

PEOPLES DEMOCRATIC REPUBLIC OF ALGERIA

Ministry of Higher Education and Scientific Research

University Mohammed Khider-BISKRA

Faculty of The Exact Sciences, Natural and Life Sciences

Department of Computer Science

Ordre Number :RTIC06/M2/2021

THESIS

Presented to obtain the diploma of academic master in

Computer Science

Path: Network and Information and Communication Technology

Deep Reinforcement Learning Based

Approach for Service Function Chain

Deployment in 5G Networks

By:

ELBEY NOUR ELIMANE

Members of the jury:

Boukhlouf Djemaa M.C.B President

Ayad Soheyb M.C.A Supervisor

Ben Dahmene Asma M.A.A Member

Academic year 2021-2022

Acknowledgement

First and foremost, praised be Allah the Almighty, through whose mercy all good things are

achieved.

Firstly, I would like to express my special appreciation and gratitude to my supervisor, Dr. Soheyb

Ayad, for giving me the opportunity to pursue my aspirations. He believed in me and gave me this

wonderful opportunity to do research. I will always be indebted to him for this. I also appreciate his

continuous support and valuable guidance throughout my master’s period, and I consider myself

fortunate to have him as a supervisor.

I would also like to thank Mr. Benhaya Bilal, who has been involved throughout the thesis, giving

me valuable suggestions and helping to achieve a correct development of the thesis. My long-lasting

thanks go to Dr. Fouad Bekkari, who always pushed me forward with his advice and support.

I also take this opportunity to show my gratitude to all my professors in the computer science

department. I would further like to express my heartfelt gratitude to the jury members for agreeing

to judge this work.

I sincerely thank all my family and my friends for their continuous encouragement, support, and

love throughout the time I have dedicated to this project.

Thank you all for the unconditional emotional support during the journey towards my goal.

I

Abstract

5G networks are intended to simultaneously support a wide range of applications with a high vari-

ety of requirements which brings a diversity of use cases for mobile networks and a growing number of

demands. The development of 5G relies on new techniques such as Software Defined Networks (SDN),

Network Function Virtualisation (NFV) and Service Function Chain (SFC) technologies. SDN allows

the separation of control and data planes. NFV decouples network functions from the hardware that

performs them through virtualisation. SFC is a popular service paradigm that has been proposed to

derive maximum benefits from both NFV and SDN in 5G networks.

The conventional approaches to service and infrastructure management, which require complete and

perfect knowledge of the system, are inefficient. In this context, Deep Reinforcement Learning (DRL),

which marked a success in solving complicated control and decision-making problems by allowing net-

work entities to learn, build knowledge, and make optimal decisions independently, inspired us to

suggest this study, where we focus on optimising the resource utilisation of the fifth generation net-

works. We propose a Deep Q-learning (DQN) based DRL approach for optimal SFC deployment

in 5G networks. The objective of the proposed approach is to deploy SFCs automatically and sup-

port the heterogeneity of SFC network requirements. Experimental results show that the approach

proposed can achieve superior performance in solving SFC deployment problem, where the average

return are 15.28% compared with the Q-learning based Reinforcement Learning (RL) approach 7.4%.

Key words: 5G networks, Software Defined Network (SDN), Network Function Virtualisation

(NFV), Service Function Chain (SFC), Deep Reinforcement Learning (DRL).

