Université Mohamed Khider de Biskra Entrez votre faculté Entrez votre département

MÉMOIRE DE MASTER

Domaine Sciences de la Matière Filière Chimie Spécialité Chimie des Matériaux

Réf. : Entrez la référence du document

Présenté et soutenu par : **Djeghidel Chaima & Sam Hassina** Le : Jeudi 01 juillet 2021

Étude de pérovskites semi-conductrices et leur application dans le domaine de capteurs de gaz : le composé La_{1-x}M_xFeO₃ dopé

Jury :

Mm	Harkati Dalal	MCA	Université de Biskra	Présidente
Mm	Ferhati Samiha	MAA	Université de Biskra	Examinatrice
Mm	Necira Zelikha	MCB	Université de Biskra	Rapporteuse

Nous dédions ce modeste travail : A nos chers parents pour tous leurs sacrifices, amour, tendresse, soutien, prières, conseils et orientation dans nos vies. A nos chers frères et soeurs à tous nos amis Khaoula, Manal, Aya, Rim, Samia et Iman . À toutes mes amies, et collègues de la promotion (chimie des matériaux 2021).

Hassina et Chaima

Remerciements

Nous remercions, tout d'abord, Allah le tout grand puissant de nous avoir donné la force, le courage, la patience et la volonté de compléter à bien ce modeste travail.

L'ensemble de ce travail s'est déroulé au laboratoire de Chimie de Département des Sciences de la Matière de l'Université de Biskra.

Nous remercions notre vertueuse professeure **M**^m NECIRA Zelikha, pour avoir supervisé notre mémoire de recherche et pour ses précieux conseils scientifiques, qui ont grandement contribué à la réalisation de ce travail.

Nous adressons également nos respectueux remerciements aux membres de jury de l'Université de Biskra, **M**^m HARKATI Dalal, Maître de conférences (A), pour nous avoir fait l'honneur de présider le Jury et **M**^m FERHATI Samiha, Maître de conférences (B) d'avoir examiné ce travail et participé au jury.

Un grand merci à l'ensemble des ingénieures de laboratoire de chimie de notre département, pour l'aide matériel et moyen qu'ils ont mis à notre disposition pour mener à bien ce travail. Nous citerons ; Mm. Hayet BENMACHICHE, Chef service, Mm Nadia BOUZIZE, Mm. Soumia KHELIFA, qu'elles nous ont assurées les analyses de Spectrométrie Infrarouge.

Nous remercions également Mr. Brahim Gasmi, Ingénieur, responsable de laboratoire de recherche physique des couches minces et applications « LPCM » à l'Université de Biskra, pour la réalisation des analyses DRX et MEB.

Nous avons également une dette de reconnaissance envers tous les enseignants de chimie qui nous ont suivis durant notre cycle d'étude.

Enfin, nous aimerais faire une mention spéciale à nos amies et collègues de la promo 2020/2021 chimie des matériaux.

Merci sincèrement.

الملخص

الهدف من هذا العمل هو در اسة تأثير الإستبدال بالقادولنيوم (Gd) و الستر اسيوم (Sr) على الخصائص الفيزيائية والكيميائية للمركب المرجعي LaFeO3(LFO) من عائلة البير وفسكيت أورثو فيريت اللانثان ذو الخصائص الهامة في التخفيز الضوئي.

التحقيق هذا الهدف، فمنا بتصنيع المركبين: La_{0,75}Gd_{0,25}FeO₃ و La_{0,75}Gr_{0,25}FeO₃ بالطريقة التقليدية (MC) و تعريضهما لعملية تكلس عند درجات حرارية مختلفة (C 1200 C 1000 C, 1000). تمت دراسة تأثير هذا الاستبدال بشكل أساسي بواسطة؛ حيود الأشعة السينية (XRD) والمسح المجهري الإلكتروني (MEB) . طرق تحليل أخري مكملة مثل الأشعة الحمراء (FTIR) و فوق البنفسجية المرئية (UV-Vis) استعملت لدراسة النشاط الضوئي للمركبين المحضرين.

الكلماتالمفتاحية: الإستبدال - البير وفسكت- أور ثوفيريت اللانتان-التحفيز الضوئي.

R ésum é

L'objectif de ce travail est d'étudier l'effet de la substitution par le gadolinium (Gd) et le strontium (Sr) sur les propriétés physiquo- chimiques du composé de référence LaFeO₃ (LFO) de la famille des pérovskites orthophérite de lanthane aux propriétés importantes en photocatalyse.

Pour atteindre cet objectif, nous avons synthétisé les deux composés : La_{0.75}Gd_{0.25}FeO₃ et La_{0.75}Sr_{0.25}FeO₃ par la méthode conventionnelle (MC) et les faire subir une calcination à différentes températures (800°C, 1000°C et 1200° C). L'effet de cette substitution a été étudié principalement par ; Diffraction des rayons X (XRD) et microscopie électronique à balayage (MEB). D'autres méthodes analytiques complémentaires telles que, les rayons infrarouges (FTIR) et l'ultraviolet (UV-Vis) ont été utilisés pour étudier l'activité photocatalytique des deux composés préparés.

Mots clés : Substitution - Pérovskite - Orthoférite de lanthan - Photocatalyse.

Abstract

The objective of this work is to study the effect of substitution by gadolinium (Gd) and strontium (Sr) on the physicochemical properties of the reference compound LaFeO3 (LFO) of the family of lanthanum orthopherite perovskites. with important properties in photocatalysis. To achieve this object, we synthesized two compounds: La_{0.75}Gd_{0.25}FeO₃ and La_{0.75}Sr_{0.25}FeO₃ by the conventional method (MC) and subjected them to calcination at different temperatures (800 ° C, 1000 ° C and 1200 °). The effect of this substitution has been studied mainly by; X-ray diffraction (XRD) and scanning electron microscopy (SEM). Other complementary analytical methods such as infrared rays (FTIR) and ultraviolet (UV-Vis) were used to study the photocatalytic activity of the two compounds prepared.

Keywords: Substitution - Perovskite - Lanthan orthoferite - Photocatalysis.

Table de mati ère

LISTE DES FIGURES	
LISTE DES TABLEAUX	
LISTE DES ABREVIATIONS	
RÉSUME	
INTRODUCTION GENERALE	2
R & érences bibliographiques	4
<u>CHAPITRE I</u>	
<u>G én éralit és et propri ét és de la structure p érovskite</u>	
I. Introduction	6
II. Notions sur les diff érentes structures cristallines des p érovskites	6
II.1 Structure p é rovskite id éale	6
II.2 Structure p c rovskite complexe	8
II.3. Structure P érovskite t étragonale	8
II.4. P é rovskite rhombo édrique	8
II.5. P é rovskite monoclinique et triclinique	9
II.6. P érovskite orthorhombique	9
II.7. Polymorphisme	10
III. Critères d'ABO ₃	10
L'effet stérique	10
IV. Condition de stabilité d'une structure pérovskite	11
 Facteur de tol érance t 	11
 L'iconicit é des liaisons anions-cations 	12
V. Propri ét és g én érales des mat ériaux p érovskites	13
Propri ét és dectriques	13
Propri ét és catalytiques	14
VI. La p é rovskite LaFeO3	15
1. Structure	15
2. Histoire, propri ú és et application	16
VII. Dopage des p é rovskites	19
a) Dopant de la famille des terres rares : Le Gadolinium (Gd)	21

b) Effets de la substitution en Gd^{3+}	22
R éf érences bibliographiques	24
CHAPITRE II	
Proc éd é de synth èse et technique de caract érisation	
I. Introduction	27
II. Choix de la méthode	27
III. Choix de la composition	27
IV. Synth èse des solutions solides par la méthode conventionnelle (MC)	28
1. Les produits de d éparts	28
A. Les oxydes de bases	28
B. Les oxydes de dopants	29
2. Étapes de formation des p érovskites	30
a) M dange et broyage	31
b) Calcination	32
c) Mise en forme	34
d) Frittage	35
V. Techniques de caract érisation (Analyses et appareillages)	36
a. Structure des phases : Analyse par Diffraction des rayons X (DRX)	36
b. Analyse thermique	38
c. Masse volumique (ρ) ou densité (d)	40
d. Microstructure : Analyse par MEB et EDS	41
e. Analyse spectroscopique	44
R éférences bibliographiques	49
<u>CHAPITRE III :</u>	
<u>R ésultats et Discussions</u>	
III.1. Introduction	52
III.2. Compositions choisies pour l'étude	52
III.3. R sultats et discutions	54
III.3.1. Caract érisation thermique ATD/TG	54
III.3.2. Caract érisation de la phase orthoferrite La _{1-x} M _x FeO ₃ par DRX	55

III.3.3.Caract érisation morphologique et microstructurale	
de La1-xMxFeO3 par MEB/EDS	
a) Morphologie: Masse volumique « ρ » de La _{1-x} M _x FeO ₃	59
b) Microstructure de La _{1-x} M _x FeO ₃	60
III.3.4.Caract érisations spectroscopiques de La _{1-x} M _x FeO ₃	64
R & érences bibliographiques	72
CONCLUSION GÉNÈRALE	75

ANNEXE

Liste des figures

N^{\bullet}	Figure	Page	
I.1	<i>Repr ésentation de la structure p érovskite cubique ABO</i> ₃	7	
I.2	Arrangement tridimensionnel des octa èdres BO_6 de la structure p érovskite		
I.3	(a) P érovskites cubique, (b) P érovskite t étragonale orientation [001].	8	
I.4	Structure rhomboédrique de pérovskite selon l'orientation [111].		
I.5	Pérovskite Orthorhombique selon l'orientation [110].	10	
I.6	Repr ésentation sch énatique des structures d'éform ées de la maille	11	
	d énentaire de type ABO ₃		
I.7	Sch ána des bandes d'un semi-conducteur.	14	
I.8	Structure de LaFeO3 (double maille d'émentaire suivant A	16	
I.9	Evolution du nombre de publication par ann \acute{e} , avec le mot-clé "LaFeO ₃ ",	16	
	source science directe.com.		
I.10	Structure de bande calcul <i>é</i> e par Scafetta Et. Al A.) Énergie des <i>d</i> ectrons	18	
	Vs. Ket (B.) densité d'état.		
I.11	Evolution de la temp érature de neel de plusieurs orthoferrites.	19	
I.12	El éments chimique pouvant occuper des sites (A et B) de la structure	20	
	p érovskite ABO3.		
II.1	Organigramme montrant les étapes de préparation des échantillons.	31	
<i>II.2</i>	Les étapes principales exp érimentales de m étange et broyage.	32	
II.3	Four programmable, porte échantillon et sch éna de cycle de calcination.	33	
II.4	La presse hydrostatique utilis ée pour la préparation des pastilles.	34	
II.5	Four et pastille apr ès le frittage	35	
II.6	Diffractom àre Miniflex 600 en configuration Bragg/Brentano dite (θ - θ).	36	
II. 7	Schéma représentant les éléments principaux d'un diffractomètre	37	
	automatique		
II.8	Principe de la loi de Bragg.	38	
II.9	Schéma d'un appareil ATD typique.	38	

Microm àre palmer avec afficheur num érique 0-25 mm.	40
<i>Balance dectrique couplée à l'instrument basé sur la technique de</i>	40
poussée d'Archimède.	
2 Diverses émissions d'un échantillon en réponse à une excitation par un	42
faisceau d'électrons.	
3 Microscope dectronique àbalayage de type BRUKER.	43
4 Pulv érisateur cathodique.	43
5 La préparation des échantillons avec Mortier en agate et presse	45
hydraulique.	
6 Spectrom àre infrarouge àtransform & de Fourier FTIR- Shimadzu FTIR-	45
8400.	
7 Spectrom àre pour solide de type Perkin Elmer FT-IR.	46
S Sch ána de principe du spectrophotom àre UV-visible monofaisceau.	46
<i>Spectrom are UV-visible de type "PerkinElmer UV Lambda 25".</i>	48
Courbe d'ATD de la poudre de précurseur du LGFO à température	55
ambiante et à une vitesse de chauffe 5 %min.	
2 Diffractogrammes obtenu sur des ' échantillons LGFO calcin és 800 °C,	56
1000 ${\mathfrak C}$ et 1200 ${\mathfrak C}$ et compar és aux fiches JCDS de r éf érence.	
B Diffractogrammes obtenu sur des ' échantillons LSFO calcin és à 800 °C,	56
1000 ${\mathfrak C}$ et 1200 ${\mathfrak C}$ et compar és aux fiches JCDS de r éf érence.	
<i>Example 1 : Diffractogrammes obtenu sur des ' échantillons de LGFO et LSFO</i>	57
calcin és à 1200 °C et compar és aux fiches JCDS de r éf érence.	
5 Comparaison de pic le plus intense de DRX des deux compos és : LGFO et	58
LSFO dans l'intervalle angulaire 30 °-35 °.	
6 Micrographies de MEB pour les deux compos és LGFO et LSFO calcin és à	60
1200 ${}^{\circ}\!$	
<i>Évolution de la taille moyenne des cristallites du compos é</i> $La_{0,75}Gd_{0,25}FeO_3$	62
en fonction de la temp érature.	
<i>Évolution de la taille moyenne des cristallites du compos é</i> $La_{0,75}Sr_{0,25}FeO_3$	62
en fonction de la temp érature.	
Spectre X-EDS de la composition $La_{0.75}Gd_{0.25}FeO_3$.	63
0	64
	 Microm àre palmer avec afficheur num árique 0-25 mm. Balance dectrique couplée à l'instrument basé sur la technique de poussée d'Archimède. Diverses émissions d'un échantillon en réponse à une excitation par un faisceau d'électrons. Microscope dectronique àbalayage de type BRUKER. Pulv érisateur cathodique. La préparation des échantillons avec Mortier en agate et presse hydraulique. Spectrom àre infrarouge à transform ée de Fourier FTIR- Shimadzu FTIR-8400. Spectrom àre pour solide de type Perkin Elmet FT-IR. Sch éma de principe du spectrophotom àre UV-visible monofaisceau. Spectrom àre UV-visible de type "PerkinElmer UV Lambda 25". Courbe d'ATD de la poudre de précurseur du LGFO à température ambiante et à une vitesse de chauffe 5 %min. Diffractogrammes obtenu sur des 'échantillons LGFO calcin és 800°C, 1000°C et 1200°C et compar és aux fiches JCDS de r § réence. Diffractogrammes obtenu sur des 'échantillons de LGFO et LSFO calcin és à 1200°C et compar és aux fiches JCDS de r § réence. Comparaison de pic le plus intense de DRX des deux compos és : LGFO et LSFO calcin és à 1200°C avec les histogrammes de la taille des particules. Évolution de la taille moyenne des cristallites du compos é La0,75Sr0,25FeO3 en fonction de la temp érature. Spectre X-EDS de la composition La0,75G0,25FeO3.

III.11	11 Spectre FTIR des deux compos és $La_{0.75}Gd_{0.25}FeO_3$ et $La_{0.75}Sr_{0.25}FeO_3$ en			
	poudre sans KBr.			
III.12	Spectre FTIR des deux compos és La0.75Gd0.25FeO3 La0.75Sr0.25FeO3 en pastilles de KBr	65		
III.13	Courbe $(\alpha hv)^2 = f(hv)$ pour la composition $La_{0,75}Gd_{0,25}FeO_3$.	66		
III.14	Courbe $(\alpha hv)^2 = f(hv)$ pour la composition $La_{0,75}Sr_{0,25}FeO_3$	66		
III.15	Spectre UV-vis. de bleu de m éthyl ène de concentration 20 mg/L.	67		
III.16	Solution mère et solutions filles de BM préparées pour les testes	68		
	photocatalitiques.			
III.17	Courbe d'étalonnage de BM.	68		
III.18	Solutions des deux catalyseurs (LGFO et LSFO) et les solutions après teste	70		
	de d'égradation de BM sous UVsoleil			
III.19	Évolution temporelle du spectre d'absorption de BM utilisant les deux	70		
	catalyseurs : le LGFO et le LSFO.			
III.20	Pourcentage temporel de d égradation de BM	71		
	par les deux catalyseurs : LGFO et LSFO.			

