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Abstract

The detection of software vulnerabilities (or vulnerabilities forection. Deep learning is attractive for

this purpose because it alleviates the requirement to manually define features. Despite the tremendous

success of deep learning in other application domains, its applicability to vulnerability detection is not

systematically understood. In order to fill this void, we propose framework for using deep learning to

detect vulnerabilities in C/C++ programs with source code.

short) is an important problem that has yet to be tackled, as manifested by the many vulnerabilities

reported on a daily basis. This calls for machine learning methods for vulnerability det In this work,

methods to detect software gaps were mainly performed on function-level function codes C/C + +, We

have conducted extensive experiments against a wide range of real-world weaknesses C/C + + obtained

from many real-world projects and specifically propose a synthetic neural network for code analysis in

which we propose a set of data imported from the Internet with the addition of data manually with the

proposal of a model for the inclusion of a normal and unusual function.

keywords: Software Vulnerability Detection,security, Deep Learning, CNN
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Résumé

La détection des vulnérabilités logicielles (ou des vulnérabilités en abrégé) est un problème important

qui n’a pas encore été abordé, car manifestée par les nombreuses vulnérabilités rapportées quotidien-

nement. Cela nécessite des méthodes d’apprentissage automatique pour la détection des vulnérabilités.

L’apprentissage profond est intéressant à cet effet, car il allège l’exigence de définir manuellement les

fonctionnalités. Malgré l’énorme succès du deep learning dans d’autres domaines d’application, son ap-

plicabilité à la détection des vulnérabilités n’est pas systématiquement comprise. Afin de combler ce

vide, nous proposons un cadre pour utiliser le deep learning pour détecter les vulnérabilités dans les

programmes C/C++ avec du code source.

Dans ce travail, les méthodes de détection des lacunes logicielles ont été principalement réalisées sur les

codes de fonction au niveau de la fonction C/C + +, Nous avons mené des expériences approfondies

contre un large éventail de faiblesses du monde réelprojets mondiaux et spécifiquement proposer un

réseau neuronal synthétique pour l’analyse de code dans lequel nous proposons un ensemble de données

importées de l’Internet avec l’ajout de données manuellement avec la proposition d’un modèle pour

l’inclusion d’une fonction normale et inhabituelle.

Mots-clés : Détection des vulnérabilités logicielles, sécurité, profondeur Apprentissage, CNN
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General introduction

Vulnerabilities in software are inevitable because writing them securely is very difficult and requires a lot

of experience and professionalism. As humans are prone to error, even experienced and elite developers

can make software errors lead to serious consequences for information security and are an underlying

cause of the spread of attacks. Despite many developers seeking to improve software quality but this

problem remains much bigger than everyone can imagine, and the evidence of this is that we record daily

vulnerabilities .

Since vulnerabilities are inevitable, they must be discovered as soon as possible. Identifying potential

vulnerabilities in programs is a decisive step in defence against cyberattacks, however, it can be difficult

and it takes a long time. Since most systems are written in C, these vulnerabilities will cause the de-

struction of large systems.

Although previous studies have proposed various methods and tools that can be used in reducing or

eliminating software vulnerabilities. Deep learning has received a lot of attention recently, so it has

achieved results that have never been achievable in areas at a level of precision where the human being

is outperformed by thousands of times, and in short when we want precision in use and achieve results

it is an ideal solution.

In this study, through deep learning outcomes and more accurately Convolutional Neural Network (CNN),

we want to apply to the field of vulnerabilities more specifically, we choose to recognize security gaps on

C codes because many systems are written in them. For thus, we have collected a large number of C

codes containing two natural and abnormal species then we train Convolutional Neural Network (CNN)

to eventually get a trained model that can predict that the codes were safe first. After that, we have

tested our model with different codes, and the obtained results gives a best accuracy.

We have divided the manuscript into four chapters:

• Chapter one: introduce basic concepts of deep learning and its approaches and methods.

• Chapter two: present top 10 important vulnerabilities according to the World Security Organiza-

tion (OWASP), National Vulnerability Database NVD, and the different vulnerability detection

methods. We present also the related work.

• Chapter three: Focus on general system design, detailed system components, model of test and
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UML diagrams.

• Chapter four: intended for implementation details and obtained results.

We end our manuscript with a general conclusion.
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Chapter 1
Deep Learning

1.1 Introduction

In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard

in the machine learning (ML) community. Moreover, it has gradually become the most widely used com-

putational approach in the field of ML, thus achieving outstanding results on several complex cognitive

tasks, matching or even beating those provided by human performance. One of the benefits of DL is the

ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has

been extensively used to successfully address a wide range of traditional applications. More importantly,

DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language

processing, bioinformatics, robotics and control, and medical information processing, among many oth-

ers.so we can say In the field of ML, DL, due to its considerable success, is currently one of the most

prominent research trends. In this chapter we present the basics of deep learning. [22]

1.2 What is artificial intelligence?

Artificial intelligence (AI) is defined as ‘a field of science and engineering concerned with the computa-

tional understanding of what is commonly called intelligent behaviour, and with the creation of artefacts

that exhibit such behaviour’.[80] There are 4 types of IA here:

- Reactive Machines

- Limited Memory

- Theory of Mind

- Self Awareness
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Figure 1.1: types of IA.[48]

1.3 What is machine learning?

Machine learning is a branch of computer science that broadly aims to enable computers to “learn” with-

out being directly programmed . It has origins in the artificial intelligence movement of the 1950s and

emphasizes practical objectives and applications, particularly prediction and optimization. Computers

“learn” in machine learning by improving their performance at tasks through “experience”. In practice,

“experience” usually means fitting to data; hence, there is not a clear boundary between machine learn-

ing and statistical approaches.Indeed, whether a given methodology is considered machine learning” or

“statistical” often reflects its history as much as genuine differences, and many algorithms.[25]

Figure 1.2: Machine Learning.[34]

Machine Learning Algorithms can be classified into 3 types as follows :

- Supervised Learning

- Unsupervised Learning

- Reinforcement Learning
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Figure 1.3: Types of Machine Learning.[36]

1.3.1 Support vector machines (SVMs)

Support vector machines (SVMs) [35] appeared in the early nineties as optimal margin classifiers in

the context of Vapnik’s statistical learning theory. Since then SVMs have been successfully applied to

real-world data analysis problems, often providing improved results compared with other techniques.

The SVMs operate within the framework of regularization theory by minimizing an empirical risk in a

well-posed and consistent way. A clear advantage of the support vector approach is that sparse solutions

to classification and regression problems are usually obtained: only a few samples are involved in the

determination of the classification or regression functions.This fact facilitates the application of SVMs

to problems that involve a large amount of data, such as text processing and bio-informatics tasks.

1.4 What Is deep learning ?

We do not know of a crisp definition of what DL is,
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Figure 1.4: The relationship between artificial intelligence, ML and deep learning.[9]

but DL is a subset of machine learning. DL is based largely on Artificial Neural Networks (ANNs),

a computing paradigm inspired by the functioning of the human brain. Like the human brain, it is

omposed of many computing cells or ‘neurons’ that each perform a simple operation and interact with

each other to make a decision .Deep Learning is all about learning or ‘credit assignment’ across many

layers of a neural network accurately, efficiently and without supervision. [66]

Figure 1.5: machine or deep learning process.[13]

1.5 Deep learning terminologies

1.5.1 Recurrent neuron

It’s one of the best from the Deep Learning Terminologies. Basically, in this output is sent back to the

neuron for t timestamps. After looking at the diagram, we can say output is back as input t times. Also,

we have to connect different together that will look like an unrolled neuron. Although, an important

thing is that it provides us a more generalized output.[33]
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Figure 1.6: Recurrent Neuron.[40]

1.5.2 Vanishing Gradient Problem

The vanishing gradient problem since the derivative is usually small. While the gradients get smaller as

they go through multiple layers (with activation functions) during the back propagation.[49]

1.5.3 Exploding gradient problem

The exploding gradient problem has been a major challenge for training very deep feedforward neural

networks at least since the advent of gradient-based parameter learning. In a nutshell, it describes the

phenomenon that as the gradient is backpropagated through the network,it may grow exponentially from

layer to layer. [69]

1.5.4 max-pooling

max-pooling operation treats each dimension independently while for such representations the encoding

dimensions are strongly correlated and should be treated jointly.[59]

Figure 1.7: Pooling in Deep Learning.[59]

1.5.5 Softmax

The softmax link is used in many probabilistic model dealing with both discrete and continuous data.