II

صخلملا

عمدحاوتقويفتاقيبطتلانمةعساوةعومجممعدىلإ(G5)سماخلاليجلاتاكبشفدهت

لومحملاتاكبشلمادختسإلاتالاحنمةعونتمةعومجمبلجتيتلاتابلطتملانمةعونتمةعومجم

تاكبشلالثمةديدجتاينقتىلعسماخلاليجلاتاكبشريوطتدمتعي.تابلطلانمديازتمددعو

فئاظوةلسلسو(VFN)ةكبشلاةفيظولةيضارتفإلاةاكاحملاتاينقتو،(NDS)تايجمربلابةفرعملا

صاخلاءزجلانعمكحتلابصاخلاءزجلالصفبتايجمربلابةفرعملاتاكبشلاحمست.(CFS)ةمدخلا

لالخنمةزهجألانعةكبشلافئاظوةكبشلاةفيظولةيضارتفإلاةاكاحملاتاينقتلصفت.تانايبلاب

ردقىصقأقيقحتلهحارتقإمتعئاشةمدخجذومنيهةمدخلافئاظوةلسلس.ةيضارتفإلاةاكاحملا

ةرادإلةيديلقتلابيلاسألا.سماخلاليجلاتاكبشيفNDSوVFNنملكنمدئاوفلانم

اذهيف.ةلاعفريغتحبصأ،ماظنللةيلاثموةلماكةفرعمبلطتتيتلاو،ةيتحتلاةينبلاوتامدخلا

ةدقعملامكحتلالكاشملحيف(LRD)ززعملاقيمعلاملعتلاهققحيذلارهابلاحاجنللارظن،قايسلا

لكشبىلثملاتارارقلاذاختإوةفرعملاءانبوملعتلابةكبشلاتانايكلحامسلالالخنمرارقلاذاختاو

سماخلاليجلاتاكبشدراومنمةدافتسإلاميظعتىلعزكرتيتلاةساردلاهذهانحرتقإ،لقتسم

ةمدخلافئاظولسالسرشنل(NQD)ززعملاقيمعلاملعتلاىلعاًمئاقاجذومنانلمعتسإثيح,

مدعمعدواًيئاقلتةمدخلافئاظولسالسرشنوهحرتقملاجذومنلانمفدهلا.لثمألاةقيرطلاب

ءادأققحينأنكميحرتقملاجذومنلانأةيبيرجتلاجئاتنلارهظت.اهتابلطتمسناجت
ً

لحيفاًقئاف

ززعملاملعتلاجهنبةنراقم٪82.51دئاعلاطسوتمغلبيثيح،ةمدخلافئاظولسالسرشنةلكشم

.gninrael-Q4.7٪ىلعمئاقلا

ةيضارتفإلاةاكاحملا،(NDS)تايجمربلابةفرعملاةكبشلا،(G5)تاكبش:ةيحاتفملاتاملكلا

.(LRD)قيمعلاززعملاملعتلا،(CFS)ةمدخلافئاظوةلسلس،(VFN)ةكبشلاةفيظول

II

Contents

Acknowledgement I

Abstract II

List of Abbreviation VII

List of Figures IX

List of Tables XI

List of Algorithms XII

List of listings XIII

General introduction 1

1 5G Network on General 4

1.1 Introduction . 4

1.2 Mobile Network Evolution . 5

1.3 5G Network . 5

1.3.1 5G Architecture . 6

1.3.2 5G Key Performance Indicators (KPI) . 7

1.3.3 5G Enabling Technologies . 9

1.4 Network Function Virtualization (NFV) . 12

1.4.1 NFV architecture . 12

1.5 Software Defined Network (SDN) . 14

1.5.1 SDN architecture . 14

1.6 Service Function Chain (SFC) . 16

1.6.1 Static service function chaining . 17

1.6.2 Dynamic service function chaining . 17

1.6.3 Service function chaining architecture . 18

IV

CONTENTS

1.6.4 SDN/NFV architecture for SFC deployment . 20

1.7 Conclusion . 21

2 Machine Learning and Networking 22

2.1 Introduction . 22

2.2 Machine Learning . 22

2.2.1 Machine Learning Types . 23

2.2.2 Difference between Machine Learning types . 26

2.3 Deep Reinforcement Learning . 27

2.3.1 Policy and Value function . 27

2.3.2 Exploration vs Exploitation . 28

2.3.3 Deep Q-learning . 29

2.4 Machine Learning in Networking . 31

2.4.1 Special Considerations to deploy ML in Networking 34

2.4.2 Machine Learning for 5G Network . 34

2.5 Related Works . 36

2.5.1 DRL for NFV-based Service Function Chaining in Multi-Service Networks . . . 36

2.5.2 Online Service Function Chain Deployment with DRL in 5G networks 36

2.5.3 Adaptive Online SFC Deployment with Deep Reinforcement Learning 37

2.5.4 Q-Learning based SFC deployment on Edge Computing Environment 37

2.5.5 RL based QoS/QoE-aware Service Function Chaining in Software-Driven 5G

Slices . 37

2.5.6 Discussion . 38

2.6 Conclusion . 39

3 Design 40

3.1 Introduction . 40

3.2 System Modeling . 40

3.2.1 Network Definition . 40

3.2.2 Service Function Chain Request . 40

3.2.3 Problem Formulation . 41

3.2.4 Markov Decision Process (MDP) for SFC deployment 41

3.3 General Architecture . 42

3.4 Detailed Architecture . 43

3.4.1 Source and Destination nodes . 44

3.4.2 Network Function Virtualization . 44

V

CONTENTS

3.4.3 Software Define Network . 45

3.4.4 Network topology . 45

3.4.5 DRL model architecture . 46

3.5 Reinforcement Learning model architecture . 55

3.5.1 RL based approach for SFC deployment algorithm 55

3.5.2 RL based approach for SFC deployment process 57

3.6 Conclusion . 58

4 Experimental study and results 59

4.1 Introduction . 59

4.2 Development tools . 59

4.2.1 IDE (integrated development environment) . 60

4.2.2 Programming language . 60

4.2.3 libraries . 60

4.3 Implementation . 61

4.3.1 Environment . 61

4.3.2 Deep Q-learning Agent . 63

4.3.3 Q-learning Agent . 67

4.4 Results . 69

4.4.1 DQN models evaluation results . 70

4.4.2 DQN vs Q-learning comparison results . 73

4.5 Final discussion . 75

4.6 Conclusion . 76

General conclusion 77

Bibliography 79

VI

List of Abbreviation

ITU-R International Telecommunication Union- Radiocommunication

IMT-2020 International Mobile Telecommunications-2020, original name of 5G

3GPP 3rd Generation Partnership Project

KPIs Key Performance Indicators

5G NR 5G New Radio

NFV Network Function Virtualization

SDN Software Defined Network

SFC Service Function Chain

WiFi Wirless Fidality

WiMAX Worldwide Interoperability for Microwave Access

CUs Centralised Units

DUs Distributed Units

RAN Radio Access Network

RRUs Remote Radio Units

PHY Physical layer

MAC Medium Access Control

VNFs Virtual Network Functions

AUSF Authentication Server Function

UDM Unified Data Management

AMF Access and Mobility Management Function

SMF Session Management Function

IP Internet Protocol

PCF Policy Control Function

NF Network Function

NSSF Network Slice Selection Function

UE User Equipment

AF Application Function

VII

CONTENTS

UPF User plane Function

DN Data Network

eMBB Enhanced Mobile Broadband

IMT-advanced International Mobile Telecommunications- advanced, 4G

CDF Cumulative Distribution Function

mMTC Massive Machine Type Communications

URLLC Ultra-Reliability Low Latency Communications

MIMO Massive Multiple-Input Multiple-Output

Mm-wave Millimeter -wave signals

NS Network slicing

WLAN Wireless Local Area Network

CAPEX Capital Expenses

OPEX Operating Expenses

NFVI NFV infrastructure

MANO NFV Management and Orchestration

ONF Open Network Foundation

NSH network service header

IETF Internet Engineering Task Force

SF Service Function

SFF Service Function Forwarder

SFP Service Function Path

LSA Latent Semantic Analysis

PCA Principal Component Analysis

MDP Markov Decision Processes

DNN Deep Neural Networks

DQN Deep Q-learning Network

QoS-E Quality of Service-Experience

HMM Hidden Markov Model

OSPF Open Shortest Path First

HTTP Hypertext Transfer Protocol

CNN Convolutional neural network

DOV Direction Of Arrival

TDD Test-driven development

DDQN Dueling Double Deep Q-Network

MILP mixed-linear programming

VIII

List of Figures

1.1 Overview of the evolving mobile technologies [5]. 5

1.2 5G network architecture [2]. 6

1.3 5G Key Performance Indicators (KPI) [7]. 8

1.4 MIMO [1]. 10

1.5 Beam Forming [18]. 10

1.6 Small Cells [8]. 11

1.7 Millimeter-wave signals (Mm-wave) [21]. 11

1.8 Network Slicing architecture [2]. 12

1.9 ETSI NFV reference architecture [12]. 13

1.10 ONF SDN reference architecture [22]. 15

1.11 SFC request example [11]. 17

1.12 SFC Static [20]. 17

1.13 SFC dynamic [20]. 18

1.14 IETF SFC reference architecture [16]. 19

1.15 SDN/NFV based dynamic Service Function Chaining [11]. 21

2.1 Supervised Learning [25]. 23

2.2 Unsupervised Learning [25]. 24

2.3 Interaction between an agent and its environment [25]. 25

2.4 Difference between SL, UL and RL [43]. 26

2.5 Interaction between an DRL agent and its environment [24]. 27

2.6 Deep Q Network operation [2]. 31

2.7 The typical workflow of machine learning for networking (MLN) [29]. 32

3.1 General architecture for the proposed model. 43

3.2 Detailed architecture. 44

3.3 SNDlib dfn-bwin topology [56]. 46

3.4 DQN vs Q-learning. 46

IX

LIST OF FIGURES

3.5 DQN workflow. 49

3.6 Q-network and target-network. 50

3.7 SFC deployment approach in time steps. 50

3.8 DRL based SFC deployment process. 55

3.9 RL based SFC deployment process. 58

4.1 Used tools. 59

4.2 SNDlib and environment link data. 62

4.3 SFC requests sample. 62

4.4 DQN training phase reward. 66

4.5 SFC request used in evaluation. 69

4.6 DQN agents reward. 70

4.7 DQN agents resource consumption. 71

4.8 DQN agents bandwidth consumption. 72

4.9 DQN vs Q-learning reward. 73

4.10 DQN vs Q-learning resource consumption. 74

4.11 DQN vs Q-learning bandwidth consumption. 75

X

List of Tables

2.1 Relationships between Network application and MLN workflow [29]. 33

2.2 Brief summary of corresponding ML-driven approaches to cope with the demand of

the 5G standards[34]. 35

2.3 comparison between related works. 39

4.1 Environment configuration . 61

4.2 Hyperparameter configuration . 63

4.3 Hyperparameter configuration . 67

4.4 Comparison between all models . 76

XI

List of Algorithms

1 DQN algorithm . 30

2 Experience replay pseudo code . 47

3 ϵ-greedy pseudo code . 48

4 DQN SFC deployment . 52

5 Reset function . 53

6 SFC request function . 53

7 Start function . 54

8 Step function . 54

9 Q-learning SFC deployment . 56

10 agent_learn function . 57

XII

List of listings

4.1 Used libraries . 63

4.2 DQN agent initialization . 63

4.3 Build model . 64

4.4 Memorize function . 64

4.5 ϵ-greedy function . 65

4.6 DQN agent learning function . 65

4.7 Used libraries . 67

4.8 Q-learning agent initialization . 67

4.9 check_state_exist function . 68

4.10 ϵ-greedy function . 68

4.11 Q-learning agent learning function . 69

XIII

General introduction

Information and Communication Technologies (ICT) have been identified as a key component in

social and economic growth because they have produced new benefits and efficiencies that have never

been experienced before. Since 2009, when 4G network services were introduced, people have been

able to use internet services on their devices. Despite the advancements in 4G network technologies,

it is difficult to provide mobile services that require high speed, rapid response, high dependability,

and energy efficiency. For that reason, these features have become critical requirements for future

5G services.

Research on 5G services was performed by the International Telecommunication Union-Radio-

communication (ITU-R) [1], the 3rd Generation Partnership Project (3GPP) and the Next Generation

Mobile Networks (NGMN) Alliance. They proposed the usage scenarios as a group of three categories:

enhanced Mobile Broadband (eMBB), massive Machine-Type Communications (mMTC), and Ultra-

Reliable and Low-Latency Communications (URLLC). Peak data rate, area traffic capacity, network

energy efficiency, connection density, latency, mobility, spectrum efficiency, and user-experienced

data rate are chosen as key performance indicators (KPIs) [4]. The details are discussed in section

(1.3.2). In 5G networks, service providers aim to deploy their services flexibly and quickly to take

in the specific requirements of diverse services, and they face many problems, especially in network

performance and availability.

In traditional network architecture, each network function, such as load balancer (LB), firewall

(FW), and network address translation (NAT), requires expensive hardware for its deployment. Be-

cause of continued growth in the number of users and application services, using a hardware-based

network to store and transfer a huge amount of data according to specified requirements is a risky

task. For that, network providers may benefit from three of 5G new emerging technologies:

1. Network Function Virtualization (NFV) has emerged as an innovative network architec-

ture paradigm that uses virtualization technology to abstract the network node functions from

hardware.

