
Cover Page

University of Mohamed Khider Biskra

Faculty of Sciences and Technology
Department of Electrical Engineering

Sciences and Technology
Field : Telecommunication

Option : Network and Telecommunication

Ref. : …………..

Presented and submitted by:

BOUMEZRAG Abdelhak

On : 30 septembre 2020

A Proposed of Novel Network Management
Platform for Network Automation and

Programmability with Implementation on
GNS3

Jury :

M. DHIABI Fathi MCB University of Biskra President

M. BEKHOCHE Khaled MCA University of Biskra Examiner

M. AMEID Sofiane MAA University of Biskra Supervisor

Academic Year : 2019 - 2020

MASTER’S DEGREE

University of Mohamed Khider Biskra

Faculty of Sciences and Technology
Department of Electrical Engineering

Sciences et Technologies
Field : Telecommunication

Option : Network and Telecommunication

A Proposed of Novel Network Management
Platform for Network Automation and

Programmability with Implementation on
GNS3

MASTER’S DEGREE

Mr. AMEID Sofiane
Presented by: Favorable opinion of the supervisor:

Favorable opinion of the Jury President:
Mr. DHIABI Fathi

Stamp and signature

Theme:

BOUMEZRAG Abdelhak

University of Mohamed Khider Biskra

Faculty of Sciences and Technology
Department of Electrical Engineering

Sciences et Technologies
Field : Telecommunication

Option : Network and Telecommunication

Abstract (English and Arabic)

 Network automation and programmability is a set of exciting technologies and approaches, that enables

innovation in how we design and manage networks to avoid many problems as the operation time and effort. Hence,

in this work, we proposed a modest workflow application named the Network Management Platform (NMP) based

on Python packages as Netmiko, and SSH as the transport protocol, that is able to manage and operate the network

without manual intervention in form of stages to meet the desired states in a given network, including the CLI based

network devices. These methods are representing the future of networks, allowing the management of an increased

number and variety of devices in a unitary and centrally way. these Platform stages were regularly tested in a campus

network topology on GNS3.

Keyword: Network automation, Network programmability, SDN, Netmiko, Ansible, NETCONF, Python, GNS3.

والتي تتيح الابتكار في كيفية تصميم وإدارة الشبكات لتجنب المثيرة،هي مجموعة من التقنيات والأساليب ،فيهاأتمتة الشبكات وإمكانية البرمجة

بالاعتماد (NMP) عمل يسمى منصة إدارة الشبكةاقترحنا تطبيقًا متواضعاً لسير ، وبالتالي، في هذا العملالعديد من المشكلات مثل وقت التشغيل والجهد.

تلبية الحالات المطلوبة لفي شكل مراحل يدوي،، القادر على الإدارة والتشغيل دون تدخل النقل كبروتوكول SSHو Netmiko مثل Python حزم على

مما يسمح بإدارة عدد متزايد من الأجهزة بطريقة ،الشبكاتمثل هذه الأساليب تمثل مستقبل .CLI في ذلك أجهزة الشبكة القائمة على بما معينة،في شبكة

GNS3. ال علىمقترحة طوبولوجيا كةشب ي هذه بانتظام فياختبار مراحل النظام الأساس تممركزية. موحدة و

 .GNS3 ،بايثون ،SDN، Netmiko، Ansible، NETCONF ،إمكانية البرمجة في الشبكة ،الشبكة أتمتة: كلمات مفتاحية

A Proposed of Novel Network Management
Platform for Network Automation and

Programmability with Implementation on
GNS3

MASTER’S DEGREE

Theme:

Dedication

iii

Dedication

I dedicate this humble work to my great father and mother, my brothers, my whole

family, my friends, and all who know and support me in this academic track from

the closest person to the farthest.

The reader as well.

Acknowledgments

iv

Acknowledgments

 First and foremost, praises and thanks to Allah, the Almighty, for His showers of blessings

throughout my research work to complete this thesis successfully.

 I would like to express my deep and sincere gratitude to my thesis supervisor Mr. AMEID

Sofiane for giving me the opportunity to do this work and providing invaluable guidance

throughout this research. His vision, sincerity, and motivation have deeply inspired me. It was a

great privilege and honor to work and study under his guidance. I am extremely grateful for what

he has offered me. I would also like to thank him for his friendship, empathy, and a great sense of

humor.

 Besides my supervisor, I would like to thank my committee members who were more than

generous with their expertise and precious time. A special thanks to Mr. DHIABI Fethi, my

committee president for his hours of reflecting, reading, patience throughout the entire process, as

well as Mr. BAKHOUCH Khalid for agreeing to serve on my committee as an examiner.

 I am extremely grateful to my parents for their love, understanding, prayers, caring and

sacrifices for educating and preparing me for my future, also I express my thanks to my brothers

and sisters, for their support and empathy.

 I would like to also thank my great friends, Imad Eddine and Moneim for their wonderful

friendship and educational helps, Sofiane Bekkari also, despite the distance, the love of learning

did not prevent us from studying new things together, my great friends also from the high school

days till now, Abdelmomen, Islam, Zine Edine and Mosaab, I wish them all the best luck in their

life.

Table of Content

v

Table of Content

Abstract.. ii

Dedication ... iii

Acknowledgments ..iv

List of Figures .. viii

List of Tables ... xi

List of Abbreviations .. xii

General Introduction ... 1

Chapter I: Network Automation And Programmability Overview

I.1 Introduction .. 5

I.2 Network Automation and Programmability Concept ... 5

I.3 Software Defining Networking ... 6

I.3.1 SDN Architecture .. 8

I.3.2 OpenFlow .. 10

I.4 Approaches and Use Cases. .. 13

I.4.1 Controller-Based Network ... 14

I.4.1.1 Cisco DNA Center.. 14

I.4.2 Network Automation Frameworks ... 17

I.4.2.1 Ansible ... 18

I.4.3 Device APIs and Management Interfaces ... 22

I.4.3.1 REST API .. 23

I.4.3.2 NETCONF Protocol ... 27

I.4.3.3 CLI... 29

I.5 Common Network Automation Tasks ... 30

I.6 Conclusion .. 32

Table of Content

vi

Chapter II: Management Interfaces Approach And The Proposed

Workflow For Developing Automation Platform

II.1 Introduction .. 34

II.2 PART A ... 34

II.2.1 Python for Network Automation .. 34

II.2.1.1 Why python? .. 35

II.2.2 CLI Based Interaction Libraries ... 36

II.2.2.1 Netmiko ... 37

II.2.2.2 TextFSM Integration .. 42

II.2.3 Multithreading ... 43

II.3 PART B ... 46

II.3.1 The Proposed Network Management Platform ... 46

II.4 Conclusion ... 50

Chapter III: Network Management Platform For Network

Automation

III.1 Introduction .. 52

III.2 Technical Requirements ... 52

III.3 Development Methodology ... 52

III.4 NMP Auxiliary Functions Development .. 53

III.4.1 Performing SSH Connection .. 54

III.4.2 Getting Devices Version .. 55

III.4.3 Getting Devices Information as Inputs ... 56

III.5 NMP Stages Development ... 57

III.5.1 Network Configuration .. 57

III.5.2 Network Verification and Test Connection... 59

III.5.3 Network Confirmation and Backups .. 62

III.5.4 Check Network and Report Generation .. 63

Table of Content

vii

III.5.5 Multithreading Integration ... 65

III.6 Use Case Testing with NMP on GNS3.. 66

III.6.1 Environment Setup... 66

III.6.2 Network Topology Setup ... 67

III.6.3 Use Case Testing and Results ... 71

III.7 Discussion .. 82

III.7.1 Benefits, Drawbacks and limitations .. 83

III.7.2 Future works .. 83

III.8 Conclusion ... 84

General Conclusion ... 86

References .. 88

List of Figures

viii

List of Figures

Figure I. 1: Traditional network devices state and components [10]. .. 7

Figure I. 2: Software defined network architecture from ONF [16]. ... 9

Figure I. 3: Design of an OpenFlow switch and the communication with the controller [6].11

Figure I. 4: Summarized plane for common approaches and use cases. ...13

Figure I. 5: Cisco DNA Center with Northbound and Southbound Interfaces [10].15

Figure I. 6: Cisco DNA Center dashboard [24]. ..16

Figure I. 7: Ansible workflow with network devices [28]. ..19

Figure I. 8: Example of an Ansible inventory file [30]. ...20

Figure I. 9: Example on an Ansible Playbook file [30]. ..21

Figure I. 10: Example of configuration file template using Jinja2 in the left with the associated values in a

YAML file in the right [10]. ..22

Figure I. 11: Illustrated plan for devices APIs with their associated Python modules. 23

Figure I. 12: Client and server (web server) communication using REST API [35].24

Figure I. 13: HTTP Verb and URI in an HTTP Request Header [10]. ...25

Figure I. 14: Format of the HTTP request and response between the client and the network device (server)

[35]. ..25

Figure I. 15: HTTP Verbs in the context of network devices [35]. ..26

Figure I. 16: NETCONF protocol layer and content [40]. ...28

Figure I. 17: NETCONF communication with the initial capabilities exchange [41].28

Figure II. 1: Check all the Netmiko sub-modules and classes on the Python interrupter.40

Figure II. 2: Source code example for establishing SSH connection to Cisco IOS switch.41

Figure II. 3: Applying TextFSM templates on show command inside netmiko script [53].......................43

Figure II. 4: The process of scheduling a thread in the processor once we run a python file [46].44

Figure II. 5: The result of the use case with serial query [48]. ...45

Figure II. 6: The output of the use case using parallel query [48]. ...46

Figure II. 7: The NMP prototype workflow. ...47

Figure II. 8: Summarizing the management platform stages. ..49

Figure II. 9: The Proposed Network Management Platform main menu. ...50

List of Figures

ix

Figure III. 1: Example of developing CSV Reporting function using agile methodology.53

Figure III. 2: The source code of the SSH connection function. ..54

Figure III. 3: CSV file contains needed devices information...55

Figure III. 4: The source code of the check version function. ...56

Figure III. 5: The source code of device input function. ...57

Figure III. 6: The source code of the configuration function. ..58

Figure III. 7: Network configuration stage flowchart..59

Figure III. 8: Network verification and testing connection stage flowchart. ..60

Figure III. 9: The source code of test connection function. ...61

Figure III. 10: The source code of confirmation and backups functions. ...62

Figure III. 11: Network confirmation and backup Stage flowchart..63

Figure III. 12: Checking network and report generation stage flowchart. ..64

Figure III. 13: The configuration function integrated with threading functionality.65

Figure III. 14: The network automation appliance in GNS3 marketplace. ...66

Figure III. 15: Docker container connected to the NAT node on the workspace in GNS367

Figure III. 16: Configuring the Docker network interface using Nano editor. ...68

Figure III. 17: Docker obtained an IP address from DHCP. Confirm using Ifconfig. 68

Figure III. 18: The experimented campus network on GNS3. ...69

Figure III. 19: Example of verifying remote access on S2, using SSH protocol. 71

Figure III. 20: Needed files to execute the NMP in local laptop ...72

Figure III. 21: Sub-menus of the NMP stages shown in the terminal. ...73

Figure III. 22: Configuration stage, execution progress, with and without multithreading.74

Figure III. 23: Execution progress of Verify all devices option. ...75

Figure III. 24: Manually entering Source and destination IPs. ..76

Figure III. 25: Testing test connection process and the output result. ...76

Figure III. 26: Entering device information manually for specific device interaction.77

Figure III. 27: Testing the confirmation option and the terminal output. ...78

Figure III. 28: Testing backups option and the output in the terminal and in local directory.78

Figure III. 29: Check interfaces option testing and the output. ..79

Figure III. 30: Check routing option testing for OSPF protocol and the output.80

Figure III. 31: Check VLAN testing and output. ..80

Figure III. 32: CSV report output in local laptop and in the terminal. ...81

List of Figures

x

Figure III. 33: Global report spreadsheet opened with Excel . ..81

Figure III. 34: Syslog message indicates the connection between R1 and the admin.82

Figure III. 35: The output of show ip interface brief after executing the configuration stage.82

List of Tables

xi

List of Tables

Table I. 1: Main components of a flow entry in OpenFlow v1.5 [20]. ...11

Table I. 2: Four main network devices module [31]. ...20

Table I. 3: Comparing CRUD Actions to REST Verbs [10]. ...25

Table I. 4: Some generic headers that provides details about the meta-data [36].26

Table II. 1: Open source python libraries for network automation [46]. ..36

Table II. 2: Netmiko supported devices under three categories [49]. ...38

Table II. 3: Netmiko commonly-used methods [49]. ...41

Table III. 1: Configuration files content on the test case. ..72

List of Abbreviations

xii

List of Abbreviations

SDN: Software-Defined Networking.

IoT: Internet of Thing.

AI: Artificiel Intelligence.

RIP: Routing Information Base.

OSPF: Open Shortest Path First.

FIB: Forwarding Information Base.

SSH: Secure Shell.

CLI: Command Line Interface.

API: Application Programming Interface.

ONF: Open Networking Foundation.

REST: REpresentational State Transfer.

ODL: OpenDaylight.

YANG: Yet Another Network Generation.

NBI: Northbound Interfaces.

SBIs: Southbound Interfaces.

NETCONF: NETwork CONFiguration.

DNA Center: Digital Network Architecture

Center.

ACI: Application Centric Infrastructure.

QoS: Quality of Service.

IBN: Intent Based Networking.

SNMP: Simple Network Management

Protocol.

RESTCONF: REpresentational State Transfer

CONFiguration.

GUI: Graphical User Interface.

IT: Information Technology.

SGT: Scalable Group Tag.

ML: Machine Learning.

SDK: Software Developer Kit.

Syslog: System Logging Protocol

CMS: Configuration Management System.

DSL: Domain Specific Language.

HTTP: HyperText Transfer Protocol.

IP: Internet Protocol.

IOS: Internetwork Operating System.

VLAN: Virtual Local Area Network.

YAML: Yet Another Markup Language.

JSON: Java Script Object Notation.

XML: eXtensible Markup Language.

UI: User Interface.

HTML: HyperText Markup Language.

CRUD: Create, Read, Update, Delete.

URI: Uniform Resource Identifier.

TCP: Transmission Control Protocol.

IETF: Internet Engineering Task Force.

RFC: Request for Comments.

RPC: Remote procedure Call.

SOAP: Simple Object Access Protocol.

VTY: Virtual Terminal Line.

MIB: Management Information Base.

CSV: Comma Separated Value.

BGP: Border Gateway Protocol.

EOF: End of File.

NMP: Network Management Platform.

VTP: Virtual Trunking Protocol.

GNS3: Graphical Network Simulator-3.

OSPF: Open Shortest Path Protocol.

VIRL: Virtual Internet Routing Lab.

DHCP: Dynamic Host Configuration Protocol.

NAT: Network Address Translation.

NTP: Network Time Protocol.

GENERAL INTRODUCTION

General Introduction

1

General Introduction

 In recent years, networking has been the main influence and factor of development within

large and small companies and organizations, as they guarantee high amounts of information and

resources being transferred between users and servers for one reason or another, passing through

many routers, switches, and middleboxes that are differ in their configuration, services,

functionalities and heterogeneous nature. All the installed network appliances need to be regularly

maintained and configured to make sure the network working properly and does not interrupt the

company’s business processes, however, the inevitable business augmentation attempts and the

booming need for immediate network services necessarily lead to the networks scaling

infrastructure, which means an increase in the number of network devices, branches, and services

, and this what can pretty much give rise to the emergence of many network problems and

challenges.

 The classical network operating and equipping methods, will not be effective anymore,

especially, when we are faced with the facts of network infrastructure scaling, vendor dependent

command line syntax and structures, and the large number of devices CLI using only manual

configurations, which is follow a standard operating procedure to achieve a set of administration

tasks. This manual interaction represented in one command at a time entering are highly time

consuming and prone to errors, in addition, it is typically daily repetitive chores and tedious, which

may drain out technical ability, with the difficulty of understanding complex networking scenarios

in other phase, that is vary across network elements types and vendors by less technical team

members.

