far toward the infrared range

as humans.

Some people believe the goldfish is the only animal that can see both infrared and ultraviolet

light, but this notion is incorrect. Goldfish cannot see infrared light [11].

https://www.thoughtco.com/what-is-the-wavelength-of-magenta-606166

21

1.2.3.4 Additive, subtractive models

A- RGB color model

Media that transmit light (such as television) use additive color mixing with primary

colors of red, green, and blue, each of which stimulates one of the three types of the eye's color

receptors with as little stimulation as possible of the other two. This is called "RGB" color space.

Mixtures of light of these primary colors cover a large part of the human color space and thus

produce a large part of human color experiences. This is why color television sets or color

computer monitors need only produce mixtures of red, green and blue light. See Additive color.

Other primary colors could in principle be used, but with red, green and blue the largest portion

of the human color space can be captured. Unfortunately there is no exact consensus as to what

loci in the chromaticity diagram the red, green, and blue colors should have, so the same RGB

values can give rise to slightly different colors on different screens [12].

 Figure 1.9: RGB color mode [13]

B- CMYK color model

It is possible to achieve a large range of colors seen by humans by combining cyan, magenta,

and yellow transparent dyes/inks on a white substrate. These are the subtractive primary colors.

Often a fourth ink, black, is added to improve reproduction of some dark colors. This is called

the "CMY" or "CMYK" color space.

The cyan ink absorbs red light but transmits green and blue, the magenta ink absorbs green light

but transmits red and blue, and the yellow ink absorbs blue light but transmits red and green. The

white substrate reflects the transmitted light back to the viewer. Because in practice the CMY

inks suitable for printing also reflect a little bit of color, making a deep and neutral black

impossible, the K (black ink) component, usually printed last, is needed to compensate for their

deficiencies. Use of a separate black ink is also economically driven when a lot of black content

is expected, e.g. in text media, to reduce simultaneous use of the three colored inks. The dyes

used in traditional color photographic prints and slides are much more perfectly transparent, so a

K component is normally not needed or used in those media [12].

https://en.wikipedia.org/wiki/Additive_color
https://en.wikipedia.org/wiki/Primary_color
https://en.wikipedia.org/wiki/Primary_color
https://en.wikipedia.org/wiki/Red
https://en.wikipedia.org/wiki/Green
https://en.wikipedia.org/wiki/Blue
https://en.wikipedia.org/wiki/RGB
https://en.wikipedia.org/wiki/Color_television
https://en.wikipedia.org/wiki/Additive_color
https://en.wikipedia.org/w/index.php?title=Human_color_space&action=edit&redlink=1
https://en.wikipedia.org/wiki/Chromaticity_diagram
https://en.wikipedia.org/wiki/Cyan
https://en.wikipedia.org/wiki/Magenta
https://en.wikipedia.org/wiki/Yellow
https://en.wikipedia.org/wiki/Subtractive_color
https://en.wikipedia.org/wiki/Primary_color
https://en.wikipedia.org/wiki/Black
https://en.wikipedia.org/wiki/Reversal_film

22

 Figure 1.10: CMYK color mode [13]

1.3 Computer vision

1.3.1 Computer vision what does it means?

We are as human using our eyes and brains to understand the real-world or visualize things,

scenes around us, we can understand images using our visual system and tell if the image is for

a plane or boat (the classification task) or detect, localize objects in images, videos, etc.

On the other hand, computer vision search to give similar tasks to machines, maybe better in the

near future. In other word, computer vision search to create techniques able to mimic the human

vision using machine learning algorithms [14].

Computer vision system tries to perceive and understand the world through images and videos

by constructing a physical model of the world so that the AI system can then take the appropriate

actions [15].

1.3.2 Computer vision and human vision

A- Human vision

As a presented in Section 1.2.2, human vision system consist of:

1) A sensor or an eye to capture the image

2) A brain to process and interpret this image

The system then outputs a prediction of the image components based on what we understand and

the information extracted from the image [15].

23

 Figure 1.11: Human vision system [22]

B- Computer vision system

In the last few years the researchers have reach an advance step in computer vision tasks by

extending the human vision ability to machines. So, in order to mimic the human vision system,

we need the same two main components:

1) A sensing device to mimic the function of the eye.

2) A powerful algorithm (such as machine learning, deep learning algorithms) to mimic the

brain function in interpreting and understanding the image content [15].

 Figure 1.12: Computer vision system [22]

1.3.1.2 Applications

Thanks to the evolution in computational power and the amount of data available, Artificial

Intelligence (AI) and deep learning have managed to achieve human performance on many

complex visual perception tasks like image search and captioning, image and video

classification, and object detection, etc. Moreover, deep neural networks are not restricted to

computer vision tasks: they are also successful at Natural Language Processing (NLP) and Voice

User Interface (VUI) tasks [15], etc.

24

A- Image classification

Image classification involves assigning a label to an image. In recent years deep learning play

remarkable role in the progress of computer vision applications, one of the successful algorithms

is Convolution Neural Networks (CNNs) which is used in many different classification tasks [20].

Image classification examples: handwritten digit, breast cancer, facial expressions…

- Lung cancer diagnosis

 Figure 1.13: Cancer detected/ not detected [21]

-Traffic sign recognition

 Figure 1.14: Traffic sign example [23]

B- Object detection

If we are aiming to reach human levels of understanding, we have to add complexity to the

system to be able to recognize multiple objects and their locations in an image. Algorithms such

as YOLO (you only look once) [30],Faster R-CNN [31], Single Shoot Detector (SSD) [32], not

only classify images, but can locate and detect each object in images that contain multiple

objects. These deep learning systems can look at an image, break it up into smaller regions, and

label each region with a class so that a variable number of objects in a given image can be

25

localized and labeled. You can imagine that such a task is a basic prerequisite for applications

like autonomous systems [15].

 Figure 1.15: Object detection [16]

C- Create images

Generative Adversarial Network is a new deep learning model invented by Ian Goodfellow in

2014, that can imagine new things. GANs, are sophisticated deep learning models that are able to

generate stunningly accurate synthesized images of objects, people, and places among other

things. If you give them a new set of images, they can make entirely new images that are realistic

and have never been seen before. These photos are never seen before and totally imaginary [15]

 Figure 1.16: Image creation [15]

26

1.3.2 Computer vision vs. image processing

In image processing, an image is "processed", that is, transformations are applied to an input

image and an output image is returned. The transformations can for example be "smoothing",

"sharpening", "contrasting" and "stretching". The transformation used depends on the context

and issue to be solved [17].

Unlike image processing, which is mainly focused on processing raw images without giving any

knowledge feedback on them [14], computers are made to gain high-level understanding from

the input digital images or videos with the purpose of automating tasks that the human visual

system can do. It uses many techniques and Image Processing is just one of them [17], we can

consider image processing as preprocessing step for computer vision algorithms.

The main difference between them is the goals. For example, if the goal is to enhance an image

for later use, then this may be called image processing. If the goal is to emulate human vision,

like image classification, object recognition, automatic driving, then it may be called computer

vision [17].

1.4 Image classification

1.4.1 Definition

Classification consists assigning a class to an image by using a classification system. To classify

the data into different classes or labels, the classification system needs a well understanding the

relationship between the data and the class to be assigned. what we mean by well understanding

is that before the classification task the real-world data may be complex ,incomplete or have

information that's out of our interest so the system need to simplify or clarify the data before

trying to classify it so the task be much easier to distinct between classes and give us a good

results.

1.4.2 Features and classifiers concepts

We can tell that the efficiency and robustness, accuracy of a computer vision application

dependent on the quality of the data features (images in our case) and the classifiers [18].

An effective feature extractor would make the job of the classifier much easier to give better

performance. On the contrary, simple features extractors need a “perfect” classifier to perform

well [19]. For now this considered as impossible case, so we need an effective feature extractor

to achieve reasonable performance [24].

A- Features

In computer vision, a feature is a measurable piece of data in your image that is unique to this

specific object. It may distinct color in an image or a specific shape such as a line, edge, or an

27

image segment [25]. The combination of n features can be represented as a n-dimensional vector,

called a feature vector. The quality of a feature vector is dependent on its ability to discriminate

image samples from different classes [26].

 Figure 1.17: Features example [25]

B- Classifiers

The task of the classifier is to use the feature vector to assign an image or region of interest to a

class. The difficulty of the classification task depends on the variability in the feature values of

images from the same category, relative to the difference between feature values of images from

different categories [27]. In machine learning there are a classifier algorithms such as support

vector machine (SVM) [33], random forest (RF) [34], Decision Tree [35], Neural Networks etc.

1.4.2.1 Features extraction (hand-engineered)

In traditional machine learning problems, we spend a good amount of time in manual features

selection and engineering [15]. To quantify the contents of an image based on a particular

component of the image we want to encode (i.e., shape, color, texture). Given these features, we

then proceed to train our classifier and evaluate it [28]. Some of the hand-crafted feature sets are:

• Histogram of Oriented Gradients (HOG)

• Scale-Invariant Feature Transform (SIFT)

• Speeded Up Robust Feature (SURF)

 Figure 1.18: Hand-engineered features extraction

28

1.4.2.1 Features extraction (automatic -engineered)

Deep learning skip features extraction step, the network extracts features automatically [15].

You just feed the raw image to the network. The network then learns filters inside its hidden

layers that can be used to discriminate among object classes [28].

Neural networks play a role of feature extractors + classifiers that are end-to-end trainable as

opposed to traditional ML models that use hand-crafted features [15].

 Figure 1.19: Automatic-engineered features extraction

1.4.2 Classification process

1.4.3.1 Images collection

The first component of building a deep learning network is to gather our initial dataset. We need

the images themselves as well as the labels associated with each image (supervised learning).

These labels should come from a finite set of categories [28].

1.4.3.2 Images pre-processing

A lot of time waste in cleaning up and preparing the data before building learning model. The

aim of digital image processing is to improve the image data (features) by suppressing unwanted

distortions and/or enhancement of some important image features so that our AI-computer

vision models can benefit from this improved data to work on [29]. Also make the data easier to

analyze and process computationally.

1.4.3.3 Training

The network tries to learn how to distinct between each class by extraction features (as described

in 1.4.2). When the model makes a mistake, it learns by updating parameters such weights and

biases, and improves itself.

In fact the training phase needs to split into 3 sets (training, validation, and test). We will discuss

this option in chapter 3.

1.4.3.4 Classifying

29

Now it is time to feed the extracted features vector to the classifier to output a class label for the

images. As described in Section 1.4.2, the classification task is done by either one of these

types:

1) Traditional machine learning algorithms like SVMs and Random Forest.

2) Fully connected layer (neural network) such as used in CNNs.

1.4.3.5 Evaluation

Finally we have the model ready to predict new images never seen before. The model predictions

are compared to the ground-truth labels from our testing set. The ground-truth labels represent

what the image category actually is. From there, we can compute the number of predictions our

classifier got correct and compute aggregate reports such as precision, recall, and f-measure,

which are used to quantify the performance of our network as a whole.

1.5 weather conditions image Classification

1.5.1 Introduction

Multi-class weather classification is valuable technique which has an effect for many computer

vision applications, such as video surveillance, ADAS (Advanced driver-assistance systems),

drone applications, and object recognition. However, we are in front of challenging task due to

the multifariousness of weather conditions and inadequacy of discriminate features that help to

differentiate among various weather conditions.

1.5.2 Description

For any pattern recognition problem, it is important to select proper features. We always

implement image classification by selecting interesting points as features or detecting the object

emerging in the scene. However, weather classification from images is different from general

image classification. It is impractical to use the traditional features for our problem because there

can be the same object and interesting points under different weather conditions. Hence, it is not

proper for applying the same kind of features as general image classification [41].

1.5.3 Features examples

A- Brightness

Brightness is one of the most significant pixel characteristics. It also explains weather images

nicely and can take different values for different type of weather conditions. Also, human eyes

and brain use brightness metric in a scene to recognize weather type. Psychology unintentionally

selects bright scenes as sunny or snowy mostly. All these reasons make it a good estimator to

recognize weather images and distinguish weather types from each other [42].

30

B- Haze factor

Cloudy or foggy weather may come with haze. We learned that the lowest and highest value in

color channels tends to be the same value of atmospheric light. We need to find a haze function

for detecting cloudy and foggy images.

For this purpose, a reference work introduces a model to calculate haze factor in images [43]. It

simply uses calculated contrast value above and calculated darkness value in a similar way to our

contrast metric then measure a haze factor between (0, 1) by using contrast and darkness metric’s

combination [42].

C- Sharpness

Sharpness determines the amount of detail an imaging system can reproduce. ”Classification of

Weather Situations on Single Color Images” paper [44] says ”Clearly distinguishable objects

under friendly weather conditions are expected to have sharp edges with large contrast

differences” and suggest sharpness usage to distinguish weather types. We also observed that

sunny, cloudy and rainy weather images are sharper where snowy and foggy weather images are

less sharper. Since light and weather kind of conditions affect how to look (more/less sharper) a

taken picture, sharpness value in given image can be used as an image descriptor for sure [42].

1.5.4 Possible Applications

A- ADAS(Advanced Driver Assistance System)

Recently, the development of autonomous vehicles and intelligent driver assistance systems has

drawn significant amount of attention from the general public. One of the most critical issues in

the development of autonomous vehicles and driver assistance systems is their poor performance

under adverse weather conditions.

Vehicle on-board cameras provide drivers with crucial visual signals and information for safe

driving. These systems provide a good service under clear day condition. However, such systems

should not degrade in severe weather such as (snow, rain and fog) and the camera system should

continue to provide helpful information under these conditions, especially as the driver is under

an increased workload. Bad weather reduces the scene contrast and visibility.