[27]
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This constant defines an activation function that returns values using the following formula:

Figure 1.8: Softmax.[59]

1.5.6 Neural network

An artificial neural network (or simply neural network) consists of an input layer of neurons (or nodes,

units), one or two (or even three) hidden layers of neurons, and a final layer of output neurons. [85]

Neural Networks Are A Set Of Algorithms, Which Is Based - Neural Network

Figure 1.9: Neural Network.[59]

1.5.6.1 Input layer/ Output layer / Hidden layer

It’s one of the best from the Deep Learning Terminologies. The input layer is the one which receives

the input. Also, it’s the first layer of the network. The output layer is the final layer of the network.

These layers are the hidden layers of the network. We use these hidden layers to perform tasks on

incoming data. Hence, pass generated output to the next layer. Although, both layers are visible but

the intermediate layers are hidden.[33]
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Figure 1.10: Hidden layer in deep Learning.[33]

1.5.6.1 MLP (Multi-Layer perceptron)

A multi layer perceptrons (MLP) is a finite acyclic graph. The nodes are neurons with logistic activation.

nodes that are no target of any connection are called input neurons.

A MLP that should be applied to input patterns of dimension n must have n input neurons, one for each

dimension. [70]

Figure 1.11: MLP (Multi-Layer perceptron) in Deep Learning.[70]

1.5.7 Neuron

As we can say that we use neuron to form the basic elements of a brain. Also, helps to form the basic

structure of a neural network. As we get new information. We start to generate an output.[33]
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Figure 1.12: Neuron in Deep Learning.[33]

1.5.8 Activation function

As soon as we apply linear component to the input, a non-linear function is applied to it. As this is done

by applying the activation function to the linear combination. Hence, this translates the input signals

to output signals.[33]

Figure 1.13: Activation Function.[33]

1.5.9 Learning rate

learning rate schedules have been proposed to automatically anneal the learning rate based on how many

epochs through the data have been done. These approaches typically add additional hyperparameters

to control how quickly the learning rate decays.[88]
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Figure 1.14: Learning Rate.[33]

1.5.10 Back propagation

Whenever we want to define a neural network, we assign random weights and bias values to our nodes.

Also, as soon as we received the output for a single iteration. Thus, we can calculate the error of the

network.

In back-propagation, the movement of the network is backward, the error along with the gradient flows

back from the out layer through the hidden layers and updating of weights is done.[33]

1.6 Evolution of deep learning

It is easiest to understand deep learning with some historical context. Rather thanproviding a detailed

history of deep learning, we identify a few key trends:

•Deep learning has had a long and rich history, but has gone by many names,reflecting different philo-

sophical viewpoints, and has waxed and waned inpopularity.

•Deep learning has become more useful as the amount of available trainingdata has increased.

•Deep learning models have grown in size over time as computer infrastructure(both hardware and soft-

ware) for deep learning has improved.

•Deep learning has solved increasingly complicated applications with increasingaccuracy over time. [41]

1.7 Deep learning approaches

1.7.1 supervised learning

Supervised learning entails learning a mapping between a set of input variables X and an output variable

Y and applying this mapping to predict the outputs for unseen data. Supervised learning is the most

important methodology in machine learning and it also has a central importance in the processing of

multimedia data.[31]
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Figure 1.15: Artificial Intelligence and Machine Learning and DL[2]

Figure 1.16: supervised learning .[17]

1.7.2 Unsupervised learning

unsupervised learning or “learning without a teacher.” is a type of algorithm that learns patterns from

untagged data. The hope is that through mimicry, which is an important mode of learning in people, the

machine is forced to build a compact internal representation of its world and then generate imaginative

content from it. In contrast to supervised learning where data is tagged by an expert, e.g. as a ”ball” or

”fish”, unsupervised methods exhibit self-organization that captures patterns as probability densities or a

combination of neural feature preferences. The other levels in the supervision spectrum are reinforcement

learning where the machine is given only a numerical performance score as guidance, and semi-supervised
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learning where a smaller portion of the data is tagged. Two broad methods in Unsupervised Learning

are Neural Networks and Probabilistic Methods. [32]

Figure 1.17: unsupervised learning.[19]

1.7.3 Semi supervised learning(hybrid learning )

Semi-supervised classification methods are suitable tools to tackle training sets with large amounts of

unlabeled data and a small quantity of labeled data. This problem has been addressed by several

approaches with different assumptions about the characteristics of the input data. Among them, self-

labeled techniques follow an iterative procedure, aiming to obtain an enlarged labeled data set, in which

they accept that their own predictions tend to be correct.[82]

Figure 1.18: hybrid learning(SSL).[16]
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1.7.4 Deep reinforcement learning

Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This

field of research has been able to solve a wide range of complex decisionmaking tasks that were previously

out of reach for a machine.Thus, deep RL opens up many new applications in domains such as healthcare,

robotics, smart grids, finance, and many more. This manuscript provides an introduction to deep

reinforcement learning models, algorithms and techniques.[39]

Figure 1.19: hybrid learning(SSL).[16]

1.7.5 Algorithms for Deep learning

The field of deep learning deals with many algorithms[38], each one designed to solve a specific task.

Some of these algorithms are listed below :

• Feed Forward Neural Networks (Artificial Neuron).

• Radial Basis Function Neural Network.

• Multilayer Perceptron.

• Unsupervised pretrained network.

– Autoencoders .

– Deep Belief Networks .

– Generative Adversarial Networks (GANs) .

• Convolutional Neural Networks.

• Recurrent Neural Network/LSTMs.

• Recursive Neural Networks.
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1.8 Fundamental deep learning architectures Deep learning

1.8.1 Unsupervised Pre-trained Networks

In unsupervised pre-training, a model is trained unsupervised, and then the model used for prediction.

Some unsupervised pre-training architectures are discussed below .[38]

1.7.1.1 Autoencoders

An autoencoder is a specific type of a neural network, which is mainly designed to encode the input into

a compressed and meaningful representation, and then decode it back such that the reconstructed input

is similar as possible to the original one.[24]

It is typically a feed forward neural network which aims to learn a compressed, distributed representa-

tion(encoding) of a dataset .[38]

Figure 1.20: Autoencoders.[3]

1.7.1.2 Deep Belief Networks

are probabilistic generative models that are composed of multiple layers of stochastic, latent variables.

The latent variables typically have binary values and are often called hidden units or feature detectors.

The top two layers have undirected, symmetric connections between them and form an associative

memory. The lower layers receive top-down, directed connections from the layer above. The states of

the units in the lowest layer represent a data vector.[46]
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Figure 1.21: Deep Belief Networks.[8]

1.7.1.3 Generative Adversarial Networks

Generative adversarial networks (GANs) provide a way to learn deep representations without extensively

annotated training data. They achieve this by deriving backpropagation signals through a competitive

process involving a pair of networks. The representations that can be learned by GANs may be used in

a variety of applications, including image synthesis, semantic image editing, style transfer, image super-

resolution, and classification. [30]

Figure 1.22: Generative Adversarial Networks.[12]
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1.8.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are analogous to traditional ANNs in that they are comprised

of neurons that self-optimise through learning. Each neuron will still receive an input and perform a

operation(such as a scalar product followed by a non-linear function) - the basis of countless ANNs.