1

LIST OF LISTINGS

2. Software Defined Networking (SDN) is a complementary technology that allows program-

matic control of network functions and enables flexible and efficient network management.

3. Service Function Chain (SFC) is group of chained Virtual Network Functions (VNF) in the

network.

To overcome the limits of traditional network architecture and the problems that network providers

have faced in service deployment, they must make sure that the service requirement meet the com-

putational and network capacity constraints. The SFCs need to be deployed in a specific way where

the allocation of resources and placement of virtual network functions will be performed dynamically.

Hence, there is a need for a dynamic and automatic service deployment model to save effort and time.

In view of the dynamic deployment of the service function chain, the existing deployment methods

have some shortcomings. Most SFC deployment mechanisms have only solved one problem, which

is determining deployment location or achieving optimal targets, but in our work, we try to solve

both of them. In order to achieve node and link load balancing, we propose an intelligent SFC

deployment model based on a Deep Reinforcement Learning approach. With Deep Q-learning, which

has a powerful learning capacity to be widely adopted to solve complex problems, our proposed DQN

can efficiently provide a high-reward SFC deployment solution to each arriving request, considering

its resource demand and the current resource utilization. The main contributions of this study is:

• We use an MDP model to formulate the SFC deployment problem to capture real-time network

variations, where network variations are dynamically and continuously expressed as MDP state

transitions.

• We propose our model DQN based DRL approach to automatically deploy SFC requests with

different requirements.

• We implement a Q-learning based RL approach for SFC deployment to make an effective com-

parison with the DQN approach.

The rest of this dissertation is structured as follows:

• chapter 1 Provides a literature review in the context of this study, 5G networks, and the

emerging technologies that help overcome 4G limitations.

• chapter 2 We introduce machine learning mechanisms and their applications in 5G networks.

Then we focus on Deep Reinforcement Learning, especially the DQN algorithm. Finally, we

discuss the related work.

• chapter 3 Represent the design of our approach. Specifically, the general and detailed designs,

as well as the algorithm compared.

2

LIST OF LISTINGS

• chapter 4 Illustrate the implementation of our system, presenting the used tools and tech-

nologies for the development of our system and provides evaluation results. This section also

evaluates DQN model by drawing comparisons with Q-learning approaches.

3

Chapter 1

5G Network on General

1.1 Introduction

5G is the fifth-generation mobile network. It is a new global standard after 1G, 2G, 3G and 4G

networks, in the World Mobile Conference in Europe (2015) ITU-Radiocommunication (ITU-R) set

the vision of International Mobile Telecommunications-2020 (IMT-2020), various 5G services are pre-

sented in a vision document [1]. In Release 15 [3], 3GPP has specified the frequency band allocated for

the 5G network, it also highlighted the three leading Key Performance Indicators (KPIs) that define

various use cases of 5G New Radio [4]. 5G network has many applications scenario in: enhancing

agricultural productivity, advanced healthcare and improved manufacturing operations. 5G enable a

new kind of network that is designed to connect virtually everyone and everything together including

machines, object and devices.

In this chapter we introduce different 5G enabling technologies that are supported in this thesis.

We start with giving basic knowledge about 5G and previous generation networks. Then, we present

Network Function Virtualization (NFV) which is a promising paradigm to solve the problems of the

traditional network approach. After that, we introduce Software Defined Network, SDN is another

networking architecture used to separate the control plane from the data plane. Finally, we focus

on Service Function Chain, SFC is a popular service paradigm that has been proposed to derive

maximum benefits from both NFV and SDN. SFC using SDN and NFV, facilitates implementation

of 5G network services.

4

5G Network on General

1.2 Mobile Network Evolution

The evolution of mobile networks shown in figure 1.1 which present the evolving generations of

mobile technologies in terms of data rate, mobility, coverage and spectral efficiency. As the mobile

technologies are growing, the data rate, mobility, coverage and spectral efficiency increases. It also,

shows that the 1G and 2G technologies use circuit switching while 2.5G and 3G uses both circuit and

packet switching and the generations from 3.5G to 5G are using only packet switching. Moreover that,

it differentiates between unlicensed spectrum and licensed spectrum. All the evolving generations use

the licensed spectrum while the WiFi, Bluetooth and WiMAX are using the unlicensed spectrum.

Figure 1.1: Overview of the evolving mobile technologies [5].

1.3 5G Network

While 4G was focused to provide mobile broadband communications, 5G is being designed to

become a key asset in the introduction of the digital technologies in multiple economic and societal

sectors. 5G infrastructures are expected to play a key role on the evolution of sectors such as the

industry 4.0, automotive and mobility, transportation, healthcare system, energy industry. The

massive demand for higher data rates and bandwidth with the increased number of users led to the

deployment of the 5G network. 5G networks are expected to support higher connectivity, improved

capacity, high-speed data rates, and low latency.

5

5G Network on General

1.3.1 5G Architecture

The research has proposed several architectures to overcome 4G limites inorder to full benefit 5G

advantages. Figure 2.2 shows the basic architecture of 5G network as presented in [2], the Radio

Access Network (RAN) is divided and virtualized into server-based Distributed Units (DUs) and then

centralised into server-based Centralised Units (CUs), reducing the proprietary hardware to Remote

Radio Units (RRUs).

• The RRU handles parts of the physical layer (PHY), analog to digital conversion, filtering,

power amplification as well as the digital beam forming functionality.

• The Distributed Unit (DU) is close to the RRU and runs the Radio Link Control, Medium

Access Control (MAC), and parts of the PHY layer. It provides digital processing, including

signal modulation, encoding and scheduling. It is a logical node that includes a subset of the

gNodeB (5G base station) functions.

• The Centralized Unit (CU) is a logical node that provides support for higher layers of

the protocol stack. It includes the gNodeB functions like Transfer of user data, mobility con-

trol, radio access network sharing, positioning, session management, with the exception of the

functions that are allocated exclusively to the DU. The CU controls the operation of several

DUs.

This centralized deployment makes load-balancing between different RRUs possible. That is why,

in most cases, the DU will be collocated with RRUs. 5G Core components running as virtualized

network functions (VNFs) in the cloud. 5G infrastructure will enable the inter-connectivity among the

different emerging technologies like Massive MIMO network, Cognitive Radio network, and small-cell

networks.

Figure 1.2: 5G network architecture [2].

The authors in [2] define 5G core Network function in figure 1.2 as:

• AUSF (Authentication Server Function) provides a unified framework for authentication issues

(for 3GPP access as well as non-3GPP access).

6

5G Network on General

• UDM (Unified Data Management) contains data that was related to HSS (Home Subscriber

Server).

• AMF (Core Access and Mobility Management Function) has different functionalities such as

access authentication and authorization, registration management and mobility management.

• SMF (Session Management Function) is responsible for session management and some other

functionalities, such as allocation of IP addresses, and controlling the policy enforcement and

QoS (establishment of sessions).

• PCF (Policy Control Function) is related to policy framework and provides policy rules to NFs

in the control plane.

• NSSF (Network Slice Selection Function) determines the serving AMF for the UE and selects

network slice instances for it (in addition to network slicing concept, network slice instances

provide specific services to different enterprises).

• AF (Application Function) provides services to 3rd parties.

• UPF (User plane Function) is responsible for everything related to user data.

• DN (Data Network) is internet access or services from operators and 3rd parties.

• NEF 5G Network Exposure Function (NEF) facilitates secure, robust, developer-friendly access

to the exposed network services and capabilities of 5G network.

• NRF The Network Repository Function is one of the key functions of the 3GPP Service-Based

Architecture for 5G Core networks, acting as a central Services Discovery broker for all Network

Functions (NFs) in the 5G Core.

1.3.2 5G Key Performance Indicators (KPI)

Recommendation ITU-R M.2083 [1] defines eight key “Capabilities for IMT-2020”. The intent of

these requirements is to ensure that IMT-2020 technologies are able to fulfil the objectives of IMT-

2020 and to set a specific level of performance that each proposed set of radio interface technologies

needs to achieve. 5G New radio specifies three primary use cases that are specified as the Next

Generation KPI. The three KPIs discussed that future networks will provide a vast set of services

and features that are summarized in figure 1.3.

7

5G Network on General

Figure 1.3: 5G Key Performance Indicators (KPI) [7].