For example in snowy condition if there is moisture around a camera below freezing point, the

frost can cover the camera’s lens and deny the viewer seeing any activities besides the crystalline

patterns of the snow. Optically, raindrops on the lens can change the focus of camera. As a

result, part of the image affected by raindrops will be out of focus and blurred. These effects can

lead to the failure of image processing such as pattern recognition [36].

With the advancement in technology and emergence of a new field, intelligent transportation,

automated determination of weather condition has become more relevant. Present systems either

deploy an array of sensors or use an in-vehicle camera to predict weather conditions. These

31

solutions have resulted in incremental cost and limited scope. To ensure smooth operation of all

transportation services in all-weather conditions, a reliable detection system is necessary to

classify weather in wild. The challenges involved in solving this problem is that weather

conditions are diverse in nature and there is an absence of discriminate features among various

weather conditions [37].

B- Drones

If you want to make money flying drones commercially or even if you are having fun just flying

them around in an open field; you had better understand how weather can affect the operation of

your flying machine. It isn't a "little thing." Weather is the number one reason people have

accidents with their drones [38].

Some pilots don’t consider fog to be an obstacle for flying a drone. Yet still, it doesn’t mean that

fog is less important than other weather conditions. As a rule, aircraft don’t handle moisture

well. To predict fog, you need to look at the visibility index. Besides, if the weather is foggy, you

won’t see your drone in the sky [39].

If the drone is not water resistant, or it did not run prelaunch tests, it would be better to avoid

launching it in heavy pouring rain. In order to be able to fly the drone and relatively control it, it

would be safer to use it in case the rain is very mild, however it is still not encouraged to do so.

The problem with colder rainy environments is that it negatively affects the lithium polymer

battery in the drone. It will also drop it below the critical level because cold weather will require

the drone to have more motor power to lift, so it may harm the electronic speed control and the

motors. Other impacts include camera and damages that can occur from raindrops [40].

Weather is always changing, and thus it is on the UAV operator to ensure they know the current

and forecasted weather conditions before they head out for their day of flying! [38].

1.6 Conclusion

Image classification plays an important role in computer vision systems that need recognize and

detect different objects quick and accurate. Self-driving cars, as example, use computer vision

and image recognition to recognize different objects on the road such as signs, vehicles, and

walking people.

The next chapter, we will see the main reason that helped computer vision applications to

progress widely in the last few years which is deep learning.

32

Chapter 2

Deep Learning

2.1 Introduction

 We can agree that the recent successes of computer vision applications specifically image

classification; object detection and facial recognition are due to the fast progress of deep

learning techniques under the umbrella of machine learning.

 In this chapter, we will discuss deep learning approach and how impact in the progress of

computer vision applications with one of most popular architecture used for image

classification which is convolutional neural networks.

2.2 Introduction to neural networks

2.2.1 Definition

A neural network is a simplification of our most powerful tool, the brain. It uses neurons that

are all connected to each other through weights. The neurons are given some numerical input

and are multiplied by the weights. The weights are the heart of the neural network, and by

changing them to specific numerical values, we can process any input and get a desired output

[45].

2.2.2 Principal architectures

Neural net architecture describe how the way the neurons are connected, and the connection

patterns between layers, learning methods, and how network transform the information from

its input layer to the output layer.

There exist types of architectures such as:

 • Single-Layer Feedforward Networks.

 • Multilayer Feedforward Networks.

 • Convolutional Networks.

 • Recurrent Networks.

2.2.2.1 Single-Layer Feedforward Networks

There are two layers in this structure:

33

• Input layer

• Output layer (computation nodes)

Input signals are passed on to the output layer via the weights and the neurons in the output

layer compute the output signals [46]. (As shown in the figure 2.1).

 Figure 2.1: Single-Layer Feedforward Networks [47]

2.2.2.2 Multi-Layer Feedforward Networks

In this structure we can see an additional layer called hidden layer it can be one or more

hidden layers. Hidden layers help the network to extract higher informations from its inputs.

(As shown in the figure 2.2).

 Figure 2.2: Multi-Layer Feedforward Networks [48]

In the next section we are going to discuss convolutional, and recurrent networks

34

2.2.3 Learning process (types)

As humans there are different ways to learn from our environments, the same with neural

networks. We may categorize the learning processes to classes such as: supervised learning,

unsupervised learning, reinforcement learning, semi-supervised learning.

2.2.3.1 Supervised learning

Supervised learning describes a scenario of”teach by example”. Gain the experience from

training data (labeled data) to apply to testing data (unlabeled data). In other word, the goal of

this type is to develop a procedure, a rule or a pattern that classifies unseen examples by

analyzing the labeled examples. There are two main types of supervised learning problems:

• Classification: Supervised learning problem that involves predicting a class label.

• Regression: Supervised learning problem that involves predicting a numerical label.

 Figure 2.3: Supervised learning scheme [49]

2.2.3.2 Unsupervised learning

This type of learning is the opposite of the first one, as a start we don’t have a labeled data.

The aim of the algorithm here is to group or label data by extract relationships, patterns in

data, unsupervised learning operates upon only the input data without outputs or target

variables. There are problems such as:

• Clustering: unsupervised learning problem that involves finding groups in data.

 Figure 2.4: Unsupervised learning scheme [49]

35

2.2.3.3 Reinforcement learning

Reinforcement learning describes a class of problems where an agent operates in an

environment and must learn to operate using feedback [50].

Reinforcement learning is learning what to do—how to map situations to actions—so as to

maximize a numerical reward signal. The learner is not told which actions to take, but instead

must discover which actions yield the most reward by trying them [51].

 Figure 2.5: Reinforcement learning scheme [52]

In Reinforcement learning, the agent is one who takes decisions based on the rewards and

punishments. Consider an example of a batsman in cricket. He tries to hit the ball if he misses

he gets a negative point. If he hits the ball then he gets a reward. So, from these positive and

negative experiences, he will understand how to play that particular ball. In this example, the

batsman is an agent [53].

2.2.3.4 Semi-supervised learning

Semi-supervised learning is a learning paradigm concerned with the study of how computers

and natural systems such as humans learn in the presence of both labeled and unlabeled data

[54].

In semi-supervised learning we are given a few labeled examples and must make what we can

of a large collection of unlabeled examples. Even the labels themselves may not be the

oracular truths that we hope for [55].

The goal of semi-supervised learning is to understand how combining labeled and unlabeled

data may change the learning behavior, and design algorithms that take advantage of such a

combination. Semi-supervised learning is of great interest in machine learning and data

mining because it can use readily available unlabeled data to improve supervised learning

tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows

potential as a quantitative tool to understand human category learning, where most of the

input is self-evidently unlabeled [54].

https://en.wikipedia.org/wiki/Reinforcement_learning

36

2.3 Deep learning

2.3.1 Introduction

Everyone has an AI application in his hands, whether he understand it or not. We can tell that

the latest successes of AI due to the progress of two very popular concepts machine learning

and deep learning. But in the recent period, Deep learning take more intention than machine

learning due to its success in giving a remarkable accuracy for training models with huge

amount of data.

2.3.2 Definition

Deep learning is a subset of machine learning that imitates the workings of the human brain in

processing data and creating patterns for use in decision making [56]. DL achieves great

power and flexibility by learning to represent the world as nested hierarchy of concepts, with

each concept defined in relation to simpler concepts, and more abstract representations

computed in terms of less abstract ones [57].

We use deep learning when:

 Deep Learning really shines when it comes to complex problems such as image

classification, natural language processing, and speech recognition.

 Deep Learning performs better than other techniques if the data size is large. But with

small data size, traditional Machine Learning algorithms are preferable.

 Deep Learning techniques need to have high end infrastructure to train in reasonable time.

 When there is lack of domain understanding for feature introspection, Deep Learning

techniques outshines others as you have to worry less about feature engineering.

2.3.3 The deep learning revolution

What happened in the past few years that make deep learning so shining? The two main

reasons appear to be availability of massive labeled data sets and GPU computing. Here are

many factors that impacted in the deep learning revolution:

• Appearance of large, high-quality labeled datasets - Data along with GPUs probably

explains most of the improvements we’ve seen.

• Parallel computing with GPUs, The transition from CPU-based training to GPU-based has

resulted in massive speed ups for these models.

• Improved architectures such as Resnet-50, VGG-16, and Alex-Net networks keep the

gradients flowing smoothly, and let us increase the depth and flexibility of the network.

• For deep learning development, frameworks like tensorflow, keras, and pytorch provide

high-level of abstraction. They let you focus on your model structure without having to

37

worry about dealing with the nitty-gritty details of implementing algorithms. they take care

of the details behind the scenes.

• New regularization techniques like dropout, batch normalization, and data-augmentation

allow us to train larger and larger networks without (or with less) overfitting [57].

2.3.4 Deep learning models

The last years gave us deep learning architectures, which greatly expanded the number and

type of problems neural networks can address. This section discuss seven models of deep

learning architectures.

2.3.4.1 Autoencoders

An autoencoder neural network is an unsupervised learning algorithm that applies

backpropagation, setting the target values to be equal to the inputs [58]. Autoenconders

compress the input into a lower-dimensional code and then reconstruct the output from this

representation. An autoencoder consists of 3 components: encoder, code and decoder. The

encoder compresses the input and produces the code, the decoder then reconstructs the input

only using this code. As shown in figure 2.5

 To build an autoencoder we need 3 things: an encoding method, decoding method, and a loss

function to compare the output with the target [59].

 Figure 2.6: Autoencoders architecture [59]

2.3.4.2 Deep Belief Network (DBN)

38

A Deep Belief Network (DBN) is an unsupervised probabilistic deep-learning algorithm to

produce outputs [60]. (DBNs) are composed of layers of Restricted Boltzmann Machines

(RBMs) for the pre-train phase and then a feed-forward network for the fine-tune phase [61].

In the DBN, the input layer represents the raw sensory inputs, and each hidden layer learns

abstract representations of this input. The output layer, which is treated somewhat

differently than the other layers, implements the network classification. Training occurs in

two steps: unsupervised pre-training and supervised fine-tuning [62].

 Figure 2.7: Deep Belief Network architecture [63]

In unsupervised pretraining, each RBM is trained to reconstruct its input (for example, the

first RBM reconstructs the input layer to the first hidden layer). The next RBM is trained

similarly, but the first hidden layer is treated as the input (or visible) layer, and the RBM is

trained by using the outputs of the first hidden layer as the inputs. This process continues

until each layer is pretrained. When the pretraining is complete, fine-tuning begins. In this

phase, the output nodes are applied labels to give them meaning (what they represent in the

context of the network). Full network training is then applied by using either gradient

descent learning or back-propagation to complete the training process [62].

2.3.4.3 Generative Adversarial Networks (GANs)

The Generative Adversarial Network (GAN) is unsupervised learning algorithm belong to the

set of generative models. It means that they are able to produce / to generate new content [64].

The idea introduced by Ian Goodfellow and colleagues at the University of Montreal in 2014.

Given a training set, the network automatically discovers and learns regularities and patterns

in input data so it can self-learn to generate new data. It can essentially mimic any data set

with small variations [60].

39

 Figure 2.8: GAN architecture [65]

The GAN uses two submodels: generator and discriminator.

The generator creates new examples of data, while the discriminator distinguishes between

real domain data and fake generated samples. They run repeatedly, making them more and

more robust with each repetition [60].

The goal here is to make images realistic enough that the discriminator network is fooled to

the point that it cannot distinguish the difference between the real and the synthetic input data

[61].

2.3.4.4 Recurrent Neural Network (RNNs)

A recurrent neural network (RNN) is a type of artificial neural network commonly used in

speech recognition and natural language processing (NLP). RNNs are designed to recognize

a data's sequential characteristics and use patterns to predict the next likely scenario [66].

RNNs are the engines behind speech recognition applications such as Apple’s Siri and

Google’s Voice Search, as well as chatbots and translation tools [67].

 Figure 2.9: Simple RNN architecture [69]

Unlike other neural networks, an RNN has an internal memory that enables it to remember

historical input; this allows it to make decisions by considering current input alongside

40

learning from previous input. In this way, an RNN can form a much deeper understanding of

a sequence and its context than other types of deep learning algorithms, and therefore make

more precise predictions [67].

There is a limitation with RNNs known as short-term memory which caused by the infamous

vanishing gradient problem [68]. This lead us to the next deep learning model called LSTM.

2.3.4.5 Long Short-Term Memory (LSTM)

The long short-term memory (LSTM) algorithm is a type of RNN that allows deep recurrent

networks to be trained without making the gradients that update weights become unstable.

Patterns can be stored in memory for more extended periods, with the ability to add, remove,

or modify data as needed [60].

The critical component of the LSTM is the memory cell and the gates (including the forget

gate, but also the input gate). The contents of the memory cell are modulated by the input

gates and forget gates. Assuming that both of these gates are closed, the contents of the

memory cell will remain unmodified between one time-step and the next. The gating

structure allows information to be retained across many time-steps, and consequently also

allows gradients to flow across many time-steps. This allows the LSTM model to overcome

the vanishing gradient problem that occurs with most Recurrent Neural Network models

[61].

 Figure 2.10: Simple LSTM architecture [69]

2.3.4.6 Recursive Neural Networks (RNNs)

Recursive neural networks comprise a class of architecture that can operate on structured

input [70]. To produce a structured prediction over variable-size input structures, or a scalar

prediction on it, by traversing a given structure in topological order [71]. Applications for

recursive neural networks include image scene decomposition, NLP, Audio-to-text

transcription, sentiment analysis.

41

 Figure 2.11: Recursive neural networks architecture [72]

2.3.4.7 Convolutional Neural Networks (CNNs)

A- Intoduction

The advancements in Computer Vision with Deep Learning (Google photo search, facebook

automatic tagging algorithms, amazon product recommendations) has been constructed and

perfected with time, primarily over one particular algorithm — a Convolutional Neural

Network [73].