From the input raw image vectors to the final output of the class score, the entire of the network will still

express a single perceptive score function (the weight).The last layer will contain loss functions associated

with the classes, and all of the regular tips and tricks developed for traditional ANNs still apply.[63]

Figure 1.23: Convolutional Neural Networks.[7]

1.8.3 Recurrent Neural Networks

artificial neural networks (ANNs) are made from layers of connected units called artificial neurons.

A“shallow network” refers to an ANN with one input layer, one output layer, and at most one hidden

layer without a recurrent connection. As the number of layers increases,the complexity of network

increases too. More number of layers or recurrent connections generally increases the depth of the

network and empowers it to provide various levels of data representation and feature extraction, referred

to as “deep learning”.[74]
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Figure 1.24: Recurrent Neural Networks(RNN).[15]

1.8.3.1 Long Short-Term Memory LSTM

Long short-term memory (LSTM) is a special type of recurrent neural network (RNN) architecture that

was designed over simple RNNs for modeling temporal sequences and their long-range dependencies more

accurately.[68]

1.8.3.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a classification and regression prediction tool that uses machine learn-

ing theory to maximize predictive accuracy while automatically avoiding over-fit to the data. Support

Vector machines can be defined as systems which use hypothesis space of a linear functions in a high

dimensional feature space, trained with a learning algorithm from optimization theory that implements

a learning bias derived from statistical learning theory.[50]

1.9 Deep learning methods

Some of the powerful techniques [45] that can be applied to deep learning algorithms to reduce the

training time and to optimize the model are discussed in the following section. The merits and demerits

of each method are comprised in the Table 1

1.9.1 Back propagation

While solving an optimization problem using a gradient-based method, back propagation can be used to

calculate the gradient of the function for each iteration

18
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1.9.2 Stochastic gradient descent

Using the convex function in gradient descent algorithms ensures finding an optimal minimum without

getting trapped in a local minimum. Depending upon the values of the function and learning rate or

step size, it may arrive at the optimum value in different paths and manners .

1.9.3 Learning Rate Decay

Adjusting the learning rate increases the performance and reduces the training time of stochastic gradient

descent algorithms. The widely used technique is to reduce the learning rate gradually, in which we can

make large changes at the beginning and then reduce the learning rate gradually in the training process.

This allows fine-tuning the weights in the later stages.

1.9.4 Dropout

The overfitting problem in deep neural networks can be addressed using the drop out technique. This

method is applied by randomly dropping units and their connections during training [9]. Dropout

offers an effective regularization method to reduce overfitting and improve generalization error. Dropout

gives an improved performance on supervised learning tasks in computer vision,computational biology,

document classification, speech recognition .

1.9.5 Max-Pooling

In max-pooling a filter is predefined, and this filter is then applied across the nonoverlapping sub-regions

of the input taking the max of the values contained in the window as the output. Dimensionality, as well

as the computational cost to learn several parameters, can be reduced using maxpooling.

1.9.6 Batch Normalization

Batch normalization reduces covariate shift, thereby accelerating deep neural network. It normalizes the

inputs to a layer, for each mini-batch, when the weights are updated during the training. Normalization

stabilizes learning and reduces the training epochs. The stability of a neural network can be increased

by normalizing the output from the previous activation layer .

1.9.7 Skip-gram

Word embedding algorithms can be modeled using Skip-gram. In the skip-gram model, two vocabulary

terms share a similar context; then those terms are identical. For example, the sentences ”cats are

mammals” and ”dogs are mammals” are meaningful sentences which shares the same meaning ”are

mammals.” Skip-gram can be implemented by considering a context window containing n terms and

train the neural network by skipping one of this term and then use the model to predict skipped term .
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1.9.8 Transfer learning

In transfer learning, a model trained on a particular task is exploited on another related task. The

knowledge obtained while solving a particular problem can be transferred to another network, which

is to be trained on a related problem. This allows for rapid progress and enhanced performance while

solving the second problem

Method Description Merits Demerits

Backpropagation is also used in optimiza-

tion problems

calculatorfor gradient sensitive to noisy data

stochastic gradient de-

scent

To find optimal minimum

in optimization problems

Avoids trapping in local

minimum

Longer convergence

time, computationally

expensive

Learning rate decay Reduce learning rate grad-

ually

Increases performance and

reduces training time

Computationally expen-

sive

Dropout Drops out units / connec-

tion during training

Avoids overfitting Increases number of itera-

tions required to converge

Max pooling Applies a max filter Reduces dimension and

computational cost

Considers only the maxi-

mum element which may

lead to unacceptable re-

sult in some cases

batch normalization Batch-wise normalization

of input to a layer

Reduces covariant shift,

increases stability of the

network, network trains

faster, allows higher learn-

ing rates

Computational overhead

ring training

skip gram Used in word embedding

algorithms

Can work on any raw text

and requires less memory

Softmax function is com-

putationally expensive,

and training time is high

transfer learning Knowledge of first model

is transferred to second

problem

Enhances performance,

rapid progress in training

of second problem

Works with similar prob-

lems only

Table 1.1: Comparison of deep learning methods.[45]

1.10 frameworks deep learning

A deep learning framework [45] helps in modeling a network more rapidly without going into details

of underlying algorithms. Some deep learning frameworks are discussed below and are summarized in

Table 2.

1.10.1 TensorFlow

TensorFlow, developed by Google Brain, supports languages such as Python, C++, and R. It enables us

to deploy our deep learning models in CPUs as well as GPUs .
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1.10.2 Keras

Keras is an API, written in Python and run on top of TensorFlow. It enables fast experimentation. It

supports both CNNs and RNNs and runs on CPUs and GPUs .

1.10.3 Py Torch

Py Torch can be used for building deep neural networks as well as execut ing tensor computations.

PyTorch is a Python-based package that provides tensor computations. PyTorch delivers a framework

to create computational graphs.

1.10.4 Caffe

Caffe Yangqing Jia developed Caffe, and it is open source as well. Caffe stands out from other frameworks

in its speed of processing as well as learning from images. Caffe Model Zoo framework facilitates us to

access pre-trained models, which enable us to solve various problems effortlessly .

1.10.5 Deeplearning4j

Deeplearnig4j is implemented in Java, and hence, it is more effi cient when compared to Python. The

ND4J tensor library used by Deeplearning4j

Deep Learning

Framework

Release Year Language written

in

CUDA supported Pre-trained models

TensorFlow 2015 C++ Yes Yes

Keras 2015 Python Yes Yes

PyTorch 2016 Python, C Yes Yes

Caffe 2013 C++ Yes Yes

Deeplearning4j 2014 C++, Java Yes Yes

Table 1.2: Comparison of Deep Learning Frameworks.[45]

1.11 The Applications of Deep Learning

We have many areas of application in deep learning, including the following:

1.11.1 Automatic Speech Recognition (ASR)

Automatic Speech Recognition (ASR) is a task used to convert speech waves or signals to its mapping

sequence of words or units using a determined algorithm . These sequences are represented like the

human transcription. The observations of speech vectors are used for representing input of speech audios

.[71]
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Figure 1.25: DL in an audio recording [87]

1.11.2 Game Playing

Deep learning has come a long way since its inception. As the capacity and capability of the concept

is larger now than ever before, the benefits of deep learning have found their way into games as well.

