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Abstract

Artificial Intelligence has lately begun to be used into medicine to improve patient care
by speeding up processes and increasing accuracy, paving the way for improved healthcare
in general. On the other hand, temperature is an important health factor that has to be
regularly monitored, and even early detected in some situations.

Therefore, this project aims to invest the advances of Al to develop a monitoring system
that early detects body temperature. The used technique relies on building a wearable de-
vice using a temperature sensor and a microcontroller with WiFi card integrated. Thus, the
internet of things technology is mandatory to beneficiate from cloud storage and display the
forecasted results on a reactive web application using the forecasting technique to get early
body temperature values.

Key words: Body temperature forecasting, Artificial Intelligence, Machine Learning, In-
ternet of Things, Forecasting methods, Microcontroller, Temperature sensor.



Résume

L’intelligence artificielle a récemment commencé a étre utilisée en médecine pour améliorer
les soins aux patients en accélérant les processus et en augmentant la précision, ouvrant ainsi
la voie a une amélioration des soins de santé¢ en général. D’un autre coté, la température
est un facteur de santé important qui doit étre réguliérement surveillée, et méme détectée
de facon précoce dans certaines situations.

Par conséquent, ce projet vise a investir les progrés de I'IA pour développer un systéme
de surveillance qui détecte précocement la température corporelle. La technique utilisée
repose sur la construction d'un dispositif portable utilisant un capteur de température et
un micro-controleur avec une carte WiFi intégrée. Ainsi, la technologie de l'internet des
objets est requise pour bénéficier du stockage en nuage et afficher les résultats prévus sur
une application web réactive utilisant la technique de prévision pour obtenir des valeurs de
température corporelle précocement.

Mots clés: Prévision de la température corporelle, intelligence artificielle, apprentissage
automatique, Internet des objets, méthodes de prévision, micro-controleur, capteur de tem-
pérature.
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(zeneral Introduction

owadays, working as a caregiver in a hospital is considered as one of the most difficult
tasks as it requires a constant vigilance especially in infectious diseases services, where

approaching to patients is very perilous and harmful, taking as best example, COVID-19
crisis where permanent observation is crucial.
Moreover, body temperature is an early warning sign of infection, and monitoring it, even
when healthy, can help detecting diseases early. Another motivational reason to track tem-
perature is that the typical (normal) body temperature for people is just a myth, body
temperature slightly varies from a person to another and it depends on many factors (gen-
der, age, activity level, time of the day, measurement method, etc.). Thus, monitoring body
temperature allows the obtention of a baseline temperature to enable comparison to be made
with future recordings for further objectives such as the main objective of our project that
we will discuss later, as it allows to monitor the effect of treatment for some therapies.
Monitoring body temperature may seem simple, but in fact, several issues can affect the
accuracy of the reading including:

e site of measurement;
e reliability of the instruments;

e user’s technique.

Amongst the potential uses of wearable devices designed for healthcare, we have thought
about using them to forecast future body temperature of patients who are in critical
situations, taking as best example infants having meningitis that causes real life-threatening
problems. To do so, a huge time-series dataset containing varied body temperature values
of people is indispensable, thereby, we have intended to build our own device and collect the
time-series dataset due to the unavailability of this latter.

The device we are intending to build will be composed of a temperature sensor and
a microcontroller that serves to recuperate the measured temperature values, then send
these values to a website through IoT technology and store them as a time-series dataset on
the same website that is only accessible by the treating doctor to ensure patients’ privacy.

The main objective of our work is to accurately forecast human body temperature
by continuous monitoring of individuals through wireless sensing technology in order to
prevent patients enduring critical situations from temperature peaks during next hours and
help doctors taking the right decision of treatment to avoid disastrous side-effects and save
lives of hospitalized patients.

To achieve this goal, we first have to:

e Know some basic concepts of artificial intelligence and machine learning.

e Have a look on existing methods of measuring body temperature and their disadvan-
tages to see what we can do to bring something new and reliable.
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e Set a solution to achieve our main goal.

Therefore, we are writing this thesis that will be partitioned into two parts as follows:

1. Part one will be consecrated to the state of the art of our project, and we will divide
it into two chapters, in the first one we will discuss the general concepts of artificial
intelligence and machine learning and see how they can be used to improve health
care; where in the second chapter we will discuss our case of study which is body
temperature monitoring and talk about the internet of things that will be a major
component of our monitoring system.

2. The second part will be the core of our project, where in the first chapter we will try to
make a conception to bring a solution and achieve our goal, while the second chapter
will describe how we will realise and implement our monitoring system.

To sum up this work, we will see a conclusion in which we will summarise what we have
done during this project and talk about future works.



Part 1

State of the art
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Chapter 1

Artificial intelligence

1.1 Introduction

John McCarthy created the term Artificial Intelligence (AI) in 1956 during a conference
on the subject. However, Alan Turing, who established the Turing test to distinguish hu-
mans from machines, highlighted the potential of machines being able to replicate human
behaviour and really think. Since then, computer power has increased to the point where it
can perform instant computations and evaluate fresh data in real time based on previously
assessed data. In this chapter, we are going to see a background about artificial intelligence,
giving its basic definition, present an understand the principles of machine learning and see
the most commonly used algorithms and methods. Then, we are going to see how Al can
contribute to improve healthcare with two of its methods that are forecasting and prediction
in [subsection 1.2.4. We are also going to give definition of both concepts and compare be-
tween them in order to see what best suits and can really help by coming up with a new aid
and support in our hospitals.

1.2 Artificial intelligence and machine learning

1.2.1 Artificial Intelligence

Artificial intelligence (AI) is a wide-ranging branch of computer science concerned with
building smart machines capable of performing tasks that typically require human intelli-
gence [47].

Artificial Intelligence (AI) is a general term that implies the use of a computer to model
intelligent behaviour with minimal human intervention [15].

AT applications that utilize machine learning are on the rise in clinical research and provide
highly promising applications in specific use-cases.

1.2.2 Artificial intelligence in medicine
The application of AT in medicine has two main branches:

e The Virtual Branch: it is represented by Machine Learning and Deep Learning that
are represented by mathematical algorithms that improve learning through experience
[15].

e The Physical Branch: including physical objects, medical devices and increasingly
sophisticated robots taking part in the delivery of care (carebots) [15].

7



Chapter 1 Artificial intelligence

1.2.3 Machine Learning

Machine learning is a collection of methods that enable computers to automate data-
driven model building and programming through a systematic discovery of statistically sig-
nificant patterns in the available data [3]. While machine learning methods are gaining
popularity, the first attempt to develop a machine that mimics the behaviour of a living
creature was conducted by Thomas Ross in 1930s [41].

@ pattems &
—_ > QCxtract —
information knowledge

1 ]
data T

B data mining process

Training

data — E
output machlne —
(Iabels) == | learning

model @

machine learning

Inference ) application
E-E inferred
dats  — | =P output
model

Figure 1.1: Training process in machine learning.

The above illustrates the machine learning process. The latter passes through
two phases, phase A and phase B. In phase A, we have a large dataset that must be cleaned
in order to select to most important data (data mining process). Whereas, in phase B, after
picking a suitable algorithm for our problem, we have another 2 steps to pass by: training,
that is to feed the chosen algorithm with the optimized dataset, in this step data fed to the
algorithm must be accompanied with their outputs (labels) to get a trained model, and then
we pass to the second step that is inference where we feed the obtained model with new
data.

1.2.3.1 Approach for a machine learning algorithm development process

The flowchart in presents a typical approach for a machine learning algorithm

development process. As depicted in the figure, the first step for any machine learning
process is the problem definition, where the problem has to be well defined as it has
a direct impact on the following steps and is the key solution to define the appropriate
machine learning method to be used, to do so, we have to set the input and output variables
to be considered and decide whether all the variables are of the same importance. After that,
comes the data collection step in which we have to develop the list of feasible input /output
variables then understand how much data is sufficient(i.e: size of the dataset). However, as
presented in it is possible to develop a feedback algorithm that evaluates and
trains the learning algorithm after the real world implementation.
The evaluation process of any ML model is one of the necessary steps. To fairly evaluate
the model, we must not use a dataset containing data that have been utilised during the
training process. Therefore, we have to initially divide our main dataset into two separate
and completely independent ones (generally 80% data to train the algorithm and 20% to
test the model’s accuracy).
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Figure 1.2: Machine learning algorithm development approach..

3]

1.2.3.2 Machine learning methods

Machine learning methods can be characterized based on the type of “learning.” There
exist several basic types of learning methods, such as: supervised learning, where previously
labelled data is used to guide the learning process; unsupervised learning, where only un-
labelled data is used and reinforcement learning, where the learning process is guided by a
series of feedback /reward cycles.

A) Supervised learning: it is an important form of ML. It is named as supervised,
because the learning process is done under the seen label of observation variables.
Given a database of training examples with a specific target label (property) in the
form (x1,y1), (X2, ¥2),-.., (Xn , ¥n) Where x; denotes the feature vector of the it* example
and y; is its label, the goal is to construct a model g : X — Y that can accurately
predict the label Y for future instances of data X. When this target property is a
continuous real value, the task is referred to as regression. Otherwise, when the target
property is a finite set of discrete values, the task is referred to as classification [12].
In supervised learning, datasetsﬂ are trained with the training sets to build ML, and
then will be used to label new observations from the testing set

Labeled Data

O L] Prediction
D Square
AR @)=
! A Triangle
Model Training

Lables

L] Test Data
Hexagon A Square
Triangle

Figure 1.3: Supervised learning.

Supervised algorithms are best used for:

a. estimating life expectancy;

la dataset is a set of data that is collected for a specific purpose
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f.
g.

forecasting;

customer retention;
diagnostics;

identity fraud detection;
images classification;

advertising popularity prediction.

According to different types of output variables, supervised learning tasks can be di-
vided into two kinds: classification task and regression task. [53]

a)

Classification : for a classification problem, the goal of the machine learning
algorithm is to categorize or classify given inputs based on the training data set.
The training data set in a classification problem includes set of input/output
pairs categorized in classes [[Figure 1.3 Many classification problems are binary,
i.e., only two classes such as True and False are involved [3].

Classification models can be evaluated by calculating either the accuracy, Log
Loss, precision recall or ROC-AUC.

Regression : for a regression problem, the goal of the machine learning algorithm is
to develop a relationship between outputs and inputs using a continuous function
to help machines understand how outputs are changing for given inputs. The
regression problems can also be envisioned as prediction problems [3]. To evaluate
our regression model, the most used metrics are Root Mean Square Error(RMSE)
and R Squared(R?), we can also evaluate this kind of models with Adjusted R
Squared, MSAFE, MSPE.

