

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université Mohamed Khider – BISKRA

Faculté des Sciences Exactes, des Sciences de la Nature et de la Vie

Département d’informatique

N° d’ordre IVA4/M2/2021

Mémoire

Présenté pour obtenir le diplôme de master académique en

Informatique

Parcours : Image et Vie Artificielle (IVA)

Direct illumination using cube mapping

technique on GPU

Par :

RAHAL HAKIMA RYM

Soutenu le 06/07/2021 devant le jury composé de :

Nom Prénom grade Président

BABAHENINI Djihane MCB Rapporteur

Nom Prénom grade Examinateur

Année universitaire 2020-2021

Dedication

This work is dedicated to my parents, who have raised me to the

person I am today, and to the rest of my big family, and to my

friends, specially my teacher Djihane Babahenini for helping me

develop my knowledge and skills, thank you all for everything.

Acknowledgements

First, I want to thank almighty ALLAH for giving me the will,

patience and health to develop this work.

I would like to express my profound gratitude to my supervisors

Dr. Babahenini Djihane, for her involvement in this research work

and for the support they have given me, their patience, their

availability and the relevance of their advice that have been of

invaluable assistance throughout this work.

Also, I would like to thank all my professors in the computer

science department.

I extend my sincere thanks to the members of the jury, for having

accepted to judge this work.

Finally, I thank my big family and my friends for encouraging me

during this year, and to have always been available when I needed

it.

Abstract

In this thesis, we present a Cube Mapping algorithm via the GPU for the 3D computer gra-

phics direct lighting, this algorithm uses a special type of texture called the cube map texture,

to calculate the direct lighting in each point of the scene, this technique can help accelerating

the execution time. We first load a 3D scene, and then we generate the cube map and use it to

calculate the direct lighting of this scene. Then we render our final image. In the stage of genera-

ting the cube map we could develop an advanced method that eliminates 5 rendering passes from

the whole program, keeping only one for generating the cube map plus the display pass, which

accelerates the calculation time even more. The test results show that the method can generate

the final image in small calculating time with a good quality.

Key-words : Cube Map, Direct Lighting, Calculating Time, Quality, GPU.

Résumé

Dans cette mémoire, nous présentons un algorithme de Cube Mapping via le GPU pour

l’éclairage direct de l’infographie 3D, cet algorithme utilise un type particulier de texture ap-

pelé la texture cube map, pour calculer l’éclairage direct en chaque point de la scène, cette tech-

nique peut aider à accélérer le temps d’exécution. Nous chargeons d’abord une scène 3D, puis

nous générons le cube map et l’utilisons pour calculer l’éclairage direct de cette scène. Ensuite,

nous rendons notre image finale. dans la partie de la génération de cube map, nous pourrions

développer une méthode avancée qui élimine 4 passes de rendu de l’ensemble du programme, ce

qui accélère encore plus le temps de calcul. Les résultats des tests montrent que la méthode peut

générer l’image finale en un temps de calcul réduit avec une bonne qualité.

Mots-clés : Cube Map, Éclairage direct, Temps de calcul, Qualité, GPU.

�� 	jÊÓ
�èZA 	�C Ë �HAÓñ�QË@ �ém.Ì'AªÓ �èYgð Q�.« I. ªºÖÏ @ ¡�@Q 	k Õæ�P �éJ
Ó 	PP@ñ 	k ÐY�® 	K , �ékðQ£

B@ è 	Yë ú

	̄

ùÒ��
 i. J
� 	�Ë @ 	áÓ A ��A 	g A �«ñ	K �éJ
Ó 	PP@ñ	mÌ'@ è 	Yë ÐY 	j�J���ð , XAªK.

B@ �éJ
�KC�K Q�KñJ
J.ÒºË@ �HAÓñ�QË �èQå��AJ. ÖÏ @

�éJ
 	J �®�JË @ è 	YêË 	áºÖß
ð , YîD��ÖÏ @ 	áÓ �é¢�® 	K É¿ ú

	̄ �èQå��AJ. ÖÏ @ �èZA 	�B @ H. A�mÌ , I. ªºÖÏ @ �é¢�
Q 	k i. J
�	�

�é¢�
Q 	k ZA ��	�AK. Ðñ�® 	K Õç�' , XAªK.

B@ ú

�GC�K YîD��Ó ÉJ
Òj�JK.
�
Bð

@ Ðñ�® 	K . 	YJ
 	® 	J�JË @ �I�̄ð ©K
Qå��� ú

	̄ Y«A���
ZA ��	� @

�éÊgQÓ ú

	̄ . �éJ
KAî 	DË @ A 	J�KPñ� ÐY�® 	K Õç�' . YîD��ÖÏ @ @ 	YêË �èQå��AJ. ÖÏ @ �èZA 	�B @ H. A�mÌ AêÓY 	j�J�	�ð I. ªºÖÏ @

©Ó , éÊÒ»

AK. l .×A 	KQ�. Ë @ 	áÓ 	�Q« �H@QK
QÖ �ß 5 úÎ« ú
æ

	��®�K �éÓY�®�JÓ �é�®K
Q£ QK
ñ¢�� A 	J 	JºÖß
 , I. ªºÖÏ @ �é¢�
Q 	k
�I�̄ð ©K
Qå��� úÍ@ ø
 X ñK
 AÜØ , 	�QªË@ QÜØ úÍ@

�é 	̄ A 	�B AK. I. ªºÖÏ @ �é¢�
Q 	k ZA ��	�B ¡�® 	̄ Yg@ñK. 	 A 	®�JkB@
Q�
 	ª� H. A�k �I�̄ð ú

	̄ �éJ
KAî 	DË @ �èPñ�Ë@ YËñ�K 	à

@ 	áºÖß
 �é�®K
Q¢Ë@ 	à

@ PAJ. �J 	kB@ l .�

'A�J 	K Qê 	¢�� .Q��»

@ H. A�mÌ'@

. �èYJ
k. �èXñm.�'.
�ém.Ì'AªÓ �èYgð , �èXñm.Ì'@ , �I�̄ñË@ H. A�k , �èQå��AJ. ÖÏ @ �èZA 	�B @ , I. ªºÖÏ @ �é¢�
Q 	k : �éJ
kA�J 	®ÖÏ @ �HAÒÊ¾Ë@

. �HAÓñ�QË@

Contents

List of Figures IV

1 Direct and Indirect Illumination 3
1.1 Introduction . 3
1.2 Radiometric quantities . 3

1.2.1 Radiant Energy . 3
1.2.2 Radiant Flux . 4
1.2.3 Radiant Exitance . 4
1.2.4 Irradiance . 4
1.2.5 Radiant Intensity . 4
1.2.6 Radiance . 4

1.3 Types of light sources . 5
1.3.1 Directional Light . 5
1.3.2 Point light . 5
1.3.3 Area Light . 6
1.3.4 Spotlight . 7

1.4 Direct Illumination . 7
1.4.1 Ambient Reflection . 8
1.4.2 Diffuse Reflection . 9
1.4.3 Specular Reflection . 10

1.5 Indirect Illumination . 10
1.6 Conclusion . 12

2 Environment Maps 14
2.1 Introduction . 14
2.2 Why Environment Maps? . 14
2.3 Environment Mapping Types . 15

2.3.1 Shadow Mapping . 16
2.3.2 Sphere Mapping . 16
2.3.3 Cube Mapping . 18

2.3.3.1 Main idea . 19

I

Contents

2.3.3.2 Advantages of Cube Mapping 20
2.3.3.3 Limits of Cube Mapping . 20
2.3.3.4 Related work . 21

2.4 Conclusion: . 30

3 Conception of a cube map method using GPU 32
3.1 Introduction . 32
3.2 Goals . 32
3.3 Main idea and motivations . 32
3.4 General Architecture . 33
3.5 Detailed Architecture . 34