According to [1] the three KPIs are:

1.3.2.1 enhanced Mobile Broadband(eMBB)

Enhancing the current MBB service will enable new applications with higher data rate demands

over a uniform coverage area. The essential requirements to enable eMBB are presented below:

a. Peak data rate Peak data rate is planned to increase and support high-demand data-driven

use cases. IMT-2020 systems will be required to deliver 20-times higher data rate than the

previous technology specification, from 1 Gb/s in IMT-advanced (4G) to 20 Gb/s in IMT-2020

(5G).

b. User experienced data rate User experienced data rate is defined as the 5% point of the

Cumulative Distribution Function (CDF) of the user throughput over active time, measured in

a dense urban environment. IMT-2020 intends to brace 10-times higher user experienced data

rate compared to IMT-advanced, from 10 Mbit/s to 100 Mbit/s.

c. Spectrum efficiency The minimum requirements for peak spectral efficiencies in IMT-2020

are 30bit/s/Hz for downlink, and 15 bit/s/Hz for uplink. The peak spectral efficiency denotes

the maximum data rate under ideal conditions normalized by channel bandwidth. The available

spectrum will extend from 3 GHz in 4G to 30 GHz in 5G.

d. Area traffic capacity Area traffic capacity refers to the total traffic throughput served per

8

5G Network on General

geographic area. The target value for area traffic capacity increased from 0.1 Mbits/s/m2 on

4G to 10 Mbit/s/m2 in 5G.

1.3.2.2 massive Machine Type Communications(mMTC)

Another key characteristic of 5G communication services is the scalable connectivity demand for

the expanding number of wireless network-enabled devices, focusing on the efficient transmission of

small payloads over an extended coverage area. The two central requirements to enable mMTC are:

a. Network energy efficiency Network energy efficiency is important for eMBB and it is ex-

pected to increase from 1x on IMT-advanced to 100x for IMT-2020.

b. Connection Density A big challenge for 5G systems is to connect a massive number of devices

to the internet, from 100 thousand connections per km2 in 4G to 1 million connections per

km2 in IMT-2020.

1.3.2.3 Ultra-Reliability Low Latency Communications (URLLC)

Forthcoming network services, remote surgery, mission-critical applications, vehicle-to-vehicle

(V2V) communications, high speed train connectivity and smart industry applications, will prioritize

extreme reliability, low-latency and mobility, over data rates. The crucial requirements to enable

URLL communications are:

a. Mobility Mobility is described as the maximum mobile station speed at which a defined QoS

can be achieved (in km/h).

b. Latency Latency is probably one of the most influential performance measures of 5G. A re-

liable 5G system requires extremely low latency, even a few milliseconds (ms) can make an

enormous difference. The requirements for IMT-2020 give no room for unbounded delay, from

an admissible 10 ms in 4G, to less than 1 ms in the specification for 5G.

1.3.3 5G Enabling Technologies

Research has proposed technologies that reinforce the enhancement of 4G technologies in order

to achieve 5G requirements in a more efficient and intelligent way. Some of this technologies are:

1.3.3.1 Massive Multiple-Input Multiple-Output (MIMO)

MIMO is an antenna technology for wireless communications, in which multiple antennas are used

at both the transmitter and the receiver as figure1.4 shows.

9

5G Network on General

Figure 1.4: MIMO [1].

1.3.3.2 Beam Forming

Digital Beam forming can be utilized for 5G portable correspondences and can point a flag from a

sender to a receiver when they in observable pathway. Figure 1.5 show that instead of broadcasting

toward each path it would enable the base station to center stream of information to particular client.

Figure 1.5: Beam Forming [18].

1.3.3.3 Small Cell Networks

Based on figure 1.6 a small cell is essentially a scaled down base station (Macro Cell) that splits

up a cell site into smaller pieces. The principal objective of small cells is to expand the full-scale cells

edge information limit, speed and general system proficiency.

10

5G Network on General

Figure 1.6: Small Cells [8].

1.3.3.4 Millimeter-wave signals (Mm-wave)

Taking into account the rapid increase in data traffic, a new technology mm-Wave is introduced

in 5G to improve cell capacity and enhance the capabilities of new technologies adopted in 5G. As

shown in figure 1.7 the availability of bands in the range of 20-100 GHz makes mmWave a lucrative

prospect in the design of 5G networks.

Figure 1.7: Millimeter-wave signals (Mm-wave) [21].

1.3.3.5 Network slicing (NS)

Through the joint use of SDN and NFV, a multitude of independent virtual networks can be

abstracted from a single network. Each of these networks is specialised to meet the specific require-

ments of an end-to-end service. This idea of splitting the network into multiple isolated networks is a

new paradigm called network slicing [9]. Its purpose is to logically adapt the management of network

infrastructure and resources to meet the promise of 5G.

11

5G Network on General

Figure 1.8: Network Slicing architecture [2].

An example of the network slicing architecture can be seen on figure 1.8. The network infrastruc-

ture is on the last layer and covers the access network, the transport network and the core network.

In this example there are three slices, each slice has several entry points on the access network by

the help of Wireless Local Area Network (WLAN) infrastructure. Then every slices passe through

network functions on edge clouds in the transport network. Finally they connect to datacenters in

the core network.

1.4 Network Function Virtualization (NFV)

NFV emerging as a breakthrough in 5G systems, decouples physical hardware and underlying

network functions and let the network functions run centrally on generic cloud servers, thus providing

advantages in scalability and flexibility. NFV greatly reduces Capital Expenses (CAPEX) required

to buy hardware devices and saves Operating Expenses (OPEX) by aggregating resources for virtual

network functions that run on a centralized server pool [11].

1.4.1 NFV architecture

According to ETSI, the overall architecture of NFV consists of four key elements: NFV In-

frastructure (NFVI), Virtual Network Functions (VNFs), hypervisors, and NFV Management and

Orchestration (MANO), as shown in figure 1.9. Specifically, the main component of NFV is VNFs

which is software implementations of network functions, running on a generic cloud infrastructure.

12

5G Network on General

VNFs are deployed upon the NFVI that includes virtual computation, virtual storage, and virtual

network resources. These virtual resources, created by hypervisors, bring virtualization over physical

hardware resources within the network. In particular, hardware resources might include networking,

computing and storage infrastructures. Moreover, the NFV MANO framework controls the provi-

sioning of VNFs, the configuration of VNFs and the infrastructure they run on. MANO can also

chain several VNFs to activate an end-to-end service [13].

Figure 1.9: ETSI NFV reference architecture [12].

We briefly explain each component in figure 1.9 as follows:

1.4.1.1 Virtual Network Functions (VNFs)

A network function refers to the functional component of network infrastructure that provides a

well-defined functional behaviour and external interfaces. Some examples of network functions are

DHCP servers, firewalls, NAT and gateways.

1.4.1.2 NFV Infrastructure (NFVI)

NFVI is the infrastructure platform over which the VNFs are deployed. Specifically, NFVI is the

collection of the physical and software resources.

a. Hypervisors Hypervisors provide the abstraction of virtual resources over physical hardware

for VNFs to run on. Also, hypervisors setup the virtualization layer that offers virtual machines

13

5G Network on General

and virtual networks over physical resources. Hypervisors provide a logical slicing of actual

network infrastructure into virtual networks for efficient management.

1.4.1.3 NFV Management and Orchestration (MANO)

According to the ETSI MANO framework [15], NFV MANO provides the framework for managing

and orchestrating all infrastructure resources. Specifically, it provides virtual machines, configures

the VMs and the physical infrastructure and manages of physical resources for VMs. The MANO

contains three functional blocks:

a. NFV orchestrator The NFV orchestrator handles on-boarding new network services and

VNFs, manages global resources and validates, authorizes NFVI resource requests.

b. VNF manager The VNF manager manages the life-cycle of VNF instances and coordinates

the configuration and event reporting between NFVI and network management software.

c. Virtual infrastructure manager The virtual infrastructure manager controls and manages

the compute, storage and network resources of NFVI.

1.5 Software Defined Network (SDN)

SDN is an approach that brings intelligence and flexible programmable 5G networks capable of

orchestrating and controlling applications/services in more fine-grained manner. The Open Network

Foundation (ONF) [17] is a non-profit consortium dedicated to the development, standardization and

commercialization of SDN. The ONF gives a definition of SDN as follows: “the physical separation

of the network control plane from the data plane” [16]. This separation results into flexibility and

centralized control with a global view of the entire network. It also provides capabilities of responding

rapidly to changing network conditions, business, market and end user needs.

1.5.1 SDN architecture

Based on the Open Network Foundation (ONF), a high-level SDN architecture is presented, which

is composed of three main planes, including data plane, control plane and application plane. The

architectural components of each plane and their interactions are shown in figure 1.10.