Liste des tableaux

N^{\bullet}	Tableau	Page
I.1	Evolution des structures cristallines en fonction de t	12
I.2	Position atomique des atomes de LaFeO3.	15
I.3	Effets principaux de type d'additif sur les propriétés de la p érovskite.	21
II.1	Composition en matrice, leurs d ésignations et leurs facteurs de	27
	tol érance (t).	
II.2	Caract éristiques des produits de d'épart.	30
II.3	Conditions de calcination des poudres.	33
II.4	Les problènes caus és par la calcination	33
III.1	Formule chimique et d'ésignation des deux compositions.	52
<i>III.2</i>	Le rayon ionique des ions.	53
III.3	Le facteur de tol érance de Goldschmit (t)	53
III.4	Calcule de la charge positive dans les deux compos és.	53
III.5	Param àres structuraux (phase, param àres et volume de maille) pour	58
	les deux compos és LGFO et LSFO	
III.6	Valeurs des masses volumiques (exp érimentales et th éoriques), de la	59
	compacit é et de la porosit é des deux compos és calcin és à 1200 °C.	
III.7	Taille moyenne des cristallites de deux orthoferrites: LGFO et LSFO	63
	calcin és à 1200 °C.	
III.8	Solution filles pr épar ées par dilution de la solution mère de BM.	68
III.9	Valeurs de l'absorbance des solutions filles de BM.	68

Liste des Abr éviations et Symboles

Abr éviation	D ésignation		
LFO	Orthoferrite de lanthane (LaFeO ₃)		
LGFO	Orthoferrite de lanthane dop éavec Gadolinium (La _{0,75} Gd _{0,25} FeO ₃)		
LSFO	Orthoferrite de lanthane dop éavec Strontium (La _{0,75} Sr _{0,25} FeO ₃)		
BM	bleu de m áhyl ène		
MC	M éthode conventionnelle		
ATD/TG	Analyse thermique differential/ Thermogravim drique		
DRX	Diffraction des rayons X		
JCPDS	Joint committee on powder diffraction standards (en anglais)		
MEB	Microscopie dectronique àbalayage		
EDS	Energy Dispersive Spectrometer		
FTIR Fourier Transformed Infra Red			
UV-Vis Ultra viol é Visible			
Α	absorbance		
3	ϵ (L/mol.cm) : est le coefficient d'extinction molair		
С	concentration		
t	Facteur de tol érance		
r	Rayon ionique		
θ	Diam àre		
e	Épaisseur		
ρ Masse volumique (densit é)			
λ	Longueur d'onde.		
С	Compacit é		
Dr	densit érelative		
$\mathbf{E}_{\mathbf{g}}$	énergie de gap E _g		
α	coefficient d'absorption		

Introduction G én érale

De nos jours, les mat ériaux p érovskites ont été principalement préférés en raison de leurs propri étés optiques, magn étiques et catalytiques exceptionnelles **[1-3]**. Les pérovskites à base de lanthane, dits orthoferrites de lanthane LaFeO3 (LFO) dopés et non dopés, ont été sp étifiquement utilis é dans les cellules solaires, les mat ériaux magn étiques, les électrodes de piles à combustible à oxyde solide, les catalyseurs, les capteurs chimiques, les membranes de perm éation d'oxyg ène, le stockage d'hydrog ène et les dispositifs opto électroniques grâce à une bonne stabilit é, une efficacit é de conversion de puissance, une flexibilit é stoechiom étrie de l'oxyg ène, différents états d'oxydation et substitution isomorphe des méaux dans leurs structures **[4, 5]**.

En plus de cela, le LFO semi-conducteur est également signal é pour sa propri é é photocatalytique active dans la lumi ère visible avec une bande interdite d'énergie étroite (<3 eV) [6]. En raison de son faible prix, de sa non toxicit é, de sa r éserve abondante et de son excellente capacit é dectrochimique, le LFO est un photocatalyseur prometteur pour la dégradation des polluants (colorants toxiques et autres déchets industriels) [7]. La plupart des colorants, lorsqu'ils entrent en contact avec l'eau, se r év dent hautement toxiques pour les êtres humains. La dégradation photocatalytique des colorants et autres déchets industriels est possible en pr ésence de mat ériau photoactif semi-conducteur sous lumi ère UV-visible [8].

L'intérêt porté aux orthoferrites de lanthane de structure p érovskite ABO₃ r éside grandement dans la facilit é de changer la nature des cations A et B pr ésents dans la structure. G én éralement, les ions du site A sont analytiquement inactifs, contrairement à ceux du site B, bien que leurs natures influencent la stabilité de la pérovskite. Néanmoins, le remplacement d'une partie des ions aux sites A ou B par d'autres d'ément peut induire des modifications structurales li és à la génération des sites vacants d'oxygène et/ou des changements des états de valence des cations originaux. D'un point de vue catalytique, la présence de ces défauts structuraux pourrait favoriser la sorption chimique des réactifs ou d'autres espèces de l'acte catalytique approprié (transport d'oxygène, transfert d'électron, etc.)[9]. Les orthoferrites de lanthane sont habituellement synthétisés par une variété de méthodes comprenant la réaction à l'état solide, Co-pr écipitation, la technique hydrothermale et la sol-gel [10,11].

Le but du présent travail est, de réaliser un nouveau dopage en site A de la pérovskite orthoferrite de lanthane LaFeO₃ (LFO) par, gadolinium (Gd³⁺⁾ et strontium (Sr²⁺) et d'étudier son effet sur les différentes propri étés de l'orthofirite de base; structurale, microstructurale et photocatalitique. Pour cela, deux compos és de La_{1-x}M_xFeO₃ (x=25%) ; La_{0,75}Gd_{0,25}FeO₃ et La_{0,75}Sr_{0,25}FeO₃, vont être synthétis és par la méthode conventionnelle (voie solide) et caractérisés par différentes méthodes d'analyses disponibles dans notre établissement.

Ce manuscrit renferme trois chapitres :

Le premier chapitre introductif présentera une recherche bibliographique sur les structures pérovskites et leurs propriétés associées. Il présentera également les propriétés physico-chimiques de pérovskite orthoferrite de lantane (LFO) et son application dans divers domaines thechnologiques.

Le deuxième chapitre présentera la méthode expérimentale de la synthèse à voie solide des composés massifs, ainsi que les méthodes de leurs caractérisations: structurale, morphologique et photocatalytique.

Le troisi ème chapitre exposera l'étude d étaill é de l'effet de la substitution de Gd^{3+} et Sr^{2+} , sur les propriétés physico-chimiques du compos é orthoferrite de lanthane. Tous les résultats de cette étude seront également discut és.

Enfin, nous conclurons ce manuscrit en rappelant les principaux résultats que nous avons obtenus lors de ce travail de recherche.

R & érences bibliographiques

- [1] Kyungtaek Lee, Sugato Hajra, Manisha Sahu, Hoe Joon Kim. (2021). Colossal dielectric response, multiferroic properties, and gas sensing characteristics of the rare earth orthoferrite LaFeO₃, Journal of Alloys and Compounds, S0925-8388(21)02043-0. DOI: https://doi.org/10.1016/j.jallcom.2021.160634
- [2] Mya Theingi Kay Thi Tun, Nwe Nwe Aung. (2019). Preparation, Characterization and Optical Property of LaFeO₃ Nanoparticles via Sol-Gel Combustion Method", Sci. Medicine Journal Vol. 1, No. 3. http://dx.doi.org/10.28991/SciMedJ-2019-0103-5.
- [3] ARVIND KUMAR. SYNTHESIS AND CHARACTERIZATION OF LaFeO₃USING HIGH ENERGY BALL MILLINGA", Thesis of M.tech in Material Science & Metallurgical Engineering, NO.600902003, Thapar University, PATIALA–147004 (INDIA) JULY.(2011).
- [4] S. Gong, Z. Xie, W. Li, X. Wu, N. Han, Y. Chen. (2018). Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Appl. Catal. B Environ. 241, 578–587 (2019). https://doi.org/10.1016/j.apcatb. 2018.09.041
- [5] W. Li, F. Yang, P. Xiong, Y. Jia, J. Liu, X. Yan, X. Chen (2019). Effect of Bi-doping on the electrocatalytic properties of LaFeO3 powders prepared by sol-gel method. J. Mater. Sci.54, 7460–7468 (2019). https://doi.org/10.1007/s10853-019-0 3443-6
- [6] Deniz Çoban Özkan, Ahmet Türk, and Erdal Çelik, "Synthesis and characterizations of sol-gel derived LaFeO₃ perovskite powders", J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-04803-8.
- [7] Hongfang Shen, Tong Xue, Yanmin Wang, Guozhong Cao, Youjun Lu, Guoli Fang. (2016). Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcinations, Materials Research Bulletin 84,15–24. http://dx.doi.org/10.1016/j.materresbull.2016.07.024.
- [8] Yongchun Ye, Hua Yang, Haimin Zhang & Jinling Jiang. (2018). A promising Ag2CrO4/LaFeO3 heterojunction photocatalyst applied to photo-Fenton degradation of RhB, Journal of Environmental Technology. DOI: 10.1080/09593330.2018.1538261
- [9] Hongfang Shen, Tong Xue, Yanmin Wang, Guozhong Cao, Youjun Lu, Guoli Fang. (2016). Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcinations, Materials Research Bulletin 84,15–24. http://dx.doi.org/10.1016/j.materresbull.2016.07.024.
- [10] N. Geetha, V. Senthil Kumar, D. Prakash. (2018). Synthesis and characterization of LaMn1-xFexO3 (x=0, 0.1, 0.2) by coprecipitation route. J. Phys. Chem. Biophys. 8, 1000273 (2018). https://doi.org/10.4172/2161-0398.1000273
- [11] Mahmoud Lebid. (2012). Etude de l'influence des conditions de synthèses sur les propri ét és physicochimiques du système LaFeO₃, M émoire de Magister, Univ. de Biskra

I. Introduction

La pérovskite a été décrite pour la première fois vers 1830 par le géologue Gustave Rose, son nom provient de celui de Lev Aleksevich V on Pérovskite, un minéralogiste russe . Initialement, elle était un minéral précieux, un titanate de calcium CaTiO₃ avec une structure cubique simple, mais le terme pérovskite désigne, aujourd'hui, un ensemble de composés possédant tous un même arrangement atomique **ABX3**, où A étant le cation le plus gros, B le plus petit et X l'anion. Cet anion peut être oxyde, fluorure et, en quelques cas, chlorure, bromure, iodure, sulfure ou hydrure. La structure type pérovskite, occupe une place très majoritaire dans le système ternaires connus sous la composition ABX3, cela est dû non seulement à son occurrence

ternaires connus sous la composition ABX₃, cela est dû non seulement à son occurrence large, mais également à une série de propriétés intéressantes et utiles liées à ce type structural [1].

II. Notions sur les différentes structures cristallines des pérovskitesII.1 Structure pérovskite idéale

Tous les matériaux qui possèdent la structure cristalline pérovskite, comme BaTiO₃, SrTiO₃, PbTiO₃, peuvent être regroupés sous la formule chimique générale **ABO**₃ où A et B sont des cations métalliques et O un anion. Dans la maille élémentaire cubique de la structure pérovskite idéale (Figure I.1), les plus gros cations A sont placés aux sommets du cube avec un nombre de coordination 12, le plus petit cation B au centre du cube de charge plus importante avec un nombre de coordination 6, et les anions O situés au centre de chaque face du cube forment un octaèdre régulier. La structure pérovskite idéale est décrite par une maille cubique de groupe d'espace P_{m3m} . Les sites A peuvent être occupés par une vingtaine d'éléments chimiques (principalement Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, y³⁺, La³⁺ et les terres rares). Près de cinquante éléments peuvent se placer en position B [2].

Figure I.1 : Représentation de la structure pérovskite cubique ABO₃ [3].

Le réseau cristallin de la structure pérovskite idéale est cubique simple, centrosymétrique, de groupe d'espace P_{m3m} . C'est une structure tridimensionnelle qui se présente sous la forme d'un empilement relativement compact qui interdit quasiment la formation de compositions interstitielles. C'est pour cela qu'il est facile de la décrire comme un réseau d'octaèdres BO₆, reliés entre eux par les sommets, comme le montre la figure (I.2) [4].

Figure 1.2 : Arrangement tridimensionnel des octaèdres BO6 de la structure pérovskite [5].

II.2. Structure pérovskite complexe

La structure pérovskite apparait comme un enchainement d'octaèdres BX_6 dans les trois dimensions de l'espace (**Figure I.3**). Les sites anioniques X peuvent être occupés par l'oxygène ou par un élément halogène comme le fluor, le chlore, le brome ou l'iode. On distingue deux grandes classes de pérovskites qui se différencient par la nature chimique de l'anion : les pérovskites oxygénées et les pérovskites halogénées.

II.3. Structure Pérovskite tétragonale

L'exemple le plus connu d'une pérovskite tétragonale est probablement la forme du BaTiO₃ ferroélectrique à la température ambiante, avec a = 3.994 Å, c = 4.038 Å et Z = 1. Dans ce cas les octaèdres TiO₆ sont légèrement distordus (une liaison Ti-O à 1.86 Å, quatre oxygène à 2.00 Å et une plus longue à 2.17 Å). Le baryum est coordonné, par quatre oxygènes à 2.80 Å, quatre à 2.83 Å et quatre autres à 2.88 Å. Dans l'iso-type PbTiO₃, les polyèdres TiO₆ sont plus tordus que dans BaTiO₃, cela peut être lié à la plus grande puissance de polarisation et le rayon ionique du Pb (II), ceci a été souvent discuté dans les systèmes contenant ce cation **[6]**.

Figure I.3 : (a) Pérovskites cubique, (b) Pérovskite tétragonale orientation [001].

II.4. Pérovskite rhomboédrique

En plusieurs matériaux, la maille cubique peut avoir une petite déformation à la symétrie rhomboédrique (**figure I.4**). Si cette déformation n'élargit pas la maille unitaire, il est possible de l'indexer à la maille unitaire contenant une ou deux formules unitaires respectivement avec les angles rhomboédriques $\alpha \sim 90^{\circ}$ où $\alpha \sim 60^{\circ}$. Cependant, les anions sont généralement déplacés comme l'exige la maille de plus grande unité avec $\alpha \sim 60^{\circ}$. Les exemples des pérovskites rhomboédriques sont LaA1O₃, PrA1O₃, LaNiO₃ et LaCoO₃. LaCoO₃ a la structure rhomboédrique à la température ambiante, mais aux températures

élevées il subit deux transitions de phase intéressantes [7] se transformant à une autre phase rhomboédrique (R_3c à R_3), où le cobalt trivalent est ordonné de telle manière à avoir une alternance des plans (111) avec haut-spin et bas-spin des ions Co (III). Au-dessus de 937°C une deuxième transition se produit, dans laquelle le groupe d'espace R_3 est maintenu mais l'angle change de 60.4° à 60.0° [8].

Figure I.4 : Structure rhomboédrique de pérovskite selon l'orientation [111].

II.5. Pérovskite monoclinique et triclinique

Les mailles unitaires (BiMnO₃, BiScO₃) monocliniques ou (AgCuF₃ et CsPbI₃, PbSnO₃, BiCrO₃, etc.) tricliniques ont été mentionnées dans plusieurs cas. Cependant, dans beaucoup de cas, ces mailles se sont avérées être des pseudos mailles d'une vraie maille multiple. Par exemple ; les phases de-type GdFeO₃ ont été fréquemment classées sur les bases d'une pseudo maille monoclinique avec a ~ b ~ a' et β ~ 90° [9].

II.6. Pérovskite orthorhombique

La structure GdFeO₃ est probablement la plus illustrative de toutes les pérovskites orthorhombiques distordues. Son groupe d'espace est P_{bnm} et les paramètres de mailles sont : a = 5.346 Å, b = 5.616 Å et c = 7.666 Å avec Z = 4. Ces paramètres sont liés au pseudo maille cubique a' par : $a \sim b \sim \sqrt{2}a'$ et $c \sim 2a'$ [10]. Dans cette structure les octaèdres de FeO₆ sont distordus et inclinés. En outre le polyèdre GdO₁₂ est sévèrement distordu, montrant des coordinations (8 + 4). D'autres matériaux adoptant cette structure orthorhombique-distordue sont NaUO₃, NaMgF₃, LaYbO₃, un grand nombre de composés de lanthanide de type LnCrO₃, LnGaO₃, LnFeO₃, LnMnO₃, LnRhO₃ [11] et LaMnO₃ est présenté dans la (**figure I.5**).

Figure I.5 : Pérovskite Orthorhombique selon l'orientation [110].

II.7. Polymorphisme

Comme indiqué précédemment, un grand nombre de matériaux type pérovskite présentent plusieurs modifications polymorphes. Certaines d'entre elles sont très importantes pour les propriétés physiques et à leurs applications. Par exemple, dans BaTiO₃ et KNbO₃ on observe les transformations suivantes avec l'augmentation des températures.

$Rhombo\acute{e}drique \leftrightarrow orthorhombique \leftrightarrow t\acute{e}tragonale \leftrightarrow cubique$

Ces changements de phase sont réversibles et toutes ces formes polymorphes possèdent une maille unitaire pseudo cubique avec a'~ 4 Å. Il convient de noter que les trois formes sont ferroélectriques à plus basse température **[12]**.

III. Critères d'ABO₃

L'effet stérique

La nature des cations se trouvant en site A et/ou B peut déformer cette structure. Ainsi, elle deviendra quadratique (ex : BaTiO₃), orthorhombique (ex : LaCrO₃), hexagonale voire monoclinique (ex : BaBiO₃). Ces déformations sont schématisées (**Figure I.6**) Peu de composés possèdent la structure idéale pérovskite cubique car les conditions requises sont assez restrictives. Le rayon r_A du site A doit être proche de celui de l'oxygène, $r_0 = 0,140$ nm. Et le rayon ionique r_B du site B doit être égal à ($\sqrt{2}$ –1) r_0 [**13**], d'où les critères de stabilité sont établis.

Figure I.6 : Représentation schématique des structures déformées de la maille élémentaire de type ABO₃ [13] :

- a) Structure cubique idéale, pérovskite non déformée.
- b) Déformation quadratique.
- c) Déformation orthorhombique.
- d) Déformation rhomboédrique.

