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Introduction  

Energy is a fundamental input to economic activity. Modern energy services light up 

our homes and schools, fuel economic activity to produce and consume, provide comfort and 

mobility, pump water and contribute to health and well-being. Harnessing energy sources to 

replace manual and animal labour was the platform of the Industrial Revolution: a period of 

unprecedented economic and social development.  

The 20th century witnessed large increases in the global population, economic output 

and fossil fuel consumption. The gains from growth have been impressive for many people. Yet 

these gains have taken a toll on a range of environmental systems where unsustainable practices 

have dominated [1]. Continuing deterioration of natural resources could stress the ability to 

meet the needs of a growing population and undermine economic activity. Green growth could 

meet this challenge. Green growth is about fostering economic growth and development while 

ensuring that natural assets continue to provide the ecosystem services on which our well-being 

relies. To do this it must catalyze investment and innovation which will underpin sustained 

growth and give rise to new economic opportunities.  

The renewable resources include, but are not limited to, bioenergy, geothermal energy, 

hydropower, solar energy, ocean energy, and wind energy. According to the International 

Energy Agency's 2018 report [2], renewables saw the highest growth rate of any energy source 

(nuclear, gas, oil, coal, etc.) in 2017, meeting a quarter of global energy demand growth last 

year. 

Geothermal energy is considered among renewable energy resources that permits easy 

access for supplying low-degree thermal energy without harming the environment. It has been 

considered as a promising solution for space cooling and heating. Several ways of ground heat 

exchangers have been proposed and used in order to absorb/release heat from/in the ground. 

Earth to Air Heat Exchanger (EAHE) is one of the promising techniques. This system is made 

of long metallic, plastic or concrete pipes that are laid underground and are connected to the air 
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intake of buildings and houses. The air blown through the pipes, exchanges heat with the ground 

and gets heat/cool depending on the temperature difference between the air and the ground. The 

resulting warm/cold air is used to regulate the indoor temperature in order to satisfy the human 

comfort. This system requires low energy consumption.  

The transient simulation of thermal behavior of EAHEs is an important step in the design 

and optimization. Different analytical, semi-analytical and numerical method have been 

developed and used, in the literature, for simulate the performances of the EAHEs. The main 

contribution of this work is to evaluate the ability of different types of analytical/numerical 

methods to predict the thermal performance of EAHEs installed in local climates of Algeria 

(region of Biskra).  Five different methods have been implemented and validated in this study, 

namely as: ICS, ILS, FLS, GRBM and CFD models. The dissertation has been divided into four 

chapters organized as follows: 

Chapter 1. we will present a general overview of geothermal energy and a quick review 

of the most commonly used methods for studying analytically and numerically the EAHEs.  

Chapter 2. in the second chapter, the governing equations, the detailed formulation and 

available solutions corresponding of each model will be described.  

Chapter 3. consists of presenting the numerical modeling and implementation of the 

studied analytical, semi-analytical and CFD methods. 

Chapter 4. we will present and discuss the obtained analytical/numerical results, 

validation and the comparison.  

Finally, the main conclusions found in this study and the main recommendations 

relevant to the future work will ultimately be addressed towards the end of this thesis. 
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Overview and Literature Review 

1.1  Brief history of geothermal energy 

In tropical climates, air conditioning is widely employed not only for industrial 

production but also for the comfort of occupants. It can be achieved efficiently by vapor 

compression machines, but due to depletion of ozone layer by chlorofluorocarbons (CFCs) and 

the need to reduce high grade energy consumption; numerous alternative techniques are being 

currently explored. One such proposition is the EAHE that uses soil as the heat sink and air as 

the transfer medium for summer cooling and winter heating. When the warm air flows in the 

earth air pipes, heat is transferred from air to the earth. When the warm air flows in the earth 

air pipes, heat is transferred from air to the earth. As result, the air temperature at the outlet is 

lower/higher than the ambient temperature  [3, 4].  

The idea of using earth as a heat sink was known in ancient times. In about 3000 BC, 

Iranian architects used wind towers and underground air tunnels for passive cooling. In 19th 

Century Wilkonson designed a Barn; in order to cool the barn during summertime, he buried a 

500 ft underground passage. From the middle of the twentieth century, a number of 

investigators have studied the cooling potential of buried pipe. Since that time, a number of 

experimental and analytical studies of this technique have appeared in the literature. Goswami 

and Dhaliwal, they presented an analytical solution to the problem of transient heat transfer 

between the air and surrounding soil as the air is made to pass through a pipe buried 

underground. EAHE system is probably the most growing alternative renewable energy in the 

world. With increasing demand for energy savings in the recent years. A 10% increase has been 

seen in installations in about 30 countries over the last 10 years. Places like South Algeria where 

four-fifths of the land is desert which has a dry desert climate, where during summer maximum 

temperature rises to 45 °C and during winter temperature lower below 1 °C, the EAHE system 
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cannot be used all alone. Under this condition, EAHE system is made a conjunction with air 

conditioning system [3, 4].  

1.2  Definition of geothermal 

Geothermal energy can be described as the internal heat generation of the earth. 

Three methods of internal generation are common. The first is a result of the radioactive 

decay of elements within the earth’s crust, which release thermal energy. The second method 

of production is the conduction of thermal energy from depth within the earth, transporting 

through several layers to reach the surface. Additionally, there are several areas where direct 

channels bring molten rock and steam to the surface. These direct channels are known as high 

temperature geothermal and can be used for means of electrical generation. The last of the 

heat generation methods is solar radiation. The earth’s crust absorbs approximately 47% of 

the sun’s solar radiation, making it a very lucrative energy source. By some estimates, this 

low energy geothermal is 500 times more energy than all of mankind uses in a year  [5].  

1.3  Geothermal gradient  

The temperature of the rocks increases with depth; this is called the geothermal gradient. 

It varies according to the layers traversed. The average values are for the continental crust 3 °C 

/ 100 m and for the mantle 1 °C / 100 m. The geothermal gradient observed in the continental 

crust varies widely from one place to another, although the normal value in the order of 3 °C / 

100 m, nevertheless some regions record more than 100 °C / 100m as in Larderello in Italy, 

While others do not exceed 1 °C / 100 m as in Padua. The deepest oil drilling is the best way to 

account for the geothermal gradient. This gradient is estimated for each oil drilling using the 

drilling mud temperatures. 

The Algerian Sahara presents as a whole an average geothermal gradient at the order of 

4 °C / 100 m. In the northern part of the Sahara, the average geothermal gradient is 3 °C / 100 

m; this seems to be due to the effect of depth. A strong geothermal anomaly is well 

demonstrated in the western Sahara in the regions of Bechar, Beni Abbas and Timimoune. The 

gradient is more than 6 °C / 100m, it is probably due to the intense tectonics experienced 

by the western part of the Saharan platform during the Hercynian orogeny  as reported in the 

reference [6].  



Chapter 1. Overview and Literature Review 

6 

1.4  Type of geothermal systems 

Geothermal energy can be produced by drilling deep holes into the earth crust. Two 

systems are in use: open and closed. In the open system, the energy is produced by pumping 

cold water through one side of the reservoir; circulating it through hot fractured rock; and then 

collecting it in the other side, to be brought back to the surface. In the closed system, the energy 

is produced using a single borehole where cold water is pumped in one path and returned in 

another, using the same pipe. (Figure 1 shows a schematic representation of these two systems).  

 

Figure 1: A scheme of open and closed geothermal systems. 

Many geothermal systems have been developed, making use of the many advantages of 

the geothermal energy. They are in general classified into two categories: deep geothermal 

energy systems, and shallow geothermal systems. Deep geothermal systems are mainly those 

go as deep as few kilometers below the surface and reach hydrothermal aquifers, dry hot rocks 

or magma. Projects involving electricity production or direct heat production are classified in 

this category. Shallow geothermal systems, on the other hand, are those that do not go more 

than 250 m below the surface. The ground heat pump (GHP) is classified in this category [7].   

 Geothermal electricity 

Geothermal electricity constitutes one of the most important, but also challenging 

sources of energy. It is an attractive source of energy because of its low CO2 emission. The 

emission of CO2 from existing geothermal electric plants is on average 122 kg of CO2 per 

megawatt-hour of electricity, whereas CO2 emission from a conventional oil combustion 

thermal power station is on average 760 kg of CO2 per megawatt-hour of electricity. A 

geothermal power plant does not require fuel for its operation, but the capital cost is quite high. 

Open system Closed system 
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Drilling of wells accounts for over half the costs, and exploration of deep resources entails 

significant risks, with a probability of over 20% failure rate.  

Technologies in use include dry steam power plants, flash steam power plants and binary 

cycle power plants. Dry steam plants are the simplest and oldest design. They require 

geothermal steam of 150◦C or more to drive the turbines. This entails drilling wells deeper than 

3 km inside the earth. Flash steam plants pull superheated high-pressured water from deep 

reservoirs into lower-pressure tanks and use the resulting flashed steam to drive the turbines. 

They require fluid temperatures of at least 180 °C, usually more. This is the most common type 

of plants in operation today. Binary cycle power plants are the most recent development, and 

can accept fluid temperatures as low as 60 °C to drive the turbines. Water of such a temperature 

can be reached from hydrothermal systems, not deeper than 3 km below the surface. Due to this 

relatively low temperature requirement, this type of geothermal electricity plants is recently 

becoming the most commonly built system [7].  

 Geothermal direct use 

This kind of energy constitutes one of the oldest ways of energy consumption, and the 

most popular source of geothermal energy. It has been utilized for hundreds of years when 

people started using natural hot springs for cooking, heating, and entertainment. In modern 

time, hot water has been extracted from deep geothermal reservoirs, few kilometers below the 

surface of the earth, and used directly for heating of buildings, greenhouses and industry. 

Geothermal reservoirs of low-to-moderate water temperature ranging from 40◦C to 150◦C are 

used for this purpose. This range of temperature is lower than those required for most 

geothermal power plants.  

Geothermal direct-use systems consist of basically three parts: down hole well pumps, 

piping network, and heat exchangers. Different types of well pumps are in use and share many 

of the properties of those usually used in oil industry. Pipe networking is somewhat more 

complicated than those used in delivering urban cities with clean water since this network 

carries hot water. Care must be taken for insulating the pipes and reducing clogging of metals 

on the pipe joints and fittings. The heat exchangers work to extract heat from the coming water 

and dispose the resulting cold water back into the reservoir [7].  
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 Geothermal heat pumps 

Geothermal heat pumps (GHP) constitutes one of the most easy to extract and locally 

available in all parts of the world. It does not share the requirements of the other geothermal 

energy types in terms of geology or equipment. Rather, it makes use of the relatively constant 

temperature at shallow depths. In shallow grounds, just 10 m below the surface, the earth 

maintains nearly constant temperature ranging between 10◦C and 20◦C, depending on the 

region. Usually, the ground temperature at this depth is warmer than the air in winter and cooler 

in summer. Geothermal heat pumps are commonly used to exploit this abundant source of 

energy for heating and cooling of individual buildings and small compounds.  

Geothermal heat pump systems consist of basically two parts: the ground heat 

exchanger, and the heat pump unit. The ground heat exchanger is a system of pipes, known as 

a loop, which is buried in the ground either vertically or horizontally. In winter, heat from the 

earth is extracted via a fluid, usually water or a mixture of water and antifreeze, circulating 

through the pipes at a certain rate and collecting heat from the earth. The heat pump extracts 

heat from the fluid and pumps it into the building. In summer, the process is reversed, and the 

heat pump extracts heat from the indoor air and transfers it to the heat exchanger. Heat removed 

from the indoor air during summer can also be used for heating water, which can be used for 

cooking and bathing [7].  

1.5  Classification of Geothermal 

 High grade geothermal energy 

High grade geothermal energy exploits the fields of dry or wet vapor (water and steam 

mixtures). These fields are characterized by temperatures above 150 °C. This high-grade 

geothermal energy is encountered in volcanic and seismic (plate boundary) regions where the 

geothermal gradient is particularly high. 

High grade geothermal energy is mainly used for the production of electricity. The 

steam, which is drawn from the geothermal reservoir, is discharged into a turbine, connected 

to an alternator for the production of electricity. Dry steam is used directly, whereas wet 

steam which is more frequent requires the use of a separator, an example of this type of 

geothermal energy is given by Bouillante plant in Guadeloupe-France [6].  
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 Low grade geothermal energy 

Low grade geothermal energy is characterized by a temperature between 30 °C and 

150 °C and is encountered at an average depth of 1000 to 2500 m in water permeable 

formations located mainly in large sedimentary basins. It is mainly used for district heating 

and greenhouse heating [6]. 

 Very low-grade geothermal energy 

Very low-grade geothermal energy is encountered at shallow depths where the 

temperature is in the order of 10 to 30 ° C. It is used for refreshing buildings & greenhouses, 

fish farming, horticulture and drying of agricultural products.  

1.6  Definition of Earth to air heat exchanger (EAHEs) 

A ground-coupled heat exchanger is an underground metal or plastic pipe through which 

air is drawn. As air travels through the pipe, it gives up or receives some of its heat to/from the 

surrounding soil and enters the room as conditioned air during the cooling and heating period. 

They use the earth’s near constant subterranean temperature to warm or cool air or other fluids 

for residential, agricultural or industrial uses. If air from buildings is blown through the heat 

exchanger for heat recovery ventilation, they are called earth tubes (also known as earth cooling 

tubes or earth warming tubes) in Europe or earth–air heat exchangers (EAHE or EAHX) in 

North America [8, 9]. 

1.7  Functional principle of EAHEs 

The principle of the EAHE is that a pipe or several pipes buried in the ground. One end 

of the pipe system (the inlet) acts as the entrance for outdoor ambient air, whilst the other end 

of the pipe system (the outlet) releases air to the interior of a building. Ambient air is drawn 

into the pipe inlet, the air travelling through the pipe exchanging heat with the pipe walls which 

are in contact with the surrounding underground environment. In this way, heat is transferred 

to or from the surrounding soil by conduction through the pipe wall and convection with the 

tunnel air, tempering the air as it flows through the pipe. Figure 2 illustrates this concept [10]. 
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Figure 2: Simplified diagram of earth to air heat exchanger. 

1.8  Classification of EAHE 

The EAHE systems are designed on the basis of three configurations: open loop system 

and closed loop system and Hybrid system:  

 Open loop system 

The ambient air is passed through the buried pipes for pre-heating or pre-cooling of air 

as shown in Figure 3. Then the air passes through a conventional system to cool down or get 

warm up before entering the space. The air is then passed away through the ventilation [4]. 

 

Figure 3: Open loop system. 

 Closed loop system: 

Closed loop systems are also known as earth coupled system as shown in Fig. 3. Air 

sucked from inlet travels through a loop of pipes buried underground and extracts the heat from 

the ground. The ground loops are arranged either vertically or horizontally. The vertical loops 
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are more expensive than the horizontal loop. Closed loop is efficient than open loop system. 

Closed loop system reduces the problem of humidity [4]. 

 

Figure 4: Closed loop system. 

 Hybrid systems 

The EAHE is coupled with other heating/cooling devices such as air conditioner, 

heaters, solar chimney, solar air heaters etc. These devices improve the comfort and efficiency 

of the EAHE systems. 

The EAHE are also classified on the basis of pipe layout in the ground and according to 

the mode of arrangement as shown in Figs. 4 and 5. 

On the basis of pipe layout, the EAHE classified as: 

• Horizontal/straight Loop. 

• Vertical Looped. 

• Slinky/spiral Looped. 

• Pond/Helical Looped. 

On the basis of mode of arrangement, EAHE is classified as: 

• One tube system. 

• Parallel tube system. 
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One tube system is not appropriate to meet the requirements of an air conditioning 

system in a building. This is because the tube is too large for the use in generation. Parallel tube 

systems are used as it reduces the pressure drop and increases the thermal performance of the 

system [4]. 

 

Figure 5: Horizontal loop and vertical loop system. 

 

Figure 6: Parallel tube and one tube system. 

1.9  Literature review on the EAHE prediction methods 

In this section, we will present the most widely used methods to simulate the transient 

behavior of air-ground heat exchangers. These methods are categorized as analytical, semi-

analytical and CFD methods. For analytical methods, three models are more widely used in the 

literature for vertical geothermal systems, named as Infinite Line Source (ILS), Finite Line 

Source (FLS) and Infinite Cylinder Source (ICS) models. Theses methods have been adapted 

for horizontal geothermal system in the present study. The methods that use a semi-analytical 

algorithm to simulate the transient behavior of the EAHEs are rare according to the literature, 

most researchers prefer purely numerical methods. In the present study, a semi-analytical 
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method developed by Benchabane’s team denoted as GRBM model has been used. The detailed 

formulation on this method will be given in the next chapter. 

 Analytical methods 

I.9.1.1 Infinite line source model (ILS) 

The infinite line source model (ILS) is a direct utilization of the point and infinite line 

source solutions provided by Carslaw and Jaeger (1959). Ingersoll (1954) provided practical 

applications of these solutions and established the framework for more elaborate modeling of 

shallow geothermal systems. ILS model describes heat flow in an infinite soil mass subjected 

to a constant heat flux from a borehole heat exchanger. The borehole heat exchanger is 

represented by an infinite line embedded along the vertical axis. This modeling set-up entails 

that heat flow in the soil mass occurs only in the radial direction, and furthermore, the contact 

between the soil and the borehole heat exchangers goes along the centerline of the borehole, 

not along its surface area [7]. 