Supervised learning algorithms: below are some of the most popular supervised
learning algorithms:

Decision tree;

Linear regression;

Logistic regression;

Navie Bayes;

Support vector machine (SVM);
K-Nearest neighbour(KNN)...

B) Unsupervised learning : it is a type of machine learning in which models are trained
using unlabelled dataset and are allowed to act on that data without any supervision
unsupervised learning tasks can be divided into two kinds:

a)

b)

Clustering: clustering methods focus on grouping data in multiple clusters based
on similarity between data points. Usually, clustering methods rely on mathe-
matical models to identify similarities between unlabelled data points. The simi-
larities between data points are identified by various methods such as Euclidean
distance [3].

Association: association method focuses on identifying a particular trend (or
trends) in the given data set that represents major data patterns or, the so-called
significant association rules that connect data patterns with each other [1].

10
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Figure 1.4: Unsupervised learning.

Unsupervised learning algorithms are mostly common in:

a. recommender systems;

=

targetted marketing:

o

customer segmentation;

e

meaningful compression;

e. big data visualisation;

[

structure discovery;

g. feature elicitation.

Unsupervised learning algorithms: below are some of the most popular unsu-
pervised learning algorithms:

e K-means clustering;

e KNN (k-nearest neighbours);

Hierarchal clustering;

Anomaly detection;

Neural Networks;

Singular value decomposition...

Understanding data

It is important to note that in both supervised and unsupervised learning, the quality,
type, and size of the data are significant factors that affect accuracy, efficiency, and
robustness of the machine learning algorithm. While the goal of any machine learning
application is to capture reality and model uncertainty, the learned model does not
usually represent a real world but the reality presented by the data set [3].

C) Reinforcement learning : reinforcement learning is a subfield of machine learning
that teaches an agent how to choose an action from its action space, within a particular
environment, in order to maximize rewards over time [Figure 1.5

Reinforcement Learning has four essential elements:

e Agent: The program you train, with the aim of doing a job you specify.

e Environment: The world, real or virtual, in which the agent performs actions.

11
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e Action: A move made by the agent, which causes a status change in the envi-
ronment.

e Rewards: The evaluation of an action, which can be positive or negative.

ACTION

-

“P:.?zzz'""
@ s

AG%NT ENVIRONMENT
|

STATE, REWARD

Figure 1.5: Reinforcement learning.

Reinforcement learning algorithms are used for:
a. learning tasks;
b. robot navigation;
c. real time decisions;
d. skill acquisition.

Below in |Figure 1.6, a recapitulating picture of machine learning algorithms and their usages.

Meaningful Structure Image

Compression Discovery Classification Customer Retention

_Big data imensi Identity Fraud Classification i :
Feature Detection Blenosics
Elicitation

Advertising Popularity
Prediction

Recommender , |
Unsupervised Supervised

Systems i ;
Leaming Learning Weather
Foracasting

Market

Targetted
Foracasting

Marketing

Customer 52 e
h Estimating life
Segmentation expectancy
Real time decisions Game Al
Robot Mavigation Skill Acquisition
Leaming Tasks educha.com

Figure 1.6: ML algorithms and usages.
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1.2.3.3 Machine learning algorithms for data analytics

The type of machine learning algorithms may vary from linear regression and classifica-
tion to complex neuro-fuzzy systems. Below, we are presenting selected popular machine
learning algorithms that can be found implemented in a variety of open-source and commer-
cial products.

Regression methods: Given a target variable, which up to measurement errors, depends
on one or several input variables, regression describes the nature of dependence between the
target and input variables and quantifies the error variance by finding a fitting function that
maps the input variables to the target (i.e., output).

Some of the most popular regression algorithms:

e Linear regression;

e K-Neighbours regressor;

e Ridge regression;

e Random forest regressor;

e Lasso regression;

e Gradient boosting regressor;
e Decision tree regressor;

e Adaboost regressor;

These different types of regression analysis techniques can be used to build the model
depending upon the kind of data available or the one that gives the maximum accuracy.

Regression analysis is used when you want to predict a continuous dependent variable
from a number of independent variables. If the dependent variable is dichotomous, then
logistic regression should be used. Note that no single algorithm works for all problems, there
are many factors (dataset size and structure, result accuracy training time, etc.) that must
be taken in consideration before choosing the appropriate algorithm as we have previously
explained in the subsubsection 1.2.3.1}

1.2.4 Artificial intelligence and early body temperature detection

In many critical illness cases, the treatment prognosis is predicated on how early the
diseases are detected. Ideally, symptoms show up early enough for us to know that something
is wrong and give us ample time to seek professional help. However, there are some diseases
that do not have the early warning signals and too often, we hear of cases where such signals
come too late.

Furthermore, seeing medical specialists may not be something that many people do reg-
ularly. For some, the waiting time to see a medical professional may be a constraint too.
This is where Al algorithms can help to do the first level screenings to pick up the subtle
details that may point to some underlying issues and then refer them to the specialists.

To early detect body temperature, artificial intelligence has contributed with two of its
technological advances that are prediction and forecasting.

13
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1.2.5 Prediction

Definition 1: a prediction is a statement which tries to explain a possible outcome or
future event. It comes from the Latin term Pre which refers to before and dicer which means
say in English. Companies and governments use predictions determined by experts to guide
through uncertain projects despite their uncertainty .

Definition 2: a prediction is a technique performed on a database either to predict the
response variable value based on a predictor variable or to study the relationship between
the response variable and the predictor variables.

1.2.5.1 Health predicting

Personalized predictive medicine necessitates the modelling of patient illness and care
processes, which inherently have long-term temporal dependencies. Healthcare observations,
stored in electronic medical records are episodic and irregular in time [37].

There are several advantages to quantitative prediction tools that accurately foretell the
occurrence of a disease, its prognosis or course, or an individual’s likelihood to respond to a
certain treatment. Such tools: [8|

v enable patients and their families to make more informed decisions about treatment
and prevention (for instance, balancing the side-effects of a prevention regimen against
the individual’s likelihood of experiencing that outcome); [§]

v" help clinicians precisely tailor care by planning treatment and prevention; 8]

v/ aid health care systems in allocating resources to patients most at risk for an outcome
18]-

Prediction models in clinical medicine are not new. For instance, one of the most widely
used prediction models is the Framingham Risk Score (FRS). The FRS takes data on car-
diovascular factors such as smoking or obesity, and based on a validated logistic regression
model a cardiovascular outcome such as stroke or myocardial infarction, produces a prob-
ability of that outcome [8]. This probability then informs treatment. For instance, The
American College of Cardiology and American Heart Association recommend that statin
treatment be initiated if a risk score of 7.5% chance of stroke or myocardial infarction in the
next ten years is achieved for 40-75 year patients free from cardiovascular disease [14].

1.2.5.2 Predicting body temperature

Studies approved so far about predicting body temperature have shown good and promis-
ing results. However, all these studies were multi-parameter approach based, where the result
(predicted temperature) is depending on different physical and physiological parameters like
skin temperature, heart rate and particularly skin heat flux.

The paper published by Reto Niedermann [33] on which all the related studies were
based, have concluded that multiple physical and physiological parameters at different body
sites have to be measured for reliable prediction of core body temperature |33]. Accordingly,
predictive models for body temperature measurement, although they resulted accuracies
of the proposed methods that are considered to be sufficient to be used as a standard for
anomaly detection, are not clinical applications, but to monitor thermal status while working
in hazardous conditions and to prevent athletes from peaks of temperature while doing
excessive exercises.
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1.2.6 Forecasting

Definition 1: Forecasting refers to the process of analysing and elucidating a future state
concerning any operation being undertaken. This process takes the past and the current
information into account in a bid to predict facts for the future events. In short, forecasting
refers to a process of looking forward, and predetermining future trends and the impact on
the organization.

Definition 2: A forecast refers to a calculation or an estimation which uses data from
previous events, combined with recent trends to come up a future event outcome.

1.2.6.1 Health Forecasting

Health forecasting is a novel area of forecasting, and a valuable tool for predicting fu-
ture health events or situations such as demands for health services and healthcare needs.
It facilitates preventive medicine and health care intervention strategies, by pre-informing
health service providers to take appropriate mitigating actions to minimize risks and manage
demand. Health forecasting requires reliable data, information and appropriate analytical
tools for the prediction of specific health conditions or situations. There is no single approach
to health forecasting, and so various methods have often been adopted to forecast aggregate
or specific health conditions. Meanwhile, there are no defined health forecasting horizons
(time frames) to match the choices of health forecasting methods/approaches that are often
applied. The key principles of health forecasting have not also been adequately described to
guide the process [49).

1.2.6.2 Health forecasting elucidation

Health forecasting is predicting health situations or disease episodes and forewarning
future events. It is also a form of preventive medicine or preventive care that engages public
health planning and is aimed at facilitating health care service provision in populations [40|
[51] |[44]. Health forecasting has been commonly applied to emergency department visits,
daily hospital attendance and admissions [4] [19] |7].

There are important terms in forecasting that are worth noting because of the way in
which they are used across various fields. The term prediction is mainly used across several
fields of study to mean an opinion-based speculation with no explicit causal assumptions

In the health forecasting literature, however, the terms prediction and prognosis could
mean different things, even though they are sometimes used interchangeably and without
clarity. The term prognosis refers to a forecasting of outcomes under no intervention, whilst
prediction is used to mean forecasting health outcomes that are associated with some health-
related intervention [21] [38]. Syndromic surveillance is another closely related concept that
is well known in disease surveillance literature. This concept focuses on case detection and
events that lead to/precede an outbreak, and involves detecting aberrations in the patterns
of diseases and using this information to determine future outbreaks [18] [6].

Principles of health forecasting
There are four main principles of health forecasting: [419]

1. the measure of uncertainty and errors;
2. the focus;
3. the nature of data aggregation and how it affects accuracy;

4. the horizon of health forecasting.
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These properties are not only hypothetically important, but also have applications that are
exemplified in the literature, as discussed below.

1.2.6.3 Measure of error

According to the definition of health forecasting, determining future health events or
situations involves a degree of uncertainty, as it is virtually impossible to have a perfect (i.e.
100 % error free) prediction. We therefore describe the measurement of uncertainty and error
of health forecasting as a principle in forecasting, because it is a basic requirement, and is
also desirable for validation and determining the real value of a forecast. The data used
is a major source of uncertainty and error, but this basic problem can partly be addressed
methodologically, to obtain health forecasts with the least possible error [52] [49].

1.2.6.4 Focus of a health forecast

The focus of a health forecast relates to the central targeted issue that is being forecast.
This is with reference to the basic unit of the health outcome measure that is being forecast.
One focus of health forecasting is to predict population health outcome in terms of the num-
ber of events occurring within a space of time; for example, the forecasting of life expectancy
and health expectancies [27]. Another focus is to determine the course of an ailment for a
particular individual, which is usually referred to as prognosis [21]. These two categories are
related to how the data is aggregated in health forecasting [49].

