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Abstract

The aim of this work is to study a class of quadratic BSDEs of the following form

Yt = � +

Z T

t

�
l (s) + f (Ys) jZsj2

�
ds+

Z T

t

ZsdWs;

where the terminal data is assumed to be square-integrable, l; f are two measurable

functions. We study the existence, uniqueness, and comparison theorem to such equations.

The main tool in the proofs is the so-called "Zvonkin" transformation which will be used

to eliminate the generator or a part of it, so that we transform the original QBSDEs to a

standard BSDE without a quadratic part. As an application, we provide the connection

between the quadratic BSDE and the risk-sensitive control problem.

Keywords: Backward stochastic di¤erential equations, Quadratic backward stochastic

di¤erential equations, exponential utility function, risk-sensitive, existence, and uniqueness

of the solution.
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Symbols and Abbreviations

The following notation is frequently used in this thesis

a; e: almost everywhere.

e:g : for example.

a; s: almost surely.

R : real numbers.

Rd : d-dimmensional real Euclidean space

Rd�d : the set of all (d� d) real matrices.

(
;F ;P) : complete probability space.

fFtgt�0 : �ltration.�

;F ; fFtgt�0 ;P

�
: �ltered probability space.

N : the totality of the P-negligible sets.

E [x] : the expectation of the random variable x:

E [x j G] : conditional expectation.

W = (W )t2[0;T ] : Brownian motion.

SDE := stochastic di¤erential equations.

BSDEs : Backward stochastic di¤erential equations.

QBSDEs := Quadratic Backward stochastic di¤erential equations.

L2 := the space of F t-adapted processes ' satisfying
R T
0
j 's j2 ds < +1 P�a.s.

S2 := the space of continuous andF t�adapted processes ' such that : E
�
sup0�t�T j ' j2

�
<

+1.

M2 := the space of F t�adapted processes ' satisfying E
R T
0
j ' j2 ds < +1.
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General Introduction

The linear backward stochastic di¤erential equations were �rst introduced in 1973

in the work of J.Bismut [2] when he was studying the adjoint equation associated with

the stochastic maximum principle in optimal control. However, the �rst general result

concerning the BSDEs dates only from 1990 and is due to E.Pardoux and S.Peng [12] who

introduced a new form:8><>: �dYt = g(t; Yt; Zt)� ZtdWt; 0 � t < T:

YT = �:
(1)

where � is the terminal value and the coe¢ cient g is the generator of the BSDE which

is a non-linear function that satis�es the globally Lipschitz condition with respect to the

state variables. The solution of this equation is a couple of processes (Y; Z). Indeed, as

the boundary condition is given at the terminal instant T , the presence of the process

Z via the martingale representation theorem, ensures that Y is adapted with respect

of the �ltration generated by the Brownian motion (Wt)t2[0T ]. The theory of BSDEs

has been widely used in stochastic control especially in mathematical �nance, namely the

adjoint process can be written in terms of linear BSDEs; or non-linear BSDEs, for more

information and examples about this subject we refer the reader to the seminal paper of

El Karoui, Peng and Quenez [3].

Another direction which has attracted many works in this area, especially in connection

of applications, is how to improve the existence, uniqueness conditions of a solution for (1) :
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General introduction

There where many articles weaken the Lipschitz condition on the generator of BSDE(1)

and proved the existence of a solution for such kind of equations. Basically in those papers

it is assumed that the generator g is just continuous and satis�es a linear or a quadratic

growth condition. Among them we can quote Hamadene [10], Lepeltier and San Martin

[6], Kobylanski [9] and so on.

Since the early nineties, there has been an increasing interest for backward stochastic

di¤erential equations. These equations have a wide range of applications in stochastic

control and �nance di¤erential equation theory. A particular class of BSDE has been

studied for a few years: BSDEs with generators of quadratic growth with respect to the

variable z; take the following form

Yt = � +

Z T

t

f(Ys) kZsk2 ds�
Z T

t

ZsdWs; t � T: (2)

Existence and uniqeness of solution for the QBSDE (2) has been �rst proved by

Kobylanski [9]. Since then many authors worked on this equation and they tried to

reach the same result in simple ways. for example Bahlali et al [1] used the so-called"

Zvonkin trasformation" to prove the existence and uniqueness.of solution to such type of

equations.

It is worth mentioning that a particularly important class of BSDEs their generators

have quadratic growth have a powerful tool in n stochastic �nance, and more generally in

stochastic control theory. More precisely they arise in the context of utility optimization

problems with an exponential utility function, or alternatively in questions related to risk

minimization for the entropic risk measure. As an illustration of the theoretical results, we

provide the relation between the expected exponential utility and the quadratic backward

stochastic di¤erential equations.

This thesis consists of three chapters,

Chapter 1 (Stochastic calculus and Preliminaries): This chapter is essentially a

kind of introduction, we will present a lots of de�nitions, properties and theorems made

2



General introduction

without demonstrations.

Chapter 2 (Quadratic Backward Stochastic Di¤erential Equations): The object-

ive of this chapter is to present brie�y the result of Pardoux and Peng then by focusing

on the QBSDEs and its properties.

Chapter 3 (Application to a Risk sensitive Control Problem): In this chapter we

demonstrate the relationship between the expected exponential utility and the quadratic

backward stochastic di¤erential equations.
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Chapter 1

Stochastic Calculus and

Preliminaries

Stochastic calculus is an extension of di¤erential calculus and classic integration, in

which the processes on the continuous-time replace the functions and the martingales play

the role of the constants. This chapter is essentially a kind of introduction, to expose

the basic notions and the most important de�nitions properties and theorems that will be

used throughout this thesis and they will be provided without demonstrations. For more

details on stochastic calculus, we refer the reader to the following important references

[5, 8, 11].

In the following
�

;F ; fFtgt�0 ;P

�
is a �ltered probability space, I is a set of indices

(which can be (N;Z;R)) or a part of R (e:g : [0; T ]).

1.1 Tribe


: is an abstract set whose elements are noted !.

De�nition 1.1.1 A tribe (��algebra) on 
 is a family of parts of 
, containing the empty

set, stable by passing to the complementary, countable union and countable intersection.

4



Chapter 1. Stochastic calculs and Preliminaries

A tribe therefore contains 
:

A measurable space is a space provided with a tribe, e:g : (
;F) ; such that F is a tribe

on 
.

1.1.1 Measurability

De�nition 1.1.2 Let (
;F) and (E; �) be two measurable spaces. An application f from


 to E is said to be (F ; �)�measurable if f�1(A) 2 F ; 8A 2 F ; where

f�1(A) := f! 2 
 j f(!) 2 Ag :

1.1.2 Generated Tribe

De�nition 1.1.3 The tribe generated by a family of sets A is the smallest tribe containing

this family, we denote it �(A). It is the intersection of all the tribes containing A.

If F1 and F2 are two tribes, we denote by F1 _F2 the tribe generated by F1[ F2 it is

the smallest tribe containing the two tribes F1 and F2:

De�nition 1.1.4 The tribe generated by a random variable X de�ned on (
;F) is the

set of parts of 
 which are written X�1(A) where A 2 BR: We denote this tribe �(X):

The tribe �(X) is contained in F : It is the smallest tribe on 
 making X measurable.

De�nition 1.1.5 The tribe generated by a family random variables (Xt; t 2 I) is the

smallest tribe containing the sets
�
X�1
t (A); for all t 2 I and A 2 B(R)

	
:We denote it by

�(Xt; t 2 I):

1.1.3 Random Variable

De�nition 1.1.6 An application: X : 
 ! R is called a random variable if X is meas-

urable as an application from (
;F) to (R;B(R)) where B(R) is the Borel ��algebra in

R generated by the set all open intervals in R:
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Chapter 1. Stochastic calculs and Preliminaries

1.2 Probability

De�nition 1.2.1 A probability on (
;F) is an application Pof F in [0; 1] such that :

i) P (
) = 0:

ii) P([+1n=0An) =
P+1

n=0 P(An) such that 8n 2 N An belonging to F two by two disjoint.

1.2.1 Negligible sets

Let (
;F ;P) be a probability space:

De�nition 1.2.2 A set is said to be negligible set if it has zero probability. We said also

that a set G is a negligible set if 9M � F such that G �M and P (M) = 0:

Remark 1.2.1

i) A negligible set is not necessary a measurable set.

ii) All subset of a negligible set is negligible.

A space (
;F ;P) is said to be complete if F contains all the negligible sets.