3.5.1 Input . 34
3.5.1.1 Objects . 35
3.5.1.2 Camera coordinates . 35
3.5.1.3 Light Source . 35

3.5.2 Cube Mapping . 36
3.5.2.1 Generating the cube map . 37
3.5.2.2 Computing the shadows . 38
3.5.2.3 Shading . 38
3.5.2.4 Display part . 39

3.6 Conclusion . 39

4 Implementation, results and discussion 41
4.1 Introduction . 41
4.2 Hardware configurations . 41
4.3 Environnement and libraries . 42

4.3.1 Programming Environment (Visual Studio) 42
4.3.2 Programming Language: C++ . 43
4.3.3 Libraries . 43

4.3.3.1 GLEW . 43
4.3.3.2 SFML . 44
4.3.3.3 Assimp . 44
4.3.3.4 GLM . 44

4.4 Implementation details . 45
4.4.1 Scenes informations . 46
4.4.2 Input . 46
4.4.3 Generating cube map . 47

4.4.3.1 Classic . 47
4.4.3.2 Advanced . 48

4.4.4 Shadow . 51

Direct illumination using cube mapping technique on GPU II

Contents

4.4.5 Shading . 52
4.5 Results and discussion . 52

4.5.1 Results . 52
4.5.1.1 According to the FPS . 53

4.5.2 Discussion . 58
4.5.2.1 Sponza . 58
4.5.2.2 Crytek Sponza . 59
4.5.2.3 Sibenik . 61
4.5.2.4 Conference . 63

4.6 Conclusion . 67

Bibliography 69

Direct illumination using cube mapping technique on GPU III

List of Figures

1.1 Directional Light [2] . 5
1.2 Point light [2] . 6
1.3 Area Light [2] . 6
1.4 Spotlight [2] . 7
1.5 Direct Illumination [4] . 8
1.6 Ambient Reflection [6] . 9
1.7 Diffuse Reflection [6] . 9
1.8 Specular Reflection [6] . 10
1.9 Phong Model [6] . 10
1.10 The difference between Direct and Indirect Illumination. [7] 11
1.11 Kajiya Equation. [10] . 11
1.12 Global Illumination [11] . 12

2.1 Reflection [14] . 15
2.2 Shadow Mapping [15] . 16
2.3 Shadow Mapping example [heitz2018combining] 16
2.4 correct and Linear sphere mapping [14] . 17
2.5 Results of Sphere Mapping [14] . 18
2.6 Cube Map faces [18] . 18
2.7 Sampling direction vectors [18] . 19
2.8 Skybox [19] . 20
2.9 Skybox Implementation [20] . 21
2.10 Environment Map Reflection [20] . 22
2.11 Environment Map Reflection Implementation [20] 22
2.12 Cube map texture [21] . 23
2.13 Object Reflection [21] . 23
2.14 From cubic to panoramic [22] . 24
2.15 Cylindrical panoramic (120 degrees) [22] . 25
2.16 Cube to perspective projection 1 [22] . 25
2.17 Cube to perspective projection 2 [22] . 25
2.18 Cube to perspective projection 3 [22] . 26

IV

List of Figures

2.19 Cube to perspective projection 4 [22] . 26
2.20 Cube to perspective projection 5 [22] . 26
2.21 Cube to perspective projection 6 [22] . 27
2.22 Cube Maps example [16] . 27
2.23 Cube Maps texture [16] . 28
2.24 Final Skybox [16] . 28
2.25 Cube Maps Refraction Result [23] . 29

3.1 Global Architecture of the system . 33
3.2 Input Part . 34
3.3 Objects of the scene . 35
3.4 Objects of the scene . 36
3.5 Objects of the scene . 37
3.6 CPU and GPU of the shadow . 38
3.7 CPU and GPU of the shading . 39
3.8 Display Part . 39

4.1 The ini file . 47
4.2 Cube Map creation code . 48
4.3 Geometry shader code . 49
4.4 Cube Map creation code . 50
4.5 Shadow calculation code . 51
4.6 Shading calculation . 52
4.7 Sponza with the classic method . 53
4.8 Sponza with the advanced method . 54
4.9 Crytek Sponza with the classic method . 54
4.10 Crytek Sponza with the advanced method . 55
4.11 Sibenik with the classic method . 56
4.12 Sibenik with the advanced method . 56
4.13 Conference with the classic method . 57
4.14 Conference with the advanced method . 57
4.15 Sponza Shading details . 58
4.16 Sponza Shadow details . 59
4.17 Crytek Sponza Shading details . 60
4.18 Crytek Sponza Shadow details . 61
4.19 Sibenik Shading details . 62
4.20 Sibenik Shadow details . 62
4.21 Conference Shading details . 63
4.22 Conference Shadow details . 64

Direct illumination using cube mapping technique on GPU V

Introduction

The 3D Graphics Rendering Pipeline accepts the description of 3D objects in terms of ver-
tices of primitives (such as triangle, point, line, and quad), and produces the color-value for the
pixels on the display. One of the most important steps in the pipeline is the lighting step. For
most of us lighting is something usual, something we do not pay must attention to. 90 percent of
our experience with light is absolutely passive. But in 3D computer graphics and design lighting
is an essential aspect!

Sometimes we can see that a well-modeled 3D object looks flat or has no specific shape
because of the bad lighting. Well-chosen lighting techniques can help giving a meaning to our
scene. There are numbers of well established 3D lighting paradigms, and the type of scene usu-
ally determines which one is most appropriate. For example, techniques that work well for an
interior environment usually doesn’t have an effect in exterior scenes. Though they may give
excellent results when it comes to quality, not all lighting techniques are suitable for real-time
rendering applications such as interactive video games, simulators... etc. which requires finding
other solutions or techniques that can approximate the effect of these expensive techniques but
with lower calculation time.

This problem leads us to many questions such as what are the techniques that can give us
good results with an acceptable rendering time? Which technique is the most favorable? Can
these techniques work in real-time?

This thesis describes a widely used lighting technique that can eliminate usual 3D lighting
problems such as the quality and the calculating time by approximating the real calculations of
the lighting of the 3D scenes.

The main goal of this thesis is to generate an image with a good quality of a lighted 3D scene
generated in an acceptable calculating time.

The rest of this thesis is organized as follows: chapter 1 gives a brief Direct and Indirect
Illumination and the different Radiometric quantities and types of light sources. The different
types of Environment Mapping and the cube mapping technique are represented in chapter 2.

1

List of Figures

The conception of this work is described in chapter 3. And the implementation details, results,
and discussions are presented in chapter 4. Conclusions are in the end.

Direct illumination using cube mapping technique on GPU 2

Chapter 1

Direct and Indirect Illumination

1.1 Introduction

Lighting (illumination) represents the energy that transports from the light

source to the points of a surface. What the human eye sees is a result of light

coming off of an object or other light source to the receptors in the eye.

3D Lighting is a collection of tools and techniques used to simulate light in a

computer-generated 3D environment. There are several 3D lighting techniques

that can offer a huge amount of flexibility regarding the level of detail and func-

tionality. They also operate at different levels of complexity. Lighting artists

can choose from a variety of light sources, effects, tools, and techniques that suit

their needs.

1.2 Radiometric quantities

Radiometric quantities are quantities related to electromagnetic radiation.

1.2.1 Radiant Energy

Radiant Energy is the energy carried from any electromagnetic field.

- It is denoted by Qe.

- Its SI unit is the joule (J).

3

1.2. Radiometric quantities

1.2.2 Radiant Flux

Radiant Flux is the radiant energy per unit time (also called Radiant Power);

it is considered the fundamental radiometric unit.

- It is denoted by Pe.

- Its SI unit is the watt (W).