1.2.6.5 Horizon of health forecasting

A health forecasting horizon refers to the range of the period the forecast is intended
to cover. The demand for a health forecast determines the forecast horizon (range), and
this could be in a short, medium or long term. There are no clearly defined boundaries to
health forecast horizons in the literature. However, borrowing the common classifications
from other disciplines such as finance, business or econometric forecasting, a short-range
forecast horizon refers to a period of 1 day to a quarter of a year; a medium-range forecast
horizon refers to a quarter of a year to a year; and long-range forecasts refer to a year to
five or more years. These horizons are, however, not fixed for all situations, but rather may
be defined in relation to the qualitative indicator being forecast (e.g. life expectancy), as
well as its weighting over an extended time period. Major population health issues, such as
life expectancy or future health expectancies [27], or the forecasting of some chronic disease
prevalence (i.e. obesity and diabetes) in large populations [45] [56], are often forecast with a
long range. Short-range and medium-range health forecasts are applicable to routine health
service uptake (e.g. hospital visits), and some chronic disease exacerbations resulting from
environmental exposures [30] [29]. The choice of a long-range, medium-range, or short-range
forecast is critical in developing a forecast,as health forecasting horizons also have applica-
tions in the planning of health care service deliveries [49].

The discussions around short, medium, and long range health forecasting do not identify
some of the fundamental differences in assumptions between the various forecasting hori-
zons. Yet, these differences are important since forecasting future events is based on a
strong assumption that the current drivers or predictors will also follow the trend over the
future horizon. Hence, long-range forecasting models will be prone to having more "shocks"
compared to short-term forecasts. The “shocks” herein refer to disruptions/disturbances of
function of the distributions’ equilibrium, which is caused by a significant change in magni-
tude of the forecast model predictor(s). This may then lead to a shift in the trend. Shocks
also have effects on forecast errors because their occurrence, which is between the time of the
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forecast and the realization of the outcome, determines the error of the forecast. However, re-
search on the mechanisms by which health forecasting models are developed to accommodate
shocks at various thresholds is not explicit [49].

1.2.7 Prediction vs Forecasting

Forecasting and prediction are both relate to more or less the same concept, that is future
oriented. There however is a fine line that differentiates them in term of :

1. Definition

e Predicting is saying or telling something before the event while forecasting is done
on the basis of analysis of the past.

e Forecast is scientific and free from intuition and personal bias, whereas prediction
is subjective and fatalistic in nature.

2. Accuracy

e A Forecast is more accurate compared to a prediction. This is because forecasts
are derived by analysing a set of past data from the past and presents trends.
The analysis helps in coming up with a model that is scientifically backed and
the probability of it being wrong are minimal.

e On the other hand, a prediction can be right or wrong. For example, if you predict
the outcome of a football match, the result depends on how well the teams played
no matter their recent performance or players.

3. Application

e Forecasts are only applicable in the economic and meteorology field where there
is a lot of information about the subject matter. When it comes to weather
forecasting, meteorologist uses collected data such as wind speeds, temperatures,
humidity to forecast future weather pattern. The same case applies to economics
where current trends and previous performances are used to develop models which
generate forecasts.

e On the contrary, prediction can be applied anywhere as long as there is an ex-
pected future outcome.

4. Bias
Forecasting uses mathematical formulas and as a result, they are free from personal as
well as intuition bias. On the other hand, predictions are in most cases subjective and
fatalistic in nature.

For example, if you are predicting the result between two teams, and then you happen
to be a supporter of one team, there will be some bias. But this is not the case for
scientific methods since they have a way of eliminating bias and enhancing the accuracy
of the forecast.

5. Quantification

e When using a model to do a forecast, it’s possible to come up with the exact
quantity. For example, the World Bank uses economic trends, and the previous
GDP values and other inputs to come up with a percentage value for a country
economic growth.
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e However, when doing prediction, since there is no data for processing, one can
only say the economy of a given country will grow or not. As a result, a prediction
value cannot be quantified and in most instances it’s vague.

6. Basis
e In most cases, predictions are based on arbitrary methods and experiences such

as astrology, superstition, instincts etc.

e On the other hand, forecasts are done using scientific data that is analysed sci-
entifically to generate a model. This implies that a forecast might change if the
trends used to derive the models change.

7. Application level

e Predictions are usually done at the instance or a customer level while forecasts
are done at the aggregate level. This implies that when making a prediction needs
to have a situation in hand which requires estimated future result.

e However, forecasts arise from analysis of data and they may take time to develop.

In short, all forecasts are predictions but not all predictions are forecasts.

FORECASTING VERSUS PLANNING

Basis of

Forecasting
Comparison

Process of creating
future predictions with
relevant data

Meaning

More accurate
Accuracy fore accurate

Mostly applied in the
meteoro. OgY, economic
and finaneial sectors

Forecasts are generated
from ealeulation and
data assessment

Application

Prediction

Process of creating
future predictions with
or without relevant data

ability of

Can be applied almost
anvwhere

Is subject to bias

Can't be quantified

Quantifieation Easily Quantified
Done using scientific
methods

Application level Aggregate level Customer level

Figure 1.7: Recapitulating table comparing between prediction and forecasting.

Arrived at by arbitrary
methods e.g. instinets
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1.2.8 Patterns of health data and applications in forecasting

In health forecasting, the pattern of distribution of previous health data over a period of
time (i.e. in the form of time series) is important for determining the choice of an appropriate
forecasting method. Time series plays an important role in many forecasting approaches, and
has been extensively used in subject areas such as climate science, finance and econometrics.
The patterns of health data in time series, which are of importance to health forecasting are
trend, seasonality, cyclicality, and randomness [29] [2].

Time Series and health forecasting Time series is defined by Shumway and Stoffer [46]
as “a collection of random variables indexed according to the order they are obtained in time”.
In the broader literature, time series is similarly defined as a collection of data points that
are typically measured at successive and uniformly spaced time intervals. In relation to
health forecasting, the importance of this second definition is the emphasis it places on the
“uniformly spaced time intervals”, which is important in the use of health data for health
forecasting. Thus, time series provides statistical setting for describing seemingly random
fluctuating health data and projecting the data series into the future [46] [9).

Trend is the long-term variation in a time series that is not influenced by irregular effects
or seasonally related components in the data. For instance, in health data, an overall record
of a progressively increasing incidence over a specified period would show an increasing trend,
irrespective of any random or systematic fluctuations.

When the pattern of health data (e.g. containing the incidence of health events/situations)
is influenced by some periodic (long-term /short-term) fluctuations that are associated with
other characteristics, it is described as cyclical. Cyclicality therefore refers to the extent to
which disease incident data points are influenced by overall disease patterns. Seasonality
is also a cyclic phenomenon, but is related to annual events, and is described as the pre-
dictable and repetitive positions of data points around the trend line within a year. A major
difference between cyclical and seasonal patterns is that the former varies in length and mag-
nitude, as compared to the latter. Chatfield describes how seasonality and cyclicality can be
estimated either in an additive or multiplicative form [9]. Additive seasonality is estimated
as a function of the sums of the de-seasonalized mean (m), the seasonal factor (S) and an
error term () (i.e. additive seasonality = m + S * ¢ ). Multiplicative seasonality is defined
by two functions, either the product of m, S and ¢ (multiplicative seasonality = m-S-¢), or
the product of m and S and sum of ¢ (i.e. multiplicative seasonality = m-S + ¢ ). In order to
minimise the overall error, shorter cyclical effects that fall within the annual seasonal effect
are best estimated with additive seasonality, whereas the effect of annual seasonality is best
computed as “m-S-¢ ” [9] [49].

Randomness is also a common feature of all time series data, and refers to unexpected
distortions of existing or anticipated trends [49).

Lag refers to the lapse of time before an effect is manifested. Lags have proven useful in
forecasting events globally, and are a feature of time series data that is widely exploited in
many forecasting techniques, e.g. in auto regressive integrated moving averages (ARIMA) [4].
In developing health forecast models for a particular condition/situation, the key questions
are: how many days back should one go back in history to identify appropriate predictors,
and how many lags should be included [49].

The properties of time series mentioned above require specific treatment prior to any
analysis. However, the statistical forecasting models that involve time series analysis and
are commonly used in health forecasting include moving average models, such as ARIMA,
and smoothing techniques, e.g. the Holt-Winters methods. For instance, the Box—Jenkins
ARIMA model, is commonly used in fitting forecasting models when dealing with a non-
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stationary time series, and this model has been used extensively in health forecasting |7] [4].
Stationarity is a feature of trend in a time series, and refers to the level of variation in
the statistical properties (such as the mean, variance, auto-correlation, etc.) over time.
Smoothing models have also been used in health forecasting studies conducted by Medina
et al. [31] and Hyndman et al. [20] [32]. In the study conducted by Champion et al. [7], the
authors identified trend, seasonal variations and randomness/“noise” in the data distribution,
but used a time series statistical package to automatically identify optimal models to forecast
monthly emergency department presentations. After, the authors proceeded to compare
forecasts, based on a simple seasonal exponential smoothing model to an ARIMA model.
Similarly, the study conducted by Medina et al |31]. also identified seasonal oscillations and
trends in the time series data (of the diseases they analysed). The harmonics in the data
distributions were handled as level, and trend components by the multiplicative Holt-Winters
forecasting method, which is also a smoothing technique in forecasting [31].

1.2.9 Probabilistic health forecasting methods for peak events

Health forecasting techniques generally rely on modelling expectancy of the mean, but
this is not useful for looking at extreme events. Nonetheless, extreme events represent the
greatest test of a health system, because they expose the weaknesses of the system whenever
they occur. A reliable method of modelling and predicting extreme events is therefore
important. Quantile regression models (QRMs) and fractional polynomial models (FPMs)
are potential probabilistic techniques that could be adopted for predicting extreme health
situations/conditions.

Quantile regressions are extensions of the linear-regression models, and do not assume
normality of the dependent variable. They model the conditional quantiles as functions of
predictors, specifying changes in any conditional quantile [24] [16]. Unlike linear-regression
models, QRMs have the ability to characterize the relationship between the dependent vari-
able and the independent variable(s), particularly in the extremes of the distribution. They
have common applications in medical reference charts, and could be used in preliminary
medical diagnosis to identify unusual subjects by providing robust regressions for estimating
extreme values [55]. QRMs also have the potential of predicting and forecasting extreme
chronic respiratory illnesses like asthma. For instance, a QRM could be used to estimate
extreme variations in daily asthma hospital admissions resulting from the changing patterns
of selected meteorological and air quality indicators that are known to exacerbate asthma in
a given location/area [48].