1.3 Law of probability

De�nition 1.3.1 Let X be a random variable de�ned on (
;F ;P) : The law of X is the

probability PX on (R;BR) de�ned by PX(A) = P f!;X(!) 2 Ag = P(X2A); 8A 2 BR:

1.3.1 Expectation

De�nition 1.3.2 The expectation of a random variable X is by de�nition the quantityR


XdP which we denote by E(X) or EP(X) if we wish to specify what the probability

measure used on 
:

6



Chapter 1. Stochastic calculs and Preliminaries

Proposition 1.3.1 (Properties of expectation)

a) The expectation is linear, ie: E(aX + bY ) = aE(X) + bE(Y ); a, b being real numbers

and X;Y are random variables.

b) The expectation is increasing: if X < Y (a:s); we have E(X) < E(Y ):

c) Jensen�s inequality: if � is a convex function, such that �(X) is integrable, E(�(X)) �

�(E(X)):

1.4 Stochastic Process

The notion of stochastic process models natural phenomenons where experiences whose

evolution over time depends on chance. It is the equivalence of the notion of random

variable for �xed time problems.

De�nition 1.4.1 (Filtration) A �ltration is an increasing family of sub-tribes of F ; that

is Ft � Fs, for all s; t 2 I and t < s:

We speak of usual hypotheses if :

- The negligible sets are contained in F0:

- The �ltration is continuous on the right in the sense where Ft := \s>tFs:

De�nition 1.4.2 (Stochastic Process) Let (
;F ;P) be a probability space: A stochastic

process Xt = (Xt)t2I is a family of random variables Xt indexed by a set I. In general

I = R+ and we consider that the process is indexed with the time t:

1) If the set I is �nite, the process is a random vector.

2) If I = N or Z, the process is a sequence of random variables. In this case, we say that

the process is discrete.

7



Chapter 1. Stochastic calculs and Preliminaries

Remark 1.4.1 (i) The value of the random variable Xt describes the state of the process

at time t:

(ii) The time set I can be de�ned in other ways as well. For example, I := [0;1) is

su¢ cient time set for a process that has no terminal time.

(iii) For all t 2 I �xed; ! 2 
 ! Xt (!) is a random variable on the probability space

(
;F ;P) :

(iv) For ! 2 
 �xed, t 2 I! Xt (!) is a real valued function, called process trajectories.

De�nition 1.4.3 A stochastic process X = (Xt; t > 0) is said to be adapted (with respect

to a �ltration F = (Ft)t2I) if Xt is Ft�measurable for all t 2 I

Remark 1.4.2

a) We say that the process has continuous trajectories (or is continuous) if the applications

t! Xt(!) are continuous for almost all !:

b) To a stochastic process X we associate its natural �ltration FX
t ; ie: the growing

family of tribes FX
t := � fXs; s � tg which is the minimum choice for the process to

be adapted.

De�nition 1.4.4 Let X = (Xt; t 2 I), Xt : 
 ! R be a stochastic process in (
;F ;P)

and let (Ft)t2I be a �ltration.

1) The process X is said measurable if the function Xt : 
 � I ! R; (!; t) ! Xt (!) is

(F 
 B (R)� B (R))�measurable.

2) The process X is progressively measurable compared to the �ltration (Ft)t2I if 8s 2 I

the function Xt : 
�I! R; (!; t)! Xt (!) is (F 
 B ([0; s])� B (R))�measurable,

such that [0; s] � I:

8



Chapter 1. Stochastic calculs and Preliminaries

De�nition 1.4.5 Let X = (Xt)t2I and Y = (Yt)t2I be stochastic processes. The processes

X and Y are

i) indistinguishable: if P (Xt = Yt;8t 2 I) = 1; and

ii) modi�cations: of each other if P (Xt = Yt) = 1; for all t 2 I: We note that if Xt is a

modi�cation of Yt then Xt and Yt have the same �nite-dimensional distribution.

1.5 Conditional Expectation

Let X be a random variable (integrable) de�ned on (
;F ;P) and G a sub-tribe of F .

De�nition 1.5.1 (conditional expectation with respect to a tribe) The conditional

expectation E(X j G) of X is the unique G�measurable random variable, such that:

Z
A

E(X j G)dP =
Z
A

XdP;8A 2 G:

1.5.1 Properties of Conditional Expectation

a) Let a and b be two constants and X,Y be two random variables. Then, E(aX + bY j

G) = aE(X j G) + bE(Y j G):

b) Let X and Y be two random variables such that X < Y; then E(X j G) < E(Y j G):

c) E[E(X j G)] = E(X):

d) If X is G�measurable, E(X j G) = X:

e) If Y is G�measurable, E(XY j G) = Y E(X j G):

f) If X is independent of G; E(X j G) = E(X):

g) If H and G are two sub-tribes of F such that H � G :

E [X j H] = E [E (X j H) jG] = E [E (X j G) j H] :

9



Chapter 1. Stochastic calculs and Preliminaries

1.6 Brownian Motion

De�nition 1.6.1 A stochastic process W = (Wt)t2R+ is called a standard Brownian

Motion provided that:

i) W0(!) = 0 for all ! 2 
:

ii) W is continuous.

iii) The random variables, Wtn � Wtn�1 ; :::;Wt1 � Wt0 are independent for all n 2 N;

0 � t0 � t1 � ::: � tn � T; T � 0:

iv) Wt �Ws � N(0; t� s) for all 0 � s � t � T; T � 0:

1.7 Martingale

De�nition 1.7.1 A stochastic process X = (Xt)t2I de�ned in the �ltred probabillity space�

;F ; (Ft)t2I ;P

�
is called a martingale provided that

i) X is adapted with respect to (Ft)t2I :

ii) X is integrable ,

iii) E(Xt j Fs) = Xs a:s: for all s; t 2 I such that 0 � s � t:

Lemma 1.7.1 The standard Brownian Motion (Wt)t2R+ is a martingale with respect

to its natural �ltration FX
t := � fXs; s � tg :

Proof. 1. By Cauchy Schwartz, we have

E [jWtj] � 2

q
E
�
jWtj2

�
=

2
p
t:

10



Chapter 1. Stochastic calculs and Preliminaries

2. 80 � s � t; we have

E
�
Wt j FX

t

�
= E

�
Wt +Ws �Ws j FX

t

�
= E

�
Wt �Ws j FX

t

�
+ E

�
Ws j FX

t

�
= E [Ws �Ws] +Ws = Ws:

Example 1.7.1 iI X is a square integrable radom variable then the process (Xt)t2I de�ned

by Xt = E(X j Ft) is a square integrable martingale:

i) E(jXtj2) = E[j E(X j Ft) j2] � E[E(j X j2j Ft)] = E(j X j2) <1:

ii) Xt = E(X j Ft) is a random variable Ft�measurable, for all t 2 I; according to the

de�nition of the conditional expectation.

iii) E(Xt j Fs) = E(E(X j Ft) j Fs) = E(E(X j Fs) j Ft) = E(X j Fs) = Xs; for all

s; t 2 I such that 0 � s � t:

1.8 Stochastic Integration

Let
�

;F ; fFtgt�0 ;P

�
be a �ltered probability space, where fFtgt�0 is a �ltration of

F satisfying the usual hypotheses, and fWt; t � 0g is a Brownian Motion de�ned on this

probability space.

1.8.1 Itô Process

De�nition 1.8.1 A process X = (Xt)t2I is an Itô process if Xt := X0+
R t
0
bsds+

R t
0
�sdWs;

where b = (bs)s2I is an adapted process and satis�es
R t
0
jbsj ds < 1 a:s; 8t � 0 and

� = (�s)s2I 2 L2:

11



Chapter 1. Stochastic calculs and Preliminaries

Proposition 1.8.1 The quadratic variation on I of an Itô process X is given by

hX;Xit =
�Z �

0

�sdWs;

Z �

0

�sdWs

�
t

=

Z t

0

�2sds:

The quadratic variation between the following two Itô�s processes X and Y :

Xt := X0 +

Z t

0

bsds+

Z t

0

�sdWs;

Yt := Y0 +

Z t

0

b0sds+

Z t

0

�0sdWs

given by: hX; Y it =
R t
0
�s�

0
sds:

1.8.2 Itô�s Formula

Theorem 1.8.1

a) First Itô�s formula: Let X be an Itô process and f : R ! R a function belonging

to C2 bounded derivative, then

f(Xt) = f(X0) +

Z t

0

f 0(Xs)dXs +
1

2

Z t

0

f 00(Xs)�
2
sds; 8t � T: (1.1)

b) Second Itô�s formula: Let f be a function de�ned on R+�R twice di¤erentiable in

x and one time di¤erentiable in t and X be an Itô process

f(t;Xt) = f(0; X0) +

Z t

0

f 0x(s;Xs)dXs +

Z t

0

f 0s(s;Xs)ds+
1

2

Z t

0

f 00xx(s;Xs)d hX;Xis :