IV. Condition de stabilité d'une structure pérovskite

La stabilité de la structure pérovskite dépend essentiellement de deux facteurs :

Facteur de tolérance t

Gold Schmidt **[14]**.a défini un critère dimensionnel, appelé facteur de tolérance qui tient compte de la taille des ions pour caractériser les différentes structures dérivées de la structure pérovskite :

La symétrie cubique de la structure pérovskite idéale peut être abaissée selon la nature chimique des cations A et B La stabilité de ce type de structure est gouvernée par l'inégalité :

 $0.75 \le t \le 1$ où le facteur de tolérance de Goldschmidt t est défini par

$$\mathbf{t} = \frac{\mathbf{rA} + \mathbf{rB}}{\sqrt{2} \times (\mathbf{rB} + \mathbf{r0})}$$

Pour le facteur de tolérance **t** en utilisant les rayons ioniques donnés par Shannon et coll. Où \mathbf{r}_A , \mathbf{r}_B et \mathbf{r}_0 sont respectivement les rayons ioniques des cations A, B et de l'oxygène, d(A-O) et d(B-O) les distances cation-oxygène. D'après ce critère, la structure cubique est observée pour **t** très proche de 1, les limites de stabilité de la phase pérovskite (plus ou moins distordue) étant définies par **t** compris entre **0.75** et **1.06**. Par exemple, le calcul du facteur de tolérance du composé LaFeO₃, qui cristallise dans une structure

orthorhombique, donne t= 0.95, les rayons ioniques de La^{3+} (coordinence 12), Fe^{3+} (coordinence 6) et O^{2-} étant respectivement de 1.36Å, 0.64Å et 1.40Å En fonction de la valeur du facteur de tolérance, on peut distinguer plusieurs situations, schématisées dans le tableau suivant :

		t>1.06		
t<0.75 ilménite	te 0.75 <t<0.9distorsion< td=""><td>0.96<t<0.99< td=""><td>0.99<t<1.06< td=""><td>hexagonal</td></t<1.06<></td></t<0.99<></td></t<0.9distorsion<>	0.96 <t<0.99< td=""><td>0.99<t<1.06< td=""><td>hexagonal</td></t<1.06<></td></t<0.99<>	0.99 <t<1.06< td=""><td>hexagonal</td></t<1.06<>	hexagonal
	Orthorhombique	Distorsion	cubique	
		rhomboédrique		
_				

Tableau I.1 : Evolution des structures cristallines en fonction de t [15].

* Remarques

1) La structure idéale est rarement rencontrée. Le plus souvent, on trouve des formes distordues, dans lesquelles la symétrie est abaissée par la rotation des octaèdres BO₆.

2) Pour la valeur idéale t=1, la structure pérovskite adopte une symétrie cubique. Un motif ABO₃ par maille suffit alors pour décrire l'arrangement structural. Le paramètre de maille, noté **a p** est proche de 4Å et correspond à la distance B-O-B. Toutefois, beaucoup de pérovskites présentent une symétrie mois élevée qui nécessite parfois le choix d'une maille plus grande, multiple de la maille cubique idéale. Ainsi, de nombreuses pérovskites présentent des transitions structurales qui s'accompagnent d'un abaissement de symétrie. Pour une pérovskite idéale, t= 1,0 cependant la structure pérovskite excite si $0,75 < t \le 1$ Dans ces cas-ci, la structure tord à symétries tétragonales, rhomboédriques ou autres inférieures. En effet, beaucoup d'oxydes pérovskites sont des polymorphes. La stabilité de la structure dépend aussi de la polarisabilité des ions du réseau ainsi que de la nature des liaisons (la pérovskite type covalente est moins stable que la pérovskite ionique).

L'iconicité des liaisons anions-cations

Le caractère ionique d'une composition ABO₃ est quantifié d'après l'échelle de **Pauling** à partir de la différence d'électronégativité :

$$\Delta \mathbf{E} = \frac{(\mathbf{X} \mathbf{A} - \mathbf{0}) + (\mathbf{X} \mathbf{B} - \mathbf{0})}{2}$$

Ou :

X A-O : la différence d'électronégativité entre A et O.

X B-O : la différence d'électronégativité entre B et O.

La structure pérovskite est d'autant plus stable que les liaisons mises en jeu présentent un fort caractère ionique. Ainsi, les pérovskites à base de plomb de type covalent sont moins stables que des pérovskites plutôt ioniques comme BaTiO₃ ou SrTiO₃ [16].

V. Propriétés générales des matériaux pérovskites

Ces dernières années, des matériaux de type pérovskite sont de plus en plus intéressant et important car ils ont un grand potentiel pour contribuer à pile à combustible solide, électrolyte solide, résistance fixe, actionneurs, appareils électromécaniques, transducteurs, etc.., en raison de la structure cristalline particulière, le magnétisme, la conductivité électrique, piézoélectrique et propriétés électro-optique , l'activité catalytique et la sensibilité de gaz,...etc. **[17,18]**. Cependant, les journaux au sujet de leur rendement photo catalytique et l'exploitation de ces fonctionnalités restent très peu jusqu'à présent.

> Propriétés électriques

Les pérovskites jouent un rôle important dans l'électronique moderne. Elles sont utilisées dans les mémoires, les condensateurs, les appareils à micro-ondes, les manomètres et l'électronique ultrarapide ; (train à sustentation magnétique). Elles sont supraconductrices à des températures relativement élevées, elles transforment la pression mécanique ou la chaleur en électricité (piézoélectricité), accélèrent les réactions chimiques (catalyseurs) et changent soudainement leur résistance électrique lorsqu'elles sont placées dans un champ magnétique (magnétorésistance).

Ces matériaux très prometteurs trouvent de plus en plus des applications dans les céramiques transparentes, les colorants non polluants, les cellules photovoltaïques ou les piles à combustible. Les pérovskites ont des possibilités d'utilisation quasi universelles car il est possible de faire varier dans des limites très larges leurs propriétés. C'est aussi la raison pour laquelle on les appelle aussi les caméléons chimiques. Un semi-conducteur électrique est un corps dont la conductivité électrique croit avec la température. La semi-conductrice des oxydes mixtes résulte de leur écart à la stœchiométrie qui se manifeste par l'apparition de divers types de défaut (lacunes anioniques, cationiques). On peut classer les semi-conducteurs comme :

• Semi-conducteurs de type n : les porteurs de charge majoritaires sont des électrons.

• Semi-conducteurs de type p : la conductivité électrique est assurée par les trous positifs qui correspondent physiquement à des lacunes électriques.

Figure 1.7: Schéma des bandes d'un semi-conducteur.

Les oxydes mixtes des métaux de transition sont susceptibles de présenter des propriétés semi-conductrices soit de type p, soit de type n. De nombreuses études électrochimiques sur les électrodes à base de ces oxydes ont été effectuées en milieu aqueux **[19].** Elles ont révèle un rôle électro catalytique important dans la réaction d'électrode à oxygène à température ambiante.

Propriétés catalytiques

Nous nous sommes attachés à ce que les composés préparés présentent potentiellement des propriétés intéressantes, pour cela nous avons été sensibilité au choix des structures cristallographiques (pérovskite comme structure de base ou structures étudiées). Notre choix de la pérovskite est en partie justifie par le fait qu'un nombre croissant de composés adoptant cette structure présentent des applications industrielles. La matrice ou la couche de catalyseur est généralement constituée d'une grille métallique, une structure céramique en nid d'abeille ou une autre structure céramique matricielle conçue pour offrir une surface maximum de support pour le catalyseur. Le matériel actif est déposé sur ce support d'une façon qui permet de garder une grande surface active. Dans le phénomène d'oxydation catalytique l'oxygène fixer dans le réseau cristallin et l'oxygène dans la phase gazeuse sont également impliques. Le mécanisme de phénomène inclut un cycle d'oxydation (qui a lieu à la surface de l'oxyde) entre l'oxygène anionique présentent sur la surface (chimio sorbe ou appartenant au réseau) et un réactant chimio sorbe ou en phase gazeuse. Si on parle d'un réactant qui existe dans la phase gazeuse, il peut être en interagissant directement avec des espèces d'oxygène adsorbé (mécanisme Eley-Rideal) ou bien le réactant peut aussi être adsorbé avant de réagir avec l'oxygène (mécanisme Langmuir-Hinschelwood). Aria et ses collaborateurs ont étudié les pérovskites de type LaBO₃ et des systèmes partiellement substitués La_{1-X}A_XBO₃. Ils ont trouvé que LaCoO₃ a une activité comparable à celle du catalyseur Pt/Al₂O₃ si on considère une conversion de 50%. Une température de 518- 525°C est nécessaire pour accomplir la réaction sur ce type de catalyseur (condition ; conversion 50% vitesse spatiale 45000-50000h⁻¹), LaMnO₃ (579°C) et LaFeO₃ (571°C) ont aussi des bonnes activités [**19**].

Les pérovskites orthofirittes LaFeO₃, c'est ces pérovskites qui nous intéressent plus particulièrement et qui font d'objet de notre étude.

VI. La pérovskite LaFeO3

1. Structure

LaFeO₃ est une pérovskite qui cristallise dans un système orthorhombique (Groupe d'espace 62, Pnma), de paramètre sa = 5,55652 Å, b= 7,8534 Å, et c = 5,5592 Å 7, de densité 6,64 g.cm⁻³. Le Tableau 1présente les positions atomiques, (la **Figure I.8**) présente la maille de LaFeO₃.

Site	Elément	Position de Wyckoff	Х	Y	Z
01	0	8d	0,1984	0,0506	0,3043
La1	La	4c	0,43716	1/4	0,01556
O2	0	4c	0,5328	1/4	0,6005
Fe1	Fe	4a	0	0	0

Tableau I.2: Po	sition atomique	des atomes de	LaFeO ₃ .
-----------------	-----------------	---------------	----------------------

Figure 1.8: Structure de LaFeO₃ (double maille élémentaire suivant A).

2. Histoire, propriétés et application

Les ferrites de Terres Rares sont étudiées de puis long temps, et les dernières années ont confirmé un intérêt certain pour leur étude (**Figure I.9**). Les premiers articles traitant de LaFeO₃datent des années 1950, avec l'étude des propriétés électriques et magnétiques par G.H. Jonker [**20,21**]. Il fallu attendre les années 1970 avec la découverte des mémoires à bulles par Bobeck [**22**] pour voir apparaître un certain engouement pour les orthofirittes grâce à leurs propriétés magnétiques particulières (existence de domaines magnétiques permettant un stockage de données en l'absence d'alimentation électrique).

Figure I.9: Evolution du nombre de publication par année, avec le mot-clé "LaFeO₃", source science directe.com.

A partir des années 1990, le nombre de publications augmente avec les recherches orientées sur les propriétés d'activité catalytique pour la réduction de gaz (NOx, CO)

[23,24], et d'électrodes pour pile à combustible solide [25,26]. En effet, grâce aux propriétés d'adsorption de l'oxygène en augmentant la température, il est par exemple possible de réaliser l'oxydation catalytique de CO, suivant la réaction suivante:

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

Les dernières années ont également vu l'étude des pérovskites pour la synthèse de pigments inorganiques. A cause des nombreuses réglementations en matière d'environnement et de toxicologie (directive REACH par exemple), de nombreuses substances sont maintenant considérées comme toxiques et doivent être remplacées. Les oxydes métalliques binaires et hétéro-oxydes sont des candidats très prometteurs de par les nombreuses possibilités de couleurs (directement liées au gap du matériau) ainsi que par leur grande stabilité en température.

Les différentes propriétés de LaFeO₃ sont donc bien connues de par les nombreuses études effectuées, et de nombreuses applications sont envisageables. LaFeO₃cristallise dans un système orthorhombique (P_{nma}, groupe 62) à température ambiante et présente une transition de phase vers 950°C vers un système rhomboédrique (R_c) [27,28]. Concernant les propriétés optiques et électriques, LaFeO₃est un semi-conducteur: le gap de LaFeO₃ a été déterminé par plusieurs méthodes, avec des valeurs comprises entre 2 et 3 eV [29,30]. Récemment, Scafetta [31] ont déterminé plus précisément le gap de LaFeO₃ en combinant des mesures par spectroscopie d'ellipsométrie et calculs ab initio sur des échantillons épitaxies. Ainsi, LaFeO₃ possède un gap direct de 2,34 eV, avec une transition indirecte présente à 3,4 eV. La structure de bande est présentée sur la (Figure I.10). Notons que les valeurs des transitions sont issues du calcul est donc inférieure aux valeurs réelles déterminées expérimentalement.

Figure I.10 : Structure de bande calculée par Scafetta Et. Al [31]:(A.) Énergie des électrons Vs. Ket (B.) densité d'état.

LaFeO₃ est un conducteur mixte présentant une conductivité électronique et ionique due au mouvement des lacunes d'oxygène à haute température. Les mécanismes de conduction sont thermiquement activés, mais les mécanismes d'activation sont différents selon la gamme de température: à haute température, les mécanismes de saut sont essentiellement assurés par les phonons, et la conduction suit une loi d'Arrhenius. A plus faible température, par contre, il semblerait que les mécanismes de saut de polarons sont plus majoritaires [32,33]. Notons également que les lacunes d'oxygène jouent un rôle prépondérant dans les mécanismes de conduction électronique en plus de la conduction ionique: Warhnus [34] ont en effet montré que la conduction sur des échantillons poly cristallins était affectée par la durée dure cuit. Un recuit long et à forte température (> 1000°C) entraîne une augmentation de la conductivité, expliquée par la formation de défauts de Schottky, agissant comme des accepteurs d'électrons. L'orthoferrite de lanthane est également multiferroïque (matériau présentant simultanément plusieurs propriétés ferroïques, donc plusieurs propriétés présentant un cycle d'hystérésis), confirmé par l'étude d'Acharya [35]. Il est montré que la susceptibilité magnétique varie avec la température et l'aimantation, indiquant la présence d'un ordre magnétique. Une hystérésis ferroélectrique est également mise en évidence, permettant à l'orthoferrite de lanthane de trouver de nouvelles applications nécessitant des propriétés multiferroïques (il est possible de contrôler une caractéristique physique par l'application d'un champ extérieur, cas utile en microélectronique par exemple). Enfin, LaFeO₃ est antiferromagnétique, et possède une température de Néel de 740K, la plus haute de la famille des orthoferrites **[36,37]** (Figure **I.11**).

Figure I.11: Evolution de la température de neel de plusieurs orthoferrites [36].

VII. Dopage des pérovskites

Les différentes propriétés (di-, piézo-, ferro-électriques, ...etc.) des pérovskites peuvent être considérablement modifiées ou encore améliorées par la substitution d'un ou de plusieurs cations étrangers appelés « dopants » qui vont se substituer au Gd^{3+} et Sr^{2+} en sites-A de la structure pérovskite ABO₃ et le fer Fe en sites-B et parfois des anions en remplacement de l'oxygène **[38]**, dont la valence peut être identique ou différente de celle de l'ion substitué, on parle alors de dopage du matériau. Le rayon ionique du dopant doit être voisin de celui de l'ion auquel il se substitue.

Il est à noter que, les dopants font appel à différentes affinités liées surtout à la différence de taille entre deux ions (rayon ionique) ou à leur différence d'électronégativité. La **figure I.12** présente les éléments chimiques pouvant occuper des sites A et B de la structure pérovskite ABO₃ [**39**].

Figure I.12 : Eléments chimique pouvant occuper des sites (A et B) de la structure pérovskite ABO3 [40].

Il est important de noter que ces dopants peuvent entrainés de distorsions dans la maille et il faut toujours vérifier les deux paramètres principaux qui rendent compte de la stabilité de la structure pérovskite : le facteur de tolérance (t) et l'ionicité des liaisons.

Les dopants sont généralement classés en trois catégories selon leur valence et celle de l'ion substitué [41, 38, 42] :

Les dopants de valence égale à celle de l'ion substitué ou valence compensée (dopants *isovalents*). C'est le cas par exemple de Ba^{2+} , Sr^{2+} , Ca^{2+} en site A de et Ce^{4+} en site B de la pérovskite Ces dopants augmentent le caractère ionique de la maille.

Les dopants de valence inférieure à celle de l'ion substitué (dopants *accepteurs*). Ils sont communément dopants durs. On peut citer : K⁺et Na⁺ en site A et $Fe^{2+/3+}$ et Ni^{2+/3+} en site B. L'électroneutralité du pérovskite est assurée par l'apparition de lacunes d'oxygène qui rendent le matériau non stœchiométrique. Les pérovskites dopés avec des accepteurs sont dits *durs* car ils se dépolarisent difficilement sous l'action d'une contrainte.

Les dopants de valence supérieure à celle de l'ion substitué (dopants *donneurs*). L'excès de charge positive apporté par les dopants donneurs comme La^{3+} , Eu^{3+} , Gd^{3+} (site A) ou Nb⁵⁺, Sb⁺et W⁶⁺ (site B) est compensé par des lacunes cationiques comme des lacunes de plomb (V'_{pb}) ou un changement de valence de Ti⁴⁺en Ti³⁺. Les pérovskites dopées avec des donneurs sont dits *doux* car ils se dépolarisent facilement sous l'action d'une contrainte.

Enfin, il est aussi possible de doper la pérovskite avec plusieurs substituants donneurs et/ou accepteurs. L'influence globale de la substitution sur les propriétés du matériau dépend alors de la concentration de chaque substituant. Le **tableau I. 3** montre l'effet de chaque type de substitution sur les propriétés du matériau pérovskite au voisinage de la zone FMP [42].

Additifs Effets Principaux Additifs isovalents • Diminution du point de Curie Augmentation forte des caractéristiques diélectriques (la constante diélectrique $\mathbf{7}\varepsilon_r$) Augmentation forte des caractéristiques diélectriques Additifs donneurs (la constante diélectrique $\Im \varepsilon_r$ et la résistivité $\Im \sigma$) (doux) • Augmentation des caractéristiques électromécaniques **(7Kp)** • Diminution des caractéristiques mécaniques (∠ Qm) • Diminution des caractéristiques diélectriques Additifs accepteurs (la constante diélectrique $\nvdash \varepsilon_r$) (durs) • Diminution des pertes diélectriques ($\angle \tan \delta$) • Diminution des caractéristiques électromécaniques (∠Kp) Augmentation forte des caractéristiques mécaniques (**7** Qm)

Tableau I.3: Effets principaux de type d'additif sur les propriétés de la pérovskite.

a) Dopant de la famille des terres rares : Le Gadolinium (Gd)

Le Gadolinium (Z=64) appartient à la famille des terres rares « *Rare Earth Eléments*» (REE) qui regroupe un ensemble d'éléments métalliques comprenant les 15 éléments de la famille des lanthanides (du Lanthane (La) au Lutécium (Lu)).