Williams [54] also showed how fractional polynomials could be used in modelling specific
categories of dependant variables within a linear distribution of data, and thus target specific
groups more precisely. In this study, the author used various categories of age groups as
regressors to model a dichotomous health care demand. Logistic regression outputs of two
arbitrary age-categorized models were then compared to a fractional polynomial model.
The polynomial method of categorizing had clear advantages because it allowed a fuller
representation of non-linear relationships between the predictor and outcome variables. This
approach can be extended to a wide range of health situations or conditions.

Both approaches (QRM and FPM) can be adapted to suit extreme health forecasting,.

1.2.10 Challenges in developing and using health forecasts

There are a number of challenging issues to be noted and addressed in developing and
using a health forecast. These include limitations in the scope and reliability of health data,
the robustness of health forecasting tools and techniques, and the poor demand for health
forecasting [21] [28]. In recent times, technological advances have enabled health indicators
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to be more easily and cheaply measured, and yet the record capture of important population
health indicators is not very efficient and not easily accessible or validated [21]. In the practice
of personalised medicine, for instance, there are slight prognostic effects attributable to a
wide range of complex factors (including some unknown factors), and these factors usually
intermingle (randomly) to generate clinical outcomes. Data limitation on these complex
factors can pose a challenge in developing a reliable health forecast. Aside from the data and
methodological limitations in developing reliable health forecast, it is difficult to convincingly
demonstrate the performance of a health forecasting model in realistic settings [5].

Health forecasting-related researches have sometimes focused on methods or procedures
for forecasting aggregate health conditions, or on situations like crowding at emergency de-
partments and total admissions [50] [43]. Even though these kinds of aggregate health fore-
casts are useful, health care providers would be better informed and prepared with condition-
specific health forecasts. Therefore, health forecasts need to be more specific for particular
health conditions. For example, the health forecast service provided by the United Kingdom
Meteorological Office to some Primary Care Trusts (PCT) is very specific for conditions such
as COPD [30] [49]. This kind of service is rare but useful.

Health forecasts are most valuable when they provide sufficient warning for timely, reme-
dial action to be taken. Providers make critical decisions and resource allocations to meet
the potential demand for health care services. Some of the complexities associated with these
types of health care provider actions could range from providing basic social care for early
symptoms, to using sophisticated staff and facilities and attending to extreme events [30] [17].
Meanwhile, being able to meet the demand for a health forecast that provides ample time
for preparatory activities often requires the use of a good forecasting technique and ample
reliable data. It also comes with an additional compromise as to the precision and accuracy
of the forecast. Hence, finding a fine line between what is predictable vis-a-vis the demand
for specific health forecast is a key challenge in health forecasting.

Another challenge in health forecasting relates to its practical use. A health forecast is
usually developed to target the needs of susceptible individuals or institutions (health care
providers). In any instance, there is a need for a technology with an intelligent early warning
system that can communicate the forecast to the users. Automated telephone services,
home visits/treatment, and direct health forecast (to individuals and service providers) are
means through which some health forecast services have been delivered [10]. Although there
have been some challenges and debates regarding the relevance of some of these existing
health forecasting programmes, there are a couple of success stories which provide compelling
evidence for their usage [30]. The case of the UK Meteorological Offices’ COPD forecast,
which was available to general practitioners in Bradford and Airendale, is an example. In
2009, Maheswaran et al. [26] evaluated this health forecasting alert service and failed to show
that any change in admissions associated with the forecasting service was significant, and
hence they challenged the effectiveness of the COPD forecast. Meanwhile, in cross-sectional
study on the acceptability and utility of this same service in England, Scotland and Wales,
Marno et al. [30] concluded that the service was both viable and useful. Further research to
improve or develop new approaches or schemes in health forecasting is therefore important
and will contribute to easing disease burden.

1.3 Conclusion

In this chapter, we have briefly explained some concepts of artificial intelligence and its
subfields, presented the most commonly used algorithms and their usages as well as we have
discussed both of prediction and forecasting and their utility in healthcare, defined the fine
line difference between both and seen the challenges in health forecasting.
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In the next chapter, we will introduce our case of study, that is body temperature, see
methods of measurement, then talk about the internet of things technology to see how we
can beneficiate of it in our project.
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Chapter 2

Body temperature and Internet of
Things technology

2.1 Introduction

Body temperature is an early warning sign of infection, and monitoring it, even when
healthy, can help detect disease early, reason why health monitoring system has been an
interesting topic recently among medical practitioners, engineers as well as [T professionals.
However, the application of automatic temperature remotely monitoring system where
physicians can monitor the temperature of their patients is practically new in Algeria.

In this chapter, we will give a background about the study case of our project that
is body temperature, see current methods of taking measurement and the advantages and
disadvantages of each. Then we are going to explain temperature sensors, define 10T, this
new technology that offers the ability to objects to become intelligently connected, give its
working principle and some of its benefits that incite us to do shift towards it. Finally, we
will give a concise explanation about microcontrollers.

2.2 Temperature

Definition 1: Temperature is the measure of cold or heat. It is measured by a thermometer
which has graduations corresponding to a temperature scale.
There are three main temperature scales:

e Celsius (°C): 0°C is the melting point of ice, and 100°C is the boiling point of water
e Fahrenheit (°F): t(°F) = 1,8 * t(°C) + 32.
e Kelvin (Kelvin): t(Kelvin) = t (°C) + 273,15

2.2.1 Methods of measuring body temperature

The reliability of the measurement differs according to the technique used: the most
precise method remains the intra-rectal measurement, the others frequently lead to an un-
derestimation of the body temperature at reference temperature, which is located in the
centre of the body and is difficult to measure. We distinguish:

1. Non-invasive methods: Temperature measurement is controversial because the ref-
erence temperature is located in the centre of the body, where access is difficult. In
these conditions, we are content to go second, taking the temperature in a place not
too exposed to ambient air, and yet accessible:
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e the rectum: provides reliable data. The thermometer must be cleaned and
disinfected after use, it can be protected by a wrapper (single-use probe);

e the mouth: is placed under the tongue, mouth closed. The intake should be
relatively distant from hot or cold absorption (single-use probe);

e the ear: infrared tympanic thermometer with an ear piece(single-use probe);

e armpit or azillary fold: the temperature is 0.5°C lower than the others taken
with an electronic thermometer. It may be impossible for cachectic people. The
skin should not be rubbed before taking;

e groin or inguinal fold: same as in the armpit;

e less used, and expensive, an infrared camera can reveal areas of inflamma-
tion (for example, revealing areas affected by arthritis, in veterinary medicine in
particular).

2. Invasive methods: Reserved for hospitalized patients requiring intensive and con-
tinuous monitoring, the temperature measurement can be performed with a urinary
catheter, an oesophageal catheter or with an arterial catheter equipped with a tem-
perature probe (especially when measuring invasive blood pressure)

2.2.2 Different types of medical thermometers

2.2.2.1 Electronic thermometer

A thermometer that detects temperature changes using a thermoresistive device in which
the electrical resistance changes in response to changes in temperature. Electronic thermome-
ters are portable and can be used to measure oral, axillary, and rectal temperatures.

Drawback:

x Small children and people with breathing issues may not be able to keep their mouths
closed long enough to acquire an accurate reading.
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Figure 2.1: Electronic thermometer.

2.2.2.2 Forehead (infrared) thermometer

This kind of thermometers use infrared sensors to measure the temperature of the superfi-
cial temporal artery, which is a branch of the carotid artery. Some are known as non-contact
infrared thermometers.

Forehead thermometers that require no physical contact have become very popular for
use in venues such as airports, stores, and stadiums. Forehead temperature readings run
around 1°F (0.6°C) cooler than oral temperature readings.
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Figure 2.2: Forehead (Infrared) thermometer.

Drawbacks:

x Readings can be affected by external factors, including drafts, wind, indoor heating,
and direct sunlight.

x Wearing certain clothing, such as hats or heavy coats, can skew the results.

2.2.2.3 Mercury thermometer(liquid in glass)

Invented by physicist Daniel Gabriel Fahrenheit in Amsterdam (1714), mercury ther-
mometers were once the only option available before the technological evolution for taking
temperature.

Figure 2.3: Gallium (ear) thermometer.

Drawback:

x Due to safety concerns, they're no longer widely available and may even be illegal
where you live.

2.2.2.4 Pacifier thermometer

This may be an easy way to record an approximate temperature for infants who use
pacifier.

Figure 2.4: Pacifier thermometer.

Drawbacks:
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x Pacifier thermometers must remain in the mouth, without moving, for up to 6 minutes.
Additionally, they provide an approximation of temperature rather than an exact reading.

2.2.2.5 Digital ear (tympanic) thermometer

Tympanic thermometers measure the temperature inside the ear canal through infrared
ray technology.

Tympanic readings are 0.5°F (0.3°C) to 1°F (0.6°C) higher than oral temperature read-
ings.

&

Figure 2.5: Tympanic (ear) thermometer.

Drawbacks:

x They may not fit properly in a small or curved ear canal.
X Obstructions like earwax may skew results.
x They must be positioned properly in order to get accurate results.

Assessment Patient health monitoring is a common thing done by doctors to monitor
their patients’ health. The most crucial reading monitored by doctors is the patient’s read
time body temperature. Unfortunately, current system used by doctors required them to see
patients face to face, and the doctors will have to walk door to door to check the patient’s
temperature [25] .

As we have seen in [subsection 2.2.2] temperature measurement devices used nowadays
require direct contact between patient and health practitioner, which might be perilous in
case of infectious diseases such as COVID-19

2.2.3 Another way of temperature monitoring

Recent advances in smartwatches have led to several applications in remote health
monitoring and mobile health (mHealth) |23].The smartwatch is a new technology that
combines features of smartphones with continuous data monitoring that promote health [13],
such as temperature. They can provide feedback to users that allow them to monitor their
health, perform just-in-time interventions such as medication use based on symptoms, and
direct communication with caregivers and physicians [39).
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Figure 2.6: Smartwatch.

Besides the ability to wear smartwatches to collect continuous sensing data such as heart
rate and activity, smartwatches have many other practical features that make them ideal
platforms for healthcare applications 23| [11]. First, unlike smartphones, smartwatches are
ubiquitous in that they are typically worn even when at home and during night-time. Also,
similar to smartphones, smartwatches are able to combine sensor information such as ac-
celerometers, gyroscopes, compasses, and heart rate, with global positioning satellite (GPS)
data. This is particularly promising in applications that require continuous physical activity
monitoring to identify unexpected changes in activity patterns and propose alarms and help
based on the given localized area. Alarms and messages can also be more easily observed
than those sent to smartphones, as individuals can receive vibrations, text, and sounds while
wearing the watch. Finally, there is unlimited development potential regarding the use of
smartwatches in healthcare applications, and the modularity of software applications (apps)
allows for personalization to each individual’s healthcare needs [23].