 Over the last decade, the network industry and researchers take the challenge to solve these

problems by introducing many solutions and paradigms, trying to exclude these difficulties.

Software Defining Networking or SDN is one of the most popular concept, that tries to eliminate

the network devices vendor dependency, also, aims to abstract and hide every low-level interaction

with network elements by controlling and exercising automation directly on the data path via

standard protocols and APIs, like OpenFlow, however, the traditional network that does not

support the purest SDN model need to keep the pace and respond to the dynamic network changes,

which led to the emergence of other trends and approaches under the term network automation and

General Introduction

2

programmability, which can be implemented on all kinds of network devices and topologies using

different methods and effecting on different parts of the network devices itself, in most cases

focusing on the configuration and management plane.

 Python is the favored programming language in network engineering, for that we have

created a simple campus network topology in GNS3, having as main component the Network

Automation Docker Container Ubuntu image, with the character of a network controlling element.

We have controlled the network devices in a programmatic way using Netmiko as the primary open

source package, for designing and developing a network automation application.

A- Research Methodology and thesis outlines

 This work began with an in-depth investigation on the subject, based on a group of resources

as professional and academic books, various scientific articles, several explanations and courses on

different websites and platforms, and the official documentation of many technologies. After

obtaining the general ideas for the research path, we were have divided the work as we can see in

these outlines the coming thesis outlines.

 The first chapter presents a theoretical reviews and informational background of what does

exists in network industry as foundations and principals on network automation and

programmability , trying to rich the topic by many terminology and definitions, including SDN and

his affect, and giving many approaches with their associated use cases as example, which can be

implemented as a solution for all kinds of network devices that is basically built on programming

in mind (APIs) or with the intended management interface (CLIs).

 The second chapter focus on the third approach, where python programming language with

its packages and modules are the primary tools for interacting with the management interfaces

(devices CLIs). Netmiko and his functionalities are the most popular module for doing this, which

gives as solutions for building our complete Network Management Platform (NMP) application.

Other modules that we integrated as a resolution for side effects and problems like the execution

time and unstructured data, which are threading and TextFSM modules that are explained as well.

 The third chapter gives a complete demonstration for automating common network

management tasks using the pre-explained and designed workflow of our Network Management

Platform application (NMP), on a campus network topology emulated in GNS3 with Cisco VIRL

General Introduction

3

switches and routers IOS images.

B- Challenges and Thesis Objectives

 The key challenges are related to the variety of network devices configuration, and the large

possible number of states in one element or a specific service configuration, it is inflexible when

each time expect to get a specific output state, and we were previously incited the Python program

to extract the useful information using a parsing process from a different state, which can break the

whole code. In addition, some commands line was not intended to be in the running configuration

files which can cause some errors in the verification methods. Also, another challenge is when we

trying to make our platform reusable as much as possible in several placements.

 The main objective of this effort is to reduce or avoid the mentioned problems in the

traditional network, in addition, spurring network administrators and researchers to develop and

innovate new applications that help in the daily work of configuring and operating on their network

infrastructure, whatever the network topology and devices nature included using Python in network

context, in this project we will demonstrate how we can do this, by creating an automation tool

based on Netmiko and other helper libraries, which is a simple Network Management Platform user

interface-based. The following other objectives are targeted in this research:

 Identify background information and approaches that already exist to apply and exercise

network automation and programmability and recognize the differences in term of

implementation.

 Identify a multivendor and open source solutions to automate the repetitive configuration

and management tasks using Python to enhance the way we interact with network devices

CLI.

 Identify and exercise an open source virtual environment to practice and iterate codes and

scripts before the implementation in the real live network.

 Validate the automation process by creating and exercising the developed application and

the workflow on a campus network use case with only Cisco devices in GNS3.

 Discuss the differences in terms of effort, time, and errors prone between the classical

situation and the programmable culture, then declaring the benefits, drawbacks, limitation,

and future works.

CHAPTER I:

NETWORK AUTOMATION AND

PROGRAMMABILITY OVERVIEW

Chapter I: Network Automation and Programmability Overview

5

I.1 Introduction

 Network programmability and automation have the main goal of simplifying the tasks

involved in configuring, managing, and operating network equipment. Under these terms, there are

many automation technologies and approaches that are aimed to effects on different parts of the

network and comes as solutions to the mentioned problems or else, we would like to get a

terminologies overview and place the very common from them as an informational background.

 This chapter is divided into four major section, first section introduces the concept of the

network automation and programmability while section two contains a general view of Software-

Defined Networking paradigm; definitions and architecture, also his impact on network industry,

the third section will dive more by given different mechanism and approaches to automate and

manage the network, each with its specifications and utilization, in total, we mentioned three

approaches with their common use cases tools, in additions, the last major section, gives common

network administration tasks where automation make sense.

I.2 Network Automation and Programmability Concept

 Network automation, like most types of automation, is thought of as a means of doing things

faster, which mean not manually, in the networking context, it is the process of automating the

configuration, management, testing, deploying, and operating of physical and software-based

devices within a network. The tasks that were normally done by the network or system

administrator can be automated using a number of tools and technologies [1] [2]. Any type of

network can use network automation including data centers, service providers, and campuses, to

improve efficiency, avoiding repetitive tasks, saves time, reduce human error, and lower operating

expenses.

 Network programmability can have different meanings, depending on perspective. To a

network engineer, programmability means interacting with a device or group of devices (driving

configurations, troubleshooting, etc.) with a software that sits logically above the device [3].

 Like the goal and the methods, network automation uses programming logic to manage

network resources and services [4] [5], the network programmability toolset is the foundation for

advanced next-generation network automation with adding prebuilt intelligence that can assist with

Chapter I: Network Automation and Programmability Overview

6

network deployments, operations, or troubleshooting, Network programmability makes automation

simpler and more accessible through standard tools. Scripting languages are widely used by

network and system administrators for automating tasks. Among the automation tools, Python and

Ansible are the most popular, with Software Defined Networking (SDN) in picture [1].

I.3 Software Defining Networking

 We cannot move forward in this thesis without talking about Software-Defined Networking

or SDN, while the term programmable is used to generalize the concept of the simplified network

management and reconfiguration [6], and since it has inspired and still inspire large companies and

researchers to obtain innovations and technologies in the topic of automation and programmability.

[7] [8].

 The challenge behind the SDN technology is the attempts to find solutions to avoid a lot of

problems that exist in the traditional networking architectures which we cited in the introduction,

in addition, the significant limitations that must be overcome to meet modern IT requirements (big

data, IoT, AI …), the network must scale to accommodate increased workloads and traffic growth

with greater agility, while also keeping costs at a minimum [9]. In a traditional network

environment, each network device has a local control plane, a local data plane, and a local

management plane, now the control plane is essentially the intelligence of the device, for example

each network device has its own local routing table or a local RIP (routing information base) which

is selected based on distributed and complex algorithms like OSPF. Each network device has also

data plane, which mean how packet are forwarded through it, for example, it uses a FIB or

forwarding information base that is derived from the RIB and from adjacency tables, so that the

packet can be rewritten with the correct encapsulation to the destination.

 The management plane includes protocols that allow network engineers to manage devices.

Telnet and Secure Shell (SSH) are two of the most obvious management plane protocols, if we

have multiple network devices from management point of view using the CLI or command line

interface, we would have to connect with each of them individually and typically using manually

configuration [10]. Advocates of SDN said that this is a complex way, because there is no single

Chapter I: Network Automation and Programmability Overview

7

hardware that has visibility of the entire network, each network device has to work out

independently, Figure I.1, illustrate this state and these three components.

Figure I. 1: Traditional network devices state and components [10].

 The intellectual history document [11], divided the programmable Networks over years

into three stages:

a- Active networks (1900-2000): which introduced the programmable functions in the

network.

b- The separation of control and data plane (2001 - 2007): which allowed developing

interfaces between control and data plane.

c- The Openflow API and network operating systems (2007-2010): described the first

instances of the development of an open interface and the practical ways to separate

control and data plane which introduced the stateful SDN model.

 SDN is defined by the physical separation of the control and data plane of the networking

devices [12] [13], it is changing the way we design and manage networks. SDN has two defining

characteristics. First, an SDN separates the control plane (decides how to handle the traffic) from

the data plane (forwards traffic according to decisions that the control plane makes). Second, an

SDN consolidates the control plane, so that a single software control program controls multiple

data-plane elements. The SDN control plane exercises direct control over the state in the network’s

data-plane elements (i.e., Routers, switches, and other middle boxes) via a well-defined Application

Programming Interface (API) [11], that allows the entire network to be programmable and

automated.

Chapter I: Network Automation and Programmability Overview

8

I.3.1 SDN Architecture

 The Open Networking Foundation (ONF) which is the first organization in charge of the

SDN and Openflow protocol standards, proposed the architecture depicted on Figure I.2, It provides

a logical view of the SDN architecture. Network intelligence is logically centralized in software-

based SDN controllers, which maintain a global view of the network. The figure presents different

components in the SDN architecture and they are as follows [14]:

 Applications Layer: Programs that communicate behaviors, policies, algorithms and

needed resources with the SDN controller via APIs. These applications could include

networking routing, network management, or business policies used to run large data

centers.

 Northbound interfaces NBI: The connection between the controller and applications via

applications programming interfaces, commonly uses REST API.

 Controller layer: The SDN Controller is a logical entity that receives instructions or

requirements from the SDN Application layer and relays them to the networking devices.

The controller also extracts information about the network from the hardware devices and

communicates back to the SDN Applications with an abstracted view of the network,

including statistics and events about what is happening, the Open Daylight controller as an

example.

 Southbound interfaces SBI: The connection between the controller and infrastructure

layer via application programming interfaces, Openflow protocol is the first API appeared

in the SDN industry.

 Infrastructure layer: The SDN networking devices control the forwarding and data

processing capabilities for the network. This includes forwarding and processing the data

path.

 East West interface: In the case of a multi-controller-based architecture, the East West

interface protocol manages interactions between the various controllers [15].

Chapter I: Network Automation and Programmability Overview

9

Figure I. 2: Software defined network architecture from ONF [16].

 There are many types of controllers in the industry market, some of which are open source,

and others are vendor-specific, each unit has specific environmental characteristics and required

interfacing to operate on the live network, we cite as an example, NOX and POX controllers which

are the first and the original OpenFlow based controllers from Stanford university, written in C++

and Python, it can be considered as general, open source for rapid development and prototyping of

network applications [17]. Also, ODL or OpenDaylight which is a very common SDN controller

project written in Java and it is YANG based data models, lead and maintained by the collaborative

Linux Foundation, which is a community that has come together to fill the need for an open and

reference framework for programmability and control solution through an open source SDN

controller [17]. The ODL uses a large variety of options to communicate with the under laying

network not just OpenFlow, but including many SBIs like NETCONF protocol. There are also

vendor-specific products like Cisco DNA Center, ACI, VMware NSX, and Juniper Contrail … etc.

 As we said before, the first appearing of SDN was related to the OpenFlow protocol.

However, it should be made clear that OpenFlow is just one (rather popular) out of many possible

implementations of controller-switch interactions [6].

NBI

SBI

Chapter I: Network Automation and Programmability Overview

10

I.3.2 OpenFlow

 According to [15], OpenFlow is the protocol used for managing the southbound interface of

the generalized SDN architecture. It is the first standard interface defined to facilitate interaction

between the control and data planes of the SDN architecture. OpenFlow provides software-based

access to the flow tables that instruct switches and routers how to direct network traffic. Using

these flow tables, administrators can quickly change network layout and traffic flow. In addition,

the OpenFlow protocol provides a basic set of management tools which can be used to control

features such as topology changes and packet filtering.

 The supervisor of this project Nick McKeown in his whitepaper [18], gave great details about

the OpenFlow Switch specification which is a feature that can help to extend programmability and

independent from network device vendor propriety specification. An OpenFlow Switch consists of

at least three parts:

 One or many Flow Tables: includes actions associated with each flow entry, to tell the

switch how to process the flow,

 A Secure Channel: that connects the switch to a remote control process (called the

controller), allowing commands and packets to be sent between a controller and the switch

 The OpenFlow Protocol: which provides an open and standard way for a controller to

communicate with a switch.

 He mentions also [18], that by specifying a standard interface (the OpenFlow Protocol)

through which entries in the Flow Table can be defined externally, the OpenFlow Switch avoids

the need for researchers to program the switch. It is useful to categorize switches into dedicated

OpenFlow switches that do not support normal Layer 2 and Layer 3 processing, and OpenFlow-

enabled general purpose commercial Ethernet switches and routers, to which the OpenFlow

Protocol and interfaces have been added as a new feature.

 These OpenFlow switches placed in the infrastructure layer controlled by a software program

on top of it installed on the hardware controller, specifically, it is responsible for populating and

manipulating the flow tables. By insertion, modification and removal of flow entries, the controller

can modify the behavior of the switches with regard to forwarding. The OpenFlow specification

defines the protocol that enables the controller to instruct the switches. To that end, the controller

uses the secure control channel [19].

Chapter I: Network Automation and Programmability Overview

11

 The flow table itself is responsible for maintaining the information required by the switch in

order to forward packets [6]. As Figure I.3 depicted, an entry in the Flow table has three fields:

 A packet header that defines the flow.

 The action, which defines how the packets should be processed.

 Statistics, which keep track of the number of packets and bytes for each flow, and the time

since the last packet matched the flow (to help with the removal of inactive flows).

Figure I. 3: Design of an OpenFlow switch and the communication with the controller [6].

 There are many versions for the OpenFlow protocol that is aim to extend capabilities and fix

issues evolved during ONF’s standardization process [20], from version 1.0 where there are only

12 fixed match fields and a single flow table to the latest version (1.5) that features multiple tables,

over 41 matching fields and a bunch of new functions, the structure of the flow entry in OpenFlow

1.5 (last version) is shown in Table I.1.

Table I. 1: Main components of a flow entry in OpenFlow v1.5 [20].

Match Fields Priority Counters Instructions Timeouts Cookie Flag

Each flow entry contains:

 Match fields: match against packet.

 Priority: matching precedence of the flow entries.

 Instructions: set of instructions that are executed when a packet matches the entry.

Chapter I: Network Automation and Programmability Overview

12

 Timeouts: maximum amount of idle time.

 Cookie: opaque data value chosen by the controller.

 Flags: alter the way flow entries are managed.

 When a packet arrives from a switch port, it is compared with the match fields in the flow

entries. If the packet is matched, it will be processed as indicated in the instructions [20].

 As a review, the SDN promises to dramatically simplify network control, management, and

enable innovation through network programmability, the migration of control plane, which used to

be tightly integrated in the networking devices (for example, Ethernet switches) into accessible and

logically centralized controllers, enables the underlying networking infrastructure to be abstracted

from the application's point of view. This separation provides a more flexible, programmable, cost

efficient, and innovative network architecture. Besides the network abstraction, the SDN

architecture will provide a set of Application Programing Interfaces (APIs) that simplifies the

implementation of common network services (for example, routing, multicast, security, QoS, and

various forms of policy management) [17]. One common southbound interface implementations of

the SDN is called OpenFlow. The separation of the forwarding hardware from the control logic

allows easier deployment of new protocols and applications, straightforward network visualization

and management, and consolidation of various middle boxes into software control. with SDN,

enterprises and carriers gain vendor-independent control over the entire network from a single

logical point, which greatly simplifies the network design and operation. SDN also greatly

simplifies the network devices themselves, since they no longer need to understand and process

thousands of protocol standards but merely accept instructions from the SDN controllers [16].

 These benefits and advantages suggested by the SDN architecture, make leaders in

networking industry rethink about the current state of the network, however, the purest definition

of SDN model with the OpenFlow protocol might have limitations and drawbacks that must be

taken into account, including, the scalability performance issue, and the central point of failure

which make the ability of hacking the whole network system from a central point, also technology

change which require a lot of effort like training and buying new software and clean out all the

setting and policies because of the presence of the traditional devices and systems in the network

that does not support this paradigm [21].

Chapter I: Network Automation and Programmability Overview

13

I.4 Approaches and Use Cases.