1.9 Useful results

In the following W = (Wt)t2I is a Brownian Motion, and for any t 2 I; Ft =

� (Ws; s 2 I; s < t)

12



Chapter 1. Stochastic calculs and Preliminaries

Theorem 1.9.1 (Representation Martingal Brownian) If (Yt)t2I is a square integ-

rable martingale and Ft�adapted then : 9! (Zt)t2I a square integrable processes such that:

Yt = Y0 +

Z t

0

ZsdWs: (1.2)

Theorem 1.9.2 (Burkholder-David-Gundy �BDG�inequality)

There exist two positive constants cp and Cp and p > 0 such that, for all continuous

martingale X = (Xt)t2I; vanish at 0 :

cpE
h
hX;Xi

p
2
1

i
� E

�
sup
t�0
jXtjp

�
� CpE

h
hX;Xi

p
2
1

i
:

In particular, if T � 0; we have

cpE
h
hX;Xi

p
2
T

i
� E

�
sup
0�t�T

jXtjp
�
� CpE

h
hX;Xi

p
2
T

i
:

Theorem 1.9.3 (Itô�s isometry) Let � = (�t)t2R+ be a stochastic process,

E

"�Z t

0

�sdWs

�2#
= E

�Z t

0

�2(u)du

�
: (1.3)

13



Chapter 2

Quadratic Backward Stochastic

Di¤erential Equations

Our concern in this work is to study quadratic BSDEs with and their related to Risk

sensitive control problems when the generator is merely continuous and integrable and the

terminal condition is square integrable. The main tool is to use the phase space trans-

formation (known as Zvonkin transformation [13]) to eliminate the drift or its quadratic

part only. We also provide a comprison theorem between the solutions.

2.1 The case of a Lipschitz generator:

Let T be a positive real number,
�

;F ; (Ft)t2[0;T ] ; P

�
be a �ltered probability space

in which we de�ne a d-dimensional a Brownian motion. we assume that Ft = � fWs; s � tg

is the natural �ltration of the Brownian motion (Wt)t2[0;T ] :

We will study the one-dimensional BSDE of the following type:

Yt = � +

Z T

t

g (s;Xs; Zs) ds�
Z T

t

ZsdWs t � T; P�a:s; (2.1)

14



Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

or equivalently in its di¤erential form:

8><>: dYs = �g(s; Ys; Zs)ds+ ZsdWs

YT = �;

where � is a square integrable and FT�measurable random variable called the terminal

condition and g: 
� [0; T ]�R�Rd�d is a given measurable function called the generator

De�nition 2.1.1 A solution of the equation (2:1) is a pair of adapted processes (Yt; Zt)t2[0;T ],

typically in S2�M2 with values in R� Rd�d.

Yt = E(� j Ft) and Z from the representation theorem see (1:9:1).

Assumption(2.1) :

i) g is globally Lipschitz in (yt; zt)t2[0;T ], that is: 9k > 0; such that

jg(t; y; z)� g(t; y0; z0)j � k(jy � y0j+ jz � z0j):

ii) Integrability condition:

E[j�j2 +
Z T

0

jg(r; 0; 0)j2 dr] <1:

Theorem 2.1.1 (E.Pardoux, S.Peng) Let assumption (2.1) holds. Then, (2:1) has a

unique solution (Yt; Zt)t2[0;T ] which belonging to S2�M2:

Proof. For the detailed proof we refer the reader to the excellent reference [12]:

15



Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

2.2 Quadratic BSDEs with a non-constant f :

In this section we want to study the case where : g(s; Ys; Zs) = f(Ys) jZsj2, where f is

supposed to be a continuous function de�ned from R to R.

Yt = � +

Z T

t

f(Ys) jZsj2 ds�
Z T

t

ZsdWs; t � T (2.2)

De�nition 2.2.1 A BSDE is called quadratic if its generator has at most a quadratic

growth in the random variable Z:

Lemma 2.2.1 The function F de�ned for every x 2 R, by

F (x) =

Z x

0

exp

�
2

Z y

0

f(t)dt

�
dy (2.3)

enjoys the following properties:

i) F 00(x)� 2f(x)F 0(x) = 0; for a:e. x 2 R

ii) F and F�1 are quasi�isometry, that is for any x; y 2 R and jf j1 =
R
R jf(x)j dx

e�2jf j1 jx� yj � jF (x)� F (y)j � e2jf j1 jx� yj ;

e�2jf j1 jx� yj � jF�1(x)� F�1(y)j � e2jf j1 jx� yj :
(2.4)

Proof. By de�nition the functions F and its inverse F�1 are continuous, one to one,

strictly increasing functions.

i) We have F (x) =
R x
0
exp

�
2
R y
0
f(t)dt

�
dy, then F 0(x) = exp(2

R x
0
f(t)dt) and F 00(x) =

2f(x)F 0(x);hence F 00(x)� 2f(x)F 0(x) = 0 for a:e. x 2 R.

ii) We have;

����F�1�0 (x)��� = 1

jF 0(x)j �
1

exp(�2
R x
0
f(t)dt)

= exp(2

Z x

0

f(t)dt) (2.5)

16



Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

then

8x 2 R;m =: e�2jf j1 � (F�1)0(x) � e2jf j1 :=M:

From (2:5) we have that

jF 0(x)j = 1��(F�1)0 (x)�� = exp(�2
Z x

0

f(t)dt)

Hence

8x 2 R; m =: e�2jf j1 � F 0(x) � e2jf j1 :=M .

Remark 2.2.1 1)Let f : R ! R be a given bounded and continuous function, and set

M := supyeR jf(y)j ; the BSDE (2:2) is then of quadratic growth since f(Ys) jZrj2 �

M jZrj2 :

2) in the sequale we will denote by Eq(�;Hf ) the quadratic BSDE with the generator

Hf (t; y; z) = f (y) jzj2 and the terminal condition �:

Theorem 2.2.1 Let � be an FT -measurable and square integrable random variable. If f

is a bounded and continuous function, then (Yt; Zt)0�t�T is a solution to Eq(�;Hf ) if and

only if (yt; zt)0�t�T is a solution to Eq(F (�); 0):

Proof. If (Yt; Zt)t2[0;T ] is a solution of (2:2),then Itô�s formula see (1:8:1) applied to F (Yt)

shows that

dF (Yt) = F
0(Yt)dYt +

1

2
F 00(Yt)d hYti

= �F 0(Yt)f(Yt) jZtj2 dt+ F 0(Yt)ZtdWt +
1

2
F 00(Yt) jZtj2 dt

= F 0(Yt)ZtdWt +

�
�F 0(Yt)f(Yt) +

1

2
F 00(Yt)

�
jZtj2 dt

= F 0(Yt)ZtdWt:

17
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Since �F 0(Yt)f(Yt) + 1
2
F 00(Yt) = 0, we have

yt = F (Yt) = F (�)�
Z T

t

F 0(Ys)ZsdWs; (2.6)

by taking the conditional expectation in both sides

yt = E [F (�) j Ft] ;

If � is a square integrable random variable it is easy to see that F (�) is also a square

integrable random variable,then yt is a square integrable Ft�martingale. Then according

to the representation theorem see (1:9:1) 9! (zt)t2[0;T ] a square integrable process such that:

yt = y0 +

Z t

0

zsdWs;

so we have

yt = E [F (�)] +
Z t

0

zsdWs;

and

yT = E [F (�)] +
Z T

0

zsdWs;

so

yT � yt = E [F (�)] +
Z T

0

zsdWs � E [F (�)]�
Z t

0

zsdWs

Hence

yt = � �
Z T

t

zsdWs (2.7)

By matching between (2:6) and (2:7) we remark that F 0(Ys)Zs = zs:

Since � is a square integrable random variable and the generator is vanish(Lipschitz) then

according to (2:1:1) the equation (2:7) admits a unique solution (yt; zt)t2[0;T ] 2 S2�M
2:

18
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Reciprocally by applying Ito�s formula to F�1(yt) we �nd that

dF�1(yt) = (F
�1)0(yt)dyt +

1

2
(F�1)00(yt)d hyti ;

but we have (F�1)0(yt) = 1
F 0(F�1(yt))

and (F�1)00(yt) =
�F 00(F�1(yt))
(F 0(F�1(yt)))3

so

dF�1(yt) =
1

F 0(F�1(yt))
ztdWt �

1

2
(
F 00(F�1(yt))