B- Definition

A convolutional neural network (CNN) is a type of artificial neural network used in image

recognition and processing that is specifically designed to process pixel data [74]. CNNs

operate in a way that is very similar to standard neural networks. A key difference, however, is

that each unit in a CNN layer is a two- (or high-) dimensional filter which is convolved with

the input of that layer. This is essential for cases where we want to learn patterns from high-

dimensional input data. CNN filters incorporate spatial context by having a similar (but

smaller) spatial shape as the input media, and use parameter sharing to significantly reduce the

number of learn-able variables [61].

 Figure 2.12: CNN architecture example [90]

42

C- basic building blocks of CNN

Similar to traditional neural networks convolutional neural networks is also a sequence of

layers. Each layer transforms an input image to an output image with some differentiable

function that may or may not have parameters [76]. CNN architecture consists:

• Input layer

• Convolutional layer (Convolution + ReLU)

• Pooling layer

• Fully connected(FC) layer

Input Layers

CNN take a 4D array as input. So input data has a shape of (batch_size, height, width, depth),

where the first dimension represents the batch size of the image and other three dimensions

represent dimensions of the image which are height, width and depth. For example, RGB

image would have a depth of 3 and the greyscale image would have a depth of 1 [77].

batch size = the number of training examples in one forward/backward pass. The higher

the batch size, the more memory space you'll need [78].

 Figure 2.13: CNN Input shape [77]

Convolutional Layers

A convolutional layer is the most important component of a CNN. It comprises a set of filters

(also called convolutional kernels) which are convolved with a given input to generate an

output feature map [14].

• Filter (kernal/feature detector):

43

Each filter in a convolutional layer is a grid of discrete numbers, the filter size is smaller than

the input image size. The weights of each filter are learned during the training of CNN. This

learning procedure involves a random initialization of the filter weights at the start of the

training. Afterward, given input-output pairs, the filter weights are tuned in a number of

different iterations during the learning procedure [14].

 Figure 2.14: Filter of size 3x3 [79]

• Convolution operation:

In mathematics, convolution is the operation of two functions to produce a third modified

function. To explain this definition in the CNNs context, the first function is the input image

and the second function is the CONV filter. By sliding the convolutional filter over the input

image, the network is breaking the image into little chunks and it processes those chunks

individually to assemble the modified image that is called feature map [15].

 Figure 2.15: Convolution operation [80]

• Feature map:

The feature maps of a CNN capture the result of applying the filters to an input image, at each

layer, the feature map is the output of that layer [81]. The size of the Feature Map (Convolved

Feature) is controlled by three parameters which are depth, stride, and padding.

44

 Figure 2.16: Feature maps [82]

Introducing Non Linearity (activation layer)

After each convolution layer, it is convention to apply a nonlinear layer (or activation layer)

immediately afterward. The purpose of this layer is to introduce nonlinearity to a system that

basically has just been computing linear operations during the convolution layers (just

element wise multiplications and summations) [84].

The most successful non-linearity for CNN’s is the Rectified Non-Linear unit (ReLU), which

combats the vanishing gradient problem occurring in sigmoids. ReLU is easier to compute and

generates sparsity (not always beneficial) [85].

 Figure 2.17: ReLU activation function [86]

The ReLU layer applies the function f(x) = max(0, x) to all of the values in the input volume.

In basic terms, this layer just changes all the negative activations to 0.This layer increases the

nonlinear properties of the model and the overall network without affecting the receptive

fields of the convolution layer [84].

45

 Figure 2.18: Applying ReLU after convolution operation [87]

Hyperparameters used convolution layer:

• Output depth Depth corresponds to the number of filters we use for the convolution

operation [76].

• Filter size Represents the height and width of the filters used [76].

• Stride: is the amount by which the filter slides over the image, large stride values decrease

the size of the information that will be passed to the next layer [15].

If stride = 1, the filter will move one pixel / If stride = 2, the filter will move two pixel.

 Figure 2.19: Convolution operation example with difference strides [83]

• Padding: often called zero-padding because we add zeros around the border of an image.

Padding is most commonly used to allow us to preserve the spatial size of the input volume

so the input and output width and height are the same. This way we can use CONV layers

without necessarily shrinking the height and width of the volumes. This is important for

building deeper networks, since otherwise the height/width would shrink as you go to deeper

layers [15].

46

 Figure 2.20: Convolution operation example with padding=2 [15]

Pooling Layers

After adding several CONV layers this will produce a huge number of parameters (weights).

This increase in the network dimensionality will increase the time and space complexity of

the mathematical operations that take place in the learning process. This is when the pooling

layers come in. Subsampling or pooling helps in reducing the size of the network by reducing

the number of parameters passed to the next layer. The pooling operation resizes its input by

applying a summary statistic function, such as a maximum or average, to reduce the overall

number of parameters to be passed on to the next layer [15].

The goal of the pooling layer is to downsample the feature map into smaller number of

parameters to extract representative features, reduce the computational complexity, helps

reduce overfitting.

 There are pooling types such as average pooling, sum pooling, max pooling, the last one is

common method used in CNN [15].

 Figure 2.21: Illustration of max pooling with a pooling area of size 2x2 and stride of 2 [88]

Fully connected Layer

Fully connected layer is a traditional multilayer perceptron structure. The objective of a fully

connected layer is to take the results of the convolution/pooling process and use them to

classify the image into a label (in a simple classification example).

47

The output of convolution/pooling is flattened into a single vector of values, each

representing a probability that a certain feature belongs to a label. The label that receives the

highest probability is the classification decision [89].

 Figure 2.22: Fully connected layer [89]

The image below illustrates how the input values flow into the first layer of neurons. They

are multiplied by weights and pass through an activation function (typically ReLu), just

like in a classic artificial neural network. They then pass forward to the output layer, in

which every neuron represents a classification label.

The fully connected part of the CNN network goes through its own backpropagation process

to determine the most accurate weights. Each neuron receives weights that prioritize the

most appropriate label. Finally, the neurons “vote” on each of the labels, and the winner of

that vote is the classification decision [89].

 Figure 2.23: Simple CNN architecture with main layers [75]

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/complete-guide-artificial-neural-networks/
https://missinglink.ai/guides/neural-network-concepts/backpropagation-neural-networks-process-examples-code-minus-math/

48

Common architectures in CNN

LetNet

One of the earliest successful architectures of CNNs (developed in 1998 by Yann Lecun),

originally used to read digits in images [61].

 Figure 2.20: LetNet architecture [91].

AlexNet

AlexNet was developed by Alex Krizhevsky et al. in 2012, the success of this model (Won

the ILSVRC 2012) helped popularize CNNs in computer vision [61].

 Figure 2.24: AlexNet architecture [91]

GoogLeNet

Developed by Christian Szegedy and his team at Google, the winner of ILSVRC 2014 and the

GoogLeNet architecture is also known as Inception Module [61].

49

 Figure 2.25: GoogLeNet architecture [92]

VGG-16

Runner-Up in the ILSVRC 2014, Developed by Karen Simonyan and Andrew Zisserman,

Showed that depth of network was a critical factor in good performance [61].

 Figure 2.26: VGG-16 architecture [91]

ResNet

It also called as Residual Neural Network (ResNet) by Kaiming. Trained on very deep

networks (up to 1,200 layers), Won first in the ILSVRC 2015 classification task [61].

50

 Figure 2.27: ResNet architecture [92]

2.3.5 Generalization in deep neural networks

2.3.5.1 Definition

Generalization is a term used to describe a model’s ability to react to new data, it is probably

the most important element of any deep learning model success. When training our deep

learning model, there’s training data which the model trains on, and there’s testing data for

checking the performance of the model. If the model performs well on the testing data which it

never seen before, we can say that the model generalized well on the new data, and if the model

fail to generalize on the new data then we are in front of phenomenon in neural networks

called overfitting [94]. There are certain aspects of neural networks which we can control in

order to prevent overfitting problem like cross-validation, dropout, weight regularization.

2.3.5.2 Cross-validation

Cross-validation is a powerful preventative measure against overfitting. The idea is using initial

training data to generate multiple mini train-test splits. Use these splits to tune the model. In

standard k-fold cross-validation, we partition the data into k subsets, called folds. Then, we

iteratively train the algorithm on k-1 folds while using the remaining fold as the test set (called

the “holdout fold”) [95].

51

 Figure 2.28: Cross-validation idea [96]

2.3.5.3 Dropout

In Neural Networks, adding dropout neurons is one of the most popular and effective ways to

reduce overfitting in neural networks. What happens in dropout is that essentially each neuron in

the network has a certain probability of completely dropping out from the network. This means

that at a particular instant, there will be certain neurons which will not be connected to any other

neuron in the network [94]. Here’s an example:

 Figure 2.29: Dropout some neurons randomly with certain probability [97]

2.3.5.4 L1 and L2 Regularizations

One of the first methods we should try when we need to reduce overfitting is regularisation. It

involves adding an extra element to the loss function, which punishes our model for being too

complex or, in simple words, for using too high values in the weight matrix. This way we try to

limit its flexibility, but also encourage it to build solutions based on multiple features [97].

52

There are two methods of doing this, they are called the L1 and L2 regularization. In L1 we take

a small part of the sum of all the absolute values of the weights in the network. In L2, we take a

small part of the sum of all the squared values of the weights in the network. We just add this

expression to the overall loss function of the neural network [94].

 Figure 2.30: L1 and L2 equations [98]

2.3.6 Deep learning applications

2.3.6.1 Entertainment

Wimbledon 2018 used IBM Watson to analyse player emotions and expressions through

hundreds of hours of footage to auto-generate highlights for telecast. This saved them a ton of

effort and cost. Thanks to Deep Learning, they were able to factor in audience response and

match or player popularity to come up with a more accurate model (otherwise it would just have

highlights of the most expressive or aggressive players). Netflix and Amazon are enhancing

their deep learning capabilities to provide a personalized experience to its viewers by creating

their personas factoring in show preferences, time of access, history, etc. to recommend shows

that are of liking to a particular viewer.Deep Learning AI is revolutionizing the filmmaking

process as cameras learn to study human body language to imbibe in virtual characters.

2.3.6.2 Fraud detection

Another domain benefitting from Deep Learning is the banking and financial sector that is

plagued with the task of fraud detection with money transactions going digital. Autoencoders in

Keras and Tensorflow are being developed to detect credit card frauds saving billions of dollars

of cost in recovery and insurance for financial institutions. Fraud prevention and detection are

done based on identifying patterns in customer transactions and credit scores, identifying

anomalous behavior and outliers. Classification and regression machine learning techniques and

neural networks are used for fraud detection. While machine learning is mostly used for

highlighting cases of fraud requiring human deliberation, deep learning is trying to minimize

these efforts by scaling efforts.

2.3.6.3 Healthcare

53

Deep learning in healthcare has already left its mark. Google has spent a significant amount of

time examining how deep learning models can be used to make predictions around hospitalized

patients, supporting clinicians in managing patient data and outcomes [99]. Deep learning has

been playing an important role in medical diagnosis and research. It helps with diagnosis of life-

threatening diseases, pathology results and treatment cause standardization and understanding

genetics to predict future risks of diseases[100].

Readmissions are a huge problem for the healthcare sector as it costs tens of millions of dollars

in cost. The use of deep learning and neural networks, healthcare giants are mitigating health

risks associated with readmissions while bringing down the costs. AI is also being exceedingly

being used in clinical researches by regulatory agencies to find cures to untreatable diseases but

physicians scepticism and lack of a humongous dataset are still posing challenges to the use of

deep learning in medicine [98].

2.3.6.4 Virtual assistants

The most popular application of deep learning is virtual assistants ranging from Alexa to Siri to

Google Assistant. Each interaction with these assistants provides them with an opportunity to

learn more about your voice and accent, thereby providing you a secondary human interaction

experience. Virtual assistants use deep learning to know more about their subjects ranging from

your dine-out preferences to your most visited spots or your favorite songs. They learn to

understand your commands by evaluating natural human language to execute them. Another

capability virtual assistants are endowed with is to translate your speech to text, make notes for

you, and book appointments. Virtual assistants are literally at your beck-and-call as they can do

everything from running errands to auto-responding to your specific calls to coordinating tasks

between you and your team members. With deep learning applications such as text generation

and document summarizations, virtual assistants can assist you in creating or sending

appropriate email copy as well [98].

2.3.7 Related works

2.3.7.1 Music genre classification

Categorizing music files according to their genre is a challenging task in the area of music

information retrieval (MIR). Hareesh Bahuleyan used a deep learning approach wherein a CNN

model is trained end-to-end, to predict the genre label of an audio signal, solely using its

spectrogram. Convolutional neural networks (CNNs) have been widely used for the task of

image classification. In this study, the sound wave can be represented as a spectrogram, which in

turn can be treated as an image. The task of the CNN is to use the spectrogram to predict the

genre label (one of seven classes) [101].

2.3.7.2 Lung cancer detection and classification

Lung cancer is one of the most killer diseases in the developing countries and the detection of

the cancer at the early stage is a challenge. Analysis and cure of lung malignancy have been one

of the greatest difficulties faced by humans over the most recent couple of decades. Early

identification of tumor would facilitate in sparing a huge number of lives over the globe

https://arxiv.org/search/cs?searchtype=author&query=Bahuleyan%2C+H

54

consistently. (S. Sasikala et.al) present an approach which utilizes a Convolutional Neural

Network (CNN) to classify the tumors found in lung as malignant or benign. The accuracy

obtained by means of CNN is 96%, which is more efficient when compared to accuracy

obtained by the traditional neural network systems [102].