14

5G Network on General

Figure 1.10: ONF SDN reference architecture [22].

In the following, we will give a detailed representation of these three planes and their interactions:

1.5.1.1 Data plane

The data plane also known as infrastructure plane, is the lowest layer in SDN architecture. This

plane is comprised of forwarding devices including physical switches and virtual switches. Virtual

switches are software-based switches, which can run on common operating systems such as Linux.

Open vSwitch, Indigo and Pantou are three implementations of logical switches.

1.5.1.2 Control plane

The control plane is the “brain” of SDN systems, which can program network resources, update

forwarding rules dynamically and make network administration flexible and agile. The main compo-

nent of control plane is the logically centralized controller, which controls the communication between

forwarding devices and applications. The controller exposes and abstracts network state information

of the data plane to the application plane. Additionally, the controller provides essential functionali-

ties that most of network applications need, such as shortest path routing, network topology storage,

15

5G Network on General

device configuration and state information notifications. There are many controller architectures,

such as POX, Ryu and Open Daylight.

Three communication interfaces allow the controllers to interact:

a. Northbound The northbound API interface on the controller enables applications and the

overall management system to program the network and request services from it. This ap-

plication tier often includes global automation and data management applications, as well as

providing basic network functions such as data path computation, routing and security.

b. Southbound APIs Though not explicitly required by SDN, OpenFlow is a protocol often

used as the southbound API that defines a set of open commands for data forwarding. These

commands allow routers to discover the networks topology and define the behavior of physical

and virtual switches, based on application requests sent via the northbound APIs.

c. The eastbound/westbound interfaces are used in the multi-controller SDN networks. When

deploying SDN in large-scale networks where a vast amount of data flows needs to be processed,

due to the limited processing capacity of one controller, the large-scale networks are always

partitioned into several domains. Each domain has its own controller.

1.5.1.3 Application plane

The highest layer in the SDN architecture, which composed of business applications. These

applications can provide new services and perform management and optimization. In general, the

applications can obtain the required network state information through controllers. Based on the

received information and business requirements, the applications can implement the control logic to

change network behaviours.

1.6 Service Function Chain (SFC)

Service function chaining is defined as an ordered sequence of VNFs and subsequent steering of

flows through them to provide end-to-end services. SFC using SDN and NFV, facilitates implemen-

tation of 5G network slicing. An example of an SFC request, as shown in figure 1.11 consists of the

client (source), set of VNFs (firewall, Deep Packet Inspection, proxy,...) in a particular order and a

server (destination).

16

5G Network on General

Figure 1.11: SFC request example [11].

1.6.1 Static service function chaining

In traditional service chaining, network functions are implemented as hardware middle boxes, and

all are physically connected. Firwall (FW), Network Address Translation (NAT), Intrusion Prevention

System (IPS), …are examples of middle boxes used by network operators. In the static type every

packet or flow will have to pass through the chain, although some requests need only a subset of these

network services.

Figure 1.12: SFC Static [20].

As shown in figure 1.12, the source wants to send the request to destination and needs specific

network function. But in static service chaining, traffic must pass through the entire network func-

tions regardless of the need.

The following are the limitations of this approach according to [20]:

• Every device should have enough capacity to handle the full traffic.

• It is not possible to apply only desired network functions based on specific flow.

• CAPEX and OPEX cost due to purchasing new hardware devices if the existing topology are

not able to fulfill it.

• The network devices must be physically connected and manually configured by network opera-

tors which may lead to inconsistent configuration.

1.6.2 Dynamic service function chaining

In dynamic service chaining, SDN and NFV replace traditional Network Function with Virtual

Network Function and allow dynamic service chaining. In dynamic service chaining, the traffic needs

17

5G Network on General

to be steered only through desired network functions according to specific flow requirements. SDN

controller can create chains dynamically and forward traffic intelligently to a particular network func-

tion based on the label such as VLAN, source MAC address, network service header (NSH). This

type of chain is called a software control service chain.

Figure 1.13: SFC dynamic [20].

As shown in figure 1.13, SFC1 needs only FW and DPI. The SDN controller creates a service

function chain for SFC1: “FW, DPI” in which traffic will pass through FW and DPI. The controller

will create separate SFC of SFC2: “FW, DPI, and IPS” in which traffic will pass through all the

network functions. The SFC3 will pass through the only DPI using chain: “DPI”.

Based on [11] the following are the advantages of dynamic SFC:

• Service function chaining with SDN/NFV provides greater flexibility for end-to-end service

provisioning.

• Reduces capital, operational cost as controller steers the traffic to only essential network function

and eliminates over-provisioning of the network.

• SDN provides scalable, dynamic, flexible and automatic service function chaining.

1.6.3 Service function chaining architecture

The delivery of end-to-end services to the user depends on a series of network functions. The

network functions such as FW, IDS and Web Proxy are sequentially processed in a chain called SFC.

Internet Engineering Task Force (IETF) [19] has developed SFC architecture, and it defines all the

components of SFC. SFC architecture consists of Service Classification Function (SCF), Service Func-

tion (SF), Service Function Forwarder (SFF), SFC enabled domain and SFC proxy, these components

communicate with each other with the help of SFC Encapsulation. figure 1.14 represent the IETF

SDN based SFC architecture it defines it as a two-layered architecture consisting of data plane and

control plane components.

18

5G Network on General

Figure 1.14: IETF SFC reference architecture [16].

1.6.3.1 SFC data plane component

The following elements are presented in the SFC data plane component in figure 1.14:

a. SFC classifier This component is responsible for the classification of data. When a packet

enters into the network, SCF classifies and match it with available policies and then chooses

the appropriate SFC.

b. Service Function (SF) SF is responsible for performing a particular network function. SF

is a logical or virtual component used to give specific treatment to a packet. There may be

multiple instances of the same network function that can be present in the SFC enabled domain.

Network functions can be one of this two types:

• If the data sent to SF contains SFC encapsulation, then it is called SF aware.

• If the data sent to SF does not include SFC encapsulation, then it is called SF unaware.

c. Service Function Forwarder (SFF) It is responsible for forwarding the traffic from one SF

to another SF or SFF, according to the attached SFC encapsulation.

d. Service Function Chain (SFC) SFC is an abstract view of SF that is applied to the packet

resulting from SCF.

e. Service Function Path (SFP) The actual path that consists of a number of SFFs and SFs

to steer the traffic, is called SFP.

19

5G Network on General

f. Service Function Chaining Proxy (SFC-Proxy) SFC proxy inserts and removes SFC

encapsulation for unaware SFs.

g. Service Function NHS The network service header (NSH) provides an identifier that is used

to forward the packet to particular SFF and SF. It is used for SFP identification.

1.6.3.2 SFC control plane component

The primary responsibility of the SFC control plane component is the management and controlling

of SFC, management of SFs, the mapping of an abstract view of SFC to actual SFP and inserting

rules into SFF components of data plane. It is responsible for dynamically changing the SFP if any

SF or link is overloaded or inactive due to an error. It is also used for administrating and controlling

SFC data plane components. The SFC control plane components interact with the SFC data plane

components via four reference interfaces as figure 1.14 shows. The first interface C1 is responsible

for pushing the SFC classification rules defined by the SFC control plane into the SFC classifiers. The

SFFs report the connectivity status of their attached SFs to the SFC control plane. Interface C3 is

between the NSH SFs and the SFC control plane. It is used to collect some packet-processing statistics

(SFs’ load update) from the SFs. For NSH SFs, a SFC proxy is provided for collecting statistics (SF

processing latency and workload) and transmitting this information over the C4 interface to the SFC

control plane. The SFC control plane uses these statistics (received through interfaces C2, C3, and

C4) to dynamically adjust the SFPs.

1.6.4 SDN/NFV architecture for SFC deployment

The limitations of the static SFC model can be eliminated by combining key technologies of SDN

and NFV. The central controller of SDN architecture has a global view of the whole network topol-

ogy. The controller will update the rules into the flow table of the switch, thus providing centralized

control of VNFs.

20

5G Network on General

Figure 1.15: SDN/NFV based dynamic Service Function Chaining [11].

The SDN/NFV based architecture for SFC consists of three types of components, namely Orches-

tration Plane, Control Plane, and Data Plane, as shown in figure 1.15. The main responsibility

of the Orchestration Plane is to build SFC strategies to control the global network according to

different network traffic or user demands. The SDN controller adds flow rules into the OpenFlow

table of the switch to orchestrate different VNFs. According to a particular SFC strategy, the SDN

controller performs mapping of VNFs and virtual links onto a substrate network and form an SFP.