 When we are coming to implement and research about network automation and

programmability, it may encounter many network industry trends and technologies that emerged

over the past 10 years, many of them are considered as SDN and can “get put under the SDN

umbrella”, and we note that is not necessarily decoupling the control from the data plane, as well

as, controller-based networks, APIs on network devices, network automation tools (refers to the

automation frameworks), and the list goes on [22], since they shared the same global idea of

running software on top of the underlying infrastructure network to automate boring and repetitive

tasks, centralize and simplify the network management, abstract and hide the low level interactions

with network devices. The concept behind these trends aims to create hybrid or newer solutions

and approaches, depending on the environment and the network devices themselves, for automating

the configuration management and daily tasks (will be explained in the fourth section), on both

traditional and more recent network, and this led the network automation and programmability

implementation strategies differ from perspective to another.

 In this section, we are going to explain briefly three common approaches and given use cases

examples to automate the management plane and operations on the network in separated sub-

sections, which are cited above, and summarized on the Figure I.4 as well.

Figure I. 4: Summarized plane for common approaches and use cases.

 In the first approach, we will introduce the paradigm of network controlling, and given a use

case example with the DNA Center, in the second approach, network automation will be based on

Chapter I: Network Automation and Programmability Overview

14

the direct interaction with the network devices, using pre-built frameworks and tools like Ansible.

Now, these two previous approaches are typically using device APIs, CLI, and Python under the

hood, but this does not preclude the third approach that provide more clarification of these APIs

including, REST, NETCONF, and the CLI (management interface), with the ability of creating

special form for direct interfacing using Python programing language which enable innovation.

I.4.1 Controller-Based Network

 Controllers enable programs to automatically configure and operate networks through

powerful application programming interfaces (APIs), allowing three main principles, which are,

programmability, abstraction, and centralization from the underlying physical network. In this

approach, network automation is based on a centralized controller to configure and manage

networking devices, pretty much like the SDN paradigm. However, the controller may be a

stateless, which mean each network device has its own control plane and this led to extend the

capability of automation over the traditional networking devices by automating the management

plane. There is a lot of property and vendor specific automation controllers, to explain more, and

as use case, in this approach we chose to explore briefly the last controller released by Cisco which

is DNA Center.

I.4.1.1 Cisco DNA Center

 According to [23] [10], Cisco DNA Center is a network management controller for the

enterprise released on 2018, and is based on the fundamentals of Cisco Digital Network

Architecture (DNA) and Intent Based Networking (IBN), it delivers pre-installed on a cisco

appliance, the software follows the same general SDN controller architecture concepts, Figure I.5,

shows the general idea.

 As we can see in the figure, Cisco DNA Center supports several southbound APIs to

communicate with the devices under two categories:

 Protocols to support traditional networking devices/software versions: Telnet, SSH, SNMP.

 Protocols to support more recent networking devices/software versions: NETCONF,

RESTCONF.

Chapter I: Network Automation and Programmability Overview

15

Figure I. 5: Cisco DNA Center with Northbound and Southbound Interfaces [10].

 In the northbound APIs it supports the controlling using scripts that will communicating with

the offered REST API platform, or using the pre-built GUI interface which will provides end-to-

end network visibility and uses network insights to optimize network performance and deliver the

best user and application experience [10].

 Cisco DNA Center offers a single dashboard for every core function in the network. With

this platform, IT can become nimbler and respond to changes and challenges faster and more

intelligently, and it is a set of software solutions that provide [24]:

 A management platform for all of the network.

 An intent-based networking controller for automation of the policies, segmentation, and

services configurations.

 An assurance engine to guarantee the best network experience for all the users.

a- Services

 Cisco DNA Center software resides on the Cisco DNA Center appliance and controls all of

the Cisco devices both physical and virtual and supports fabric and nonfabric deployments. From

Chapter I: Network Automation and Programmability Overview

16

the main menu in the dashboard illustrated in Figure I.6, Cisco DNA Center has four general

sections aligned to IT workflows [24]:

Figure I. 6: Cisco DNA Center dashboard [24].

 Design: the ability to design the network for consistent configurations by device and by

site, also offer a physical maps and logical topologies to help provide quick visual reference.

 Policy: Translate business intent into network policies and apply those policies, such as

access control, traffic routing, and quality of service, consistently over the entire wired and

wireless infrastructure.

 Provision: Device provisioning is a simple drag-and-drop task. The profiles (called scalable

group tags or “SGTs”) in the Cisco DNA Center inventory list are assigned a policy, and

this policy will always follow the identity. The process is completely automated and zero-

touch. New devices added to the network are assigned to an SGT based on identity—greatly

facilitating remote office setups.

 Assurance: Cisco DNA Assurance, using AI/ML, enables every point on the network to

become a sensor, sending continuous streaming telemetry on application performance and

user connectivity in real time.

Chapter I: Network Automation and Programmability Overview

17

 It offers also a broad set of APIs, SDKs, and adapters that extend the capabilities of Cisco

DNA Center to external applications, cross-architectural domains, systems and processes, and

third-party devices, this controller extensible software platform includes integrated tools for

network management, automation, virtualization, analytics and assurance, security, and Internet of

Things (IoT) connectivity and can also interface with business-critical tools, it has a lot of services

and robust features that aims to bring together the benefits of efficiency and lower risk by

combining automation and abstraction in the form of a GUI and intent-based networking concepts

to allow users to easily configure and deploy networks [24].

I.4.2 Network Automation Frameworks

 One of the foundation mechanisms that we discuss in this approach to enrich out the research,

is the network automation frameworks, there are a lot of them, and often called tools, each

framework performs a set of software packages and pre-defined rules that address the

Configuration Management System on the network infrastructure. Ansible, SaltStack, Puppet,

Chef, and many of tools out there have the capabilities to quickly provision infrastructure by

avoiding sequential and manual interactions. With CMS, by combining the automation tools with

the characteristics in the desired state we end up with system consistency across the entire system,

including appliances from router to switches, middle boxes and even server automation use cases

[25], all these tools have commonalities and differences architectural points between them, and

they are listed in two parts bellow.

a- Commonalities points [25]:

 All about automating configuration management.

 Checking the current state before changing it (Idempotency).

 Facts and gathering information.

 Work with Modules and libraries behind the scenes.

 Open source foundation.

b- Differences points [26]:

 Agent-based versus agentless.

 Centralized versus decentralized.

 Custom protocol versus standards-based protocol.

Chapter I: Network Automation and Programmability Overview

18

 Language for extensibility.

 Domain-specific language (DSL) versus standards-based data formats and general

purpose languages.

 Push versus pull versus event-driven.

 In the next sub-section, we are going to focus more on Ansible as an example from those

frameworks, which is the common use case tool, because, it is agentless, easy to use, and popular

in networking community [25].

I.4.2.1 Ansible

 Ansible is a popular network automation framework written in Python that has been used to

automate IT operations and configuration management. It simplifies the management of different

infrastructure nodes and translates the business logic into well-defined procedures [27], it is a free

and open-source software created by Michael DeHaan in 2012, acquired by Red Hat corporation

in 2015 [22]. It started support for networking devices beginning with Ansible 1.9, and with Ansible

2.9, its current support for network devices have grown extensively. It can interact with network

devices using either SSH or via API if the network vendors support APIs on their equipment [27].

Ansible characterized by [22]:

 Simplicity: No need to special coding to get started, all instructions, or tasks to be

automated, are documented in a standard, human-readable data format that anyone can

understand.

 Agentless: No need to install agent or additional software in the targeted network devices.

 Extensibility: Since it is open source and written in Python, it can be extended, by adding

modules and integrate other to enable a given set of functionality.

 Ansible and other tools, was intended to automate server IT infrastructure, it executes in a

distributed fashion, where the Ansible control host connects to each server being automated via

SSH and subsequent copies Python code to each server, this code is what performs the automation

task at hand. After it extends the capability for automating network devices, the idea was changed

a little bit to operates in a centralized fashion, communication via SSH (CLI), HTTP based API,

NETCONF … etc. and Python codes are run locally in the control node, instead of copying in the

Chapter I: Network Automation and Programmability Overview

19

targeted network devices [26]. Figure I.7, illustrate the general idea of the Ansible workflow with

network element.

Figure I. 7: Ansible workflow with network devices [28].

 As the figure shows, the Playbook instructions and execution are based on modules which

are simply a set of Python files, in order to know how to use Ansible for network automation we

need to get familiar with some terminologies and concepts, those terms are extracted from the

Ansible documentation [29], in combination with the Edelman Ansible Report [22], to add more

explanation, we given also examples from others other references.

a- Control node

 Any machine (except Windows) with Ansible installed. can run commands and playbooks,

invoking /usr/bin/ansible or /usr/bin/ansible-playbook. We can use any computer that has Python

installed on it as a control node - laptops, shared desktops, and servers for running Ansible.

b- Managed nodes

 The network devices (and/or servers) that are managed with Ansible, are also called hosts.

Ansible is not installed on managed nodes.

c- Inventory

 The managed nodes are listed in an inventory file or sometimes called a hostfile. the

inventory can specify information like IP address for each managed node. An inventory can also

organize managed nodes by creating and nesting groups for easier scaling. Using an inventory file,

https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html#id1
https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html#id2
https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html#id3

Chapter I: Network Automation and Programmability Overview

20

such as the coming example, enables us to automate tasks for specific hosts and groups of hosts by

referencing the proper host/group using the hosts parameter that exists at the top section of each

play. It is also possible to store variables like the username and password within an inventory file.

Figure I.8, shows an example of an inventory file include two groups of cisco devices, IOS, and

NXOS, with specifying common variables.

Figure I. 8: Example of an Ansible inventory file [30].

d- Modules

 The units of code Ansible executes. Each module represents a particular use of task, from

administering users on a specific type of database to managing VLAN interfaces on a specific type

of network device. we can invoke a single module with a task, or invoke several different modules

in a playbook. There are four common network module and they are listed in following Table I.2

[31].

Table I. 2: Four main network devices module [31].

Module Description

command Command modules run arbitrary commands on a network device.

config Config modules allow configuration on the network device in a stateful way

(idempotent)

facts Fact modules return structured data about the network device

resource Resource module can read and configure a specific resource on a network

device.(e.g. VLAN).

https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html#id4

Chapter I: Network Automation and Programmability Overview

21

e- Playbooks

 The playbook is the top-level object that is executed to automate, it is an ordered list of Plays

and tasks saved, so it can run those tasks in that order repeatedly. Playbooks can include variables

as well as tasks, written in YAML (Yet Another Markup Language) and easy to read, write, share

and understand. Figure I.9, shows an example of a Playbook file that include one play and one task

for adding VLANs on a Cisco host.

Figure I. 9: Example on an Ansible Playbook file [30].

Note: YAML is just another standard type of structured data format, as JSON and XML, it starts

with “---” in the top of the file, and it is based on indentation for separating and describe lists and

object information.

f- Play

 One or more plays can exist within an Ansible playbook. In the previous Playbook example,

there are a single play within the playbook starts with a header section where play-specific

parameters are defined (name, hosts, and it may include the connection type). Each play is

comprised of one or more tasks.

g- Tasks

 The units of action in Ansible. We can execute a single task once with an ad-hoc command.

Tasks can also use the name parameter just as plays can. The next line after declaring the task

name in the example shown in Figure I.9, task starts with ios_vlan and it will execute the Ansible

module called ios_vlan.

h- Templating

https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html#id6

Chapter I: Network Automation and Programmability Overview

22

 Ansible supports Jinja2 language which will be able to create templates that represent a

device’s configuration but with variables, as the example in Figure I.10.

Figure I. 10: Example of configuration file template using Jinja2 in the left with the associated

values in a YAML file in the right [10].

Note: The goal of using templates is to decouple the inputs from the underlying vendor proprietary

syntax (CLI) of the configuration file in separated files, in order to avoid the writing of repetitive

lines, then Ansible helps to bridge the gap between rendering the inputs and values placed in a

YAML file with the configuration templates [22].

 As a review, Ansible offers a great and a robust way to automate the configuration of

networking devices in form of simple tasks in single or multiple playbooks, it does not need any

agents or additional software to initialize it, also, it leverages Python for extensibility, it supports

also templating using the Jinja templating language. Ansible uses many programming interfaces,

including the ability to interface with the CLI via SSH in automatic fashion. In the next sub-section,

we are going to add more clarification on those application programming interfaces (APIs), and the

intended management interface (CLI), for each network device, and how we can deal with them

using Python programming language as a separated approach.

I.4.3 Device APIs and Management Interfaces

 A major aspect about what actually makes network automation and programmability possible

and continue in evolving is the application programming interfaces or APIs on network devices,

before we dive in this approach, we might be wondering about what is an API. An Application

Chapter I: Network Automation and Programmability Overview

23

Programming interface is just a way for one program to communicate or learn the variables and

data structures (often JSON/XML based), used by another program, making logic choices based

on those values, changing the values of those variables, creating new variables, and deleting

variables. APIs allow programs running on different computers to work cooperatively, exchanging

data to achieve some goal [10]. If we still be wondering about what it does in networking, well

several types of network device APIs already exist, each with a different set of conventions to meet

a different set of needs, for example the Openflow protocol that we mentioned earlier, REST,

NETCONF protocol, and even the Command Line Interfaces (CLI) are considered as an APIs in

automatic network management system (but it is UI, designed more for human to use) [32], Since

we can deal with them directly using python, this sub-section will provide a brief specification for

those common APIs types found on network devices, with given associated Python modules.

Figure I.11, illustrate the general idea between Python libraries choices in one side through

transport protocols, that can be interfacing with Device APIs in the other side.

Figure I. 11: Illustrated plan for devices APIs with their associated Python modules.

I.4.3.1 REST API

 An API that uses REST methods which stands for REpresentational State Transfer, is often

referred to a RESTful API, are becoming more popular and more commonly used in the networking

industry, although they’ve been around since the early 2000s [26]. Roy Fielding, the creator of the

Chapter I: Network Automation and Programmability Overview

24

REST API defines six foundational rules about what makes a REST API and what does not, and

they are as flow [33]:

 It uses a client/server architecture.

 It follows a stateless operation.

 It defines a clear statement of cacheable/uncacheable.

 It has a uniform interface.

 It has a hierarchical layered system.

 It allows the code-on-demand.

Note: when we are honoring the six guiding principles of REST, we can call this application

interface RESTful [33].

 Most of the APIs that exist today within network infrastructure are HTTP-based RESTful

APIs, this means that when we hear about a RESTful API on a network device or SDN controller,

it is an API that will be communicating between a client and a server [34]. The client would be an

application such as a Python script or web UI application, which will be requesting the server for

needed information, and the server would be the network device or controller that will be

responding by sending structured data like JSON or XML, much like we using a web browser to

request a web site for HTML pages. Figure I.12, illustrate the general idea.

Figure I. 12: Client and server (web server) communication using REST API [35].

 The software industry uses a memorable acronym CRUD for the four primary actions

performed by an application. Those actions are: Create, Retrieve/Read, Update, Delete [10].

RESTful APIs use HTTP methods or verbs to gather and manipulate data and variables that mirror

CRUD actions. Each action has the associated HTTP verbs that works with it, and they are listed

in the Table I.3 below.

Chapter I: Network Automation and Programmability Overview

25

Table I. 3: Comparing CRUD Actions to REST Verbs [10].

Action CRUD Term REST (HTTP) Verb

Create new data structures and variables Create POST

Read (retrieve) variable names, structures, and

values

Read GET

Update or replace values of some variable Update PATCH, PUT

Delete some variables and data structures Delete DELETE

 HTTP has the concept of an HTTP request and reply, with the client sending a request and

with the server answering back with a reply. Each request/reply lists an action verb in the HTTP

request header, which defines the HTTP action. The HTTP request messages also include a URI

which identifies the resource being manipulated for this request, as always, the HTTP message is

carried in IP and TCP, with headers and data, as represented in Figure I.13.

Figure I. 13: HTTP Verb and URI in an HTTP Request Header [10].

 The response from the sever also include a code message that expresses the status of the

actions, like 201; that refer to a new resource created, or 200; which mean that the request is

succeeded, and other status codes, each one has a specific response description. In Figure I.14, we

can see the process clearly between a client and a network device.