2.3.7.3 Photo-realistic facial Details synthesis from single image

Anpei Chen et.al proposed a single-image 3D face synthesis technique that can handle

challenging facial expressions while recovering fine geometric details. their technique employs

expression analysis for proxy face geometry generation and combines supervised and

unsupervised learning for facial detail synthesis. On proxy generation, they conduct emotion

prediction to determine a new expression-informed proxy. On detail synthesis, they present a

Deep Facial Detail Net (DFDN) based on Conditional Generative Adversarial Net (CGAN) that

employs both geometry and appearance loss functions. For geometry, we capture 366 high-

quality 3D scans from 122 different subjects under 3 facial expressions. For appearance, they

used additional 163K in-the-wild face images and apply image-based rendering to

accommodate lighting variations. Comprehensive experiments demonstrate that their

framework can produce high-quality 3D faces with realistic details under challenging facial

expressions [103].

2.3.7.4 Deepfakes creation and detection

Deepfake (stemming from “deep learning” and “fake”) is a technique that can superimpose face

images of a target person to a video of a source person to create a video of the target person

doing or saying things the source person does. Deep learning models such as autoencoders and

generative adversarial networks (GANs) have been applied widely in the computer vision

domain to solve various problems these models have also been used by deepfake algorithms to

examine facial expressions and movements of a person and synthesize facial images of another

person making analogous expressions and movements. Deepfake algorithms normally require a

large amount of image and video data to train models to create photo-realistic images and

videos. As public figures such as celebrities and politicians may have a large number of videos

and images available online, they are initial targets of deepfakes [104].

2.3.7.5 Human activity recognition

A human activity recognition design has been proposed by Schalk Wilhelm Pienaa et.al using

an LSTM-RNN deep neural architecture. The network is able to learn six classes (downstairs,

jogging, sitting, standing, upstairs, walking) successfully and efficiently with only a few

hundred epochs, reaching high accuracies above 94% and a loss of less than 30% has been

reached in the first 500 epochs of training. The work can be further extended with different data

sources as well as different classes. The model has been successfully exported and loaded to an

Android app together with the Tensorflow library, giving the ability to perform real-time

predictions. L2 regularization has already been implemented to prevent overfitting, but another

solution would be to add dropout, which is one of the most effective and commonly used

regularisation techniques for neural networks to prevent overfitting models [105].

55

2.3.7.6 Weather image recognition

• [Jehong An et. al 2018] describe a new weather image classification technique using Alexnet

and Resnet (CNN architectures) combined with a multiclass Support Vector Machine (SVM).

The experimental datasets used are the weather database [106], desnownet [107], and d-hazy

dataset [108]. Experimental results show that this method works well with 4 classes used with

classification accuracy is 97 % sunny, 100 % cloudy, 96 % hazy, and 95 % snowy [109].

• [Jose Carlos Villarreal Guerra et. al 2018] have created a new open source dataset consisting

of images depicting three classes of weather i.e. rain, snow and fog called RFS Dataset. A

novel algorithm has also been proposed which has used super pixel [110] delimiting masks as a

form of data augmentation [111], they used 10 CNN architectures (such as CaffeNet,

VGGNet16, VGGNet19, ResNet 50.....etc). they got reasonable results, about 80% accuracy in

resnet50 architecture with 100 SP (superpixel) [112].

• [Mohamed R. Ibrahim et. al 2019] proposed a novel framework to automatically extract

weather and visual conditions from street-level images of urban scenes. They downloaded

23,865 images from the web, for training and testing. A pipeline of four CNN models, so-called

WeatherNet, is trained, relying on residual learning using ResNet50 architecture, to extract

various weather and visual conditions they combine four models such as dawn/dusk or day or

night(model 1), glare or no glare (model 2) , and clear or rainy or snowy (model 3), and or

fog/no fog (model 4). Each model trained independently. WeatherNet shows promising results

with 91.6%, 94.8%, 93.2%, 95.2% accuracies respectively for the 4 models [113].

2.4 conclusion

Deep learning methods showed high-level results in a lot of real world applications which

impact directly or indirectly on computer vision field or other fields. Although of this

improvement there are some limitations of course due to huge data and time complexity and

other problems used for training deep models. In this chapter, we have discussed the buzz word

'deep learning' and how it used for image classification with detailed explanation about one of

the successful models (CNN), also we touched some deep learning research areas.

Build on this discussion, we concluded that the weather image classification can benefit from

deep learning techniques more. This motivated us to use deep learning model, which we will be

discuss in the next chapter.

56

Chapter 3

System Architecture, Implementation and

Results

3.1 Introduction

In our work, we focused on making a deep learning model that able to recognize different

weather conditions from images. To achieve this, we proposed Convolutional neural network

architecture, one of the successful deep learning algorithms in image recognition tasks.

In this chapter we are going to discover the process of how we prepare and pre-process our

dataset for train and evaluate a CNN model for the weather conditions classification with the

appropriate environments and tools and the achieved results.

3.2 System Architecture

3.2.1 Introduction

In this work, we collected weather images from different weather datasets also we have created

small dataset due to some issues in first datasets. We are using image pre-processing techniques

and data augmentation. And as we mentioned before we are going to use Convolution neural

network (CNN), which is a supervised algorithm, taken in consideration the big achievements of

that algorithm in image classification.

CNN algorithm helps us to make Weather Conditions classification that we want to reach. This

task is done by designing and training different CNN architectures with dataset until we get a

model with high accuracy as possible as we can.

3.2.2 System Architecture

Our system for classifying weather images goes through a number of stages, and this is the

architecture that the figure 3.1 summarizes in general.

57

 Figure 3.1: System General Architecture

 We can see that our system has two main stages which are Front-end and Back-end:

58

Front-end: is synonymous with the user interface, is what happens in the browser everything the

user sees and interact with. For our work the user upload an image and request for prediction

then getting response of the class label from the back-end.

Back-end: is the base of our work, in this stage we are going to gathering images dataset and

cleaning up the data also performing image pre-processing technique, data augmentation and

designing the CNN architecture for the training with different models until we have an accurate

model then saving it to make predictions later if we have a request from the user.

3.2.2.1 Back-end

The Back-end is the heart of the system and it going through a pipline as the following:

A. Dataset gathering, preparation

B. Dataset Pre-processing

C. Model Training

D. Model Evaluation

E. Hyperparameter tuning

F. Model Prediction

 Figure 3.2: Back-end Architecture

59

A- Dataset gathering, preparation

In our work we going to use five different weather conditions from images, our classes are the

following:

- Cloudy weather condition

- Foggy weather condition

- Rainy weather condition

- Snowy weather condition

- Sunny weather condition

For achieving our purpose we collected weather images from different datasets used in related

works and combining between them. Our first dataset source is:

 Image2Weather Dataset

Image2Weather dataset created by Wei-Ta Chu et. al in 2017 for their work "Camera as Weather

Sensor: Estimating Weather Information from Single Images".

This dataset consists of 183,798 images in total. Overall, geographically the collected images

span from 9.25 degrees west longitude to 30.4 degrees east longitude, and from 35 degrees north

latitude to 62.21 degrees north latitude (covering most part of the Europe). The range of

temperature is from -25 degree Celsius to 45 degree Celsius, and the range of humidity is from

4% to 100% [115].

 Table 3.1: Image2Weather Dataset [115]

 Weather condition

 Samples

 Cloudy weather

 45,662

 Foggy weather 357

 Rainy weather 1,369

 Snowy weather 1,252

 Sunny weather 70,501

 Other images 64,657

 Total 183,798

60

We can notice from the table there are five conditions (cloudy, foggy, rainy, snowy, sunny) also

the table have a row called other images, according to the dataset creators they manually correct

weather types and label images with unclear weather conditions into "others".

For our dataset we ignore the “others” images because it take a lot of time to label about 64,657

images manually. We also notice the big gap between classes samples which mean that this data

is Imbalanced dataset.

- Imbalanced data typically refers to a problem with classification problems. Where the class

distribution is not uniform among the classes. Typically, they are composed by two classes: The

majority (negative) class and the minority (positive) class. In such cases, you get a pretty high

accuracy just by predicting the majority class, but you fail to capture the minority class, which is

most often the point of creating the model in the first place [116].

- Re-sampling Dataset

To make our dataset balanced there are ways to do so:

Collecting more data

Under-sampling: Remove samples from the majority classes.

Over-sampling: Add more samples to the minority classes.

 Figure 3.3: Re-sampling dataset [116]

To achieve our purpose for balancing the dataset we use all possible techniques mentioned

above. In our way for collecting more data for the minority classes (foggy, rainy, and snowy).

 We found three datasets for foggy class and one dataset for snowy for Over-sampling our data:

 FRIDA (Foggy Road Image DAtabase) image database:

FRIDA and FRIDA2 are databases of numerical images easily usable to evaluate in a systematic

way the performance of visibility and contrast restoration algorithms. FRIDA comprises 90

synthetic images of 18 urban road scenes. FRIDA2 comprises 330 synthetic images of 66 diverse

road scenes [117]. We use all this data for Over-sampling our data.

61

 Figure 3.4: FRIDA dataset [117]

 LIVE Image Defogging Database

L. K. Choi et. al created this dataset for proposed model, called Fog Aware Density Evaluator

(FADE), predicts the visibility of a foggy scene from a single image without reference to a

corresponding fog-free image, without dependency on salient objects in a scene, without side

geographical camera information, without estimating a depth dependent transmission map, and

without training on human- rated judgments. FADE only makes use of measurable deviations

from statistical regularities observed in natural foggy and fog-free images.

LIVE Image Defogging Database consists of 500 natural foggy images, 500 natural fog-free

images, and 100 test foggy images [118]. We take for our foggy class about 500 images.

 Figure 3.5: LIVE Image Defogging Database [118]

 REalistic Single Image DEhazing (RESIDE)

62

RESIDE highlights diverse data sources and image contents, and is divided into five subsets,

each serving different training or evaluation purposes. We further provide a rich variety of

criteria for dehazing algorithm evaluation, ranging from full-reference metrics, to no-

reference metrics, to subjective evaluation and the novel task-driven evaluation. Experiments

on RESIDE shed light on the comparisons and limitations of state-of-the-art dehazing

algorithms, and suggest promising future directions [119].

 Table 3.2: RESIDE Dataset [119]

From this data we toke Realistic Hazy Images (Unannonated) with 4,807 images.

 Figure 3.6: Samples of RESIDE dataset [119]

 Snow100K dataset

 Type

 Samples

 Synthetic Indoor Hazy Images

 110,500

 Synthetic Outdoor Hazy Images 313,950

 Realistic Hazy Images

(Unannonated)

 4,807

 Realistic Annonated Hazy

Images

 4,322

63

This dataset created by Liu et. al for DesnowNet model that automatically localizes the

translucent and opaque snow particles from realistic winter photographs, and removes them to

achieve better visual clarity on corresponding resultants [107].

 Table 3.3: Snow100k Dataset [107]

We added the Realistic snows images for our dataset (1,329 samples)

 Figure 3.7: Samples of snow100k dataset [107]

 Type

 Samples

 Synthesized snowy images

 100k

 Snow-free ground truth images 100k

 Snow masks 100k

 Realistic snowy images 1,329

64

With all of this data our dataset still imbalanced, so we under-sampling the two classes with

majority (Cloudy, Sunny), the last thing we did for balanced our data is creating a small dataset

for the three minority classes (foggy, rainy, snowy).

 Table 3.4: New Dataset

We created this small dataset by downloading about 10 YouTube videos with a foggy condition,

16 videos with a rainy condition, and 12 videos with condition. The videos filmed with high

quality cameras in different places from the world (New York, Boston, London, India, and

China). The next step we converted those videos into frames, we toke a frame each 10 seconds

for each video then deleted the frames with bad quality or noisy, and finally we added this new

images to the old dataset.

 Figure 3.8: Samples of the new dataset

 class

 Videos

 Images

 Foggy Weather

 10 1,916

 Rainy Weather 16 2,631

 Snowy Weather 12 1,419

65

Finally, after we collected and prepared our dataset by removing bad quality, noisy images, and

balanced the classes (under-sampling, over-sampling) we work with final dataset as showing in

the table 3.5:

 Table 3.5: Final Dataset

 Figure 3.9: Samples of the final dataset

 Weather condition

 Samples

 Cloudy weather

 4,000

 Foggy weather 4,000

 Rainy weather 4,000

 Snowy weather 4,000

 Sunny weather 4,000

66

 B- Dataset Pre-processing

Data preprocessing its technique that helps enhance the quality of data to promote the extraction

of meaningful insights from the data. In simple way, data preprocessing in Machine Learning is

a data mining technique that transforms raw data into an understandable and readable format.

Why we need data Pre-processing?

When it comes to creating a Machine Learning model, data preprocessing is the first step

marking the initiation of the process. Typically, real-world data is incomplete, inconsistent,

inaccurate (contains errors or outliers), and often lacks specific attribute values/trends. This is

where data preprocessing enters the scenario – it helps to clean, format, and organize the raw

data, thereby making it ready-to-go for Machine Learning models [120].

There is a pipeline to follow in data pre-processing as shown in figure 3.9:

 Figure 3.10: Pre-processing pipeline

https://www.upgrad.com/blog/most-common-examples-of-data-mining/

67

Stage 1: Import needed libraries

It’s the first step to take in data pre-processing. Libraries are particularly useful for storing

frequently used routines because we don't need to explicitly link them to every program that uses

them which help us to simply process our dataset. This is what python providing us with of

useful image processing libraries that help also for simply loading our dataset, we going to

discover them in the implementation section.

Stage 2: Import the dataset

We can import the dataset for many ways it depend on the format files of the dataset such as

(data.npy, data.csv …) each dataset format can be loaded with specific library. And it is useful if

we put our dataset in same working directory to make the access more rapidly.

Stage 3: missing values Identifying and handling

In data preprocessing, it is pivotal to identify and correctly handle the missing values, if we miss

this step we can ended up with inaccurate model, there are two ways to handle missing data the

first one is Deleting a particular row its commonly used to handle the null values where more

than 75% of the values are missing and it's not always recommended. The second one is

calculating the mean it is useful for features having numeric data like age, salary, year, etc. Here,

you can calculate the mean, median, or mode of a particular feature or column or row that

contains a missing value and replace the result for the missing value.