2.3 Temperature Sensors

Definition: A temperature sensor is an electronic device that detects and measures
its environment hotness or coldness as input data and then converts these data into either
an analogue or digital output to be recorded, monitored, or even signalled and reported as
temperature changes. Temperature sensors are the most commonly used type of sensors.

Two kinds of temperature sensors can be distinguished in term of use method:

A. Contact temperature sensors: this type of temperature can be used to detect a
wide range of temperatures requiring to be in physical contact with the sensed object.

B. Non-contact temperature sensors: is a kind of temperature sensors used to de-
tected energy emitted from objects (generally liquids and gases) and transmitted in
form of infrared radiation.

As we can classify temperature sensors into three main types: Thermocouples, Thermis-
tors and RTD (Resistive Temperature Devices).

Thermocouple: is a sensor used to measure temperature. It consists of two metals of

different kinds joined at one end. When the junction of the metals is heated or cooled, a
variable voltage is produced, which can then be translated into temperaturakigure 2.7|
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Figure 2.7: thermocouple.

Thermistor: is an electronic component whose electrical resistance varies with temper-
ature and this variation is perfectly reversible. It is one of the main temperature sensors

used in electronicdFigure 2.8

Figure 2.8: Thermistor.

RTD (Resistance Temperature Detector:) is a sensor whose resistance changes as

its temperature changedFigure 2.9

Figure 2.9: Resistance temperature detector (RTD).

The difference between these types is summarized in the table below [Table 2.1}
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Thermistor Thermocouple RTD
-80°C to 150°C -270°C to 1800°C -260°C to 850°C
Low Low Moderate
Moderate High Moderate
Moderate Low Best
Best Low Moderate
Poor Moderate Best
Best sensitivity | Highest temperatures | General purpose sensing

Table 2.1: Types of temperature sensors

2.4 Internet of Things

Till now, the Internet of Things (IoT) has no standard, unified and shared definition yet.
Some definitions focus on the technical aspects of IoT and say that it is an extension of the
Internet naming system and reflects a convergence of digital identifiers in the sense that it
is possible to identify digital information elements and physical elements in a unified way.
While others focus more on the uses and functionalities and define it as objects with virtual
identities, operating in intelligent spaces and using intelligent interfaces to connect and
communicate within various contexts of use.

According to Detlef Shoder [42], IoT is a world of interconnected things which are capable
of sensing, actuating and communicating among themselves and with the environment (i.e,
smart things or smart objects) while providing the ability to share information and act in
parts autonomously to real/physical world events and by triggering processes and creating
services with or without direct human intervention.

2.4.1 Working principle of IoT system

Each system is characterized by its working principle that can be unique. As its def-
inition, 10T has no single unified architecture that is agreed on below, we are going to
explain a principle of 10T technology that mainly relays on four components as illustrated

in [Figure 2.10}

1. Sensor/Device: the first step in the process is data collection by the sensor/device[],
for example temperature, humidity, etc., readings.

2. Connectivity: after collecting data, they have to be sent to the cloud? To enable
this step, sensor/device must be connected to the cloud, and this can be done through
a variety of methods including: cellular, Wi-Fi, Bluetooth, low-power wide-area net-
works,etc.

'We use the composite term "Sensor/Device" rather than only sensor or device to refer that we can bundle
several sensors together or sensors can be part of a device that does not only sense things

2An IoT cloud is a massive network that supports IoT devices and applications. This includes the underlying
infrastructure, servers and storage, needed for real-time operations and processing. An IoT cloud also
includes the services and standards necessary for connecting, managing, and securing different IoT devices
and applications.
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although the same task (connectivity) has to be accomplished, each of the options
above has trade-offs (power consumption,range and bandwidth), and choosing the ap-
propriate option comes to the specific IoT application.

3. Data processing: now comes the role of the software to process the data we got via
the cloud to derive meaningful information. This step could be very simple as checking
temperature readings values in a storage garage whether they are getting high. As it
could be complex such as identifying a thief on a property using Al.

4. User interface: the user interface allows to proactively check in on the system. To
complete the examples above, the user in the example above (storage garage manager),
might have a mobile application that makes alerts in case of high temperature then he
might remotely adjust the temperature inside the storage. As this step can be fully
automatic as in case of the 2" example (detecting a thief through Al technology),
where the system can directly notify the security rather than alerting the owner who
might not pay attention to the alert. So, this final step depends on the IoT application.

Sensors/
Devices

COMPONENTS

Data User
Processing | Interface

Figure 2.10: Main architecture components of the Internet of Things.

2.4.2 Benefits of IoT technology

e [oT security is the safety component tied to IoT, and it strives to protect IoT devices
and networks against cybercrime.

e Helps improving machine learning process that requires a massive amount of data, and
this data is being collected by billions of sensors.

e Necessary information are being easily accessed from anywhere, any device in real-time.

e Billions of devices are now capable of immediately sharing, receiving and analysing
massive amounts of data.

All that we need to benefit from IoT technology goods is a good network.
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2.4.3 Microcontrollers

Definition: a microcontroller (MCU) is a compact, easy to carry out (it can be embed-
ded on any device), programmable integrated circuit designed to perform a specific operation
in an integrated system. It consists of a processor, a memory and input/output ports on a
single board or chip.

Microcontroller VS microprocessor:

Microcontrollers (MCUs) differ from microprocessors (MPUs) in that they are cheaper, easier
to install and simpler to use MPUs. Figure shows that an MPU consists of several chips
that support various features such as memories, interfaces, etc., which is the key feature of
it because it makes it possible design a system with a great flexibility.

Registers

General
purpose
reqgisters

Clock
and
Timing
circuit

Stack

pointer
Interrupt
circuits

Program
counter

Figure 2.11: Microprocessor block diagram.

On the other hand, an MCU is considered as a single chip computer due to its built-
in (on-chip) peripheral devices (ROM, RAM, parallel 1/O, serial I/O, counters and clock
circuit) that turn it a single-ship computer system as illustrated in Figure that allow
smaller access time and reduce the hardware size.
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Figure 2.12: Microcontroller block diagram.

Criteria to choose a suitable microcontroller

To choose a microcontroller that is perfectly suited to the needs of the devices you want
to build, it is important to take into consideration several factors.

a)

Computational power: it is the first element to consider when choosing. It is de-
pended on the the functionality of the end product, and whether a single core processor
is needed or dual core processor, because as we know the higher number of cores, the
faster is the microcontroller.

Energy efficiency: it is the trade-off between the computational performance and
the power consumption of the microcontroller. The more powerful an MCU is, the
more energy it will consume.

Security: with the high risk of hacking of connected objects, a well secured micro-
controller is required. So, it is preferable to either choose devices that are certified
according to the latest security standards or use microcontrollers with on-chip secu-
rity.

Temperature: sometimes we may need models with better resistance to extreme
temperatures , depending on the environment in which the microcontrollers are to be
installed. The more tolerant MCUs are often more expensive.

Memory: the size of program memory (ROM) and random access memory (RAM)
varies depending on the programs we want to run. More programs need more RAM.
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f) Hardware interface: it depends on the nature of the task to be performed. If audio,
video, camera, USB, Wi-Fi or Bluetooth functionalities are required, the microcon-
troller has to be chosen correspondingly.

g) Software: there are microcontrollers that run on several operating systems, and
others that do not. It is preferable to use the same software architecture to increase
interoperability.

2.5 Conclusion

In this chapter, we have presented body temperature and the ways to measure it, intro-
duced temperature sensors by defining and classifying them. We have also briefly described
IoT technology and summed up with presenting the microcontrollers that are necessary for
IoT applications.

In the next chapter, we will see how we can beneficiate from the concepts explained in
this chapter and the previous one to build a temperature monitoring system and use it to
non-invasively forecast future body temperature.
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Design

3.1 Introduction

By dint of the successful realization of [o'T systems, many machine learning projects have
emerged and succeeded thanks to the important amount of data collected. And as remote
health monitoring is contemporary, we have decided to realise a wearable device that will
play a significant role for the first time in Algeria to remotely monitor body temperature of
hospitalized patients in critical cases and forecast their future body temperatures.

In this chapter, we will firstly introduce the idea of our project and present the compo-
nents as well as the proposed architecture we need to build the wearable device. Then we
will put forward the software that will be displayed in the user interface such that is a web
interface in which we will plot the temperature values for better visualization.

3.2 Body temperature monitoring device

To realise a wearable device that takes temperature measurements and allows to remotely
monitor it, we need a hardware part and a software part.
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Figure 3.1: General architecture of our project.

illustrates the general architecture that will be adopted for this project. As
previously explained in [subsection 2.4.1} the whole IoT application will be divided into four
components where, in our case, for "sensor/device” part, we will have the wearable device it-
self (temperature sensor, microcontroller, battery) that will be explained in [subsection 3.2.1}
For connectivity, we need a network connection (SSID + password) to enable the device
store data in the cloud, and on the other hand, display these data in the user interface

lsubsection 3.2.2]

3.2.1 Hardware part

The components below are to be used for the hardware part:

e a sensor that measures temperature;

e a microcontroller to retrieve data values detected by the sensor;

e a Wi-Fi module that allows wireless communication between the device and the cloud;
e a cover to protect the above components.

e a battery.

For our device we have chosen the components described below:

Temperature sensor: as a temperature sensor, we are going to use the LM35 series
that are precision integrated-circuit temperature devices with an output voltage
linearly-proportional to the Centigrade temperature. The LM35 device has an advantage
over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a
large constant voltage from the output to obtain convenient Centigrade scaling. The LM35
device does not require any external calibration or trimming to provide typical accuracies of
1°C at room temperature and, 2°C over a full 55°C to 150°C temperature range.
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As the LM35 device draws only 60 pA from the supply, it has very low self-heating of less
than 0.1°C in still air.

LM35

Ground

Output Voltage
Supply Voltage

Figure 3.2: LM35 sensor.

Microcontroller and WiFi module : for this part of the device, we normally need two
electronic cards (a microcontroller and a WiFi module), but as our device is intended to be
wearable, we wanted it to be comfortable thus as small as possible, therefore, we are going
to use a microcontroller with an integrated WiFi module.