Figure I. 14: Format of the HTTP request and response between the client and the network

device (server) [35].

Chapter I: Network Automation and Programmability Overview

26

 There are some other generic headers that we should comfortable with and expect to see,

they provide details about the meta data and how the REST based HTTP API work and they are a

part from the request and the response object, including the Content-Type and Accept and other

parameters listed in Table I.4, with example value and the purpose [36].

Table I. 4: Some generic headers that provides details about the meta-data [36].

Headers Example Value Purpose

Content-Type

application/json

Specify the format of the data in

the body

Accept

application/json

Specify the requested format for

returned data

Authorization Basic dmFncmFudDp2YWdyYW50

Provide credentials to authorize

a request

Date Tue, 25 Jul 2017 19:26:00 GMT Date and time of the message

 As we mentioned, there is an associate Python module available in the PyPI online

repository which is request, that gives us the ability to build a full REST based HTTP client API

with simple authentication, headers and response tracking, it includes all the REST API calls and

HTTP functions in form of a pre-built python methods like get (), and put (), in order to manipulate

on the networking devices resources in a programmable style. In Figure I.15, we can see some use

cases using the REST API based on the HTTP protocol in the context of network device.

Figure I. 15: HTTP Verbs in the context of network devices [35].

Chapter I: Network Automation and Programmability Overview

27

I.4.3.2 NETCONF Protocol

 As we know that the Simple Network Management Protocol (SNMP) had been widely used

for fault handling and monitoring for many years. However, his capabilities in configuration

especially in complex and large scale networks are very limited [37], and it was clear that NETwork

CONFiguration has the ability to replace SNMP as the incumbent configuration management

protocol [38].

 NETCONF protocol is an IETF network management protocol initially defined in RFC 4741

(2006), and revised in RFC 6241 (2011) [39]. The NETCONF protocol defines a simple mechanism

through which a network device can be managed, configuration data information can be retrieved,

and new configuration data can be uploaded and manipulated. The protocol allows the device to

expose a full, formal API. Applications can use this straightforward API to send and receive full

and partial configuration data sets [39].

 NETCONF uses a simple remote procedure call (RPC) that is realized by exchanging <rpc>

and <rpc-reply> messages encoded in XML format to facilitate communication between a client

and a server. The client can be a script or application typically running as part of a network

manager. The server is typically a network device. NETCONF architecture is designed to

distinguish between writable configuration data used to control the operation of a device and state

data containing device statistics and status description. Configuration data can be retrieved by <get-

config>, modified by <edit-config>, copied by <copy-config>, and delet by <delete-config>,

whereas <get> is used to retrieve available state and configuration data. In addition, NETCONF

distinguishes between three configurations datastores on a managed device [37]:

a- Running: configuration currently active on the device

b- Candidate: a standby configuration, which can be manipulated without affecting the

current device’s running configuration.

c- Startup: the initial configuration of a device.

 This protocol has a conceptual of four-layered process illustrated in Figure I.16, with an

example.

 Each layer has a specific role and characteristic and they are as follow [39]:

Chapter I: Network Automation and Programmability Overview

28

Figure I. 16: NETCONF protocol layer and content [40].

 The Secure Transport layer provides a communication path between the client and server.

NETCONF can be layered over any transport protocol that provides a set of basic

requirements including SSH protocol (port 830 by default) and SOAP.

 The Messages layer provides a simple, transport-independent framing mechanism for

encoding RPCs and notifications.

 The Operations layer defines a set of base protocol operations invoked as RPC methods

with XML-encoded parameters, like we saw in the example (<edit-config>).

 The Content layer uses YANG data modeling language which has been developed

(standardized in RFC 6020) for specifying NETCONF data models and protocol operations

sent to or from a network device formatted in XML as well.

 The IETF group defines a set of capabilities that a client or a server may implement. Each

peer advertises its capabilities by sending them during an initial capabilities exchange using

<hello> element. Each peer needs to understand only those capabilities that it might use and must

ignore any capability received from the other peer that it does not require or does not understand.

Figure I. 17: NETCONF communication with the initial capabilities exchange [41].

Chapter I: Network Automation and Programmability Overview

29

 The example in Figure I.17, depicts the NETCONF communication started by exchanging

capabilities in the first and second steps between the manager and the agent installed on the network

element, based on these capabilities, the manager will send and receives needed operations

encapsulated by RPCs (steps from three to seven).

 NETCONF protocol is a major step towards an automated XML-Based network

management system. The major issue of NETCONF is a lack of support from the industry, and few

publications on the NETCONF implementation [37], Cisco as an example Started to support

NETCONF/YANG recently on his devices depending on the releases.

 There is a dedicated Python module to handle NETCONF programmatically, which is

ncclient library that facilitates client-side interfacing and application development using pre-

defined methods, like connect () that accept device information from the host, port, and username

as parameters to handle the connection on the targeted network devices, and then passing the

operational methods like get_config() and edit_config() to manipulate data [42].

I.4.3.3 CLI

 The command Line Interface consider as the primary user interface when we configuring,

monitoring and maintaining networking devices, this interface is accessible either directly using

console or terminal, or using remote access methods which are SSH and Telnet protocols. Telnet

protocol offers support for connecting to a device which has the support for it and managing it from

a remote location. The main problem of the Telnet protocol is the lack of security within its session.

All the data sent across the network are being sent as plain text, neither one of these sent packets

aren’t being encrypted.

 SSH protocol offers a secure alternative for remote management. The SSH creates encrypted

sessions using a public and private key and authenticates the user that tries to by comparing the

credentials configured to those entered and then granting access to the legitimate users [43]. The

reality is that the migration from Telnet to SSH is arguably the biggest shift we’ve had in network

operations over the past decade. There are some requirements that are expected to be configured

before starting a Telnet or SSH session with a device. These requirements are: configuring a

hostname, a logical address, an enable password (for data network devices), a user and a password

Chapter I: Network Automation and Programmability Overview

30

and at least one VTY line that permits telnet traffic, also domain address and generating encryption

key specifically for SSH.

 The most important thing to realize as it pertains to managing devices via the CLI is that the

CLI was built for humans. It was put on devices to improve usability for human operators. The CLI

was not meant to be used for machine-to-machine communication. However, when all we have is

the CLI, CLI is what gets used. This is why there are plenty of network management platforms and

custom scripts that have been built over the past two decades that perform management and

automated operations using the CLI over SSH [26].

 We are going to explain more this approach, since that we could use the CLI from automation

perspective to build a system to ease the configuration management of networking devices, using

python scripting languages, taking advantage of libraries like Paramiko and Netmiko, which we

will dive into more in the second and the third chapter. Telnet protocol also has his own module in

python which is Telnetlib and it is a standard Python Library, it used to handle the connections to

network devices in order to manage them.

I.5 Common Network Automation Tasks

 All the aforementioned approaches in network automation effect on the administrative tasks

in a positive way as they save effort, time and cost, in this section, we will shed the light on the

most common tasks for which who deals with the networking devices can deploys an automated

workflow using the preceding approaches and tools, Edelman, Scott and Matt in their book

Summarize all these tasks in which network automation make sense and they are as follow [26]:

a- Device Provisioning:

 Involves the process of preparing and equipping a network device to allow it to provide new

services to its users. If we take this process and break it down into two steps, the first step is creating

the configuration file, and the second is pushing the configuration onto the device.

b- Data Collection

 This task includes all of the methods of monitoring and collecting important data from the

network, typically using protocols like SNMP, these tools poll certain management information

Chapter I: Network Automation and Programmability Overview

31

bases (MIBs) and return data to the monitoring tool. Based on the data being returned, it may be

more or less than actually need.

c- Migrations

 Network migrations, therefore, involves transferring the data and programs from an old

network to a new network. This migration can be in an effort to start using a totally new network,

but it can also include extending the current network with an add-on system.

d- Configuration Management

 Deploying, pushing, and managing the configuration state of the device. This includes

anything as basic as VLAN provisioning to more complex workflows that configure a top-of-rack

switches, firewalls, load balancers, and advanced security infrastructure, to deploy three-tier

applications.

e- Compliance

 It refers to the process of configuration compliance checks and configuration validation; it

uses the data gathered and it is more than possible to verify if something is True or False. It’s easy

enough to start small with one compliance check and then gradually add more as needed.

f- Reporting

 Reporting is another administrative task which needs to collect important information to

express condition and state within in network, the report can be in many formats including HTML

reports that are deployed to a web server for easy viewing, or it could be a CSV file, even in a

simple text file.

g- Troubleshooting

 Network troubleshooting is the combined measures and processes used to identify, diagnose

and solve problems within a computer network. It’s a logical process that network engineers use to

resolve network problems and improve network operations. Troubleshooting is an iterative process

used also the collected data to analyze [44].

 If we can notice, all of these works meet in two processes, namely pulling and push data, any

network administrator can easily create automated system workflows to accomplish these tasks

https://www.pathsolutions.com/network-troubleshooting

Chapter I: Network Automation and Programmability Overview

32

using one or more of the previously mentioned approaches, depending on the capabilities of the

device and what it can support, instead of logging into each device and do this works. In this thesis,

we created a management platform that demonstrate how we can do those, which we will explain

more in the second and the third chapter.

I.6 Conclusion

 In this informational background chapter, we presented a brief explication of the most

common approaches and methods, that started to emerge in the network industry over the last

decade, which are fall under the topic of network automation and programmability, including,

controller-based networking, network automation framework, devices APIs and the management

interfaces, we gave also in a separated section, most of the common tasks that can be addressed

using these technologies, we introduced the paradigm of software-defined networking to solve the

mentioned problems in the general introduction by its specification, also, it inspired network

automation and programmability to extend and cover many contexts and domains, it forced the

evolving in network devices to be more programmable in mind.

CHAPTER II:

MANAGEMENT INTERFACES

APPROACH AND THE PROPOSED

WORKFLOW FOR DEVELOPING

AUTOMATION PLATFORM

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

34

II.1 Introduction

 The process of automating tasks in network infrastructure actually is differ based on the

nature of the network device and what it can support, which is not something desirable in a multi-

vendor and multi-nature network environment. Luckily, Python is broadly used to perform network

automation with just the CLI that exists in all devices, with his wide set of open source libraries

(such as Netmiko and Paramiko), also there are endless possibilities for network devices

interactions for different vendors.

 In the research trip for solutions or reduce the mentioned problematics, we adopted to use

the third automation approach described in the first chapter, exactly Python with CLI, this approach

enable innovation, development and extensibility with Python.

 In this chapter and in the PART A, we will explore the reason why exactly Python for

networking contexts, and then we are going to focus on Netmiko library which is one of the most

widely used libraries for network interactions. In addition, we will perform some best practices and

integrated functionalities such as multithreading and TextFSM (which is Python module created

by Google).

 In PART B, we will explore our proposed framework and workflow to develop a Network

Management Platform (NMP) intended for the network automation.

II.2 PART A

II.2.1 Python for Network Automation

 Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics. Its high-level built in data structures, combined with dynamic typing and dynamic

binding, make it very attractive for Rapid Application Development, as well as for use as a scripting

or glue language to connect existing components together. Python's simple, easy to learn syntax

emphasizes readability and therefore reduces the cost of program maintenance. Python supports

modules and packages, which encourages program modularity and code reuse [45]. It addresses

many areas in technology, web and internet development, data mining and visualization, desktop

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

35

GUI, analysis, game building, and automation testing; that's why it's called a general-purpose

language [46].

II.2.1.1 Why python?

 The functionality and flexibility of the programming language are provided by its ability to

work with certain libraries, also called modules. These libraries contain functions and protocol

implementations that allow developers to create relatively small size but very powerful scripts, that

can be reused as functions in other scripts. In order to increase the effectiveness of the programming

language, its developers have allowed the addition of non-standard libraries, with added features

being part of the extended Python library [43].

 From [26] , it’s worth pointing out that we do not hold any technology religion to Python.

However, we feel when it comes to network automation it is a great first choice for several reasons.

First, Python is a dynamically typed language, meaning that we don’t need to define variables and

objects before we start using them. This simplifies the getting started process. Second, Python is

also super readable. It’s common to see conditional statements like if device in device_list: and in

that statement, we can easily decipher that we are simply checking to see if a device is in a particular

list of devices. Another reason is that network vendors and open source projects are building a great

set of libraries and tools using Python. This just adds to the benefit of learning to program with

Python. According [46], also, there are three reasons of choosing Python for network automation:

 Readability and ease of use: Python is similar to the English language, structured to have

readable statements, and does not require ‘;’ or curly braces “{”.

 Libraries: Python has a wide range of libraries and packages located on a website called

PyPI (https://pypi.Python.org/pypi), and linked to a GitHub repository. When we want to

download the library in our PC, we use a tool called pip to connect to PyPI and download

it locally.

 Network vendors, such as Cisco, Juniper, and Arista developed libraries to facilitate

access to their platforms. Most vendors are pushing to make their libraries easy to use and

require minimum installation and configuration steps to retrieve useful information from

devices.

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

36

 Powerful: Python tries to minimize the number of steps required to reach the end-result.

As we know, to print hello world using Java, we will need a block of code, instead in

Python, we need just one line.

II.2.2 CLI Based Interaction Libraries

 Python has many open source and proprietary libraries and modules that interface with the

device CLI as an API, since it does not return structured data, the programmer must parse the string

output to pick-up and load needed information on the program. The management relied on the

engineer's interpretation of the data returned from the device for appropriate action [47].

 Network environments contain multiple devices from different vendors, and each device

plays a different role. Design an automation framework for network devices are essential. Large

enterprises and service providers usually tend to design a workflow that can automate different

network tasks and improve network resiliency and agility [46]. The workflow contains a series of

related tasks that together form a process or a workflow that will be executed when there's a change

needed on the network.

 In other sides, there are also attempts to build and develop open source libraries that look for

to support all kinds of networking devices. In Table II.1, are listed the most popular open source

Python libraries, that are used to automate network devices. We refer to these three common

libraries from the referenced book with definition and the project link source [46].

Table II. 1: Open source python libraries for network automation [46].

Network

Library
Description Link

Netmiko

A multi-vendor library that supports SSHing and Telnet for

network devices and executes commands on it. Support

includes Cisco, Arista, Juniper, HP, Ciena, and many other

vendors.

https://github.com/ktbyer

s/netmiko

A Python library that works as a wrapper for the official

Vendor API. It provides abstraction methods that connect

to devices from multiple vendors and extract information

https://github.com/napalm

-automation/napalm

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

37

Napalm from it while returning the output in a structured format.

This can be easily processed by software.

Nornir

A new automation framework based on Python and

consumed directly from Python code without a need to have

custom DSL (Domain Specific Language). The Python code

is called runbook and contains a set of tasks that can run

against the devices stored in the inventory (supports also

Ansible inventory format). The tasks can utilize other

libraries (such as NAPALM) to get information or configure

the devices.

https://github.com/nornir

-automation/nornir

 As long as we will use devices in which they have only Command Line Interface (CLI) as

the intended method of management through terminal programs, in our experimental part, those

libraries above help in automating network devices with only SSH session, in the next section we

will dive more in the Netmiko library since it was one of the first attempts, one of the most widely

used libraries for network interactions [48], and also very easy to use, we will give some getting

started examples to hide the details of using it, as long as we will use it to develop our specific

model in the practical part.

II.2.2.1 Netmiko

 According to [49], Netmiko is a multivendor library that simplifies the process of creating

SSH connections to different network devices. Since late 2014 Kirk Byers has been working on

this open source project available on GitHub. Essentially, Netmiko is based on the standard

Paramiko SSH library, that is more general in which we would have to handle all the details to

manage each step of the process, enabling access, entering config mode, sending the changes and

saving the changes. Fortunately, other frameworks, like Netmiko, do a lot of this work for us by

adding some levels of abstraction for networking devices. Netmiko extends the Paramiko ability of

SSH to add enhancements, such as going into configuration mode in network routers, sending

commands, receiving output based upon the commands, adding enhancements to wait for certain

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

38

commands to finish executing, and also taking care of yes/no interactive prompts during command

execution [48].

a- Why was Netmiko created?