Stage 4: Encoding categorical data

Categorical data refers to the information that has specific categories within the dataset. Since,

machine learning models are based on Mathematical equations and you can intuitively

understand that it would cause some problem if we can keep the Categorical data in the

equations because we would only want numbers in the equations [121]. There a methods to do

this work like dummy variable, label encoding, frequency encoding, and one hot encoding [122].

A one hot encoding is a representation of categorical variables as binary vectors. This first

requires that the categorical values be mapped to integer values. Then, each integer value is

represented as a binary vector that is all zero values except the index of the integer, which is

marked with a 1. For our dataset (images) are already numerical but we need this step for our

labels (cloudy, foggy, rainy, snowy, and sunny). As shown in the table 3.6:

 Table 3.6: One Hot Encoding

 Label

 Integer

 One Hot Encoding

 Cloudy

 0 [1, 0, 0, 0, 0]

 Foggy 1 [0, 1, 0, 0, 0]

 Rainy 2 [0, 0, 1, 0, 0]

 Snowy 3 [0, 0, 0, 1, 0]

 Sunny 4 [0, 0, 0, 0, 1]

68

Stage 5: Splitting the dataset

Every dataset for Machine Learning model must be split into training/test set. Training set is

used for training our model. Here, the model knows the output. A test set, on the other hand, is

used for testing the model for checking how accurate the model is. The ML model uses the test

set to predict outcomes.

Usually, we take 70% or 80% of the data for training the model while leaving out the rest 30% or

20%. For our work we use 80:20 ratios.

Stage 6: Feature scaling

Feature scaling marks the end of the data preprocessing in Machine Learning. It is a method to

standardize the independent variables of a dataset within a specific range. In other words, feature

scaling limits the range of variables so that you can compare them on common grounds [120].

There are methods to do the feature scaling step depending on the data such as Standardization,

Normalization, and Mean normalization. We work with images so we used Normalization

method which also called Re-scaling.

 Figure 3.11: Normalization formula [120]

Generally, normalization consists in re-scaling the range of features to scale the range in [0, 1] or

[-1, 1].

For our case images, pixels range is [0-255], when we apply the formula the new value X’

always will be the original value divided by 255.

C- Training

The heart of our process is the training of the model that requires patience and experimentation.

Most of the “learning” is done at this stage. First thing to do for our training process is setting up

convolutional neural networks model architecture (choosing the model) then we will use our pre-

processed data to incrementally improve our model’s ability to predict whether a given image is

one of the five weather condition hoping to get an accurate model after we evaluate the model.

D- Model evaluation

69

In this step we need to evaluate our trained model with the real world data (data unseen before

by the model). However, through its training, the model should be capable enough to extrapolate

the information and deem whether the weather is cloudy or foggy or rainy or snowy or sunny.

Else if our model is not good enough with real data we need to tuning hyperparameter or re-

design our CNN architecture then retrain our model with the new settings.

 Accuracy is a common evaluation metric for classification problems. It’s the number of

correct predictions made as a ratio of all predictions made.

 A confusion matrix provides a more detailed breakdown of correct and incorrect

classifications for each class.

The short explanation of how to interpret a confusion matrix is as follows: The

diagonal elements represent the number of points for which the predicted label is equal

to the true label, while anything off the diagonal was mislabeled by the classifier.

Therefore, the higher the diagonal values of the confusion matrix the better, indicating

many correct predictions [123].

 Figure 3.12: Confusion matrix example

E- Hyperparameter tuning

hyperparameter tuning is the problem of choosing a set of optimal hyperparameters for a learning

algorithm. The goal is to find an optimal combination of hyperparameters that minimizes a

predefined loss function to improve model performance. Some techniques used to tune

hyperparameters are Grid Search, Random Search, Bayesian Optimization or manually [124].

For our work we fine tuning manually based on the first choice of hyperparameters and their

score, we change a part of them (or all of them) then train the model again, and check the

difference in the score. Some CNN Hyperparameters: learning rate, batch size, epoch number,

activation function, etc.

70

F- Model Prediction

The final step of our work is prediction. Know we consider our model to be ready for practical

applications. This is the point of all this work, where the value of our CNN model is realized.

 Figure 3.13: Prediction example

Note! For the pre-processing step is required as the user provided image should be resized and

scaled in the same way as the pre-processing in training stage otherwise the model will

misclassified the labels .

3.2.2.2 Front-end

The purpose of this part is making the interactions (request/ response) for converting data from

back-end to the graphical interface so that users can view and interact with that data by simplify

the access to each part of our application. As shown in the figure 3.13:

 Figure 3.14: Front-end system

3.3 Environments and Implementation

3.3.1 Environments and tools

71

To achieve our purpose of our work we need a different environments and tools for the backend

from the programming language, APIs, libraries, IDE. For the frontend we are going to use

programming language, style sheet, markup language, text editor, IDE...etc

3.3.1.1 Back-end Environments and tools

Python

 Figure 3.15: Python logo

Python is an interpreted, high-level, general-purpose programming language. Created by Guido

van Rossum and first released in 1991, Python's design philosophy emphasizes code readability

with its notable use of significant whitespace. Its language constructs and object-oriented

approach aim to help programmers write clear, logical code for small and large-scale projects.

Python is dynamically typed and garbage-collected. It supports multiple programming

paradigms, including structured (particularly, procedural), object-oriented, and functional

programming. Python is often described as a "batteries included" language due to its

comprehensive standard library. We use Python 3.6 for our project.

PyCharm

 Figure 3.16: Pycharm logo

PyCharm is an integrated development environment used in computer programming, specifically

for the Python language. It is developed by the Czech company JetBrains.

TensorFlow

72

 Figure 3.17: TensorFlow 2.0 logo

TensorFlow is a free and open-source software library for dataflow and differentiable

programming across a range of tasks. It is a symbolic math library, and is also used for machine

learning applications such as neural networks. It is used for both research and production at

Google. TensorFlow was developed by the Google Brain team for internal Google use. It was

released under the Apache License 2.0 on November 9, 2015.

Keras

 Figure 3.18: Keras logo

Keras is an open-source neural-network library written in Python. It is capable of running on top

of TensorFlow, Microsoft Cognitive Toolkit, R, Theano, or PlaidML. Designed to enable fast

experimentation with deep neural networks, it focuses on being user-friendly, modular, and

extensible. It was developed as part of the research effort of project ONEIROS (Open-ended

Neuro-Electronic Intelligent Robot Operating System),and its primary author and maintainer is

François Chollet, a Google engineer. Chollet also is the author of the XCeption deep neural

network model.

In 2017, Google's TensorFlow team decided to support Keras in TensorFlow's core library.

Chollet explained that Keras was conceived to be an interface rather than a standalone machine

learning framework. It offers a higher-level, more intuitive set of abstractions that make it easy

to develop deep learning models regardless of the computational backend used. Microsoft added

a CNTK backend to Keras as well, available as of CNTK v2.0.

OpenCV

73

 Figure 3.19: OpenCV logo

OpenCV is a library of programming functions mainly aimed at real-time computer vision.

Originally developed by Intel, it was later supported by Willow Garage then Itseez. The library is

cross-platform and free for use under the open-source BSD license.

Matplotlib

 Figure 3.20: Matplotlib logo

Matplotlib is a plotting library for the Python programming language and its numerical

mathematics extension NumPy. It provides an object-oriented API for embedding plots into

applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK+.

Numpy

 Figure 3.21: Numpy logo

NumPy is a library for the Python programming language, adding support for large,

multidimensional arrays and matrices, along with a large collection of high-level mathematical

functions to operate on these arrays.

Scikit-learn

74

 Figure 3.22: Scikit-learn logo

Scikit-learn (formerly scikits.learn and also known as sklearn) is a free software machine

learning library for the Python programming language. It features various classification,

regression and clustering algorithms including support vector machines, random forests, gradient

boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and

scientific libraries NumPy and SciPy.

Flask

 Figure 3.23: Flask logo

Flask is a micro web framework written in Python. It is classified as a microframework because

it does not require particular tools or libraries. It has no database abstraction layer, form

validation, or any other components where pre-existing third-party libraries provide common

functions. However, Flask supports extensions that can add application features as if they were

implemented in Flask itself. Extensions exist for object-relational mappers, form validation,

upload handling, various open authentication technologies and several common framework

related tools. Extensions are updated far more regularly than the core Flask program.

Applications that use the Flask framework include Pinterest, LinkedIn, and the community web

page for Flask itself.

75

Google Colab

 Figure 3.24: Google Colab logo

Colaboratory is a Google research project created to help disseminate machine learning

education and research. It's a Jupyter notebook environment that requires no setup to use and

runs entirely in the cloud.

3.3.1.2 Front-end Environments and tools

JavaScript

 Figure 3.25: JavaScript logo

JavaScript often abbreviated as JS, is a high-level, interpreted programming language that

conforms to the ECMAScript specification. JavaScript has curly-bracket syntax, dynamic typing,

prototype-based object-orientation, and first-class functions.

HTML

 Figure 3.26: HTML5 logo

76

Hypertext Markup Language (HTML) is the standard markup language for documents designed

to be displayed in a web browser. It can be assisted by technologies such as Cascading Style

Sheets (CSS) and scripting languages such as JavaScript.

CSS

 Figure 3.27: CSS3 logo

Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation of a

document written in a markup language like HTML. CSS is a cornerstone technology of the

World Wide Web, alongside HTML and JavaScript.

Sublime text

 Figure 3.28: Sublime text logo

Sublime Text is a shareware cross-platform source code editor with a Python application

programming interface. It natively supports many programming languages and markup

languages, and functions can be added by users with plugins, typically community-built and

maintained under free-software licenses.

3.3.2 Back-end development

This section is about backend development (training CNN), we going through the training phase

including pre-processing steps using the programming language Python with the help of deep

learning libraries and API’s.

3.3.2.1 Import libraries

First step is import what we need from python libraries to start our deep learning training, this

are libraries used in our training as shown in list 3.1:

77

1. import os
2. import numpy as np
3. import tensorflow as tf
4. from keras import regularizers
5. from keras.preprocessing.image import ImageDataGenerator
6. from keras.models import Sequential
7. from keras.layers import Dropout, Flatten, Dense,BatchNormalization
8. from keras.layers.convolutional import Conv2D, MaxPooling2D
9. from keras import callbacks
10. from keras.optimizers import Adam

11. import time

12. import pickle

 Listing 3.1: Import Libraries.

3.3.2.2 Dataset loading

The second step is loading our dataset that going to be used in the training, but since we don’t

have an npy or csv files for our dataset (we have images in folders) we need to create our

data.npy to simplify the pre-processing steps wih a simple python code as shown in list 3.2:

1. training_path = 'D:/weather_model/fdata/training'
2. def training_data():
3. train = []
4. train_label = []
5. for subdir, dirs, files in os.walk(training_path):
6. for file in files:
7. name_ext = os.path.basename(file)
8. img_name, image_extension = os.path.splitext(name_ext)
9. image = cv2.imread(os.path.join(subdir, file))
10. try:

11. image = cv2.resize(image, (224, 224))

12. except Exception as e:

13. print(str(e))

14. if "cloudy" in img_name:

15. train.append(image)

16. train_label.append("cloudy")

17. elif "foggy" in img_name:

18. train.append(image)

19. train_label.append("foggy")

20. elif "rainy" in img_name:

21. train.append(image)

22. train_label.append("rainy")

23. elif "snowy" in img_name:

24. train.append(image)

25. train_label.append("snowy")

26. elif "sunny" in img_name:

27. train.append(image)

28. train_label.append("sunny")

29. train_data = np.array(train)

30. train_labels = np.array(train_label)

31. np.save('train', train_data)

32. np.save('train_labels', train_labels)

33.

34. training_data()

 Listing 3.2: From images to npy file.

78

After we prepare our training data and validation data as well in npy files, the dataset already to

load as described in the following code:

1. train_data = np.load('drive/My Drive/weather/train.npy')
2. train_labels = np.load('drive/My Drive/weather/train_labels.npy')
3.
4. valid_data = np.load('drive/My Drive/weather/validation.npy')
5. valid_labels =np.load('drive/MyDrive/weather/validation_labels.npy')

 Listing 3.3: Loading dataset.

For loading the dataset we read them by calling a method that read npy files with a giving path of

the dataset (npy files saved before).

3.3.2.3 Dataset pre-processing

The third step to train our model we need first to pre-process our dataset by following the next

steps:

1. Data normalization: we need to rescale our images from the range [0-255] to the range

[0-1] using the min-max normalization method by dividing each pixel value of the image

by 255.

2. Encoding Categorical Labels: in our labels npy files we have categorical values and that’s

problem in machine learning models since they’re a mathematical models so we need to

encode our Labels. We use OneHotEncoder from Scikit-learn library, the output would a

binary vector for each class.

3. Reshaping Input Images: our images with input (224x224x3), before feed them to CNN

for training we need to reshape them to 4D tensors. So input data has a shape of (number

of samples, 224, 224, 3), where the first dimension represents the batch size of the image.
1. # data normalization
2. train_data = train_data/255
3. validation_data = validation_data/255
4. #Encoding Categorical train/validation Labels
5. train_ = array(train_labels)
6. val_ = array(val_labels)
7. # integer encode
8. encoder=LabelEncoder()
9. encoded1=encoder.fit_transform(train_)
10. encoded2=encoder.fit_transform(val_)

11. # binary vector encode

12. onehot_encoder = OneHotEncoder(categories='auto')

13. encoded1=encoded1.reshape(len(encoded1), 1)

14. encoded2=encoded2.reshape(len(encoded2), 1)

15. train_labels = onehot_encoder.fit_transform(encoded1)

16. val_labels = onehot_encoder.fit_transform(encoded2)

17. #Reshaping data

18. train_data = train_data.reshape(train_data.shape[0],

19. img_width, img_height, 3)

20. val_data = validation_data.reshape(validation_data.shape[0],

21. img_width, img_height, 3)

 Listing 3.4: Dataset pre-processing.