1.2.3 Radiant Exitance

Radiant Exitance, or Radiant Emittance, is the radiant flux emitted from an

extended source per unit area.

- It is denoted by Me.

- Its SI unit is: watt per square meter (W/m2)

1.2.4 Irradiance

Irradiance is the radiant flux incident on a surface unit area.

- It is denoted by Ee.

- Its SI unit is: watt per square meter (W/m2).

1.2.5 Radiant Intensity

Radiant Intensity is the radiant flux emitted from a point source per unit solid

angle.

- It is denoted by Ie.

- Its SI unit is: watt per steradian (W/sr).

1.2.6 Radiance

Radiance is radiant flux emitted from an extended source per unit solid angle

and per unit projected source area.

- It is denoted by Le.

- Its SI unit is: watt per steradian and square meter (W/(sr.m2)).[1]

Direct illumination using cube mapping technique on GPU 4

1.3. Types of light sources

1.3 Types of light sources

Before setting the lighting it is necessary to decide which kind of lighting type

will be used in the scene since there are several types of computer-generated light

sources (such as point source light (Omni light), spotlight, directional light, area

light...etc).

1.3.1 Directional Light

A directional light (also known as infinite light) is great for simulating the

sun or moonlight because the light it creates travels in parallel rays; like a far-

away light source. This light source strikes the polygons in the scene with equal

intensity. The next figure represents the effect of the directional light.[2]

Figure 1.1 – Directional Light [2]

1.3.2 Point light

Point light (also known as Omni light), emits light from a single small point,

in all directions. It is often used to create fill light because it has no specific

shape or size. The closer the object is to the light source, the brighter it appears.

A light bulb is an example of Omni/point lights in the real world. The next figure

represents the effect of the point light.[2]

Direct illumination using cube mapping technique on GPU 5

1.3. Types of light sources

Figure 1.2 – Point light [2]

1.3.3 Area Light

Area light sources are common in the real world, and thus important in real-

istic images[3]. An area light emits light from a specified surface with a specific

shape and size; such as a window, fluorescent light fixture, or back-lit panel. In

other words, an area light is a physically-based light that casts directional rays

from within a specified boundary; creating soft and realistic shadows. These

properties make it a popular choice in product lighting or architectural visualiza-

tion. Area lights do have an overall direction, but they don’t emit parallel rays

like a directional light. The next figure represents the effect of the area light.[2]

Figure 1.3 – Area Light [2]

Direct illumination using cube mapping technique on GPU 6

1.4. Direct Illumination

1.3.4 Spotlight

A spotlight produces a cone of light in a single direction; with the light getting

more intense closer to the source and to the center of the cone. The lighting

artist can control the cone angle, determine the size of the light or soften the

outside edge of the cone to create different looks. A flashlight is an obvious

example of spotlights in the real world. The next figure represents the effect of

the spotlight.[2]

Figure 1.4 – Spotlight [2]

1.4 Direct Illumination

Direct Illumination is the lighting/shading method that was originally used

by computer graphics programs. When rendering, direct illumination considers

only light from the original source, there are no bounce lights or light emissive

polygons (or sources other than lights) will add to the lighting within the ren-

dered scene. the final color of an object is actually a combination of 3 different

components Ambient, Diffuse, Specular Reflections (Phong Model), where:

Final Color = Ambient + Diffuse + Specular.

Direct illumination using cube mapping technique on GPU 7

1.4. Direct Illumination

Figure 1.5 – Direct Illumination [4]

1.4.1 Ambient Reflection

Even when it is dark there is usually still some light somewhere in the world

(the moon, a distant light) so objects are almost never completely dark. To sim-

ulate this we use an ambient lighting constant that always gives the object some

color[5]. Creates the effect of having light hit your object equally from all direc-

tions, where:

I = Ia . Ka

I: intensity.

Ia: intensity of Ambient light.

Ka: object’s ambient reflection coefficient, 0.0 - 1.0 for each of R, G, and B.

The next figure represents the result of ambient light.

Direct illumination using cube mapping technique on GPU 8

1.4. Direct Illumination

Figure 1.6 – Ambient Reflection [6]

1.4.2 Diffuse Reflection

Simulates the directional impact a light object has on an object. This is the

most visually significant component of the lighting model. The more a part of

an object faces the light source, the brighter it becomes[5], where:

I = Ip . Kd . (N’ * L’)

I: intensity.

Ip: intensity of point light.

Kd: object’s diffuse reflection coefficient, 0.0 - 1.0 for each of R, G, and B.

N’: normalized surface normal.

L’: normalized direction to light source.

(N’ * L’): represents the dot product of the two vectors.

The next figure represents the result of diffuse light.

Figure 1.7 – Diffuse Reflection [6]

Direct illumination using cube mapping technique on GPU 9

1.5. Indirect Illumination

1.4.3 Specular Reflection

Simulates the bright spot of a light that appears on shiny objects. Specular

highlights are more inclined to the color of the light than the color of the object[5]

Figure 1.8 – Specular Reflection [6]

Final illumination of a point (vertex):

amb + di f f + spec = (Ia.Ka) + (I p.Kd.(N′ ∗ L′)) + (I p.Ks.(U′ ∗ V ′) f).

Figure 1.9 – Phong Model [6]

1.5 Indirect Illumination

When light rays bounce only once from the surface of an object to reach the

eye, we speak of direct illumination. But when light rays are emitted by a light

source, they can bounce off of the surface of objects multiple times before reach-

ing the eye. This is what we call indirect illumination because light rays follow

complex paths before entering the eye. Some surfaces are not exposed directly

Direct illumination using cube mapping technique on GPU 10

1.5. Indirect Illumination

to any light sources (often the sun), and yet they are not completely black. This

is because they still receive some light as an effect of light bouncing around from

surface to surface. The next figure represents how indirect illumination works.[7]

Figure 1.10 – The difference between Direct and Indirect Illumination. [7]

Indirect illumination is an important element for realistic image synthesis,

but its computation is expensive and highly dependent on the complexity of the

scene and of the BRDF of the surfaces involved.[8]

Global illumination involves to simulate both effects (direct plus indirect il-

lumination). Simulating both effects is important to produce realistic images.

It is represented by a Rendering Equation known as Kajiya [1986], an integral

equation which generalizes a variety of known rendering algorithms [9]. De-

scribes the flow of light energy throughout a scene, assuming that all objects of a

scene (not just light sources) may reflect light. The next figure represents Kajiya

equation.[10]

Figure 1.11 – Kajiya Equation. [10]

- x is a surface point. n is the normal. w is a unit vector (direction).

- Lo(x, w) is the light energy reflected outwards from point x in direction w.

- Le(x, w) is the light energy emitted at x in direction w.

- Omega denotes the hemisphere above the surface patch at x. The integral is

Direct illumination using cube mapping technique on GPU 11

1.6. Conclusion

taken over all differential directional elements dw’ on Omega.

- Li(x, w’) is the incoming light energy incident on x arriving from direction w’.

- fr(x, w’, w) is the fraction of light energy arriving at x from direction w’ , that

is reflected to direction w. (In general this depends on w and w’.)

- The (w’ n) term captures the attenuation of arriving light, similar to Lambert’s

law. (The bigger the angle, the less the energy per unit area.[10])

Figure 1.12 – Global Illumination [11]

Global illumination provides a visual richness not achievable with the direct

illumination models used by most interactive applications. To generate global

effects, numerous approximations attempt to reduce global illumination costs

to levels feasible in interactive contexts. One such approximation, reflective

shadow maps, environment maps,...etc.[12]

1.6 Conclusion

3D lighting is an important aspect of every 3D animation project. It is A

combination of light sources to either draw attention to a special part of the scene

or represent natural properties such as time of the day or even weather.