 The owner of this library answered this question and he mentions the problems and the

challenges behind it, he had observed with many individuals encountered similar issues with

Python-SSH and network devices. For example, HP ProCurve switches have ANSI escape codes

in the output or the Cisco WLC has an extra 'login as:' message. These types of issues can soak up

a lot of development and troubleshooting time and, what is worse, people keep solving the same

issues over and over again (including sometimes not solving them and giving up).

 So Netmiko was created to simplify this lower-level SSH management across a wide set of

networking vendors and platforms [49]. It helps users to hide many details of common device

communications functions which gives a greater abstraction with a variety of network device

models [50]. Netmiko is much simpler than Paramiko, supports a wide range of devices under three

categories on the last update (January 2019) and they are listed in the Table II.2 below:

Table II. 2: Netmiko supported devices under three categories [49].

Regularly tested Limited testing Experimental

Arista vEOS

Cisco ASA

Cisco IOS

Cisco IOS-XE

Cisco IOS-XR

Cisco NX-OS

Cisco SG300

HP Comware7

HP ProCurve

Juniper Junos

Linux

Alcatel AOS6/AOS8

Avaya ERS

Avaya VSP

Brocade VDX

Brocade MLX/NetIron

Calix B6

Cisco WLC

Dell-Force10

Dell PowerConnect

Huawei

Mellanox

NetApp cDOT

Palo Alto PAN-OS

Pluribus

Ruckus ICX/FastIron

Ubiquity EdgeSwitch

Vyatta VyOS

A10

Accedian

Aruba

Ciena SAOS

Cisco Telepresence

CheckPoint GAiA

Coriant

Eltex

Enterasys

Extreme EXOS

Extreme Wing

F5 LTM

Fortinet

MRV OptiSwitch

Nokia SR-OS

QuantaMesh

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

39

b- Netmiko purposes

 Kirk Byers also summarizes the purposes of this library on his web site articles [49], in four

sentences and they are as follow:

 Successfully establish an SSH connection to the device.

 Simplify the execution of show commands and the retrieval of output data.

 Simplify execution of configuration commands, including possibly commit actions.

 Do the above across a broad set of networking vendors and platforms.

c- The usage of Netmiko

 Like any library in python, Netmiko has many classes and sub-modules to perform certain

tasks. These components are well explained in the API documentation available in GitHub [51],

before initialize this library and before getting in the manipulation, we must install the package

available in the PyPI python repository first, using pip package manager as follow, in the terminal

we type:

pip3 install netmiko

 Note: while we were doing this thesis, we found Netmiko version 3.0.0 and it was only supported

by python version 3.6 and 3.7.

 Once Netmiko package install in the local computer than we can now check the different

components and options available on it. By calling this library on the interrupter and pass

dir(netmiko), to extract from the directory all the sub-modules that we can use it as a list. From

Figure II.1, we can see a list of some classes and sub-modules work under Netmiko.

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

40

Figure II. 1: Check all the Netmiko sub-modules and classes on the Python interrupter.

 Now, each one on this list has a specific role while we dealing with networking devices.

Hence, in order to establish an SSH session between the interrupter or any code editors we must

use one from these highlighted classes in the Figure II.1, ConnectHandler or Netmiko are factory

functions (they perform the same functionality) [49], that selects the correct Netmiko class based

upon the device_type parameter. In addition, other parameters are required to directly effect on the

specific device. Establishing a connection to a device consists of the following workflow:

1. Create an object representing the device we are going to connect to. This network

device object contains attributes such as IP address, SSH port (optional), username,

password, and hostname or the IP address.

 We can read the data from a JSON file containing network device information, create a

dictionary with key-value pairs, read it from a database, etc. The end result being that we create an

object with the attributes required to connect to it.

2. Establish the SSH session.

3. Take actions on the device (send commands, parse output, etc.)

4. Disconnect from the device.

 Figure II.2, shows a complete example, that contains all of these steps:

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

41

Figure II. 2: Source code example for establishing SSH connection to Cisco IOS switch.

 The output here should be similar to what we usually facing in the CLI when we type show

ip interface brief, in raw text format (string). Now, sending command in the SSH channel is one

from many methods that can be used, the following table contains Netmiko commonly used

methods.

Table II. 3: Netmiko commonly-used methods [49].

Methods Description

net_connect.send_command() Send command down the channel, return output back (pattern

based).

net_connect.send_command_timing() Send command down the channel, return output back (timing

based).

net_connect.send_config_set() Send configuration commands to remote device.

net_connect.send_config_from_file() Send configuration commands loaded from a file.

net_connect.save_config() Save the running-config to the startup-config.

net_connect.enable() Enter enable mode.

net_connect.find_prompt() Return the current router prompt.

net_connect.commit() Execute a commit action on Juniper and IOS-XR.

net_connect.disconnect() Close the connection.

net_connect.write_channel() Low-level write of the channel.

net_connect.read_channel() Low-level write of the channel.

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

42

II.2.2.2 TextFSM Integration

 As we explained, netmiko can get in the devices CLI and retrieve only strings data which are

unstructured, this process known as the screen scraping, it does not help for quickly pull out needed

information to do something else based on it. TextFSM and ntc_template exist to avoid relatively

this problem.

 TextFSM is a Python module created by Google that implements a template based state

machine for parsing semi-formatted text. Originally developed to allow programmatic access to

information given by the output of CLI driven devices, such as network routers and switches, it can

however be used for any such textual output [52]. it requires that we define a template consisting

of variables and rules. Then process strings against this template and from this, we can obtain

structured data [53].

 Kirk Byers implements an example based on this module on show_ip_bgp.txt file, which

represent the string output of show IP BGP command in Cisco router, he has manually stripped

certain header and he was able to convert it into structured data, then he mentions these steps for

the TextFSM process [53]:

 Network device output;

 Processed by a TextFSM template;

 Produces structured data.

 In the same context of kirk, various people have already done the parsing for us (for some

set of platforms and show commands). Network to Code group created a collection of templates

available in GitHub, that can be integrated very easily with Netmiko in order to replace the CLI

strings output into JSON format, by rendering these templates. The following steps show us how

this process can be done:

 Install TextFSM templates from GitHub ntc_templates into the home directory using git

clone.

$ git clone https://github.com/networktocode/ntc-templates?__s=XXXXXXXX

 Setting the index file in an environment variable.

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

43

$ export NET_TEXTFSM=/path/to/ntc-templates/templates/

 The index file is just a way of mapping between platform, command, and the corresponding

TextFSM template.

 Using TextFSM in Netmiko scripts.

In [6]: net_connect.send_command("show ip int brief", use_textfsm=True)

 Just by setting use_textfsm=True argument in show_command () methods, the script will

look for the environment variable to find the index file and map the command to her own template

platform. We can now access to the key and value pairs in the script and adjust based on it, see the

structured output format using pre-built TextFSM template (ntc_template) in Figure II.3.

Figure II. 3: Applying TextFSM templates on show command inside netmiko script [53].

II.2.3 Multithreading

 One of the best practices to do in the automation process using python with libraries like

Netmiko, is that we can speed up the execution more by integrating Threading library, it is an

efficient way to quickly perform actions when the Python files gets in execution, before we dive in

this, the following steps are happening when we do the normal execution of python scripts [46]:

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

44

 Instructs computer processor to schedule a thread (which is the smallest unit of processing).

 The allocated thread will start to execute your script line by line. A thread can do anything,

including interacting with I/O devices, connecting to routers, printing output, performing

mathematical equations, and more.

 Once the script hits the End of File (EOF), the thread will be terminated and returned to the

free pool, to be used by other processes. Then, the script is terminated

Figure II. 4: The process of scheduling a thread in the processor once we run a python file [46].

 Hence, in the normal case with the Netmiko script, if we need to configure multiple network

devices, and if each one takes around 10 seconds to log in, send commands, and log out, and we

have around 30 network devices that we need to send commands to it, we would need 300 (10*30

= 300) seconds for the program to complete the execution. If we are looking for more advanced or

complex calculations, on each item, which might take up to a minute, then it will take 30 minutes

for just 30 devices. This starts to become very inefficient when our complexity and scalability

grows [54].

 To help with this, we need to add parallelism to our program. What this simply means is, we

log in simultaneously on all 30 network devices, and perform the same tasks to fetch the required

at the same time and this saves a lot of time, depending on the capabilities of the computer

processor, a thread is nothing but another instance of the same function being called, and calling it

30 times means we are invoking 30 threads at the same time to perform the same tasks. here a use

case example that will demonstrate the difference between these two situations, serial query and

parallel query using the threading library [48]:

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

45

1. #serial_query.py

2. from netmiko import ConnectHandler

3. from datetime import datetime

4. startTime = datetime.now()

5. for n in range(1, 5):

6. ip="192.168.20.{0}".format(n)

7. device = ConnectHandler(device_type='cisco_ios', ip=ip,

username='test',password='test')

8. output = device.send_command("show run | in hostname")

9. output=output.split(" ")

10. hostname=output[1]

11. print ("Hostname for IP %s is %s" % (ip,hostname))

12. print ("\nTotal execution time:")

13. print(datetime.now() - startTime)

The output of running the preceding command is as follows:

Figure II. 5: The result of the use case with serial query [48].

1. #parallel_query.py
2. from netmiko import ConnectHandler
3. from datetime import datetime
4. from threading import Thread
5. startTime = datetime.now()
6. threads = []
7. def checkparallel(ip):
8. device = ConnectHandler(device_type='cisco_ios', ip=ip,
9. username='test', password='test')
10. output = device.send_command("show run | in hostname")
11. output=output.split(" ")
12. hostname=output[1]
13. print ("\nHostname for IP %s is %s" % (ip,hostname))
14. for n in range(1, 5):
15. ip="192.168.20.{0}".format(n)
16. t = Thread(target=checkparallel, args= (ip,))
17. t.start()
18. threads.append(t)
19. #wait for all threads to completed
20. for t in threads:
21. t.join()
22. print ("\nTotal execution time:")

23. print(datetime.now() - startTime)

The output of running the preceding command is as follows:

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

46

Figure II. 6: The output of the use case using parallel query [48].

 The calling to the same set of routers being done in parallel takes approximately 8 seconds

to fetch the results. As compared to the previous example, 26 seconds is down to 8 seconds for the

response. Here are some key points to consider in the previous example:

 The start () method is used to get the thread to invoke the function called in the thread.

 The join () method specifies that until all the threads are complete, the program will not

proceed to the next step.

 The output in the program is not in order for parallel threads because, the moment any

thread is completed, the output is printed, irrespective of the order. This is different to

sequential execution, since parallel threads do not wait for any previous thread to complete

before executing another. So, any thread that completes will print its value and end.

 The more threads that assign to the script (and that are permitted by the processor or OS),

the faster the script will run [46].

II.3 PART B

II.3.1 The Proposed Network Management Platform

 We propose a prototype framework and a workflow as illustrated in Figure II.7, for an

efficient application and we have named it Network Management Platform (NMP), it is designed

to address and facilitate the network management tasks, where we had to put the strategy and make

the example for automated process.

 It is necessary to know exactly the nature of the tasks that a network administrator wants to

directly affect, and relate them by the program logic, taking into account the efficiency, integrity,

reusability, and ease of using the platform.

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

47

 For this project, we cover four common main aspects where automation makes sense, which

are: configuration management and provisioning, verification and testing, confirmation and

backups, continuous checking and reports generation, that’s all cover most of an administrator daily

work, and they all about pushing and gathering specific information from devices CLI using SSH

protocol. Each aspect has a different strategy to do when we coming to coding, In the following

parts, we will introduce each of these tasks, what they supposed to do, and how it uses them in

NMP to achieve a network automation process, before we get in the platform building explanation

from programming side using python.

Figure II. 7: The NMP prototype workflow.

 The NMP use pure python language and it is a Netmiko-based modeling application,

integrated with other libraries and functionalities, it provides four main parties in form of stages,

that match the four administration aspects mentioned above, each one from the stages has functions

dedicated to a specific purpose.

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

48

 The first stage of the platform is concerned about the task of the configuration management

and provisioning across all network regardless of the number of devices and its type,

changing, updating, assign configuration about routing protocols, VLAN, QoS and other

services to ensure consistency, in some cases, we need to interact with some specific devices

or layers in the network, depending on their implementation policies, for this purpose we

decided to separate this stage into two functions, which is the configuration of all devices and

the configuration of specific devices.

 The second stage has three functions and it is about the verification processes. The first and

the second functions relevant to the configuration process and what we were done before to

ensure if it is done successfully or some input errors are happen, notice that if we choose the

first function in the configuration part we have to choose the first of the verification part as

well, and so on, it will show us exactly on which device the error occurred and the exact

command line type that does not passed correctly. The third function in this stage, is about

network testing using test connection function, so every time when we implement new

services, we have to check the connectivity between the devices to ensure the correctness of

what we did before, using Ping command. One of the advantages of separating tasks from

each other is the ability to go back and correct previous mistakes before going to the

confirmation stage, so if the verification stage does not pass as we want, we will have the

ability to return and modify in the first part until we got the purpose.

 The third stage is when any administrator finishes setting up tasks, where must save the

changes in the network device flash memory for the safety and security, in the case of turning

off or restarting the devices. For this, the confirmation unit in the third stage of NMP was

created; in addition, it can ensure backups are happening regularly, so he never loses critical

network data. This platform improves network security by automating backups and save it in

local or another location on our main server, and this what is done on the second function.

 The fourth stage in NMP it is concerned in monitoring of the most important network

policies implemented in network devices, which helps in the monitoring and troubleshooting,

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

49

so it ease the process of finding issues in somewhere, we built four monitoring main functions,

which are firstly, interfaces information and it is about all the ports used or not used, like if

this port is up or down, the up time, input packet and more, secondly, it performs the check

routing protocol implemented on the devices, like routing tables and the database, thirdly, we

have another important function which is checking VLAN and VTP status, this function is

specified for the switches because VLAN are running only on it. We can extend to add other

functionalities based on what we need to check. Also, one of the necessary tasks performed

by the network administrators is to write long and boring reports continuously that express

the network situation and send it to the network manager or to higher destinations. Instead of

logging into an application and running reports every time, we created a workflow that will

auto generate the work for us and this is what the fourth function in the last stage does.

A summary of all the stages our NMP are resumed as an organigram in Figure II.8.

Figure II. 8: Summarizing the management platform stages.

 This platform is a user interface menu based on selection between the four previous modes,

performed by the integration with simple_term_menu python library to works directly in the

terminal as shown in Figure II.9, in order to ease the use. Currently, Linux and MacOS are

supported for this module [55]. When we choose the appropriate mode, we hit return to enter in

the sub-modes where we find our specific functions with the ability of back again to the main menu

Chapter II: Management interfaces Approach and the Proposed Workflow for

Developing Automation Platform.

50

for each mode. After explaining the code source providing these operations in the third chapter, we

are going to do a test case of all these parts separately, with giving results and performance

analyzed.

Figure II. 9: The Proposed Network Management Platform main menu.

II.4 Conclusion

 Python is a great choice to get started and building powerful network automation

applications, since it provides pre-built modules to perform programmable administration tasks,

like configuration and state verification. As we mention, one of the best modules included in Python

is Netmiko, because it supports a wide range of networking devices and easy to use, it simplifies

the process of establishing SSH connection between the program script and the remote CLI using

ConnectHandller class, it has also some pre-defined methods like send_command and save_config

to minimize hard coding. There are many functionalities that we can integrate into our code as

multithreading and TextFSM, and that is what we will be used to develop our proposed automation

platform NMP.

CHAPTER III:

NETWORK MANAGEMENT

PLATFORM FOR NETWORK

AUTOMATION

Chapter III: Network Management Platform for Network Automation

52

III.1 Introduction

 In this experimental chapter, we will dive more into our NMP toward an automatic network

management system. After providing the technical requirements and the development

methodology, the following sections give a detailed explanation regarding the application

development of NMP, because it is addressed to perform the most of the network administration

tasks easily, as detailed in the PART B of the previous chapter. Also to know how it easy and

flexible can get an automation process based on Netmiko library.