(F 0(F�1(yt)))3
jztj2 dt);

since F (Yt) = yt and zt = F 0(Yt)Zt, we have that

dYt = dF
�1(F (Yt))

=
1

F 0(F�1(F (Yt)))
F 0(Yt)ZtdWt �

1

2
(
F 00(F�1(F (Yt)))

(F 0(F�1(F (Yt))))3
(F 0(Yt))

2 jZtj2 dt)

=
1

F 0(Yt)
F 0(Yt)ZtdWt �

1

2
(
F 00(Yt)

(F 0(Yt))3
(F 0(Yt))

2 jZtj2 dt)

= ZtdWt �
1

2

�
F 00(Yt)

F 0(Yt)

�
jZtj2 dt

= ZtdWt �
1

2
(2f(Yt)) jZtj2 dt

= ZtdWt � f(Yt) jZtj2 dt;

and

YT = F
�1(yT ) = F

�1(� 0) = F�1(F (�)) = �:

Hence

Yt = � +

Z T

t

f(Ys) jZsj2 ds�
Z T

t

ZsdWs:
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2.3 Quadratic BSDEs with a constant f :

We want to solve the following quadratic BSDE

Yt = � +

Z T

t

�
l (t) +




2
jZsj2

�
ds�

Z T

t

ZsdWs;

where l : [0; T ]! R is a bounded function,

Theorem 2.3.1 Let � be an FT -measurable and square integrable random variable. Then

(Yt; Zt)0�t�T is a solution to Eq(�; l (t) +


2
jZsj2) if and only if (yt; zt)0�t�T is a solution

to Eq(exp(
�); 0):

Proof. By applying Itô�s formula see (1:8:1) to yt = exp(
Yt):

dyt = d (exp(
Yt))

= 
 exp(
Yt)dYt +

2

2
exp(
Yt) jZtj2 dt

= 
 exp(
Yt)(ZtdWt �
�
l(t) +




2
jZtj
�
dt) +


2

2
exp(
Yt) jZtj2 dt

= 
 exp(
Yt)ZtdWt �

2

2
exp(
Yt) jZtj2 dt� 
 exp(
Yt)l(t)dt+


2

2
exp(
Yt) jZtj2 dt

= �
 exp(
Yt)l(t)dt+ 
 exp(
Yt)ZtdWt;

So we have

yt = exp(
�) +

Z T

t


ysl(s)ds�
Z T

t


ysZsdWs:

We put zt = 
ysZs

yt = exp(
�) +

Z T

t


ysl(s)ds�
Z T

t

zsdWs; (2.8)

since � is a square integrable random variable then exp(
�);and l is bounded ie: the

generator of BSDE (2:8) is Lipschitz in y. Hence according to (2:1:1) the BSDE (2:8)

has one and only one solution (yt; zt)t2[0;T ] :

Then, (2:8) admits a unique solution (yt; zt)t2[0;T ] because it has a Lipschitz generator.
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Reciprocally, by applying Ito�s formula see (1:8:1) to F�1(yt) = 1


ln(yt) we �nd that:

dYt = d(
1



ln(yt))

= (
1



ln(yt))

0dyt +
1

2
(



2
ln(yt))

00d hyti

=
1


yt
(�
ytl(t)dt+ ztdWt) +

1

2
(
�


2y2t

jztj2)dt

=
1


yt
(�
ytl(t)dt+ 
ytZtdWt) +

1

2
(
�


2y2t

j
ytZtj2)dt

= �l(t)dt+ ZtdWt �



2
jZtj2 dt

= �
�
l(t) +




2
jZtj2

�
dt+ ZtdWt:

Because we have that zt = 
ytZt,

dYt = �
�
l(t) +




2
jZtj2

�
dt+ ZtdWt

YT =
1



ln yT =

1



ln(exp(
�)) = �

Then

Yt = � +

Z T

t

�
l (t) +




2
jZsj2

�
ds�

Z T

t

ZsdWs: (2.9)

According to (2:1:1), the BSDE (2:9) admits a unique solution (Yt; Zt)t2[0;T ] :

2.4 Comparison Theorem

The following proposition allows to compare the solutions for QBSDEs of type Eq(�; f).

The novelty is that the comparison of solutions holds whenever we can compare the gen-

erators a:e: in the y�variable. Moreover, both the generators can be non�Lipschitz.

Proposition 2.4.1 (Comparison) : Let �1, �2 be FT�measurable and square integrable

random variables. Let f1, f2 be elements of L1(R). Let (Y f1 ; Zf1), (Y f2 ; Zf2) be respectively

the solution of Eq(�1; Hf1) and Eq(�2; Hf2). Assume that �1 � �2 a:s, and f1 � f2 a:e:
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Then Y f1t � Y f2t P�a:s.

Proof. Notice that the solutions (Y f1 ; Zf1) and (Y f2 ; Zf2) belong to S2�M2 For a given

function h, we put,

Fh(x) :=

Z x

0

exp

�
2

Z y

0

h(t)dt

�
dy:

We �rst apply Itô�s formula see (1:8:1) to Ff1(Y
f2
t ); to obtain:

Ff1(Y
f2
T ) = Ff1(Y

f2
t ) +

Z T

t

F 0f1(Y
f2
s )dY

f2
s +

1

2

Z T

t

F 00f1(Y
f2)d

D
Y f2t

E
= Ff1(Y

f2
t )�

Z T

t

F 0f1(Y
f2
s )f2(Y

f2
s )jZf2s j2ds+

Z T

t

F 0f1(Y
f2
s )Z

f2
s dWs

+
1

2

Z T

t

F
00

f1
(Y f2s )

��Zf2s ��2 ds
= Ff1(Y

f2
t )�

Z T

t

F 0f1(Y
f2
s )f2(Y

f2
s )jZf2s j2ds

+ (MT �Mt) +
1

2

Z T

t

F
00

f1
(Y f2s )

��Zf2s ��2 ds
where

Mt =

Z t

0

F 0f1(Y
f2
s )Z

f2
s dWs;

is an Ft�martingale.

According to Lemma (2:2:1) we obtain

Ff1(Y
f2
T ) = Ff1(Y

f2
t ) + (MT �Mt)�

Z T

t

�
F 0f1(Y

f2
s�)
�
f2(Y

f2
s )� f1(Y f2s )

�
jZf2s j2

�
ds:

Since the term
R T
t
F 0f1(Y

f2
s�)(f2(Y

f2
s )� f1(Y f2s ))jZf2s j2ds is positive, then

Ff1(Y
f2
t ) � Ff1(Y

f2
T )� (MT �Mt):
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Passing to conditional expectation and using the fact that Ff1 is an increasing function

and �2 � �1, we get

Ff1(Y
f2
t ) � E

h
Ff1(Y

f2
T )Ft

i
= E [Ff1(�2)Ft]

� E [Ff1(�1)Ft] = Ff1(Y
f1
t ):

Taking F�1f1 in both sides, we conclude Y f2t � Y f1t . Proposition (2:4:1) is proved.

2.5 A priori estimates

Lemma 2.5.1 Let � 2 L2(
). If (Y; Z) satis�es the Eq(�;Hf ), then we have:

(i) (zr)0�r�T ; (Zr)0�r�T 2M2 ,

(ii) (yr)0�r�T ; (Yr)0�r�T 2 S2,

(iii) E
���R T0 f(Yr) jZrj2 dr���2 is �nite.