Direct Illumination is an interaction between the light source and the object only

without any bouncing lights from other objects, it helps differentiate the objects

of the scene, plus it is important for giving the scene a realistic view.

In the other hand indirect illumination takes in consideration all the bouncing

lights that reflect the light in the scene not only the light source, which illumi-

Direct illumination using cube mapping technique on GPU 12

1.6. Conclusion

nates all the darker corners that can’t be reached by the direct light, this gives the

scene more realistic view since it approximates the behavior of the light in real

life.

Using both techniques leads us to a global illumination that is considered as

the ultimate lighting technique that makes the 3D scene so close to reality though

its complexity in the calculations since the light can be reflected as an infinity of

rays in all directions and each ray bounces in so many surfaces until it reaches

the eye.

In the second chapter we will show some of the very optimized lighting tech-

niques that can help us create a very good lighting in a small calculating time.

Direct illumination using cube mapping technique on GPU 13

Chapter 2

Environment Maps

2.1 Introduction

In this Chapter we’ll be talking about Environment Mapping and the different

types of Environment Maps that are used in this discipline.[13]

There are so many lighting techniques that were developed through the years,

and each one of them is seeking the goal of creating realistic lighted scenes, but

the major problem is that most of them though the great quality of the results,

takes so much time rendering due to the complexity of the calculations, some of

them may take days if not months, also if some techniques can be done in real

time, generally the quality of their results is so low and unsatisfying, that’s what

leaded us to environment maps.

2.2 Why Environment Maps?

Before talking about environment mapping, let us first think what we would

mean by the environment? So far the examples have mostly been with a black

background, as if the objects were all located in empty space. This is usually

not the case and we want our scene to be located in either a closed environment

(for example in a room) or in an open environment (outside, with a visible sky).

As it turns out it is more efficient to create an illusion of an open environment,

rather than having an actual simulation of the Earth, stars, the Sun or the Moon,

14

2.3. Environment Mapping Types

mountains or whatever we want to see in the distance. Also Environment maps

can be applied to a texture, to use it for faking reflections. reflections are usually

created by ray-tracing, but using the Environment Maps reflections can be much

faster than ray tracing reflections, In certain situations they need to be calculated

only once, and may be re-used like any ordinary texture. So the main goal of this

work is to reduce the calculation time and the GPU ressorces.

2.3 Environment Mapping Types

There are different types of Environment Mapping techniques that are used for

creating reflections and refractions, which are calculated with the direct lighting

technique:

Calculating the reflection vector R based on direction to eye I [14]:

R = 2(N.I)N − I (2.1)

The following figure represents the reflection vector according to the eye and the

normal of the surface.

Figure 2.1 – Reflection [14]

We’ll take a look at some techniques in the next sections:

Direct illumination using cube mapping technique on GPU 15

2.3. Environment Mapping Types

2.3.1 Shadow Mapping

Shadow mapping is an old technique [Williams 78], but very widely used

and developed with many extensions and implementations (Renderman). the

technique precomputes images to avoid retracing shadow rays for every frame.

The basic idea is to take an image of what the light sees in the scene and then

compare it to what the eye sees by projecting the depth back to the light. The

places where it is seen by both the light and the eye we know is lit. Otherwise,

it is in the shadow. The saved image from the light is called the shadow map,

which is essentially a bitmap where depth corresponds to a gray scale value.[15]

Figure 2.2 – Shadow Mapping [15]

Figure 2.3 – Shadow Mapping example [heitz2018combining]

2.3.2 Sphere Mapping

Sphere mapping is the first environment map by Jim Blinn, in 1976. It is

a type of reflection mapping that approximates the effect of reflective surfaces

Direct illumination using cube mapping technique on GPU 16

2.3. Environment Mapping Types

by storing the environment as a texture, and map it in an infinitely far spherical

wall. This texture contains reflective data for the entire environment, except for

the spot directly behind the sphere.

Issues with sphere mapping

— Cannot change the viewpoint (requires recomputing the sphere map).

— Highly non-uniform sampling.

— Uses high resolution polygons.

— Linear interpolation of texture coordinates picks up the wrong texture pixels

which is represented in the next figure [14]:

Figure 2.4 – correct and Linear sphere mapping [14]

Direct illumination using cube mapping technique on GPU 17

2.3. Environment Mapping Types

Some results of Sphere Mapping

Figure 2.5 – Results of Sphere Mapping [14]

2.3.3 Cube Mapping

A cube map is a type of environment maps that is essentially a box made out

of six 2D textures, which can be provided to the program or generated at run-

time, mostly used for creating reflections and refractions [16]. It has become a

common environment mapping technique for reflective objects. [17]

Generally these six cube map faces images are an artist created static scene of

mountains or other such far away features.[18] The next figure represents a cube

map texture.

Figure 2.6 – Cube Map faces [18]

Direct illumination using cube mapping technique on GPU 18

2.3. Environment Mapping Types

2.3.3.1 Main idea

Sampling the cube map using a normalised direction vector (a ray that begins

in the middle of the cube formed by the cube mapped textures, with the point

where the ray intersects the cube being the texel sampled).

The figure below shows how the 45 degree cube map corner can be sampled

(using a 45 degree reflection vector and a bi-linear interpolation between the two

textures).

Figure 2.7 – Sampling direction vectors [18]

To calculate the reflection vector for a surface, we need its normal, and the

incident vector that runs from the view point to the surface, to use them for cal-

culating the angle of reflection from the angle of incidence.

Another popular use for cube maps is that of skyboxes. Imagine that there is a

mountain in the distance inside a game. A mountain that the player can never

travel to, because it is so far away. Modeling the actual geometry of that moun-

tain and then rendering it, would take resources of the GPU. It is much more

efficient and quite effective to just have a pre-rendered image of that mountain

to display as a background. Then we can use that background as a texture in a

cube. This is usually called a skybox or a skydome.[19]

The next figure represets how the skybox work.

Direct illumination using cube mapping technique on GPU 19

2.3. Environment Mapping Types

Figure 2.8 – Skybox [19]

2.3.3.2 Advantages of Cube Mapping

— Cube mapping is preferred over other methods of environment mapping

because of its simplicity.

— Cube mapping produces results that are similar to those obtained by ray

tracing, but much more computationally efficient.

— A solution for the problem of viewpoint dependency in Sphere mapping.

— A texture mapped onto a sphere’s surface must be stretched and compressed,

and warping, and distortion, unlike cube mapped textures.

— Can be rendered only once during the process.

2.3.3.3 Limits of Cube Mapping

— Doesn’t work well with moving objects because it requires regenerating the

cube map.

Dynamic Cube Mapping
The major problem of static cube map is that it doesn’t work with dynamic scenes

because it requires re-generating the cube map, this is where dynamic Cube map

have been developed as a solution for static cube map problem. Dynamic cube

Mapping is a form mapping where the cube map could be rendered every single

frame (In real-time) by rendering our scene six times before the final render pass,

once for each face on the cube. So when textures are provided in the program at

Direct illumination using cube mapping technique on GPU 20

2.3. Environment Mapping Types

run-time we call it a dynamic cubemap.

There are some differences between Dynamic Cube and Cube Mapping:

1. Dynamic Cube Map is an advanced method of Cube Map.

2. The Lighting of Dynamic Cube Mapping is more realistic than Cube Map-

ping.

3. The objects of Cube Map are static but in the other hand dynamic cube

mapping objects are dynamic.

4. Creating a dynamic cube map is more expensive than cube map because of

the amount of textures that must be rendered.

2.3.3.4 Related work

In this section we will present some works which use the cube mapping tech-

nique.

Cube Maps: Sky Boxes and Environment Mapping by Anton Gerdelan [2
October 2016][20]:
- Sampling the cube map texture coordinates using a direction vector with R, S,

and T, components.