 The auxiliary and stages functions development of the NMP are well explained in two

separated section, including the workflow and Python program step by step followed by a proof

discussion.

 In the testing section, we will use GNS3 that is one of the most popular choices in network

emulation, for building a real case of campus network topology to test our automation platform on.

We will follow this experiment by discussing the benefits, drawbacks and limitations of our

platform, and finally we propose a future enhancements and perspectives.

III.2 Technical Requirements

 The following technical requirement has been used in this chapter:

 A laptop with Ubuntu distribution v18. 04: The best thing with it, is we don't need to

use nested virtualization when we install GNS3 which means get a higher performance,

also, it is very flexible when it comes into programming and application development.

 GNS3 v2.2.5: Open source computer software for network emulation.

 Sublime Text3 v3.2.2: Sophisticated text editor for code, markup and prose, which has a

slick user interface, extraordinary features, and good performance [56].

III.3 Development Methodology

 The management platform development method was based on an agile methodology as we

can see in Figure III.1, in other words starting with some code as we saw it in the second chapter,

and then improve it again to accomplish more, that’s helpful in the continuous iteration and the

ongoing testing directly in the network built it previously in GNS3, to get the logic behind the

Chapter III: Network Management Platform for Network Automation

53

manual methods, and poured it into the program script, at the same time we improved it as much

as possible to get a comprehensive work regarding the administration's tasks mentioned in the

second chapter.

Figure III. 1: Example of developing CSV Reporting function using agile methodology.

 These methods provide agility between different stages, starting from getting logical

workflows and integrated features, passing by setting up software requirements, designing ideas,

developing, and ending up by testing and getting feedback about the program which gives the

chance again for repeating the same life cycle, this method is suitable for those kinds of

experimentation mode, as long as the network administrator is the same who iterate and develop

this software.

III.4 NMP Auxiliary Functions Development

 The platform development passed through several steps before getting its last shape. To

organize the work, we determined the development methodology shown above, and we were in

each time approached the network manual interaction with the automated processes.

 Netmiko library provides and facilitates access to the devices, since we divided the platform

into several stages, the connection using SSH should be provided every time, so we separated this

function into a single unit to facilitate the development organization, there are also two other units

Network admin Tasks

Python Coding Code execution

Python Modules; Netmiko,

CSV, time …etc.

Prototype Design; 4 Stages

and tasks.

Multithreading,

TextFSM, … etc.

Chapter III: Network Management Platform for Network Automation

54

that we called auxiliary functions which we will explain their development below, each one has a

specific role in the main program and the platform stages.

III.4.1 Performing SSH Connection

 In the first attempts, we noticed the need of an SSH connection in each stage depending on

the input devices information, which are changeable in each network element, so this option was

separated as a standard function to be called up when it needed. In the first script shown in Figure

III.2, we defined a function called ssh_connection (), that take as parameter the device

information’s in order to fill in the info_device variable dictionary, the IP addresses and the

hostnames of the network devices as values. The type of this parameter is a list that is taken from

each line in a CSV file shown in Figure III.3, which will be opened on the script once we run the

program, we imported the CSV library to get this functionality.

Figure III. 2: The source code of the SSH connection function.

 As we referred before, this key/value pairs placed in the dictionary are necessary for the

ConnectHandler module, which is responsible for creating the SSH session in the platform. To

perform this, we must import this module from Netmiko library. Based on the device type value, it

will choose the accurate Netmiko class specified for Cisco IOS to work with, to fits all the

requirements it must take also the IP address, the hostname, the username, and the password values

Chapter III: Network Management Platform for Network Automation

55

to specify exactly the targeted devices. In our case, we used a unified username and password that

will be prompted in the first time when we run the script for taking advantage also of the platform

security using getpass library, if it is not necessary to unify them, we can just add the specific

username and password of each device in the previous CSV file.

Figure III. 3: CSV file contains needed devices information.

 After we passed the dictionary in the ConnectHandler () with two stars, we implemented

some errors handling using a try/except block, which will allow us to catch errors quickly, so we

will try to connect into the devices and based on some giving exception, we will print a simple

statement that will describe the problem rather than breaking the whole program. In the end, and if

no errors exist, this script will return the connection that will be necessary on other sections on this

platform.

III.4.2 Getting Devices Version

 We knew that we have to interact with different devices types to get an integrated network

topology, whereas each type has a specifications that works based on it in term of services and

functionalities, so in some cases, switches commands line must be different form routers, this is

why we must build the second auxiliary independent function to help in defining these network

devices types and set it to the platform at any place where it called, in order to know which direction

it should go to and send instructions.

 check_version () shown in Figure III.4, is a function that takes connections as a parameter

from the previous SSH function, then gives it a standard list of versions that are specific to each

type of device, in our experimented GNS3 topology, we used two versions, one for the switch and

the other for the router, then from the connection providing as a parameter we send show version

Chapter III: Network Management Platform for Network Automation

56

command applying the send_command () netmiko method, and stored the output in output_version

variable.

Figure III. 4: The source code of the check version function.

 For the python program to get the version we must loop over each item in the previous list

and try to catch it using the pre-built in python find () method, with keeping track of the declared

integer if it is great than one or not, at the end, this function will return the software version of each

network device based on a given list.

III.4.3 Getting Devices Information as Inputs

 The third auxiliary function as we can see it in Figure III.5, is about manually store devices

information in the program, rather than getting them from the previous CSV file, as we referred

before, this platform must interact with some network devices in some cases because of the

different configuration nature from a set to another. It could be a single network device.

 device_input () is a function with no parameter that returns an array containing network

devices information, the hostname and the IP address previously specified for it, each list from this

array present a single network device, the trick with this is to prompting the user for it and store

them in the input_list while we do not enter n to break the truth of the while loop, in each loop the

script will append the ip and the name in input_list and then will append this last to the devices_list

variable (lists within a list).

Chapter III: Network Management Platform for Network Automation

57

Figure III. 5: The source code of device input function.

 These three auxiliary functions will provide the SSH connection between the platform stages

function and network elements, also, it helps to get devices type, and specific devices to interact

with.

III.5 NMP Stages Development

 In this section, we will explain the four main stages in the proposed NMP, and how those

previous auxiliary functions can affect them in order to get administrative tasks done automatically.

III.5.1 Network Configuration

 When it comes to the configuration tasks in the network infrastructure, we have to select the

first option from the network management platform main menu which is simply NETWORK

CONFIGURATION, this stage offers an automated operation of pushing command lines via an

SSH channel to the network appliances, also it has a unique main function which is configuration

() show in Figure III.6, that is taken the devices information as a parameter, this function shared

between the two options under this stage. The main program will call this single function with just

different located input and employing, the first option will take input from the previous CSV file

Chapter III: Network Management Platform for Network Automation

58

to address all existed devices, and the second from the data stored manually using device_input ()

auxiliary function to address specific devices.

Figure III. 6: The source code of the configuration function.

 As we can see the flowchart in the Figure III.7, once we select the first option, the system

will give us three choices based on the intended devices for the automation process, whatever the

first or the second choice, the program will loop over each device given as input (from the CSV

file or prompted insertion) and pass the configuration () main function to perform the desired

purpose on each network device. This function shown in Figure III.6, will call the preceding

ssh_connection () function to perform the communication to the network devices and store this on

the inserted connection variable, based on it, we will call also the check_version () to define the

version of each one on the platform, if the software version equal to vios_l2-ADVENTERPRISEK9

M which indicate that it is a switch, we will directly pass the switch config file on the set_config_set

() Netmiko methods which will automatically send the configuration commands down to the

previous open SSH channel. If it's equal to VIOS-ADVENTERPRISEK9-M which indicate that it is

a router, we will directly pass the router config file in the same preceding Netmiko methods.

 As we mention in the second chapter, the send_config_set () methods, can simply send

multiple commands to the networking devices from a text file located along as with the python file

in the same repository. Finally, and after we implement this, we must close the connection in a

secure manner, using disconnect () Netmiko methods.

Chapter III: Network Management Platform for Network Automation

59

Figure III. 7: Network configuration stage flowchart.

III.5.2 Network Verification and Test Connection

 Usually, when we have finished the process of changing and updating the configuration, we

must verify if what we did was done successfully or not, hence, sometimes we send command lines

from the file down to the devices but in one way or another an error may occur, devices may not

recognize them, or there is a written error in the command itself … etc. Also, what we need to do

is to test the connection and the reachability between the network appliances, a specific group or

all networking devices, and this depends on the implementation policies, for that we created the

NETWORK VERIFICATION stage. If in the previous stage, we dealt with some or all of the

devices, at this stage the same order should be done, just like we see in the earlier and these two

options of verification, the same input methods, a for loop over each device, and shared the same

verification () function as we can see in the flowchart in the Figure III.8.

Chapter III: Network Management Platform for Network Automation

60

Figure III. 8: Network verification and testing connection stage flowchart.

 Once we choose one of the verification options, the platform will call the appropriate

function and apply it over all devices given as input, the verification () function will call two

auxiliary functions, ssh_connection () and check_version () to do the required, a conditional

statement was passed to detect the device type in order to select the appropriate configuration file

for the routers and switches, after that, we send show running-config command down to the selected

devices applying the send_commend () Netmiko methods, where we stored the output in

running_config string variable, at this point a for loop over each command line on the picked

configuration file depending on the device type was used to compare it by the running_config

variable, if all found, the program will print out a successful operation, if not, the program will

print out in the terminal this specific command line notifying the user that it does not exist. As

usual, SSH channel must be closed in each device using disconnect (). The source code of this

Chapter III: Network Management Platform for Network Automation

61

function is available in GitHub (https://github.com/AbdelhakBoumezrag97/NMP_Project).

 As we said before, this stage offers other important option, which is the operation of testing

the connectivity over the network, under this option the platform will execute an independent

function which is test_connection () as we can see in the previous flowchart in Figure III.8, Here,

and unlike the other function, this one will take as parameter three variables, the sources IP address,

the destinations IP address, and the connection and we must manually give each IP to the program

before calling it using the preceding device_input () auxiliary function, once we provide the source

IP (it can be more than one), a for loop over each device was applied to get in it using once again

the ssh_connection () auxiliary function, under all of this we must provide also the destination IP

manually (it can be more than one also), and we apply a for loop again on each destination device,

after that we call the test_connection () function shown its source code in the Figure III.9 to do the

desired.

Figure III. 9: The source code of test connection function.

 It is already known that in any accessibility test case we should use the ping command from

each network interface to another, and this what this function does using the send_command ()

Netmiko methods, from the source device we passing in it the command concatenated variable

between ping and the destination IP, after that we passed two standard possibilities in the check_list

variable in order to compare them by the output_ping using a for loop over each item in the list, so

if any items exist on the output_ping, immediately the connection between the source network

device and the destination is reachable, else this condition the connection will not be reachable.

Chapter III: Network Management Platform for Network Automation

62

III.5.3 Network Confirmation and Backups

 This stage was separated because it has the decision of confirming what we did before, so if

the verification process does not match the required need, we can come back to correcting and

validating from what we send to the network before, if it matches, we move directly to the

confirmation stage, this fully explains the presence of an independent save_config () Netmiko

methods. The stage has two option running two functions as we can see in the flowchart in Figure

III.11, the first option is about confirming changes over the network and it runs directly the

confirmation () function shown in Figure III.10 over each network device, it will call the

ssh_connection () for opening the SSH channel and applies Saves_config () method, that will be

send simply write memory down to all existing devices, after that it will directly disconnect.

Figure III. 10: The source code of confirmation and backups functions.

 If we need to extract backups from the network devices to conserve it, so we never lose

critical network data of the desired state. we just can improve network security by automating

backups and save it in our locale workstation, and this what backups () function under the second

option does for us illustrated in Figure III.10, it will be executed over each network device using,

as usual, a for loop and calls the ssh_connection () function again to open the channel and forward

Chapter III: Network Management Platform for Network Automation

63

a show running-config command using once again send_command () method, then, we stored the

output in a variable in order to extract it in an opened file, it gives a changeable name depending

on the device hostname using the prebuilt in Python three methods, which are: open (), write (),

and close (), then we have to disconnect the SSH channel down from each network device.

Figure III. 11: Network confirmation and backup Stage flowchart.

III.5.4 Check Network and Report Generation

 One of the tedious tasks that a network administrator does in his daily work is check, monitor,

and troubleshoot networking devices in order to keep it up in health, for that the last stage was

created to provide an automated way instead of the classic method, it has three options that

facilitates the checking of interfaces, VLANs, and routing protocols using three other functions

and they are as follows: check_intefaces (), check_vlan (), check_routing () as we can see in the

flowchart depicted in Figure III.12. Each function will be applied on each network device using a

for loop and the ssh_connection () to open the channel again, also, they send a bunch of show

commands which will fulfill the purpose for the case of the tasks mentioned in the beginning.

Chapter III: Network Management Platform for Network Automation

64

 Hence, if we decide to check interfaces the program will automatically send show interfaces,

show ip interface brief, and show version to all the network devices, and if we decide to check

routing protocol the program will automatically send show ip route, show ip ospf database, and

show ip ospf neighbor to all the network devices once again, and if choose the third option which

is checking VLAN, here, and after we check the version the program will send show vlan, and show

vtp status over only the switches because router does not run VLANs. We integrated TextFSM

templates (ntc_template) that we explained in the second chapter, the reason from that is picking

up from each output structured data some important information and stored in an arrays which will

help us to convert it into easy and readable spreadsheets and print them directly in the terminal

using tabulate () method from the imported tabulate library.

Figure III. 12: Checking network and report generation stage flowchart.

 The fourth option provides an automated workflow that will do the work of reports

Chapter III: Network Management Platform for Network Automation

65

generating and collecting data for us instead of logging into an application and running reports

every time, once we choose this option it will immediately run the fourth function that we call it

reporting () which will take advantage from the output of the previous three checking functions,

this function will open a CSV file which is the one of best way to store extracted data, and write

each list from the output preceding arrays in one line to reshape the previous spreadsheets using

writerow () method, also we can add standard information like the date, the time, and separate

sections by notes. At the end, we get one CSV file that contains all collected data and it will be

ready to read and check. The source code of these functions are available in GitHub

(https://github.com/AbdelhakBoumezrag97/NMP_Project).

III.5.5 Multithreading Integration

 we discussed before in the second chapter, that we can improve the speed in the execution

time using multithreading, we added this functionality in our platform by just importing “Thread”

module then we call it on each network device item under the for loop, passing the targeted function

which is configuration () in our example, and arguments to create each device thread individually,

then we append every single thread in an empty list of threads variable in order to store them, by

calling the start () methods that will start the execution of each thread instance, then a for loop must

apply on each object device to call the join () methods that will wait until the thread terminates

execution. We are setting up the time in order to calculate the time spent in running this part, Figure

III.13, show as the configuration function integrated with the threading functionality.

Figure III. 13: The configuration function integrated with threading functionality.

 In the coming sections, we are going to implement and test one by one the previous stages

of this management platform with at least one example, using threading, surely after building a

campus network use case in GNS3, and explore what's behind the result in term of performance

and efficiency in different corners.

Chapter III: Network Management Platform for Network Automation

66

III.6 Use Case Testing with NMP on GNS3

 The test operation of this platform was partial, meaning that when we get a separated code

part completed we get in the test directly on one or more network device as needed in GNS3 in

order to iterate and hide the development complexity, once we get the complete platform ready, we

built a real case network then we examined all the part and stages to see what it can add as values,

after discussing the results.

III.6.1 Environment Setup

 It is essential to have a testing environment that is as close as possible to the reality in order

to obtain realistic results when experimenting with the network management platform, so as we

mentioned in the introduction we used GNS3 emulator which is a tool for designing, testing and

troubleshooting complex networks, capable now also to connect to external networks and allowing

integration with virtual images or Docker Containers. It extremely helps in testing and developing

network automation software.