I.9.1.2 Infinite Cylinder Source (ICS)  

Instead of modeling the borehole as a line, a cylinder can be used. The infinite cylinder 

source, often just referred to as the cylinder source model, assumes that the borehole consists 

of a cylindrical volume of infinite length. The contents of the borehole cylinder can be modeled 

in several different ways: as empty with all heat rejected from the cylinder wall, as a perfect 

conductor with specific thermal capacitance, and as a homogeneous material with thermal 

properties disparate from those of the ground (Carslaw and Jaeger 1959) [11]. 

1.9.1.3 Finite Line Source (FLS) 

The finite line source builds upon the infinite line source model by imposing end effects 

and a boundary condition to model the ground surface. The ground surface is modeled by 

mirroring the borehole line source about the boundary as a line sink. This Method of Images 

creates a constant temperature boundary condition to model the surface of the ground. This is 

especially important for ground heat exchanger modeling when the design period is greater than 

a year which is when the accuracy of the model becomes more important (Spitler and Bernier 
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2016). Because the finite line source model is based on the integral of the point source model, 

when the integral is evaluated numerically it resolves into a series of point sources [11]. 

 Numerical methods 

Numerical models can be classified as one-dimensional, two-dimensional and 

three-dimensional. One-dimensional model is used to derive a relation between pipes 

inlet and outlet temperatures. Most of the researchers opted two-dimensional 

and three-dimensional models for their studies. Two-dimensional models are advanced 

than one-dimensional and were adopted during 90s that could calculate temperatures of 

ground and different depths. 

Three-dimensional models are more dynamic, advanced in technology and used in 

recent years. Three-dimensional models allow any type of grid geometry that helps to 

analyze the temperature variations around the pipes and in the depth of ground. 

Various types of commercial computational fluid dynamics (CFD) tools for numerical 

modelling are available. EnergyPlus and TRANSYS are used for analysis but not 

quickly for design. 

CFD is a popular tool for two-dimensional and three-dimensional studies. Some popular 

commercial CFD software are: ANSYS FLUENT, ANSYS CFX, STAR CCM+, CD, FIDAP, 

ADINA, OpenFoam, PHOENICS and others [12]. 
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Mathematical Formulation  

2.1  Temperature of the ground 

Evaluating the potential of using surface geothermal energy and the appropriate 

technology for its exploitation involves determining the variations, throughout the year, in soil 

temperature at different depths. These variations are obtained using simple modeling using soil 

properties and ambient temperatures assuming the soil as a semi-infinite media. The changes in 

ambient temperature as a function of time (day) is generally represented by a cosine function 

of the form [13].  

 𝑇 = 𝑇𝑖 + 𝑇𝑚𝑜𝑦 . cos[𝑤(𝑡 − 𝑡0)]. Eq.  1 

 Where: 

            𝑇𝑖 : Daily ambient temperature. 

              Tmoy: Mean surface temperature (average air temperature). 

           W: Angular frequency [𝑤 =  (2 × 𝜋)/24] (rad/hour). 

            𝑡0: day of the year of the maximum surface temperature at solar noon. 

The heat transfer in the soil is assumed to be one-dimensional taking place by dominant 

conduction, while considering that it is a homogeneous medium, the unsteady equation of the 

heat transfer in this case is written as:  
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Δ2𝑇 =
𝜌𝑠𝑜𝑙𝐶𝑝𝑠𝑜𝑙
𝜆𝑠𝑜𝑙

.
𝜕𝑇

𝜕𝑡
 

Eq.  2 

 

 

Figure 7: diagram of heat transfer in the soil. 

Which can be rewritten in the form: 
𝜕𝑇

𝜕𝑇
= 𝛼∇2𝑇  

Were:  

𝜆𝑠𝑜𝑙: Soil conductivity. [W/m. °𝐶] 

𝐶𝑝𝑠𝑜𝑙: Thermal capacity of soil. [J/Kg. °𝐶] 

𝜌𝑠𝑜𝑙: Soil density. [Kg/𝑚3] 

T: Soil temperature, t and z function. [°𝐶] 

t: Time. [s] 

z: Depth below ground surface. [m] 

𝛼: Thermal diffusivity of the ground α=λ/(ρ.Cp). [𝑚2/s] 

So, the monodirectional equation of the heat transfer by conduction can be rewritten as: 
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𝜕2𝑇

𝜕𝑧2
=
1

𝛼
.
𝜕𝑇

𝜕𝑡
 

Eq.  3 

 

Whose boundary conditions are: 

𝑇𝑎𝑚𝑏(𝑧 = 0, 𝑡) = 𝑇𝑎𝑚𝑏 + 𝐴 cos[𝑤(𝑡 − 𝑡0)] 

Where 𝑇(∞, 𝑡) = 𝑇𝑖 

Let's introduce the variable 𝜃 which is defined by:          𝜃 = 𝑇 − 𝑇𝑖                  

𝑇𝑖: is the soil temperature at a depth 𝑧𝑖. such as 𝑇(𝑧) = 𝑇𝑖(∀𝑧 > 𝑧𝑖). 

The partial differential equation will then take the form: 

 
𝜕2𝜃

𝜕𝑧2
=
1

𝛼
.
𝜕𝜃

𝜕𝑡
 

Eq.  4 

 

Where 𝑇̅ = 𝑇𝑚𝑜𝑦 − 𝑇𝑖  

With   𝜃𝑎𝑚𝑏(𝑧 = 0, 𝑡) = 𝑇̅ + A cos[𝑤(𝑡 − 𝑡0)]                                                

Using the method of separating variables such as: 

 
𝜃 = 𝑥(𝑧). 𝑦(𝑡) 

Eq.  5 

Let us replace in the differential partial differential equation:  

 

𝑥′′(𝑧)𝑦(𝑡) =
1

𝛼
𝑥(𝑧)𝑦′(𝑡) 

Eq.  6 

 

Divide the two sides of the equation by x and y: 
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𝛼
𝑥′′(𝑧)

𝑥(𝑧)
=
𝑦′(𝑡)

𝑦(𝑡)
= 𝛽                                     𝑊𝑖𝑡ℎ 𝛽 𝑐𝑜𝑛𝑡𝑎𝑛𝑡 

Eq.  7 

 

The sinusoidal temperature imposed on the surface, in periodic regime where the 

problem considered being linear, we seek a solution of the same frequency as the excitation, 

assuming that 𝛽 = 𝑖𝑤. Where 𝑖2 = −1. the differential equation becomes:  

 
𝑦′(𝑡) − 𝛽𝑦(𝑡) = 0 

Eq.  8 

⇒
𝑑𝑦

𝑑𝑡
− 𝛽. 𝑦 = 0 

⇒
𝑑𝑦

𝑑𝑡
= 𝛽. 𝑦 

⇒
𝑑𝑦

𝑦
= 𝛽. 𝑑𝑡 

⇒ ln 𝑦 = 𝛽. 𝑡 + 𝑐 

⇒ 𝑦 = 𝑒𝛽.𝑡+𝑐 

⇒ 𝑦 = 𝐾𝑒𝑖𝑤.𝑡 

With 𝐾 and 𝑐 are constant. 

Then let's look for the value of x, such that: 

 

𝛼
𝑥′′(𝑧)

𝑥
= 𝛽 

Eq.  9 

 

⇒ 𝑥′′(𝑧) −
𝛽

𝛼
𝑥(𝑧) = 0 

It is a differential equation of 2nd homogeneous order that admits as solution: 
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𝑥(𝑧) = 𝐴. exp(−√
𝛽

𝛼
. 𝑧) + 𝐵. exp(√

𝛽

𝛼
. 𝑧 ) 

Eq.  10 

 

Where lim
𝑧→∞

𝑥(𝑧)  tends to a finite limit ⇒ 𝐴 → 0.  

Such that:  𝑥(𝑧) = 𝐵. exp−√
𝛽

𝛼
. 𝑧 

If we consider the real part be the imaginary part of the solution, depending on whether 

the temperature varies as a periodic function of the form cos(𝜔𝑡) 𝑜𝑟 sin(𝜔𝑡). We will 

therefore:  

𝑥(𝑧) = 𝐵. exp(−√
𝛽

𝛼
. 𝑧)   𝑎𝑠 √𝛽 = √𝑖𝜔 

Other by the real part is: 

 

[𝑋(𝑍). 𝑌(𝑍)] = 𝑟𝑒𝑎𝑙 [𝐾. 𝐵. 𝑒−𝑖𝜔𝑡. 𝑒
−√

𝜔
2𝛼
(𝑖+𝑎)𝑧

] 

Eq.  11 

 

Which must satisfy the equation T (z, t) at the point of origin of the abscissa z = 0, such that: 

𝜃𝑎𝑚𝑏(𝑧 = 0, 𝑡) = 𝑇̅ + 𝐴 cos[𝑤(𝑡 − 𝑡0)] 

= real[𝐾. 𝐵. 𝑒−𝑖𝜔𝑡. 1] 

= real[K. B. (cos𝜔𝑡 + i sin𝜔 𝑡)]  

⇒ 𝐾.𝐵 =
𝑇̅ + 𝐴 cos[𝑤(𝑡 − 𝑡0)]

cos𝜔𝑡
 

From equation (Eq. 9) we get: 
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𝜃(𝑧, 𝑡) =
𝑇 + 𝐴 cos[𝑤(𝑡 − 𝑡0)]

cos(𝜔𝑡)
. 𝑒−𝑖𝜔𝑡. 𝑒

−√
𝜔
2𝛼
(𝑖+1)𝑧

 

Eq.  12 

 

⇒ 𝜃(𝑧, 𝑡) =
𝑇 + 𝐴 cos[𝑤(𝑡 − 𝑡0)]

cos(𝜔𝑡)
. exp (−√ (

𝜔

2𝛼
) 𝑧) . [(cos𝜔𝑡 . 𝑖 sin𝜔𝑡)] (cos (−√

𝜔

2𝛼
𝑧)) 

𝜃(𝑧, 𝑡) =
𝑇 + 𝐴 cos[𝑤(𝑡 − 𝑡0)]

cos(𝜔𝑡)
. exp (−√ (

𝜔

2𝛼
) 𝑧) . [(cos𝜔𝑡 . cos (−√ (

𝜔

2𝛼
) 𝑧)

+ 𝑖 cos𝜔𝑡 . sin (−√ (
𝜔

2𝛼
) 𝑧) + 𝑖 sin𝜔𝑡 . cos (−√ (

𝜔

2𝛼
) 𝑧))

+ 𝑖2 sin𝜔𝑡 sin (−√ (
𝜔

2𝛼
) 𝑧)] 

So :  

 
𝜃(𝑧, 𝑡)

=  
𝑇 + 𝐴 cos[𝑤(𝑡 − 𝑡0)]

cos(𝜔𝑡)
. exp (−√ (

𝜔

2𝛼
) 𝑧) . [(cos𝜔𝑡 . cos (−√ (

𝜔

2𝛼
) 𝑧)

− sin𝜔𝑡 sin (−√ (
𝜔

2𝛼
) 𝑧)

+ 𝑖 (cos𝜔𝑡 . sin (−√ (
𝜔

2𝛼
) 𝑧) + sin𝜔𝑡 . cos (−√ (

𝜔

2𝛼
) 𝑧)))] 

 

 

 

Eq.  12’ 

 

The real part in the equation: 

𝑇 + 𝐴 cos[𝑤(𝑡 − 𝑡0)]

cos(𝜔𝑡)
. exp (−√ (

𝜔

2𝛼
) 𝑧) . cos (𝜔𝑡 − √

𝜔

2𝛼
𝑧) 

So, the solution of the equation (Eq. 4): 

𝜃(𝑧, 𝑡) =
𝑇 + 𝐴 cos[𝑤(𝑡 − 𝑡0)]

cos(𝜔𝑡)
. exp (−√ (

𝜔

2𝛼
) 𝑧) . cos (𝜔𝑡 − √

𝜔

2𝛼
𝑧) 

By replacing the boundary conditions in the equation (Eq. 12’), we get: 
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𝜃(𝑧, 𝑡) =
𝑇 + 𝐴 cos[𝑤(𝑡 − 𝑡0)]

cos(𝜔𝑡)
. exp (−√ (

𝜔

2𝛼
) 𝑧) . cos (𝜔𝑡 − √

𝜔

2𝛼
𝑧)

−
𝑇𝑖

cos𝜔𝑡
 

Eq.  12’’ 

 

From equation (Eq. 12’), we get: 

 
𝑇𝑠𝑜𝑙(𝑧, 𝑡) = 𝑇𝑚𝑜𝑦 + 𝐴. cos[𝜔(𝑡 − 𝑡0)] . exp (−√

𝜔

2𝛼
) . cos (𝜔𝑡 − √

𝜔

2𝛼
𝑧) Eq.  13 

Finally, the soil temperature as a function of time and depth takes the following 

expression:  

𝑇𝑠𝑜𝑙(𝑧, 𝑡) = [(𝑇𝑚𝑜𝑦 + 𝐴. cos[𝜔(𝑡 − 𝑡0)] . exp (−𝑧√
𝜔

2𝛼
) . cos (𝜔𝑡 − √

𝜔

2𝛼
𝑧) + 𝑇𝑖)

1

cos𝜔𝑡
 ]

+ 𝑇𝑖 

Different expressions are available in the literature, the most used one is the Kusuda 

equation given as: 

 
𝑇𝑠𝑜𝑖𝑙(𝑧, 𝑡) = 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑎𝑚𝑝. exp (−𝑧√

𝜔

2𝛼
) . cos (𝑡 − 𝑡𝑠ℎ𝑖𝑓𝑡 −

𝑧

2
√
𝜔

2𝛼
𝑧) Eq.  14 

This form is used in several software: TRNSYS (2005) [14], DOE- 2 (1982) and 

RETScreen (2005) [15], where: 

Where Tsoil (z, t) is the ground temperature at the given time t (hours) and at a depth z 

(m). While Tmean is the soil’s average temperature (°C); on the other hand, Tamp is the amplitude 

of surface temperature (°C) calculated using ((Tmax – Tmin)/2); Tmax is the maximal ambient 

temperature (°C) and Tmin is the minimal ambient temperature (°C); tshift is the hour of the year 

with the minimum temperature value of the surface and α is the soil thermal diffusivity (m2/h). 

𝜔 = 2𝜋/365 (radian/days) is the angular frequency. 
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2.2  Analytical models  

 Infinite line source model 

The governing partial differential equation of the Infinite Line Source (ILS) model is 

described in the cylindrical coordinate system in terms of the temperature difference, 𝜃(𝑟, 𝑡) =

𝑇(𝑟, 𝑡) − 𝑇0, with 𝑇0 represents the initial temperature of the soil, as [7]: 

 1

𝛼

𝜕𝜃

𝜕𝑡
=
𝜕2𝜃

𝜕𝑟2
+
1

𝑟

𝜕𝜃

𝜕𝑟
 

𝜃(𝑟, 0) = 0 

𝜃(𝑟 → ∞, 𝑡) = 0 

−𝜆
𝜕𝜃

𝜕𝑟
. 2𝜋𝑟|𝑟⟶0 = 𝑞0  

 

Eq.  15 

 

In which 𝑞0 is the borehole heat exchangers (BHE) heat flux. Solving this initial and 

boundary value problem is usually conducted using the Laplace transforms. Accordingly, the 

temperature in the Laplace domain can be described as 

 
𝜃(𝑟, 𝑠) = ℒ[𝜃(𝑟, 𝑡)] = ∫ 𝑒𝑠𝑡𝜃(𝑟, 𝑡)𝑑𝑡 

∞

0

  Eq.  16 

Where the transform is conducted on the time domain. Applying Eq. (16) to the time 

derivative in Eq. (15) gives 

 
ℒ [
𝜕𝜃

𝜕𝑡
] = ∫ 𝑒−𝑠𝑡

𝜕𝜃

𝜕𝑡

∞

0

𝑑𝑡 = lim
𝑝→∞

∫ 𝑒−𝑠𝑡
𝜕𝜃

𝜕𝑡
𝑑𝑡

𝑝

0

 Eq.  17 

Integrating by parts, yields 

 
ℒ [
𝜕𝜃

𝜕𝑡
] = lim

𝑝→∞
{𝑒−𝑠𝑡𝜃(𝑟, 𝑡)|0

𝑝 + 𝑠∫ 𝑒−𝑠𝑡𝜃(𝑟, 𝑡)𝑑𝑡 
𝑝

0

}  

= −𝜃(𝑟, 0) + 𝑠∫ 𝑒−𝑠𝑡𝜃(𝑟, 𝑡)
∞

0

𝑑𝑡 

= 𝑠𝜃(𝑟, 𝑠) − 𝜃(𝑟, 0) 

Eq.  18 

 

Applying the first and second order spatial derivatives gives: 
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ℒ [
𝜕𝜃

𝜕𝑟
] = ∫ 𝑒−𝑠𝑡

𝜕𝜃

𝜕𝑟

∞

0

𝑑𝑡 =
𝑑

𝑑𝑟
{ lim
𝑝→∞

∫ 𝑒−𝑠𝑡𝜃𝑑𝑡
𝑝

0

} =
𝑑𝜃

𝑑𝑟
 

ℒ [
𝜕2𝜃

𝜕𝑟2
] = ∫ 𝑒−𝑠𝑡

𝜕2𝜃

𝜕𝑟2

∞

0

𝑑𝑡 =
𝑑2

𝑑𝑟2
{ lim
𝑝→∞

∫ 𝑒−𝑠𝑡𝜃𝑑𝑡
𝑝

0

} =
𝑑2𝜃

𝑑𝑟2
 

Eq.  19 

 