Proof. (i): From Itô�s formula (1:8:1) we have

F (Yt) = F (�)�
Z T

t

F 0(Ys)ZsdWs; (2.10)

since F satis�es (2:2:1). For t = 0 we get

Z T

0

F 0(Ys)ZsdWs = F (�)� F (Y0): (2.11)
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Take the square of the L2(
) norm in (2:11), (2:4), we get

m2

�Z T

0

E
�
jZsj2

�
ds

�
� E

����Z T

0

F 0(Ys)ZsdWs

����2
= E

����Z T

0

zsdWs

����2
� E

Z T

0

jzsj2 ds

� 2(E[F 2(Y0)] + E
�
F 2(�)

�
) � 2M2(E jY0j2 + E j�j2) <1:

This implies that z; Z 2M2:

(ii): From Itô�s formula (1:8:1), we have

F (Yt) = F (�)�
Z T

t

F 0(Ys)ZsdWs (2.12)

Now, thanks to (2:4) and the fact that F (0) = 0:

m jYtj � jF (Yt)j

� jF (�)j+
����Z T

t

F 0(Ys)ZsdWs

����
� jF (�)j+ sup

0�t�T

����Z t

0

zsdWs

���� :
Using convex inequality and taking the supremum over [0; T ] lead to

m2 sup
0�t�T

jYtj2 � sup
0�t�T

jytj2

� 22
 
M j�j2 + sup

0�t�T

����Z t

0

zsdWs

����2
!
:

Now, by taking the expectation and using BDG inequality see(1:9:2), we get

The right hand side of the above inequality is �nite by (i).
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(iii): Since(Y; Z) satis�es Eq(�; f), thus

Z T

0

f(Ys) jZsj2 ds =
Z T

0

ZsdWs + Y0 � �:

Now, using convex inequality and taking the expectation we obtain

E
����Z T

0

f(Ys) jZsj2 ds
����2 � 4(E ����Z T

0

ZsdWs

����2 + jY0j2 + E j�j2)
� 4(E

Z T

0

jZsj2 ds+ jY0j2 + E j�j2):

Finally E
���R T0 f(Ys) jZsj2 ds���2 is �nite thanks to (i).
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Chapter 3

Application to a Risk sensitive

Control Problem

In this chapter we will pay our attention to the application of the theoretical results that

have been shown and proved in the previous chapter to a risk sensitive control problem.

More precisely, we will prove the relationship between the QBSDEs and the expected

exponential utility function.

3.1 Problem formulation

Let (
;F ; (FW
t )t2[0;T ];P) be a probability space satisfying the usual conditions, in

which a one-dimensional Brownian motion W = (Wt; 0 � t � T ) is de�ned.

We assume that F : =(FW
t )t2[0;T ] is de�ned by8t � 0;FW

t = �(Ws;for any s 2 [0; T ])_N ,

where N denote the totality of P�null sets.

Let M2([0; T ] ;R) denote the set of one-dimensional jointly measurable random, processes

f't; t 2 [0; T ]g which satisfy the following conditions:

(i) : ' 2M2([0; T ] ;R):

(ii) : 't is FW
t �measurable for any t 2 [0; T ] :
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We denote similarly by S2([0; T ] ;R) the set of continuous one-dimensional random

processes that satisfy the following conditions:

(i) : ' 2 S2([0; T ] ;R):

(ii) : 't is FW
t �measurable for any t 2 [0; T ] :

Let the process v (�) stand for the control variable, which assumed to be an F-adapted

process that takes values in a given non-empty subset U of R: We denote the set of all

admissible controls by Uad.

3.2 Expected Exponential Utility

In this part, we want to prove the relationship between the expected exponential and

the quadratic backward stochastic di¤erential equation .

We require the following condition

A�t;T := exp �

�
	(y#0 ) +

Z T

t

l(s; y#s )ds

�
; (3.1)

where l : [0; T ]� U ! R;	 : R! R

We assume the following:

(N1)

i) 	 is continuously di¤erentiable with respect to (yv; v).

ii) The derivative of 	 is bounded by C(1 + jyvj):

iii) l is a bounded function.

iv) The derivative of 	 is bounded by C(1 + jyvj):
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We denote by l (t) = (t; vt):

We set

Y �t = 	(y
v
0) +

Z T

t

l(s)ds

Then

exp(�Y �t ) = E[A�t;T j FW
t ]; (3.2)

where � is the risk-sensitive index, the process Y � is the �rst component of theFW
t �adapted

pair of processes
�
Y �t ; Zt

�
t2[0;T ] which is the unique solution of the following quadratic

backward stochastic di¤erential equation according to the result of the equation (2:9)

8><>: dY �t =
�
l (t)� �

2
jZtj2 dt

�
+ ZtdWt;

Y �T = 	(y
u
0 );

; (3.3)

where E[
R T
0
jZtj2 dt] <1:

We also assume the following

(N2)

(i) The process Z = (Zt)t2[0;T ] isFW
t �measurable with value inR such that E[

R T
0
jZtj2 dt] <

1:

(ii) The process (Y �t )t�0 is P�measurable uniformly bounded i.e. there exists a constant

C � 0 such that P� a:s, E[ sup0�t�T
��Y �t ��] � C:

The following lemma shows the relationship between the expected exponential utility and

the quadratic backward stochastic di¤erential equation.

Lemma 3.2.1 We assume that N1-N2 hold. The necessary and su¢ cient condition for

the expected exponential utility (3:1) to be hold, is the quadratic backward stochastic dif-

ferential equation (3:3).
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Proof. We assume that (3:2) holds, then we have

exp
�
�Y �0

	
= E[exp (�	(yu0 )) j FW

t ]

= E[exp �
�
	(yu0 ) +

Z T

0

l(s)ds

�
j FW

t ]

= E[A�0;T j FW
t ]:

By assumption (N1), we know that A�0;T is a square integrable and E[A�0;T j FW
t ] is a square

integrable martingale, adapted to the Brownian �ltration FW
t = �(Ws;for any s 2 [0; T ]);

then by using the martingale representation theorem, there exist a unique square process

' such that

E[A�0;T j FW
t ]� E[A�0;T j F0] =

Z t

0

'(s)dWs:

We have that E[A�0;T ] = E[A�0;T j F0] = exp �fY �0 g;so

exp �fY �t +
Z t

0

l(s)dsg � exp �fY �0 g =
Z t

0

'(s)dWs:

By applying Itô�s formula to exp �fY �t +
R t
0
l(s)dsg; we obtain

d

�
exp �fY �t +

Z t

0

l(s)dsg
�

= �l(t) exp �fY �t +
Z t

0

l(s)dsgdt+ � exp �fY �t +
Z t

0

l(s)dsgdY �t +
�2

2
exp �fY �t +

Z t

0

l(s)dsg


dY �t ; dY

�
t

�
= '(t)dWt:

Then

l(t)dt+ dY �t +
�

2



dY �t ; dY

�
t

�
=
1

�
'(t) exp �

�
�Y �t �

Z t

0

l(s)ds

�
dWt: (3.4)

And so

dY �t = �l(t)dt�
�

2



dY �t ; dY

�
t

�
+
1

�
'(t) exp �

�
�Y �t �

Z t

0

l(s)ds

�
dWt:
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Hence, 

dY �t ; dY

�
t

�
= [
1

�
'(t) exp �

�
�Y �t �

Z t

0

l(s)ds

�
]2dt := jZtj2 dt: (3.5)

Then by replacing (3:5) in (3:4), we have the quadratic backward stochastic di¤erential

equation as the following expression

8><>: dY �t = �
�
l(t) + �

2
jZtj2

�
dt+ ZtdWt;

Y �T = 	(y
u
0 );

where

Zt =
1

�
'(t) exp �

�
�Y �t �

Z t

0

l(s)ds

�
:

On the other hand, we assume that (3:3) holds,and by applying Itô�s formula to exp(�Y �t ),

we get

d(exp�fY �t g) + �l(t)exp�fY �t gdt = �Ztexp�fY �t gdWt

Multiply with exp �
nR t

0
l(s)ds

o
to both sides, we get

exp �

�Z t

0

l(s)ds

�
d(exp�fY �t g) + �l(t) exp �

�Z t

0

l(s)ds

�
exp�fY �t gdt

= �Zt exp �

�Z t

0

l(s)ds

�
exp�fY �t gdWt:

The right side is the same as the d
�
exp �fY �t +

R t
0
l(s)dsg

�
; then we have

d

�
exp �fY �t +

Z t

0

l(s)dsg
�
= �Zt exp �fY �t +

Z t

0

l(s)dsgdWt:

By taking the integral from t toT in both sides of the previous equality, we have

Z T

t

d

�
exp �fY �s +

Z s

0

l(r)drg
�
= �

Z T

t

Zs exp �fY �s +
Z s

0

l(r)drgdWs:
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Then

exp �fY �T +
Z T

0

l(r)drg = exp �fY �t +
Z t

0

l(r)drg+ �
Z T

t

Zs exp �fY �s +
Z s

0

l(r)drgdWs:

By taking conditional expectation in above equality, we have

E[exp �fY �T +
Z T

0

l(r)drg j FW
t ] =

E[exp �fY �t +
Z t

0

l(r)drg j FW
t ] + �E[

Z T

t

Zs exp �fY �s +
Z s

0

l(r)drgdWs j FW
t ];

such that E[
R T
t
Zs exp �fY �s +

R s
0
l(r)drgdWs j FW

t ] = 0; then

E[exp �fY �T +
Z T

0

l(r)drg j FW
t ] = exp �fY �t +

Z t

0

l(r)drg:

As we know that Y �T = 	(y
u
0 ); we can write

E[exp �f	(yu0 ) +
Z T

t

l(s)dsg j FW
t ] = exp �fY �t g:
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Chapter 4

Conclusion

In this thesis we are interested into the quadratic backward stochastic di¤erential

equations. The main results provided within this work is the study the problem of Exist-

ence and uniqueness for a class of BSDEs their generators are quadratic with respect to

Brownian component. In fact, we have studied tow di¤erent cases, in the �rst one, we

have considered that the factor of the quadratic term is a general continuous and integ-

rable function, while in the second one it is assumed to be constant which is not integrable

even in the Riemann sense. Finally, we have established an application to a risk sensitive

which explains the relationship between the QBSDEs and the expected exponential utility

function which has proven in di¤erent method in the article of Hamdene and El karoui

[10].
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                                                   الملخص                                                                

 : الهدف من هذا العمل هو دراسة صنف من المعادلات التفاضلية العشوائية التراجعية التربيعية من الشكل التالي

( )2
( ) ( ) ,

T T

t s s s s
t t

Y l s f Y Z ds Z dW= + + −  

الشرط   منته،   النهائي بحيث  مربع  تكامله  يكون  أن  لهذه    lو    fيفرض  بالنسبة  المقارنة  نظرية  و  الحل  وحدانية  و  وجود  درسنا  للقياس،  قابلتان  دالتان 

لمعادلات التفاضلية العشوائية التراجعية  الأداة الرئيسية المستخدمة في البراهين هي تحويل زفانكن للتخلص من المولد أو جزء منه، بحيث حولنا ا المعادلات.

، كتطبيق قمنا بإثبات العلاقة بين المعادلات التفاضلية العشوائية التراجعية   بدون الجزء التربيعي  كلاسيكية  تفاضلية عشوائية تراجعية التربيعية إلى معادلات  

 . التربيعية و مشكلة السيطرة على الخطر الحساس

 ة المساعدة وظيفة الأدا   ، المعادلات التفاضلية العشوائية التراجعية، المعادلات التفاضلية العشوائية التراجعية التربيعية، الخطر الحساس  : الكلمات المفتاحية
 . الحل وحدانية و  وجود الأسية،

  

                                                   Résumé 

Le but de ce travail est d'étudier une classe des EDSR quadratique de la forme suivante : 

( )2
( ) ( ) ,

T T

t s s s s
t t

Y l s f Y Z ds Z dW= + + −   

où la donnée terminale  est une variable aléatoire de carrée intégrable, l, f sont deux fonctions mesurables, 

nous étudions l'existence, l'unicité et le principe de comparaison pour ce genre des équations. L'outil principal 

dans les preuves est ce qu'on appelle la transformation de Zvonkin qui sera utilisé pour éliminer le générateur 

ou une partie de celui-ci, de sorte que nous transformons l'EDSR quadratique originale à une EDSR standard 

son générateur ne contient pas la partie quadratique. Une application est également a été étudiée pour nous 

présenter e lien entre les EDSRs quadratiques et le problème du contrôle au risque sensible. 

 Mots clés: équations différentielles stochastiques rétrogrades, équations différentielles stochastiques 

rétrogrades quadratique, fonction d'utilité exponentielle, risque sensible, existence et unicité 

d'une solution. 

 

 

 

 

 

                                                                  Abstract                                                                   

      The aim of this work is to study a class of quadratic BSDEs, of the following form: 

( )2
( ) ( ) ,

T T

t s s s s
t t

Y l s f Y Z ds Z dW= + + −   

Where the terminal data is assumed to be a square integrable random variable, f and l are two measurable 

functions. We study the existence, uniqueness and comparison theorem to such equations. The main tool in the 

proofs is the so called Zvonkin transformation that will be used to eliminate the generator or a part of it, so that 

we transform the original QBSDEs to a standard BSDE without a quadratic part. As an application, we provide 

the connection between the quadratic BSDE and the risk sensitive control problem. 

    Key words: backward stochastic differential equations, Quadratic backward stochastic differential equations, 

exponential utility function, risk sensitive, existence and uniqueness of solution. 
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Chapter 3.Application to a Risk sensitive Control Problem

Hence, 

dY �t ; dY

�
t

�
= [
1

�
'(t) exp �

�
�Y �t �

Z t

0

l(s)ds

�
]2dt := jZtj2 dt: (3.5)

Then by replacing (3:5) in (3:4), we have the quadratic backward stochastic di¤erential

equation as the following expression

8><>: dY �t = �
�
l(t) + �

2
jZtj2

�
dt+ ZtdWt;

Y �T = 	(y
u
0 );

where

Zt =
1

�
'(t) exp �

�
�Y �t �

Z t

0

l(s)ds

�
:

On the other hand, we assume that (3:3) holds,and by applying Itô�s formula to exp(�Y �t ),

we get

d(exp�fY �t g) + �l(t)exp�fY �t gdt = �Ztexp�fY �t gdWt

Multiply with exp �
nR t

0
l(s)ds

o
to both sides, we get

exp �

�Z t

0

l(s)ds

�
d(exp�fY �t g) + �l(t) exp �

�Z t

0

l(s)ds

�
exp�fY �t gdt

= �Zt exp �

�Z t

0

l(s)ds

�
exp�fY �t gdWt:

The right side is the same as the d
�
exp �fY �t +

R t
0
l(s)dsg

�
; then we have

d

�
exp �fY �t +

Z t

0

l(s)dsg
�
= �Zt exp �fY �t +

Z t

0

l(s)dsgdWt:

By taking the integral from t toT in both sides of the previous equality, we have

Z T

t

d

�
exp �fY �s +

Z s

0

l(r)drg
�
= �

Z T

t

Zs exp �fY �s +
Z s

0

l(r)drgdWs:
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Chapter 3.Application to a Risk sensitive Control Problem

Proof. We assume that (3:2) holds, then we have

exp
�
�Y �0

	
= E[exp (�	(yu0 )) j FW

t ]

= E[exp �
�
	(yu0 ) +

Z T

0

l(s)ds

�
j FW

t ]

= E[A�0;T j FW
t ]:

By assumption (N1), we know that A�0;T is a square integrable and E[A�0;T j FW
t ] is a square

integrable martingale, adapted to the Brownian �ltration FW
t = �(Ws;for any s 2 [0; T ]);

then by using the martingale representation theorem, there exist a unique square process

' such that

E[A�0;T j FW
t ]� E[A�0;T j F0] =

Z t

0

'(s)dWs:

We have that E[A�0;T ] = E[A�0;T j F0] = exp �fY �0 g;so

exp �fY �t +
Z t

0

l(s)dsg � exp �fY �0 g =
Z t

0

'(s)dWs:

By applying Itô�s formula to exp �fY �t +
R t
0
l(s)dsg; we obtain

d

�
exp �fY �t +

Z t

0

l(s)dsg
�

= �l(t) exp �fY �t +
Z t

0

l(s)dsgdt+ � exp �fY �t +
Z t

0

l(s)dsgdY �t +
�2

2
exp �fY �t +

Z t

0

l(s)dsg


dY �t ; dY

�
t

�
= '(t)dWt:

Then

l(t)dt+ dY �t +
�

2



dY �t ; dY

�
t

�
=
1

�
'(t) exp �

�
�Y �t �

Z t

0

l(s)ds

�
dWt: (3.4)

And so

dY �t = �l(t)dt�
�

2



dY �t ; dY

�
t

�
+
1

�
'(t) exp �

�
�Y �t �

Z t

0

l(s)ds

�
dWt:
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We denote by l (t) = (t; vt):

We set

Y �t = 	(y
v
0) +

Z T

t

l(s)ds

Then

exp(�Y �t ) = E[A�t;T j FW
t ]; (3.2)

where � is the risk-sensitive index, the process Y � is the �rst component of theFW
t �adapted

pair of processes
�
Y �t ; Zt

�
t2[0;T ] which is the unique solution of the following quadratic

backward stochastic di¤erential equation according to the result of the equation (2:9)

8><>: dY �t =
�
l (t)� �

2
jZtj2 dt

�
+ ZtdWt;

Y �T = 	(y
u
0 );

; (3.3)

where E[
R T
0
jZtj2 dt] <1:

We also assume the following

(N2)

(i) The process Z = (Zt)t2[0;T ] isFW
t �measurable with value inR such that E[

R T
0
jZtj2 dt] <

1:

(ii) The process (Y �t )t�0 is P�measurable uniformly bounded i.e. there exists a constant

C � 0 such that P� a:s, E[ sup0�t�T
��Y �t ��] � C:

The following lemma shows the relationship between the expected exponential utility and

the quadratic backward stochastic di¤erential equation.