 After providing the requirements listed before we configured the environment to be ready for

the use, all what we need is to uploaded Cisco images, in our case we used an IOSv-15.6 (2) T

which is a VIRL image released for a Cisco router, and IOSvl2-15.2.1 which is an image released

for layer two Cisco switches. Cisco Virtual Internet Routing Lab or VIRL is a powerful technology,

easy to use, extensible network modeling and simulation environment, they are recommended for

using in GNS3 because they are much like real IOS [57]. Then we downloaded the Network

automation Docker container appliance from the GNS3 marketplace that can be seen in Figure

III.14, it is a lightweight, standalone, executable package of software that includes everything

needed to run an application, and it comes with python and some popular tools used for network

automation and programmability like Netmiko, NAPALM, and Ansible preinstalled.

Figure III. 14: The network automation appliance in GNS3 marketplace.

Chapter III: Network Management Platform for Network Automation

67

 In order to prove how we can successfully set a programmable test on the devices using the

network management platform, we created a use case network topology. The coming section well

explains the steps to build a simple campus network use case scenario with only CISCO IOS

devices routers and switches.

III.6.2 Network Topology Setup

 After we installed the network automation Docker Container in GNS3 that make the process

of testing very easy, we dragged to the work space, it acted as management controller in central

point, then we drag an Ethernet switch with the NAT node that allowed the Docker for getting an

IP address, also having internet connectivity from to local computer, because by default the NAT

node runs a DHCP server with a predefined pool in the 192.168.122.0/24 range. Figure III.15,

shows as these components.

Figure III. 15: Docker container connected to the NAT node on the workspace in GNS3

 When we started up the topology, we opened up the console from the Docker container once

it booted up, then we set it up to use DHCP, so nano /etc/network/interfaces command was passed

into the console in order to edit this file and uncomment the last two lines then saved as we can see

in Figure III.16.

Chapter III: Network Management Platform for Network Automation

68

Figure III. 16: Configuring the Docker network interface using Nano editor.

 After that, we reloaded the Docker node, to allow the DHCP client on it for sending discover

messages to the NAT node that will offer an IP address, as we can see in Figure III.17. To confirm

ifconfig command must be passed in the console.

Figure III. 17: Docker obtained an IP address from DHCP. Confirm using Ifconfig.

 As we mentioned above, the devices we used to automate and experiment on them is Cisco

VIRL, IOSvL2 switches and Cisco IOSv routers, so we added six switches S1 to S6, and one edge

Chapter III: Network Management Platform for Network Automation

69

router R1 on the previous topology, and connecting all of the nodes by virtual cabling available on

GNS3 in a very similar way to the hierarchical Cisco design campus networks, we assumed that

we were using an out-of-band management network which mean separating the management traffic

from the production traffic, the problem in in-band management network is that we were had

issues where sometimes spanning tree and other protocols blocked links and stopped the script

communicating with network devices, so in this topology shown in Figure III.18, the downlinks of

S1 to the other switches are part of management network and other links between the other devices

are data network, we were assumed that S2 and S3 are core switches, and that S4 to S6 are access

switches, also we placed R1 as an edge router. Figure III.18, depicts the entire topology.

Figure III. 18: The experimented campus network on GNS3.

 Now, after we had a linked network we pushed some commands to get initial settings on the

devices, so on each device in this network we created management interface, and specify an IP

address in the same network subnet of the management controller to reach out the connectivity

from it, also enabling SSH client to accept remote connection via the terminal and set credentials

information. The following configuration steps were used in all of the devices:

1- Configuring management interfaces and set IP addresses:

Chapter III: Network Management Platform for Network Automation

70

a- On the switches:

S1 (config) #interface vlan1

S1 (config-if) #ip address 192.168.122.201 255.255.255.0

S1 (config-if) #no shutdown

The same commands passed, but the IP address schema used is the following:

 S2: 192.168.122.202

 S3: 192.168.122.203

 S4: 192.168.122.204

 S5: 192.168.122.205

 S6: 192.168.122.206

b- On the router:

R1 (config) #interface Gigabit-Ethernet 0/0

R1 (config-if) #ip address 192.168.122.211 255.255.255.0

R1 (config-if) #no shutdown

2- Configuring credential information used for accessing these devices:

S (config) #username admin privilege 15 password 2020

S (config) #enable password cisco

S (config) #hostname [from 1 to 6]

3- Set an enable password in all devices:

S (config) #enables password cisco

4- Set up an SSH client on all devices:

S (config)#ip domain-name cisco.com

S (config) #crypto key generate rsa

S (config) #ip ssh time-out 120

S (config) #line vty 0 4

S (config-line) #login local

S (config-line) #transport input all

Chapter III: Network Management Platform for Network Automation

71

 Once we did that, we had to verify the accessibility between the management controller and

all of the devices on the network topology using SSH protocol, the command ssh admin@IP-add

was used for testing remote accessing from the Docker terminal, only generating the proper output

if the connection to the device is established. Figure III.19, illustrate to us an example of S4 switch.

Figure III. 19: Example of verifying remote access on S2, using SSH protocol.

 It may appear another window asking us to confirm by yes, which is normal, or a window

that warns us when we change our credential information or we updated the SSH key and says that:

REMOTE HOST IDENTIFICATION HAS CHANGED! In this case we just use ssh-keygen to delete

the invalid key and generate another using this command:

- ssh-keygen -R "hostname or IP"

 After confirming a successful login on all devices, we passed directly into testing the

different stages with evaluation and results analyzing.

III.6.3 Use Case Testing and Results

 As we referred before, we built this platform to deal with files from the local laptop alongside

the Python file, in Figure III.20, we can see three essential files, the one with a CSV extension is

constant and it is similar to the one in Figure III.2, it contains devices information from the IP

Chapter III: Network Management Platform for Network Automation

72

address to the host name.

Figure III. 20: Needed files to execute the NMP in local laptop

 The two other text file contain all commands line that we will pushed as configuration, one

for the switches and one for the routers, it is changeable based on what we need to configure on the

day task or in one round, the following table presents what we send as commands over the network

in this test, we assumed that those would achieve the desired network state, as example we choose

to configure IP addresses on the router interfaces, and setting up the NAT service between the

outside and the inside interfaces with the default route to the external IP address, in the switches

also we setting up services like NTP, switch port trunk, and OSPF routing protocol, the complete

configuration in these two files shown in Table III.1.

Table III. 1: Configuration files content on the test case.

Switch Config File Router Config File

ip name-server 8.8.8.8

ntp update-calendar

clock timezone PST -8

int range g0/1 - 2

 switchport trunk encapsulation dot1q

 switchport mode trunk

 switchport nonegotiate

 switchport trunk allowed vlan all

int range g1/0 - 3

 switchport trunk encapsulation dot1q

 switchport mode trunk

 switchport nonegotiate

 switchport trunk allowed vlan all

interface GigabitEthernet0/2

 ip address 10.10.10.2 255.0.0.0

 no shutdown

interface GigabitEthernet0/3

 ip address 11.10.10.2 255.0.0.0

 no shutdown

interface GigabitEthernet0/1

 ip address 192.168.1.42 255.255.255.0

 no shutdown

 ip nat outside

interface GigabitEthernet0/0

 ip nat inside

 ip nat inside source list 1 interface

GigabitEthernet0/1 overload

 access-list 1 permit any

Chapter III: Network Management Platform for Network Automation

73

ip route 0.0.0.0 0.0.0.0 192.168.1.0

ip name-server 8.8.8.8

router ospf 100

 network 10.0.0.0 0.255.255.255 area 0

 network 11.0.0.0 0.255.255.255 area 0

 Now, after we prepared the configurations files in the correct order, we ran the python file,

then we passed the username and password of the network administrator in the terminal, that are

identical for accessing network devices from the SSH client, we faced the network management

platform in the terminal window as Figure II.9 depicts, just by up and down selection using the

keyboard and hitting enter, we got sub-menu for each stage with options shown in the Figure III.21.

Figure III. 21: Sub-menus of the NMP stages shown in the terminal.

1- Network Configuration Stage Testing:

a- Config all devices option:

 In the configuration stage testing, we firstly selected config all devices option in order to loop

over each device exist in the CSV file from the main program, and run the configuration () function,

Network Configuration

Stage

Network Verification Stage

Network Confirmation Stage Check Network and Reporting Stage

Chapter III: Network Management Platform for Network Automation

74

with setting up the time to calculate the duration, the result would be the output in the terminal

window as we can see in Figure III.22, that illustrate element by element the progress of the

execution, expressed by print statements in a nice view using Colorama module, The first capture

in the left represents the result of the configuration process over six devices without multithreading

integration. The capture on the right depicts the same process, but with parallel execution using

multithreading integration.

Figure III. 22: Configuration stage, execution progress, with and without multithreading.

 The output on the left indicates the sequential assignment, which means going to each device

CLI individually after providing SSH channel, then running the associated config_file depending

on the device type in a single thread. The total duration was 46 seconds with an average of 7.67

seconds per device, which is good comparing with the manual configuration, but it will be very

inefficient when our complexity and scalability grows.

 The output on the right indicate the parallel assignment, which means going to all devices

CLI at once, then running the associated config_file in a multiple thread. The total duration was

9.5 seconds with an average of 1.6 seconds per device, which is good comparing with the previous

state.

Without Multithreading With Multithreading

Chapter III: Network Management Platform for Network Automation

75

2- Network Verification Stage Testing:

a- Verify all devices option:

 In this test, verify all devices option has been selected to verify if the configuration done

correctly using the verification () function, which will take the previous inputted router and switch

configuration files and compare them with the running-config in network devices, in the figure

III.23, we can see the output in the terminal capturing the verification process for R1 and S1.

Figure III. 23: Execution progress of Verify all devices option.

 The output indicates that the previous configuration stage is not correct in R1 and S1 as well,

actually, it is not correct in all network devices from the code logic perspective. After checking the

configuration files again, we noticed that no shutdown command cannot be found in the running-

config by default, but it was passing correctly through each CLI, also, when we send command

shortcuts, like int range g0/1 – 2, which stands for interface range GigabitEthernet 0/1 -2. The

logic of the code takes each command-line exists in the config-files as a string, and then searches

for it in the running-config returned to the program as a block of string as well, hence, any fault

syntax in those commands can make those kinds of errors that appear in the terminal, even if it was

understandable for the CLI and passed as correct command. In this case, we must add exceptions

to the verification () function to skip those few commands and errors.

Chapter III: Network Management Platform for Network Automation

76

b- Test connection option:

 In this test, test connection option has been selected, to test the connectivity between

network devices, we gave the required source and destination IP addresses to the platform, using

device_input () auxiliary function, and then applying the main test_ connection () function over

them, just like we see in the Figure III.24 and Figure III.25.

Figure III. 24: Manually entering Source and destination IPs.

 The capture depicts that we entered two sources IP address and hostname; R1 and S1, and

three destinations IP address and hostname; S4, S5, and S10 (notice that S10 does not exist on the

topology, we entered it just to check the validity of the code). Once we enter n for no more devices

we get this terminal window shown in the Figure III.25.

Figure III. 25: Testing test connection process and the output result.

Chapter III: Network Management Platform for Network Automation

77

 After the ssh_connection () function was implemented over each source IP, the program sent

ping statement from it to the destination devices. The output illustrates that the connectivity from

R1 to S4 and S5, was reachable, and from R1 to S10 was not reachable which make sense as long

as does not exist on the topology.

Note: The test of the two options under the previous stages, Config and Verify specific devices

was passed successfully with the same steps, the only difference was with integrating device_input

() function rather than taking it from the CSV file, to interact with only those entered devices.

Figure III. 26: Entering device information manually for specific device interaction.

3- Network Confirmation Stage Testing:

a- Confirmation option:

 In the confirmation stage testing, we firstly selected the confirmation option, and we directly

got this output shown is the Figure III.27.

 As we said before, this option is about running the confirmation () function over each

network device on the topology, as the figure depicts, R1, and S1 are copying their running-config

to the startup-config using write memory command successfully.

Chapter III: Network Management Platform for Network Automation

78

Figure III. 27: Testing the confirmation option and the terminal output.

b- Backups option:

 Secondly, we have chosen backups option, and we directly got this output shown in the

local directory and in the terminal as we can see in the Figure III.28.

Figure III. 28: Testing backups option and the output in the terminal and in local directory.

 The backups () function generate automatically six configuration backup text files, for the

safety in which we assumed that they were achieved the desired state of the network topology,

stored in the local directory alongside with the NMP python file.

Chapter III: Network Management Platform for Network Automation

79

4- Check Network Stage Testing:

a- Check interface, routing, VLAN options:

 In this test, these options; checking interfaces, routing and VLAN of the fourth stage were

selected, then we got successively those three spreadsheets of network devices contains a very

useful information and statistics when it comes to the monitoring and troubleshooting process,

presented in Figure III.29, 30, 31. Each option ran its own function integrated with TextFSM

templates (ntc_template).

 In the first spreadsheet, we’ve got information about each interface on each device on the

topology, the interface name, IP address, protocol, status, uptime, in and out packets, in and out

errors. All are brief and organized key information.

Figure III. 29: Check interfaces option testing and the output.

 In the check routing option output shown in Figure III.30, we’ve got information about

routing protocol implemented on the topology, in this case we have OSPF up and running, this

information modeled in two separated spreadsheets, the fist is about routing table, and the second

is for OSPF database.

Chapter III: Network Management Platform for Network Automation

80

Figure III. 30: Check routing option testing for OSPF protocol and the output.

 The last checking was concerned about VLAN, specific only for the switches, as we can see

in the spreadsheet depicted in Figure III.31, we’ve got information about the state of each VLAN

on each switch, like the VLAN name, ID, and all interfaces associated with it.

Figure III. 31: Check VLAN testing and output.

Chapter III: Network Management Platform for Network Automation

81

b- CSV reporting option:

 Once we selected this last option, we’ve got the Global_report.csv file in the local directory,

and indications about the execution progress in the terminal, as we can see in Figure III.32, after

the reporting () function done form the execution, we opened the output file using Excel, which we

depicted in Figure III.33.

Figure III. 32: CSV report output in local laptop and in the terminal.

 As we mention before, this option is based on the execution outputs of the previous function;

Chek_interface (), Check_routing (), and check_vlan (), in which this option function stored the

previous spreadsheet on separated CSV file successively, with adding some information like the

time and the spreadsheet names.

Figure III. 33: Global report spreadsheet opened with Excel .

 To be sure that the previous instructions from the NMP were implemented successfully on

each network device, we opened the console after each execution and we noticed the Syslog

messages indicates that the admin was connected in a specific time, as Figure III.34 illustrate. As

well as expected changes on the devices, verified using show commands with the normal way.

Chapter III: Network Management Platform for Network Automation

82

Figure III.35, depicts the output of show ip interface brief on the CLI of R1 as an example for

verifying if the IP addresses were assigned successfully from the configuration stage.

Figure III. 34: Syslog message indicates the connection between R1 and the admin.

Figure III. 35: The output of show ip interface brief after executing the configuration stage.

III.7 Discussion

 Netmiko module provided a lot of prebuilt mechanisms and methods that interface with the

CLIs programmatically. As the results indicate, it facilitated the SSH communication and sending

instructions from the management platform program down to the Cisco network elements, with the

ability of handling errors. The NMP are divided into several dependent functions to ensure

reusability. The NMP execution time are vary based on the numbers of instructions and calculation

on the functions, generally it is highly fast comparing with the manual procedure, especially when

executing in multithreads fashion. TextFSM also helps in retrieving essential data easily back from

the CLI output by providing template for structuring data of show commands. The stages order, (i)

Configuration, (ii) Verification, (iii) Confirmation, (iiii) Checking, and reporting, is the same when

we interact using the classical methods.

Chapter III: Network Management Platform for Network Automation

83

III.7.1 Benefits, Drawbacks and limitations

 The following benefits are noticed in this use case testing with the management platform:

 It covers most of the network administration tasks.

 Ease of using and selecting stages of from the UI menu.

 The platform reduces human errors that slow down network performance.

 Relatively Abstracted from the command line interface outputs.

 Centralized workflows and more network visibility.

 It is super-fast and can quickly done lot of needs.

 Decrease the effort and manual intervention.

 Reusable, extensible and open for integration and extending capabilities.

 Executing major stages and tasks separately.

 Solution for operational expenses saving.

 Like any software, the NMP has also a set of drawbacks and limitation remarked from the

execution process.