De par ses propriétés physico-chimiques de mieux en mieux exploitées, le Gd est présent au sein des nombreuses applications industrielles. Il a longtemps été employé pour la production de tubes cathodiques de téléviseurs et est toujours utilisé dans différents domaines tels que ; le nucléaire, la métallurgie, l'électronique, l'informatique ou la production de réfrigérateurs, qui est en plein essor à l'heure actuelle pour remplacer les réfrigérateurs au gaz. Le gadolinium est également un élément important employé dans le domaine médical, depuis les années 1990, sous forme d'agent de contraste à base de Gd (ACGd), qui est injecté par voie sanguine au patient lors d'examens par Imagerie à Résonnance Magnétique (IRM). Son emploi en IRM est lié à ses propriétés paramagnétiques. L'ion Gd³⁺ est ferromagnétique à des températures inférieures à 20°C et présente un point de Curie à 293K ce qui signifie qu'à environ 20°C, le Gd perd son aimantation spontanée et devient fortement paramagnétique [**43**].

b) Effets de la substitution en Gd³⁺

La substitution de la terre rare Gd^{3+} en site A, qui pénétra facilement dans la structure pérovskite du pérovskite, a un effet significatif sur l'ensemble des caractéristiques microstructurales et physiques du matériau. Cela est dû également à son rayon ionique Gd^{3+} ($r_{Gd3+} = 0,938$ Å) qui est inférieur à celui de Pb (1,49Å). L'introduction de Gd^{3+} diminue la concentration en lacunes d'oxygène, puisque les ions Pb²⁺ quittent leurs sites pour maintenir l'électro-neutralité perturbée par l'excès de charge positive dans les sites-A. Ainsi, le nouveau matériau est facilement polarisable car les lacunes d'oxygène) favorisant la croissance des grains et améliorant les propriétés microstructurales de matériau [44,45]. Les avantages que présente l'élément de terres rares (gadolinium), nous ont fait le choisir pour notre étude.

Références bibliographiques

- R. Kamel (2008). Synthèse caractérisation et propriétés catalytiques des oxydes La_{1-x}M_xCrO₃ (M=Sr et Ce), Thèse doctorat, Université Mentouri Constantine.
- [2] B. KAPUSTA (Mars1990). Thèse de doctorat, Université paris 7.
- [3] B. Abdelkader (2011). Thèse de doctorat physique, Université d'Oran.
- [4] Roy.ROUKOS (16 juillet 2015). Thèse de doctorat, université de BOURGOGNE/Franche–Comté.
- [5] Mme L. Nouara (Mai 2011), thèse de doctorat, Université de Tizi-Ouzou.
- [6] Z. Marcos, L. David (2000), chem.Mater.12, 2763.
- [7] Zhang, R. Jiang, B. and CAO, W (2001). Journal of applied Physic, p3471 -3475.
- [8] P.M. Raccah, J.B. Goodenough (1967). Phys. Rev. 155,932.
- [9] D. Malika (03/07/2013). Thése de doctorat, Université Mohamed Khider Biskra.
- [10] S.Geller , E.A.Wood (1956). Acta Crystallogr. 563.
- [11] O. MDller, R. Roy(1974). The Major Ternary Structural Families, Springer, New York.
- [12] L, Mahmoud (21/02/2016). Thèse de doctorat, Université Mohamed Khider Biskra.
- [13] M. Petitjean (2003). Thèse LRRS Dijon, France.
- [14] E.J.Baran, P.J.Aymonino(1968). An.Asoc.Quim.Argent. 56,11.
- [15] Mahmoud Lebid (21/02/2016). Thèse de doctorat, Université Biskra.
- [16] Smyth, D. M (1989). Defects and structural changes in perovskite systems: from insulators to Superconductors, Cryst. Latt. Def. Amorph. Mater, 18, 1 -3, 355-375.
- [17] L. Viciu, O.V. Golub, J.B. Wiley, J (2003). Solid State Chem. 175, 88.
- [18] Y. Mao, S. Banerjee, S.S. Wong, J. Am (2003). Chem. Soc 125, 15718.
- [19] Zhang, R., Jiang, B. and CAO, W (2001). Elastic piezoelectric and dielectric properties of multidomain.0.67PB(Mg_{1/3}Nb_{2/3})O₃0.33PbTiO₃ singlecrystals.journal of applid Physic.90(7):p3471-3475.
- [20] G.H. Jonker and J.H. Van Santen (1950). Physica 16, 337.
- [21] G.H. Jonker(1956). Physica 22, 707.
- [22] A.H. Bobeck, Bell Syst (1967). Tech. J. 46,1901.

- [23] A. Lindstedt, D. Strömberg, and M.A. Milh (1994). Appl. Catal. Gen. 116, 109.
- [24] T. Arakawa, H. Kurachi, and J. Shiokawa, J. Mater (1985). Sci. 20, 1207.
- [25] E. Maguire, B. Gharbage, F.M.B. Marques, and J.A. Labrincha(2000). Solid State Ion. 127, 329.
- [26] Z. Jing-Li, L. Yue-Dong, W. Guo-Biao, and L. Biao-Rong(1991). Sens. Actuators Phys. 29, 43.
- [27] J.R.T. Sverre M. Selbach (2012). J. Solid State Chem. 196, 249.
- [28] A. Fossdal, M. Menon, I. Wærnhus, K. Wiik, M.-A. Einarsrud, and T. Grande, J. Am (2004). Ceram. Soc. 87, 1952.
- [29] M.D. Scafetta, Y.J. Xie, M. Torres, J.E. Spanier, and S.J. May, Appl. Phys (2013). Lett. 102, 81904.
- [30] T. Arima, Y. Tokura, and J.B. Torrance (1993). Phys. Rev. B 48, 17006.
- [31] M.D. Scafetta, A.M. Cordi, J.M. Rondinelli, and S.J. May (2014). J. Phys. Condens. Matter 26, 505502.
- [32] G.V. Subba Rao, B.M. Wanklyn, and C.N.R. Rao (1971). J. Phys. Chem. Solids 32, 345.
- [33] S.M. Khetre, H.V. Jadhav, P.N. Jagadale, S.R. Kulal, and S.R. Bamane (2011). Adv. Appl. Sci. Res. 2, 503.
- [34] I. Warnhus, T. Grande, and K. Wiik (2005). Solid State Ion. 176, 2609.
- [35] S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, and P.K. Chakrabarti (2010). Mater. Lett. 64, 415.
- [36] J.B. Goodenough (2004). Rep. Prog. Phys. 67, 1915.
- [37] J.W. Seo, E.E. Fullerton, F. Nolting, A. Scholl, J. Fompeyrine, and J.-P. Locquet (2008). J. Phys. Condens. Matter 20, 264014.
- [38] B.GUIFFARD (1999). Elaboration et caractérisation des céramiques ferroélectriques de type PZT fluoré, Thèse de Doctorat, Université de LYON (France).
- [39] TATSUMI I (2009). Perovskite Oxide for Solid Oxide Fuel Cells, Springer Dordrecht Heidelberg London New York. ISBN 978-0-387-77707-8.DOI 10.1007/978-0-387-77708-5.
- [40] D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen (2008). A Thin Film Approach to Engineering Functionality into Oxides, J.Am. Ceram. Soc., vol. 91, p. 2429.
- [41] B. JAFFE, W. R. COOK, and H. JAFFE (1971). Piezoelectric Ceramics, Academic Press, London.
- [42] Berlincour, D (1992). Piezoelectric ceramic compositional development. J. Acoust. Soc.Am, Vol.91, n°5, p 3034-3040.
- [43] Emilie P(2017). Impacts environnementaux des agents de contraste à base de Gadolinium : situation locale, approche cellulaire et in vivo. Thèse de doctorat Ecole Doctorale Sciences et Ingénierie.
- [44] SC Panigrahi, Piyush R. Das, R. Padhee & RNP Choudhary (2018). Effet de Gd sur les propriétés diélectriques et piézoélectriques du titanate de zirconate de plomb céramiques ferroélectriques. 14-29.
- [45] L. PDUNGSAP, S. BOONYEUN, P. WINOTAI, N. UDOMKAN, AND P. LIMSUWAN. (2005), Effects of Gd³⁺ doping on structural and dielectric properties of PZT (Zr:Ti = 52:48) piezoceramics, Eur. Phys. J. B 48, 367–372, (2005). DOI: 10.1140/epjb/e2005-00407-9.

I. Introduction

Ce chapitre expose en premier lieu les techniques de synthèse et de mise en forme employées lors de la préparation des céramiques de structure pérovskite. Il décrit ensuite les techniques de caractérisation physico-chimiques permettant d'explorer leurs propriétés chimiques, structurales, microstructurales. Les techniques sont présentées dans l'ordre suivant : la diffraction des rayons X et la technique complémentaire la spectroscopie infrarouge a transformée de Fourier (**FTIR**), la spectroscopie à dispersion d'énergie (EDS) couplée au MEB UV-Visible et ATD/ATG [1].

II. Choix de la méthode

Il existe deux grandes vois de fabrications des céramiques [2,3,4].

- > La voie liquide ou chimique (chimie douce; sol-gel, co-pécipitation...etc).
- > La voie solide (méthode conventionnelle (abrégée MC).

Pour la synthèse de nos composés céramiques, Nous avons opté pour la méthode par voie solide qui est la plus utilisée au laboratoire et à l'industrie. Elle est facile à mettre en œuvre et nécessite relativement peu de matériel [5].

III. Choix de la composition

Dans le présent travail, les composés $La_{0,75}Gd_{0,25}FeO_3$ et $La_{0,75}Sr_{0,25}FeO_3$ a été choisie sur la base des résultats estimables obtenus antérieurement **[6]**. Un dopage en site A de la structure pérovskite du composé va être réalisé par un élément de la famille des terres rares le gadolinium (Gd) et strontium (Sr).

Le **tableau II.1** présente les deux composés en matrice avec leurs désignations et leurs facteurs de tolérance (t).

Composition	Formule chimique	Désignation	Facteur de tolérance
Composition 1	La _{0,75} Gd _{0,25} FeO ₃	LGFO	0,96124108
Composition 2	La _{0,75} Sr _{0,25} FeO ₃	LSFO	0,91784692

Tableau II.1 : Composition en matrice, leurs désignations et leurs facteurs de tolérance (t).

IV. Synthèse des solutions solides par la méthode conventionnelle (MC)

1. Les produits de départs

A. Les oxydes de bases

Les oxydes de bases utilisés dans la synthèse de nos échantillons sont : La2O3 et Fe2O3

***** Oxyde de lanthane La₂O₃

L'oxyde de lanthane est un composé chimique de formule La_2O_3 . C'est le sesquioxyde du lanthane, une terre rare. Il se présente sous la forme d'une poudre blanche cristallisée dans le système trigonal et le groupe d'espace P_{3m1} .

L'oxyde de fer(III), également appelé oxyde ferrique et sesquioxyde de fer, est le composé chimique de formule Fe_2O_3 , où le fer a le nombre d'oxydation +III. C'est l'un des trois oxydes principaux du fer, les deux autres étant l'oxyde de fer(**II**).

B. Les oxydes de dopants

✤ L'oxyde de gadolinium(III) Gd₂O₃

l'oxyde de gadolinium (**III**) anciennement appelée gadolina, est un composé inorganique, l'oxyde de gadolinium métallique **Gd**, de formule Gd_2O_3 c'est sous cette forme que l'on trouve le plus couramment le gadolinium dans la nature celui-ci faisant partie de la famille des terres rares.

***** Le carbonate de strontium SrCO₃

Le carbonate de strontium ($SrCO_3$) est le sel de carbonate du strontium. Il se présente sous la forme d'une poudre blanche à grise inodore. Il est présent naturellement sous la forme d'un minéral, lastrontianite.

Les oxydes		Masses molaires (g/mol)	Pureté chimique (%)	Fournisseur référence
Produits	La ₂ O ₃	325,81	99,99	BIOCHEM
de base	Fe ₂ O ₃	159,68	> 98	BIOCHEM
Produits de	Gd_2O_3	362,50	99,99	Alfa Aesar
dopants	(en site A)			
	SrCO ₃	147,63	98,5	Alfa Aesar
	(en site A)			

 Tableau II. 2 : Caractéristiques des produits de départ.

2. Étapes de formation des pérovskites

Les solutions solides étudiées ici ont été synthétisées par réaction chimique à l'état solide (MC). Elles sont pesées dans les proportions stœchiométriques correspondant à la composition (cationique et anionique) nominale désirée. Les différentes étapes de la synthèse par MC sont illustrées dans l'organigramme de la **figure II .1**.

Figure II.1 : Organigramme montrant les étapes de préparation des échantillons.

Généralement, cet organigramme peut être résumé en quatre étapes principales : mélange-broyage, calcination, mise en forme et frittage.

a) Mélange et broyage

Les poudres de départ (oxydes de bases et dopants) sont pesées et mélangées en quantités stœchiométriques en respectant l'équation de la réaction. Pour obtenir un mélange homogène, les poudres sont diluées en milieu alcoolique (acétonique) dans un bécher et par l'intermédiaire d'un agitateur magnétique on facilite l'étape d'homogénéisation du mélange et cela pendant 2 heures. Le choix de l'acétone s'est basé sur le fait que ceci possède un point d'évaporation bas, ce qui facilite le séchage et ne réagit avec aucun produit du mélange. Le mélange est ensuite séché pendant 24 heures à 80 °C dans une étuve (température suffisante à dégagée l'acétone). Enfin, la poudre est broyée dans un mortier en verre pendant 3 heures et 21 minutes. Le

broyage a pour but d'augmenter la réactivité des précurseurs et d'obtenir une granulométrie la plus fine possible **[7,8]**.

Figure II.2 : Les étapes principales expérimentales de mélange et broyage.

b) Calcination

Cette étape a pour but de transformer le mélange de poudres en un matériau de composition et de phase cristalline bien définie. Dans ce but, les échantillons en poudres, placés dans des creusets en porcelaine ou alumines, sont soumis à un cycle thermique au cours duquel ils vont, par des phénomènes de diffusion en phase solide, réagir et former la phase pérovskite recherchée.

La calcination de nos poudres a été réalisée dans un four sous air (*Nabertherm-D 2804-Lilienthal/Bremenau*) à régulation programmable permettant d'ajuster les principaux paramètres de traitement thermique, qui influent directement sur la formation da la phase cherchée et qui sont : la

vitesse de montée en température (2°/min), la température de calcination (800°C,1000°C et 1200°C), la durée du palier thermique (6h) et la rampe de refroidissement [12] (tableau II.3). La figure II.3, présente le four utilisé, la porte échantillon (creuset en alumine) ainsi que le schéma de cycle de l'étape de la calcination.

Température (°C)	Vitesse de chauffage	Temps de maintien (h)
	(°C/min)	
800°C	2	6
1000°C	2	6
1200°C	2	6

Tableau II.3 : Conditions de calcination des poudres.

Figure II.3 : Four programmable, porte échantillon et schéma de cycle de calcination.

Notons ici qu'un certain nombre de problèmes liés à cette étape peuvent survenir, ils sont indiqués dans le **tableau. II.4 [9,10]**.

Problèmes possibles	Causes
Défauts d'homogénéité	Mélange mal préparé, particules de trop grande taille, mauvaise diffusion
Taille de grains trop élevée dans la chamotte	Apparition d'une phase liquide (température trop élevée), cristallisation des grains avec grossissement
Nombreuses phases parasites (impuretés)	Défaut de précision des pesées, réaction incomplète (maintien en température trop bref ou température trop basse)
Mauvaise distribution des constituants	Mauvaise homogénéité du mélange, broyage inefficace
Impuretés extrinsèques	Oxydes volatils (PbO) ou réaction avec l'humidité atmosphérique

Tableau II.4:	Les problèmes	causés par la	a calcination	[11]
---------------	---------------	---------------	---------------	------

c) Mise en forme

La mise en forme de nos échantillons est faite sous pression uniaxiale de poudre de masse ~1,2 g en utilisant un presse hydrostatique avec une pression variant de 3 à 5 tonnes par cm^2 les échantillons prennent alors des formes cylindriques de diamètre fixe (13 mm) et d'épaisseur variable selon la force appliquée. On ajoute quelques gouttes d'eau distillée pour favoriser le glissement des grains les uns par rapport aux autres et homogénéiser la pression lors de cette mise en forme.

Forme des pastilles

Presse hydrostatique

d) Frittage

Le frittage est défini comme étant la consolidation par action de la chaleur d'un agglomérat granulaire plus ou moins compact, avec ou sans fusion d'un ou plusieurs constituants **[12,13]**. Le frittage des échantillons est une opération délicate. Elle dépend essentiellement du profil thermique (vitesse de monté et palier) et de l'atmosphère de frittage. Ces deux paramètres influent directement sur la densité, la taille des grains et l'homogénéité en composition du matériau **[14,15]**. Il représente la dernière et l'importante étape de la synthèse de la céramique **[16]**. Ce traitement thermique a pour but de terminer la formation de la phase cristalline et de permettre la densification de la céramique. Cette opération consiste à chauffer le matériau à haute température mais au-dessous de la température de fusion. Il s'agit de faire croître des liaisons entre les grains, ce qui se traduit par une consolidation et une diminution du volume **[12,13]**.

La température de frittage choisie est de 1000°C et 1200°C avec une vitesse de chauffage 2°C/min pendant 12 heurs.