79

3.3.2.4 Model training

Since our dataset is ready now we going to design convolutional neural network model

architecture using sequential model from Keras with setting configurations as shown in the next

code:

1. model = Sequential()
2. model.add(Conv2D(32, kernel_size=(3,3),input_shape=(img_width,
3. img_height,3), activation='relu'))
4. model.add(MaxPooling2D(pool_size=(2, 2)))
5. model.add(Conv2D(32, kernel_size=(3,3), activation='relu'))
6. model.add(Conv2D(32, kernel_size=(3,3), activation='relu'))
7. model.add(MaxPooling2D(pool_size=(2, 2)))
8. model.add(Conv2D(32, kernel_size=(3,3), activation='relu'))
9. model.add(Conv2D(32, kernel_size=(3,3), activation='relu'))
10. model.add(MaxPooling2D(pool_size=(2, 2)))

11. model.add(Flatten())

12. model.add(Dense(512, activation='relu'))

13. model.add(Dropout(0.7))

14. model.add(Dense(classes_num, activation='softmax'))

 Listing 3.5: Model architecture.

The next thing thing to do is begin our training session as the following:

1. model.compile(loss='categorical_crossentropy',
2. optimizer=Adam(lr=0.0001),
3. metrics=['accuracy'])
4. checkpoint_filepath = 'drive/My Drive/weather_model/_ck0.ckpt'
5. my_callbacks = [
6. EarlyStopping(monitor='val_loss',
7. mode='min',
8. verbose=1,
9. patience=20),
10. ModelCheckpoint(filepath=checkpoint_filepath,

11. verbose=1,

12. monitor='val_accuracy',

13. mode='max',

14. save_best_only=True)

15.]

16. model.fit(

17. train_data,

18. train_labels,

19. validation_data=(validation_data, validation_labels),

20. batch_size=64,

21. epochs=100,

22. verbose=2

23.)

24. model.save('drive/My Drive/weather/colab_model0.h5')

 Listing 3.6: Model training.

80

Here we are using Adam optimizer, we lunch our training with 100 epochs and 64 batch size.

Also we use other parameters (Early stopping that stop the training after certain number of

epochs if the loss of our model didn’t improve to prevent overfitting),(checkpoint save the model

with the max accuracy during the training). Finally we save the trained model.

3.3.2.5 Model evaluation

Evaluation is the stage when we check whether the model is best fit for the given new data

unseen before. Keras model provides a function, evaluate to check the model accuracy and loss.

1. score = model.evaluate(test_data, test_labels, verbose = 0)
2. print('Test loss:', score[0])
3. print('Test accuracy:', score[1])

 Listing 3.7: Model evaluation.

After checking the accuracy and loss (we also use confusion matrix to evaluate our model) of

the model we decide if our model is ready for predictions or we need to go back to the training

stage for fine tunig hyperparameters or reDesign CNN architecture.

3.3.3 Front-end development

The reason for this part is to make our work easy to work with from any user want to test and use

the application. We use a simple structure for the pages; all the pages are accessible from one to

another.

81

 Figure 3.29: Front-end architecture

We the HTML for creating and structure the content of the pages also taking the advantges of

styling the pages from CSS to make the presentation of Web pages, including colors, layout, and

fonts. For making a good look to the user eye. We use JavaScript to create responsive,

interactive, dynamic elements for our pages. and make it easier and more attractive for enhacing

the user experience. As shown in the next figures for the application:

82

 Figure 3.30: App Page 1

 Figure 3.31: App Page 2A.

83

 Figure 3.32: App Page 2B

 Figure 3.33: App Page 3

84

 Figure 3.34: App Page 4

85

3.4 Results and discussion

In order to train our dataset we need a paralleling computing with minimum resources to gain

time and train different CNN architectures and that what Google providing us with free cloud

service (Google Colab) that supports free GPU, Google Colab providing us a single 12GB

NVIDIA Tesla K80 GPU that can be used up to 12 hours continuously.

3.4.1 Results

 Table 3.7: Weather conditions classification tests

Test 1:

We used a simple CNN architecture (2 convolution, 2 maxpooling, 2 fullyconnected), with

‘SGD’ optimize,20 epoch, 64 batch size we get in 10 minutes about 63% accuracy and 70%

loss which is a high loss value lead to a lot of misclassifications in predictions.

Test 2:

We added a convolution layer in this test and kept the same hyperparameters from the first

architecture the loss value decreased which is a good sign but the accuracy just increased about

1% and that’s not the improvement we want.

 Architecture Optimizer

Training_time

(colab GPU)

Loss % Accuracy

%

1/ Conv2D-MaxPool-Conv2D-MaxPool-FC-FC

 SGD 10 min 70% 63%

2/Conv2D-Conv2D-MaxPool-Conv2D-MaxPool-

FC-FC

 SGD 15 min 60% 64%

3/Conv2D-MaxPool-Conv2D-MaxPool-FC-FC

RMsprop 11 min 56% 69%

4/Conv2D-MaxPool-Conv2D-MaxPool-Conv2d-

MaxPool-FC-FC-FC

RMsprop 20 min 61% 72%

5/Conv2D-Conv2D-MaxPool-Conv2D-FC-FC RMsprop 17 min 50% 70%

6/Conv2D-MaxPool-Conv2D-FC-FC-FC Adam 13 min 45% 73%

7/Conv2D-Conv2D-Conv2D-MaxPool-FC-FC-FC Adam 28 min 62% 79%

8/Conv2D-Conv2D-Conv2D-MaxPool-Conv2D-

MaxPool-FC-FC-FC

 Adam 35 min 52% 81%

9/Conv2D-MaxPool-Conv2D-Conv2D-Maxpool-

Conv2D-Conv2D-MaxPool-FC-FC

 Adam 50 min 30% 86%

86

Test 3:

We used the same simple architecture and hyperparameters in the first test with changing the

optimizer to ‘RMsproup’ our accuracy is up to 69% and also the loss down to 56% which is a

good sign for now.

Test 4:

We kept the same optimizer ‘RMsproup’ but we change the architecture here by adding (1

convolution layer, 1 maxpooling, 1 fullyconnected), the training time increased to 20 minutes we

get good accuracy about 72% but the loss up to 61% which is a bad results for us.

Test 5:

We simplified the architecture in order to get better results but the only good sign for this

changing is that the loss is down for the first time to 50% with just 70% accuracy.

Test 6:

We used a simple architecture as the first test but with another optimizer which is ‘Adam’, the

loss down to 45% which is a good thing for the model but the accuracy doesn’t get better to

much about just 73%.

Test 7:

We used 3 convolution layers, 1 maxpooling, and 3 fullyconnected layers with the same

optimizer the accuracy is increased to 79% but the loss increased to much about 62% and that is

another problem in the model.

Test 8:

We used in this test (3 Conv,1 Mxpool, 1 Conv, 1 Mxpool, 3 FC) the loss value down to 59%

good sign for our model also the accuracy for the first time pass above 80%

Test 9:

We increased the complexity of the architecture and we change the batch size from 64 to 128, we

get remarkable improvement, the loss down to 30% and the accuracy up to 86%.

Based on the test 9 which is quite good model, we want to decreased the loss value. So for our

last test we kept the same architecture but we increased the dropout probability from 0.5 to 0.8,

also we changed the learning rate in ‘adam’ optimizer from 0.001 to 0.0001, we get about 90%

accuracy with a 22% loss in 100 epoch.

87

 Figure 3.35: Accuracy and Loss graphs

We tested our model on 500 data images unseen before, 100 images for each weather conditions:

 Figure 3.36: Confusion Matrix

The results of the confusion matrix for testing new images show good results as following:

 Cloudy: 89 from 100 images predicted true (89% accuracy, 11% error rate)

 Foggy: 99 from 100 images predicted true (99% accuracy, 1% error rate)

 Rainy: 82 from 100 images predicted true (82% accuracy, 18% error rate)

 Snowy: 87 from 100 images predicted true (87% accuracy, 13% error rate)

 Sunny: 88 from 100 images predicted true (88% accuracy, 12% error rate)

We conclude that the model had an accuracy 89% and 11% error rate for new data and this is a

good result.

88

3.4.2 Results discussion and comparison:

 Table 3.8: Comparison weather recognition works

We have built a supervised deep learning model CNN can recognize weather conditions for five

classes: cloudy, foggy, rainy, snowy, sunny. Our model trained on different weather images

locations (nature scenes, surveillance cameras, street-level, urban traffic, synthesis images).

 Our CNN model can reach 90% accuracy testing on 4000 images to five classes which is

a convenient results comparing to the model one (2018, 5 classes) and the model three

(2020, 5 classes) which there accuracies about 80% and 86%.

 Comparing our model to the model two (2019, 3 classes) from the perspective of

accuracy is better than ours but we can notice that this model detect only 3 classes unlike

ours which detect 5 classes, the same thing for the model four (2020, 4 classes) better

accuracy with less weather conditions to detect.

 Also the models two and four are trained on level-street/urban traffic images and that’s

mean there is a possibility to misclassify weather images from different types such as

nature scenes or surveillance cameras. In the other hand our model trained images from

different locations and we can notice the absence of cloudy class because cloudy class is

tricky and hard to distinguish from other weather conditions (due to that all other weather

conditions also involve clouds).

 Model Year

 Weather classes Accuracy

1/ Weather Classification: A new multi-class

dataset, data augmentation approach and

comprehensive evaluations of CNN [112].

 2018

 cloudy-foggy-rainy-snowy-sunny

 5 Classes

 80%

2/ WeatherNet:
Recognising Weather and Visual

Conditions from Street-Level Images

Using Deep Residual Learning [113].

 2019

 Clear-rain-snow

 3 Classes

 93%

3/ A Framework for the Classification Task

Recognizing Weather Condition in an

Image using Supervised Learning

Methods [125].

 2020
cloudy-foggy-rainy-snowy-sunny

 5 Classes

 86%

4/ ResNet15: Weather Recognition on

Traffic Road with Deep Convolutional

Neural Network [126].

 2020

 foggy-rainy-snowy-sunny

 4 classes

 96%

5/ Our CNN Model

 2020
cloudy-foggy-rainy-snowy- sunny

 5 Classes

 90%

89

3.4.3 Limitation

With the good results we had our system for weather condition classification still missing some

points as the following:

 Our system can’t classify weather conditions into multi-label classification such as:

cloudy-rainy, cloudy-snowy, cloudy-sunny, sunny-snowy, foggy-rainy…..etc

 We have a quite high loss with 22% this lead to misclassify the weather.

 Such system needs more informations such as time (day/night) and visual conditions.

 This model won’t recognize weather with bad quality images.

3.4.4 Future works

In the future, from our methodology there's a chance to develop a powerful system for

weather recognition based on our work by improving some points as following:

 Make our system able to classify weather conditions to multi-label (more than one

weather condition in a single image) classification.

 Add the time conditions (day/night/sunshine/sunrise for example) to the system.

 Experimenting with transfer learning technique using developed CNN architecture such

as ResNet, VGG16, GoogleNet…etc. may enhance the accuracy of the model.

3.5 Conclusion

In this chapter we presented the architecture of our system also the way how we prepare dataset

to train a CNN model for weather condition classification.

Among the related works we discuss with our achievement we can tell that our model is a

promising model for weather recognition with some modification In the future.

90

General Conclusion

Weather conditions often play a valuable role in the proper functioning of transportation

systems, agriculture, and other systems. Present solutions either deploy sensors or use an in-

vehicle camera to predict weather conditions. However, the installation, configuration of sensors

will cost a lot of manpower and material resources and those solutions are used in a limited

scope.

To ensure the knowledge about all-weather conditions, an automation detection system is

necessary to classify weather conditions. Due to this we have used a supervised deep learning

method by proposing accurate convolutional neural network architecture can detect weather

conditions from images.

The aim of our system is to make it as new or alternative solution for the current means in

weather recognition tasks in anywhere and at anytime taken benefits from deep learning CNN

model that helped to extract complex informations from single-images for five weather conditions

cloudy, foggy, rainy, snowy, and sunny.

Such systems as an example can avoid a lot of transportation accidents in highways, and it can

help to organize urban traffics and improve driving efficiency. Some driver assistant can improve

driving safety through weather detection, such slow down speed in bad weather conditions,

warning drivers to keep distance with other cars, and automatically turning on wipers in rainy

weather.