This can be seen in both single player games, whose outcomes are primarily used for research purposes

to determine how well a system can adapt to a situation when a set of constraints is present, as well as

in multiplayer games, where a player is able to play against the computer without the need for another

human to be present.[4]

Figure 1.26: Game Playing [11]

1.11.3 Autonomous Driving

self-driving cars are autonomous decision-making systems that process streams of observations coming

from differenton-board sources, such as cameras, radars, LiDARs. where sensory information is directly

mappedto control outputs. The components of the modular pipeline can be designed either based on AI

and deep learningmethodologies, or using classical non-learning approaches.[43]

1.11.4 Chatbots

Chatbots are applied in many different domains. As far as Education and Research go. Deep Learning

application have been used in these fields. The choice seems justified by the fact that chatbots created

for ducational purposes are often aimed at providing specific information (such as class schedules) or

educational material.[28]
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1.11.5 Image captioning

Image captioning is a process of automatically describing an image with one or more natural language

sentences. In recent years, image captioning has witnessed rapid progress, from initial template-based

models to the current ones, based on deep learning. [47]

1.11.6 News Aggregation and Fake News Detection

Spreading of misinformation on the web nowadays represents a serious issue, as their influence on peoples

opinions may be significant. Fake news represents a specific type of misinformation. While its detection

was mostly being performed manually in the past, automated methods using machine learning and

related fields became more critical.[51]

1.11.7 Text to Speech

This is the inverse of automatic speech recognition. In other words, the input is text and the output is

an audio file. In this case, the output is much longer than the input. While it is easy for humans to

recognize a bad audio file, this is not quite so trivial for computers.[89]

1.11.8 Machine Translation

Unlike the case of speech recognition, where corresponding inputs and outputs occur in the same order

(after alignment), in machine translation, order inversion can be vital. In other words, while we are

still converting one sequence into another, neither the number of inputs and outputs nor the order of

corresponding data examples are assumed to be the same. Consider the following illustrative example

of the peculiar tendency of Germans to place the verbs at the end of sentences.[89]

1.12 Conclusion

Deep learning is continuously evolving faster; still, there are a number of problems to deal with and can

be solved using deep learning. Even though a full understanding of the working of deep learning is still a

mystery, we can make machines smarter using Deep learning, sometimes even smarter than human.[45]
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Chapter 2
Software vulnerability detection

2.1 Introduction

Software vulnerability remains a serious problem among industry players in the world today because

of the numerous security related challenges it possess to end-users and stakeholders; there has been an

increased reportage on several security vulnerabilities with high devastating effects on customers; this has

brought to the public domain the need to focus on software vulnerability detection tools and methods.

Although previous studies have proposed various methods and tools that can be used in reducing or

eliminating software vulnerability.[23]

2.2 Security objective

2.2.1 Confidentiality

Confidentiality is the prevention of the disclosure of secret or sensitive information to unauthorized users

or entities.[54]

2.2.2 Integrity

Integrity is the prevention of unauthorized modification of protected information without detection.[54]

2.2.3 Authentication

Authentication is process of validating the user‘s identity. Users are identified using different authenti-

cation mechanisms.[53]

2.2.4 Non-Repudiation

non-repudiation is the ability to protect against denial by one of the entities involved in an action of

having participated in all or part the action.[78]
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2.2.5 Availability

Availability is the provision of services and systems to legitimate users when requested or needed.Availability

is also a goal in providing reliable, dependable or fault-tolerant systems except that availability.[54]

2.3 Terminology

2.3.1 Vulnerability

A flaw in a software, firmware, hardware, or service component resulting from a weakness that can

be exploited, causing a negative impact to the confidentiality, integrity, or availability of an impacted

component or components.[20]or is a property of system security requirements, design, implementation,

or operation that could be accidentally triggered or intentionally exploited and result in a security failure

.[62]

National Institute of Standards and Technology (NIST): Weakness in an information system, system

security procedures, internal controls, or implementation that could be exploited or triggered by a threat

source.

2.3.2 Attack(Exploit)

An exploit is a technique that takes advantage of a vulnerability to cause a failure. An attack is a

specific application of an exploit [5]. In other words, an attack is an action (or sequence of actions) that

takes advantage of vulnerability [62]; or An attack is a specific instance of a threat. It involves detailed

descriptions of the system, the vulnerabilities exploited, the attack path and the assets attacked.[54]

2.3.3 Threat

A threat is any action that can damage an asset, or cause a security breach. For example, there are

disclosure threats, modification threats and denial of service threats, which threaten the main security

goals of protecting confidentiality, integrity and availability, respectively.[54] Anything or anyone that

has the ability or desire to exploit a vulnerability.[79]

2.3.4 Software

is a set of programs [5] that instructs the computer about the tasks to be performed. Software tells

the computer how the tasks are to be performed or hardware carries out these tasks. Different sets of

software can be loaded on the same hardware to perform different kinds of tasks.

Software can be broadly classified into three categories

1. System Software.

2. Application Software.

3.Programming Software[6]

25



CHAPTER 2. SOFTWARE VULNERABILITY DETECTION

Figure 2.1: Types Of Software[6]

2.3.5 Counter measure

A countermeasure is a defense against an attack. The term indicates the reactive stance of security

measures in the past: after an attack occurs.[54]

2.3.6 Risk

The intersection between assets, vulnerabilities, and threats. Risk is the amount an asset’s owner would

suffer if a threat exploited an asset’s vulnerability.[79]

risk = threat * vulnerability/countermeasure

2.4 The Open Web Application Security Project (OWASP) Top

Ten

2.4.1 What is the OWASP?

The Open Web Application Security Project

(OWASP) is an open community dedicated to

enabling organizations to develop, purchase, and

maintain applications and APIs that can be

trusted.[14]

2.4.2 Top Ten 2021 List :

The OWASP Top 10 [65] is a list of the 10 most

important security risks affecting web applications. It is revised every few years to reflect industry and

risk changes. The list has descriptions of each category of application security risks and methods to

remediate them. The latest version of the OWASP Top 10 list is published(2021) are the following:
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Figure 2.2: Changes in Top Ten Risks for 2021 .[65]

2.4.2.1 A01:2021-Broken Access Control

At its core, Broken Access Control is simply a scenario in which attackers can

access, modify, delete or perform actions outside an application or systems’

intended permissions. Many vulnerabilities can be classified as a form of

Broken Access Control, such as when normal users are able to access admin-

only features

by changing parameters in a URL, viewing or modifying another

user’s data or privilege escalation.[81]

2.4.2.2 A02:2021-Cryptographic Failures

As per the OWASP cryptographic failure definition (2021), it’s a symptom

instead of a cause. This failure is responsible for the exposure/leaking of data

of critical and sensitive nature to ill-intended resources/people. Missing out

on safeguarding such data leads to theft, public listing, breaches, and other

problems.[84]

2.4.2.3 A03:2021-Injection

Injections are amongst the oldest and most dangerous attacks aimed at web

applications and can lead to data theft, data loss, loss of data integrity,

denial of service, as well as full system compromise. The primary reason for

injection vulnerabilities is usually insufficient user input validation.[56]

2.4.2.4 A04:2021-Insecure Design

is a new category for 2021, with a focus on risks related to design flaws.

If we genuinely want to “move left” as an industry, it calls for more use

of threat modeling, secure design patterns and principles, and reference

architectures.[65]

2.4.2.5 A05:2021–Security Misconfiguration
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One of the widely encountered vulnerabilities of web applications is security

misconfiguration , which can happen at any level of an application stack,

including the un-derlying platform, web server, database server, frame-

work,and business logic code. According to the report by Open Web Application Security Project

(OWASP)

,security misconfiguration, This vulnerability is listed as one of

the top ten risks (ranked number 5 in 2021) which could potentially

lead to risks ranging from unauthorized accessto some

system data or functionality to a complete system compromise.[29]

2.4.2.6 A06:2021–Vulnerable and Outdated Components

A software component is part of a system or application that extends the

functionality of the application, such as a module, software package, or API.