The ESP8266 is a System on a Chip (SoC), manufactured by the Chinese company
Espressif. It consists of a Tensilica L106 32-bit micro controller unit (MCU) and a Wi-Fi
transceiver. It has 11 GPIO pins* (General Purpose Input/output pins), and an analogue
input as well. This means that we can program it like any other microcontroller. And on top
of that, you get Wi-Fi communication, so you can use it to connect to our Wi-Fi network,
connect to the Internet, host a web server with real web pages, let smartphones connect to it,
etc. The possibilities are endless! It is no wonder that this chip has become the most popular
IoT device available. It contains a built-in 32-bit low-power CPU, ROM and RAM. It is a
complete and self-contained Wi-Fi network solution that can carry software applications as a
stand-alone device or connected with a microcontroller (MCU). The module has built-in AT
Command firmware to be used with any MCU via COM port. The ESP8266 can be flashed
and programmed using the Arduino IDE. Due to its large open source developer community,
a large number of libraries for this popular microcontroller is available.

Figure 3.3: ESP8266 NodeMCU.

Battery: In order to power the previous components and make the final realisation portable,
we need to add a power supply.
3.2.1.1 Hardware system design

The process of hardware system design includes circuit connections, schematic design,
simulation, verification, and testing. This design process provides a detailed understanding
of the project and the hardware components. It also helps in preliminary verification and
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testing of the project architecture. To design the hardware system we need a helpful tool, for
our project, we used Fritzing [Figure 4.10]to model our circuit with the following connections:

e The Vce of the LM35 goes to 3v of the ESP8266.

e The Out pin of LM35 goes to the A0 of the ESP8266 which is the only analogue pin
of the NodeMcu.

e The GND of LM35 goes to the GND of the ESP8266.

The conceptional result is down below

-

Figure 3.4: Hardware architecture design.

3.2.2 Software part

3.2.2.1 Dataset Collection and storage

As to achieve the flexibility of collecting and storing data (temperature readings), and
real-time accessing them, we will create a channel in the open source IoT application
"ThingSpeak" that is a data platform and application programming interface
(API), where we can send and store our data sent from the sensor to the cloud through the
WiFi module integrated in the NodeMCU.
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Figure 3.5: Architecture of data collection, storage and display in the UI .

The reason behind choosing cloud storage for our project is to find enough storage space
to hold the data we are acquiring. Besides storing data in a remote database, in our project
will allow the doctor who is monitoring his patient to access and visualize new data from
anywhere and anytime and not only from his office.

Once we sign into ThingSpeak, we will have to create a channel where to store our data
privately, visualize and retrieve them as a time-series dataset.

In order to forecast future body temperature based on historical values (time-series
dataset), we have proposed a machine learning model that is described in Where,
after collecting data-set using our body temperature monitoring device and storing it in the
cloud, we retrieve it to feed the appropriate algorithm to train it, after that, we get the fore-
casted body temperature values for next hours which will be displayed in the User Interface
Figure 3.6

ML Model I\
Ul

Dataset

Figure 3.6: Forecasting process.

For our project, to forecast body temperature based on time-series data, we will use the
following regression methods as they are used for predicting/forecasting target variables on
a continuous scale:

1. Linear regression: that fits a linear model with coeflicients w = (wy, ..., w,) to
minimize the residual sum of squares between the observed targets in the dataset, and
the targets predicted by the linear approximation [36].
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2. Ridge regression: that is a method of estimating multiple regression model coeffi-
cients in scenarios where independent variables are highly correlated.

3. Decision tree regressor: used to fit a sine curve with addition noisy observation.
As a result, it learns local linear regressions approximating the sine curve. If the
maximum depth of the tree (controlled by the max depth parameter) is set too high,
the decision trees learn too fine details of the training data and learn from the noise,
i.e. they overfit [36].

4. Random forest regressor: A random forest is a meta estimator that fits a number
of classifying decision trees on various sub-samples of the dataset and uses averaging
to improve the predictive accuracy and control over-fitting. The sub-sample size is
controlled with the max samples parameter if bootstrap=True (default), otherwise
the whole dataset is used to build each tree [36].

5. K-Neighbours regressor: meta-estimator that begins by fitting a regressor on the
original dataset and then fits additional copies of the regressor on the same dataset
but where the weights of instances are adjusted according to the error of the current
prediction. As such, subsequent regressors focus more on difficult cases |36].

6. Lasso regressor: Least Absolute Shrinkage and Selection Operator regression, is a
shrinkage and variable selection method for regression models, is an attractive option as
it addresses both problems,aims to identify the variables and corresponding regression
coeficients that lead to a model that minimizes the prediction error [22].

7. Gradient boosting regressor: GB builds an additive model in a forward stage-wise
fashion; it allows for the optimization of arbitrary differentiable loss functions. In each
stage a regression tree is fit on the negative gradient of the given loss function [36].

8. Adaboost regressor: it is a meta-estimator that begins by fitting a regressor on the
original dataset and then fits additional copies of the regressor on the same dataset
but where the weights of instances are adjusted according to the error of the current
prediction [36].

Among the methods described above, three of them ( Gradient Boosting Regressor, Adaboost
Regressor and Random Forest Regressor) belong to ensemble methods set, where ensemble
learning is a technique that combines different models of machine learning in order to increase
the performance and accuracy.

It is not arbitrary to elect the appropriate model to be used, as we have previously
mentioned in [subsubsection 1.2.3.2] there are ways to evaluate models, and for regression
models that we have used we can use the Root Mean Square Error (RMSE) and R? calculating
techniques to evaluate the performance of each model where :

e RMSE is the standard deviation of the prediction/forecast errors, it is defined as fol-

lows:
RMSE — 1 ZN 2

Where N represents the total number of data samples. A;= Y’- Y is the error between
the predicted Y’ value and the true Y for the i;;, test samples.

e R?is a statistical measure that represents the proportion of the variance for a dependent
variable that’s explained by an independent variable or variables in a regression model,
where:
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Concerning the user interface, we will develop a temperature monitoring application
to monitor temperature evolution of patients during 24 hours. The application will allow
doctors, patients, and other possible third parties (eg: parents) to check the temperature
of patients and display the forecast of its evolution in the next hours based on the data
collected which was predicted in the previous step using machine learning techniques.

[34]

3.3 Conclusion

In this chapter, we have precisely explained the idea of our project, as we have presented
tools and methods to realise it in both hardware and software part step by step.

In the upcoming chapter, we will see how to realise the whole project and implement the
software part then forecast the future body temperature.
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Implementation

4.1 Introduction

As part of our attempt to realise a wearable device that collects a time-series dataset.
This latter will be used to forecast future body temperature as we have introduced in the
previous chapter, this chapter is made to achieve our objective.

In this chapter, we will present the whole process of realising our project, from making
the electronic device that collects data, to the way of storing then doing our forecasts, and
finally displaying the forecasted temperature values on a reactive web interface.

4.2 Hardware realisation

After modelling our circuit using Fritzing software [Figure 4.10] we have connected the
real components with the following connections:

e The Vcc of the LM35 goes to 3v of the ESP8266.

e The Out pin of LM35 goes to the A0 of the ESP8266 which is the only analogue pin
of the NodeMcu.

e The GND of LM35 goes to the GND of the ESP8266.

The result of the hardware connection is down below in
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Figure 4.1: First connection of the hardware using the sensor and ESP8266.

e The Vcc pin is connected through the green wire.
e The Out pin is connected through the orange wire.

e The GND pin is connected through the red wire.

And we got the result illustrated below in

Figure 4.2: First connection of the hardware using the sensor and ESP8266 (other side).
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In order to power our device we have used a 5600mAh external battery and a data cable
(containing a data line to enable data sharing)Figure 4.3

Figure 4.3: The external battery used in our project.

Figure 4.4: "Sensor/Device" powered |[Figure 4.4

4.3 Software implementation

4.3.1 Development tools and languages

Python is an open source, interpreted, object-oriented, high-

level programming language with dynamic semantics pro-

gramming language that includes a lot of supporting li-

— braries. Python is used for data analytics, machine learning,
and even design.

Figure 4.5: Python Logo
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Matplotlib

Figure 4.6: Matplotlib Logo

Matplotlib is a plotting library for Python. It is used along
with NumPy to provide an environment that is an effective
open source alternative for MatLab. It can also be used with
graphics toolkits like PyQt and wxPython.

(O

Figure 4.7: Google Colab
Logo

Colaboratory, often shortened to "Colab", is a product of
Google Research. Colab allows anyone to write and run any
Python code of their choice through the browser. It is an
environment particularly suited to machine learning, data
analysis and education.

.eewm

Figure 4.8: sklearn Library
Logo

Scikit-learn is a free machine learning library for Python. It
features various algorithms like support vector machine, ran-
dom forests, and k-neighbours, and it also supports Python
numerical and scientific libraries like NumPy and SciPy .

Figure 4.9: pandas Library
Logo

Pandas is an open source Python package that is most widely
used for data science/data analysis and machine learning
tasks. Pandas makes it simple to do many of the time con-
suming, repetitive tasks associated with working with data
(Data cleansing, data fill, data inspecting,data visualization,
etc.).

fritzing

Figure 4.10: Fritzing Soft-
ware logo.

Fritzing is a free circuit modelling software that can be in-
stalled in pretty much any computer the good thing about it
is that it does not use a lot of resources and can work in any
computer, the default version of Fritzing comes without the
NodeMcu v3 model, which means that we had to download
it and manually installed it.
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Figure 4.11: Arduino IDE
logo.

The Arduino IDE is a cross-platform application developed
in Java that can be used to develop, compile, and upload
programs to the Arduino board, The IDE contains a text
editor for coding, a menu bar to access the IDE components,
a toolbar to easily access the most common functions, and
a text console to check the compiler outputs. A status bar
at the bottom shows the selected Arduino board and the
port name that it is connected to, as shown in . An Arduino
program that is developed using the IDE is called a sketch.
Sketches are coded in Arduino language, which is based on
a custom version of C/C++.

~ DATA AGGREGATION
5 AND ANAUYTICS
- [JThingSpeak
T MATLAB
-

@ | SMART CONNECTED DEVICES

= [ ALGORITHM DEVELOPMENT
sssssssssssssss

Figure 4.12: ThingSpeak
Logo

ThingSpeak is an IoT analytics service that allows you to
aggregate, visualize, and analyze live data streams in the
cloud. ThingSpeak provides instant visualizations of data
posted by your devices to ThingSpeak. With the ability to
execute MATLAB code in ThingSpeak, you can perform on-
line analysis and process data as it comes in. ThingSpeak is
often used for prototyping and proof-of-concept IoT systems
that require analytics.

Bl Dash

Figure 4.13: dash Library
Logo

Dash is an open-source Python framework used for building
analytical web applications. It is a powerful library that sim-
plifies the development of data-driven applications. Users
can create amazing dashboards in their browser using dash
because it ties modern UI elements like dropdowns, sliders
and graphs directly to their analytical python code.