The switches/routers and NFV platforms reside in the data plane and are responsible for the flow of

traffic and service processing.

1.7 Conclusion

5G technology is being adopted as a global standard and promises high bandwidth, low latency,

improved reliability, increased availability and uniform user experience. NFV and SDN are comple-

mentary technologies that help overcome architectural challenges in deployment of 5G by providing

capabilities such as network slicing. An important factor in ensuring QoS delivery to users in these

networks is the deployment of dynamic SFCs. In the next chapter we will see the different types

of machine learning, especially Deep Reinforcement Learning with its application in networking and

related work.

21

Chapter 2

Machine Learning and Networking

2.1 Introduction

Machine Learning (ML) is everywhere, from medical diagnosis based on image recognition to

navigation for self-driving cars. ML has been evolving as a discipline to the point that it currently

allows networks to learn and extract knowledge by interacting with data.

Driven by the demand to accommodate today’s growing mobile traffic, 5G is designed to be a

key enabler and a leading infrastructure provider in the information and communication technology

industry by supporting a variety of forthcoming services with diverse requirements.

In SDN/NFV-enabled networks, Service Function Chains (SFCs) has become a popular networking

service paradigm define as a set of ordered or partially ordered VNFs. The SFC deployment is the

problem of choosing a set of optimal locations for a VNF and chain them according to the order of

service request.

This chapter is organized as follows: we start with the definition of machine learning and its

categories: supervised learning, unsupervised learning and reinforcement learning. After that, we

will walk in detail through Deep Reinforcement Learning. Then, we introduced machine learning

applications in networking, especially in 5G networks. Finally, we present a related work analysis by

selecting the works that are most closely related to our project.

2.2 Machine Learning

Machine learning addresses the question of how to build computers that improve automatically

through experience. It is one of today’s most rapidly growing technical field, lying at the intersection

of computer science and statistics and at the core of artificial intelligence and data science.

22

Machine Learning and Networking

2.2.1 Machine Learning Types

ML approaches are classified into three primary categories based on how the learning is achieved:

Supervised Learning (SL), Unsupervised Learning (UL) and Reinforcement Learning (RL). Each ML

category can be divided into several sub-classes dealing with very specific algorithms.

2.2.1.1 Supervised Learning

Supervised learning (SL) uses labelled training datasets to create models that map inputs to cor-

responding outputs. Typically, this approach is used to solve classification and regression problems

that pertain to predicting discrete or continuous valued outputs, respectively. For example, a classi-

fication problem can be to identify an attack as either denial of service (DoS), root-to-local (R2L),

user-to-root (U2R), or probing. A regression problem can be to predict the time of future attacks

[27].

Figure 2.1 shows that, SL model based-on the input labelled data will predict the output.

Figure 2.1: Supervised Learning [25].

Example of Supervised Learning algorithms:

• Linear Regression.

• Lasso and Ridge Regression.

• Naive Bayesian (NB).

• Support vector machine (SVM).

• etc…

23

Machine Learning and Networking

2.2.1.2 Unsupervised Learning

Unsupervised learning (UL) uses unlabelled training datasets to create models that find dominat-

ing structure or patterns in the data. This approach is appropriate for clustering, outlier’s detection

and density estimation problems. For example, the clustering problem can pertain to grouping dif-

ferent instances of attacks based on their similarities [27].

Figure 2.2 shows that, UL model based-on the input unlabelled data will predict the output as

clusters formed by feature similarity.

Figure 2.2: Unsupervised Learning [25].

Example of Unsupervised Learning algorithms:

• K-Means.

• Fuzzy-C-Means.

• Latent Semantic Analysis (LSA).

• Principal Component Analysis (PCA).

• etc…

2.2.1.3 Reinforcement Learning

Reinforcement Learning (RL) is an iterative process that uses the feedback from the environment

to learn the correct sequence of actions to maximize a cumulative reward [27]. Figure 2.3 shows

that at time t, the agent is in state st and decides to perform an action at, at the next time step

t+1, it arrives in the state st+1 and obtains the reward rt. The goal of the agent is to maximize the

reward obtained on the long term.

24

Machine Learning and Networking

Figure 2.3: Interaction between an agent and its environment [25].

Agent represents the “solution”, which is a computer program with a single role of making

decisions (actions) to solve complex decision-making problems.

Environment is the representation of a “problem”, which is everything that comes after the

decision of the Agent. The environment responds with the consequences of those actions, which are

observations or states, and rewards.

Reinforcement learning problems can be modeled as Markov Decision Processes (MDP), in [2]

authors defined it by five quantities:

• A state space S of states s.

• An action space A of actions a.

• P the transition probability function with P (s′, r | s, a) the probability of transition from state

s to state st+1 under action a while receiving reward r. With P the symbol of probability:

P (s′, r | s, a) = P[st+1 = s′, rt+1 = r | st = s, at = a] (2.1)

• R the reward function which gives the expected value of the next reward rt+1 when taking the

action a on state s:

R(s, a) = E[rt+1 | st = s, at = a] =
∑
r∈R

r
∑
s′∈S

P (s′, r | s, a) (2.2)

• γ ∈ [0, 1] is the discount factor for future rewards. It specifies the extent to which future rewards

impact on the outcome of the current action.

All states transition have the Markovian property: given the current state s and action a, the next

state st+1 is conditionally independent of all the previous states and actions.

Example of Reinforcement Learning algorithms:

• Asynchronous Advantage Actor Critic (A3C).

25

Machine Learning and Networking

• Asynchronous Actor Critic (A2C).

• Q-learning.

• Soft-Actor-Critic (SAC).

• etc…

2.2.2 Difference between Machine Learning types

Figure 2.4 represents the difference of the input, output and the training goal between supervised

learning, unsupervised learning and reinforcement learning

Figure 2.4: Difference between SL, UL and RL [43].

a. Reinforcement Learning vs Supervised Learning Let’s understand the difference between

supervised and reinforcement learning with an example. Imagine we want to train a model to

play chess using supervised learning. In this case, we will train the model to learn using a

training dataset that includes all the moves a player can make in each state, along with labels

indicating whether it is a good move or not. Whereas in the case of RL, our agent will not be

given any sort of training data, instead, we just provide a reward to the agent for each action

it performs. Then, the agent will learn by interacting with the environment and it will choose

its actions based on the reward it gets.

b. Reinforcement Learning vs Unsupervised Learning Similar to supervised learning, in

unsupervised learning, we train the model based on the training data. But in the case of

unsupervised learning, the training data does not contain any labels and this leads to a common

misconception that RL is a kind of unsupervised learning due we don’t have labels as input data

26

Machine Learning and Networking

but it is not. In unsupervised learning, the model learns the hidden structure in the input data.

Whereas, in RL, the model learns by maximizing the reward.

2.3 Deep Reinforcement Learning

We obtain Deep Reinforcement Learning (DRL) methods by combined Reinforcement Learning

(RL) with Deep Neural Networks (DNN) to overcome the limitations of RL in complex environments

with large state spaces or high computation requirements. DNN used to approximate any of the

following components of RL: value function V ∗(s; θ) or Q∗(a, s; θ) and policy π∗(a | s; θ) [18]. Here,

the parameters θ are the weights in deep neural networks. DRL have the same interaction between

agent and environment in RL plus the use of DNN as shown in figure 2.5.

Figure 2.5: Interaction between an DRL agent and its environment [24].

2.3.1 Policy and Value function

By interacting with its environment, the agent determines which actions produce the greatest

reward and uses this experience to improve its performance on future trials. The agent’s main

objective is therefore to maximise the total amount of reward received (good actions are reinforced).

To this end, the agent’s behaviour is determined by a policy π. It provides a direction on the action

to take in a certain state. π(a | s) gives the probability of taking action a in state s [28].

π(a | s) ∈ [0, 1] (2.3)

π(a | s) = P (at = a | st = s) (2.4)

27

Machine Learning and Networking

The return Gt is a weighted sum of the future rewards starting from time t:

Gt =

T∑
k=0

γkrt + k + 1 (2.5)

Authors in [28] represent the return equation by (2.5) where 0 < γ < 1 is the discount rate and rt

represents the reward obtained during the transition from st to st+1.

By setting the γ parameter to a value smaller than 1, we ensure that the further into the future a

potential reward is the less impact it has on the Gt return.