91

Bibliography

1. https://people.cs.clemson.edu/~dhouse/courses/405/notes/pixmaps-rgb.pdf

2. https://en.wikipedia.org/wiki/Pixel

3. https://towardsdatascience.com/introduction-to-images-c9c7abe6bfd2

4. https://oneroomwithaview.com/2017/05/16/12-angry-men-still-relevant/

5. Colour Design, Theories and Applications by Best, Janet

6. cgi.csc.liv.ac.uk/~frans/CurrentResearch/Thessi/hanafiJHijazi2012-7- 22.pdf

7. https://www.livescience.com/32559-why-do-we-see-in-color.html

8. https://en.wikipedia.org/wiki/Color

9. https://en.wikipedia.org/wiki/Color_vision

10. https://en.wikipedia.org/wiki/Visible_spectrum

11. https://www.thoughtco.com/understand-the-visible-spectrum-608329

12. https://en.wikipedia.org/wiki/Color_models

13. https://upload.wikimedia.org/wikipedia/commons/5/5b/Cmyk-rgb.jpg

14. https://ieeexplore.ieee.org/document/8295029

15. https://www.bookdepository.com/Deep-Learning-for-Vision-Systems-Mohamed-

Elgendy/9781617296192

16. https://machinelearningmastery.com/applications-of-deep-learning-for-computer-vision/

17. https://cs.stackexchange.com/questions/7050/what-are-the-differences-between-computer-

vision-and-image-processing

18. https://www.researchgate.net/publication/4260042_Feature_Mining_for_Image_Classification

19. https://www.byclb.com/TR/Tutorials/neural_networks/ch1_1.htm

20. https://www.fritz.ai/image-recognition/

21. https://arxiv.org/pdf/1705.09435.pdf

22. https://medium.com/@ManningBooks/how-does-computer-vision-work-bc35b0fb5df5

23. https://chsasank.github.io/keras-tutorial.html

https://en.wikipedia.org/wiki/Pixel
https://towardsdatascience.com/introduction-to-images-c9c7abe6bfd2
https://oneroomwithaview.com/2017/05/16/12-angry-men-still-relevant/
https://cgi.csc.liv.ac.uk/~frans/CurrentResearch/Thessi/hanafiJHijazi2012-7-
https://www.livescience.com/32559-why-do-we-see-in-color.html
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Color_vision
https://en.wikipedia.org/wiki/Visible_spectrum
https://www.thoughtco.com/understand-the-visible-spectrum-608329
https://en.wikipedia.org/wiki/Color_models
https://upload.wikimedia.org/wikipedia/commons/5/5b/Cmyk-rgb.jpg
https://ieeexplore.ieee.org/document/8295029
https://www.bookdepository.com/Deep-Learning-for-Vision-Systems-Mohamed-%20%20Elgendy/9781617296192
https://www.bookdepository.com/Deep-Learning-for-Vision-Systems-Mohamed-%20%20Elgendy/9781617296192
https://machinelearningmastery.com/applications-of-deep-learning-for-computer-vision/
https://cs.stackexchange.com/questions/7050/what-are-the-differences-between-computer-%20vision-and-image-processing
https://cs.stackexchange.com/questions/7050/what-are-the-differences-between-computer-%20vision-and-image-processing
https://www.researchgate.net/publication/4260042_Feature_Mining_for_Image_Classification
https://www.byclb.com/TR/Tutorials/neural_networks/ch1_1.htm
https://www.fritz.ai/image-recognition/
https://arxiv.org/pdf/1705.09435.pdf
https://medium.com/@ManningBooks/how-does-computer-vision-work-bc35b0fb5df5
https://chsasank.github.io/keras-tutorial.html

92

24. https://www.coursehero.com/file/p1q0d81/C-H-A-P-T-E-R-2-Features-and-

Classi%EF%AC%81ers-Feature-extraction-and-classi%EF%AC%81cation/

25. https://freecontent.manning.com/the-computer-vision-pipeline-part-4-feature-extraction/

26. https://en.wikipedia.org/wiki/Feature_(machine_learning)

27. https://www.coursehero.com/file/pcjjcta/Figure-21-a-The-aim-is-to-design-an-algorithm-

which-classifies-input-images/

28. https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/

29. https://towardsdatascience.com/image-pre-processing-c1aec0be3edf

30. https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/

31. https://towardsdatascience.com/faster-rcnn-object-detection-f865e5ed7fc4

32. https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-

851a94607d11

33. https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

34. https://towardsdatascience.com/understanding-random-forest-58381e0602d2

35. https://towardsdatascience.com/decision-tree-classification-de64fc4d5aac

36. https://www.researchgate.net/profile/Ming_Ding15/publication/331723697_The

_Impact_of_Adverse_Weather_Conditions_on_Autonomous_Vehicles_Examinin

g_how_rain_snow_fog_and_hail_affect_the_performance_of_a_selfdriving_car/

links/5e644b8d92851c7ce04f094c/The-Impact-of-Adverse Weather-Conditions-on-

Autonomous-Vehicles-Examining-how-rain-snow-fog-and-hail-affect-the-

performance-of-a-self-driving-car.pdf?origin=publication_detail

37. https://www.researchgate.net/publication/326799649_Weather_Classification_A_new

_multiclass_dataset_data_augmentation_approach_and_comprehensive_evaluations_of_Con

volutional_Neural_Networks

38. https://www.m3aerial.com/blog/tag/understand+how+weather+can+affect+operation+of+

drones

39. https://www.aeromotus.com/information-for-drone-users/how-weather-affects-your-drone-

s-performance/

40. https://www.thatsclever.co.uk/drones-vs-bad-weather/

41. https://www.researchgate.net/publication/303097134_Scene-free_Multi-

class_Weather_Classification_on_Single_Images

42. https://drive.google.com/file/d/1HFyAUvnkS61Xat9cUBAhG-4hvwR1T8lb/view

https://www.coursehero.com/file/p1q0d81/C-H-A-P-T-E-R-2-Features-and-Classiﬁers-Feature-extraction-and-classiﬁcation/
https://www.coursehero.com/file/p1q0d81/C-H-A-P-T-E-R-2-Features-and-Classiﬁers-Feature-extraction-and-classiﬁcation/
https://freecontent.manning.com/the-computer-vision-pipeline-part-4-feature-extraction/
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://www.coursehero.com/file/pcjjcta/Figure-21-a-The-aim-is-to-design-an-algorithm-which-classifies-input-images/
https://www.coursehero.com/file/pcjjcta/Figure-21-a-The-aim-is-to-design-an-algorithm-which-classifies-input-images/
https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/
https://towardsdatascience.com/image-pre-processing-c1aec0be3edf
https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
https://towardsdatascience.com/faster-rcnn-object-detection-f865e5ed7fc4
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/decision-tree-classification-de64fc4d5aac
https://www.researchgate.net/profile/Ming_Ding15/publication/331723697_The%20%20_Impact_of_Adverse_Weather_Conditions_on_Autonomous_Vehicles_Examinin%20g_how_rain_snow_fog_and_hail_affect_the_performance_of_a_selfdriving_car/%20links/5e644b8d92851c7ce04f094c/The-Impact-of-Adverse%20Weather-Conditions-on-Autonomous-Vehicles-Examining-how-rain-snow-fog-and-hail-affect-the-performance-of-a-self-driving-car.pdf?origin=publication_detail
https://www.researchgate.net/profile/Ming_Ding15/publication/331723697_The%20%20_Impact_of_Adverse_Weather_Conditions_on_Autonomous_Vehicles_Examinin%20g_how_rain_snow_fog_and_hail_affect_the_performance_of_a_selfdriving_car/%20links/5e644b8d92851c7ce04f094c/The-Impact-of-Adverse%20Weather-Conditions-on-Autonomous-Vehicles-Examining-how-rain-snow-fog-and-hail-affect-the-performance-of-a-self-driving-car.pdf?origin=publication_detail
https://www.researchgate.net/profile/Ming_Ding15/publication/331723697_The%20%20_Impact_of_Adverse_Weather_Conditions_on_Autonomous_Vehicles_Examinin%20g_how_rain_snow_fog_and_hail_affect_the_performance_of_a_selfdriving_car/%20links/5e644b8d92851c7ce04f094c/The-Impact-of-Adverse%20Weather-Conditions-on-Autonomous-Vehicles-Examining-how-rain-snow-fog-and-hail-affect-the-performance-of-a-self-driving-car.pdf?origin=publication_detail
https://www.researchgate.net/profile/Ming_Ding15/publication/331723697_The%20%20_Impact_of_Adverse_Weather_Conditions_on_Autonomous_Vehicles_Examinin%20g_how_rain_snow_fog_and_hail_affect_the_performance_of_a_selfdriving_car/%20links/5e644b8d92851c7ce04f094c/The-Impact-of-Adverse%20Weather-Conditions-on-Autonomous-Vehicles-Examining-how-rain-snow-fog-and-hail-affect-the-performance-of-a-self-driving-car.pdf?origin=publication_detail
https://www.researchgate.net/profile/Ming_Ding15/publication/331723697_The%20%20_Impact_of_Adverse_Weather_Conditions_on_Autonomous_Vehicles_Examinin%20g_how_rain_snow_fog_and_hail_affect_the_performance_of_a_selfdriving_car/%20links/5e644b8d92851c7ce04f094c/The-Impact-of-Adverse%20Weather-Conditions-on-Autonomous-Vehicles-Examining-how-rain-snow-fog-and-hail-affect-the-performance-of-a-self-driving-car.pdf?origin=publication_detail
https://www.researchgate.net/profile/Ming_Ding15/publication/331723697_The%20%20_Impact_of_Adverse_Weather_Conditions_on_Autonomous_Vehicles_Examinin%20g_how_rain_snow_fog_and_hail_affect_the_performance_of_a_selfdriving_car/%20links/5e644b8d92851c7ce04f094c/The-Impact-of-Adverse%20Weather-Conditions-on-Autonomous-Vehicles-Examining-how-rain-snow-fog-and-hail-affect-the-performance-of-a-self-driving-car.pdf?origin=publication_detail
https://www.researchgate.net/publication/326799649_Weather_Classification_A_new%20_multiclass_dataset_data_augmentation_approach_and_comprehensive_evaluations_of_Convolutional_Neural_Networks
https://www.researchgate.net/publication/326799649_Weather_Classification_A_new%20_multiclass_dataset_data_augmentation_approach_and_comprehensive_evaluations_of_Convolutional_Neural_Networks
https://www.researchgate.net/publication/326799649_Weather_Classification_A_new%20_multiclass_dataset_data_augmentation_approach_and_comprehensive_evaluations_of_Convolutional_Neural_Networks
https://www.m3aerial.com/blog/tag/understand+how+weather+can+affect+operation+of+%20drones
https://www.m3aerial.com/blog/tag/understand+how+weather+can+affect+operation+of+%20drones
https://www.aeromotus.com/information-for-drone-users/how-weather-affects-your-drone-s-performance/
https://www.aeromotus.com/information-for-drone-users/how-weather-affects-your-drone-s-performance/
https://www.thatsclever.co.uk/drones-vs-bad-weather/
https://www.researchgate.net/publication/303097134_Scene-free_Multi-class_Weather_Classification_on_Single_Images
https://www.researchgate.net/publication/303097134_Scene-free_Multi-class_Weather_Classification_on_Single_Images
https://drive.google.com/file/d/1HFyAUvnkS61Xat9cUBAhG-4hvwR1T8lb/view

93

43. ”Rainy Weather Recognition from In-Vehicle Camera Images for Driver Assistance”,

Hiroyuki Kurihata;Tomokazu Takahashi;Ichiro Ide;Yoshito Mekada;Hiroshi

Murase;Yukimasa Tamatsu;Takayuki Miyahara

44. ”Brightness Calculation in Digital Image Processing” , Bezryadin, Sergey; Bourov, Pavel;

Ilinih, Dmitry , 1st International Symposium on Technologies for Digital Photo Fulfillment,

pp. 10-15(6)

45. https://deepai.org/machine-learning-glossary-and-terms/neural-network

46. https://slideplayer.com/slide/12875315/

47. https://www.quora.com/Can-we-have-a-single-hidden-layer-in-a-multilayer- perceptron

48. https://www.oreilly.com/library/view/neural-networks-with/9781788397872/eb49931a-

7122-4b97-a843-bb6e1817cc12.xhtml

49. https://medium.com/datadriveninvestor/exploring-machine-learning-f1dc6f3ec902

50. https://machinelearningmastery.com/types-of-learning-in-machine-learning/

51. http://incompleteideas.net/book/bookdraft2017nov5.pdf

52. https://en.wikipedia.org/wiki/Reinforcement_learning

53. https://intellipaat.com/community/44608/what-is-agent-in-reinforcement-learning

54. https://ieeexplore.ieee.org/document/6813505

55. https://ieeexplore.ieee.org/document/8451098/

56. https://www.investopedia.com/terms/d/deep-learning.asp

57. http://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_ 101_part1.html

58. http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

59. https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

60. https://www.simplilearn.com/deep-learning-algorithms-article

61. https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html

62. https://developer.ibm.com/technologies/artificial-intelligence/articles/cc-machine-learning-

deep-learning-architectures/

63. https://iopscience.iop.org/article/10.1088/0957-0233/26/11/115002

64. https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-

cd6e4651a29

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://slideplayer.com/slide/12875315/
https://www.quora.com/Can-we-have-a-single-hidden-layer-in-a-multilayer-%20perceptron
https://www.oreilly.com/library/view/neural-networks-with/9781788397872/eb49931a-7122-4b97-a843-bb6e1817cc12.xhtml
https://www.oreilly.com/library/view/neural-networks-with/9781788397872/eb49931a-7122-4b97-a843-bb6e1817cc12.xhtml
https://medium.com/datadriveninvestor/exploring-machine-learning-f1dc6f3ec902
https://machinelearningmastery.com/types-of-learning-in-machine-learning/
http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://en.wikipedia.org/wiki/Reinforcement_learning
https://intellipaat.com/community/44608/what-is-agent-in-reinforcement-learning
https://ieeexplore.ieee.org/document/6813505
https://ieeexplore.ieee.org/document/8451098/
https://www.investopedia.com/terms/d/deep-learning.asp
http://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_%20101_part1.html
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://www.simplilearn.com/deep-learning-algorithms-article
https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html%2062
https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html%2062
https://developer.ibm.com/technologies/artificial-intelligence/articles/cc-machine-learning-deep-learning-architectures/
https://developer.ibm.com/technologies/artificial-intelligence/articles/cc-machine-learning-deep-learning-architectures/
https://iopscience.iop.org/article/10.1088/0957-0233/26/11/115002
https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-%20cd6e4651a29
https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-%20cd6e4651a29

94

65. https://www.researchgate.net/figure/Generative-Adversarial-Network-

Architecture_fig3_334100947

66. https://searchenterpriseai.techtarget.com/definition/recurrent-neural-networks