4.3.1.1 Arduino Sketch
We have used ArduinolDE

to program our device (body temperature monitor), and as

we have used a microcontroller with a built-in Wi-Fi module. We first had to call the
ESP8266.h library, that is a Wi-Fi library developed using the naming conventions and
overall functionality of the ArduinoWiFi library.

Then added the followed three

#include <ESP8266WiFi.h>

lines of code:

e String apiWritekey = "03T4AADIQ6L##+#"; this string is provided by the
API of ThingSpeak service for each channel we create, in our case for each user of

the device. Otherwise, if

we had realised two copies of this device we would have had

two apiWriteKey and then for each copy we have to modify this line of code with the

specific write key before

the implementation. Note: if we share this write key with

another device, there would be an overlap and confusion in the channel, which means
that we would have 2 values at the same.

e const char* ssid — "khadijaMK"; this is the name of the network we were con-

nected to (Gateway).
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e const char* password = "12###H##" ;and of course we have also to write the

password of the gateway.

WiFiClient client; allows the instantiation of a client from WiFiClient class. #include
<ESP8266WiFi.h>) const char* server = "api.thingspeak.com"; indicate that we are
hosting our web interface in thingspeak server.
While resolution variable is created to simplify the function of conversion the read value
from voltage to a clear value, where 3.3 is the voltage given to LM35 sensor and 1023 is the
analogue pin resolution starting from 0.

LM35ESPE266
Finclude <ESPB266WiFi.h=

EString apiWritekey = "G3T4AADIQEL NG ;
iconst char* ssid = "khadijaMK"; //

\const char* password = "1ZiEeeenwr' ;//

Econst char* server = "api.thingspeak.com";
'"float resolution=3.3/1023;//
WiFiClient client; //

To successfully compile the Arduino sketch, it is required to use both of setup() and

loop() that are are mandatory functions.

Setup code explanation:

The void setup() is the first function to be executed in the sketch and it is executed only

once. It usually contains statements that set the pin modes.
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!

volid setup() {

Serial.begin(115200) ;
WiFi.disconnect();
delay(1@) ;

WiFi.begin(ssid, password);

Serial.println();
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);

WiFi.begin(ssid, password);
while (WiFi.status() '= WL _CONNECTED) {

delay(500) ;
Serial.print(".");

}
Serial.println("");
Serial.print("NodeMcu connected to wifi...");

Serial.println(ssid);
Serial.println();
Serial.println("IP address :");
Serial.print(WiFi.locallIP(});
Serial.println();

Serial.begin(115200) opens serial port, sets data rate to 115200 bps, what comes after

that is connecting to a new session on the given Network SSID and password

Loop code explanation:

This is where the main code of Arduino sketch is executed. The program runs over and over
since the board is empowered.
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LM35ESPB2E6

void loop() {
float temp = (analogRead(AQ) * resolution) * 100;

it (client.connect(server,80))
{

String tsData = apiWritekey;
tsData +="&fieldl=";
tsData += String(temp) ;
tsData += "“riwnhrin";

client.print{"POST Jupdate HTTP/1.1%Nn");

client.print{"Host: api.thingspeak.comyn") ;
client.print{"Connection: close\n");
client.print{"X-THINGSPEAKAPIKEY: "+apiWritekey+"\n");
client.print("Content-Type: application/x-www-form-urlencodedin");
client.print{"Content-Length: ") ;

client.print{tsData.length(}));

client.print("\nin");

client.print({tsData);

The first line in the function represents the conversion of voltage reading to a normalized
value (celsius in here).
After that, if the device is successfully connected to the server, we start uploading data to
it.

Serial.print("Temperature: ");
Serial.print(temp);
Serial.println("uploaded to Thingspeak server....");

}
client.stop();

Serial.println("Waiting to upload next reading...");
Serial.println();

// thingspeak needs minimum 15 sec delay between updates
delay(15000) ;

}

This fragment of code, is done to display all the above information to the serial monitor,
and the result is down below:

49



Chapter 4

Implementation

s @ Arduino IDE ~

ven. 16:51
fdevfttyUsBO

[

4

Figure 4.14: Collected temperature values displayed on ArduinoIDE Serial Monitor.
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Above in [Figure 4.14] we can see temperature readings every 15 seconds, the sensor is
stable and reliable as it has returned stable values when put on the skin (37.74°C), returned
above 38°C when quietly warmed it up and 35.48°C when cooled down.

After that we have stored data in ThingSpeak, we had exported them as a csv file to use
it for forecasting.

50



Chapter 4 Implementation

Export recent data

LM35 Channel Feed: JSON XML CSV

Field 1 Data: Temperature JSON XML CSV

Figure 4.15: Exporting time-series dataset from the ThingSpeak.

4.3.1.2 Machine learning models implementation

Now comes the machine learning process to forecast body future temperature values.
To do so, we have used google colab to implement the models. First, we imported the
necessary packages depicted in

‘, import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression, Ridge, Lasso
from sklearn.linear model import LinearRegression, Ridge, Lasso
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import (RandomForestRegressor, GradientBoostingRegressor,
AdaBoostRegressor)
from sklearn.metrics import mean_squared error, r2_score

Figure 4.16: Necessary python packages.

We have downloaded a dataset from DataWorld, a cloud-native data catalogue, that
contains wrist skin temperature of the same person, captured by a BASIS smart watch each
minute during 24hours and imported it to python code to train our model.

df = pd.read excel
("/content/drive/MyDrive/basis_70days skintemp conditional formatting visual.xlsx",
na_values=" None")

Figure 4.17: Dataset import.

The imported dataset is split into training and forecasting sets, 25% of the measurements
are selected for the training of the forecasting models, while the remaining 75% are aimed
for the forecasting, in this step, we used a function that splits arrays or matrices into random
train and test subsets
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%x_train, val X, y _train, val ¥ = train_test splitix, ¥,
test_size=0.5, random_state = 1)#, random state = 1

Figure 4.18: splitting dataset.

Training step
Various popular machine learning methods are performed for comparison purposes, includ-
ing:"Linear Regression", "Ridge Regression", "Lasso Regression’, "K Neighbors Regressor",
"Decision Tree Regressor", "Random Forest Regressor", "Gradient Boosting Regressor", and
"Adaboost Regressor", using default parameters.

from sklearn.linear model import LinearRegression, Ridge, Lasso

from sklearn.linear model import LinearRegression, Ridge, Lasso

from sklearn.neighbors import KNeighborsRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import (RandomForestRegressor, GradientBoostingRegressor,

AdaBoostRegressor)
names = ['Linear Regression', 'Ridge Regression', 'Lasso Regression’,
'K Neighbors Regressor', 'Decision Tree Regressor',
'Random Forest Regressor', 'Gradient Boosting Regressor',
'Adaboost Regressor']
models = [LinearRegression(), Ridge(), Lassol),

KNeighborsRegressor(), DecisionTreeRegressor(),
RandomForestRegressor(), GradientBoostingRegressor(],

AdaBoostRegressor()]
from sklearn.metrics import mean squared error, r2 score
Model = []
RMSE = []
R sq = []

for name, model in zip(names, models):
model.fit{x train.reshape(-1, 1}, y train.reshape(-1, 1))
¥_prd= model.predict(val_X.reshape(-1, 1))
Model.append(name)
RMSE. append(mean squared error{val Y.reshape(-1, 1)}, Y prd.reshape(-1, 1}))
R_sq.append(r2_score(val_Y.reshape(-1, 1), ¥ prd.reshape(-1, 1))}

evaluation = pd.DataFrame({'Model': Model,
"‘RMSE* : RMSE,
'R Squared': R sq})
print ("FOLLOWING ARE THE TESTING SCORES: ")
evaluation

Figure 4.19: Performed models.

Among all methods, Linear Regression, Ridge Regression, Lasso Regression and Ad-
aboost Regressor performed worse (higher RMSE) than the remaining methods. On other
hand, K-Neighbors Regressor , Decision Tree Regressor , Random Forest Regressor , Gradi-
ent Boosting Regressor, Adaboost Regressor achieved a lower RMSE than other comparing
methods. We picked the best model based on RMSE metric, which is Random Forest Re-
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Model RMSE R?
Linear Regression 9.664388 | 0.136574
Ridge Regression 9.664388 | 0.136574
Lasso Regression 9.666494 | 0.136386

K-Neighbour Regressor 0.397253 | 0.964509
Decision Tree Regressor 0.295361 | 0.973612
Random Forest Regressor | 0.265717 | 0.976261
Gradient Boosting Regressor | 0.407368 | 0.963605
Adaboost Regressor 1.641101 | 0.853382

Table 4.1: Machine learning training scores

As Random forest regressor performed best, we have elected it to forecast future body
temperature and it has been trained on the first 360 measurements, and predicted the body
temperature in the upcoming 1081 measurements, as shown below in [Figure 4.20

—— original

—— predicted
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34 4

33 A

w
N

Temperature (F)

w
ey

30 1

29 A

28 A

Figure 4.20: plot of the training step.

Testing step Predicted body temperature of Random Forest method are depicted in

It is worth noting that the body temperature forecasting values are more
reliable and closer to the true values, where the forecasted values have the same trend of
change with true values.
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Figure 4.21: Plot of the testing step.

Training using our own dataset
We have imported our dataset that we have started collecting using the device we made and

applied the same previous process on it [Figure 4.22]

df = pd.read_csv("/content/drive/MyDrive/feed.csv")

Figure 4.22: Importing our own dataset.

But unfortunately, as we could not get a varied dataset (i.e: different body temperature
measurement that we usually get from ill people), the result we have got were not satisfying

and are depicted below in for training step and for testing step:
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Figure 4.23: Training step.
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Figure 4.24: Testing step.

Web application for visualization

The Temperature Monitoring application was developed as an interactive Web Application
that is accessible via internet to all authorized users in a secure manner. The development
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steps of this application are as follows:

1. Install the required libraries to run the web application: Required libraries
are: pandas, plotly, dash(+ dash-html- components, dash-core-components).