Considering the initial condition yields 

 𝑑2𝜃

𝑑𝑟2
+
1

𝑟

𝑑𝜃

𝑑𝑟
−
𝑠

𝛼
𝜃 = 0 

𝜃(𝑟 → ∞, 𝑠) = 0 

−𝜆
 𝑑𝜃

𝑑𝑟
. 2𝜋𝑟│𝑟→0 =

𝑞0
𝑠
  

Eq.  20 

 

The solution of this ordinary differential equation can be expressed as 

 𝜃(𝑟, 𝑠) = 𝐴𝐾0(𝑟√𝑠/𝛼) + 𝐵𝐼0(𝑟√𝑠/𝛼) Eq.  21 

In which 𝐼0and  𝐾0 are the modified Bessel functions of zero order of the first and second 

kind, respectively. A and B are arbitrary constants which need to be determined from the 

boundary conditions. Applying the first boundary condition in Eq. (21), and as I0 is unbounded 

at infinity, yields B = 0, and Eq. 21) becomes 

 𝜃(𝑟, 𝑠) = 𝐴𝐾0(𝑟√𝑠/𝛼) Eq.  22 

Substituting Eq. (22) into the second boundary condition of Eq. (20), and knowing that 

 
lim
𝑟→0

𝐾1(𝑟) ≃  
1

𝑟
 Eq.  23 

 

Where 𝐾1  is the modified Bessel functions of the first order, we obtain 

 𝐴 =  
𝑞0
2𝜋𝜆𝑠

 Eq.  24 

The solution of 𝜃(𝑟, 𝑠) in the Laplace domain is thus 
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 𝜃(𝑟, 𝑠) =
𝑞0
2𝜋𝜆𝑠

𝐾0(𝑟√𝑠/𝛼) Eq.  25 

Having solved the heat equation in the Laplace domain, we now have to reconstruct the 

temperature back to the time domain, using the inverse Laplace transform. This entails solving 

for: 

 
𝜃(𝑟, 𝑡) = ℒ−1[𝜃(𝑟, 𝑠)]  =

𝑞0
2𝜋𝜆𝑠

ℒ−1 [
1

𝑠
 𝐾0(𝑟√𝑠/𝛼)] Eq.  26 

Making use of the Laplace transform of integrals 

 1

𝑠
𝑓(𝑠) = ℒ [∫ 𝑓(𝜏)𝑑𝜏

𝑡

0

] Eq.  27 

Eq. (26) can be written as: 

 
𝜃(𝑟, 𝑡)  =

𝑞0
2𝜋𝜆

∫ ℒ−1[ 𝐾0(𝑟√𝑠/𝛼)]𝑑𝜏
𝑡

0

 Eq.  28 

Using the inverse Laplace transform tables provided by Carslaw and Jaeger [16], we 

obtain: 

 
ℒ−1[ 𝐾0(𝑟√𝑠/𝛼)] =

1

2𝑡
exp(−𝑟2/4𝛼𝑡) Eq.  29 

Substituting Eq. (29) into Eq. (28) yields the temperature in the time domain, as: 

 
𝜃(𝑟, 𝑡)  =

𝑞0
4𝜋𝜆

∫ [
1

𝜏
exp(−𝑟2/4𝛼𝑡)] 𝑑𝜏

𝑡

0

 Eq.  30 

This concludes the solution of the infinite line source model. For convenience, the 

integrand can be written using an independent variable, such that: 

 
𝜐 =

𝑟2

4𝛼𝜏
 ;    𝑑𝜏 = −

𝑟2

4𝛼𝜐2
𝑑𝜐 Eq.  31 

Substituting Eq. (31) into Eq. (30), gives 
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𝜃(𝑟, 𝑡)  =

𝑞0
4𝜋𝜆

∫
𝑒−𝜐

𝜐

∞

𝑟2/4𝛼𝑡

𝑑𝜐 Eq.  32 

In the literature, Eq. (32) is usually expressed as: 

 
𝑇(𝑟, 𝑡) − 𝑇0  =

𝑞0
2𝜋𝜆

∫
𝑒−𝜐

2

𝜐

∞

𝑟/2√𝛼𝑡

𝑑𝜐 =
𝑞0
4𝜋𝜆

𝐸𝑖 (
𝑟2

4𝛼𝑡
) =

𝑞0
2𝜋𝜆

𝐸𝑖 (
𝑟

2√𝛼𝑡
) Eq.  33 

Where Ei(x) is the exponential integral function, defined as 

 
𝐸𝑖(𝑥)  = ∫

𝑒−𝜐

𝜐

∞

𝑥

𝑑𝜐 Eq.  34 

Where  

 
−𝐸𝑖 (

𝑟2

4𝛼𝑡
) = −

1

2
 𝐸𝑖(

𝑟

2√𝛼𝑡 
 ) Eq.  35 

Ingersoll and Plass [17] provided tabulated values of the exponential integral function. 

For 𝑟/2√𝛼𝑡 < 0.2  , the integral in Eq. (34) can be approximated by: 

 
𝐼(𝜐) = ln

1

𝜐
+
𝜐2

2
−
𝜐4

8
− 0.2886  Eq.  36 

Ingersoll and Plass recommended using the ILS model only for applications with 

Fourier’s number,𝐹𝑂(𝑟𝑏) = 𝛼𝑡/(𝑟𝑏
2 ) > 20 . For smaller values, the solution gets distorted in 

the shorter time scale because the effect of the actual finite length of the BHE becomes 

significant.  

Hart and Couvillion [18] introduced an algebraic approximation to Eq. (33) of the form: 

 
𝑇(𝑟, 𝑡) − 𝑇0 =

𝑞0
2𝜋𝜆

[ln
𝑟∞
𝑟
− 0.9818 +

2𝑟2

𝑟∞2
−
1

8
(
4𝑟2

𝑟∞2
)

2

+ 𝑂(
4𝑟2

𝑟∞2
)]  

Eq.  37 

 

In which 𝑟∞ is a hypothetical far-field radius where the effect of the line source vanishes. 

They also proposed a radius of the form:  
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 𝑟∞ = 4√𝛼𝑡  Eq.  38 

Hart and Couvillion [18] asserted that this solution provides computationally efficient 

calculations for 𝑟∞ > 15𝑟𝑝, with 𝑟𝑝 the pipe diameter. Lower than this value, the calculations 

become more involved.  

From Eq. (33) we note that as 𝑡 ⟶ ∞ , 𝐸𝑖(0) = ∞ ,and thus there exists no steady-state 

solution to this model. However, for a small value of  𝜐, i.e., large values of t, Carslaw and 

Jaeger [16] have shown that the temperature can be approximated as: 

 
𝑇(𝑟, 𝑡) ≃

𝑞0
4𝜋𝛼

ln
4𝛼𝑡

𝑟2
−

𝑞0
4𝜋𝛼

𝛾   Eq.  39 

In which𝛾 = 0.5772. . ., is Euler’s constant. Furthermore, for the same reason, in this 

model the temperature at the center, where 𝑟 = 0, cannot be calculated. Despite of these two 

disadvantages, the ILS model is usually used in practice to get a quick estimate of the soil 

temperature. 

For an instantaneous line heat source, where a heat flux is released suddenly at 𝑡 =

0 with a strength 𝑞𝑖 (𝐽/𝑚), Yener and Kakac [19] have shown that the solution of the heat 

equation leads to: 

 
𝜃(𝑟, 𝑡) = 𝑇(𝑟, 𝑡) − 𝑇0 =

𝑞𝑖
4𝜋𝜆

1

𝑡
exp(−𝑟2/4𝛼𝑡)  Eq.  40 

Infinite cylindrical source model 

Similar to the ILS model, the Infinite Cylindrical Source model (ICS) simulates heat 

conduction in a soil mass subjected to a constant heat flow rate. The difference, however, is that 

the contact area between the borehole heat exchanger and the soil is along the surface area of 

the borehole, i.e. at 𝑟 = 𝑟𝑏 , the borehole radius. The governing partial differential equation of 

the ICS model is described in the cylindrical coordinate system in terms of 𝜃(𝑟, 𝑡) = 𝑇(𝑟, 𝑡) −

𝑇0, with 𝑇0 represents the initial temperature of the soil, as [7]: 

 1

𝛼

𝜕𝜃

𝜕𝑡
=
𝜕2𝜃

𝜕𝑟2
+
1

𝑟

𝜕𝜃

𝜕𝑟
  , 𝑟 > 𝑟𝑏 

𝜃(𝑟, 0) = 0 
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𝜃(𝑟 → ∞, 𝑡) = 0 

−𝜆
𝜕𝜃

𝜕𝑟
. 2𝜋𝑟│𝑟=𝑟𝑏 = 𝑞0 

Eq.  41 

 

Using Laplace transform, the subsidiary equation can be expressed as: 

 𝑑2𝜃̅

𝜕𝑟2
+
1

𝑟

𝑑𝜃̅

𝑑𝑟
−
𝑠

𝛼
𝜃   

𝜃̅(𝑟 → ∞, 𝑠) = 0 

−𝜆
𝜕𝜃̅

𝜕𝑟
. 2𝜋𝑟│𝑟=𝑟𝑏 =

𝑞0
𝑠

 

𝜃(𝑟, 𝑡) =
𝑞0

2𝜋𝑟𝑏𝜆𝑠

𝐾0(𝑟√𝑠𝛼)

𝐾1(𝑟𝑏√𝑠/𝛼)
 

 

Eq.  42 

 

The solution of this boundary value problem can readily be obtained as: 

 
𝜃(𝑟, 𝑡) =

𝑞0
2𝜋𝑟𝑏𝜆𝑠

𝐾0(𝑟√𝑠𝛼)

𝐾1(𝑟𝑏√𝑠/𝛼)
 Eq.  43 

In which K0 and K1 are the modified Bessel functions of the second kind of order zero 

and one, respectively. Then, using the Bromwich integral, the inverse Laplace transform can be 

expressed as: 

 
𝜃(𝑟, 𝑡) =

𝑞0
4𝜋2𝑟𝑏𝜆𝑖

∫ 𝑒𝑠𝑡
𝐾0(𝑟√𝑠/𝛼)

𝑠𝐾1(𝑟𝑏√𝑠/𝛼)

𝛾+𝑖∞

𝛾−𝑖∞

𝑑𝑠 Eq.  44 

 

Carslaw and Jaeger (1959) provided the solution of this integrand, of the form 

 
𝑇(𝑟, 𝑡) − 𝑇0 = −

2𝑄0
𝜋𝜆

∫ (1 − 𝑒𝛼𝜐
2𝑡)
𝐽0(𝜐𝑟)𝑌1(𝜐𝑟𝑏) − 𝑌0(𝜐𝑟)𝐽1(𝜐𝑟𝑏)

𝜐2[𝐽1
2(𝜐𝑟𝑏) + 𝑌1

2(𝜐𝑟𝑏)]

∞

0

𝑑𝜐 Eq.  45 

 

in which 𝑄0 = 𝑞0/2𝜋𝑟𝑏 , 𝑎𝑡  𝑟 = 𝑟𝑏 

Solving the integral in Eq. (45) is quite difficult. Nevertheless, Carslaw and Jaeger 

provided approximate solutions for short and long-time scales. For a short time, scale, i.e. small 

values of Fourier’s number 𝛼𝑡/𝑟𝑏
2, they showed that Eq. (45) can be represented as 
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𝑇(𝑟, 𝑡) =
2𝑄0
𝜆
√
𝛼𝑟𝑏𝑡

𝑟
[𝑖erfc

𝑟 − 𝑟𝑏

2√𝛼𝑡
−
(3𝑟 + 𝑟𝑏)√𝛼𝑡

4𝑟𝑟𝑏
𝑖2erfc

𝑟 − 𝑟𝑏

2√𝛼𝑡 
+ ⋯ ] 

Eq.  46 

 

where 𝑖𝑛erfc is the iterated integrals of the complementary error function, defined as: 

 
𝑖𝑛 erf(𝓏) = ∫ 𝑖𝑛−1 erf(ζ) dζ 

∞

𝓏

 Eq.  47 

For a long time, scale, the evaluation of the integral in Eq. (45) becomes more involved 

and difficult to solve analytically. Therefore it is important to begin from the subsidiary 

equation and solve the problem by proper evaluation of the Bromwich integral, Eq. (44), and 

as the radius of the circle tends to infinity, the integrals over the arcs AKJ and EDB tend to 

zeros; and the line 𝛾 − 𝑖∞, 𝛾 + 𝑖∞ can be transformed into the contour JHGFE, Figure 8. Hence 

the integral will be performed along the contour which begins from −∞ in the lower half plane, 

passes around the branch point at the origin in the positive direction, and ends at −∞ in the 

upper plane. This contour is denoted as (−∞,+0). Hence, the counter integration in Eq. (44) 

can be approximated as: 

 
𝜃(𝑟, 𝑡) =

𝑄0
2𝜋𝑟𝑏𝑖𝜆

∫ 𝑒𝜐
2𝛼𝑡

2𝐾0(𝑟𝜐)

𝜐𝐾1(𝑟𝑏𝜐)

0+

−∞

𝑑𝜐 Eq.  48 

In which 𝜐 = √𝑠/𝛼  . That is the contour integral along the complex plane 𝛾 − 𝑖∞, 𝛾 +

𝑖∞ is reduced to areal integral along (−∞,+0). This makes the integration somewhat easier. 

To facilitate the integrand in Eq. (47), the modified Bessel function is approximated using: 

 𝐾𝑛(𝓏) = (−1)
𝑛+1{ln(𝓏/2) + 𝛾}𝐼𝑛(𝓏)

+
1

2
(−1)𝑛 ∑

(𝓏/2)𝑛+2𝑥

𝑥! (𝑛 + 𝑥)!

∞

𝑥=0 

[∑ 𝑚−1

𝑛+𝑥

𝑚=1

∑𝑚−1

𝑥

𝑚=1

]

+
1

2
∑(−1)𝑥 (

𝓏

2
)
−𝑛+2𝑥

𝑛−1

𝑥=0

 
(𝑛 − 𝑥 − 1)!

𝑥!
 

Eq.  49 

 

Where n is any positive integer, and in is the modified Bessel function of the first kind 

of order n, and 𝛾 = 0.57722… , is Euler’s constant. Now, using some other typical integrals 

given in Carslaw and Jaeger [16], together with Eq. (49), Carslaw and Jaeger showed that the 

solution for the long-time scale can be approximated by: 
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𝜃(r, t) =  

𝑄0𝑟𝑏
2𝜆

{ln
4𝛼𝑡

𝐶𝑟2
+
𝑟𝑏
2

2𝛼𝑡
ln
4𝛼𝑡

𝐶𝑟2
+

1

4𝛼𝑡
[𝑟𝑏
2 + 𝑟2 − 2𝑟𝑏

2 ln
𝑟𝑏
𝑟
] + ⋯} Eq.  50 

 

 

Figure 8: Contour path of the ICS model. 

Note that Eq. (50) is equivalent to Eq. (39) for a line source emitting 2𝜋𝑟𝑏𝑞0 units of 

heat per unit of time per unit of length. In this context, Ingersoll asserted that for a heat source 

of less than 50 mm in diameter, the infinite line source model can still produce accurate results. 

Beyond that, error occurs.  

Ingersoll et al. [20] provided tabulated values of the integral in Eq. (45) for different 

values of Fourier’s number, but limited to only four values of 𝑟/𝑟𝑏. Philippe presented and 

utilized the solution given by Baudoin, who solved Eq. (43) using the Gaver-Stehfest numerical 

Laplace transform inversion algorithm, which yields: 

 

𝜃(𝑟, 𝑡) = −
𝑞0

2𝜋𝜆𝑟𝑏
∑[

𝐷𝑗

𝑗𝜇𝑗
 
𝐾0(𝜇𝑗𝑟)

𝐾1(𝜇𝑗𝑟𝑏)
]

10

𝑗=1

 
Eq.  51 

 

With  

 𝜇𝑗 = √𝑗 ln 2/𝛼𝑡 

𝐷𝑗 = ∑
(−1)𝑗−5𝑘5(2𝑘)!

(5 − 𝑘)! (𝑘 − 1)! 𝑘! (𝑗 − 𝑘)! (2𝑘 − 𝑗)!

min(𝑗,5)

𝑘=𝑙𝑛𝑡((𝑗+1)/2)

 

Eq.  52 
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It can be noticed that modeling heat conduction in infinite and semi-infinite regions, and 

even by applying simplified physical assumptions such as small or large Fourier’s numbers, or 

using numerical procedures for solving the semi-infinite integral in Eq. (45), it is still a 

formidable task. On the other hand, for a finite region, the solution can be obtained in terms of 

series summation, which converge relatively rapidly. In cylindrical coordinate system, for 

example, Yener and Kakac [19] have shown that the solution of the heat equation of a finite 

domain in the range 𝑟𝑏 ≤ 𝑟 ≤ 𝑅, subjected to a heat flux 𝑞′(𝑡) per unit length, is: 

 
𝑇(𝑟, 𝑡) − 𝑇0 =

1

𝜋𝑅2
∑𝑒−𝛼𝛽𝑛

2𝑡

∞

𝑛=1

 
𝐽0(𝛽𝑛𝑟)𝐽0(𝛽𝑛𝑟𝑏)

𝐽1
2(𝛽𝑛𝑅)

∫ 𝑒𝛼𝛽𝑛
2𝜏𝑞′(𝜏)𝑑𝜏

𝑡

0

 
Eq.  53 

where 𝛽𝑛 is the positive roots of 𝐽0(𝛽𝑅) = 0. In practice, in many of the currently 

utilized models, heat flux coming from the borehole heat exchanger is considered constant, i.e. 