Four programmable

Après frittage à 1000°C

Après frittage à 1200°C

Figure II.5 : Four et pastille après le frittage.

Il est important de signaler que plusieurs paramètres, qu'on a essaies de les optimisés, sont susceptibles d'influencer l'étape de frittage de la céramique tels que:

- La granulométrie de la poudre : le frittage sera d'autant plus rapide et nécessitera l'apport d'une énergie moindre lorsque la taille des grains sera faible.
- La température : la diffusion en volume sera favorisée par une élévation de la température.
- > Le temps du palier : la durée du palier de frittage a une influence sur la diminution de

la porosité résiduelle de l'échantillon, mais peut engendrer une porosité secondaire (lorsque la taille des grains augmente) si celui-ci est trop long.

L'atmosphère : un apport d'oxygène modifie la densification et les propriétés physiques du matériau.

V.Techniques de caractérisation (Analyses et appareillages)

Dans le but de contrôler et comprendre l'influence de la méthode de synthèse sur, la morphologie, la microstructure et la structure cristallographique des composés étudiés, différentes techniques et analyses ont été utilisées.

a. Structure des phases : Analyse par Diffraction des rayons X (DRX)

La technique de caractérisation de choix dans notre cas est la diffraction des rayons X sur poudre. Dans un premier temps, celle-ci nous permet de vérifier, dans le cas des poudres, l'état d'avancement de la réaction et la pureté de nos matériaux. L'objectif final étant la détermination structurale, autrement dit la recherche des positions atomiques dans la maille cristalline. Dans ce travail, la technique de diffraction de RX est employée pour identifier les différentes phases formées et déterminer leurs structures cristallines à l'aide d'un diffractomètre des RX (type Miniflex 600 en configuration Bragg /Brentano équipé d'un monochromateur arrière utilisant le rayonnement d'une anticathode de Cu,Co,Cr avec une tension d'accélération de 40kV et un courant de 15mA, vitesse de balayage 0.01 à 100°/min (2θ)) au sein du laboratoire « LPCM » de l'université de Biskra (**figure II.6**).

Figure II.6: Diffractomètre Miniflex 600 en configuration Bragg/Brentano dite $(\theta - \theta)$.

Dans la configuration dite « $\theta - \theta$ » le tube à rayons X et le détecteur bougent symétriquement en faisant chacun un angle θ (variable) avec la surface horizontale de l'échantillon. Lorsqu'un angle correspondant à une famille de plans (hkl) dans les conditions de Bragg est atteint, le détecteur enregistre une augmentation de l'intensité diffractée (**figure II.7**). On obtient ainsi des diffractogrammes (I= f (2 θ)) lesquels sont comparés aux spectres de diffraction X des matériaux références en poudre rassemblés dans la base de donnés cristallographiques JCPDS, permettant de connaitre la ou les phases sous laquelle l'échantillon a cristallisé. Le logiciel de dépouillement utilisé pour l'indexation des différentes raies est l'X'Pert High Score Plus.

Figure II.7 : Schéma représentant les éléments principaux d'un diffractomètre automatique.

La loi de Bragg est une loi empirique qui rend compte des interférences constructives entre les faisceaux diffusés ; elle permet de relier la périodicité du réseau aux angles pour lesquels les maxima de diffraction sont observés :

Les particules étant orientées au hasard, il y aura toujours une famille des plans donnants lieux à la diffraction, c'est à dire pour lesquels la relation de *BRAGG* est vérifiée.

$$2 d_{hkl} \sin \theta = n \lambda \qquad (eq.II. 5)$$

où :

- λ : Longueur d'onde du faisceau de rayons X incident,
- n : Nombre entier,
- $\boldsymbol{\theta}$: Angle de diffraction,

 d_{hkl} : Distance interréticulaire caractérisant la famille de plans repérée par les indices h, k, l.

Figure II.8 : Principe de la loi de Bragg.

b. Analyse thermique :

* Analyse thermique différentielle (ATD)

L'analyse thermique différentielle (ATD) repose sur l'étude de la chaleur dégagée ou absorbée par la matière pendant les transformations physiques ou chimiques qu'elle subit. On enregistre, au cours d'un cycle thermique à vitesse contrôlée, la différence de température entre l'échantillon et un matériau de référence thermiquement inerte, du moins dans le domaine de température balayé (**figure II.9**).

Figure II.9: Schéma d'un appareil ATD typique.

Tout changement de phases, cristallisation ou réaction chimique qui consomme ou libère de la chaleur au sein de l'échantillon fait apparaître une différence entre la température de celui-ci et celle de la référence. Cette différence atteint son maximum lorsque la vitesse de consommation ou de libération de la chaleur par l'échantillon cesse d'être supérieure à la vitesse d'échange de chaleur entre cet échantillon et son environnement. La différence diminue ensuite plus ou moins lentement, jusqu'à ce que l'équilibre des températures soit de nouveau atteintes **[17]**.

L'ATD est donc une technique adaptée pour la caractérisation des phénomènes endothermique ou exothermiques, à cinétique rapide, propres aux minéraux et autres constituants des matériaux argileux, sachant que seuls sont caractérisables les phénomènes brutaux (non diffusifs).

Les résultats des analyses ATD ne dépendent que de la seule nature minéralogique des constituants. Ils sont aussi influences par l'atmosphère de chauffage, la nature du thermocouple, la vitesse de chauffe, la taille des particules et bien d'autres facteurs **[17,18]**.

L'analyse thermogravimétrique (ATG)

L'analyse thermogravimétrique (ATG) quant à elle consiste à enregistrer les variations de masse au cours d'un cycle thermique, liées à des réactions chimiques ou a des départs de constituants volatils adsorbés ou combinés dans un matériau. Les températures où interviennent ces pertes de masses constituent des informations complémentaires à celles obtenues par ATD pour l'identification des phénomènes physico-chimiques impliqués, les deux caractérisations sont souvent effectuées simultanément dans le même appareil.

La décomposition thermique de nos poudres de précurseurs qui conduit à la formation de la structure pérovskite a été effectuée au sein du laboratoire de chimie de l'Université de Biskra à l'aide d'une thermobalance qui comporte trois parties fondamentales, la balance qui assure la pesée en contenu de l'échantillon, un four avec sa régulation de la température et le dispositif automatique d'enregistrement. Elle est de type (L70/2171 Thyristor-Power Supply).

Nos échantillons sous forme de poudre, de quelque dizaines de mg jusqu'à 50 mg, sont mis dans des nacelles en alumine. Les mesures sont effectuées de l'ambiante jusqu'à la température souhaitée (1200°C), avec une vitesse de chauffe de 2 °C/min.

c. Masse volumique (ρ) ou densité (*d*)

La masse volumique est une grandeur physique généralement, représentée par la lettre rho « ρ ». On utilise aussi fréquemment la lettre latine « d ».

La masse volumique d'une céramique est un critère de qualité très important, compte tenu de l'impact direct de ce critère sur toutes les propriétés de la céramique. Elle dépend fortement de cycle de frittage.

Différentes techniques et instruments permettent de déterminer la masse volumique d'une pièce céramique par des méthodes indirecte ; comme le micromètre palmer (électronique) et le pycnomètre ou des méthodes directe ; comme le pycnomètre à Hélium et la technique de poussée d'Archimède.

Pour les mesures de la masse volumique de nos échantillons frittés, sous forme pastille, on a utilisés un micromètre palmer (mesures indirectes) (**figure II.10**). Pour confirmer les résultats déterminés par cet instrument, on a réalisés des mesures directes, sur les mêmes échantillons, par la technique de poussée d'Archimède (balance électrique couplée à l'instrument basé sur la technique de poussée d'Archimède, de type OHAUS EXPLORER (**figure II.11**).

Figure II.10 : Micromètre palmer avec afficheur numérique 0-25 mm

Figure II.11 : Balance électrique couplée à l'instrument basé sur la technique de poussée d'Archimède.

La densité relative «D» ou compacité «C», définie par la relation (1), donne les premières informations sur l'état de densification du matériau après le traitement thermique.

$$D_r = \frac{\rho_{\exp}}{\rho_{th}} \qquad (eq.II.1)$$

Où :

 ρ_{exp} : La densité expérimentale de la céramique obtenue après frittage.

Par la méthode indirecte (pycnomètre palmer), elle est égale au rapport de la masse (m) de la pastille frittée par son volume (forme cylindrique; diamètre (Ø) et épaisseur (e)):

$$\rho_{\exp} = \frac{m}{\pi \left(\frac{\phi}{2}\right)e} \qquad (g/cm^3) \qquad (eq.II.2)$$

Dans le cas où la mesure de ρ_{exp} est réalisée par la technique de poussée d'Archimède, sa valeur est donnée directement par l'appareil de mesure.

 ρ_{th} : la densité théorique calculée à partir de la composition chimique et de la structure cristalline de l'échantillon, obtenue à partir des résultats de la diffraction des rayons X fournissant les paramètres de maille, donc le volume théorique de celle-ci:

$$\rho_{th} = \frac{Z M}{V \mathcal{N}_{\mathcal{A}}}$$
 (eq.II.3)

En ce qui concerne la porosité, elle peut être calculée par la relation :

$$Porosité(p)(\%) = 1 - \frac{\rho_{exp}}{\rho_{th}} \times 100 \qquad (eq.II.4)$$

d. Microstructure : Analyse par MEB et EDS

La microscopie électronique à balayage (MEB) est une technique de microscopie électronique permettant de produire des images en haute résolution de la surface ou de la tranche (pastille) d'un échantillon en utilisant le principe des interactions électron-matière.

Le principe de fonctionnement est le suivant : dans une enceinte sous vide, un faisceau d'électrons accélérés par un champ électrique et focalisés à l'aide des lentilles magnétiques balaye la surface de l'échantillon qui, en réponse, réémet, des électrons secondaires, rétrodiffusés, Auger et des rayons X (**figure II.12**).

Figure II.12 : Diverses émissions d'un échantillon en réponse à une excitation par un faisceau d'électrons.

De par leurs faibles énergies (~ 50 eV), les électrons secondaires sont émis dans les couches superficielles proches de la surface. Ils peuvent être facilement déviés avec une faible différence de potentiel et recueillis par les détecteurs pour former une image topographique de la surface de l'échantillon (taille des grains et microporosité des céramiques). Les électrons rétrodiffusés sont des électrons résultant de l'interaction quasi élastique des électrons du faisceau primaire avec les noyaux des atomes de l'échantillon et qui sont réémis dans une direction proche de leur direction d'origine. Ils possèdent une énergie relativement élevée et beaucoup plus importante que celle des électrons secondaires (jusqu' à 30 keV). Ce type d'électrons est généralement sensible au numéro atomique des atomes constituant l'échantillon. En effet, les zones formées d'atomes lourds ont la particularité de réémettre plus d'électrons que celles formées d'atomes légers et apparaissent ainsi plus brillantes. C'est le contraste de phase. Ainsi, les électrons rétrodiffusés peuvent fournir des images permettant une analyse chimique qualitative d'un échantillon (homogénéité chimique) [19].

Pour notre étude, les images MEB ont été obtenues à l'aide d'un microscope électronique à balayage de type BRUKER, au sein du laboratoire de recherche physique des couches minces et applications « LPCM » de l'université de Biskra, (**figure II.13**).

Figure II.13 : Microscope électronique à balayage de type BRUKER.

Pour une bonne qualité des images, les surfaces de nos échantillons frittés (LGFO et LSFO) sont métallisées par une fine couche d'Argent qui assure l'évacuation des charges suite au bombardement de l'échantillon par le faisceau primaire d'électrons (**figure II.14**). Cette technique permet d'obtenir une meilleure résolution de l'image.

Figure II.14: Pulvérisateur cathodique.

L'appareil MEB est couplé à un système de microanalyse des rayons X: EDS Oxford (Energy Dispersive Spectrometer). le système EDS dont le principe repose sur le fait que l'échantillon irradié émet également des photons X (rayons X) qui proviennent du réarrangement du cortège électronique des atomes après ionisation et qui sont caractéristiques des atomes émetteurs : cette méthode permet donc de faire une analyse chimique locale (qualitative). L'intensité du rayonnement X, proportionnelle à la quantité d'atomes présents dans le matériau, permet après étalonnage, l'analyse semi-quantitative. L'analyse qualitative et semi-quantitative a été réalisée grâce au logiciel Oxford qui interface le MEB. Le chevauchement des pics d'énergie amène des incertitudes lors de la quantification et rend impossible la détection de certains éléments (dopants) quand ils sont en très faibles quantités.

e. Analyse spectroscopique

* Analyse spectroscopie FTIR

La spectroscopie infrarouge à transformée de fourier ou FTIR (Fourier Transformed Infra Red Spectroscopy) est basée sur l'absorption d'un rayonnement infrarouge par l'échantillon analysé. Dans les matériaux de structure pérovskite, l'étude des spectres d'absorption en infrarouge permet d'identifier les bondes B-O et O-B-O de la structure ABO₃ [6,20], confirmant ainsi la formation de la phase pérovskite recherchée. La grandeur physique placée en ordonnée de ces spectres infrarouges peut être soit la transmission (T) soit l'absorbance (A) :

$$T = \frac{I}{I_0}$$
; $A = -\log(T)$ (eq.II. 6 et 7)

Où I_0 et I représentent respectivement les intensités incidente et transmise par l'échantillon.

Nos échantillons à analyser se présentent sous forme de pastille. Elles sont préparées par un mélange de 0,2 g de KBr (desséché) et 0,001 g de l'échantillon qui est broyé dans un mortier en agate et ensuite comprimé par une presse hydraulique. L'appareil utilisé est un spectrophotomètre à Transformée de Fourier de type FTR-8400S SHIMADZU (**figures II.15 et figure 16**) qui réalise une analyse simultanée dans la gamme de nombres d'onde compris entre 400 et 4000 cm⁻¹.

Figure II.15 : La préparation des échantillons avec Mortier en agate et presse hydraulique.

Figure II.16 : Spectromètre infrarouge à transformée de Fourier FTIR- Shimadzu FTIR-8400.

Ces analyses spectroscopiques ont été réalisées une deuxième fois sur nos échantillons, cette fois en poudre, par un spectromètre (pour les solides) de type Perkin Elmer FT-IR Spectrum Two (au sein du laboratoire de recherche physique photonique et nanomatériaux multifonctionnels (LPPNM) de l'université de Biskra. Cet appareil est piloté par un ordinateur utilisant un logiciel UV Winlab, permet d'étudier l'absorption sur un large domaine spectral s'étendant de 400cm⁻¹ jusqu'à 4000 cm⁻¹.

Figure II. 17 : Spectromètre pour solide de type Perkin Elmer FT-IR.

✤ Spectroscopie par UV-Visible

La spectroscopie d'absorption dans l'UV et le visible est une méthode très commune dans les laboratoires. Elle est basée sur la propriété des molécules d'absorber des radiations lumineuses de longueur d'onde déterminée [21].

Figure II.18 : Schéma de principe du spectrophotomètre UV-visible monofaisceau.

🖊 Domaine spectrale

Le domaine UV-visible s'étend environ de 800 à 10 nm. Il est divisé en trois parties [21]

- Le visible : 800 nm 400 nm
- L'UV-proche : 400 nm 200 nm.
- L'UV-lointain : 200 nm 10 nm.

4 Principe

Dans une molécule, les transitions électroniques UV-visible mettent en jeu les énergies les plus importantes de la chimie (environ de 13000 à 50000 cm-1 soit 160 à 665 Kjmole⁻¹). L'ordre de grandeur des énergies des énergies mises en jeu est celui des énergies de liaison des molécules et ces rayonnements peuvent parfois provoquer des ruptures de liaisons. Plus généralement, ils provoquent des transitions électroniques entre les différents niveaux d'énergie des molécules [21].

4 Loi d'absorption de la lumière - loi de BEER-LAMBERT

Soit une lumière monochromatique traversant une solution absorbante de concentration C contenue dans une cuve d'épaisseur l.

Une partie de ce rayonnement sera absorbée par l'échantillon et une partie sera transmise.

Bouguer, Lambert et Beer ont étudié les relations qui existent entre I0 et I : l'intensité d'une lumière monochromatique traversant un milieu où elle est absorbée décroît de façon exponentielle :

$$\mathbf{I} = \mathbf{I}_0 \mathbf{e}^{-\mathbf{klc}}$$

- I₀ est l'intensité de la lumière incidente
- I est l'intensité après passage à travers la cuve contenant la solution (intensité transmise)
- l est la distance traversée par la lumière (épaisseur de la cuve) (en cm)
- C est la concentration des espèces absorbantes.

• k est une constante caractéristique de l'échantillon.

Cette équation peut se réécrire log $(I_0/I) = kIC/2.3 = \epsilon IC$

- log (I₀/I) est appelé absorbance (A)
- $I/I_0 = T$ est la transmission.
- % T est la transmittance.
- ε est le coefficient d'extinction molaire ; c'est une caractéristique de la substance étudiée à une longueur d'onde donnée. Si C est la molarité, ε est en L.mol⁻¹.cm⁻¹.

On obtient alors la relation connue sous le nom de loi de Beer-Lambert [21]:

$$\mathbf{A} = -\log \mathbf{T} = \varepsilon \mathbf{I} \mathbf{C}$$

Figure II.19: Spectromètre UV-visible de type "PerkinElmer UV Lambda 25".

Comme conclusion à ce chapitre, on peut dire que malgré toutes les difficultés auxquels nous avons été confrontés dans la partie expérimentale de notre travail, on a réussi d'élaborer nos composés de céramiques dopés. L'étude de leurs propriétés physico-chimiques fera l'objet du prochain chapitre.