Component-based vulnerabilities occur when a software component is unsup-

ported, out of date, or vulnerable to a known exploit. You may inadvertently

use vulnerable

software components in production environments, posing a threat

to the web application.[1]

2.4.2.7 A07:2021–Identification and Authentication Failures

Previously known as Broken Authentication, this category slid down from

the second position and now includes Common Weakness Enumerations

(CWEs) related to identification failures. Notable CWEs included are CWE-

297: Improper Validation of Certificate with Host Mismatch, CWE-287: Im-

proper Authentication,

and CWE-384: Session Fixation.[81]

2.4.2.8 A08:2021–Software and Data Integrity Failures

A new category for 2021 focuses on making assumptions related to soft-

ware updates, critical data, and CI/CD pipelines without verifying integrity.

One of the highest weighted impacts from Common Vulnerability and Ex-

posures/Common Vulnerability Scoring System(CVE/CVSS) data. Notable

Common

Weakness Enumerations (CWEs) include CWE-829: Inclusion of

Functionality from Untrusted Control Sphere, CWE-494:

Download of Code Without Integrity Check, and CWE-502:

Deserialization of Untrusted Data.[81]

2.4.2.9 A09:2021–Security Logging and Monitoring Failures

Returning to the OWASP Top 10 2021, this category is to help detect,

escalate, and respond to active breaches. Without logging and monitoring,
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breaches cannot be detected. Insufficient logging, detection, monitoring, and

active response occurs any time.[81]

2.4.2.10 A10:2021–Server-Side Request Forgery (SSRF)

SSRF flaws occur whenever a web application is fetching a remote resource

without validating the user-supplied URL. It allows an attacker to coerce

the application to send a crafted request to an unexpected destination, even

when protected by a firewall, VPN, or another type of network access control

list (ACL).[81]

2.5 National vulnerability database (NVD)

The NVD is the U.S. government repository of standards based vulnerability management data rep-

resented using the Security Content Automation Protocol (SCAP). This data enables automation of

vulnerability management, security measurement, and compliance. The NVD includes databases of se-

curity checklist references, security-related software flaws, misconfigurations, product names, and impact

metrics.[61]

2.5.1 Common Vulnerabilities and Exposures (CVE)

A unique, alphanumeric identifier assigned by the CVE Program. Each identifier references a specific

vulnerability. A CVE ID enables automation and multiple parties to discuss, share, and correlate infor-

mation about a specific vulnerability, knowing they are referring to the same thing.[20]

Figure 2.3: CVE[20]

2.6 SANS Top 25 Security Vulnerabilities In Software Applica-

tions

2.6.1 SANS

The word SANS [76] is not just an ordinary dictionary word rather it stands for SysAdmin, Audit,

Network, and Security. In this tutorial, we will learn about the SANS top 20 security weaknesses we can
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find in software programs and what we can do to mitigate it.

2.6.2 What the term CWE means?

The Common Weakness Enumeration (CWE) is a community accepted list of software and hardware

vulnerabilities with identification code assigned for each weakness. The goal is to identify various flaws

in software and hardware to be able to fix and mitigate all those flaws.

2.6.3 The CWE Top 25

Below is a brief listing of the weaknesses in the 2021 CWE Top 25 :
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Rank ID Name Score 2020 Rank

Change

[01] CWE-787 Out-of-bounds Write 65.93 +1

[02] CWE-79 Improper Neutralization of Input During Web Page Gener-

ation (’Cross-site Scripting’)

46.84 -1

[03] CWE-125 Out-of-bounds Read 24.9 +1

[04] CWE-20 Improper Input Validation 20.47 -1

[05] CWE-78 Improper Neutralization of Special Elements used in an OS

Command (’OS Command Injection’)

19.55 +5

[06] CWE-89 Improper Neutralization of Special Elements used in an

SQL Command (’SQL Injection’)

19.54 0

[07] CWE-416 Use After Free 16.83 +1

[08] CWE-22 Improper Limitation of a Pathname to a Restricted Direc-

tory (’Path Traversal’)

14.69 +4

[09] CWE-352 Cross-Site Request Forgery (CSRF) 14.46 0

[10] CWE-434 Unrestricted Upload of File with Dangerous Type 8.45 5

[11] CWE-306 Missing Authentication for Critical Function 7.93 +13

[12] CWE-190 Integer Overflow or Wraparound 7.12 -1

[13] CWE-502 Deserialization of Untrusted Data 6.71 +8

[14] CWE-287 Improper Authentication 6.58 0

[15] CWE-476 NULL Pointer Dereference 6.54 -2

[16] CWE-798 Use of Hard-coded Credentials 6.27 +4

[17] CWE-119 Improper Restriction of Operations within the Bounds of a

Memory Buffer

5.84 -12

[18] CWE-862 Missing Authorization 5.47 +7

[19] CWE-276 Incorrect Default Permissions 5.09 +22

[20] CWE-200 Exposure of Sensitive Information to an Unauthorized Ac-

tor

4.74 -13

[21] CWE-522 Insufficiently Protected Credentials 4.21 -3

[22] CWE-732 Incorrect Permission Assignment for Critical Resource 4.2 -6

[23] CWE-611 Improper Restriction of XML External Entity Reference 4.02 -4

[24] CWE-918 Server-Side Request Forgery (SSRF) 3.78 +3

[25] CWE-77 Improper Neutralization of Special Elements used in a

Command (’Command Injection’)

3.58 +6

Table 2.1: The CWE Top 25.[75]

1.CWE-787: Out-of-bounds Write Error [75]

The software writes data past the end, or before the beginning, of the intended buffer.

The following is an example of code that may result in a buffer underwrite, if find() returns a negative

value to indicate that ch is not found in srcBuf:
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Figure 2.4: 2-CWE-125[75]

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where condition.

2. CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-site

Scripting’)[75]

The software does not neutralize or incorrectly neutralizes user-controllable input before it is placed in

output that is used as a web page that is served to other users.

Figure 2.5: CVE-79[76]

3.CWE-125:Out-of-bounds Read( Out-of-bounds Read Error)

The software reads data past the end, or before the beginning, of the intended buffer.[75]

4.CWE-20:Improper Input Validation( Unvalidated Input Error )[75]

The product receives input or data, but it does not validate or incorrectly validates that the input has

the properties that are required to process the data safely and correctly. The below images show that

a good application should not accept script or command as an input. If such inputs are not properly

sanitized, the application will process it thinking it’s a valid request.

This example demonstrates a shopping interaction in which the user is free to specify the quantity of

items to be purchased and a total is calculated.

Figure 2.6: CWE-20[75]

The user has no control over the price variable, however the code does not prevent a negative value from

32



CHAPTER 2. SOFTWARE VULNERABILITY DETECTION

being specified for quantity. If an attacker were to provide a negative value, then the user would have

their account credited instead of debited.

5.CWE-78: Improper Neutralization of Special Elements used in an OS Command (’OS

Command Injection’)

The software constructs all or part of an OS command using externally-influenced input from an upstream

component, but it does not neutralize or incorrectly neutralizes special elements that could modify the

intended OS command when it is sent to a downstream component.[75]

The example below reads the name of a shell script to execute from the system properties. It is subject

to the second variant of OS command injection.

Figure 2.7: CWE-78[76]

If an attacker has control over this property, then they could modify the property to point to a dangerous

program.[75]

6.CWE-89: Improper Neutralization of Special Elements used in an SQL Command (’SQL

Injection’)[75]

The software constructs all or part of an SQL command using externally-influenced input from an

upstream component, but it does not neutralize or incorrectly neutralizes special elements that could

modify the intended SQL command when it is sent to a downstream component.

Example :

In 2008, a large number of web servers were compromised using the same SQL injection attack string.

This single string worked against many different programs. The SQL injection was then used to modify

the web sites to serve malicious code.

7.CWE-416:Use After Free( Free Memory Error)[75]

Referencing memory after it has been freed can cause a program to crash, use unexpected values, or

execute code.

The following code illustrates a use after free error:

Figure 2.8: CWE-416[75]

When an error occurs, the pointer is immediately freed. However, this pointer is later incorrectly used

in the logError function.