If the task is episodic T is finite, the trajectories ends after a finite number of transitions k, but if

the task is continuing T =∞, trajectories have no end.

To choose the direction offering the best reward, a value function is associated V (s) to each state.It

predicts the expected value of the future rewards related to a state. The bigger the value function for

a state, the better the state is. The value function V π(s) is the expected return starting with state

s by following policy π [28].

V π(s) = Eπ[Gt | st = s] (2.6)

The action-value (or Q-value) of a state action pair is the expected return starting with state s and

first performing action a, before following policy π [28].

Qπ(s, a) = Eπ[Gt | st = s, at = a] (2.7)

By following the target policy π, the state-value can be rewritten using the probability distribution

over the possible actions and the Q-values [28].

V π(s) =
∑
a∈A

π(a, s).Qπ(s, a) (2.8)

The optimal policy π∗ achieves the optimal value functions: it maximises the expected cumulative

reward. The optimal policy has a corresponding state-value function [28].

V π(s)∗ = maxπV
π(s) (2.9)

Qπ(s, a)∗ = maxπQ
π(s, a) (2.10)

2.3.2 Exploration vs Exploitation

To find the optimal policy π∗ and to be able to exploit it, the agent has to first explore the different

states with every actions. However, this is not a good method. Indeed, it does not allow for scaling

28

Machine Learning and Networking

when the number of states and actions are too large [2].

A simple and very common method is the ϵ−greedy policy. This method allows to control the

exploration rate in relation to the exploitation rate. The value ϵ ∈ [0, 1] is the probability for the

agent to choose a random action at each step: it is the exploration probability. Similarly, 1− ϵ is the

probability of exploitation: the probability of following the policy.

The value ϵ can be a fixed or varied value, a commonly used method is the decay, the value of

epsilon is close to 1 at the start of the algorithm to encourage a strong exploration at the beginning.

Epsilon then decreases with each iteration to reach a minimum value (down to 0) to encourage

exploitation. A good configuration of the decay allows not to fall in a local optimal at the beginning

and to converge faster at the end of the training of the agent.

2.3.3 Deep Q-learning

Deep Q-learning Network (DQN) makes use of a deep neural network to approximate the Q-value

function for potentially high-dimensional or continuous state-space problems. The state is given as

the input and the Q-value of all possible actions is generated as the output of the neural network.

The Q-value Qθt is a vector represented by θ the first neural network named Q-network. A second

neural network θ̄ called the Target network (usually a copy of the first Q-network) is used to calculate

a target Q-value ”y” (the value of the best possible choice in the target network). The target is used

to train the network and compute the loss function [2]:

yt = rt + γmaxat+1
Q(st+1, at+1; θ̄t) (2.11)

The loss function is [2]:

L = yt −Q(st, a; θt)
2 (2.12)

The aim of the learning algorithm is not only to maximise the reward, it is above all to learn,

and therefore to be able to predict the reward. As the training progresses, the value of the sum of

the rewards of each episode should increase while the value of the loss function should decrease and

converge to a minimum value.

2.3.3.1 Deep Q-learning algorithm

Algorithm 1 as presented in [10], shows how the model learns the optimal policy π∗, it require

the selection of DNN hyper-parameter θ̄ and θ, the discount factor γ, probability of chosen random

action ϵ, the experience replay memory D used for store the MDP transitions and mini-batch m used

for train the Q-network and update the weights. At line 2 we create two Neural Networks the second

used for avoid divergence by reducing correlation between Q(s, a; θ) and target Q̄(st+1, a; θ̄). For

29

Machine Learning and Networking

each step a random action with ϵ will be taken for exploration and 1− ϵ for maximize the rewards by

chosen optimal action, after chosen an action the agent observes the reward and the next state. At

line 8 the previous experience will be stored in D, a mini-batch m will be randomly sampled from

D which eliminate the correlation to avoid over-fitting. At line 11 compute the target yj for sample

j, at line 13 update the weights and apply gradient descent to minimize the squared loss (yj–Qj)
2.

The target model will be updated periodically after C time steps as line 14 shows.

Algorithm 1: DQN algorithm

1 Initialize: γ ∈ [0, 1], ϵ ∈ [0, 1]

2 Create: Q-network model with weight θ, Q-target model with weight θ̄

3 Initialize: θ, θ̄ and replay memory D

4 Observe initial state st

5 for step← 1 to T do

6

select : at =


at random action with probability ϵ

argmaxaQ(st, at+1; θ) with probability ϵ− 1

7 Observe reward rt and next state st+1

8 Add experience to D

9 Sample random mini-batchm from D

10 for j ← 1 to m do

11

set : yj =


rj if t+ 1 = T

rj + Q̄(sj+1, aj+1; θ̄) otherwise

12 Perform a gradient descent step on (yj −Qj)
2 with respect to the weights θ.

13 end

14 Every C steps reset Q̄ = Q

15 end

Figure 2.6 summarises the operation of the DQN architecture. The DQN is trained in several

steps, it goes through a sequence of operations at each time step. First, the agent selects an ϵ− greedy

action from the current state, executes it in the environment which returns the reward and the next

state. This operation is saved in the experience buffer. A random batch of samples is then formed

by recent and older samples. This batch of training data is given as inputs to both networks. The

Q-network takes the current state and action of each data sample and predicts the Q-value for that

30

Machine Learning and Networking

action. The target network takes the next state of each data sample and predicts the best Q-value

of all actions that can be taken from that state. The Q-value, the target Q-value and the observed

reward of the data sample are used to calculate the loss to train the Q-network. The processing is

repeated for the next time steps. After T time steps, the weights of the Q-network are copied to the

target network. The iteration continues until the training ends.

Figure 2.6: Deep Q Network operation [2].

2.4 Machine Learning in Networking

Machine learning (ML) has recently been applied to solve complex problems in many fields,

including finance, health care and business. ML algorithms can offer computational models that

can solve complex networking problems and consequently improve performance. ML is great for

learning what normal network behavior looks like and highlighting anomalies relative to it. This

understanding drives the utility of machine learning in networking in four areas, as detailed in [27]:

a. Performance management Legacy network management systems equipped with Machine

Learning can help both with moment-by-moment traffic management and with longer-range

capacity planning and management. These tools can see if traffic is spiking in some places

or failing to flow in others and they can direct automated or manual management responses.

Existing efforts have concentrated on using ML for performance and traffic load prediction and

quality of experience/ service (QoE/QoS) correlation.

31

Machine Learning and Networking

b. Fault Management Failure in networks is a norm rather than an exception and its impact

can be quite costly. The slow reaction time and poor accuracy of traditional fault management

techniques further increase this cost. This has motivated efforts that leveraged ML for proac-

tive fault prediction. Additional works considered the usage of ML for fault localization and

automated mitigation to minimize downtime and human intervention.

c. Configuration Management As the network state is constantly changing, network managers

find themselves constantly configuring the network to adapt to these changes, which is a cumber-

some and error-prone process. ML can help automate this process by training models to identify

optimal state-action pairs as the network behavior changes over time. A handful of works have

showcased the benefits of ML for dynamic resource allocation and service configuration.

d. Security Spotting anomalies in network behavior can help cybersecurity teams find everything

from a compromised hardware node to an employee going rogue on the company network.

Machine learning techniques have vastly improved the behavioral threat analytic space, as well

as distributed denial-of-service detection.

Figure 2.7 shows the basic workflow for applying ML in networking, including problem formulation,

data collection (offline and online), data analysis, model construction, deployment and inference and

model validation.

Figure 2.7: The typical workflow of machine learning for networking (MLN) [29].