Références bibliographiques

- [1] MONA MORET (2002). Preparation and Properties of Pb (Zr, Ti)O₃, Thèse Doctorat, Univ. NIJMEGEN (Pays-Bas).
- [2] HANKEY, D. L. and J. V. DIGGERS (1981). Solid-State Reactions in the System PbO-TiO₂- ZrO₂, Journal of the American Ceramic Society 64(12): C-172-C-173.
- [3] A. Rousset (2000). Chimie douce et science des matériaux, Actualité chimique, 4, 27-37.
- [4] H. Cheng, J. Ma, B. Zhu and Y. Cui (1993). Reaction Mechanisms in the Formation of Lead Zirconate Titanate Solid Solutions under Hydrothermal conditions, J. Am. Ceram. Soc. 76[3], 625-629.
- [5] AZEDDINE HIZEBRY (2007). Propagation de fissures dans les ceramiques piezoelectriques de type PZT, Thèse de Doctorat, I.N.S.A -LYON (France).
- [6] Z. NECIRA (2018). Étude de système quaternaire xPbZrO₃-yPbTiO₃-zPb(Mg_{1/3}, Nb_{2/3})_{1/2}O₃- zPb(Ni_{1/3},Sb_{2/3})_{1/2}O₃ près de la frontière morphotropique de phase(FPM), Thèse de Doctorat en Sciences des Matériaux, Université de Biskra, Algérie.
- [7] J. M. HAUSSOUNNE (1996). Technique de l'ingénieur, E1820-2.
- [8] J. M. HAUSSOUNNE. Céramiques pour l'électronique et l'électrotechnique.
- [9] B.GUIFFARD (1999). Elaboration et caractérisation des céramiques ferroélectriques de type PZT fluoré, Thèse de Doctorat. Université de LYON (France).
- [10] C. DUVAL (1982). Technique de l'ingénieur A2190.
- [11] A. KHARIEF (2012). Synthèse et caractérisations et étude structurale des céramiques
 PZT de type pérovskite Pb_{1-x}La_xCa_x[(ZryTi_{1-y})_{0,75}(Sb)_{0,25}]O₃, Mémoire de Magister,
 Université de Mentouri-Constantine.
- [12] A. Rousset (2000). Chimie douce et science des matériaux, Actualité chimique, 4, p.27-37.
- [13] J. Choy, Y. Han, J. Kim (1995). Hydrolyse co-precipitation route to the piezoelectric oxide Pb(Zr,Ti)O₃ (PZT), J. Mater Chem., 5,p. 65-69.
- [14] A. Bouzid (2002). Contribution à la compréhension des phénomènes de dissipation d'énergie dans les céramiques piézoélectriques de type PZT : effets du dopage au potassium et au niobium, thèse de doctorat en Génie des matériaux, INSA de Lyon, France.
- [15] J. Marie Dorlot, J. Paul Bailon, J. Masounave (1992). Des matériaux, 132-133, Édition de l'École Polytechnique de Montréal.

- [16] G. CIZERON (1968). Le frittage sous son aspect physico-chimique, L'industrie céramique, vol 611 (10), pp. 713-729.
- [17] R. BOUAZIZ, A. P. ROLLET (1972). L'analyse thermique : l'examen des processus chimiques. Paris: Gauthier-Villars, tome 2. 227.
- [18] W. SMYKATZ-KLOSS (1974). Differential thermal analysis. New York : Springer-Verlag.
- [19] Ferès BENABDALLAH (2013). Evolution des propriétés diélectriques, ferroélectriques et électromécaniques dans le système pseudo-binaire (1x)BaTi_{0.8}Zr_{0.2}O₃-xBa_{0.7}Ca_{0.3}TiO₃ / Corrélations structures et propriétés, Thèse Doctorat En cotutelle, spécialité Physico Chimie de la Matière Condensée, Université BORDEAUX 1-Université de SFAX – TUNISIE.
- [20] J.T. LAST (1957). Infrared-absorption studies on barium titanate and related materials, Phys. Rev. 105, pp.1740-1750.
- [21] R.J. Burt (1996). Leigh et C. J. Pickett; J. Chem. Soc. Chem. Comm.

III.1. Introduction

Dans ce chapitre, nous abordons l'étude détaillée des évolutions structurales morphologiques et catalytiques liés aux remplacements du lanthane par un autre élément, à savoir le gadolinium (Gd) et le strontium (Sr), en site A de la pérovskite ABO₃ de l'orthoferrite de lanthane LaFeO₃ (désigné LFO). Les différents résultats de cette étude obtenus principalement par, DRX, MEB/EDS, FTIR et Uv-Visible sont également discutés.

III.2. Compositions choisies pour l'étude

Nous limiterons notre étude expérimentale à deux compositions de l'orthoferrite $La_{1-x} M_x FeO_3$. La première est un nouveau orthoferrite dopé avec M: Gd, x= 25% et la deuxième est choisie sur la base des résultats obtenus antérieurement, dopé avec M: 25% de Sr [1].

Les deux compositions synthétisées par la méthode conventionnelle (MC) (à voie solide), suivant le protocole expérimental et les conditions opératoires détaillées dans le chapitre **II**, répondent aux compositions chimiques (en matrice) présentées dans le **tableau III.I** ainsi que leur désignation. Elles ont subis un traitement thermique de calcination à différentes températures : 800°C, 1000°C et 1200°C dans le but de définir leur température de formation.

Composition	Formule chimique	Désignation
Comp.1	La0,75Gd0,25FeO3	LGFO
Comp.2	$La_{0,75}Sr_{0,25}FeO_3$	LSFO

Tableau III.1 : Formule chimique et désignation des deux compositions.

Rappelons qu'avant la synthèse de deux composés orthoferrites de lanthan, les conditions de la stabilité de la structure pérovskite ($A^{3+}B^{3+}O_{3}^{2-}$) (facteur de tolérance (t) et l'électroneutralité) avec le nouveau dopage au site A, ont été vérifiées. Les tableaux III.2, III.3 et III.4 montrent, respectivement, les rayons ioniques des différents ions constituant les deux composés, le facteur de tolérance et le calcule de l'électro-neutralité dans chaque composé.

Ion	Rayon ionique (Å)
La ³⁺	1,36
Gd ³⁺	0,938
Sr ²⁺	1,44
Fe ³⁺	0.645
O ²⁻	1.40

Tableau III.3: Le facteur de tolérance de Goldschmit (t) : $t = \frac{r_A + r_O}{\sqrt{2} (r_B + r_O)}$

Composé	t
LFO [2]	0.886
LGFO	0,9612
LSFO	0,9178

La structure pérovskite n'est stable que si le facteur *t* est compris entre 0,88 et 1,09 (c.f. chapitre I). Ainsi, d'après le tableau III.3, on peut dire que les deux composés, après dopage, sont structuralement stables.

D'autre part, on remarque que *t* augmente comparant à LFO non dopé et diminue quand le dopage en site A de la pérovskite passe du Gd au Sr. Cela est peut être dû à la différence entre le rayon de $\text{Gd}^{3+}(r_{Gd^{3+}} = 0,938 \text{ Å})$ et le rayon de $\text{Sr}^{2+}(r_{Sr^{2+}} = 1,44 \text{ Å})$ qui remplacent le $\text{La}^{3+}(r_{La^{2+}} = 1,36 \text{ Å})$.

▶ La condition d'électro-neutralité (A³⁺B³⁺3O²⁻: 6+; 6-)

 $Comp.1: 0,75La^{3+} 0,25Gd^{3+}Fe^{3+}3O^{2-}$

 $Comp.2:0{,}75La^{3+}\,0{,}25Sr^{2+}Fe^{3+}3O^{2-}$

La charge positive dans chaque composé est calculée d'après les fonctions :

$$\sum_{i=1}^{k} X_{A_{i}} n_{A_{i}} , \sum_{i=1}^{k} X_{B_{j}} n_{B_{j}} , \sum_{i=1}^{k} X_{A_{j}} n_{A_{i}} + \sum_{i=1}^{k} X_{B_{j}} n_{B_{j}}$$

Tableau III.4: Calcule de la charge positive dans les deux composés.

	<u> </u>		*
Composé	$\sum_{i=1}^k X_{A_i} \ n_{A_i}$	$\sum_{i=1}^k X_{B_j} \ n_{B_j}$	$\sum_{i=1}^k X_{A_j} \mathbf{n}_{A_i} + \sum_{i=1}^k X_{B_j} \mathbf{n}_{B_j}$
LGFO	(3*0,75) + (3*0,25) = 3	3	6+
LSFO	(3*0,75) + (2*0,25) = 2,75	3	5,75+

D'après le tableau III.4, on constate que, l'électro-neutralité est assurée dans le composé LGFO. Cela est dû au Gd^{3+} qui est un dopant isovalent (de valence égale à celle de l'ion substitué La^{3+}). Ce type de dopant augmente le caractère ionique de la maille et stabilise la structure pérovskite **[3]**.

Pour le composé LSFO, L'électro-neutralité est assurée par l'apparition de lacunes d'oxygène car, le Sr^{2+} est un dopant de valence inferieur à celle de La^{3+} . Ce type de dopant peut entraîner une contraction de la maille pérovskite qui provoque l'augmentation de la conductivité du matériau [3].

III.3. Résultats et discutions

La pérovskite orthoferrite La_{1-x}M_xFeO₃ est la phase du matériau qui résulte du processus de calcination de la poudre obtenue après réaction. L'identification du matériau nécessite généralement l'analyse préliminaire de sa formation par différents dispositifs expérimentaux tels que, la thechnique thermique ATD/TG et la diffraction des rayons X (DRX). Il est donc intéressant et parfois indispensable réaliser ces analyses pour obtenir des informations avec une parfaite identité des conditions opératoires et un gain de temps appréciable.

III.3.1. Caractérisation thermique ATD/TG

Cette technique couplée (ATD/TG) permette notamment de déterminer, la température de formation de la phase recherchée du matériau.

Notons ici, qu'au début, on n'a pas pu réaliser cette analyse (panne de l'appareil ATD/TG) c'est ce qui nous poussé a faire monter, à chaque fois, la température de calcination de la poudre de précurseur (800°C- 1200°C°) après analyse, par DRX, de la poudre calcinée à chaque température. Cette analyse, ATD, est réalisé retardement et pour un seul composé, le précurseur du nouveau orthoferrite LGFO. Le résultat d'ATD est illustré sur la figure III.1.

Avant de discuter le résultat de cette analyse (ATD), il est important de signaler que, cette dernière peut être influencée par l'atmosphère de chauffage, la vitesse de chauffe, la taille des particules des oxydes du mélange initial et bien d'autres facteurs **[4,5] 74,75**].

Figure III.1 : Courbe d'ATD de la poudre de précurseur du LGFO à température ambiante et à une vitesse de chauffe 5°/min.

D'après cette figure, l'importent constat quand peut tirer de cette analyse est que, la formation de la phase recherchée du nouveau orthoferrite, synthétisé par la méthode MC, nécessite une température > 1200°C et peut atteindre 1260°C. Ainsi, nos précurseurs doivent généralement être traités à des températures beaucoup plus élevées que 1200°C, ce qui permet des transformations en phases plus stables. Le résultat de cette analyse (ATD) est confirmé, par la suite, par l'analyse DRX.

Il faut noter que, l'intervalle des pics entre la température ambiante (T_{amb}) et 1200°C concerne le mécanisme de formation de l'orthoferrite LGFO. Ces pics révèlent des effets endothermiques observés à 380°C, 480°C et 830°C qui peuvent être correspondant aux réactions de la décomposition thermique des différentes poudres d'oxydes du précurseur formant ainsi des phases métastables qui doivent être exposées à des températures élevées pour obtenir une phase thermodynamiquement stable.

III.3.2. Caractérisation de la phase orthoferrite La_{1-x}M_xFeO₃ par DRX

Tous les échantillons obtenus après chaque traitement thermique, et qui ont été soigneusement broyés, sont caractérisés par leur diffractogramme qui est enregistré dans le domaine angulaire $10^{\circ} < 2\theta < 60^{\circ}$ (pour les échantillons calcinés à 800°C et 1000°C) et dans $20^{\circ} < 2\theta < 80^{\circ}$ (pour les échantillons calcinés à 1200°C) et qui semblent être suffisant pour l'identification de la phase orthoferrite de lanthane recherchée.

Les figures III.2, III.3, III.4 et III.5, montrent leurs diffractogrammes. Elles ont été traités à l'aide du programme X'Pert HighScorePlus.

L'indexation des rais est faites par comparaison avec les valeurs présentées dans les fichiers JCPDS-PDF-2 du programme Search/Match relatives aux compositions : LaFeO₃ (JCPDS N° 98-015-3536) et La_{0.80}Sr_{0.20}O₃ (JCPDS N° 01-082-1996), et les oxydes (conf. annexe).

Figure III.2 : Diffractogrammes obtenu sur des 'échantillons LGFO calcinés 800°C, 1000°C et 1200°C et comparés aux fiches JCDS de référence.

Figure III.3 : Diffractogrammes obtenu sur des 'échantillons LSFO calcinés à 800°C, 1000°C et 1200°C et comparés aux fiches JCDS de référence.

Figure III.4 : Diffractogrammes obtenu sur des 'échantillons de LGFO et LSFO calcinés à 1200°C et comparés aux fiches JCDS de référence.

 $Les\ résultats\ de\ DRX\ obtenus\ pour\ les\ deux\ composés\ La_{0,75}Gd_{0,25}FeO_3\ et\ La_{0,75}Sr_{0,25}FeO_3\ nous\ ont\ permis\ de\ tirer\ les\ constatations\ suivantes\ :$

les échantillons calcinés à 800°C et à 1000°C montrent qu'une seule phase de l'orthoferrite de lanthane n'a pas été atteinte. À la température 800 °C, de nombreux pics attribués à La_2O_3 et correspondent à la carte JCPDS (N° 98-009-6201) et Fe₂O₃ correspondent à la carte JCPDS (N° 01-088-2359) produit, ainsi que certains pics attribués à la phase pérovskite LaFeO₃, correspondent à la carte JCPDS (01-088-0641) en tant que produit mineur et que, leurs intensités devient plus intense et majoritaire à la température 1000°C.

- ✓ l'augmentation supplémentaire de la température à 1200°C indique la formation unique de la phase orthoferrite de lanthane (LaFeO₃).
- ✓ la figure III .4 révèle que les diffractogrammes obtenus dans le cas des deux composés : le nouveau orthoferrite de lanthane La_{0,75}Gd_{0,25}FeO₃ et le La_{0,75}Sr_{0,25}FeO₃ étudié dans des travaux antérieurs [1,6], sont identiques. Cela confirme que notre méthode de préparation nous a permis d'obtenir les composés désirés.

Les pics de diffraction des poudres calcinés à 1200°C pourraient être indexés sur une structure orthorhombique avec le groupe spatial Pbnm. Les paramètres structuraux ont été affinés à l'aide du logiciel celref et sont récapitulés dans le tableau III.5.

Tableau III.5 : Paramètres structuraux (phase,	paramètres	et volume	de maille)
pour les deux composés LGFO et LSFO.			

Composition	Phase	a	b	с	Volume de la maille (Å) ³
LGFO	Pbnm	5,3711	5,3711	7,7352	232,7436
LSFO	Pbnm	5,3984	5,6253	7,6824	233,2962

La figure III.5, montre que les pics de l'orthoferrite LGFO se sont déplacés vers des valeurs de 2 θ dans une direction remarquablement croissante. Le décalage des pics de diffraction s'est produit parce que le rayon ionique ($_{F_{Gd^{3+}}} = 0,938$ Å) de l'ion Gd³⁺ était plus petit que le rayon ionique de Sr⁺² ($_{F_{Sr^{2+}}} = 1,44$ Å) et de l'ion La³⁺ (1,36 Å). Ce résultat est en bon accord avec ceux trouvé par d'autres auteurs [7].

Figure III.5 : Comparaison de pic le plus intense de DRX des deux composés : LGFO et LSFO dans l'intervalle angulaire 30°-35°.

III.3.3. Caractérisation morphologique et microstructurale de La_{1-x}M_xFeO₃ par MEB/EDS

a) Morphologie: Masse volumique « p » de La_{1-x}M_xFeO₃

Les résultats des mesures des masses volumiques expérimentales et théoriques, la compacité et la porosité de deux orthoferrites LGFO et LSFO calcinés à 1200°C sont récapitulés dans le tableau III.6.

Tableau III.6 : Valeurs des masses volumiques (expérimentales et théoriques), de lacompacité et de la porosité des deux composés calcinés à 1200°C.

Composition	Ma volumiq ρexp (ρexp Méthode Indirecte	isse jue Éxp. _{g/cm} ³) ρ _{exp} Méthode Directe	Masse volumique Thé. ρ _{th (g/cm} ³)	Compacité (densité relative) C = D _r (%)	Porosité (%)
LGFO	6,0981	6,2353	7,0576	88,34	0,1165
LSFO	5,1194	5,9891	6,5436	91,50	0,0849
ZM					

 $\rho_{th} = \frac{2 M}{V \mathcal{N}_{\mathcal{A}}}$

où : Z : le nombre de motifs par maille élémentaire ;

M : la masse molaire du composé ;

V : le volume de la maille élémentaire ;

 N_A : le nombre d'Avogadro.