 The lack of repetitive commands in the same configuration file.

 The lack of the unstructured data back from the CLI (show commands that does not has

TextFSM template yet).

 No idempotency and validating for the desired states yet.

 Does not respond to network events and notification yet.

 Some state of the CLI output can be changing which can break the code execution when

get in data parsing.

III.7.2 Future works

 There are many possibilities to proposed as future works to enhance performance, since we

produced this platform for extensibility and continuous development in mind, some of which are

derived and relevant to the drawbacks and limitations that are referred to previously. Those

proposed future works are as follow:

 Adding Jinja templating language for avoiding repetitive commands in the same config

Chapter III: Network Management Platform for Network Automation

84

files and to focusing only on changeable values.

 Building more TextFSM templates to avoided parsing raw text.

 Performing mechanisms to perform events driven.

 Adding more security enhancements; encrypting sensitive data.

 Adding support for REST and NETCONF device APIs by integrating request and

ncclient modules.

 Adding support for other network devices vendors; juniper, Arista …etc.

 Integrating web application frameworks like Django to provide a nice GUI Dashboard.

 Integration with database applications to store different information; credentials, IP

addresses, backups …etc.

III.8 Conclusion

 This chapter demonstrates the competency of network automation using the primary intended

management interface (CLI) on network devices, and how it useful when creating predefined code

based on Python to eliminate the need for following long management and configuration steps.

 The proposed Network Management Platform uses the Netmiko library that enables the SSH

connection between the application Python file and the CLIs on network devices. The NMP consist

of four main stages that match the classical network management tasks order, under each stage,

we’ve got options that execute various functions which then send various instructions to Cisco IOS

network devices in our example, relevant to the configuration process and other administrative

tasks, as verification, backups aggregation, checking the network and reporting in less time and

human effort. After we explained the workflow of each function and placing some code source of

some of them, then passing through the test case of each task successfully on the GNS3 network

topology, and based on the noticed outputs, we can conclude that the NMP has proven its value

and the good performance in the network through a number of advantages. The NMP ensures

efficiency, reusability, extensibility, scalability, and ease of using it over the network using just the

CLI and SSH. The emerged drawbacks and limitations that can be improved by adding the

suggested enhancements. The complete project and the Python code are available on my GitHub

page (https://github.com/AbdelhakBoumezrag97/NMP_Project).

GENERAL CONCLUSION

General Conclusion

86

General Conclusion

 This work proved the value of network automation and programmability over the network

infrastructure, especially with the continuous increase in the number of devices and their associated

configurations. Every mentioned automation approach, has a mechanism that aims to simplify the

administration tasks difficulties involved in the manual network management, which can be

implemented depending on what can the network devices support. The CLI-based types, must

respond to the dynamic changing due to the emerging of other programmability procedures that try

to eliminate definitely the vendor-dependency as SDN and the idea of commanding the network

using a controller, and exercising programmatically the data path via APIs like OpenFlow, in order

to have more visibility and abstracting the low-level interactions. Network automation is very

possible with the CLIs to configure and operate the network.

 The strength of using Python in the networking context is that it is not bound by someone

else pre-built framework as Ansible, we can choose libraries according to needed desires and we

can extend capabilities as much as possible. Netmiko facilitates the SSH protocol establishment

between the Python program and network devices, gives also a set of methods that can send

instructions down to the network devices CLIs easily. In addition, we can easily parse string output

data and pulling useful information using TextFSM module and ntc_template. The execution time

are essential especially when the program going to scale, for this we introduce the idea of parallel

execution as an added value using the threading module.

 Our Network Management Platform (NMP) is a super simple user interface based network

automation application, developed using Python, it demonstrated his efficiency in the previous test

case on GNS3 over vendor-specific which is Cisco IOS switches and routers, it uses the Netmiko

package as the primary module with other modules for enhancements and the terminal interface

design as simple_term_menu. We have covered each aspect from the design to the development

process ending by the examination in the experimental part. the NMP consist of four stages run

many functions that match the classical management order. these stages are network configuration,

network verification, network confirmation, as well as the checking and CSV reporting, it has many

benefits and drawbacks that can give a regular evaluation, some of these drawbacks can be

eliminated in the journey of integrations that we mentioned in the future work section. this work

and this Platform fulfill the project objectives of avoiding the manual configuration interaction over

the traditional network devices and its related problems.

REFERENCES

References

88

References

[1] J. A. Alex, NETWORK AUTOMATION USING PYTHON 3, 2018.

[2] Cisco Inc, "What Is Network Automation?," Cisco, [Online]. Available:

https://www.cisco.com/c/en/us/solutions/automation/network-automation.html. [Accessed August

2020].

[3] T. Ryan and G. Jason, Programming and Automating Cisco Networks, USA: Cisco Press, 2016.

[4] A. W. Rheza and R. R. Nur, "PENGEMBANGAN APLIKASI OTOMATISASI ADMINISTRASI

JARINGAN BERBASIS WEBSITE MENGGUNAKAN BAHASA PEMROGRAMAN PYTHON,"

Journal of Mechanical Engineering, Electrical and Computer Science, vol. 10, no. 2, pp. 741-752,

2019.

[5] A. Ratan, E. Chou, P. Kathiravelu and D. M. O. F. Sarker, Python Network Programming, UK: Packt

Publishing, 2019.

[6] F. Xenofon, K. M. Mahesh and K. Kimon, "Software Defined Networking Concepts," in Software

Defined Mobile Networks (SDMN): Beyond LTE Network Architecture, First Edition. , John Wiley &

Sons, Ltd., 2015, pp. 21-44.

[7] K. Hyojoon and F. Nick, "Improving network management with software defined networking," IEEE

Communications Magazine, vol. 51, no. 2, pp. 114-119, 2013.

[8] M. Paul, B. Titus, C. Radu and S. Florin, "Network Automation and Abstraction using Python

Programming Methods," MACRo, vol. 2, no. 1, pp. 95-103, 2017.

[9] U. Brian and K. Gary, Software Defined Networking For Dummies, New Jersey: John Wiley & Sons,

Inc., 2015.

[10] O. WENDELL, CCNA 200-301 Official Cert Guide, Volume 2, San Jose, CA: Cisco Press, 2020.

[11] F. Nick, R. Jennifer and Z. Ellen, "The Road to SDN: An Intellectual History of Programmable

Networks," ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 87-98, 2014.

[12] K. Diego, M. V. R. Fernando, V. Paulo, E. R. Christian, A. Siamak and U. Steve, "Software-Defined

Networking: A comprehensive survey.," Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2014.

[13] G. Dewang and P. Levi, "A Centralized Network Management Application for Academia and Small

Business Networks," Information Technology in Industry Journal, vol. 6, no. 3, pp. 1-10, 2018.

References

89

[14] E. Salib and J. Lester, "Hands-on Labs and Tools for Teaching Software Defined Network (SDN) to

Undergraduates.," in American Society for Engineering Education, Salt Lake city, 2018.

[15] J. Manar, S. Taranpreet, S. Abdallah, RasoolAsal and L. Yiming, "Software-Defined Networking:

State of the Art and Research Challenges.," Computer Networks, vol. 72, pp. 74-98, 2014.

[16] Open Networking Foundation, "Software-Defined Networking: The New Norm for Networks," ONF

ONF White Paper, CA, 2012.

[17] A. Siamak, Software Defined Networking with OpenFlow, Packt Publishing, 2013.

[18] M. Nick, A. Tom, B. Hari, P. Guru, P. Larry, R. Jennifer, S. Scott and T. Jonathan, "OpenFlow:

Enabling Innovation in Campus Networks," ACM SIGCOMM Computer Communication Review, vol.

38, no. 2, pp. 69-74, 2008.

[19] W. Braun and M. Michael, "Software-defined networking using OpenFlow: Protocols, applications

and architectural design choices," Future Internet , vol. 6, no. 2, pp. 302-336, 2014.

[20] C. Ching-Hao and D. Y. D. Lin, "OpenFlow Version Roadmap," pp. 1-15, 2015.

[21] A. Yashi and K. Uma, "Software Defined Networking: Basic Architecture & Its Uses In Enterprises,"

in International Conference on "Computing: Communication, Network and Security”, 2018.

[22] E. Jason, "Network automation with Ansible," O’Reilly Media, Inc, USA, 2016.

[23] G. Jason, H. Roddie and V. Srilatha, Cisco Software-Defined Access, Cisco Press, 2020.

[24] Cisco Public, "Cisco DNA Center Solution Overview," 9 July 2020. [Online]. Available:

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-

dna-center-so-cte-en.html. [Accessed August 2020].

[25] P. Hank, Writer, Configuration Management and the Network, A Network Programmability Basics

Presentation. [Performance]. Cisco DevNet, 2017.

[26] E. Jason, S. L. Scott and O. Matt, Network Programmability and Automation, Skills for the Next-

Generation Network Engineer, USA: O’Reilly Media, Inc, 2018.

[27] O. Karim, Network Automation Cookbook, UK: Packt Publishing Ltd., 2020.

[28] B. Kyle and D. Kevin, Writers, Ansible Network Automation. [Performance]. Red Hat, Inc, 2018.

[29] Red Hat, Inc, "Ansible for Network Automation, Documentaion," Red Hat, Inc, 2019. [Online].

[Accessed August 2020].

References

90

[30] C. Sean and B. Andrius, Writers, What's new with Ansible Network. [Performance]. Red Hat, Inc ;

Cisco DevNet, Inc.

[31] D. Gerald, Writer, Network Resource Modules. [Performance]. Red Hat, Inc.

[32] P. Hank, Writer, APIs are Everywhere...but what are they?, A Network Programmability Basics

Presentation. [Performance]. Cisco Devnet, 2017.

[33] "REST API Tutorial," [Online]. Available: https://restfulapi.net/. [Accessed August 2020].

[34] E. Brad, G. R. Ramiro, H. David and G. Jason, CCNP and CCIE Enterprise Core ENCOR 350-401

Official Cert Guide, USA: Cisco Press, 2020.

[35] E. Jason and T. Roman, Writers, Model Driven Network Automation with IOS-XE. [Performance].

Cisco Public, 2017.

[36] P. Hank, Writer, REST APIs Part 1: HTTP is for more than Web Browsing A Network

Programmability Basics Presentation. [Performance]. Cisco DevNet, 2017.

[37] Y. James and A. A. Imad, "An Empirical Study of the NETCONF Protocol," 2010 Sixth International

Conference on Networking and Services, IEEE, pp. 253-258, 2010.

[38] H. Brian, A. Watwe and S. Siddharth, "Protocol Efficiencies of NETCONF versus SNMP for

Configuration Management Functions," interdisciplinary Telecommunications at the U niversity of

Colorado, Boulder, pp. 1-13, 2011.

[39] R. Enns, M. Bjorklund, J. Schoenwaelder and A. Bierman, "Network Configuration Protocol

(NETCONF), RFC 6241," June 2011. [Online]. Available: https://tools.ietf.org/html/rfc6241.

[Accessed August 2020].

[40] C. Moberg, Writer, NETCONF by Example. [Performance]. IETF, 2015.

[41] B. Byrne, Writer, Deep Dive Into Model Driven, Programmability with NETCONF and YANG.

[Performance]. Cisco DevNet, 2018.

[42] Python Software Foundation, "ncclient 0.6.9," [Online]. Available: https://pypi.org/project/ncclient/.

[Accessed Augusts 2020].

[43] Marius-Ioan, CANDREA-BOZGA and C. Petrică, "Integrated Management of Transport and

Commutation Resources over the Network Layer," Journal of Military Technology, vol. 2, no. 1, pp.

1-4, 2019.

[44] PathSolutions , "What is Network Troubleshooting?," PathSolutions Inc, February 2019. [Online].

Available: https://www.pathsolutions.com/blog/what-is-network-troubleshooting. [Accessed August

2020].

References

91

[45] Python Software Foundation, "What is Python? Executive Summary," [Online]. Available:

https://www.python.org/doc/essays/blurb/. [Accessed August 2020].

[46] B. Aly, Hands-On Enterprise Automation with Python, UK: Packt Publishing Ltd., 2018.

[47] A. Ratan, E. Chou, P. Kathiravelu and D. M. O. F. Sarker, Python Network Programming, UK: Packt

Publishing Ltd, 2019.

[48] R. Abhishek, Practical Network Automation Second Edition, Uk: Packt Publishing Ltd., 2017.

[49] K. Byers, "Netmiko Library," 02 01 2019. [Online]. Available: https://pynet.twb-

tech.com/blog/automation/netmiko.html. [Accessed August 2020].

[50] C. Eric, Mastering Python Networking, Third Edition, UK: Packt Publishing Ltd, 2020.

[51] "Netmiko API Documentation," pdoc, [Online]. Available:

https://ktbyers.github.io/netmiko/docs/netmiko/base_connection.html. [Accessed Agust 2020].

[52] Google, "README.md TextFSM," Google, [Online]. Available: https://github.com/google/textfsm.

[Accessed August 2020].

[53] K. Byers, "Netmiko and TextFSM," 06 2018. [Online]. Available: https://pynet.twb-

tech.com/blog/automation/netmiko-textfsm.html. [Accessed August 2020].

[54] R. Abhishek, Practical Network Automation Leverage the power of Python and Ansible to optimize

your netwok, UK: Packt Publishing Ltd., 2017.

[55] IngoMeyer, "simple-term-menu 0.6.7," Python Foundation software, [Online]. Available:

https://pypi.org/project/simple-term-menu/. [Accessed August 2020].

[56] Sublime HQ Pty Ltd, [Online]. Available: https://www.sublimetext.com/. [Accessed August 2020].

[57] Cisco Inc, "Cisco Virtual Internet Routing Lab," [Online]. Available: http://virl.cisco.com/. [Accessed

August 2020].

	Cover Page
	Abstract (English and Arabic)
	Dedication
	Acknowledgments
	Table of Content
	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	CHAPTER I:
	NETWORK AUTOMATION AND PROGRAMMABILITY OVERVIEW
	I.1 Introduction
	I.2 Network Automation and Programmability Concept
	I.3 Software Defining Networking
	I.3.1 SDN Architecture
	I.3.2 OpenFlow

	I.4 Approaches and Use Cases.
	I.4.1 Controller-Based Network
	I.4.1.1 Cisco DNA Center

	I.4.2 Network Automation Frameworks
	I.4.2.1 Ansible

	I.4.3 Device APIs and Management Interfaces
	I.4.3.1 REST API
	I.4.3.2 NETCONF Protocol
	I.4.3.3 CLI

	I.5 Common Network Automation Tasks
	I.6 Conclusion

	CHAPTER II:
	MANAGEMENT INTERFACES APPROACH AND THE PROPOSED WORKFLOW FOR DEVELOPING AUTOMATION PLATFORM
	II.1 Introduction
	II.2 PART A
	II.2.1 Python for Network Automation
	II.2.1.1 Why python?

	II.2.2 CLI Based Interaction Libraries
	II.2.2.1 Netmiko
	II.2.2.2 TextFSM Integration

	II.2.3 Multithreading

	II.3 PART B
	II.3.1 The Proposed Network Management Platform

	II.4 Conclusion

	CHAPTER III:
	NETWORK MANAGEMENT PLATFORM FOR NETWORK AUTOMATION
	III.1 Introduction
	III.2 Technical Requirements
	III.3 Development Methodology
	III.4 NMP Auxiliary Functions Development
	III.4.1 Performing SSH Connection
	III.4.2 Getting Devices Version
	III.4.3 Getting Devices Information as Inputs

	III.5 NMP Stages Development
	III.5.1 Network Configuration
	III.5.2 Network Verification and Test Connection
	III.5.3 Network Confirmation and Backups
	III.5.4 Check Network and Report Generation
	III.5.5 Multithreading Integration

	III.6 Use Case Testing with NMP on GNS3
	III.6.1 Environment Setup
	III.6.2 Network Topology Setup
	III.6.3 Use Case Testing and Results

	III.7 Discussion
	III.7.1 Benefits, Drawbacks and limitations
	III.7.2 Future works

	III.8 Conclusion

	General Conclusion
	References