8.CWE-22:Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
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or Directory Traversal

The software uses external input to construct a pathname that is intended to identify a file or directory

that is located underneath a restricted parent directory, but the software does not properly neutralize

special elements within the pathname that can cause the pathname to resolve to a location that is outside

of the restricted directory.[75] Example: In the example below, the path to a dictionary file is read from

a system property and used to initialize a File object.

Figure 2.9: CWE-22[75]

However, the path is not validated or modified to prevent it from containing relative or absolute path

sequences before creating the File object. This allows anyone who can control the system property to

determine what file is used. Ideally, the path should be resolved relative to some kind of application or

user home directory.[75]

8.CWE-190:Integer Overflow or Wraparound( Integer Overflow Error)[75]

The software performs a calculation that can produce an integer overflow or wraparound, when the logic

assumes that the resulting value will always be larger than the original value. This can introduce other

weaknesses when the calculation is used for resource management or execution control. Example :

Integer overflows can be complicated and difficult to detect. The following example is an attempt to

show how an integer overflow may lead to undefined looping behavior:

Figure 2.10: CWE-190[75]

In the above case, it is entirely possible that bytesRec may overflow, continuously creating a lower number

than MAXGET and also overwriting the first MAXGET-1 bytes of buf.

9.CWE-352:Cross-Site Request Forgery (CSRF)

The web application does not, or can not, sufficiently verify whether a well-formed, valid, consistent

request was intentionally provided by the user who submitted the request.[75]

The below image shows an attacker inducing a user to perform actions that they do not intend to

perform.[76]
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Figure 2.11: 2-CWE-352[76]

10.CWE-434:Unrestricted Upload of File with Dangerous Type

The software allows the attacker to upload or transfer files of dangerous types that can be automatically

processed within the product’s environment.[75]

The following program shows an upload of a PHP file. The file type was not verified and validated

before uploading within the webroot directory. As a result of this weakness, an attacker may upload an

arbitrary PHP file and execute it by directly accessing the uploaded file.[76]

Figure 2.12: 1-CWE-434[76]

Figure 2.13: 2-CWE-434[76]
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2.7 Vulnerability Detection methods

2.7.1 Fuzzing

Fuzzing [26] is a method to discover software bugs and vulnerabilities by automatic test input generation

which has found tremendous recent interest in both academia and industry.Fuzzing comes in the form

of several techniques.

• symbolic execution,which enables a particularly effective approach to fuzzing by systematically

enumerating thepaths of a program.

• random input generation, which generates largeamounts of inputs per second with none or minimal

program analysis overhead.

2.7.2 Web Application Scanner

A web application scanner is an automated program that examines web applications for security vul-

nerabilities . In addition to searching for web application specific vulnerabilities, the tools also look for

evidence of software coding errors, such as unchecked input strings and buffer overflows.

Some commercial web application scanners are AppScan , WebInspect , Hailstorm , Acunetix WVS

,WebKing.

commercial web application scanners can also be used in detecting software vulnerability, they are;

AppScan WebInspect NTOspider Some open source web application [62]

2.7.3 Static Analysis Techniques

Automated static analysis vocabulary includes the following terms: false positives, true positives and

false negatives. A false positive occurs when a tool alerts to the presence of a nonexistent fault. A false

negative occurs when a fault exists, but it is not detected due to the fact that static analysis tools are

not perfectly accurate and may not detect all errors. Examples of automated static analysis tools are

FindBugs , PMD and CheckStyle . The disadvantage of these tools is that they produce a high rate

of false positives[37], Many static analysis approaches have been introduced in various research aims at

detecting BOF vulnerabilities .

These approaches can be classify to these six main areas inference technique analysis sensitivity Analysis

granularity soundness completeness language.[23]

2.7.4 Brick

Binary Run-time Integer Based Vulnerability Checker which detects integer based vulnerability at run-

time. It is very effective approach which result gives low false positive and negative. BRICK process

involve three stages: its convert the binary code to intermediate representation VEX on Valgrind (dy-

namic binary instrumentation framework Valgrind intercept integer related statements at run-time, and

record the necessary information detect and locate vulnerability with a set checking scheme. [23]
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2.7.5 CRED: C Range Error Detector

One of the vulnerability detecting approach that is not widely use is the Dynamic Buffer Overrun

Detector. This is because its lack the power to protect against all buffer overrun attacks, break existing

code and also produce too high overhead. CRED: C Range Error Detector approach corrects the above

in- competencies and finds all buffer overruns attacks. CRED proved effective in detecting buffer overrun

attacks on programs with known vulnerabilities, and is the only tool found to guard against tested 20

different buffer overflow attacks.[23]

Figure 2.14: Performance Comparison of Vulnerability Detection Methods.[23]

2.8 Related Work

We discuss related work on vulnerability detection using deep learning techniques :

2.8.1 VUDENC: Vulnerability Detection with Deep Learning on a Natural

Code base for Python

2.5.1.1 Principle

The main idea of this work [86] is to present a deep learning-based vulnerability detection tool that

automatically learns vulnerable code features from the large real-world Python codebase. In this article,

we present Vudenc (Vulnerability Detection with Deep Learning on a Natural Codebase), a deep learning-

based vulnerability detection tool that automatically learns features of vulnerable code from a large and

real-world Python codebase. Vudenc applies a word2vec model to identify semantically similar code

tokens and to provide a vector representation. A network of long-short-term memory cells (LSTM) is

then used to classify vulnerable code token sequences at a fine-grained level, highlight the specific areas in

the source code that are likely to contain vulnerabilities, and provide confidence levels for its predictions.
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2.5.1.2 Method

In this work: (Vulnerability Detection with Deep Learning on a Natural Codebase), a deep learning-

based vulnerability detection tool that automatically learns features of vulnerable code from a large and

real-world Python codebase. Vudenc applies a word2vec model to identify semantically similar code

tokens and to provide a vector representation. A network of long-short-term memory cells (LSTM) is

then used to classify vulnerable code token sequences at a fine-grained level, highlight the specific areas in

the source code that are likely to contain vulnerabilities, and provide confidence levels for its predictions.

Figure 2.15: Overview of the Vudenc approach

2.5.1.3 Results

To evaluate Vudenc, he used 1,009 vulnerability-fixing commits from different GitHub repositories that

contain seven different types of vulnerabilities (SQL injection, XSS, Command injection, XSRF, Remote

code execution,Path disclosure, Open redirect) for training. In the experimental evaluation, Vodenc

achieves a recall of 78%-87%, a precision of 82%-96%, and an F1 score of 80%-90%. Vudenc’s code,

the datasets for the vulnerabilities, and the Python corpus for the word2vec model are available for

reproduction.

2.8.2 VulDeePecker: A Deep Learning-Based System for Multiclass Vulner-

ability Detection

2.5.2.1 Principle

The main idea of this work [90] is they propose the deep learning-based system for multi class vulnera-

bility detection, ubbed VulDeePecker. The key insight underlying VulDeePecker is the concept of code

attention, which can capture information that can help pinpoint types of vulnerabilities, even when the

samples are small.[90]
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Figure 2.16: Overview of VulDeePecker’s three modules ( parser, vector representation extractor, and

detector) used in the training and detection phases.

2.5.2.2 Method

1)Dataset Preparation

- sources of vulnerabilities are Software Assurance Reference Dataset (SARD) and National Vulnerability

Database (NVD) .

- SARD provides the statements containing the vulnerability and the vulnerability type in CWE-ID

(Common Weakness Enumeration IDentifier).

-NVD contains a large number of vulnerabilities in production software and provides the software prod-

ucts affected, the vulnerable versions, the CWE-IDs, and the patch files.

2)Training Phase

Step I: for generating code gadgets from training programs, we use the open source C/C++ code analysis

tool.