- Creating a big box encase the camera as it moves around. It represents the

Skybox as shown in the figure.

Figure 2.9 – Skybox Implementation [20]

Direct illumination using cube mapping technique on GPU 21

2.3. Environment Mapping Types

- Reflecting the Skybox onto the surface using a direction vector from the

view point (camera position) to the surface, then reflect it based on the surface

normal, after that we use the reflected one to sample the cube map as shown in

the figures.

Figure 2.10 – Environment Map Reflection [20]

Figure 2.11 – Environment Map Reflection Implementation [20]

Advantages:

— Can be done in real-time.

Limits:

Direct illumination using cube mapping technique on GPU 22

2.3. Environment Mapping Types

— Somme of the common mistakes is that the reflection is upside-down or the

wrong side, so we need to check the direction of our incident and normal

vectors, and normalise them.

— The mesh reflections are not smooth, so we need to use interpolated surface

normals.

— Doesn’t work with dynamic scenes.

OpenGL Cube Map Texturing by G. Zachmann [1999][21]:
The texture is generated by capturing a 360 degree view of our surroundings by

standing in one place and taking six images, each at an orthogonal 90 degrees

view from the others, as represented in The next image.

Figure 2.12 – Cube map texture [21]

- Mapping texture coordinates to Cube Map faces by indexing into the texture

using a 3D direction vector (rx,ry,rz).

- Then we calculate the reflection based on the camera direction vector and the

normal of the surface as scene in the figure below.

Figure 2.13 – Object Reflection [21]

Direct illumination using cube mapping technique on GPU 23

2.3. Environment Mapping Types

Advantages:

— The reflection is in the right side.

— Can be done in real-time.

— The mesh reflections are smooth.

Limits:
- Doesn’t work with dynamic scenes.

Converting to/from cubemaps by Paul Bourke [July 2020][22]:
Transforming a cube map (90 degree onto the face of a cube) into a cylindrical

panoramic image as scene in the figure below.

Figure 2.14 – From cubic to panoramic [22]

In particular, if (i,j) is the pixel index of the panoramic normalised to (-1,+1)

the the direction vector is given as follows.[22]

x = cos(i . pi)

y = j tan(v/2)

z = sin(i . pi)

The desired image should be as the following figures.

Direct illumination using cube mapping technique on GPU 24

2.3. Environment Mapping Types

Figure 2.15 – Cylindrical panoramic (120 degrees) [22]

The following cube map texture can be transformed to a cylindrical panoramic

image.

Figure 2.16 – Cube to perspective projection 1 [22]

Which gives us the following results with a better perspective vision.

Figure 2.17 – Cube to perspective projection 2 [22]

Direct illumination using cube mapping technique on GPU 25

2.3. Environment Mapping Types

Figure 2.18 – Cube to perspective projection 3 [22]

Figure 2.19 – Cube to perspective projection 4 [22]

Figure 2.20 – Cube to perspective projection 5 [22]

Direct illumination using cube mapping technique on GPU 26

2.3. Environment Mapping Types

Figure 2.21 – Cube to perspective projection 6 [22]

Advantages:
- optimize the perspective vision which makes the scene more realistic.

Limits:
- Doesn’t work with dynamic scenes.

Dynamic-Cubemaps by Kevin Hongtongsak [2016][16]:

- Creating a cube map and assigning the images to each side of it, and then

sample them using the cube map sampler (the direction vector) as shown in the

figure below.

Figure 2.22 – Cube Maps example [16]

- This is the cube map texture that have been used in the program.

Direct illumination using cube mapping technique on GPU 27

2.3. Environment Mapping Types

Figure 2.23 – Cube Maps texture [16]

- Creating a huge cube and applying the texture to it from the inside. The

skybox can be seen in the background and reflected off this sphere in the figure.

Figure 2.24 – Final Skybox [16]

Advantages:
- Can be done in real-time.

Limits:
- Doesn’t work with dynamic scenes.

Cubemaps by Joey de Vries [2019][23]:

Direct illumination using cube mapping technique on GPU 28

2.3. Environment Mapping Types

Figure 2.25 – Cube Maps Refraction Result [23]

Advantages:

— Can be done in real-time.

— Very realistic refraction.

Limits:
- Doesn’t work with dynamic scenes.

Direct illumination using cube mapping technique on GPU 29

2.4. Conclusion:

Comparison between the techniques:

2.4 Conclusion:

Environment mapping is generally the fastest method of rendering a reflective

or a refractive surface.

It is pretty slow to calculate reflections with usual lighting methods, like recur-

sive ray-tracing. If we use environment mapping , it can obtain global reflection

and lighting results in real-time with a good quality.

Cube mapping is preferred over other methods of implementing environment

mapping because of its quality and simplicity.

Direct illumination using cube mapping technique on GPU 30

2.4. Conclusion:

There are many uses for cube mapping such as Skyboxes (perhaps the most ad-

vanced application of cube mapping of creating pre-rendered panoramic sky im-

ages), Dynamic reflection (a cube map texture can be consistently updated to

represent a dynamically changing environment), Global illumination, Projection

textures (It relies on cube maps to project images of an environment onto the

surrounding scene)...etc.

Direct illumination using cube mapping technique on GPU 31

Chapter 3

Conception of a cube map method using
GPU

3.1 Introduction

We have seen in the previous chapter the method and different implementa-

tions of the cube mapping technique.

In this chapter we will present the architecture of our system as well as the de-

scription of each part, and the role of each component.

note: we are using diffuse cube map for diffuse scenes in our system.

3.2 Goals

Our main goals in this project is to accelerate the calculating time of the light-

ing of our scene, but without any loss in the quality.

3.3 Main idea and motivations

The problem of getting a good lighting quality in a short rendering time leaded

us to a very optimized technique called cube mapping that can approximate the

effect of most of lighting techniques with a good quality and a minimum calcu-

lating time and also can be rendered at real-time.

32

3.4. General Architecture

3.4 General Architecture

Our system takes the scene components as input and produces a rendered im-

age of the scene as output, passing by the most important step that produces the

final image, which is the cube mapping.

Our architecture can be divided into three important parts. In the first part

(input), we load our obj file using the Assert Import Library (Assimp) and we

define the different components of the scene that we will use (the camera coor-

dinates, and the light source), then, the goal of the second part (Cube Mapping)

is to allow us computing the direct illumination of the scene. Basically, it rep-

resents the lighting technique that we’re going to use to create the shading and

the shadow of the scene. Finally, we visualize the final image of the scene with

the shading and the shadow calculated in the previews step (display) (see figure

3.1).

Figure 3.1 – Global Architecture of the system

Direct illumination using cube mapping technique on GPU 33

3.5. Detailed Architecture

3.5 Detailed Architecture

We have seen in the previous section 3.4, the global architecture of our sys-

tem, we are now going to detail it into subsystems, to fully understand the func-

tioning of each component and its role in our system.

3.5.1 Input

In this part, we enter the components of the scene and develop the scene tree

which contains the objects, the point light source, and the camera, this step is

so important because it focuses on the geometry of the scene and the position,

direction of the camera and the point light source, if one of the components isn’t

in the right place we won’t get the result we need. (see figure 4.1)

We use Assimp to load the scene, which is represented as an obj and mtl file.

The obj file contains the geometry of the 3D scene, when the mtl file contains

the material components (texture, kd, ka,...).

The camera and the point light source parameters has described in the .ini file.

Figure 3.2 – Input Part

As we can see in the Figure 4.1, the scene components are divided to three

important components, each one of them has it’s own way to set it up, we will

Direct illumination using cube mapping technique on GPU 34

3.5. Detailed Architecture

specify each and every component of them as follows:

3.5.1.1 Objects

In this step we must choose and select the 3D objects that we need to place

them in our scene, then we load them to our program using the objects loader.