D'après les résultats du tableau au-dessus, on peut tirer les constatations suivantes :

- ✓ La masse volumique déterminer par la méthode directe (la technique de poussée d'Archimède) est plus précise et estimable comparant à la méthode indirecte (utilisant le palmaire). Il sera intéressant de l'adapter pour les mesures de cette sensible grandeur.
- ✓ la masse volumique de l'orthoferrite de lanthane LaM_xFeO₃ est directement influencée par la masse volumique de l'élément incorporé. Ceci peut être expliqué par : la petite taille de Gd³⁺ (r_(Gd)= 0, 938 Å) comparent à Sr²⁺ ($_{r_{Sr^{2+}}} = 1,44$ Å) ou à La³⁺ ($_{La^{2+}} = 1,36$ Å). Elle diminue quand le dopage passe de Gd au Sr conduisant ainsi, à une diminution de la porosité. Cela se traduit par une augmentation de la compacité du composé LSFO. Ces résultats sont en accord avec ceux trouvés par d'autres chercheures [6,7].

b) Microstructure de La_{1-x}M_xFeO₃

⊙ Observations au MEB

La microscopie électronique à balayage apporte des informations sur la distribution granulométrique dans les composés après traitement thermique (la forme et la taille des grains). Elle permet aussi d'évaluer qualitativement la présence de la porosité et les phases secondaires.

La figure III.6 présente les micrographies MEB correspondants à nos échantillons pastilles de LGFO et de LSFO calcinés à 1200°C à un grossissement de 5,000 fois.

Figure III.6 : Micrographies de MEB pour les deux composés LGFO et LSFO calcinés à 1200°C avec les histogrammes de la taille des particules.
À partir de la figure III.6, qui affiche l'histogramme de la taille des particules de $La_{0,75}Gd_{0,25}FeO_3$ et $La_{0,75}Sr_{0,25}FeO_3$, nous concluons que la taille des particules des deux composés est constituée de petits et de moyens grains, de forme plus ou moins sphérique avec des tailles moyennes différentes dans la même composition.

Généralement, les tailles moyennes des grains, calculées par un logiciel d'analyse de distribution granulométrique (logiciel ImageJ) **[8]**, sont comprisses entre 0,694 μ m-5,134 μ m pour le composé LGFO et entre 0,272 μ m -2,042 μ m pour le composé LSFO montrant ainsi, une similarité et homogénéité dans la distribution granulométrique pour les deux composés calcinés à 1200°C. Comme il ressort clairement de la micrographie MEB de la composition LGOF comparant à celle de LSFO que, les particules possèdent une symétrie plus au moins sphérique avec une bonne uniformité. Ceci nous laisse dire, que le dopage par Gd (cation de petite taille), peut améliorer la microstructure de l'orthoferrite de lanthane et ce dont nous avons besoin pour améliorer les propriétés physico-chimique du matériau. Cette tendance d'incorporer des éléments de petite taille dans les orthoferrite de lanthane est en bon accord avec les études précédentes **[7]**.

D'autre part, nous avons calculé la taille moyenne D_{DRX} des grains des deux composés à partir des données de diffraction des rayons X en utilisant la formule de Scherrer [9] qui est directement liée à la largeur à mi-hauteur d'un pic de diffraction et la taille des cristallites.

Les figures III.7 et III.8 illustrent l'évolution de la taille moyenne des grains en fonction de la température de calcination (800°C, 1000°C et 1200°C) pour les deux composés LGFO et LSFO.

Ces figures montrent clairement que, la taille moyenne des grains diminue quand la température de calcination augmente de 800°C à 1200°C pour les deux composés. Ainsi, la température de recuite a un effet significatif sur la réduction de la taille moyenne des grains du composé. Dans le tableau III.6 sont données les tailles moyennes des grains des deux composés calcinés à 1200°C.

Figure III.7 : Évolution de la taille moyenne des cristallites du composé La_{0,75}Gd_{0,25}FeO₃ en fonction de la température.

Figure III.8 : Évolution de la taille moyenne des cristallites du composé $La_{0,75}Sr_{0,25}FeO_3$ en fonction de la température.

Tableau III.7: Taille moyenne des cristallites de deux orthoferrites: LGFO et LSFOcalcinés à 1200°C.

Composition	Taille Moyenne des
	cristallites : D_{DRX} (nm)
LGFO	41,0238
LSFO	40, 9912

Les résultats de ce tableau, révèlent une similarité dans la taille des cristallites des deux composés orthoferrites (LGFO et LSFO) calcinés à 1200°C confirmant ainsi les constatations signalées précédemment par MEB.

c) Microanalyse par X-EDS

L'analyse X-EDS, nous a permit d'identifier les éléments constituant nos orthoferrites synthétisés et calcinés à 1200° C; La_{0.75}Gd_{0.25}FeO₃ et La_{0.75}Sr_{0.25}FeO₃ comme le montre les figures III.9 et III.10.

Figure III.9 : Spectre X-EDS de la composition La_{0.75}Gd_{0.25}FeO₃.

Figure III. 10: Spectre X-EDS de la composition La_{0.75}Sr_{0.25}FeO₃.

D'après les deux figures III.9 et III.10 au-dessus, on peut dire que, les résultats de l'analyse chimique pour les deux compositions révèlent l'existence de tous les éléments constituants la composition chimique de l'orthoferrite de lanthane synthétisés par la méthode conventionnelle et traités à une température de 1200°C.

III.3.4. Caractérisations spectroscopiques de La_{1-x}M_xFeO₃

a) Par FTIR (composition avec et sans KBr)

L'utilisation de la spectroscopie infrarouge (FTIR) n'est qu'une analyse complémentaire qui nous renseigne une autre fois sur la formation et la stabilisation de la structure de phase après dopage du composé $La_{1-x}M_xFeO_3$. Les figures III.11 et III.12, illustrent les résultats de cette analyse dans l'intervalle comprise entre 4000-400 cm⁻¹ en présentant les deux spectres de LGFO et LSFO calcinés à 1200°C, utilisant deux spectromètres FTIR ; l'une traite l'échantillon sans KBr et l'autre avec KBr dans le but de tirer un bon résultat de cette analyse.

Le premier constat sur les deux figures au-dessous, nous laisse dire que les pics correspondant aux échantillons analysés par le premier appareil FTIR, utilisant seulement une petite quantité de la poudre d'échantillon, sont estimables et bien localisés que ceux analysés par le deuxième appareil, utilisant une pastille de KBr avec la poudre d'échantillon. Ceci est peut être attribué à la sensibilité de ce dernier (KBr) à l'humidité.

Le deuxième constat sur les spectres IR des deux composés LGFO et LSFO, montre les bandes les plus importantes qui s'étendent de 700 cm⁻¹ à 400 cm⁻¹. Ces bandes d'absorption ont été attribuées et assignées aux vibrations d'étirement antisymétrique dans la liaison Fe–O–Fe de FeO6, un octaèdre régulier qui assignent la phase pérovskite (ABO₃) des orthoferrites de lanthane. Ces données FTIR des échantillons de LGFO et LSFO synthétisés étaient cohérentes avec les valeurs de la littérature [**10-14**].

Figure III.11: Spectre FTIR des deux composés La_{0.75}Gd_{0.25}FeO₃ et La_{0.75}Sr_{0.25}FeO₃ en poudre sans KBr.

Figure III.12: Spectre FTIR des deux composés La_{0.75}Gd_{0.25}FeO₃ La_{0.75}Sr_{0.25}FeO₃ en pastilles de KBr

b) Par UV-visible

Dans un premier temps, on a essayé d'évoluer les propriétés optiques des deux composés LGFO et LSFO en calculant l'énergie de gap E_g (énergie de la bande interdite) à partir des données du spectre d'absorption UV-vis dans la gamme spectrale (300-700 nm) réalisé à l'aide d'un spectromètre Uv-visble de type Perkin Elmer Lambda 35UV. Le coefficient d'absorption (α) a été calculé à partir des spectres d'absorption observés et la bande interdite optique. Les figures III.13 et III.14, présentes les courbes (αhv)² en fonction de l'énergie (hv) pour les deux composés et comparant à une celle de la composition LFO non dopé [**15**].

Figure III.13 : Courbe $(\alpha hv)^2 = f(hv)$ pour la composition $La_{0,75}Gd_{0,25}FeO_3$.

Figure III.14: Courbe $(\alpha hv)^2 = f(hv)$ pour la composition $La_{0,75}Sr_{0,25}FeO_3$.

De ces deux figures (III.13 et III.14) on a pu déterminer l'énergie de gap de chaque composé. Il s'est avéré que la valeur E_g est de 2,405eV pour LGOF et de 2,545 eV pour LSFO. On remarque que, la valeur de E_g du composé LSFO est similaire à E_g de la composition référence (l'orthoferrite de lanthane non dopé (2,54eV)) [15].

D'autre part, selon la valeur de l'énergie de gap, notre nouveau composé $La_{0,75}Gd_{0,25}FeO_3$, préparé par la méthode MC et calciné à 1200°C, se trouve dans la plage de bande interdite des semi-conducteurs. Sa valeur E_g nous laisse près dire qu'il est de bonnes qualités optiques.

Dans un seconde temps, on a essayé d'évoluer l'activité photocatalitique des deux composés LGFO et LSFO calcinés à 1200 °C, sur la dégradation d'un des colorants organiques choisie; le bleu de méthylène (BM : $C_{16}H_{18}ClN_{3}S$), sous l'effet de la lumière naturel (UVsoleil).

• Préparation des solutions

Avant d'entamer les testes potocatalitiques de nos composés sur le colorant organique BM choisie, une solution mère de ce dernier doit être préparée de 20 mg/l. Elle est préparée par dissolution de sel dans l'eau distillée puis analysée par spectroscopie UV-vis dans le domaine de visible (400nm-800nm). Le spectre d'absorption du BM est présenté sur la figure III.15.

Figure III.15 : Spectre UV-vis. de bleu de méthylène de concentration 20 mg/L.

De la figure au-dessus, on a approximativement localise les deux principaux pics d'absorbation de BM : à 614 nm et 664nm.

Par la suite, pour les testes photocatalitiques, des solutions filles (cinq solutions) ont été préparées par dilution de la solution mère de BM (tableau III.7 et figure III.16).

Tableau III.8 : Solution filles préparées par dilution de la solution mère de BM.

V (ml)	2	3	4	5	6
C (mg/l)	0.4	0.6	0.8	1	1.2

Figure III.16: Solution mère et solutions filles de BM préparées pour les testes photocatalitiques.

• Courbe d'étalonnage

On détermine la courbe d'étalonnage de BM en traçant les valeurs de l'absorbance en fonction des concentrations de solutions préparées. Elle est présentée dans la figure III.17.

Figure III.17 : Courbe d'étalonnage de BM.

Les valeurs de l'absorbance des solutions filles de BM sont données dans le tableau III.8.

 Tableau III.9 : Valeurs de l'absorbance des solutions filles de BM.

C (mg/L)	0,4	0,6	0,8	1	1,2
Absorbance	0,084	0,136	0,171	0,212	0,274

D'après la figure III.17, on constante que, la courbe d'étalonnage de BM est une fonction linéaire ($R^2 \approx 1$) dans l'intervalle des concentrations choisis. Ainsi, la loi de Beer-L ambert est vérifiée $A = Log \frac{I_0}{I_0}$

Lambert est vermee
$$A = Log - I$$

à
$$t=0$$
: $A_o = \varepsilon$.1. C_o

à t: $A = \varepsilon . l. C$

A: L'absorbance de la solution.

C (mol/L): est la concentration de l'espèce absorbante.

l (cm) : est la longueur du trajet optique de la solution traversée, elle correspond à l'épaisseur de la cuve utilisée.

 ϵ (L/mol.cm) : est le coefficient d'extinction molaire, il dépend de la longueur d'onde et de la nature chimique de l'entité.

• Testes potocatalitiques

Afin de tester l'efficacité de nos composés synthétisés sur la dégradation de BM sous l'effet de UVsoleil, on a suivi le protocole expérimental suivant:

- Dispersion de 100mg de catalyseur L_{1-x}M_xFeO₃ dans 100 ml de solution aqueuse de BM (de 1mg.L⁻¹);
- Agitation du mélange pendant 30 min dans l'obscurité pour obtenir l'équilibre adsorption-désorption;
- ✤ Réaction de dégradation sous lumière de soleil pondant 135 min ;
- Prélèvement de 5 ml de la solution mélangée tous les 15 min ;
- ♦ Centrifugation (3000 tours par minute) pendant 10 min ;
- ✤ Analyse UV-Vis de la solution et détermination de spectre d'absorbation de BM.

Rappelons que, l'efficacité photocatalitique du composé est estimée par le pourcentage de dégradation qui est calculé par la relation **[16]**:

$$R\% = \frac{(A_0 - A_t)}{A_0} \times 100$$

Où, A₀ : absorbance normalisée initiale du colorant MB,

A_t : absorbance normalisée finale du colorant MB avec photocatalyseur après irradiation UV.

La figure III.18, illustre les deux solutions aqueuses de nos catalyseurs (LGFO et LSFO) avec les solutions après teste de dégradation de BM sous UVsoleil.

Figure III.18 : Solutions des deux catalyseurs (LGFO et LSFO) et les solutions après teste de dégradation de BM sous UVsoleil.

La figure III.19, montre l'évolution temporelle du spectre d'absorption de BM et des échantillons LGFO et LSFO en tant que photocatalyseur.

Figure III.19 : Évolution temporelle du spectre d'absorption de BM utilisant les deux catalyseurs : le LGFO et le LSFO.

De cette figure, et pour les deux échantillons PGFO et PSFO, en tant que photocatalyseurs, on voit clairement que l'absorbance de BM diminue nettement et la solution devient presque incolore (figure III.18) lorsque le temps d'irradiation augmente. Il n'y a pas de nouvelle bande d'absorbance dans les spectres d'absorbance UV-vis, ce qui indique que la structure conjuguée des molécules BM est détruite et qu'aucun produit intermédiaire n'est produit.

La figure III.20, montre le pourcentage temporel de dégradation de BM par les deux photocatalyseurs (LGFO, LSFO). On constate que, le pourcentage de dégradation est plus élevé par le catalyseur LGFO que par le catalyseur LSFO.

Figure III.20 : Pourcentage temporel de dégradation de BM par les deux catalyseurs : LGFO et LSFO.

Ainsi, on peux conclure que, l'orthoferrite de lanthane La_{0,75}Gd_{0,25}FeO₃ (LGFO) synthétisé par la méthode conventionnelle et calcination à 1200°C a montré une efficacité photocatalytique supérieure à celle de l'orthoferrite de lanthane La_{0,75}Sr_{0,25}FeO₃ dans la photodégradation de BM. On suggère qu'il pourrait être utilisé comme photocatalyseur visible pour dégrader divers polluants organiques.

Références bibliographiques

- [1] Benali Adel. (2012). Synthèse de nouveaux matériaux de type ABO₃ pour l'application dans le domaine de capteurs de Gaz, Physique des milieux condensés, LPA, Université de SFAX, Tunisie.
- [2] Z. NECIRA.(2018). Étude de système quaternaire xPbZrO₃-yPbTiO₃-zPb(Mg_{1/3}, Nb_{2/3})_{1/2}O₃- zPb(Ni_{1/3},Sb_{2/3})_{1/2}O₃ près de la frontière morphotropique de phase(FPM), Thèse de Doctorat en Sciences des Matériaux, Université de Biskra, Algérie.
- [3] Emile HAYE. (2016). Substitutions anioniques et cationiques de films minces d'orthoferrite de lanthane LaFeO₃ élaborés par pulvérisation cathodique magnétron, thèse de Doctorat, Spécialité Sciences des Matériaux, Université de Lorraine, France.
- [4] R. BOUAZIZ, A. P. ROLLET, L'analyse thermique : l'examen des processus chimiques. Paris: Gauthier-Villars, tome 2. 227(1972).
- [5] W. SMYKATZ-KLOSS, Differential thermal analysis. New York : Springer-Verlag, (1974).
- [6] Jiangong Li, Xinli Kou, Yong Qin, and Haiying He. (2002). Microstructure and Magnetic Properties of La_{1-x}Sr_xFeO₃ Nanoparticles phys. stat. sol. (a) 191, No. 1, 255–259 (2002). DOI: 10.1177/2280800017753948.
- [7] Qing Lin, Jianmei Xu, Fang Yang, Xingxing Yang and Yun He.(2018). The influence of Ca substitution on LaFeO₃ nanoparticles in terms of structural and magnetic properties, Journal of Applied Biomaterials & Functional Materials, Vol. 16(1S) 17–25.
 DOI: 10.1177/2280800017753948
- [8] Qing Lin, Jianmei Xu, Fang Yang, Xingxing Yang and Yun He.(2018). The influence of Ca substitution on LaFeO₃ nanoparticles in terms of structural and magnetic properties, Journal of Applied Biomaterials & Functional Materials, Vol. 16(1S) 17–25. DOI: 10.1177/2280800017753948.
- [9] Sherrer, Gottinger Nachrichten. (1918). 2. 98.
- [10] Li J, Kou X, Qin Y, et al. Microstructure and magnetic properties of La1-*x*Sr*x*FeO3 nanoparticles. *Phys Status Solidi* A 2002; 191: 255–259.
- [11] Abdel-Khalek EK and Mohamed HM. Synthesis, structural and magnetic properties of La1-*x*Ca*x*FeO3 prepared by the co-precipitation method. *Hyperfine Interact* 2013; 222: S57-S6
- [12] Li S, Jing L, Fu W, et al. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. *Mater Res Bull* 2007; 42: 203–212.
- [13] Nakamoto, K. (1970). Infrared spectra of inorganic and coordination compounds.

New York: 2nd Edition, Wiley Interscience Publication, 436-445.