𝑞′(𝑡) = 𝑞′. In this case, and by solving the integral of Eq. (53), the temperature distribution in 

the medium can be expressed as: 

 
𝑇(𝑟, 𝑡) − 𝑇0 =

𝑞′

𝜋𝜆𝑅2
∑

1− 𝑒−𝛼𝛽𝑛
2𝑡

𝛽𝑛2

∞

𝑛=1

 
𝐽0(𝛽𝑛𝑟)𝐽0(𝛽𝑛𝑟𝑏)

𝐽1
2(𝛽𝑛𝑅)

 
Eq.  54 

Obviously, Eq. (54) is much more elegant and relatively easy to handle. Therefore, and 

in order to circumvent the hassle of solving infinite integrals involved in infinite regions, it is 

recommended, when possible, to terminate the far field distance at, say 𝑟 = 𝑅 , where it is 

known analytically or intuitively that heat flux generated by the source vanishes. That is, despite 

dealing with an infinite region, our region of interest is finite.  

Finite line source model 

The Finite Line Source model (FLS) approximates the borehole heat exchanger by a 

finite line constituting a series of point sources. The temperature in the soil is calculated by 

integrating the solution of the continuous point source case over the length of the borehole [7]. 

The temperature at point r in an infinite domain subjected to a constant heat flux, 𝑞0 , is 

described as: 

 𝑇(𝑟, 𝑡) =
𝑞0
4𝜋𝑟𝜆

erfc(𝑟/2√𝛼𝑡 )  Eq.  55 
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In an infinitely thin layer, 𝑑𝜉 , the temperature variation due to total heat flux 𝑞0𝑑𝜉 , can 

be described as: 

 𝑑𝑇(𝑟, 𝑡) =
𝑞0

4𝜋𝑟𝜆𝜉
erfc(𝑟/2√𝛼𝑡 )𝑑𝜉  Eq.  56 

Imagine that we have many thin layers laid on top of each other and inserted in an 

infinite domain. Each layer is subjected to a point source at its origin, as shown in Figure 9. 

Points in the domain are subjected to an accumulated heat flow coming from all involved point 

heat sources. In this case, the temperature at a point  𝑃(𝑟, 𝓏) for instance, can be described by 

integrating Eq. (56) over the length of the point heat sources as: 

 
𝑇(𝑟, 𝓏, 𝑡) =

𝑞0
4𝜋𝜆

∫
1

𝑟1

𝐿

0

erfc(𝑟1/2√𝛼𝑡 )𝑑𝜉  Eq.  57 

In which 𝑟1 = √𝑟2 + (𝓏 − 𝜁)2 , with 𝜁 is any point along the line source (borehole). 

Physically, the soil mass is semi-infinite and the surface temperature variation has 

significant influence on the soil temperature. To model the soil mass as a semi-infinite region 

in the 𝓏-direction, and impose a prescribed temperature at the ground surface, the method of 

images can be utilized [16]. This method was first introduced in the mathematical theory of 

electricity, and elegantly adopted to the solution of heat conduction in semi-infinite medium, 

where a constant temperature is imposed at the surface. The image has identical values as those 

in the original domain but opposite in magnitude. In this case, we have a source at point 𝜁and 

a sink at point−𝜁, Figure 9. Based on this technique, Eskilson [21] introduced the FLS model, 

expressed as: 

 
𝑇(𝑟, 𝓏, 𝑡) − 𝑇0 =

𝑞0
4𝜋𝜆

∫ [
1

𝑟1
erfc (

𝑟1

2√𝛼𝑡
 ) −

1

𝑟2
erfc (

𝑟2

2√𝛼𝑡
 )]

𝐿

0

 𝑑𝜉 Eq.  58 

In which 𝑇0 is the initial temperature, and 

 𝑟1 = √𝑟2 + (𝓏 − 𝜁)2 , 𝑟2 = √𝑟2 + (𝓏 + 𝜁)2 Eq.  59 

This model is valid for the following condition: 
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 5𝑟𝑏
2/𝛼 < 𝑡 < 𝑡𝑠/10 Eq.  60 

Where 𝑡𝑠 is the time when the steady-state condition has been reached. This time ranges 

between few hours to few years. 

On the basis of this model, Claesson and Eskilson introduced the concept of what is 

known as the g-function. This function is a dimensionless function representing the temperature 

at the borehole wall, described as: 

 
𝑇𝑏 − 𝑇0 =

𝑞0
2𝜋𝜆

g (
𝑡

𝑡𝑠
,
𝑟𝑏
𝐿
) , 𝑡𝑠 =

𝐿2

9𝛼
 Eq.  61 

In which 𝑇𝑏 is the borehole surface temperature, and 𝑡𝑠 is a steady-state time scale. In 

the last two decades, and since the introduction of the Eskilson model in 1987, this model has 

been utilized intensively and seems to dominate the research works for ground source heat 

pumps, especially those dealing with analytical and semi-analytical procedures. 

Claesson and Eskilson treated Eq. (61) numerically and analytically. Numerically, the 

temperature distribution in the soil mass due to a unit step heat pulse is calculated using the 

finite difference method. The response to multiple heat sources coming from different boreholes 

is calculated as a superposition of a series of step functions, such that: 

 
𝑇𝑏 − 𝑇0 =∑

Δ𝑞𝑖
2𝜋𝜆

𝑖

g (
𝑡 − 𝑡𝑖
𝑡𝑠

,
𝑟𝑏
𝐿
) Eq.  62 

These functions are calculated for various borehole geometry and configurations, and 

stored in the database of commonly utilized design and analysis software. The limitation of the 

numerical g-function is that it is only valid for a time greater than L2/9α. Analytically, Claesson 

and Eskilson gave two asymptotic approximations to the g-function, such that: 

 

g (
𝑡

𝑡𝑠
,
𝑟𝑏
𝐿
) =

{
 

 ln (
𝐿

2𝑟𝑏
) +

1

2
ln (

𝑡

𝑡𝑠
)       5𝑟𝑏

2/𝛼 < 𝑡 ≤ 𝑡𝑠

ln (
𝐿

2𝑟𝑏
)                                      𝑡 ≥ 𝐿2/9𝛼

 

Eq.  63 
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Figure 9: Finite line source model. 

The concept of the g-function has received considerable interest from researchers in the 

field and soon after its introduction, several models with different complexity and 

computational efficiency have been introduced. Some authors suggested somewhat similar, 

non-dimensional g-function, defined as: 

 
g(𝑡, 𝐿′) = ∫ [

1

𝑟1̃
erfc (

𝑟̃1

2√𝐹0
) −

1

𝑟2̃
erfc (

𝑟̃2

2√𝐹0
)] 𝑑𝐿′

1

0

 Eq.  64 

 

Where  

 𝑟1̃ = √𝑅2 + (𝑍 − 𝐿′)2 , 𝑟2̃ = √𝑅2 + (𝑍 + 𝐿′)2 , 𝐹0 = 𝛼𝑡/𝐿2 

𝑍 = 𝓏/𝐿, 𝐿′ = 𝜁/𝐿  , 𝑅 = 𝑟/𝐿 

Eq.  65 

 

However, this model does not really produce significant improvements. Lamarche and 

Beauchamp [22] derived a computationally more efficient g-function based on the continuous 

infinite line source model. After an elaborate mathematical manipulation, they arrived at a g-

function of the form: 
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g(𝑡∗, 𝛽) = ∫

erfc(𝛾𝓏)

√𝓏2 − 𝛽2
𝑑𝓏

√𝛽2+1

𝛽

−𝐷𝐴 −∫
erfc(𝛾𝓏)

√𝓏2 − 𝛽2
𝑑𝓏

√𝛽2+4

√𝛽2+1

−𝐷𝐵 
Eq.  66 

 

In which 

 
DA = ∫ erfc(𝛾𝓏)𝑑𝓏

√𝛽2+1

𝛽

= √𝛽2 + 1erfc (𝛾√𝛽2 + 1) − 𝛽erfc(γβ)

−
1

𝛾√𝜋
[𝑒−𝛾

2(𝛽2+1) − 𝑒−𝛾
2𝛽2] 

Eq.  67 

 

And 

 
D𝐵 =

1

2
[∫ erfc(𝛾𝓏)𝑑𝓏

√𝛽2+1

𝛽

+∫ erfc(𝛾𝓏)𝑑𝓏
√𝛽4+1

√𝛽2+1

]

= √𝛽2 + 1erfc (𝛾√𝛽2 + 1) −
1

2
𝛽erfc(γβ)

+ √𝛽2 + 4erfc (𝛾√𝛽2 + 4)

−
1

𝛾√𝜋
[𝑒−𝛾

2(𝛽2+1) −
1

2
(𝑒−𝛾

2𝛽2 + 𝑒−𝛾
2(𝛽2+4))] 

Eq.  68 

 

Where 𝑡∗ = 𝑡/𝑡𝑠 with ts is as shown in Eq. (61), and 𝛾 = 3/2√2∗ For the detailed 

solution of the integrals in Eqs. (67) and (68) the reader is referred to Lamarche and Beauchamp 

[22]. Note that the first integral in Eq. (66) is convergent improper and need special numerical 

tools for solving it. Lamarche and Beauchamp provided information on the possible utilization 

of some available numerical tools, which are suitable for solving Eq. (66). They conducted 

numerical examples for two 𝛽 values and showed that, despite the apparent intricate 

formulation, the CPU time needed for solving their g-function was ten of orders less than those 

of Eskilson and Zeng. Marcotte and Pasquier [23], solved this model in the frequency domain 

using the Fast Fourier Transform algorithm (FFT). They also extended the model to account for 

borehole inclination and borehole head located below the ground surface. 

In contrast to ISL, FSL model allows for the calculation of the steady-state temperature, 

which can be described as: 
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𝑇(𝑟, 𝓏) − 𝑇0 = −

𝑞0
4𝜋𝜆

∫ (
1

𝑟1
−
1

𝑟2
) 𝑑𝜁

𝐿

0

 Eq.  69 

Solving Eq. (69) gives: 

 
𝑇(𝑟, 𝓏) − 𝑇0 = −

𝑞0
4𝜋𝜆

ln (
√𝑟2 + (𝓏 − 𝐿)2 − (𝓏 − 𝐿)

√𝑟2 + (𝓏 + 𝐿)2 + (𝓏 + 𝐿)
.
√𝑟2 + 𝓏2 + 𝓏

√𝑟2 + 𝓏2 − 𝓏
) 

Eq.  70 

 

 
𝑇(𝑟, 𝓏) − 𝑇0 = −

𝑞0
4𝜋𝜆

ln (
√𝑟2 + (𝓏 − 𝐿)2 − (𝓏 − 𝐿)

√𝑟2 + (𝓏 + 𝐿)2 + (𝓏 + 𝐿)
.
√𝑟2 + 𝓏2 + 𝓏

√𝑟2 + 𝓏2 − 𝓏
) 

Eq.  71 

 

2.3  Semi-analytical model 

In the present study, a transient short-time scale semi-analytical model developed by 

Benchabane’s team (reported in [24, 25]) has been used. This model is mainly based on the ICS 

model presented above by Eq. (54). The specifications of this model reside on variable 

boundary conditions for both air and soil with time to make the sizing more accurate. The idea 

of the GRBM model is based on following steps [25]:  

First, the soil and the EAHE pipe are subdivided into many layers. For each layer, the 

thickness of the disturbed soil and the radial soil temperature in the vicinity of the pipe were 

determined by the RBM model developed by Rouag et al.[24] to compute soil temperature and 

its thermal resistance. Subsequently, the total thermal resistance is calculated for the whole: air, 

pipe and soil. Finally, the determined parameters, which considered as constants for full current 

time step, are used to evaluate the air outlet temperature of the current layer. According to the 

GRBM model and for each step of time, all above steps are applied to each layer where the 

outlet air temperature of the 𝑗th layer is considered as the inlet air temperature for the next layer, 

(𝑗 + 1)th layer. This operation is repeated until the extremity of the EAHE pipe (𝑗 = 𝑛𝑝) as 

shown in Figure 10. The thermal resistance of soil for each layer of the previous time step serves 

as initialization for the next increment of time. 
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Figure 10: Scheme shows the subdivision of the EAHE pipe and the soil into many layers 

according to the GRBM model, where i, j and k are the indexes of time, layer and radius 

respectively. 

 Estimation of air temperature 

The modelling of EAHE is established in such a way that the following assumptions are 

respected: (i) Soil around the heat exchanger is homogenous; (ii) Soil properties are isotropic 

and there is a perfect contact between the soil and the pipe; (iii) Air flow is uniform along the 

length of the buried pipes; (iv) Thermophysical properties of air are constants; (v) The pipe and 

the soil are subdivided into many layers of length (Dx) arranged in series; (vi) The air flow is 

considered one-dimensional as shown in Figure 10; (vii) In each layer, the heat flux between 

air and soil is assumed to be constant for the full current time step. 

For a 𝑗th layer, the energy balance is written by the following relation: 

 
𝑚̇𝑎𝐶𝑝𝑎

𝑑𝑇𝑎
𝑑𝑥

= −
(𝑇𝑎 − 𝑇𝑠)

𝑅𝑡𝑜𝑡
 Eq.  72 

Where 𝑇𝑎 , 𝐶𝑝𝑎  𝑎𝑛𝑑 𝑚̇𝑎  are respectively the temperature, the specific heat capacity and 

the mass flow rate of air. Total thermal resistance, 𝑅𝑡𝑜𝑡 , is the sum of the thermal resistances 

of air, 𝑅𝑐𝑣, pipe, 𝑅𝑝 and 𝑅𝑠 of the disturbed soil surrounding the 𝑗th layer. 

By solving analytically, the differential Eq. 72, the air outlet temperature of the 𝑗th layer 

is given as follows [26]: 

 
𝑇𝑎(𝑗)
𝑜𝑢𝑡 = (𝑇𝑎(𝑗)

𝑖𝑛 − 𝑇𝑠0) exp (
−Δ𝑥

𝑅𝑡𝑜𝑡𝑚𝑎̇ 𝐶𝑝𝑎
) + 𝑇𝑠0 Eq.  73 
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For a given time,𝑡𝑖  , by taking the length of the layer Δ𝑥 = 1𝑚 and considering the inlet 

air temperature of the current 𝑗th  layer as the outlet air temperature of the previous 

(𝑗 − 1)th layer, the Eq. 73 can be written as: 

 
𝑇𝑎(𝑗+1,𝑖) = (𝑇𝑎(𝑗,𝑖) − 𝑇𝑠0) exp(

−1

𝜌𝑎𝐶𝑝𝑎𝑆𝑉𝑎𝑅𝑡𝑜𝑡(𝑗,𝑖)
) + 𝑇𝑠0 Eq.  74 

This last form of equation is well known solution for study-state EAHE in the literature 

[26].  

 Estimation of soil thermal resistance 

The total thermal resistance between air, pipe and the soil surrounding 𝑗th layer of the 

EAHE can be expressed by the following relation: 

 𝑅𝑡𝑜𝑡 = 𝑅𝑐𝑣 + 𝑅𝑝 + 𝑅𝑔 
Eq.  75 

Where the thermal resistance due to convective heat transfer between air and the inner 

surface of the pipe, Rcv, is calculated as: 

 𝑅𝑐𝑣 = 1/(ℎ𝑎2𝜋𝑟𝑖𝑛𝑡) Eq.  76 

The air convective coefficient is: 

 ℎ𝑎 = 𝑁𝑢. 𝜆𝑎/𝑑𝑖𝑛𝑡 Eq.  77 

Where 𝑑𝑖 is the inner diameter of the pipe. The Nusselt number for air flow inside the 

pipe is given by the Eq. (78): 

 𝑁𝑢 = 0.023. 𝑅𝑒0.8.  𝑃𝑟0.3    
Eq.  78 

Where 𝑅𝑒 and 𝑃𝑟 are respectively Reynolds and Prandtl numbers are defined as: 

 
𝑅𝑒 =

𝑉𝑎. 𝑑𝐻
𝜈𝑎

    

 

Eq.  79 

Eq.  80 
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𝑃𝑟 =  
𝜇𝑎. 𝐶𝑝𝑎
𝜆𝑎

 

The thermal resistance of the pipe, 𝑅𝑝 , is given by the following equation: 

 

𝑅𝑝 =
log (

𝑟𝑒
𝑟𝑖𝑛𝑡

)

(2𝜋𝜆𝑝)
 

Eq.  81 

The thermal resistance of the soil annulus, Rg, is given by the Eq. 79: 

 

𝑅𝑔 =
log (  

𝑟𝛿
𝑟𝑒
)

(2𝜋𝜆𝑠)
 

 

𝑟𝛿 = 𝑟𝑒 + 𝛿 

Eq.  82 

Eq.  83 

 

 

Figure 11: Scheme shows the disturbed soil thickness, 𝛿 , and the soil radius 𝑟𝛿. 

Where 𝑟𝛿 and 𝛿  are respectively the soil radius and the disturbed soil thickness (see 

Figure 11). Generally, the thermal resistance of the pipe, 𝑅𝑝  and the thermal resistance due to 

the air convection in the pipe, 𝑅𝑐𝑣 are constants. 

In GRBM model, the transient soil thermal resistance is considered in the prediction of 

the outlet air temperature by using the RBM model. The RBM model considers that the distance 

𝑟𝛿  is not constant, but variable depending on the pipe diameter (𝑟𝑒 ), the time of operating 

(𝑡) and the diffusivity of the soil 𝛼𝑠 [24]. For that, the analytical solution of the heat conduction 

equation (Eq. 84) in the soil is presented below. This equation is expressed in cylindrical 

coordinates at the 𝑗th layer of the pipe and the surrounding soil considered as a semi-infinite 

hollow cylinder as shown in (Figure 12). 
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Figure 12: Axial and radial views of the pipe and the surrounding soil at 𝑗𝑡ℎ layer where the 

soil is considered as a semi-infinite hollow cylinder, where 𝑖, 𝑗 and 𝑘 are the indexes of time, 

layer and radius respectively. 