When we finish, we place each object where it’s supposed to be in our scene

(controlling the objects coordinates)(see figure3.3).

Figure 3.3 – Objects of the scene

3.5.1.2 Camera coordinates

In Computer Graphics, a camera is considered as any other 3D object, it has

position coordinates in the world space, but unlike the 3d objects, the camera

has other parameter called the direction coordinates, also, we need to specify the

angle of the camera view (named the Field Of View (FOV)). So We need to set

the camera parameters (of both the position, direction and FOV)

3.5.1.3 Light Source

Since we have several types of light sources (point light, area light,...), in our

system we have placed a point light source in our scene, which has position and

Direct illumination using cube mapping technique on GPU 35

3.5. Detailed Architecture

direction coordinates (see 4.2)

Figure 3.4 – Objects of the scene

3.5.2 Cube Mapping

This is the most important part in our system. After the scene components

are all set, and the structure of the scene has been prepared inside the camera

frame, we can now apply our lighting technique which is the cube mapping, for

each of the scene vertices. As mentioned in the previous chapter, this technique

can reduce the calculating time so much, and even make the rendering done at

real-time.

Direct illumination using cube mapping technique on GPU 36

3.5. Detailed Architecture

Figure 3.5 – Objects of the scene

As we can see in the figure 4.3 , this part can be divided into three important

steps:

3.5.2.1 Generating the cube map

The first step is to generate the cube map that we are going to use in our

system, we do that by creating a cube map, then sampling it with the cube map

sampler. Here we managed to develop an optimized method, that is an advanced

version of the classic one:

— The classic method: requires 6 rendering passes to generate the cube map,

and one additional pass to render the scene and display the final image. This

can add so much to the calculating time.

— The advanced method: this one can reduce the number of rendering passes

to 2 passes only to get the final result, which means less calculating time.

The first pass allows us to generate the cube map and the second pass aims

to generate the final image.

Direct illumination using cube mapping technique on GPU 37

3.5. Detailed Architecture

3.5.2.2 Computing the shadows

In this step, we calculate the shadow for each of the scene components based

on the light source position using the cube map sampler, basically creating a

shadow map using the cube map, where we calculate the closest and the farest

depths to determinate the positions of the shadow according to the light source

position in the scene. The program takes as an input the vertices positions of

the scene, the camera coordinates, and the lightsource position, and produces as

output the shadow. (see figure 4.4)

Figure 3.6 – CPU and GPU of the shadow

3.5.2.3 Shading

The last step, is where we calculate the shading (direct illumination) of the

scene using the sampled cube map. In this step we calculate the diffuse color of

our scene, and that is done using the cube map sampler. The program takes as

an input the normal of the surface, the previous shadow value (to detect the vis-

ibility), and the light source position, then it produces the shading or the diffuse

color of our scene as an output. (see figure 4.5)

Direct illumination using cube mapping technique on GPU 38

3.6. Conclusion

Figure 3.7 – CPU and GPU of the shading

3.5.2.4 Display part

The last part of our system is the display part, after calculating our scene

lighting using cube mapping method, we now can save and display the result,

which is the final rendered image of our scene (see figure 4.4).

Figure 3.8 – Display Part

3.6 Conclusion

In this chapter, we have given a specification on our system conception, this

phase represents one of the most important phases in the software development

process.

Direct illumination using cube mapping technique on GPU 39

3.6. Conclusion

It describes the system from a general and detailed point of view to under-

stand and succeed in the programming phase.

In the next chapter, we will illustrate the realization of our system by repre-

senting some interfaces and some results obtained, with the structures which are

chosen to implement this system.

Direct illumination using cube mapping technique on GPU 40

Chapter 4

Implementation, results and discussion

4.1 Introduction

In this chapter we will describe the implementation of the different stages of

our application.

Firstly, we will present the hardware configuration and the environment and li-

brary of the machine we used in our project, next we will detail the data structure

as well as the algorithms used in our implementation, and finally we will present

and discuss our cube maps results.

4.2 Hardware configurations

Our hardware of DESKTOP-KC0RTVR laptop includes the following de-

vices:

— OS: Windows 10 Professional 2018 ,64bits.

— CPU: Intel(R) Core(TM) i5430OU CPU @ 1.90GHZ 2.50 GHz.

— GPU: Intel(R) HD Graphics 4400.

— RAM capacity: 8.00 Go.

— Storage: 237 GB.

— Screen: 35.6 cm.

41

4.3. Environnement and libraries

4.3 Environnement and libraries

To implement the cube map technique, we use the following libraries:

— Environnement: Visual Studio 2008.

— Programming language: C++.

— Libraries: GLEW, ASSIMP, SFML, GLM.

4.3.1 Programming Environment (Visual Studio)

Microsoft Visual Studio is a development software suite for Windows de-

signed by Microsoft.

Visual Studio is a comprehensive set of development tools for building ASP.NET

Web applications, XML Web Services, desktop applications, and mobile appli-

cations. Visual Basic, Visual C ++, Visual C, and Visual J all use the same

Integrated Development Environment (IDE), which allows them to share tools

and makes it easy to build solutions that use multiple languages.

In addition, these languages make it possible to take better advantage of the

functionalities of the .NET Framework, which provides access to key technolo-

gies simplifying the development of ASP Web applications and XML Web Der-

vices thanks to visual Web Develper.

Direct illumination using cube mapping technique on GPU 42

4.3. Environnement and libraries

4.3.2 Programming Language: C++

In our application, we used C++ as the programming language. C++ is a

compiled programming language, allowing programming under multiple paradigms

such as procedural programming, object-oriented programming, and generic pro-

gramming. The C ++ language does not belong to anyone and therefore anyone

can use it without the need for authorization or the obligation to pay for the right

to use it. C ++ is one of the most popular programming languages, with a wide

variety of hardware platforms and operating systems.

4.3.3 Libraries

4.3.3.1 GLEW

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform open-

source C/C++ extension loading library.

GLEW provides efficient run-time mechanisms for determining which OpenGL

extensions are supported on the target platform. OpenGL core and extension

functionality is exposed in a single header file.

We are using GLEW 1.9.0 support for OpenGL 4.3.

Direct illumination using cube mapping technique on GPU 43

4.3. Environnement and libraries

4.3.3.2 SFML

Simple and Fast Multimedia Library (SFML) is a cross-platform software

development library designed to provide a simple application programming in-

terface (API) to various multimedia components in computers(system, window,

graphics, audio and network), and we are using SFML 2.5.1.

4.3.3.3 Assimp

Open Asset Import Library (Assimp) is a cross-platform 3D model import li-

brary which aims to provide a common application programming interface (API)

for different 3D asset file formats.

Written in C++, it offers interfaces for both C and C++, and we are using Assimp

3.0.0.

4.3.3.4 GLM

OpenGL Mathematics (GLM) is a header only C++ mathematics library for

graphics software based on the OpenGL Shading Language (GLSL) specifica-

tions.

GLM provides classes and functions designed and implemented with the same

naming conventions and functionalities than GLSL so that anyone who knows

GLSL, can use GLM as well in C++.

GLM isn’t limited to GLSL features. An extension system, based on the GLSL

Direct illumination using cube mapping technique on GPU 44

4.4. Implementation details

extension conventions, provides extended capabilities: matrix transformations,

data packing, random numbers, noise, etc...

GLM is a good library for software rendering (ray tracing / rasterisation), image

processing, physic simulations and any development context that requires a sim-

ple and convenient mathematics library.

GLM is written in C++98 but can take advantage of C++11 when supported by

the compiler.

We are using GLM 1.9.0.1.

4.4 Implementation details

In this section we’ll present a set of our obtained results. We have chosen the

following scenes: Sponza, Crytek Sponza, Sibenik, and Conference.