Step II: they Collect all data from (SARD and NVD) easily available from the dataset.

Step III: and Step IV: for each code gadget, they wrote an automated program based on lexical analysis

to analyze each token in the data.

Step V :Step VI: they use the BLSTM as a buildingblock for constructing µVulDeePecker neural network

architecture.

- implementation of the model uses Keras,They use lexical analysis to generate a set of program tokens.

3) Detection Phase they perform 5 steps for target programs, of which the first 4 steps are the same as

Step I, III, IV,V in the training phase.

In Step VI’, they input the code gadget vectors and their corresponding code attention vectors to be

tested into the trained µVulDeePecker model.
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Figure 2.17: The µVulDeePecker neural network architecture.

2.5.2.3 Results

Research Question (RQ): • RQ1: how effective is µVulDeePecker for multiclass vulnerability detection?

Figure 2.18: 5. Experimental comparison between the effectiveness of µVulDeePecker and

VulDeePecker+ with respect to each of the 40 vulnerability types.

2.8.3 SySeVR: A Framework for Using Deep Learning to Detect Software

Vulnerabilities

2.5.3.1 Principle

The main idea of this work [55] is that Deep learning is successful in image processing and other appli-

cations. In particular, inspired by the area proposal concept, in image processing inspires us to adapt it

to the context of vulnerability detection. However, the problem vulnerability detection is very different

from the problem image processing because the latter has natural structural representations.
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2.5.3.2 Method

- they propose using vulnerability syntax characteristics to identify pieces of code as initial candidates for

vulnerability detection. - Vulnerability dataset.vulnerability dataset from two sources:NVD and SARD.

SARD contains production, synthetic and academic programs (also known as test cases), which are

categorized as “good” (having no vulnerabilities), “bad” ( having vulnerabilities), and “mixed” ( having

vulnerabilities whose patched versions are also available). - For NVD, he focus on 19 popular C/C++

open source

Figure 2.19: SySeVR: a framework for using deep learning to detect vulnerabilities

2.5.3.3 Results

they presented the SySeVR framework for using deep learning to detect vulnerabilities. Based on a large

dataset of vulnerability they collected, they drew a number of insights,including an explanation on the

effectiveness of deep learning in vulnerability detection. Moreover, they detected 15 vulnerabilities that

were not reported in the NVD. Among these 15 vulnerabilities, 7 are unknown and have been reported to

the vendors, and the other 8 have been “silently” patched by the vendors when releasing newer versions.

2.9 Conclusion

Vulnerabilities of the program We have attempted to provide a list of vulnerabilities, starting with the

first Top Ten :2021 List and the National Vulnerability Database (NVD), We have explained old methods

for detection vulnerabilities, Highlight lessons learned in related work regarding vulnerability detection.

For this work, we aim to apply the deep learning to detection vulnerabilities.
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Chapter 3
Design

3.1 Introduction

In the previous chapters, we presented a theoretical study on vulnerability detection and deep learning.

In this chapter, we will put this concept into practice and propose a vulnerability detection system based

on the source code of C/C++ functions and deep learning based on CNN and LSTM. It is organized as

follows: In the first part, we describe the outline of our proposed model. In the second part, we describe

in detail the design of the proposed model giving the details of each module of the design. We then

define the learning method used.

3.2 General system design

In this next title, we will broadly describe our system and give the shape of its structure, such as its

components and its purpose.

3.2.1 System objective

The objective of this application is the discovery of vulnerable source code of C/C++ functions from

code analysis enter and to extract the characteristic points from the latter compared with the real code

of the vulnerabilities published in national vulnerability NVD database, interpret and recognize the code

to detect a vulnerable state or not. For this, we will use a learning system using a code base.

3.2.2 Architecture of the system

In general, we can represent the structure of the system as follows:
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Figure 3.1: Architecture of the system.

3.3 Detailed system design

In the following, we will detail each of the steps described. The general architecture of the CNN model

is as follows:

Figure 3.2: Architecture of the CNN model.

3.3.1 Data collection

data collection is the first stage of our system. It allows us to acquire data from the real world, and to de-

sign a database of examples (learning examples), which will be used in the following steps. we will collect

as much data as possible, which is a collection of vulnerable c/c++ function code leading to exploitation

by attackers and not vulnerable code. The process of collecting this dataset was difficult as most datasets

were not free and did not have public access, but we managed to find one on the GitHub(github.com)

[10]platform, which didn’t contain much data, just a satisfying amount. We encountered a problem of

unbalanced data and it was addressed by collecting data from the real data in GitHub (github.com) [18]

to make the data balanced as shown in the following diagram :

43



CHAPTER 3. DESIGN

Figure 3.3: Distribute our data with/without unbalanced data problem.

Dataset Dataset size Total entries Vulnerable code en-

tries

Non-vulnerable

code entries

unbalanced data 1,56 Mo +3,63 Ko 618 code 46 code 572 code

balanced data 5,83 Mo +7,52 Ko 1283 code 698 code 585 code

Table 3.1: Metadata of the Collected Data set.

The dataset contains two columns, a sentence and a Label column. The Label column value 1 means

the c/c++ code is vulnerable and 0 means the data is not vulnerable.

3.3.2 Data preparation

In this component we will try to train our system, which in turn learns in the field of classification and

division of applications through specific data, where the algorithm Tfidf Vectorizer codes vulnerable and

non-vulnerable c/c++ into a matrix to easily identify and manipulate, then preserve a model and if it

is high resolution, use it or not reshape it using other more accurate and efficient parameters.

TFIDFVectorization

In our system we have chosen to use TFIDFVectorization as a data vectorization technique, in which we

strive to extract features from our textual dataset.

TfidfVectorizer: a vectorizer that uses the “TF-IDF” tune scale of frequencies by counting words in each

text to focus on meaningful spam messages.[57]
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Figure 3.4: Example of TfidfVectorizer.

3.3.3 Classification and Training

In this part we will try to train our system, which in turn learns in the field of order classification and

division from specific data, then saves a model and if it has high accuracy, we exploit it or not reform it

with other parameters. We chose to use CNN (convolutional neural network) to train our model, which

provided us with better accuracy compared to other machine learning algorithms such as LSTM and

others, the following figure shows the steps of training.

Figure 3.5: Train the Model.

We will test our simple system, by testing our model and we calculate the accuracy. In the condition-

tested group our model did not see it and the result was more than 75%. Thus, we can say that our

model is efficient , and we either run it or retreat another way by using other good metrics and training

again.
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3.3.4 Use of the Model

We can use our saved model, as follows:

Figure 3.6: Use of the Model.

We take a text (source code in c/c++....) after processing it and give it to the model we previously

trained which it considers as inputs and the form will do it and classify it categorize vulnerable code or

not vulnerable.
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3.4 Design by UML

3.4.1 Sequence Diagram for ”Inscription ”

Figure 3.7: Sequence Diagram for ”Inscription ”.
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3.4.2 Sequence diagram ”authenticate”

Figure 3.8: Sequence Diagram for ”authenticate ”.

3.5 Conclusion

In this chapter, we presented the design of our system, where we presented the global design, and also

detailed the measures we have taken to access our system, and we detailed the components used and the

steps of base (data collection, data preparation and training).
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Chapter 4
Implementation and results

4.1 Introduction

In this chapter, we will present the working environment, the programming language, and the tools we

used to build the system. Thereafter we will explain all the experiments that we have applied to the

proposed method and the results obtained.

4.2 Environment and tools

The following section presents the working environment, programming languages and software tools used

in development.

4.2.1 Python

Is an object-oriented, inter-preted, mid-level programming

language that is easy tolearn and use , and is now consid-

eredamong the top programming languages to learn .It is

free to use, has cross-platform compatibility (Mac,Windows,

Linux, Ubuntu) and has low system require-ments, giving

any individual the opportunity to code inPython. [72]

Google Colab

Google Colab in short. Google Colab is a free

Jupyter notebook environment that requires no

setup and runs entirely in the cloud. With Google

Colab, it is possible to write and execute code,

save and share our analyses,and access powerful

computing resources, all for free from the browser.