 

{
  
 

  
 
1

𝛼𝑠

𝜕𝜃

𝜕𝑡
=
𝜕2𝜃

𝜕𝑟2
+
1

𝑟

𝜕𝜃

𝜕𝑟
            𝐹𝑜𝑟       𝑟 ≥ 𝑟𝑒

𝑊𝑖𝑡ℎ 𝜃(𝑟, 0) = 0
𝜃(𝑟 ⟶ ∞, 𝑡) = 0

[−𝜆𝑠
𝜕𝜃

𝜕𝑟
2𝜋𝑟]

𝑟=𝑟𝑒

= 𝑞′
}
  
 

  
 

 

Eq.  84 

 

Where 𝑢(𝑘, 𝑗, 𝑖) = 𝑇𝑠(𝑘,𝑗,𝑖) − 𝑇𝑠0 with i, j and k are the indexes of time, layer and radius 

respectively. 𝑇𝑠0 is the initial soil temperature and 𝑞′ is the heat flux per unit length of the 𝑗th 

layer for the 𝑖th step of time. 

 
𝜃(𝑘, 𝑗, 𝑖) =

1

𝜋𝑟∞2
∑𝑒−𝛼𝑠𝛽𝑛

2𝑡𝑖

∞

𝑛=1

𝐽0(𝛽𝑛𝑟𝑘)𝐽0(𝛽𝑛𝑟𝑒)

𝐽1
2(𝛽𝑛𝑟∞)

∫ 𝑒𝛼𝑠𝛽𝑛
2𝜏

𝑡𝑖

0

𝑞′(𝜏)𝑑𝜏 
Eq.  85 

 

where, 𝛽𝑛, are defined by the positive roots of 𝐽0 (𝛽𝑛𝑟∞) = 0, with 𝛽𝑛 = 𝓏𝑛/𝑟∞  and 𝓏𝑛 

are the positive roots of the Bessel functions 𝐽0(𝓏) = 0.  

Referred to the assumption (vii), there are two ways to calculate the heat flux per unit 

length, 𝑞′(𝜏), in the Eq. 85: 

a) The heat flux, 𝑞′, is considered constantin the full step of time, Δ𝑡. In this case, the 

entity 𝑞′(𝜏) can be outputted directly from the integral of the Eq. 85. Thus, the soil 

temperature at the 𝑗th layer can be written as: 
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𝑇𝑠(𝑘, 𝑗, 𝑖) − 𝑇𝑠0 =

𝑞′(𝑗, 𝑖)

𝜋𝜆𝑠𝑟∞2
∑

1− 𝑒−𝛼𝑠𝛽𝑛
2𝑡𝑖

𝛽𝑛2

∞

𝑛=1

𝐽0(𝛽𝑛𝑟𝑘)𝐽0(𝛽𝑛𝑟𝑒)

𝐽1
2(𝛽𝑛𝑟∞)

 
Eq.  86 

For the current 𝑖th step of time, the heat flux per unit length, 𝑞′(𝑗, 𝑖), is calculated by the 

soil thermal resistance, 𝑅𝑠(𝑗, 𝑖 − 1), as: 

 
𝑞′(𝑗, 𝑖) =

(𝑇𝑎(𝑗,𝑖) − 𝑇𝑠0)

𝑅𝑠(𝑗,𝑖−1)
 Eq.  87 

 

Where   𝑇𝑎(𝑗,𝑖) = 𝑇𝑎(𝑗−1,𝑖)
𝑜𝑢𝑡  

 
𝑅𝑠(𝑗, 𝑖 − 1) =

1

2𝜋𝜆𝑠
log (

𝑟𝛿(𝑗,𝑖−1)

𝑟𝑒
)  Eq.  88 

After substitution of Eqs. 87 and 88 in Eq. 86, the transient temperatures of soil 

surrounding the pipe can be written as: 

 
𝑇𝑠(𝑘, 𝑗, 𝑖) =

2(𝑇𝑎(𝑗,𝑖) − 𝑇𝑠0)

𝑟∞2 log (
𝑟𝛿(𝑗,𝑖−1)
𝑟𝑒

)
∑

1− 𝑒−𝛼𝑠𝛽𝑛
2𝑡𝑖

𝛽𝑛2

∞

𝑛=1

𝐽0(𝛽𝑛𝑟𝑘)𝐽0(𝛽𝑛𝑟𝑒)

𝐽1
2(𝛽𝑛𝑟∞)

+ 𝑇𝑠0 
Eq.  89 

b) The usual integral properties of Chasles’ relation (Fiche et al.,[27]) were employed 

in the development. In this case the Eq. 85 becomes for the 𝑗th layer: 

 

𝜃(𝑘, 𝑗,𝑚) =
1

𝜋𝑟∞2
∑(

𝐽0(𝛽𝑛𝑟𝑘)𝐽0(𝛽𝑛𝑟𝑒)𝑒
−𝛼𝑠𝛽𝑛

2𝑡𝑚

𝐽1
2(𝛽𝑛𝑟∞)

(∫ 𝑒𝛼𝑠𝛽𝑛
2𝜏𝑞(𝑗)

′ (𝜏)𝑑𝜏
𝑡1

0

∞

𝑛=1

+∫ 𝑒𝛼𝑠𝛽𝑛
2𝜏𝑞(𝑗)

′ (𝜏)𝑑𝜏
𝑡2

𝑡1

+⋯+∫ 𝑒𝛼𝑠𝛽𝑛
2𝜏𝑞(𝑗)

′ (𝜏)𝑑𝜏
𝑡𝑚

𝑡𝑚−1

)) 

Eq.  90 

 

Or  

 
𝜃(𝑘, 𝑗,𝑚) =

1

𝜋𝑟∞2
∑(

𝐽0(𝛽𝑛𝑟𝑘)𝐽0(𝛽𝑛𝑟𝑒)𝑒
−𝛼𝑠𝛽𝑛

2𝑡𝑚

𝐽1
2(𝛽𝑛𝑟∞)

∑(𝑞(𝑖,𝑗)
′ ∫ 𝑒𝛼𝑠𝛽𝑛

2𝜏𝑑𝜏
𝑡𝑖

𝑡𝑖−1

)

𝑚

𝑖=1

)

∞

𝑛=1

 
Eq.  91 

 

Where the (𝑞(𝑖,𝑗)
′ , 𝑖 = 0,1…𝑚) is the constant heat flux per unit of length of each 

𝑖th interval of time [𝑡𝑖−1 − 𝑡𝑖] (assumption vii), which is calculated by the soil thermal 

resistance, 𝑅𝑠(𝑗,𝑖−1) as: 
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𝑞(𝑖,𝑗)
′ │𝑡𝑖−1

𝑡𝑖 =
𝑇𝑎(𝑗,𝑖) − 𝑇𝑠0

𝑅𝑠(𝑗,𝑖−1)
 Eq.  92 

 

 
𝑅𝑠(𝑗,𝑖−1) =

1

2𝜋𝜆𝑠
log (

𝑟𝛿(𝑗,𝑖−1)

𝑟𝑒
) Eq.  93 

 

Where  𝑇𝑎(𝑗,𝑖) = 𝑇𝑎(𝑗−1,𝑖)
𝑜𝑢𝑡  

As a result, the soil temperature of the 𝑗𝑡ℎstudied layer with variable inlet air temperature 

can be expressed in Eqs. (92) and (93) as: 

 
𝜃(𝑘, 𝑗,𝑚) =

1

𝜋𝜆𝑠𝑟∞2
∑(

𝐽0(𝛽𝑛𝑟𝑘)𝐽0(𝛽𝑛𝑟𝑒)𝑒
−𝛼𝑠𝛽𝑛

2𝑡𝑚

𝐽1
2(𝛽𝑛𝑟∞)

∑(
𝑞(𝑖,𝑗)
′

𝛽𝑛2
[𝑒𝛼𝑠𝛽𝑛

2𝜏]
𝑡𝑖−1

𝑡𝑖
)

𝑚

𝑖=1

)

∞

𝑛=1

 
Eq.  94 

 

 𝑇𝑠(𝑘, 𝑗,𝑚)

=
2

𝑟∞2
∑(

𝑒−𝛼𝑠𝛽𝑛
2𝑡𝑚

𝛽𝑛2
𝐽0(𝛽𝑛𝑟𝑘)𝐽0(𝛽𝑛𝑟𝑒)

𝐽1
2(𝛽𝑛𝑟∞)

∑(
𝑇𝑎(𝑗,𝑖)

log (
𝑟𝛿(𝑗,𝑖−1)
𝑟𝑒

)
[𝑒𝛼𝑠𝛽𝑛

2𝜏]
𝑡𝑖−1

𝑡𝑖
)

𝑚

𝑖=1

)

∞

𝑛=1

+ 𝑇𝑠0 

Eq.  95 

 

Thus, both the transient soil temperatures surrounding the pipe and the soil radius rd are 

estimated by using Eq. 89 in the case of constant inlet air temperature and by using Eq. 94 in 

the case of variable inlet air temperature. 

 Organizational chart of the GRBM model 

For better understanding the calculation method based on the GRBM model, the 

organizational chart presented in Figure 13 summarizes the different steps described above. It 

should be noted that the soil thermal resistance and the soil temperature were estimated, for 

each layer, by using the subroutine RBM model. Furthermore, this subroutine depends on the 

inlet boundary condition (inlet fluid temperature) which implies the use of: (i) the Eq. 89 in the 

case of constant heat flux, (ii) or the Eq. 95 in the case of variable heat flux. 
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Figure 13: Detailed organizational chart of GRBM model. 
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2.4  CFD model 

 Governing equations  

The governing equations for CFD (Computational Fluid Dynamics) are the continuity, 

the momentum and the energy equations. These equations for incompressible flow are 

respectively given by: 

 𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 Eq.  96 

 

 
𝜌
𝜕𝑢𝑖
𝜕𝑡

+ 𝜌𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗) Eq.  97 

 

 𝜕(𝜌𝑇)

𝜕𝑡
+ ∇. (𝑢𝑗𝜌𝑇) = ∇. (𝑘. ∇. 𝑇) + 𝑆𝑇 Eq.  98 

 

Where 𝑢𝑖  denotes the ith velocity component, 𝑝 is the pressure, 𝜌 is the fluid density, T 

is the fluid temperature, k is thermal conductivity, ST is an additionally volumetric heat energy 

due to viscosity and 𝜏𝑖𝑗  is viscous stress tensor. For Newtonian fluid, it can be defined as: 

 𝜏𝑖𝑗 = 2𝜇𝑠𝑖𝑗 Eq.  99 

 

Where 𝜇 is the molecular viscosity and 𝑠𝑖𝑗 is the strain-rate tensor defined as: 

 
𝑠𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) Eq.  

100 

 

 Turbulence modeling approaches 

Turbulent flows are characterized by fluctuating velocity fields. These fluctuations mix 

transported quantities such as momentum, energy, and species concentration, and cause the 

transported quantities to fluctuate as well. Since these fluctuations can be of small scale and 

high frequency, they are too computationally expensive to simulate directly in practical 

engineering calculations. Instead, the instantaneous (exact) governing equations can be time-
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averaged, ensemble-averaged, or otherwise manipulated to remove the small scales, resulting 

in a modified set of equations that are computationally less expensive to solve. However, the 

modified equations contain additional unknown variables, and turbulence models are needed to 

determine these variables in terms of known quantities [28].  

2.4.2.1 Large eddy simulation (LES) 

Large eddy simulation (LES) provides an alternative approach in which the large eddies 

are calculated in a time-dependent simulation that uses a set of “filtered” equations. Filtering is 

essentially a manipulation of the exact Navier-Stokes equations to remove only the eddies that 

are smaller than the size of the filter, which is usually taken as the mesh size. The idea was 

derived from Kolmogorov's theory [29, 30], which assumes that the large eddies of the flow are 

dependant on the geometry while the smaller scales are more universal. The filtering process 

creates additional unknown terms that must be modeled in order to achieve closure. Statistics 

of the mean flow quantities, which are generally of most engineering interest, are gathered 

during the time-dependent simulation. The attraction of LES is that, by modeling less of the 

turbulence (and solving more), the error induced by the turbulence model will be reduced. 

Different sub-grid scale models are available in the literature, such as Smagorinsky model [31], 

Algebraic Dynamic model [32], Localized Dynamic model [33], WALE (Wall-Adapting Local 

Eddy-viscosity) model [34] and Dynamic Global-Coefficient model [35].   

In contrast to RANS, where the computational cost is only weakly dependent on Re, the 

computational cost of LES scales roughly with Re2 [36]. Near solid boundaries, where 

boundary layers are present, LES is extremely expensive because it requires refinement in three 

directions, whereas RANS only requires refinement in the direction normal to the wall.  

2.4.2.2 Statistical approach  

Because turbulence consists of random fluctuations of the various flow properties, the 

statistical approach can be used. This approach is mainly based on the procedure introduced by 

Reynolds [37], in which all quantities are expressed as the sum of mean and fluctuating 

quantities [38]. The Reynolds-averaged Navier-Stokes (RANS) equations represent transport 

equations for the mean flow quantities only, with all the scales of the turbulence being modeled. 

The approach of permitting a solution for the mean flow variables greatly reduces the 

https://www.cfd-online.com/Wiki/Dynamic_subgrid-scale_model
https://www.cfd-online.com/Wiki/Kinetic_energy_subgrid-scale_model
https://www.cfd-online.com/Wiki/Wall-adapting_local_eddy-viscosity_(WALE)_model
https://www.cfd-online.com/Wiki/Wall-adapting_local_eddy-viscosity_(WALE)_model
https://www.cfd-online.com/Wiki/Dynamic_global-coefficient_subgrid-scale_model
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computational effort. Therefore, this approach is currently the most commonly used CFD 

approach. 

 Reynolds averaged equations 

For an incompressible flow, the RANS equations can be written as: 

 𝜕𝑢̅𝑖
𝜕𝑥𝑖

= 0 Eq.  101 

 

 
𝜌
𝜕𝑢̅𝑖
𝜕𝑡

+ 𝜌𝑢̅𝑗
𝜕𝑢̅𝑖
𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜏𝑖̅𝑗 − 𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅) Eq.  102 

 

 𝜏𝑖̅𝑗 = 2𝜇𝑠̅𝑖𝑗 Eq.  103 

 

 
𝑠̅𝑖𝑗 =

1

2
(
𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
) Eq.  104 

 

Eq. (104) is usually referred to as the Reynolds-Averaged Navier-Stokes equation. The 

quantity (−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅) is known as the Reynolds-stress tensor, we denote it by Τ𝑖𝑗, thus:  

 Τ𝑖𝑗 = −𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅ (1) 

 Closure problem  

Because Τ𝑖𝑗 is a symmetric tensor (Τ𝑖𝑗 = Τ𝑗𝑖), it has six independent components. Hence, 

six unknown quantities have been produced as a result of Reynolds averaging. However, no 

additional equations were gained. The system of equations is not yet closed. To close the 

system, additional equations are needed. 

 Boussinesq hypothesis 

To model the Reynolds stresses in terms of mean flow quantities, the Boussinesq 

hypothesis [39, 40] is commonly used. This hypothesis assumes that the Reynolds stress is 

related linearly to the mean strain-rate tensor as in a laminar flow. The proportional factor is 
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the eddy viscosity. The Boussinesq hypothesis for an incompressible flow can be written as 

[41]: 

 
Τ𝑖𝑗 = 2𝜇𝑡𝑠̅𝑖𝑗 −

1

2
𝜌𝑘𝛿𝑖𝑗  Eq.  105 

 

where 𝜇𝑡 is the eddy viscosity, 𝛿𝑖𝑗 is the Kronecker symbol and 𝑘 is the turbulent kinetic 

energy defined as:  

 
𝑘 =

1

2
(𝑢𝑖′𝑢𝑖′̅̅ ̅̅ ̅̅ ) Eq.  106 

 

 Turbulence model: 𝒌–𝝐 model 

Several turbulence models are available in the literature to close RANS equations. In 

this study, the standard 𝑘–𝜖 model [42] which is the most widely used turbulence model in the 

CFD community due to its simplicity and robustness has been used. This model involves 

transport equations for the turbulent kinetic energy (𝑘) and its dissipation rate (𝜖). 