Direct illumination using cube mapping technique on GPU 45

4.4. Implementation details

4.4.1 Scenes informations

4.4.2 Input

As we have seen in the previous chapter, this part is where we enter the com-

ponents of the scene, by loading the obj file of our 3D scene model, and adjusting

the coordinates of the light source and the camera. All these steps can be done

in the ini file. (see figure 4.1)

Direct illumination using cube mapping technique on GPU 46

4.4. Implementation details

Figure 4.1 – The ini file

And now we finished setting our scene components to be used in the next

parts.

4.4.3 Generating cube map

In the conception chapter we clarified that in this part we used two different

methods, classic and advanced to generate the cube map, we are going now to

explain each one of them in details.

4.4.3.1 Classic

This method doesn’t use the geometry shader, which means the rendering

function is called six times for making each face of cube map, which adds a lot

to the calculating time. (See figure 4.2)

Direct illumination using cube mapping technique on GPU 47

4.4. Implementation details

Figure 4.2 – Cube Map creation code

4.4.3.2 Advanced

This method uses the geometry shader (see figure 4.3), where it is used to

render to all faces of the cube map once instead of 6 times to create the cube

map. (see figure 4.4)

Direct illumination using cube mapping technique on GPU 48

4.4. Implementation details

The geometry:

Figure 4.3 – Geometry shader code

Direct illumination using cube mapping technique on GPU 49

4.4. Implementation details

Cube map creation:

Figure 4.4 – Cube Map creation code

Since we finished creating the cube map now we are going to use it to create

the shadow and the shading.

Direct illumination using cube mapping technique on GPU 50

4.4. Implementation details

4.4.4 Shadow

The shadow in our program is generated using the cube map that we created

in the previous part, to create it we need a special sampler of the type of cube-

Sampler, also we need the coordinates of the camera and the position of the light

source. (see figure 4.5)

Figure 4.5 – Shadow calculation code

Direct illumination using cube mapping technique on GPU 51

4.5. Results and discussion

4.4.5 Shading

The shading in our program is also generated using our cube map, to create it

we will need four samplers, the position sampler, the normal sampler, the diffuse

sampler, and our previous shadow sampler. Also we will need the light source

position since the shading is based on the light. (See figure 3.8 and figure 4.6)

Figure 4.6 – Shading calculation

4.5 Results and discussion

4.5.1 Results

In this section, we will present the results of the direct illumination obtained

with the classical shadow for each of the scenes, and make some comparisons.

Here we converted the results images from HDR to LDR, since our screen is an

LDR screen, while the output of our program is an HDR image. We used Lumi-

nance HDR 2.4.0 program to convert these images.

Direct illumination using cube mapping technique on GPU 52

4.5. Results and discussion

4.5.1.1 According to the FPS

Sponza
- Classic method (Figure 4.7):

Figure 4.7 – Sponza with the classic method

The FPS with this method is 72.6586

- Advanced method (Figure 4.8):

Direct illumination using cube mapping technique on GPU 53

4.5. Results and discussion

Figure 4.8 – Sponza with the advanced method

The FPS with this method is 102.838, which is better than the first method.

Crytek Sponza

- Classic method (Figure 4.9):

Figure 4.9 – Crytek Sponza with the classic method

Direct illumination using cube mapping technique on GPU 54

4.5. Results and discussion

The FPS with this method is 72.5953.

- Advanced method (Figure 4.10):

Figure 4.10 – Crytek Sponza with the advanced method

The FPS with this method is 102.312, which is better than the first method.

Sibenik

- Classic method (Figure 4.11):

Direct illumination using cube mapping technique on GPU 55

4.5. Results and discussion

Figure 4.11 – Sibenik with the classic method

The FPS with this method is 4.64391.

- Advanced method (Figure 4.12):

Figure 4.12 – Sibenik with the advanced method

The FPS with this method is 17.9488, which is better than the first method.

Direct illumination using cube mapping technique on GPU 56

4.5. Results and discussion

Conference
- Classic method (Figure 4.13):

Figure 4.13 – Conference with the classic method

The FPS with this method is 65.1211.

- Advanced method (Figure 4.14):

Figure 4.14 – Conference with the advanced method

Direct illumination using cube mapping technique on GPU 57

4.5. Results and discussion

The FPS with this method is 83.0082, which is better than the first method.

4.5.2 Discussion

In our system we could create both the shading and the shadow for our scenes,

so we are going to point out some details in our final scenes images to show them

well.

4.5.2.1 Sponza

Shading:

In the (Figure 4.15) we can clearly see the details of the shading and the color

gradient in the arches.

Figure 4.15 – Sponza Shading details

Shadow:

Also in the (Figure 4.16) we can see the details of the shadow of the columns

that was created according to the light source position in the middle of the scene.

Direct illumination using cube mapping technique on GPU 58

4.5. Results and discussion

Figure 4.16 – Sponza Shadow details

4.5.2.2 Crytek Sponza

Shading:

In the (Figure 4.17) we can clearly see the details of the shading and the color

gradient in the windows.

Direct illumination using cube mapping technique on GPU 59

4.5. Results and discussion

Figure 4.17 – Crytek Sponza Shading details

Shadow:

Also in the (Figure 4.18) we can see the details of the shadow of the the other side

windows that was created according to the light source position in the middle of

the scene.

Direct illumination using cube mapping technique on GPU 60

4.5. Results and discussion

Figure 4.18 – Crytek Sponza Shadow details

4.5.2.3 Sibenik

Shading:

In the (Figure 4.19) we can clearly see the details of the shading and the color

gradient in the columns.

Direct illumination using cube mapping technique on GPU 61

4.5. Results and discussion

Figure 4.19 – Sibenik Shading details

Shadow:

Also in the (Figure 4.20) we can see the details of the shadow of the walls

that was created according to the light source position behind the scene.

Figure 4.20 – Sibenik Shadow details

Direct illumination using cube mapping technique on GPU 62

4.5. Results and discussion

4.5.2.4 Conference

Shading:

In the (Figure 4.21) we can clearly see the details of the shading and the color

gradient in the door and the chairs’ edges.

Figure 4.21 – Conference Shading details

Shadow:

Also in the (Figure 4.22) we can see the details of the shadow of the chairs

that was created according to the light source position in the middle close to the

roof.

Direct illumination using cube mapping technique on GPU 63

4.5. Results and discussion

Figure 4.22 – Conference Shadow details

Direct illumination using cube mapping technique on GPU 64

4.5. Results and discussion

Comparison between the 2 methods:

Table:

As we can see in the previous table, the FPS has increased so much in the

advanced method than the classic one. In Sponza scene the FPS has increased

from 72.6586 to 102.838 which makes it a 30.1794 FPS difference. In Crytek

Sponza scene the FPS has increased from 72.5953 to 102.312 which makes it a

29.7167 FPS difference. In Sibenik scene the FPS has increased from 4.64391

to 17.9488 which makes it a 13.30489 FPS difference. In Sibenik scene the FPS

has increased from 65.1211 to 83.0082 which makes it a 17.8871 FPS difference.

Direct illumination using cube mapping technique on GPU 65

4.5. Results and discussion

Column Chart:

In the previous column chart, we can see that the FPS of the advanced method

is always higher than the FPS in the classic method, which confirms that our

method is much better to use.

Comparison between the different resolutions with our method:
Table:

As we can see in the previous table, the FPS changes in each resolution. In

Sponza scene the FPS in the resolution 256x256 was 164.528, and gets down in

Direct illumination using cube mapping technique on GPU 66

4.6. Conclusion

the second resolution to 102.838, and it continues to decrease in the third reso-

lution 1028x1028 to 90.9504. In Crytek Sponza scene the FPS in the resolution

256x256 was 115.314, and gets down in the second resolution to 102.312, and it

continues to decrease in the third resolution 1028x1028 to 80.5412. In Sibenik

scene the FPS in the resolution 256x256 was 18.7301, and gets down in the sec-

ond resolution to 17.9488, and it continues to decrease in the third resolution

1028x1028 to 12.6185. In Conference scene the FPS in the resolution 256x256

was 97.9912, and gets down in the second resolution to 83.0082, and it continues

to decrease in the third resolution 1028x1028 to 76.365.