[44]
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why use google colab ?

Google has made Google Colaboratory which is the online framework where one can write, execute Deep

Learning and Machine Learning codes. Here, different versions of python and different runtime environ-

ments are available. Also, it can download bigger datasets directly from the servers to google drive at

very high speed. You can mount your drive with Google Colab and it can fetch the required file after your

authentication. How long the amount of memory and computation provided by Google is available for

user is also discussed. It provides very high-speed computations and then saves the Learning model.[60]

4.2.2 WAMP(Windows, Apache, MySQL, PHP)

WAMP is an acronym for(Windows, Apache,MySQL,

PHP) is a web development package in-tended for

Windows OS.35 . [67]

This stack provides developer an operating sys-

tem, Web server, database and Web scripting soft-

ware. The AMP stacks are also available for Linux

and Macintosh operating systems, known as LAMP

and MAMP respectively.[21]

4.2.3 TensorFlow

TensorFlow is also a library (open-source) for

various computer programming with a range

of variety of tasks. TensorFlow is the free

representative mathematical library, which was

used for ML functions mainly neural networks .

[58]

Why Use TensorFlow ?

The TensorFlow platform was released in November 2015, in a climate of stiff competition from well-

established deep learning and ML packages such as Torch and Theano. [The performance comparisons

between the packages goes beyond the scope of this piece). The platform has been undergoing constant

improvements since its release, thanks in part to a nascent community of contributors. TensorFlow

packs quite a punch owing to its significant positive characteristics. Firstly, the package’s open source

nature makes it transparent, customizable, and extensible by the end user. Secondly, the documentation,

support is rich and elaborate, which is a critical factor in accelerating user adoption. Lastly, the fact

that the fact that the package has been backed by Google.

[77]

4.2.4 Keras

Keras is a neural network library (open-source) and cod-

ing in Python programming language that able to run on

most of the high levels of Ten-sorFlow, Theano, or Mi-

crosoft Cognitive Toolkit.Usually, Keras developed to fa-
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cilitate rapid ex-perimentation using deep neural-networks

withuser-approachable, modu-lar, and extensible. Keras li-

brary provides a higher-level approach, an extra impulsive

set of concepts that create it simple to develop DL based models irrespective use of computational back-

end. [58]

Why Use keras ?

Of the available deep learning libraries, Keras is the most popular among practitioners , which provides

users the ability to implement quickly, train, and test networks.[64]

Keras abstracts many of the complicated aspects of TensorFlow while still providing customizability and

ease of use. This combination makes Keras the first choice of many for deep learning applications. As a

result of its popularity and ease of use, Keras is the clear choice on which to build one end of the two-way

bridge.[64]

4.2.5 TfidfVectorizer

TfidfVectorizer: Each Fasta sequences of RdRP

was transformed with TfidfVectorizer method

with in sklearn module.TfidfVectorizer, Convert a

collection of raw documents to a matrix of TF-IDF

features.[52]

4.2.6 Tkinter

Tkinter provides Python applications with an

easy-to-program user interface. Tkinter supports

a collection of Tk widgets that support most ap-

plication needs. Tkinter is the Python interface

to Tk.developed by John Ousterhout, who was

originally at University of California at Berke-

ley and later at Sun Microsystems. Currently,

Tcl/Tk is developed and supported by the Scrip-

tics Corporation.[42]

Why Use Tkinter ?

* Python with Tkinter makes it simple to design graphical user interfaces.

* It gives the Tk GUI toolkit a rich object-oriented interface.

* It supports many controls in a GUI programme, such as buttons, labels, and text boxes.[83]

4.3 Data Structures

4.3.1 Data base

The following database was used. This database contains the users of the system.
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Figure 4.1: Users list.

4.3.2 Dataset Used

Dataset for CNN training

To train the CNN model, we used a GITHUB(github.com) database which was downloaded from the

website which is size(1.56MB+3.63KB) but we notice that this data is unbalanced data because number

of non vulnerable data is 572 code but vulnerable data is 46 code and we also added some addition for

balanced data through real code in another site and we split them into two types where the first type

contains 698 items which are 1 positive and 572 items which are 0 all negative and we enter them into

the CNN form for training we will display an image which is shown below.

Figure 4.2: vulnerable data set .

Figure 4.3: Non vulnerable data set .
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Figure 4.4: unbalanced data .

Figure 4.5: balanced data.

4.3.3 Training and Testing

Why Use CNN ?

Convolutional neural networks (CNNs) have interesting and widely varied architectures catering to the

requirement of learning features from structured data volumes. However, there are certain design con-

siderations common to all CNN architectures that enable us to craft correct implementations of the

architectures suited to our objectives. It is more than just mathematical calculations-it’s an art in itself!

Thus, in the present study, we’ll put our knowledge of CNNs and their distinct layers in practice by
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making use of Google’s open-source machine learning platform.

We built the layers of the sequential model as follows :

Figure 4.6: building layers.

We created the model and tested it with 20% of the dataset as follows :

Figure 4.7: Building layers.

Accuracy results : The method for calculating the accuracy is as follows : [73]

accuracy =
(Truepositive+ truenegative) ∗ 100

Totalknees
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The method for calculating the precision is as follows : [73]

Precision =
Truepositive

Truepositive+ FalsePositives

The method for calculating the The recall is as follows : [73]

Recall =
Truepositive

Truepositive+ Falsenegative

Figure 4.8: accuracy result(Model Accuracy,Model Loss)

Figure 4.9: Comparison accuracy result.
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Figure 4.10: Matrix Of CNN Model.

Matrix Description :

• case 0 (Non vulnerable) : Discover on 131 codes And fail to discover on 1 code

• case 1 (vulnerable) : Discover on 123 codes And fail to discover on 2 codes To access a good model,

we tested our dataset on LSTM and got the results below, which is not enough compared to our

model’s achievement of accuracy. Comparing results

Name of classifier CNN LSTM

Evaluation Accuracy 99% 97%

Table 4.1: CNN Empirical Results Analysis and LSTM for the same dataset

So the best model is CNN because it’s bigger than them in terms of accuracy, it’s convenient and

effective in detecting and preventing vulnerabilities.
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4.4 Our application interfaces

4.4.1 Interface ”Login”

This interface allows a pre-registered user to enter once they have written their email and password,As

shown in the following figure :

Figure 4.11: Login Interface.

4.4.2 Interface ”Registration”

This interface allows the server to register for the first time ,It allows you to enter the username and

requires email and password... As shown in the following figure :
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Figure 4.12: Registration Interface.

4.4.3 Main interface

Main interface that allows you to choose the file that will be processed, As shown in the following figure

:
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Figure 4.13: Testing phase.

4.5 Conclusion

In this chapter, we presented the implementation stages of our system, describing the environment and

development tools we used plus a database. The trained model was tested on the database, like we also

introduced graphical interfaces to our system. Finally, we have explained the experiences and results

obtained.
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General conclusion

Preventing vulnerabilities in software is not an easy task as hackers and attackers find new ways to break

protections what makes these techniques obsolete, researchers are considering applying machine learning

in the field of cyber security to provide more dynamic and robust protection for new types of attacks

that we have never seen before.

Machine learning is still a developing area in the field. of cyber security, and there is a lack of libraries,

frameworks and open source tools to use for issues related to threats and attacks. In this work, we have

proposed a method to prevent common and dangerous vulnerabilities that occur in C code . The results

were effective. While we struggled to collect data, it was not easy. To continue work on this project, we

could increase the size of the dataset by collecting more or even using the data already built to increase

efficiency.
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