In the standard 𝑘–𝜖 model, the turbulent (or eddy) viscosity is calculated by combining 

𝑘 and 𝜖 as follows: 

 
𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜖
 Eq.  107 

 

The turbulent kinetic energy 𝑘 and its dissipation rate 𝜖 are obtained from the following 

transport equations: 

 

 𝜕(𝜌𝑘)

𝜕𝑡
+
𝜕(𝜌𝑘𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 − 𝜌𝜖 Eq.  108 

 

and 

 𝜕(𝜌𝜖)

𝜕𝑡
+
𝜕(𝜌𝜖𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜖
) 
𝜕𝜖

𝜕𝑥𝑗
] + 𝐶1𝜖

𝜖

𝑘
𝐺𝑘 − 𝐶2𝜖𝜌

𝜖2

𝑘
 Eq.  109 
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The production of turbulent kinetic energy 𝐺𝑘 is modeled as: 

 
𝐺𝑘 = −𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅

𝜕𝑢𝑗

𝜕𝑥𝑖
 Eq.  110 

 

Where the model constants are [42]:  

 𝐶1𝜖 = 1.44, 𝐶2𝜖 = 1.92, 𝐶𝜇 = 0.09, 𝜎𝑘 = 1.0, 𝜎𝜖 = 1.3 
Eq.  111 
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Numerical Modeling and Implementation  

3.1  Temperature of the ground: Kusuda equation 

Firstly, we have validated the Kusuda equation (Eq. (14) in previous chapter) using 

experimental data conducted by Badache et al., [15], which they are measured the daily ground 

temperature in Varennes (Canada) from February to November 2014. Twenty-four 24 

calibrated thermocouples (T type) were used in their experimental for determining the variation 

of soil temperature at different depths. The implemented subroutine in MATLAB and the used 

parameters are presented below. It is important to note that these parameters (Mean, Tamb, 

tshift) are given from meteorological data (Tmin and Tmax) at the Varennes region.  

as=0.0948;tshift=84;Tmean=9.1262;Tamp=8.9180;w=2*pi/365;delta=

sqrt((2*as)/w); 

z=linspace(0,30,30);t=linspace(0,365,365); 

for j=1:length(t) 

for i=1:length(z) 

       Tk(i,j)= Tmean+Tamp.*exp(-z(i)./delta).*cos(w.*t(j)-

tshift-(z(i)./delta));   

end  

end 

Figure 14 presents the comparison between measured and predicted ground temperature 

at depths 1 m, 8.5 m, 16 m, and 26 m at Varennes for the period from February 4th to November 

25th, 2014. From this figure it can be seen that the measured and calculated ground temperature 

are in good agreements. The undistributed temperature at the Varennes is around 9.5 °C. It has 

been observed that Kusuda equation can predict very well the undistributed temperature of the 

ground.  
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Figure 14: Measured and predicted ground temperature at depths 1 m, 8.5 m, 16 m, and 26 m 

at Varennes for the period from February 4th to November 25th, 2014. 

3.2  Implementation of the analytical models 

  Calculation steps  

To adapt the analytical (ICS, ILS and FLS) model, we used the methodology of Fontaine 

[43], which was able to implement the FLS model for horizontal geothermal heat exchangers. 

Same methodology with some modifications has been used. Here are the steps to follow to 

arrive at the final soil temperature and the temperature of the fluid at the outlet: 
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1. Calculate the resistance of the ground (𝑅𝑔), the resistance of the pipe (𝑅𝑝) and the 

characteristic thermal length (𝐿𝑡)  using the steady-state equations for horizontal pipes of 

Claesson and Dunand [44]. Rg and Rp are calculated using Eq. (81) and Eq. (82) 

respectively (presented in the previous chapter). 𝐿𝑡 is calculated as: 𝐿𝑡 = (𝑅𝑔 +

𝑅𝑝).𝑚𝑎. 𝐶𝑝𝑎; 

2. Separate the pipe (regardless of its layout) into a series of n segments connected to each 

other. You don't have to be very tall to have good accuracy. For example, about twenty 

segments for a pipe with a length of 200 m is more than sufficient; 

3. Compute the local heat flux in each segment using: 

 𝑞′(𝑥,𝑡) =
𝑞(𝑥,𝑡)

𝑥
= ((𝑇𝑖𝑛(𝑡)).

𝑒𝑥𝑝(−
𝑥

𝐿𝑡
)

𝑅𝑠+𝑅𝑝
)  ; 

4. Calculate the pipe temperature using analytical solutions presented in the previous 

chapter; for ILS Eq. (33), for ICS Eq. (54) and for FLS Eq. (58). 

5. knowing the average temperature at the wall of the pipe on each segment, calculate the 

average temperature of the fluid 𝑇𝑓 for all segments with 𝑇𝑓(𝑥, 𝑡) = 𝑇𝑝(𝑥, 𝑡) +

(𝑇𝑖𝑛(𝑡) − 𝑇𝑝(𝑥, 𝑡)) × 𝑒𝑥𝑝(−𝑥/(𝑚𝑎. 𝑐𝑝𝑎. 𝑅𝑝)); 

 

Figure 15: Representation of the EAHE separated into segments used in analytical IFS, ICS 

and FLS models.  

 Calculation subroutine 

The implementation of the studied analytical solutions (ILS, ICS and FLS models) has 

been programmed using MATLAB software. The main subroutines of calculation for each 

model are presented below. The first step is to read data; the fluid proprieties (𝑚𝑎, 𝐶𝑝𝑎, 𝑇𝑖𝑛(𝑡)), 

the heat exchanger and the pipe proprieties (𝐿, 𝑟𝑖, 𝑟𝑒 , 𝑘𝑝, 𝑘𝑔 𝑅𝑝, 𝑅𝑔), and the undistributed soil 

temperature 𝑇0, this latter can be obtained using Kusuda equation.  

3.1.2.1 ILS model implementation  

for j=1:length(t) % time; 

X 
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for i=1:length(dx) % position; 

q(i,j)= ((Tin(j))*exp(-i/(ma*cpa*(Rg+Rp)))./(Rg+Rp))./i; 

Tp(i,j)=T0+(q(i,j)./(2*pi*kg)).*expint(re^2/(4*alphas*t(j))); 

Tf(i,j)=Tp(i,j)+(Tin(j)-Tp(i,j)).*exp(i./(ma*cpa*Rp)); 

end 

end 

3.1.2.2 ICS model implementation  

A=0; % initial value for sommation; 

for j=1:length(t) % time; 

     for i=1:length(dx) % position; 

q(i,j)= ((Tin(j))*exp(-i/(ma*cpa*(Rg+Rp)))./(Rg+Rp))./i; 

        for n=1:100 % analytical Bassel function; 

aa(n)=pi.*(4.*n-1);J0z(n)=(aa(n)./4).*(1+(2./aa(n).^2)-

62/(3.*aa(n).^4)+7558./(15.*aa(n).^6)); 

Bn(n)=(J0z(n))./R; % R is the radius of the EAHE; 

A=((1-exp(-

alpha_g.*(Bn(n).^2).*t(j)))./(Bn(n).^2)).*((besselj(0,Bn(n).*d

x(i)).*besselj(0,Bn(n).*re))./besselj(1,Bn(n).*R).^2)+A ; 

        end  % alpha_g is the soil thermal diffusivity; 

Tp(i,j)=T0+(q(i,j)./(pi*kg*R^2)).*A; 

    Tf(i,j)=Tp(i,j)+(Tin(j)-Tp(i,j)).*exp(-i./(ma*cpa*Rp)); 

A=0; 

    end  

end 

 

3.1.2.3 FLS model implementation  

A=0; % initial value for sommation; 

dh=[0:1:L]; % integration vector; 

for j=1:length(t) % time; 

     for i=1:length(dx) % position; 

q(i,j)= ((Tin(j))*exp(-i/(ma*cpa*(Rg+Rp)))./(Rg+Rp))./i; 

A(i,j)=trapz(dh,(erfc(real(sqrt(re^2+((dx(i))-

dh))./2*sqrt(t(j))))./(sqrt(re^2 +((dx(i))-dh).^2))))+... 

    

trapz(dh,(erfc(real(sqrt(re^2+((dx(i))+dh))./2*sqrt(t(j))))./(

sqrt(re^2 +((dx(i))+dh).^2)))); 

Tp(i,j)=T0+(q(i,j)./(4*pi*kg)).*A(i,j); 

    Tf(i,j)=Tp(i,j)+(Tin(j)-Tp(i,j)).*exp(-i./(ma*cpa*Rp)); 

    end  

end 
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3.3  Implementation of the semi-analytical model 

In this stud, both semi-analytical RBM and GRBM models has been programmed in 

MATLAB. The RBM model computes the soil temperature, while the GRBM model calculates 

the fluid temperature based on the RBM model.  

 RBM model implementation 

t=0;r=r1;rd=rsoil;rindex=1;  

for j=1:time_inf 

    t=t+3600;   

                for i=1:n_division 

                        r=r+dr; 

                         A=0; 

                        %% 

                        for n=1:40                             

              aa(n)=pi*(4*n-

1);J0z(n)=(aa(n)/4)*(1+(2/aa(n)^2)-

62/(3*aa(n)^4)+7558/(15*aa(n)^6)); 

              Bn(n)=(J0z(n))/rinf; 

              A=A+(1-exp(-

alpha*(Bn(n)^2)*t))/(Bn(n)^2)*(besselj(0,Bn(n)*r)*besselj(0,Bn

(n)*r1))/(besselj(1, Bn(n)*rinf)^2); 

                        end 

                         

                 T(i)=((2*(Tf-

T0)./(log(rd/r1).*rinf^2))*A)+T0; 

                        if T(i)==(T0) 

                            if rindex==1 

                                rsoil=r; 

%                                 rd=r; 

                                rindex=0; 

                            else  

                                if r < rinf 

                                    TT(i)=T(i); 

                                else 

                                    if t <= tinf 

                                        rd=rsoil; 

                                    end 

                                end 

                            end 

                        end  

              

                TT(i,j)=T(i); 

                end  

  

                 r=r1-dr; 

                rindex=1;                
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end 

For validation of the RBM model we used the results of the finite difference method 

obtained by Barkat et al.,[45] and presented by Rouag et al., [24].  

Tableau 1: Input parameters for the comparative verification with Barakat et al. 

 

Table 1 gives the detailed input parameters of soil, pipe and time functioning used in 

the numerical simulation of Barakat et al. [45], (reported from Rouag et al., [24]) . Figure 16 

shows that there is a good agreement between the soil radial temperature predicted by the RBM 

model with the numerical results of Barakat et al. After 12 h of operation, the soil reaches to 

the initial temperature at range of 0.5m from the pipe surface. 

 

Figure 16: Reverification of the RBM model with the work of Barakat et al. [45]. 

 GRBM model implementation  

t=0;r=r1;rd=rsoil;rindex=1;dx=1;  

for j=1:time_inf 

    t=t+3600;   
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    for k=2:47 

        x=k*dx; 

         T_a(1,j)=T_amp(j); 

                for i=1:n_division 

                        r=r+dr; 

                         A=0; 

                        %% 

                        for n=1:40                             

              aa(n)=pi*(4*n-

1);J0z(n)=(aa(n)/4)*(1+(2/aa(n)^2)-

62/(3*aa(n)^4)+7558/(15*aa(n)^6)); 

              Bn(n)=(J0z(n))/rinf; 

              A=A+(1-exp(-

alpha*(Bn(n)^2)*t))/(Bn(n)^2)*(besselj(0,Bn(n)*r)*besselj(0,Bn

(n)*r1))/(besselj(1, Bn(n)*rinf)^2); 

                        end 

                         

                 T(i)=((2*(T_f(j)-

T0)./(log(rd/r1).*rinf^2))*A)+T0; 

                        if T(i)==(T0) 

                            if rindex==1 

                                rsoil=r; 

%                                 rd=r; 

                                rindex=0; 

                            else  

                                if r < rinf 

                                    TT(i)=T(i); 

                                else 

                                    if t <= tinf 

                                        rd=rsoil; 

                                    end 

                                end 

                            end 

                        end  

              

                TT(i,j)=T(i); 

                end  

  

                 r=r1-dr; 

                rindex=1; 

     

     

    Rs=(log(rd/r1))/(2*pi*lambda);% eq11 

        R_tot=Rcv+Rp+Rs; 

        b=exp(-1/(rho_a*cp_a*S*V_a.*R_tot));  

  

        T_a(k,j)=(T_a(k-1,j)-T0).*b+T0 ;     

       

    end       

end 
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3.4  CFD modeling 

As we have seen in the previous chapter, the mathematical model of the turbulent flows 

around through the EAHE, which is described by the Navier-Stokes equations, is very complex. 

To solve such a model, an already existing CFD software is required. Certain conditions are 

required in the software to be exploited: (recognized worldwide, reliability, flexibility…). The 

ANSYS FLUENT (CFD software) meets all these criteria. In this study the ANSYS FLUENT 

2020 R1 academic version (for students) has been used for CFD simulation of the EAHE. 

 Geometry design  

In this study, the geometry of the EAHE represents as a cylindrical pipe of length L and 

diameter D. The soil surrounding of this pipe has a cylindrical shape of diameter equals the 

diameter of the EAHE, D. The computational domain contains two main parts: the first one is 

related to the bare soil for initial conditions calculations and the second one is devoted to the 

ground heat exchanger. The resolution of equations for both parts together is based on an 

iterative mathematical procedure using ANSYS FLUENT. 

 

Figure 17: Geometry of the EAHE and surrounding soil in ANSYS Workbench. 
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 Mesh generation  

The mesh generation methodology used in this study is based on the work of Michel et 

al., [46], whose recommended to devise the fluid domain in the pipe into size of 4 × 𝐷/17, and 

the solid domain of 12 × 𝐷/17 size, were D is the heat exchanger diameter. This led to our 

mesh contains about 300,000 elements in the full computational domain. In addition, prismatic 

layers have been constructed near the pipe wall using the inflation technique for taking into 

account the wall-fluid boundary layer interaction.  

 

 

Figure 18: Mesh generation using ANSYS Workbench.  
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 Discretization of equations 

The ANSYS FLUENT software is based on the finite volume method to solve the 

governing equations of fluid flows. A brief description of the general steps in the solver and 

algorithms used for solving the Navier-Stokes equations will be presented in this section. The 

Finite Volume Method (FVM) is among of widely used methods to discretization of the 

equations in CFD codes. This method which firstly published in 1972 by Patankar and Spalding 

[47, 48] uses a control-volume-based technique to convert the governing equations to algebraic 

equations that can be solved numerically. This control volume technique consists of integrating 

the governing equations about each control volume, yielding discrete equations that conserve 

each quantity on a control-volume basis. Discretization of the governing equations can be 

illustrated most easily by considering the steady-state conservation equation for transport of a 

scalar quantity 𝜙. This is demonstrated by the following equation written in integral form for 

an arbitrary control volume 𝑉 as follows: 

 
∮𝜌𝜙𝑣⃗. 𝑑𝐴 = ∮Γ𝜙∇𝜙. 𝑑𝐴 +∫ 𝑆𝜙𝑑𝑉

𝑉

 Eq.  112 

 

Where:     𝜌 is the density; 

       𝑣⃗ is the velocity vector (𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘⃗⃗); 

      𝐴 is surface area vector; 

      Γ𝜙 is diffusion coefficient for variable 𝜙 ; 

    ∇𝜙  is gradiant of 𝜙, [∇𝜙 = (𝜕𝜙/𝜕𝑥)𝑖 + (𝜕𝜙/𝜕𝑦)𝑗 + (𝜕𝜙/𝜕𝑧)𝑘⃗⃗]; 

      𝑆𝜙 is source term of 𝜙 per unit volume. 

For illustration the way of discretization of equations using the control-volume-based 

technique, as an example, the discretization of equation for a 2-D triangle cell shown in Figure 

19 is given by [49, 50]: 
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∑ 𝜌𝑖𝜙𝑖𝑣⃗𝑖. 𝐴𝑖 = ∑ Γ𝜙(∇𝜙)𝑛. 𝐴𝑖 + 𝑆𝜙𝑉

𝑁𝑓𝑎𝑐𝑒𝑠

𝑖

𝑁𝑓𝑎𝑐𝑒𝑠

𝑖

 
Eq.  113 

 

Where:  𝑁𝑓𝑎𝑐𝑒𝑠 is the number of faces enclosing cell; 

𝜙𝑖 is the value of 𝜙 convected through face 𝑖; 

𝜌𝑖𝑣⃗𝑖. 𝐴𝑖 is the mass flux through the face; 

𝐴𝑖 is the area of face 𝑖, |𝐴| = |𝐴𝑥𝑖 + 𝐴𝑦𝑗 + 𝐴𝑧 𝑘⃗⃗| ; 

(∇𝜙)𝑛 is the magnitude of ∇𝜙 normal to the face 𝑖;  

 𝑉 is the cell volume. 

 

Figure 19: Example of a 2-D triangular control volume. 

The equations solved by the solver take the same general form as the one given above 

and apply readily to three-dimensional for each flow variables. The discrete values of the scalar 

𝜙 are stored at the cell centers (𝑐0 and 𝑐1 in Figure 19). However, face values 𝜙𝑖 are required 

for the convection terms in Eq. (113) and must be interpolated from the cell center values. 

The most obvious way of obtaining cell-face values is to us linear interpolation between 

cell centers. This technique known as the central differencing scheme. For the convected 

velocities in the convection term, this treatment will result in erroneous results [51]. A well-

known technique solution the so-called upwind scheme for getting around these difficulties has 

been developed. 

Cell Centre  

𝑖 

Cell Face  
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Upwinding means that the face value 𝜙𝑖 is derived from quantities in the cell upstream, 

or «upwind», relative to the direction of the normal velocity 𝑣𝑛 in Eq. (113). Several schemes 

exist; the most used are the first-order upwind and second-order upwind. These two mostly used 

schemes are described in the following section.  

3.4.3.1 First-order upwind 

In first-order upwind scheme, quantities at cell faces are determined by assuming that 

the cell-center values of any field variable represent a cell-average value and hold throughout 

the entire cell; the face quantities are identical to the cell quantities. Thus, when first-order 

upwinding is selected, the face value 𝜙𝑖 is set equal to the cell-center value of 𝜙 in the upstream 

cell. Among of advantages of this scheme it's easily to converge, however, it less accurate than 

second-order upwind scheme [52]. The first-order upwind scheme is limited for the simple 

flows that are aligned with the mesh especially where the numerical diffusion are low [50]. 