67. https://www.arm.com/glossary/recurrent-neural-network

68. https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-

79e5eb8049c9

69. http://colah.github.io/posts/2015-08-Understanding-LSTMs/

70. https://www.cs.cornell.edu/~oirsoy/files/nips14drsv.pdf

71. https://en.wikipedia.org/wiki/Recursive_neural_network

72. shttps://www.hindawi.com/journals/aaa/2013/617618/fig3/

73. https://medium.com/nybles/a-brief-guide-to-convolutional-neural-network-cnn-

642f47e88ed4

74. https://searchenterpriseai.techtarget.com/definition/convolutional-neural-network

75. https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-

tutorial-basic-advanced/

76. https://medium.com/@sdoshi579/convolutional-neural-network-learn-and-apply-

3dac9acfe2b6

77. https://towardsdatascience.com/understanding-input-and-output-shapes-in-convolution-

network-keras-f143923d56ca

78. https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9

79. https://cs231n.github.io/convolutional-networks/

80. https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-

260c2de0a050/

81. https://towardsdatascience.com/visualising-filters-and-feature-maps-for-deep-learning-

d814e13bd671

82. https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network/

83. https://medium.com/machine-learning-algorithms/what-is-stride-in-convolutional-neural-

network-e3b4ae9baedb

84. https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-

Neural-Networks-Part-2/

https://www.researchgate.net/figure/Generative-Adversarial-Network-Architecture_fig3_334100947
https://www.researchgate.net/figure/Generative-Adversarial-Network-Architecture_fig3_334100947
https://searchenterpriseai.techtarget.com/definition/recurrent-neural-networks
https://www.arm.com/glossary/recurrent-neural-network
https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.cs.cornell.edu/~oirsoy/files/nips14drsv.pdf
https://en.wikipedia.org/wiki/Recursive_neural_network
https://www.hindawi.com/journals/aaa/2013/617618/fig3/
https://medium.com/nybles/a-brief-guide-to-convolutional-neural-network-cnn-642f47e88ed4
https://medium.com/nybles/a-brief-guide-to-convolutional-neural-network-cnn-642f47e88ed4
https://searchenterpriseai.techtarget.com/definition/convolutional-neural-network
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://medium.com/@sdoshi579/convolutional-neural-network-learn-and-apply-3dac9acfe2b6
https://medium.com/@sdoshi579/convolutional-neural-network-learn-and-apply-3dac9acfe2b6
https://towardsdatascience.com/understanding-input-and-output-shapes-in-convolution-network-keras-f143923d56ca
https://towardsdatascience.com/understanding-input-and-output-shapes-in-convolution-network-keras-f143923d56ca
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://cs231n.github.io/convolutional-networks/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://towardsdatascience.com/visualising-filters-and-feature-maps-for-deep-learning-d814e13bd671
https://towardsdatascience.com/visualising-filters-and-feature-maps-for-deep-learning-d814e13bd671
https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network/
https://medium.com/machine-learning-algorithms/what-is-stride-in-convolutional-neural-network-e3b4ae9baedb
https://medium.com/machine-learning-algorithms/what-is-stride-in-convolutional-neural-network-e3b4ae9baedb
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/

95

85. https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-

cdf8d3077bac

86. https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

87. https://confusedcoders.com/data-science/deep-learning/cnn-with-tensorflow-for-deep-

learning-beginners

88. https://www.semanticscholar.org/paper/Implications-of-Pooling-Strategies-in-

Convolutional-Sharma-Mehra/cc07d2fe2884fdd2a50482c6a5c0111c4195fddc

89. https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-layers-

convolutional-neural-networks-complete-guide/

90. https://medium.com/school-of-ai-trivandrum/understanding-cnn-completely-bd5bb861c11d

91. https://www.jeremyjordan.me/convnet-architectures/

92. https://mc.ai/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet/

93. https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-

tutorial-basic-advanced/

94. https://medium.com/deep-learning-demystified/generalization-in-neural-networks-

7765ee42ac23

95. https://elitedatascience.com/overfitting-in-machine-learning#how-to-prevent

96. https://scikit-learn.org/stable/modules/cross_validation.html

97. https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-

953458db800a

98. https://www.ijert.org/deep-learning-technology-a-vital-tool-for-national-development

99. https://www.aidoc.com/blog/deep-learning-in-healthcare/

100. https://robots.net/tech-reviews/deep-learning-applications/

101. https://arxiv.org/pdf/1804.01149.pdf

102. https://www.ijitee.org/wp-content/uploads/papers/v8i2s/BS2713128218.pdf

103. https://arxiv.org/pdf/1903.10873v5.pdf

104. https://arxiv.org/pdf/1909.11573.pdf

105. https://arxiv.org/ftp/arxiv/papers/1905/1905.00599.pdf

106. http://www.cse.cuhk.edu.hk/leojia/projects/weatherclassify/index.htm

107. https://sites.google.com/view/yunfuliu/desnownet

https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
https://confusedcoders.com/data-science/deep-learning/cnn-with-tensorflow-for-deep-learning-beginners
https://confusedcoders.com/data-science/deep-learning/cnn-with-tensorflow-for-deep-learning-beginners
https://www.semanticscholar.org/paper/Implications-of-Pooling-Strategies-in-Convolutional-Sharma-Mehra/cc07d2fe2884fdd2a50482c6a5c0111c4195fddc
https://www.semanticscholar.org/paper/Implications-of-Pooling-Strategies-in-Convolutional-Sharma-Mehra/cc07d2fe2884fdd2a50482c6a5c0111c4195fddc
https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-layers-convolutional-neural-networks-complete-guide/
https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-layers-convolutional-neural-networks-complete-guide/
https://medium.com/school-of-ai-trivandrum/understanding-cnn-completely-bd5bb861c11d
https://www.jeremyjordan.me/convnet-architectures/
https://mc.ai/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://medium.com/deep-learning-demystified/generalization-in-neural-networks-7765ee42ac23
https://medium.com/deep-learning-demystified/generalization-in-neural-networks-7765ee42ac23
https://elitedatascience.com/overfitting-in-machine-learning#how-to-prevent
https://scikit-learn.org/stable/modules/cross_validation.html
https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-953458db800a
https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-953458db800a
https://www.ijert.org/deep-learning-technology-a-vital-tool-for-national-development
https://www.aidoc.com/blog/deep-learning-in-healthcare/
https://robots.net/tech-reviews/deep-learning-applications/
https://arxiv.org/pdf/1804.01149.pdf
https://www.ijitee.org/wp-content/uploads/papers/v8i2s/BS2713128218.pdf
https://arxiv.org/pdf/1903.10873v5.pdf
https://arxiv.org/pdf/1909.11573.pdf
https://arxiv.org/ftp/arxiv/papers/1905/1905.00599.pdf
http://www.cse.cuhk.edu.hk/leojia/projects/weatherclassify/index.htm
https://sites.google.com/view/yunfuliu/desnownet

96

108. http://ancuti.meo.etc.upt.ro/D_Hazzy_ICIP2016/

109. https://www.researchgate.net/publication/331353178_Weather_Classification

_using_Convolutional_Neural_Networks

110. https://medium.com/@darshita1405/superpixels-and-slic-6b2d8a6e4f08

111. https://bair.berkeley.edu/blog/2019/06/07/data_aug/

112. https://www.researchgate.net/publication/326799649_Weather_Classification_

A_new_multiclass_dataset_data_augmentation_approach_and_comprehensive_evaluations

_of_Convolutional_Neural_Networks

113. https://arxiv.org/ftp/arxiv/papers/1910/1910.09910.pdf

114. https://ieeexplore.ieee.org/document/7059167

115. https://www.cs.ccu.edu.tw/~wtchu/projects/Weather/index.html

116. https://www.kdnuggets.com/2020/01/5-most-useful-techniques-handle-imbalanced-

datasets.html

117. http://perso.lcpc.fr/tarel.jean-philippe/bdd/frida.html

118. https://live.ece.utexas.edu/research/fog/fade_defade.html

119. https://sites.google.com/view/reside-dehaze-datasets

120. https://www.upgrad.com/blog/data-preprocessing-in-machine-learning/

121. https://hackernoon.com/what-steps-should-one-take-while-doing-data-preprocessing-

502c993e1caa

122. https://medium.com/analytics-vidhya/categorical-variable-encoding-techniques-

17e607fe42f9

123. https://heartbeat.fritz.ai/introduction-to-machine-learning-model-evaluation-fa859e1b2d7f

124. https://towardsdatascience.com/why-you-should-do-feature-engineering-first-hyperparameter-

tuning-second-as-a-data-scientist-334be5eb276c

125. https://www.ijrte.org/wp-content/uploads/papers/v8i5/E6360018520.pdf

126. http://downloads.hindawi.com/journals/amete/2020/6972826.pdf

http://ancuti.meo.etc.upt.ro/D_Hazzy_ICIP2016/
https://www.researchgate.net/publication/331353178_Weather_Classification%20_using_Convolutional_Neural_Networks
https://www.researchgate.net/publication/331353178_Weather_Classification%20_using_Convolutional_Neural_Networks
https://medium.com/@darshita1405/superpixels-and-slic-6b2d8a6e4f08
https://bair.berkeley.edu/blog/2019/06/07/data_aug/
https://arxiv.org/ftp/arxiv/papers/1910/1910.09910.pdf
https://ieeexplore.ieee.org/document/7059167
https://www.cs.ccu.edu.tw/~wtchu/projects/Weather/index.html
https://www.kdnuggets.com/2020/01/5-most-useful-techniques-handle-imbalanced-datasets.html
https://www.kdnuggets.com/2020/01/5-most-useful-techniques-handle-imbalanced-datasets.html
http://perso.lcpc.fr/tarel.jean-philippe/bdd/frida.html
https://live.ece.utexas.edu/research/fog/fade_defade.html
https://sites.google.com/view/reside-dehaze-datasets
https://www.upgrad.com/blog/data-preprocessing-in-machine-learning/
https://hackernoon.com/what-steps-should-one-take-while-doing-data-preprocessing-502c993e1caa
https://hackernoon.com/what-steps-should-one-take-while-doing-data-preprocessing-502c993e1caa
https://medium.com/analytics-vidhya/categorical-variable-encoding-techniques-17e607fe42f9
https://medium.com/analytics-vidhya/categorical-variable-encoding-techniques-17e607fe42f9
https://heartbeat.fritz.ai/introduction-to-machine-learning-model-evaluation-fa859e1b2d7f
https://towardsdatascience.com/why-you-should-do-feature-engineering-first-hyperparameter-tuning-second-as-a-data-scientist-334be5eb276c
https://towardsdatascience.com/why-you-should-do-feature-engineering-first-hyperparameter-tuning-second-as-a-data-scientist-334be5eb276c
https://www.ijrte.org/wp-content/uploads/papers/v8i5/E6360018520.pdf
http://downloads.hindawi.com/journals/amete/2020/6972826.pdf

97

Listings

 3.1 Import Libraries..77

 3.2 From images to npy file...77

 3.3 Loading dataset. ...78

 3.4 Dataset pre-processing..78

 3.5 Model architecture..79

 3.6 Model training..79

 3.7 Model evaluation...80

	1.2.2.3 How do we see color?
	1.2.3 A quick look about colors
	1.2.3.1 What is a color?
	Color is the characteristic of human visual perception described through color categories, with names such as red, orange, yellow, green, blue, or purple. This perception of color derives from the stimulation of cone cells in the human eye by electrom...
	1.2.3.3 What is the visible light spectrum?
	1.2.3.4 Additive, subtractive models
	A- RGB color model
	B- CMYK color model

	1.3 Computer vision
	1.3.1 Computer vision what does it means?
	The task of the classifier is to use the feature vector to assign an image or region of interest to a class. The difficulty of the classification task depends on the variability in the feature values of images from the same category, relative to the d...
	A recurrent neural network (RNN) is a type of artificial neural network commonly used in speech recognition and natural language processing (NLP). RNNs are designed to recognize a data's sequential characteristics and use patterns to predict the next ...
	RNNs are the engines behind speech recognition applications such as Apple’s Siri and Google’s Voice Search, as well as chatbots and translation tools [67].
	Unlike other neural networks, an RNN has an internal memory that enables it to remember historical input; this allows it to make decisions by considering current input alongside learning from previous input. In this way, an RNN can form a much deeper ...
	There is a limitation with RNNs known as short-term memory which caused by the infamous vanishing gradient problem [68]. This lead us to the next deep learning model called LSTM.
	2.3.4.5 Long Short-Term Memory (LSTM)
	The long short-term memory (LSTM) algorithm is a type of RNN that allows deep recurrent networks to be trained without making the gradients that update weights become unstable. Patterns can be stored in memory for more extended periods, with the abili...
	The critical component of the LSTM is the memory cell and the gates (including the forget gate, but also the input gate). The contents of the memory cell are modulated by the input gates and forget gates. Assuming that both of these gates are closed, ...
	2.3.4.6 Recursive Neural Networks (RNNs)
	Recursive neural networks comprise a class of architecture that can operate on structured input [70]. To produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological ...
	Introducing Non Linearity (activation layer)

	Hyperparameters used convolution layer:

	Common architectures in CNN
	LetNet
	One of the earliest successful architectures of CNNs (developed in 1998 by Yann Lecun), originally used to read digits in images [61].
	AlexNet
	Collecting more data
	Under-sampling: Remove samples from the majority classes.
	Over-sampling: Add more samples to the minority classes.

	FRIDA and FRIDA2 are databases of numerical images easily usable to evaluate in a systematic way the performance of visibility and contrast restoration algorithms. FRIDA comprises 90 synthetic images of 18 urban road scenes. FRIDA2 comprises 330 synth...
	Figure 3.4: FRIDA dataset [117]
	Figure 3.5: LIVE Image Defogging Database [118]
	Figure 3.6: Samples of RESIDE dataset [119]
	Figure 3.7: Samples of snow100k dataset [107]