Lemma 3.2.1 We assume that N1-N2 hold. The necessary and su¢ cient condition for

the expected exponential utility (3:1) to be hold, is the quadratic backward stochastic dif-

ferential equation (3:3).
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Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

Take the square of the L2(
) norm in (2:11), (2:4), we get

m2

�Z T

0

E
�
jZsj2

�
ds

�
� E

����Z T

0

F 0(Ys)ZsdWs

����2
= E

����Z T

0

zsdWs

����2
� E

Z T

0

jzsj2 ds

� 2(E[F 2(Y0)] + E
�
F 2(�)

�
) � 2M2(E jY0j2 + E j�j2) <1:

This implies that z; Z 2M2:

(ii): From Itô�s formula (1:8:1), we have

F (Yt) = F (�)�
Z T

t

F 0(Ys)ZsdWs (2.12)

Now, thanks to (2:4) and the fact that F (0) = 0:

m jYtj � jF (Yt)j

� jF (�)j+
����Z T

t

F 0(Ys)ZsdWs

����
� jF (�)j+ sup

0�t�T

����Z t

0

zsdWs

���� :
Using convex inequality and taking the supremum over [0; T ] lead to

m2 sup
0�t�T

jYtj2 � sup
0�t�T

jytj2

� 22
 
M j�j2 + sup

0�t�T

����Z t

0

zsdWs

����2
!
:

Now, by taking the expectation and using BDG inequality see(1:9:2), we get

The right hand side of the above inequality is �nite by (i).
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Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

Passing to conditional expectation and using the fact that Ff1 is an increasing function

and �2 � �1, we get

Ff1(Y
f2
t ) � E

h
Ff1(Y

f2
T )Ft

i
= E [Ff1(�2)Ft]

� E [Ff1(�1)Ft] = Ff1(Y
f1
t ):

Taking F�1f1 in both sides, we conclude Y f2t � Y f1t . Proposition (2:4:1) is proved.

2.5 A priori estimates

Lemma 2.5.1 Let � 2 L2(
). If (Y; Z) satis�es the Eq(�;Hf ), then we have:

(i) (zr)0�r�T ; (Zr)0�r�T 2M2 ,

(ii) (yr)0�r�T ; (Yr)0�r�T 2 S2,

(iii) E
���R T0 f(Yr) jZrj2 dr���2 is �nite.

Proof. (i): From Itô�s formula (1:8:1) we have

F (Yt) = F (�)�
Z T

t

F 0(Ys)ZsdWs; (2.10)

since F satis�es (2:2:1). For t = 0 we get

Z T

0

F 0(Ys)ZsdWs = F (�)� F (Y0): (2.11)
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Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

Then Y f1t � Y f2t P�a:s.

Proof. Notice that the solutions (Y f1 ; Zf1) and (Y f2 ; Zf2) belong to S2�M2 For a given

function h, we put,

Fh(x) :=

Z x

0

exp

�
2

Z y

0

h(t)dt

�
dy:

We �rst apply Itô�s formula see (1:8:1) to Ff1(Y
f2
t ); to obtain:

Ff1(Y
f2
T ) = Ff1(Y

f2
t ) +

Z T

t

F 0f1(Y
f2
s )dY

f2
s +

1

2

Z T

t

F 00f1(Y
f2)d

D
Y f2t

E
= Ff1(Y

f2
t )�

Z T

t

F 0f1(Y
f2
s )f2(Y

f2
s )jZf2s j2ds+

Z T

t

F 0f1(Y
f2
s )Z

f2
s dWs

+
1

2

Z T

t

F
00

f1
(Y f2s )

��Zf2s ��2 ds
= Ff1(Y

f2
t )�

Z T

t

F 0f1(Y
f2
s )f2(Y

f2
s )jZf2s j2ds

+ (MT �Mt) +
1

2

Z T

t

F
00

f1
(Y f2s )

��Zf2s ��2 ds
where

Mt =

Z t

0

F 0f1(Y
f2
s )Z

f2
s dWs;

is an Ft�martingale.

According to Lemma (2:2:1) we obtain

Ff1(Y
f2
T ) = Ff1(Y

f2
t ) + (MT �Mt)�

Z T

t

�
F 0f1(Y

f2
s�)
�
f2(Y

f2
s )� f1(Y f2s )

�
jZf2s j2

�
ds:

Since the term
R T
t
F 0f1(Y

f2
s�)(f2(Y

f2
s )� f1(Y f2s ))jZf2s j2ds is positive, then

Ff1(Y
f2
t ) � Ff1(Y

f2
T )� (MT �Mt):
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Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

Reciprocally, by applying Ito�s formula see (1:8:1) to F�1(yt) = 1


ln(yt) we �nd that:

dYt = d(
1



ln(yt))

= (
1



ln(yt))

0dyt +
1

2
(



2
ln(yt))

00d hyti

=
1


yt
(�
ytl(t)dt+ ztdWt) +

1

2
(
�


2y2t

jztj2)dt

=
1


yt
(�
ytl(t)dt+ 
ytZtdWt) +

1

2
(
�


2y2t

j
ytZtj2)dt

= �l(t)dt+ ZtdWt �



2
jZtj2 dt

= �
�
l(t) +




2
jZtj2

�
dt+ ZtdWt:

Because we have that zt = 
ytZt,

dYt = �
�
l(t) +




2
jZtj2

�
dt+ ZtdWt

YT =
1



ln yT =

1



ln(exp(
�)) = �

Then

Yt = � +

Z T

t

�
l (t) +




2
jZsj2

�
ds�

Z T

t

ZsdWs: (2.9)

According to (2:1:1), the BSDE (2:9) admits a unique solution (Yt; Zt)t2[0;T ] :

2.4 Comparison Theorem

The following proposition allows to compare the solutions for QBSDEs of type Eq(�; f).

The novelty is that the comparison of solutions holds whenever we can compare the gen-

erators a:e: in the y�variable. Moreover, both the generators can be non�Lipschitz.

Proposition 2.4.1 (Comparison) : Let �1, �2 be FT�measurable and square integrable

random variables. Let f1, f2 be elements of L1(R). Let (Y f1 ; Zf1), (Y f2 ; Zf2) be respectively

the solution of Eq(�1; Hf1) and Eq(�2; Hf2). Assume that �1 � �2 a:s, and f1 � f2 a:e:
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Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

2.3 Quadratic BSDEs with a constant f :

We want to solve the following quadratic BSDE

Yt = � +

Z T

t

�
l (t) +




2
jZsj2

�
ds�

Z T

t

ZsdWs;

where l : [0; T ]! R is a bounded function,

Theorem 2.3.1 Let � be an FT -measurable and square integrable random variable. Then

(Yt; Zt)0�t�T is a solution to Eq(�; l (t) +


2
jZsj2) if and only if (yt; zt)0�t�T is a solution

to Eq(exp(
�); 0):

Proof. By applying Itô�s formula see (1:8:1) to yt = exp(
Yt):

dyt = d (exp(
Yt))

= 
 exp(
Yt)dYt +

2

2
exp(
Yt) jZtj2 dt

= 
 exp(
Yt)(ZtdWt �
�
l(t) +




2
jZtj
�
dt) +


2

2
exp(
Yt) jZtj2 dt

= 
 exp(
Yt)ZtdWt �

2

2
exp(
Yt) jZtj2 dt� 
 exp(
Yt)l(t)dt+


2

2
exp(
Yt) jZtj2 dt

= �
 exp(
Yt)l(t)dt+ 
 exp(
Yt)ZtdWt;

So we have

yt = exp(
�) +

Z T

t


ysl(s)ds�
Z T

t


ysZsdWs:

We put zt = 
ysZs

yt = exp(
�) +

Z T

t


ysl(s)ds�
Z T

t

zsdWs; (2.8)

since � is a square integrable random variable then exp(
�);and l is bounded ie: the

generator of BSDE (2:8) is Lipschitz in y. Hence according to (2:1:1) the BSDE (2:8)

has one and only one solution (yt; zt)t2[0;T ] :

Then, (2:8) admits a unique solution (yt; zt)t2[0;T ] because it has a Lipschitz generator.