3.4.3.2 Second-order upwind 

In second-order upwind scheme, quantities at cell faces are computed using a 

multidimensional linear reconstruction approach. In this approach, higher-order accuracy is 

achieved at cell faces through a Taylor series expansion of the cell-centered solution about the 

cell centroid [53]. The face value 𝜙𝑖 is computed in the second-order upwind scheme using the 

following expression: 

 𝜙𝑖 = 𝜙 + ∇𝜙. Δ𝑠 
Eq.  114 

 

Where 𝜙 and ∇𝜙 are the cell-centered value and its gradient in the upstream cell, and 

Δ𝑠 is the displacement vector from the upstream cell centroid to the face centroid. This 

formulation requires the determination of the gradient ∇𝜙 in each cell. This gradient is 

computed using the divergence theorem as: 

 

∇𝜙 =
1

𝑉
∑ 𝜙̃𝑖𝐴

𝑁𝑓𝑎𝑐𝑒𝑠

𝑖

 
Eq.  115 
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Here the face values 𝜙̃𝑖 are computed by averaging 𝜙 from the two cells adjacent to the 

face. The second-order upwind is the most accurate scheme, however it has been shown that it 

can gives a problem convergence in several applications [51]. 

In this study, the momentum equations and energy equation are discretized using 

second-order upwind scheme, while the turbulence transport equations are discretized using 

first-order upwind scheme due to the convergence problem. 

 Pressure interpolation schemes 

The conservation equations described in the previous section are applied to each control 

volume in the computational domain. All dependent variables (𝑢, 𝑣, 𝑤, T, 𝑝, 𝑘, ϵ) are stored in 

the center of the control volume. However, the value of the pressure on the faces is necessary 

for the resolution of the equation of momentum for incompressible flows where no equation of 

state exists for pressure. Therefore, an interpolation scheme should be used to determine the 

pressure from the values at the center of the cells. This can be done using one of the following 

schemes available in ANSYS FLUENT: 

3.4.4.1 Linear  

Linear interpolation scheme computes the pressure on the face by averaging the 

pressures of the adjacent control volumes. 

3.4.4.2 Second order  

In the second order scheme [53], the pressure is reconstructed on the face using a central 

differencing scheme. This interpolation can provides an improvement of results, but it has been 

shown that it has convergence problems when is used especially at the beginning of the 

calculations [50]. 

3.4.4.3 PRESTO  

PRISTO (PREssure Staggering Option) uses the discrete continuity balance for a 

“staggered” control volume about the face to compute the “staggered” (that is, face) pressure. 

This procedure is similar in spirit to the staggered-grid schemes used with structured meshes 

[48]. This interpolation is only implemented for quadrilateral or hexahedral control volumes. 
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3.4.4.4 Body Force Weighted  

The Body Force Weighted scheme computes the face pressure by assuming that the 

normal gradient of the difference between pressure and body forces is constant. This 

interpolation is recommended when body forces are large, e.g., high Rayleigh natural 

convection or highly swirling flows. 

3.4.4.5 Standard 

In the Standard scheme [54], the pressure values are interpolated to the faces using the 

coefficients of the discretized equation of momentum. This interpolation is the simplest and the 

best especially when the pressure variation between two control volumes is small. In this study, 

the Standard scheme has been used for all studied cases. 

 Pressure-Velocity coupling 

In fact, the numerically solving of the Navier-Stokes equations discretized system 

presents two difficulties: 

(i) The non-linearity of the convective terms in the momentum equations. 

(ii) In the source term, the pressure field is not known and it there is no governing 

equation for the pressure field.  

The three equations of the momentum are coupled; each component of velocity appears 

in each momentum equation and in the continuity equation. The pressure gradient is part of the 

source term of the momentum equation. The pressure field is indirectly specified via the 

continuity equation. Therefore, the coupling between the pressure and the velocity will 

introduce a constraint in the solution of the flow field: if a correct pressure field is applied to 

the momentum equations, the resulting velocity field must satisfy the continuity equation [55].  

All the difficulties outlined above will be overcome by the use of an iterative procedure. 

The role of pressure-velocity coupling is so to obtain a pressure equation from the discrete 

continuity equation. Several algorithms are available for achieve this purpose. In following 

sections, SIMPLE, SIMPLEC and Coupled algorithms will be presented. 
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3.4.5.1 SIMPLE/SIMPLEC algorithms 

The SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked Equations) which 

has been proposed by Patankar and Spalding [47], is the first version of pressure-velocity 

coupling algorithms. This algorithm uses a relationship between velocity and pressure 

corrections to enforce mass conservation and to obtain the pressure field. The iterative 

procedure of this algorithm starts with the estimation of pressure. Then, an approximation of 

the velocity field is obtained by solving the momentum equation. The pressure gradient term is 

calculated using the pressure distribution from the previous iteration or an initial guess. 

Thereafter, the pressure equation is formulated and solved in order to obtain the new pressure 

distribution. Finally, velocities are corrected and a new set of conservative fluxes is calculated. 

In the SIMPLE algorithm, the discretized momentum equation and pressure correction 

equation are solved implicitly, where the velocity correction is solved explicitly. This is the 

reason why it is called "Semi-Implicit Method". Among the disadvantages of this algorithm, 

the divergence in the case where the corrections are too fast, and also since this algorithm is 

based on the estimating of pressure field, it is required an important number of iterations [49, 

55]. 

Several algorithms have been developed to improve the SIMPLE algorithm. Among of 

improved algorithms from the original SIMPLE algorithm, the SIMPLEC (SIMPLE 

Consistent) algorithm which was developed by Van Doormal and Raithby [56]. The steps of 

this algorithm are almost the same as those of the SIMPLE algorithm where the difference that 

in the speed correction equations neglects the least significant terms. It has been shown that the 

SIMPLEC algorithm is the most suitable for a lager of applications and it can gives a converged 

solution more quickly than SIMPLE algorithm [50, 52].  

3.4.5.2 Coupled algorithm  

In the previous presented algorithms, the momentum equation and pressure correction 

equations are solved separately. This type of coupling called the pressure-based segregated 

algorithm. Among disadvantages of those algorithms, the slow of the convergence. Another 

alternative available based on the coupled approach is developed called pressure-based coupled 

algorithm [50] developed by FLUENT’s team. The coupled algorithm solves the momentum 

and pressure-based continuity equations together. The full implicit coupling is achieved through 
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an implicit discretization of pressure gradient terms in the momentum equations, and an implicit 

discretization of the face mass flux. This approach offers some advantages over the non-coupled 

or segregated approach and it has been shown it is the most robust and appropriate especially 

for steady-state simulations [57]. 

In this study, in first step, the comparison between SIMPLE, SIMPLEC and coupled 

algorithms was performed to resolve the Pressure-Velocity coupling equations. It was found 

that the coupled algorithm allows accelerating the convergence of solutions by 25%. Therefore, 

the coupled algorithm was used in the present study.  

 Boundary conditions  

Setting the correct boundary conditions is a very important step for any numerical study. 

These boundary conditions must be very close to the reality of the studied physical 

phenomenon. However, due to the complicated of those phenomena, simplifications of the 

boundary conditions are needed. For EAHE applications, since the velocity of air is habitually 

quite low compared to sound speed, where the Mach number does not exceed 0.3. Therefore, 

the flow is considered as incompressible, and its properties as constants. The boundary 

conditions used in the present study, can be summarized as follow: 

(i) Velocity inlet: at the inlet of the EAHE pipe, the velocity can be assumed constant.  

(ii) Outflow: in the outlet boundary, were the pressure and temperature are not known, 

the outflow boundary condition is more suitable for this case. This boundary applies 

a zero-flux normal to the outlet surface for compute all problem variables. 

(iii) Wall: for the wall of the pipe and for the soil domain, the wall boundary condition 

has been utilized, this applies a no-slip condition (velocity null) at the pipe wall. For 

the soil, a constant temperature has been applied (undistributed temperature T0).   

The ANSYS FLUENT solves the fluid domain by solving the Navier-Stokes equations, 

and the soil domain by solving the heat equation of conduction.  
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Results and Discussion  

4.1  Description of the experimental EAHE setup  

 The experimental of short-time scale EAHE used here for validation of the methods was 

carried out by Moummi's team in the University of Biskra (34°47’N - 5°43’E) in 2009. And 

reperformed in May 2nd, 2013. As presented in the Figure 20, the experimental EAHE 

configuration is a horizontal serpentine shape of cylindrical PVC pipe of 110 mm inner diameter 

and 47 m of length. The whole is buried at a depth of 3 m under a slope of 2% for the evacuation 

of condensed air. The horizontal serpentine sections of the pipe are spaced by a distance of 

about 2m. The outlet of the horizontal pipe is connected to a variable flow air extractor through 

a vertical pipe. Fourteen thermocouples have been used to measure temperature of the air along 

the horizontal pipe (denoted as Tin, T1, T2, ..., T14). These thermocouples are inserted at different 

positions along the horizontal pipe length (Figure 21). The main characteristics of the EAHE 

components and the technical specifications of measurement equipment's are available in the 

reference [25]. 

 

Figure 20 : Photos of the experimental EAHE setup in the University of Biskra: (a) hole with 

a serpentine shape; (b) buried horizontal PVC pipe with thermocouples. 
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Figure 21: Scheme shows the position of thermocouples measuring air flow temperatures 

(Tin, T1, T2, ..., T14) with the following distances (from the EAHE inlet): 0, 63, 469, 872, 

1089,1304, 1707, 2337, 2607, 3010, 3400, 3589, 3782, 4210, 4700 cm. 

Experiments were performed at the Biskra University on May 2nd, 2013 from 09:45 to 

15:45. Temperatures are measured each 15 min for a constant air flow velocity of 3.5 m/s. The 

experimental measurements of air temperatures obtained from the fourteen thermocouples are 

presented in Figure 22. 

 

Figure 22: Variation of EAHE temperature with time at different positions. 



   Chapter 4. Results and discussion  

69 

4.2  Determination of the undistributed soil temperature  

 In order to determine the undistributed soil temperature in the Biskra region (34°47’N - 

5°43’E), we used the Kusuda equation (Eq. 14 in chapter 2). The Kusuda equation needs the 

amplitude (Tamp), average temperature (Tmean) and tshift as input parameters. These informations 

can be obtained from metrological conditions. For this purposes, we used the daily average 

temperature measured by NASA for the year of 2014 [58]. The used ambient temperature 

distributions are presented in Figure 23. Here, Tmean  is the soil’s average temperature (°C), Tamp 

is the amplitude of surface temperature (°C) calculated using ((Tmax – Tmin)/2); Tmax is the 

maximal ambient temperature (°C) and Tmin is the minimal ambient temperature (°C) and tshift 

is the day of the year with the minimum temperature value of the surface. 

 

Figure 23: Variation of the min, max and average temperature at the level of 2 m, measured 

for Biskra region by [58]. 

Figure 24 presents the distribution of the soil temperature with depth for different days 

of seasonal transformations (21th January, March, June, September and December) calculated 

using Kusuda equation based on the data presented in the Figure 23. From Figure 24, it can be 

seen than the undistributed temperature of the soil reams constant throng the year (around of 

22.5 °C).  It can be observed also from the figure, in the summer season (June for example), the 

temperature of the ground surface reaches 45 °C and it decreases rapidly with the depth. On the 

other hand, in the winter season (January for example), the ground temperature at the surface 

is cool around of 0 °C and it increases with the depth. The undistributed temperature of the 
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ground leads to the possibility of exploiting the earth’s underground temperature for cooling 

and heating. 

 

Figure 24: Distribution of the ground temperature with depth simulated for Biskra region 

using Kusuda equation.  

4.3  Analytical simulations  

 ICS model 

In order to validate the analytical, semi-analytal and CFD models, with the experimental 

results descriped above, a horizontal  EAHE of 47 m of length and 0.22 m of diameter has been 

simulation. Table 2 presentes the physical and thermal properties of air, pipe and soil used in 

the validation. 

Tableau 2 : Physical and thermal properties of air, pipe and soil used in the validation [25]. 

 Density (kg/m3) Specific heat 

Capacity (J/Kg.K) 
Thermal 

Conductivity 

(W/m.K) 

Air 1.225 1005 0.0242 

Soil 1800 1340 1.5 

Pipe (PVC) 1380 900 0.16 

Figure  25 presents the variation of the air temperature with the pipe position for 

different time calculated using ICS model. It can be observed that with the increase in hours, 
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the air temperature decreases especially in the first part of the EAHE. However, the variation 

at the outlet part is very small due to the continuous operation and the length of the heat 

exchanger.  

Figure 26 shows the evolution of the ICS predicted air temperature along the pipe 

compared to the experimental results after different hours of functioning. It is noticed that the 

ICS model curves are fairly consistent with the experimental data.  

Figure 27 presents the variation of the outlet temperature with operation time. The 

curves of ICS and experimental data seem in good agreement. However, the ICS under 

predicted slightly the outlet temperature especially in the outlet part of the exchanger.  

Table 3 shows the validation of the ICS model air temperatures with the experimental 

measurements carried out in the University of Biskra (May 2nd, 2013). With the increase in the 

time, the relative error increases. The minimum error is 1.38 %, where the maximum error is 

around of 2.66 %.  

 

Figure 25: Variation of the air temperature with EAHE length, calculated using ICS model. 
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Figure 26: Validation of the ICS model with experimental results after different hours of 

functioning.  

 



   Chapter 4. Results and discussion  

73 

Tableau 3: Validation of the ICS model air temperatures with the experimental 

measurements carried out in the University of Biskra (May 2nd, 2013). 

Time  

(HH: MM) 

Duration 

(Hours) 

Tin 

(°C) 

Tout Exp 

(°C) 

Tout ICS 

(°C) 

Relative 

error (%) 

09:45 0 30 22.9    22.5492     1.3889 
10:00 ¼ 29.5 22.9    22.5459     1.3889 
10:15 ½ 30.3 22.9    22.5511     1.3889 
10:30 ¾ 31.3 23    22.5577     1.8176 
10:45 1 30.4 23    22.5518     1.8176 
11:00 1¼ 31.4 23    22.5583     1.8176 
11:15 1½ 30.5 23    22.5524     1.8176 
11:30 1¾ 31.6 23    22.5597     1.8176 
11:45 2 32.9 23.1    22.5682     2.2427 
12:00 2¼ 32.5 23.1    22.5656     2.2427 
12:15 2½ 32.8 23.1    22.5675     2.2427 
12:30 2¾ 32.6 23.1    22.5662     2.2427 
12:45 3 33.7 23.1    22.5734     2.2427 
13:00 3¼ 34.4 23.1    22.5780     2.2427 
13:15 3½ 34.4 23.1    22.5780     2.2427 
13:30 3¾ 33.7 23.2    22.5734     2.6640 
13:45 4 33.4 23.2    22.5715     2.6640 
14:00 4¼ 32.4 23.2    22.5649     2.6640 
14:15 4½ 34.5 23.2    22.5787     2.6640 
14:30 4¾ 34 23.2    22.5754     2.6640 
14:45 5 34 23.2    22.5754     2.6640 
15:00 5¼ 34.3 23.2    22.5774     2.6640 
15:15 5½ 35.3 23.2    22.5839     2.6640 
15:30 5¾ 35 23.2    22.5819     2.6640 
15:45 6 35 23.2    22.5819     2.6640 
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Figure 27: Variation of the outlet temperature with time of operation, validation of the ICS 

model with experimental data. 

 ILS model  

Figure  28 presents the variation of the air temperature with the pipe length for different 

operation time, calculated using IFS model. It can be observed that with the increase in hours, 

the air temperature decreases especially in the first part of the exchanger. However, the variation 

at the outlet part is very small due to the continuous operation and the length of the heat 

exchanger.  

Figure 29 presents the variation of the outlet temperature with operation time. The 

curves of IFS and experimental data seem in good agreement. However, the IFS under predicted 

slightly the outlet temperature especially in the outlet part of the exchanger.  

Figure 30 shows the evolution of the IFS predicted air temperature along the pipe 

compared to the experimental results after different hours of functioning. It is noticed that the 

IFS model curves are in good agreements with experimental data.  

Table 4 shows the validation of the IFS model air temperatures with the experimental 

measurements carried out in the University of Biskra. With the increase in the time, the relative 

error slightly increases. The minimum error is 1.29 %, where the maximum error is around of 

2.57 %.   



   Chapter 4. Results and discussion  

75 

 

Figure 28: Variation of the air temperature with EAHE length, calculated using ILS model. 

 

Figure 29: Variation of the outlet temperature with time of operation, validation of the ILS 

model with experimental data. 
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Figure 30: Validation of the ILS model with experimental results after different hours of 

functioning. 
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Tableau 4: Validation of the ILS model air temperatures with the experimental measurements 

carried out in the University of Biskra (May 2nd, 2013). 

Time  

(HH: MM) 

Duration 

(Hours) 

Tin 

(°C) 

Tout Exp 

(°C) 

Tout ILS 

(°C) 

Relative 

error (%) 

09:45 0 30 22.9    22.5540     1.2938 
10:00 ¼ 29.5 22.9    22.5467     1.2938 
10:15 ½ 30.3 22.9    22.5540     1.2938 
10:30 ¾ 31.3 23    22.5626     1.7230 
10:45 1 30.4 23    22.5581     1.7230 
11:00 1¼ 31.4 23    22.5662     1.7230 
11:15 1½ 30.5 23    22.5613     1.7230 
11:30 1¾ 31.6 23    22.5699     1.7230 
11:45 2 32.9 23.1    22.5798     2.1484 
12:00 2¼ 32.5 23.1    22.5779     2.1484 
12:15 2½ 32.8 23.1    22.5808     2.1484 
12:30 2¾ 32.6 23.1    22.5801     2.1484 
12:45 3 33.7 23.1    22.5885     2.1484 
13:00 3¼ 34.4 23.1    22.5941     2.1484 
13:15 3½ 34.4 23.1    22.5947     2.1484 
13:30 3¾ 33.7 23.2    22.5904     2.5702 
13:45 4 33.4 23.2    22.5888     2.5702 
14:00 4¼ 32.4 23.2    22.5822     2.5702 
14:15 4½ 34.5 23.2    22.5976     2.5702 
14:30 4¾ 34 23.2    22.5945     2.5702 
14:45 5 34 23.2    22.5949     2.5702 
15:00 5¼ 34.3 23.2    22.5975     2.5702 
15:15 5½ 35.3 23.2    22.6051     2.5702 
15:30 5¾ 35 23.2    22.6033     2.5702 
15:45 6 35 23.2    22.6037     2.5702 

 

 FLS model 

Figure  31 presents the variation of the air temperature with the pipe length for different 

operation time, calculated using FLS model. It can be observed that with the increase in hours, 

the air temperature decreases especially in the first part of the exchanger. However, the variation 

at the outlet part is very small due to the continuous operation and the length of the heat 

exchanger.  