Column Chart:

In the previous column chart whenever the resolution gets higher the FPS gets

lower, but the difference is always smaller than the first method so our method is

still better.

4.6 Conclusion

In this chapter we have described the tools for carrying out our project, pre-

senting the different results that we obtained (Shadowed and Shaded scenes)

Direct illumination using cube mapping technique on GPU 67

4.6. Conclusion

using certain method of lighting called Cube Mapping to reduce the calculating

time, Where we used OpenGL and C++ as a programming language, in a Visual

Studio 2008 environment.

We made a comparison between two methods, a classic one that doesn’t use the

geometry shader, and our advanced method that uses the geometry shader, this

last one can reduce the number of rendering passes from 6 to 2 rendering passes,

which means less calculating time (as we saw in the FPS of the results).

Direct illumination using cube mapping technique on GPU 68

Conclusion

Lighting takes a really important part in the 3D graphics, a scene without

lighting can not be seen by the camera. Although there are a lot of lighting tech-

niques, not all of them give a good quality result in a small calculating time.

Here we could highlight a specific method called Cube Mapping.

In this project we have presented the direct illumination using the Cube Map-

ping technique on GPU, where we saw how to apply the Cube Map to calculate

the lighting of a scene. This technique can generate a really good quality images

in a really small calculating time, which makes it a widely used technique in 3D

computer graphics, specially video games that needs to be generated in real-time.

We could specify two different methods in the Cube Mapping technique, a classic

one that doesn’t use the geometry shader, and our method that uses the geome-

try shader. The second one is an advanced method based on the first one. This

method can reduce the rendering passes from six to two rendering passes only

which makes the calculating time lower.

We believe that this lighting technique can improve the work in the technical

field of production of 3D movies and video games.

69

Bibliography

[1] Günter Wyszecki and Walter Stanley Stiles. “Color science: concepts and methods, quan-
titative data and formulas”. In: (1982).

[2] Maryam. “The ultimate guide to lighting fundamentals for 3D”. In: DreamFarm Studios

(2021).

[3] Greg Nichols, Rajeev Penmatsa, and Chris Wyman. “Direct illumination from dynamic
area lights with visibility”. In: Proceedings of the 2010 ACM SIGGRAPH symposium on

Interactive 3D Graphics and Games. 2010, pp. 1–1.

[4] Ben Herila. “Introduction to computer graphics”. In: 2010.

[5] Joey de Vries. Basic Lighting. 2016.

[6] Brad Smith. “Illustration of the components of the Phong reflection model (Ambient, Dif-
fuse and Specular reflection)”. In: CC BY-SA 3.0 (2006).

[7] Scratchapixel 2.0. “Global Illumination and Path Tracing”. In: 2020.

[8] Cyril Crassin et al. “Interactive indirect illumination using voxel cone tracing: A preview”.
In: Symposium on Interactive 3D Graphics and Games. 2011, pp. 207–207.

[9] James T Kajiya. “The rendering equation”. In: Proceedings of the 13th annual conference

on Computer graphics and interactive techniques. 1986, pp. 143–150.

[10] Dave Mount A. Varshney D. M. Mount. “Global Illumination Models CMSC 427: Global
Illumination Models”. In: CMSC 427, 2007.

[11] Alexander Majercik Morgan McGuire Adam Marrs. “RTX Global Illumination Part I”. In:
NVIDIA Developper (2019).

[12] Greg Nichols and Chris Wyman. “Multiresolution splatting for indirect illumination”. In:
Proceedings of the 2009 symposium on Interactive 3D graphics and games. 2009, pp. 83–
90.

[13] Greg Zaal. “How to Create Your Own HDR Environment Maps”. In: (2016).

[14] Tom Thorne. “Computer Graphics 9 - Environment mapping and mirroring”. In: 2014.

[15] Aaron Hong Ravi Ramamoorthi. “CS294-13: Special Topics, Advanced Computer Graph-
ics, Lecture 8”. In: University of California, Berkeley (2009).

70

Bibliography

[16] Kevin Hongtongsak. “Dynamic-Cubemaps”. In: 2016.

[17] Chris Brennan. Diffuse Cube Mapping. 2002.

[18] “Tutorial 13: Cube Mapping”. In: 2018.

[19] Margus Luik Raimond Tunnel Jaanus Jaggo. “Computer Graphics Learning Materials,
Environment Mapping”. In: 2018.

[20] Anton Gerdelan. “Cube Maps: Sky Boxes and Environment Mapping”. In: 2016.

[21] G. Zachmann. “OpenGL Cube Map Texturing”. In: 1999.

[22] Paul Bourke. “Converting to/from cubemaps”. In: (2020).

[23] Joey de Vries. “Cubemaps”. In: 2019.

Direct illumination using cube mapping technique on GPU 71

	Contents
	List of Figures
	1 Direct and Indirect Illumination
	1.1 Introduction
	1.2 Radiometric quantities
	1.2.1 Radiant Energy
	1.2.2 Radiant Flux
	1.2.3 Radiant Exitance
	1.2.4 Irradiance
	1.2.5 Radiant Intensity
	1.2.6 Radiance

	1.3 Types of light sources
	1.3.1 Directional Light
	1.3.2 Point light
	1.3.3 Area Light
	1.3.4 Spotlight

	1.4 Direct Illumination
	1.4.1 Ambient Reflection
	1.4.2 Diffuse Reflection
	1.4.3 Specular Reflection

	1.5 Indirect Illumination
	1.6 Conclusion

	2 Environment Maps
	2.1 Introduction
	2.2 Why Environment Maps?
	2.3 Environment Mapping Types
	2.3.1 Shadow Mapping
	2.3.2 Sphere Mapping
	2.3.3 Cube Mapping
	2.3.3.1 Main idea
	2.3.3.2 Advantages of Cube Mapping
	2.3.3.3 Limits of Cube Mapping
	2.3.3.4 Related work

	2.4 Conclusion:

	3 Conception of a cube map method using GPU
	3.1 Introduction
	3.2 Goals
	3.3 Main idea and motivations
	3.4 General Architecture
	3.5 Detailed Architecture
	3.5.1 Input
	3.5.1.1 Objects
	3.5.1.2 Camera coordinates
	3.5.1.3 Light Source

	3.5.2 Cube Mapping
	3.5.2.1 Generating the cube map
	3.5.2.2 Computing the shadows
	3.5.2.3 Shading
	3.5.2.4 Display part

	3.6 Conclusion

	4 Implementation, results and discussion
	4.1 Introduction
	4.2 Hardware configurations
	4.3 Environnement and libraries
	4.3.1 Programming Environment (Visual Studio)
	4.3.2 Programming Language: C++
	4.3.3 Libraries
	4.3.3.1 GLEW
	4.3.3.2 SFML
	4.3.3.3 Assimp
	4.3.3.4 GLM

	4.4 Implementation details
	4.4.1 Scenes informations
	4.4.2 Input
	4.4.3 Generating cube map
	4.4.3.1 Classic
	4.4.3.2 Advanced

	4.4.4 Shadow
	4.4.5 Shading

	4.5 Results and discussion
	4.5.1 Results
	4.5.1.1 According to the FPS

	4.5.2 Discussion
	4.5.2.1 Sponza
	4.5.2.2 Crytek Sponza
	4.5.2.3 Sibenik
	4.5.2.4 Conference

	4.6 Conclusion

	Bibliography