- [14] Liu, Q., You, Z., Zeng, S. J., & Guo, H. (2016). Infrared properties of Mg-doped LaFeO₃ prepared by sol-gel method. Journal of Sol-Gel Science and Technology, 80(3), 860–866. doi:10.1007/s10971-016-4141-x.
- [15] Mya Theingi Kay Thi Tun, Nwe Nwe Aung, "Preparation, Characterization and Optical Property of LaFeO₃ Nanoparticles via Sol-Gel Combustion Method", Sci. Medicine Journal Vol. 1, No. 3, (2019). http://dx.doi.org/10.28991/SciMedJ-2019-0103-5.
- [16] Vishwajit M. Gaikwad, Javed R. Sheikh, Smita A. Acharya (2015). Investigation of photocatalytic and dielectric behavior of LaFeO₃ nanoparticles prepared by microwave-assisted sol–gel combustion route, Journal of Sol-Gel Science and Technology · May 2015 DOI 10.1007/s10971-015-3746-9.

Les matériaux orthoferrites de lanthane LaFeO₃ de structure pérovskite ABO₃ appelés LFO, présentent un grand intérêt en raison de leur structure relativement simple et de la possibilité de modifier leurs propriétés physiques, par substitutions ioniques. De plus, ces matériaux multifonctionnels présentent des propriétés optiques et pohotocatalytiques très intéressantes.

Réaliser de nouvelles substitutions pour produire un nouveau matériau pérovskite de la famille d'orthofferite $La_{1-x}M_xFeO_3$ (M=Gd; Sr avec x= 25%), le synthétiser, l'identifier, le caractériser, c'est ce qui nous a été proposé de faire comme objectif dans ce mémoire.

Pour atteindre cet objectif, deux compositions $La_{0,75}Gd_{0,25}FeO_3$ (LGFO) et $La_{0,75}Sr_{0,25}FeO_3$ (LSFO) ont été synthétisés par la méthode conventionnelle (MC) et calcinés à différentes températures (800°C-1200°C). L'effet de cette substitution à été étudié principalement par ; diffraction des rayons X (DRX) et microscopie électronique à balayage (MEB). Des analyses spectroscopiques complémentaires, telles que FTIR et UV-Visible ont été effectuées afin d'évaluer l'activité photocatalytique de nos composés.

Les résultats ainsi obtenus, nous ont révélés que;

- ✓ par la méthode de synthèse à voie solide (MC), on peut aboutir à des composés orthoferrites de lanthane bien cristallisés mais à des températures très élevés (≥1200°C) comparant à celles préparés à voie liquide, à base température, mais avec certains impuretés, le cas du composé LSFO qui a été étudié dans des travaux antérieurs.
- ✓ les deux composés LGFO et LSFO cristallisent dans la structure pérovskite de symétrie orthorombique avec une microstructure homogène et uniforme dans l'ordre de 0,694µm-5,134µm pour le composé LGFO et 0,272µm-2,042µm pour le composé LSFO.
- ✓ l'incorporation de Gd³⁺ (de petite taille) a un effet significatif sur toutes les caractéristiques morphologiques et microstructurales de l'orthoferrite de lanthane étudié.
- l'étude de l'activité photocatalytique de nos composés synthétisés sur un colorant organique (BM) nous a révélée que, 30% des MB est dégradées pour l'échantillon PSFO après irradiation à la lumière naturel pendant 120 min, alors que plus de 60 % de dégradation des MB pour le l'échantillon LGRO est obtenu. Ces résultats indiquent que LGFO a une plus grande activité photocatalytique pour la dégradation de MB.

Conclusion Générale

De cette étude, on peut conclure que la substitution cationique de l'orthoferrite $LaFeO_3$ par le gadolinium a permis d'augmenter son efficacité photocatalytique et qui a été parmi les objectifs envisagés.

Enfin, des études plus approfondies sur le caractère magnétique de LGFO, doivent venir compléter ce travail et aiderait a entre prendre de la qualité de ce matériau dans le domaine de détection des gazes.

Name and formula

Reference code:	98-015-3536
Compound name:	Lanthanum Ferrate(III)
Common name:	Lanthanum Ferrate(III)
Chemical formula:	Fe ₁ La ₁ O ₃
Crystallographic parame	<u>eters</u>
Crystal system:	Orthorhombic
Space group:	P n m a
Space group number:	62
a (Å):	5,5600
b (Å):	7,8500
c (Å):	5,5510
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	6,66
Volume of cell (10^6 pm^3):	242,28
Z:	4,00
RIR:	8,33
Subfiles and quality	
Subfiles:	User Inorganic
Quality:	User From Structure (=)
<u>Comments</u>	
Creation Date:	01/10/2006
Modification Date:	30/12/1899
Original ICSD space group:	PNMA. X-ray diffraction (powder)
Structure type:	GdFeO3. Temperature factors available. Rietveld profile refinement
	applied
Structure type:	GdFeO3
Recording date:	10/1/2006
ANX formula:	ABX3
Z:	4
Calculated density:	6.66
R value:	0.0137
Pearson code:	oP20

Wyckoff code:d c2 bStructure TIDY: TRANS Origin 1/2 1/2 0Publication title: Synthesis of perovskite-type (La1-x Cax) Fe O3 (0 <= x <= 0.2) at low temperature</td>ICSD collection code: 153536Structure: GdFeO3Chemical Name: Lanthanum Ferrate(III)Second Chemical Formula: La (Fe O3)Pafarances

References

Structure:

Yamaguchi, O.;Hirota, K.;Masunaga, Y.;Taguchi, H., *Materials Research Bulletin*, **40**, 773 - 780, (2005)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	1	1	4,53231	19,571	0,2
2	1	0	1	3,92833	22,617	13,8
3	0	2	0	3,92500	22,636	7,4
4	1	1	1	3,51301	25,332	3,3
5	2	0	0	2,78000	32,173	24,3
6	1	2	1	2,77657	32,214	100,0
7	0	0	2	2,77550	32,226	24,7
8	2	1	0	2,62053	34,189	2,3
9	2	0	1	2,48570	36,106	0,2
10	1	0	2	2,48329	36,142	0,2
11	2	1	1	2,36974	37,938	0,1
12	1	1	2	2,36764	37,973	1,3
13	0	3	1	2,36688	37,986	0,5
14	2	2	0	2,26860	39,699	11,2
15	0	2	2	2,26616	39,743	11,8
16	1	3	1	2,17777	41,429	1,3
17	2	2	1	2,10000	43,038	0,4
18	1	2	2	2,09854	43,069	0,2
19	2	0	2	1,96416	46,180	27,9
20	0	4	0	1,96250	46,221	15.0
21	2	1	2	1,90542	47,690	2,4
22	2	3	1	1,80218	50,609	0,2
23	1	3	2	1,80126	50,637	0,4
24	0	1	3	1,80098	50,645	0,0
2.5	3	0	1	1,75794	51,976	0.7
26	2	2	2	1,75650	52,022	2.6
27	1	4	1	1,75561	52,050	3,2
2.8	3	1	1	1,71545	53,364	3,8
29	1	1	3	1.71334	53,435	0.6
30	3	2	1	1,60437	57,387	15.8
31	2	4	0	1.60326	57,431	9.6
32	1	2	3	1,60264	57,455	20.4
33	Ū.	4	2	1,60239	57,465	9.9
34	2	3	2	1.57085	58,730	0.8
35	2	0	2	1 54130	59 970	0,0
36	2	0	2	1 54034	60 011	0,0
37	1	1	2	1 53973	60,011	0,1
38	⊥ २	1	2	1 512/2	61 237	0,0
30	2	1	2	1 51151	61 277	0,2
10	0	1 5	1	1 5107 <i>1</i>	61 312	0,0
40 // 1	2	2	1	1 45021	62 726	1 0
41	1	5	⊥ 1	1,4J9ZI 1 15700	62 701	1,9 0 2
42	⊥ 2	5	1	1 43700	64 040	0,2
43	с С	2	2	1 /2207	04,949 61 000	0,0
44	∠ ۸	∠	5	1 20000	04,303 67 207	20
40	4	0	0	1,39000	67 400	3,U
40	2	4	∠	⊥,388∠8 1 20775	0/,4UZ	14,4
4 /	U	U	4	1,38//5	७/ , 43⊥	3,6

4.0		-	~	1 0 0 0 0 0 1	60 400	1 0
48	4	T	0	1,368/1	68,498	1,3
49	2	5	0	1,36706	68,593	0,2
50	4	0	1	1 , 34837	69 , 679	0,1
51	1	0	4	1,34644	69,794	0,1
52	4	1	1	, 1,32891	, 70,852	0.0
53	3	3	2	1 32803	70 905	0 2
55	2	J F	1	1,32003	70,903	0,2
54	2	5	1	1,32740	70,944	0,1
55	1	1	4	1,32706	70,965	0,4
56	4	2	0	1,31026	72 , 016	0,3
57	3	4	1	1,30942	72 , 069	0,7
58	1	4	3	1,30848	72,129	1,4
59	0	2	4	1,30838	72,136	0,6
60	З	1	З	1.29160	, 73, 224	1.2
61	<u>с</u>	2	1	1 27522	74 321	1,2 0 0
62	1	2	1	1 27250	74,321	0,0
02	1	2	4	1,27339	74,433	0,0
63	4	0	2	1,24285	76,6UI	2,1
64	3	2	3	1,24214	76,653	5,9
65	2	0	4	1,24164	76 , 689	3,2
66	1	6	1	1,24130	76 , 714	7,3
67	4	1	2	1,22756	77 , 733	1,5
68	2	5	2	1,22637	77,822	0,7
69	З	4	2	1.21215	, 78,912	0.0
70	2	4	3	1 21168	78 948	0 0
70	7	2	1	1 10050	70,040	0,0
71	1	2	1	1,19039	79,902 00 001	0,0
12	Ţ	3	4	1,19724	80,091	0,3
13	0	5	3	1,19/13	80,100	0,0
74	4	2	2	1,18487	81,101	0,9
75	2	2	4	1,18382	81 , 187	1,4
76	0	6	2	1,18344	81,219	0,9
77	3	3	3	1,17100	82,267	1,1
78	1	5	3	1.17031	82,325	0.2
79	2	6	1	1,15775	83,417	0.0
80	1	6	2	1 15751	83 438	0 0
Q1	1	1	0	1 13/30	85 546	27
01	4	4	1	1 12200	05,540	2,1
82	0	4	4	1,13308	85,001	3,4
83	4	3	2	1,12265	86,651	1,6
84	2	3	4	1,12176	86 , 737	0,4
85	4	4	1	1,11134	87 , 757	0,0
86	3	0	4	1,11085	87 , 805	0,0
87	1	4	4	1,11026	87,864	0,0
88	4	1	3	1,10038	88,859	0,0
89	3	1	4	1.09989	88,909	0.2
90	2	- 5	3	1 09952	88 947	0 1
Q1	ے 0	1	5	1 00006	00, Ji	0,1
91 90		Ť	1	1,09920	00,913	0,0
92	5	U	T	1,09034	89,898	υ,⊥

<u>Structure</u>

No.	Name	Elem.	Х	Y	Z	Biso	sof	Wyck.
1	01	0	0,21300	0,03500	0,28400	0,5500	1,0000	8d
2	02	0	0,51200	0,25000	0,56600	0,6000	1,0000	4c
3	FE1	Fe	0,00000	0,00000	0,00000	0,2600	1,0000	4a
4	LA1	La	0,47200	0,25000	0,00700	0,5000	1,0000	4c

Stick Pattern

Name and formula

Reference code:	01-082-1960
Compound name:	Lanthanum Strontium Iron Oxide
ICSD name:	Lanthanum Strontium Iron Oxide
Empirical formula:	FeLa _{0.8} O ₃ Sr _{0.2}
Chemical formula:	(La _{0.8} Sr _{0.2}) FeO ₃
Crystallographic parame	<u>eters</u>
Crystal system:	Orthorhombic
Space group:	Pbnm
Space group number:	62
a (Å):	5,5500
b (Å):	5,5121
c (Å):	7,8439
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	6,43
Volume of cell (10 ⁶ pm ³):	239,96
Z:	4,00
RIR:	9,91
Subfiles and quality	
Subfiles:	Corrosion
	ICSD Pattern
	Inorganic
Quality:	Calculated (C)
Comments	
ICSD collection code:	078064
Creation Date:	01/01/1970
Modification Date:	01/01/1970
ICSD Collection Code:	078064. Rietveld profile refinement applied
Test from ICSD:	At least one TF implausible

Temperature Factor:

References

Primary reference: Structure:

Peak list

ITF. The effect of oxygen stoichiometry on phase relations and structure in the system La1/-xSrxFeO3-delta (0 <= x <= 1, 0 <= delta <= 0.5). d c2 a (PBNM). ABX3.

Calculated from ICSD using POWD-12++, (1997) Dann, S.E., Currie, D.B., Weller, M.T., Thomas, M.F., Al Rawwas, A.D., *J. Solid State Chem.*, **109**, 134, (1994)

No.	h	k	l	d [A]	2Theta[deg]	I [%]
1	1	0	1	4,53061	19 , 578	0,1
2	0	0	2	3,91098	22,718	100,0
3	1	1	1	3,50004	25,428	0,3
4	2	0	0	2,77501	32,232	18,8
5	1	1	2	2,76936	32,300	17,5
6	0	2	0	2,75605	32,460	18.7
7	0	2	1	2,60021	34,464	0.4
8	2	1	0	2,47862	36.212	0.1
9	1	0	3	2,36344	38.043	0,9
10	2	0	2	2,26531	39,759	8.1
11	0	2	2	2,25496	39,949	9.2
12	1	1	3	2,17364	41,511	0.2
13	2	1	2	2,17504	41,011 13 110	0,2
11	2 1	2	2	2,09527	43,140	0,1
15		2	2 1	1 06009	45,274	11 2
1 J	0	2	4	1,90090	40,239	11,3
10	2	2	1	1,95549	40,397	23,1 0 F
10	2	2	1	1,89/42	47,904	0,5
18	3	0	1 2	1,79882	50,710	0,2
19	l	2	3	1,79492	50,828	0,3
20	3	Ţ	0	1,75297	52,134	23,1
21	2	2	2	1,75002	52,229	13,9
22	1	3	0	1,74426	52,415	8,9
23	3	1	1	1,71160	53,493	0,1
24	1	3	1	1,70267	53,796	0,5
25	2	0	4	1,60148	57 , 500	8,1
26	0	2	4	1,59781	57 , 645	10,3
27	1	3	2	1,59375	57 , 806	4,9
28	2	2	3	1,56597	58,931	0,1
29	2	1	4	1,53788	60,117	0,1
30	3	2	0	1,53604	60,197	0,1
31	2	3	0	1 , 53199	60 , 372	0,1
32	3	0	3	1,50964	61 , 362	0,1
33	2	3	1	1,50358	61 , 636	0,1
34	3	1	3	1,45602	63 , 882	0,1
35	1	3	3	1,45102	64,128	0,2
36	3	2	2	1,43026	65,173	0,1
37	2	3	2	1,42699	65,341	0,1
38	4	0	0	1,38751	67,444	2,9
39	2	2	4	1,38468	67,601	10,3
40	0	4	0	1,37802	67,972	2,8
41	0	2	5	1,36339	68,803	0.1
42	0	4	1	1,35724	69,159	0.2
4.3	4	1	0	1,34553	69,848	0,1
44	1	4	0	1,33741	70,334	0.1
45	4	1	1	1,32616	71,021	0.2
46	י ר	2	⊥ ר	1,32402	71,153	0 2
47	2	2	ר ר	1,32102	71,290	0 2
1, 1,2	2 1	⊿	1	1 31830	71 503	0,2 0 1
10	_ ⊥	- -	÷ 6	1 30709	72 206	6 2
コシ 50	2	2	0	1 30720	72,200 72 162	0,2 0 0
50	J	5	0	I, JUJZŸ	12,702	ש, ב

51	0	4	2	1,30011	72,668	4,2
52	3	3	1	1,28602	73 , 594	0,1
53	4	1	2	1,27271	74,493	0,1
54	1	4	2	1,26584	74,966	0,1
55	1	1	6	1,23931	76,860	2,2
56	3	3	2	1,23711	77,021	1,5
57	2	4	0	1,23422	77,235	2,2
58	4	2	1	1,22367	78,026	0,1
59	2	4	1	1,21922	78,366	0,3
60	3	2	4	1,20923	79,139	0,1
61	2	3	4	1,20726	79,294	0,1
62	3	0	5	1,19641	80,158	0,1
63	1	4	3	1,19069	80,622	0,1
64	4	2	2	1,18172	81,362	1,4
65	2	4	2	1,17730	81,732	1,3
66	3	1	5	1,16928	82,414	0,1
67	3	3	3	1,16668	82,638	0,3
68	2	1	6	1,15634	83,542	0,1
69	1	2	6	1,15530	83,634	0,1
70	4	0	4	1,13265	85,701	1,9
71	0	4	4	1,12748	86,189	2,1
72	4	2	3	1,11988	86,919	0,1
73	2	4	3	1,11612	87,285	0,2
74	4	1	4	1,10947	87,942	0,1
75	4	3	0	1,10726	88,163	0,1
76	3	4	0	1,10491	88,399	0,1
77	1	0	7	1,09840	89,062	0,1
78	3	2	5	1,09754	89,150	0,1
79	4	3	1	1,09639	89,268	0,1

Structure

No.	Name	Elem.	Х	Y	Z	Biso	sof	Wyck.
1	01	0	0,26120	0,03560	0,27390	0,2600	1,0000	8d
2	02	0	0,00160	0,25000	0,56530	0,3600	1,0000	4c
3	FE1	Fe	0,00000	0,00000	0,00000	0,1900	1,0000	4a
4	SR1	Sr	0,01210	0,25000	0,00360	0,3000	0,2000	4c
5	LA1	La	0,01210	0,25000	0,00360	0,3000	0,8000	4c

Stick Pattern