[] 1 pip install -r /content/drive/MyDrive/Requirements.txt #install the required packages

Requirement already satisfied: pandas==8.24.2 in fusr/local/lib/python3.7/dist-packages (from -r /content/drive/MyDrive/Requirements.txt (line 1)) (9.24.2)
Requirement already satisfied: plotly==4.1.8 in /usr/local/Lib/pythen3.7/dist-packages (from -r /content/drive/myDrive/Requirenents.txt (line 2)) (4.1.8)

Requirement already satisfied: dash==1.2.8 in fusr/local/lib/python3.7/dist-packages (frem -r /content/drive/MyDrive/Requirements.txt (line 4)) (1.2.8)

Requirement already satisfled: dash-html-components==1.e.1 in /usr/local/lib/pythena.7fdist-packages (from -r /content/drive/myorive/rRequirements.txt (1ine 6)) (1.e.1)
Requirement already satisfied: dash-core-components==1.1.2 in /usr/local/lib/pythen2.7/dist-packages (from -r /content/drive/MyDrive/Requirements.txt (line 8)) (1.1.2)
Requirement already satisfied: python-dateutil»=2,5.8 in Jusr/local/lib/python3.7/dist-packages (from pandas==8.24.2->-r /content/drive/MyDrive/Requirements. txt (line 1)) (2.8.1)
Requirement already satisfied: numpy»=1.12.8 in fusr/local/lib/python3.7/dist-packages (from pandas==8.24.2->-r /content/drive/MyOrive/Requirements.txt (lime 1)) (1.18.5)
Requirement already satisfied: pytz»=2011k in /usr/local/lib/python3.7/dist-packages (from pandas==€.24.2->-r [content/drive/MyDrive/Requirements.tut (line 1)) (2818.9)
Requirement already satisfied: six in Jfusr/local/lib/python3.?/dist-packages (frem plotly==4.1.8->-r /content/drive/MyDrive/Requirements.txt (line 2)) (1.15.8)

¥
/
)
J

Requirement already satisfied: retryingy=1.3.3 in /usr/local/lib/pythons.7/dist-packages (from plotlys=4.1.8->-r /content/drive/Myorive/Requirements,txt (Line 2)) (1.3.3
Requirement already satisfied: dash-table==4.2.8 in fusr/local/lib/python3.7/dist-packages (from dashe=1.2.8->-r /content/drive/MyOrive/Requirements.txt (line 4)) (4.2.0
Requirement already satisfied: flask-compress in /usr/local/lib/python3.7/dist-packages (from dash==1.2.8->-r /content/drive/MyDrive/Requirements.txt (line 4)) (1.10. 11
Requirement already satisfied: Flask»=1.8.2 in /usr/local/lib/python3.7/dist-packages (from dash==1.2.8-»-r /content/drive/MyDrive/Requirements.tut (line 4)) (1.1.4)

Requirement already satisfied: future in /usr/local/lib/pythen3.?/dist-packages (from dash==1.2.8-5-F /content/drive/MyDrive/Requirenents. tut (line 4)) (8.16.8)

Requirement already satisfied: dash-renderer==1.2.1 in fusr/local/lib/pythen3.7/dist-packages (from dashe=1.2.8->-r [content/drive/Myorive/Requirements.txt (line &)) (1.e.1)

Requirement already satisfied: brotli in fusr/local/lib/pythen3.7/dist-packages (from flask-compress-»dash==1.2.8->-r [content/drive/MyOrive/Requirements.txt (line 4)) (1.8.9)

Requirement already satisfied: Jinja2¢2.8,»=2,10.1 in fusr/local/lib/python3.?/dist-packages (from Flask»=1.8,2->dash==1,2.8->-r /content/drive/MyDrive/Requirements.txt (line £)) (2,11.2)
(1.1.

Requirement already satisfied: itsdangerouse2.@,»=8.24 in fusr/local/1ib/python3.7/dist-packages (from Flasks=1.8.2-»dash==1.2.8-3.r /content/drive/MyDrive/Requirenents. tut (line 4)) e)

Requirement already satisfied: werkzeuge2.e,»=8.15 in fusr/local/lib/python3.7/dist-packages (from Flask=1.6.2->dashe=1.2.8-3-r /content/drive/myDrive/Requirenents.txt (line 4)) (1.0.1)

Requirement already satisfied: clicke8.e,»=5.1 in /usr/local/lib/python3.7/dist-packages (from Flask»=1.0.2-»dash==1.2.8->-r /content/drive/myDrive/Requirements.txt (line 4)) (7.1.2)

Requirement already satisfled: MarkupSafe»=e.23 in /usrflocal/lib/python3.?/dist-packages (from Jinjale3.e,»=2.1¢.1->Flasky=1.8.2->dash==1.2.8->-r /content/drive/MyOrive/Requirements.txt (line ¢)) (2.0.1)

Figure 4.25: Required libraries installing.

2. Install the ngrok package: To create a machine learning Web Application, ngrok
is installed. This tool generates a public URL that can be shared with anyone in the
world (temporarily if the free version of ngrok is used, if its paid then the URL is
permanent).

[5] # To run a Dash app in Google Colab
## It is required to install ngrok
#which creates a secured URL accessible on any machine and by anyone.

lwget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amdé4.zip
lunzip ngrok-stable-linux-amd64.zip

--2021-87-01 21:83:55-- https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
Resolving bin.equinox.io (bin.equinox.ieo)... 52.73.79.40, 58.17.89.192, 34.195.88.198,

Connecting to bin.equinox.io (bin.eguinox.io)|52.73.79.40]:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 13832437 (13M) [application/octet-stream]

Saving to: ‘ngrok-stable-linux-amdé4.zip.1l’

ngrok-stable-linux- 100%[ =] 13.19M 6.53MB/s in 2.08s

2021-07-81 21:03:58 (6.53 MB/s) - 'ngrok-stable-linux-amd64.zip.1' saved [13832437/13832437]

Archive: ngrok-stable-linux-amdé4.zip
replace ngrok? [yles, [nlo, [AILL, [Mlone, [rlename:

Figure 4.26: Ngrok installing.

3. Run ngrok to generate an URL for our Web application: ngrok takes a port
that is available on your localhost and exposes it to the internet with a public URL in

a secure manner. The generated URL in [Figure 4.27|is http://f4f8a3350311.ngrok.io
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B 1
2 ### Run ngrok to tunnel Dash app port 8050 to the outside world.
3 ### This command runs in the background.
4 get_ipython().system_raw('./ngrok http 8050 &')
5
6 ### Get the public URL where you can access the Dash app. Copy this URL.
7! curl -5 http://localhost:4040/api/tunnels | python3 -c \
8 "import sys, json; print(json.load(sys.stdin)["tunnels’][@][ public_url'])"

http://f4f8a3350311.ngrok. io

SSEEMAN L s

Figure 4.27: Generated URL.

4. Create the web application: in this step, we have loaded the collected temperatures
from 0 to 360 minutes (0 to 4hours), in addition to the forecasted temperatures from
360 to 1440 minutes (4 to 24 hours). Then, we have created our web application which
is designed using html. The application contains a title “html.H1” and a graph that
plots the curve of temperature evolution in time range of 24 hours “dcc.graph”.

° 1 ¥Muritefile my_appl.py

import dash

import dash_html_components as html
import pandas as pd

import dash_core_components as dec

[

~N N B W

real = pd.read csv('/content/real.csv’) # read the file which contains the data collected by us.

8 real.drop(real.columns[8], axis=1, inplace=True)

9 real.to_csv('real.csv’, index=True)

18 real = pd.read csv('/content/real.csv’)

forcasted = pd.read_csv('/content/Y_predict.csv', seps',') #read the file enerated by our Machie learning model of the forecasted data.

indexes = [x for x in range(36@, 1441)] #used to generate x-axis value for the forecasted values.

external_stylesheets = ['https://codepen.io/chriddyp/pen/bhlwgP.cs5' ]

18 app = dash.Dash({__name_) #creste the app

19 #design the app and graph

28 app.layout = html.Div(children=[

2 html.H1(children="Temperature in 24 hours (1448 minutes)'), #head title of our web application

3 dec.Graph(

24 id="body-temperature’,

5 figure={

26 'data’: [

27 {'x"t real.index, 'y': real.iloc[®:36@8, 1], 'type': 'line’, 'name': u'Measured Temperature'},
28 {'x": indexes, 'y": forcasted.iloc[359:1148, @], "type': 'line’, 'name': u'Forecasted Temperature'},
PL] L

3 b,

D

if _name__ == '_ main_': #launch the web application
34 app.run_server(debug=True)

L+ Overwriting my_appl.py

Figure 4.28: Main Python code.
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5. Run the web application

)r 1 !python my_appl.py

Figure 4.29: Running the web application.

6. Navigate to Web Application: navigate to the web application using the URL
(Figure 4.27). The application could be consulted with other users any time and

Dash x|+ o - X
(A Non sécurise = g

C (A Nonsécurisé | Ddfde7bicascngrokio = )@

i Applications GitHub - Smeiz/ML.. [l Playingwithtime .. [ Howto reshapadat.. B HowtoReshapein.. § SAS Information Ce.. Nouveau dossier Nouvesu dossier [l Data dccess Applic. » | [F] Lste de lecture

Temperature in 24 hours (1440 minutes)

PRV R
1 \ / \/ "\

v Y

600 800 1000
220

Figure 4.30: Visualization of the forecasted temperature.

4.4 Conclusion

In this chapter we have seen how we realised our wearable device and collected data,
stored them then retrieved as time-series data set. Then we have seen the machine learning
implementation, performed models and comparison between them and how we have chosen
the most appropriate model that has fit with the dataset and given the best result. Then we
have done the same process with the dataset we have started collecting by our device and
we have summed up by displaying the forecasted results on a reactive web application.
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General Conclusion and perspectives

Early detection of body temperature measurement has recently became an important
subject in health field. Therefore, many researchers in medical field are investing their ex-
perience and exploiting the technical advances of artificial intelligence and machine learning
to get non-invasive and accurate early human body temperature measurements.

In this thesis, we have presented machine learning in chapter 1, and how it can be
beneficial in health care. In chapter 2, we have briefly defined body temperature in general
and the ways it is being measured as we have introduced temperature sensors. After that,
we have precisely talked about IoT technology and its benefits to see why and how we can
use it to achieve our goal, as we have also presented the microcontrollers as they are an
essential part to be included in our monitoring system.

In the third chapter, we have planned for our project and precisely given both hardware
and software designs that have been realised and implemented in chapter 4. Where we have
seen the realisation of the device that collects data and stores it in the cloud from where we
could retrieve them afterwards and fed the appropriate machine learning model to forecast
future body temperature. We choose to use Random Forest Regressor because it performed
best among all the methods that achieved lower RMSE.

In this work, we have realized a hard part which is the wearable device to monitor the
temperature and collect dataset. Additionaly, we trained a machine learning model and
tested it on an upload dataset the first time and our dataset the second time. We have
developpend also a reactive web application to visualize the forecast temperature.

From our experiments, we came to the conclusion that when we use the data set that we
collected using the the wearable device, we do not get satisfactory results. This deficiency is
due to the lack of variation in the temperature readings as we could not collect them from
a person with a fever.

Hence, this work opens a field to several future works starting by collecting a consistent
and varied dataset to get better forecasts or evolving the user interface application.
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