20



Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

Since �F 0(Yt)f(Yt) + 1
2
F 00(Yt) = 0, we have

yt = F (Yt) = F (�)�
Z T

t

F 0(Ys)ZsdWs; (2.6)

by taking the conditional expectation in both sides

yt = E [F (�) j Ft] ;

If � is a square integrable random variable it is easy to see that F (�) is also a square

integrable random variable,then yt is a square integrable Ft�martingale. Then according

to the representation theorem see (1:9:1) 9! (zt)t2[0;T ] a square integrable process such that:

yt = y0 +

Z t

0

zsdWs;

so we have

yt = E [F (�)] +
Z t

0

zsdWs;

and

yT = E [F (�)] +
Z T

0

zsdWs;

so

yT � yt = E [F (�)] +
Z T

0

zsdWs � E [F (�)]�
Z t

0

zsdWs

Hence

yt = � �
Z T

t

zsdWs (2.7)

By matching between (2:6) and (2:7) we remark that F 0(Ys)Zs = zs:

Since � is a square integrable random variable and the generator is vanish(Lipschitz) then

according to (2:1:1) the equation (2:7) admits a unique solution (yt; zt)t2[0;T ] 2 S2�M
2:

18
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then

8x 2 R;m =: e�2jf j1 � (F�1)0(x) � e2jf j1 :=M:

From (2:5) we have that

jF 0(x)j = 1��(F�1)0 (x)�� = exp(�2
Z x

0

f(t)dt)

Hence

8x 2 R; m =: e�2jf j1 � F 0(x) � e2jf j1 :=M .

Remark 2.2.1 1)Let f : R ! R be a given bounded and continuous function, and set

M := supyeR jf(y)j ; the BSDE (2:2) is then of quadratic growth since f(Ys) jZrj2 �

M jZrj2 :

2) in the sequale we will denote by Eq(�;Hf ) the quadratic BSDE with the generator

Hf (t; y; z) = f (y) jzj2 and the terminal condition �:

Theorem 2.2.1 Let � be an FT -measurable and square integrable random variable. If f

is a bounded and continuous function, then (Yt; Zt)0�t�T is a solution to Eq(�;Hf ) if and

only if (yt; zt)0�t�T is a solution to Eq(F (�); 0):

Proof. If (Yt; Zt)t2[0;T ] is a solution of (2:2),then Itô�s formula see (1:8:1) applied to F (Yt)

shows that

dF (Yt) = F
0(Yt)dYt +

1

2
F 00(Yt)d hYti

= �F 0(Yt)f(Yt) jZtj2 dt+ F 0(Yt)ZtdWt +
1

2
F 00(Yt) jZtj2 dt

= F 0(Yt)ZtdWt +

�
�F 0(Yt)f(Yt) +

1

2
F 00(Yt)

�
jZtj2 dt

= F 0(Yt)ZtdWt:

17



Chapter 2. Quadratic Backward Stochastic Di¤erential Equation

or equivalently in its di¤erential form:

8><>: dYs = �g(s; Ys; Zs)ds+ ZsdWs

YT = �;

where � is a square integrable and FT�measurable random variable called the terminal

condition and g: 
� [0; T ]�R�Rd�d is a given measurable function called the generator

De�nition 2.1.1 A solution of the equation (2:1) is a pair of adapted processes (Yt; Zt)t2[0;T ],

typically in S2�M2 with values in R� Rd�d.

Yt = E(� j Ft) and Z from the representation theorem see (1:9:1).

Assumption(2.1) :

i) g is globally Lipschitz in (yt; zt)t2[0;T ], that is: 9k > 0; such that

jg(t; y; z)� g(t; y0; z0)j � k(jy � y0j+ jz � z0j):

ii) Integrability condition:

E[j�j2 +
Z T

0

jg(r; 0; 0)j2 dr] <1:

Theorem 2.1.1 (E.Pardoux, S.Peng) Let assumption (2.1) holds. Then, (2:1) has a

unique solution (Yt; Zt)t2[0;T ] which belonging to S2�M2:

Proof. For the detailed proof we refer the reader to the excellent reference [12]:

15



Chapter 2

Quadratic Backward Stochastic

Di¤erential Equations

Our concern in this work is to study quadratic BSDEs with and their related to Risk

sensitive control problems when the generator is merely continuous and integrable and the

terminal condition is square integrable. The main tool is to use the phase space trans-

formation (known as Zvonkin transformation [13]) to eliminate the drift or its quadratic

part only. We also provide a comprison theorem between the solutions.

2.1 The case of a Lipschitz generator:

Let T be a positive real number,
�

;F ; (Ft)t2[0;T ] ; P

�
be a �ltered probability space

in which we de�ne a d-dimensional a Brownian motion. we assume that Ft = � fWs; s � tg

is the natural �ltration of the Brownian motion (Wt)t2[0;T ] :

We will study the one-dimensional BSDE of the following type:

Yt = � +

Z T

t

g (s;Xs; Zs) ds�
Z T

t

ZsdWs t � T; P�a:s; (2.1)

14



Chapter 1

Stochastic Calculus and

Preliminaries

Stochastic calculus is an extension of di¤erential calculus and classic integration, in

which the processes on the continuous-time replace the functions and the martingales play

the role of the constants. This chapter is essentially a kind of introduction, to expose

the basic notions and the most important de�nitions properties and theorems that will be

used throughout this thesis and they will be provided without demonstrations. For more

details on stochastic calculus, we refer the reader to the following important references

[5, 8, 11].

In the following
�

;F ; fFtgt�0 ;P

�
is a �ltered probability space, I is a set of indices

(which can be (N;Z;R)) or a part of R (e:g : [0; T ]).

1.1 Tribe


: is an abstract set whose elements are noted !.

De�nition 1.1.1 A tribe (��algebra) on 
 is a family of parts of 
, containing the empty

set, stable by passing to the complementary, countable union and countable intersection.

4



General introduction

There where many articles weaken the Lipschitz condition on the generator of BSDE(1)

and proved the existence of a solution for such kind of equations. Basically in those papers

it is assumed that the generator g is just continuous and satis�es a linear or a quadratic

growth condition. Among them we can quote Hamadene [10], Lepeltier and San Martin

[6], Kobylanski [9] and so on.

Since the early nineties, there has been an increasing interest for backward stochastic

di¤erential equations. These equations have a wide range of applications in stochastic

control and �nance di¤erential equation theory. A particular class of BSDE has been

studied for a few years: BSDEs with generators of quadratic growth with respect to the

variable z; take the following form

Yt = � +

Z T

t

f(Ys) kZsk2 ds�
Z T

t

ZsdWs; t � T: (2)

Existence and uniqeness of solution for the QBSDE (2) has been �rst proved by

Kobylanski [9]. Since then many authors worked on this equation and they tried to

reach the same result in simple ways. for example Bahlali et al [1] used the so-called"

Zvonkin trasformation" to prove the existence and uniqueness.of solution to such type of

equations.

It is worth mentioning that a particularly important class of BSDEs their generators

have quadratic growth have a powerful tool in n stochastic �nance, and more generally in

stochastic control theory. More precisely they arise in the context of utility optimization

problems with an exponential utility function, or alternatively in questions related to risk

minimization for the entropic risk measure. As an illustration of the theoretical results, we

provide the relation between the expected exponential utility and the quadratic backward

stochastic di¤erential equations.

This thesis consists of three chapters,

Chapter 1 (Stochastic calculus and Preliminaries): This chapter is essentially a

kind of introduction, we will present a lots of de�nitions, properties and theorems made

2



General Introduction

The linear backward stochastic di¤erential equations were �rst introduced in 1973

in the work of J.Bismut [2] when he was studying the adjoint equation associated with

the stochastic maximum principle in optimal control. However, the �rst general result

concerning the BSDEs dates only from 1990 and is due to E.Pardoux and S.Peng [12] who

introduced a new form:8><>: �dYt = g(t; Yt; Zt)� ZtdWt; 0 � t < T:

YT = �:
(1)

where � is the terminal value and the coe¢ cient g is the generator of the BSDE which

is a non-linear function that satis�es the globally Lipschitz condition with respect to the

state variables. The solution of this equation is a couple of processes (Y; Z). Indeed, as

the boundary condition is given at the terminal instant T , the presence of the process

Z via the martingale representation theorem, ensures that Y is adapted with respect

of the �ltration generated by the Brownian motion (Wt)t2[0T ]. The theory of BSDEs

has been widely used in stochastic control especially in mathematical �nance, namely the

adjoint process can be written in terms of linear BSDEs; or non-linear BSDEs, for more

information and examples about this subject we refer the reader to the seminal paper of

El Karoui, Peng and Quenez [3].

Another direction which has attracted many works in this area, especially in connection

of applications, is how to improve the existence, uniqueness conditions of a solution for (1) :

1
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