Figure 32 shows the evolution of the FLS predicted air temperature along the pipe 

compared to the experimental results after different hours of functioning. It is noticed that the 

FLS model curves are in good agreements with experimental data.  



   Chapter 4. Results and discussion  

78 

Figure 33 presents the variation of the outlet temperature with operation time. The 

curves of IFS and experimental data seem in good agreement. However, the FLS under 

predicted slightly the outlet temperature especially in the outlet part of the exchanger.  

Table 5 shows the validation of the FLS model air temperatures with the experimental 

measurements carried out in the University of Biskra. With the increase in the time, the relative 

error slightly increases. The minimum error is 1.38 %, where the maximum error is around of 

2.66%.   

 

Figure 31: Variation of the air temperature with EAHE length, calculated using FLS model. 
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Figure 32: Validation of the FLS model with experimental results after different hours of 

functioning. 
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Tableau 5: Validation of the FLS model air temperatures with the experimental 

measurements carried out in the University of Biskra (May 2nd, 2013). 

Time  

(HH: MM) 

Duration 

(Hours) 

Tin 

(°C) 

Tout Exp 

(°C) 

Tout FLS 

(°C) 

Relative 

error (%) 

09:45 0 30 22.9    22.6059     1.3888 
10:00 ¼ 29.5 22.9    22.5537     1.3888 
10:15 ½ 30.3 22.9    22.5542     1.3888 
10:30 ¾ 31.3 23    22.5590     1.8175 
10:45 1 30.4 23    22.5523     1.8175 
11:00 1¼ 31.4 23    22.5586     1.8175 
11:15 1½ 30.5 23    22.5526     1.8175 
11:30 1¾ 31.6 23    22.5597     1.8175 
11:45 2 32.9 23.1    22.5682     2.2426 
12:00 2¼ 32.5 23.1    22.5656     2.2426 
12:15 2½ 32.8 23.1    22.5675     2.2426 
12:30 2¾ 32.6 23.1    22.5662     2.2426 
12:45 3 33.7 23.1    22.5734     2.2426 
13:00 3¼ 34.4 23.1    22.5780     2.2426 
13:15 3½ 34.4 23.1    22.5780     2.2426 
13:30 3¾ 33.7 23.2    22.5734     2.6640 
13:45 4 33.4 23.2    22.5715     2.6640 
14:00 4¼ 32.4 23.2    22.5649     2.6640 
14:15 4½ 34.5 23.2    22.5787     2.6640 
14:30 4¾ 34 23.2    22.5754     2.6640 
14:45 5 34 23.2    22.5754     2.6640 
15:00 5¼ 34.3 23.2    22.5774     2.6640 
15:15 5½ 35.3 23.2    22.5839     2.6640 
15:30 5¾ 35 23.2    22.5820     2.6640 
15:45 6 35 23.2    22.5820     2.6640 
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Figure 33: Variation of the outlet temperature with time of operation, validation of the FLS 

model with experimental data. 

  

4.4  Semi-analytical model  

Figure  34 presents the variation of the air temperature with the pipe length for different 

operation time, calculated using GRBM model. It can be observed that with the increase in 

hours, the air temperature decreases especially in the first part of the exchanger. However, the 

variation at the outlet part is very small due to the continuous operation and the length of the 

heat exchanger.  

Figure 35 presents the variation of the outlet temperature with operation time. The 

curves of GRBM and experimental data seem in good agreement.  

Figure 36 shows the evolution of the GRBM predicted air temperature along the pipe 

compared to the experimental results after different hours of functioning. It is noticed that the 

GRBM model curves are in good agreements with experimental data.  

Table 6 shows the validation of the GRBM model air temperatures with the 

experimental measurements carried out in the University of Biskra. With the increase in the 

time, the relative error slightly increases. The minimum error is 0.48 %, where the maximum 

error is around of 0.82%. 
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Figure 34: Variation of the air temperature with EAHE length, calculated using GRBM 

model. 

 

 

Figure 35: Variation of the outlet temperature with time of operation, validation of the 

GRBM model with experimental data. 
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Figure 36: Validation of the GRBM model with experimental results after different hours of 

functioning. 
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Tableau 6: Validation of the GRBM model air temperatures with the experimental 

measurements carried out in the University of Biskra (May 2nd, 2013). 

Time  

(HH: MM) 

Duration 

(Hours) 

Tin 

(°C) 

Tout Exp 

(°C) 

Tout 

GRBM 

(°C) 

Relative 

error (%) 

09:45 0 30 22.9    22.8060     0.4801 
10:00 ¼ 29.5 22.9    22.7856     0.4801 
10:15 ½ 30.3 22.9    22.8182     0.4801 
10:30 ¾ 31.3 23    22.8590     0.0432 
10:45 1 30.4 23    22.8223     0.0432 
11:00 1¼ 31.4 23    22.8631     0.0432 
11:15 1½ 30.5 23    22.8264     0.0432 
11:30 1¾ 31.6 23    22.8712     0.0432 
11:45 2 32.9 23.1    22.9243     0.3899 
12:00 2¼ 32.5 23.1    22.9079     0.3899 
12:15 2½ 32.8 23.1    22.9202     0.3899 
12:30 2¾ 32.6 23.1    22.9120     0.3899 
12:45 3 33.7 23.1    22.9569     0.3899 
13:00 3¼ 34.4 23.1    22.9855     0.3899 
13:15 3½ 34.4 23.1    22.9855     0.3899 
13:30 3¾ 33.7 23.2    22.9569     0.8193 
13:45 4 33.4 23.2    22.9447     0.8193 
14:00 4¼ 32.4 23.2    22.9039     0.8193 
14:15 4½ 34.5 23.2    22.9895     0.8193 
14:30 4¾ 34 23.2    22.9691     0.8193 
14:45 5 34 23.2    22.9691     0.8193 
15:00 5¼ 34.3 23.2    22.9814     0.8193 
15:15 5½ 35.3 23.2    23.0222     0.8193 
15:30 5¾ 35 23.2    23.0099     0.8193 
15:45 6 35 23.2    23.0099     0.8193 

 

 

4.5  CFD model  

Figure  37 presents the variation of the air temperature with the pipe length for different 

operation time, calculated using the transient CFD model (time step = 30s, simulation time= 6 

hours). It can be observed that with the increase in hours, the air temperature decreases 

especially in the first part of the exchanger.  
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Figure 38 shows the evolution of the CFD predicted average air temperature along the 

pipe compared to the experimental results after different hours of functioning. It is noticed that 

the CFD model curves are in good agreements with experimental data.  

Figure 39 presents the variation of the outlet temperature with operation time. The 

curves of CFD and experimental data seem in good agreement.  

Table 7 shows the validation of the CFD model air temperatures with the experimental 

measurements carried out in the University of Biskra. With the increase in the time, the relative 

error slightly increases. The minimum error is very small around of 0.19%, where the maximum 

error is around of 0.67%. 

 

Figure 37: Variation of the air temperature with EAHE length, calculated using CFD model. 
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Figure 38: Validation of the CFD model with experimental results after different hours of 

functioning. 
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Tableau 7: Validation of the CFD model air temperatures with the experimental 

measurements carried out in the University of Biskra (May 2nd, 2013). 

Time  

(HH: MM) 

Duration 

(Hours) 

Tin 

(°C) 

Tout Exp 

(°C) 

Tout CFD 

(°C) 

Relative 

error (%) 

09:45 0 30 22.9    22.8501 - 
10:00 ¼ 29.5 22.9    22.8297     0.6729 
10:15 ½ 30.3 22.9    22.8624     0.6729 
10:30 ¾ 31.3 23    22.9032     0.6729 
10:45 1 30.4 23    22.8664     0.2352 
11:00 1¼ 31.4 23    22.9072     0.2352 
11:15 1½ 30.5 23    22.8705     0.2352 
11:30 1¾ 31.6 23    22.9154     0.2352 
11:45 2 32.9 23.1    22.9684     0.2352 
12:00 2¼ 32.5 23.1    22.9521     0.1987 
12:15 2½ 32.8 23.1    22.9643     0.1987 
12:30 2¾ 32.6 23.1    22.9562     0.1987 
12:45 3 33.7 23.1    23.0011     0.1987 
13:00 3¼ 34.4 23.1    23.0296     0.1987 
13:15 3½ 34.4 23.1    23.0296     0.1987 
13:30 3¾ 33.7 23.2    23.0011     0.1987 
13:45 4 33.4 23.2    22.9888     0.6289 
14:00 4¼ 32.4 23.2    22.9480     0.6289 
14:15 4½ 34.5 23.2    23.0337     0.6289 
14:30 4¾ 34 23.2    23.0133     0.6289 
14:45 5 34 23.2    23.0133     0.6289 
15:00 5¼ 34.3 23.2    23.0255     0.6289 
15:15 5½ 35.3 23.2    23.0663     0.6289 
15:30 5¾ 35 23.2    23.0541     0.6289 
15:45 6 35 23.2    23.0541     0.6289 
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Figure 39: Variation of the outlet temperature with time of operation, validation of the CFD 

model with experimental data. 

4.6  Comparisons of results 

To properly examine the accuracy of the studied models on the thermal prediction of 

the EAHE. We presented the comparison of the local relative error computed for each model 

based on the outlet temperature (Figure 40), and the comparison of the outlet air temperature 

(Figure 41). From these figures, it is clear that all studied models give an acceptable results and 

good agreement with the experimental, were the maximum relative error not exceed 3% in all 

studied cases. However, there are an important difference between the prediction of the studied 

models. The analytical models (ICS, ILS and FLS) give almost the same level of accuracy, 

where the error increases with the time. It has been observed also that both GRBM and CFD 

give similar predictions, where the error is almost constant. The results obtained by the CFD 

model is closest to the experimental results, where the error not exceed 0.6 %.  
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Figure 40: Comparaison of local relative error computed using different models. 

 

Figure 41: Outlet air temperature variation after 6 hours of operation, comparison between 

analytical, semi-analytical and CFD methods. 

  

Table 8 presents the comparison of the minimum and the maximum relative error 

calculated for the five studied models. It has been found that analytical models (ILS, FLS and 
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ICS) give some error range. Accordioning to the accuracy of predictions, the studied models 

are classified from 1 to 5. In the first place comes the CFD model (range 0.19-0.67%), then the 

semi-analytical model is classified in the second place (error varied from 0.48-0.81%). The 

analytical models are categorized in the third place with an error interval varied from 1.38 to 

2.66%. However, due to slight difference between results, ILS model is more accurate than 

other models (FLS and CLS). 

Tableau 8: Comparison of min and max relative errors. 

Method Minimum relative 

error (%) 

Maximum relative 

error (%) 

Classification 

ICS 1.3889 2.6640 5 

ILS 1.2938 2.5702 3 

FLS 1.3888 2.6640 4 

GRBM 0.4801 0.8193 2 

CFD 0.1987 0.6729 1 
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Conclusion  

The study presented in this thesis focuses on transient analytical and numerical 

simulation of an EAHE installed in the local climate (region of Biskra). The main objective is 

to evaluate the accuracy of thermal prediction of several analytical, semi-analytical and 

numerical methods. For this purpose, five methods namely as ICS, ILS, FLS, GRBM, and CFD 

have been adapted and validated using experimental data available in the literature. For 

analytical and semi-analytical models, the MATLAB software has been used. For the CFD 

model, ANSYS FLUENT (academic version) has been utilized. Same assumptions and 

boundary conditions have been applied for all models, in which the heat exchanger is 

considered as a horizontal tube buried in the soil. Firstly, the undistributed soil temperature in 

the Biskra region (34°47’N - 5°43’E) has been calculated analytically using Kusuda equation. 

Then, the transient air temperature has been calculated for each method using the described 

formulation.  From the work presented in this study, the following conclusions can be drawn: 

o All the studied analytical, semi-analytical and CFD methods give accurate 

results, where the maximum relative error does not exceed 3% in all cases; 

o The error between analytical/numerical and experimental results increases 

slightly with time of operation; 

o The results obtained by the CFD model is the closest to the experimental results, 

where the error not exceed 0.6 % in all simulated cases; 

o The results done by analytical models (ICS, ILS and FLS) are very similar; the 

error is varied from 1.38 to 2.66%. However, the ILS model gives a best 

accuracy compared to the ICS and FLS models; 

o The accuracy of the GRBM and CFD being rather similar, however, the CFD 

model can improve the results by 0.2% compared to the semi-analytical model.   



Conclusion  

92 

 

 

 

Perspectives 

As perspectives related to this work, we propose: 

o As this study has been applied and validated only for short-time scale EAHE, it 

is recommended to reperform the comparison for long-time scale EAHEs; 

o To study numerically or experimentally new geometric configurations (spiral, 

helicoidal, including of baffles …) in order to improve the heat transfer through 

the EAHEs; 

o Implementation and study the accuracy of new analytical, semi-analytical and 

numerical methods, as Green function, g-function, CFD with more advanced 

turbulence models as Large Eddy Simulation (LES). 
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Abstract 

In this work, we are interested to the transient simulation of an Earth-Air Heat 

Exchanger (EAHE) installed in a local environment in the Biskra region (34°47’N - 5°43’E). 

The main objective is to evaluate the accuracy of numerical predictions of various analytical, 

semi-analytical and numerical methods. For this purpose, five transient approaches denoted as 

ICS, ILS, FLS, GRBM, and CFD have been implemented and validated using experimental 

data available in the literature. Same assumptions and boundary conditions have been applied 

for all models, in which the heat exchanger is considered as a horizontal tube buried in the soil 

subjected to a transient heat flux. Firstly, the undistributed soil temperature in the Biskra region 

has been analytically determined using Kusuda's equation. Then, the variation of the 

instantaneous air temperature as a function of the exchanger length has been calculated 

numerically. Good agreements between the numerical and experimental results were obtained, 

where the maximum relative error did not exceed 3% in all the studied cases.  

Keywords: Earth-Air Heat Exchanger (EAHE), Geothermal energy, Thermal design, 

Analytical and semi-analytical methods, CFD.   

 

Résumé  

Dans ce travail, nous nous intéressons à la simulation transitoire d’un 'échangeur de 

chaleur air-sol (EAHE) installé dans un enivrement local dans la région de Biskra  (34°47’N - 

5°43’E).  L'objectif principal est d'évaluer la précision de prédictions numériques de diverses 

méthodes analytiques, semi-analytiques et numériques.  À cette fin, cinq approches transitoires 

dénommées ICS, ILS, FLS, GRBM et CFD ont été mises en œuvre et validées à l'aide de 

données expérimentales disponibles dans la littérature. Dans un premier temps, la température 

non distribuée du sol dans la région de Biskra a été déterminée analytiquement à l'aide de 

l'équation de Kusuda. Ensuite, la variation de la température instantanée de l'air en fonction de 

la longueur de l’échangeur a été calculée numériquement. Bons accords entre les résultats 

numériques et expérimentaux ont été obtenus, où l'erreur relative maximale n'a pas dépassé 3% 

dans tous les cas étudiés. 

Mots clés: Échangeur de chaleur air-sol (EAHE), Énergie géothermique, Conception 

thermique, Méthodes analytiques et semi-analytiques, CFD. 

 

 ملخص: 

ة في منطقة مثبت في بيئة محلي (EAHE) أرض- في هذا العمل، نحن مهتمون بالمحاكاة العابرة لمبادل حراري جو

لهذا الغرض، تم  العددية للعديد من الطرق التحليلية وشبه التحليلية والرقمية.  اتالهدف الرئيسي هو تقييم دقة التنبؤ بسكرة.

إل باسم  تنفيذ خمسة طرق عابرة يشار  البيانات    CFDو  ICS  ،ILS  ،FLS  ،GRBMيها  باستخدام  والتحقق من صحتها 

أنبوبًا  بمثابة  الافتراضات وشروط الحدود على جميع النماذج، حيث يعتبر المبادل الحراري    تم تطبيق نفس   .التجريبية المتاحة

أفقيًا مدفونًا في الأرض يخضع لتدفق حراري متغير بالنسبة للزمن. أولاً، تم تحديد درجة الحرارة الثابتة للأرض في منطقة 

تغير في درجة حرارة الهواء اللحظية كدالة لطول المبادل  . بعد ذلك، تم حساب الKusudaبسكرة تحليلياً باستخدام معادلة  

٪ في جميع 3وافق جيد بين النتائج العددية والتجريبية حيث أن للخطأ النسبي الأعظمي لم يتجاوز  عدديًا. تم الحصول على ت

 الحالات المدروسة. 

(، طاقة حرارية أرضية، تصميم حراري، طرق تحليلية وشبه تحليلية، EAHEأرض )-مبادل حراري جوالكلمات المفتاحية:  

CFD . 

 