Machine Learning strategies have a non-ignorable impact on modern attempts of the networking

field. Table 2.1 show how ML perform at each step of the ML in Networking (MLN) workflow

32

Machine Learning and Networking

N
et

w
or

ki
ng

ap
pl

ic
at

io
n

St
ep

s
of

M
LN

w
or

kfl
ow

O
bj

ec
ti

ve
s

Sp
ec

ifi
c

w
or

ks
P

ro
bl

em
fo

r-
m

ul
at

io
n

D
at

a
co

lle
ct

io
n

D
at

a
an

al
ys

is
O

ffl
in

e
m

od
el

co
n-

st
ru

ct
io

n
D

ep
lo

ym
en

t
an

d
on

lin
e

in
fe

re
nc

e
O

ffl
in

e
O

nl
in

e
Tr

affi
c

pr
ed

ic
tio

n
Tr

affi
c

vo
lu

m
e

pr
ed

ic
tio

n

SL
:

pr
ed

ic
tio

n
w

ith
H

id
de

n-
M

ar
ko

v
M

od
el

(H
M

M
)

Sy
nt

he
tic

an
d

re
al

tr
affi

c
tr

ac
es

w
ith

flo
w

st
at

is-
tic

s

O
nl

y
ob

se
rv

e
th

e
flo

w
st

at
ist

ic
s

T
he

flo
w

co
un

t
an

d
th

e
tr

affi
c

vo
lu

m
e

ha
ve

sig
ni

fic
an

t
co

rr
el

at
io

n

Tr
ai

ni
ng

H
M

M
m

od
el

w
ith

K
er

ne
l

B
ay

es
R

ul
e

an
d

R
ec

ur
re

nt
N

eu
ra

l
N

et
w

or
k

w
ith

Lo
ng

Sh
or

t-
Te

rm
M

em
or

y

Ta
ke

flo
w

st
at

ist
ic

s
as

in
pu

t
an

d
ob

ta
in

th
e

ou
tp

ut
of

th
e

tr
affi

c
vo

lu
m

e

R
es

ou
rc

e
m

an
ag

e-
m

en
t

Jo
b

sc
he

du
lin

g
R

L:
de

ci
sio

n
m

ak
in

g
w

ith
D

R
L

Sy
nt

he
tic

w
or

k-
lo

ad
w

ith
di

ffe
r-

en
t

pa
tt

er
ns

is
us

ed
fo

r
tr

ai
ni

ng

T
he

re
al

tim
e

re
-

so
ur

ce
de

m
an

d
of

th
e

ar
riv

al
jo

b

A
ct

io
n

sp
ac

e
is

to
o

la
rg

e
an

d
m

ay
ha

s
co

nfl
ic

ts
be

tw
ee

n
ac

-
tio

ns

O
ffl

in
e

tr
ai

ni
ng

to
up

da
te

th
e

po
lic

y
ne

tw
or

k

D
ire

ct
ly

sc
he

du
le

th
e

ar
riv

al
jo

bs
w

ith
th

e
tr

ai
ne

d
m

od
el

N
et

w
or

k
ad

ap
tio

n
R

ou
tin

g
st

ra
te

gy
SL

:d
ec

isi
on

m
ak

-
in

g
w

ith
D

ee
p

B
e-

lie
fA

rc
hi

te
ct

ur
e

Tr
affi

c
pa

tt
er

ns
la

be
lin

g
w

ith
ro

ut
in

g
pa

th
s

co
m

pu
te

d
by

O
SP

F
pr

ot
oc

ol

O
nl

in
e

tr
affi

c
pa

tt
er

ns
in

ea
ch

ro
ut

er

It
is

di
ffi

cu
lt

to
ch

ar
ac

te
riz

e
th

e
in

pu
t

an
d

ou
tp

ut
pa

tt
er

ns
to

re
fle

ct
th

e
dy

na
m

ic
na

tu
re

of
la

rg
e-

sc
al

e
he

te
ro

-
ge

ne
ou

s
ne

tw
or

ks

Ta
ke

th
e

La
ye

r-
W

ise
tr

ai
ni

ng
to

in
iti

al
-

iz
e

an
d

th
e

ba
ck

-
pr

op
ag

at
io

n
pr

oc
es

s
to

fin
e-

tu
ne

th
e

D
B

A
st

ru
ct

ur
e

R
ec

or
d

an
d

co
lle

ct
th

e
tr

affi
c

pa
tt

er
ns

in
ea

ch
ro

ut
er

pe
rio

di
-

ca
lly

an
d

ob
ta

in
th

e
ne

xt
ro

ut
in

g
no

de
s

fr
om

th
e

D
B

A
s

Pe
rf

or
m

an
ce

pr
ed

ic
tio

n
T

hr
ou

gh
pu

t
pr

ed
ic

tio
n

SL
:

pr
ed

ic
tio

n
w

ith
H

M
M

D
at

as
et

s
of

H
T

T
P

th
ro

ug
h-

pu
t

m
ea

su
re

m
en

t

Ta
ke

us
er

s’
s

se
s-

sio
n

fe
at

ur
es

as
in

pu
t

Se
ss

io
ns

w
ith

sim
ila

r
fe

at
ur

es
te

nd
to

be
-

ha
ve

in
re

la
te

d
pa

t-
te

rn

Fi
nd

se
t

of
cr

iti
ca

l
fe

at
ur

es
an

d
le

ar
n

a
H

M
M

fo
r

ea
ch

cl
us

-
te

ro
fs

im
ila

rs
es

sio
ns

A
ne

w
se

ss
io

n
is

m
ap

pe
d

to
th

e
m

os
t

sim
ila

r
se

ss
io

n
cl

us
-

te
r

an
d

co
rr

es
po

nd
-

in
g

H
M

M
ar

e
us

ed
to

pr
ed

ic
t

th
ro

ug
hp

ut
C

on
fig

ur
at

io
n

ex
tr

ap
ol

a-
tio

n

C
lo

ud
co

nfi
gu

-
ra

tio
ns

ex
tr

ap
ol

a-
tio

n

SL
:

pa
ra

m
e-

te
r

se
ar

ch
in

g
w

ith
B

ay
es

ia
n

op
tim

iz
at

io
n

Ta
ke

pe
rf

or
-

m
an

ce
un

de
r

cu
rr

en
t

co
nfi

gu
-

ra
tio

n
as

m
od

el
in

pu
t

La
rg

e
co

nfi
gu

ra
tio

n
sp

ac
e

an
d

he
te

ro
ge

-
ne

ou
s

ap
pl

ic
at

io
ns

Ta
ke

tr
ia

ls
w

ith
di

ffe
re

nt
co

nfi
gu

-
ra

tio
ns

an
d

de
ci

de
th

e
ne

xt
tr

ia
l

di
-

re
ct

io
n

by
B

ay
es

ia
n

O
pt

im
iz

at
io

n
m

od
el

.

Ta
bl

e
2.

1:
R

el
at

io
ns

hi
ps

be
tw

ee
n

N
et

wo
rk

ap
pl

ic
at

io
n

an
d

M
LN

wo
rk

flo
w

[2
9]

.

33

Machine Learning and Networking

2.4.1 Special Considerations to deploy ML in Networking

Bringing ML into Networking production incurs a unique set of challenges that needs to be un-

derstood before starting any project or research. The most prevailing ones is:

2.4.1.1 The critical role of data

High-quality data is an essential piece in ML applications, and the type of data (labeled or

unlabeled) is a key factor when deciding which type of learning to use, especially when it comes to

deploying applications for 5G use cases.

2.4.1.2 Hyper-parameters selection

Most ML algorithms have values that are set before the training begins. These settings are

called hyper-parameters because their choice influences the eventual parameters (the coefficients or

weights) that are updated from the learning outcomes [31]. For instance, In the case of RL the values

of number of averaged experiment trials, or the environmental characteristics are considered as the

hyper-parameters that control the learning process.

2.4.1.3 Performance metrics

In order to determine how well an ML algorithm will work when deployed in a real scenario,

it is important to measure its performance on unseen/unlabeled data. Generally, the performance

measure is specific to the task being carried out by the system. For tasks such as classification the

accuracy of the model is used as a measure of performance. Accuracy is defined as the percentage of

samples for which the algorithm produces a correct output [33].

2.4.1.4 Privacy and security

The ability of ML to swiftly overcome to changing situations has enabled it to become a fun-

damental tool for computer security, intrusion detection and cyber physical attacks on mobile and

wireless communications [34]. Ironically, that adaptability is also a vulnerability that may produce

unexpected results in the network.

2.4.2 Machine Learning for 5G Network

There is a strong relation between ML algorithms and 5G requirements. The intent of these

requirements is to ensure that 5G network guarantees more flexibility, security and reliability. Pro-

viding a variety of services and deployment scenarios for a wide range of environments. The main 5G

requirements grouped into three generic communication services, table 2.2 present it with the way

of how ML can assist in reaching their demands.

34

Machine Learning and Networking

Se
rv

ic
e

K
P

I
M

L
ap

pl
ic

at
io

n

eM
B

B
Pe

ak
da

ta
ra

te
SV

M
:t

o
cl

as
sif

y
ch

an
ne

ls
ta

te
in

fo
rm

at
io

n
an

d
se

le
ct

th
e

op
tim

al
an

te
nn

a
in

di
ce

s
in

M
IM

O
[4

7]
.

D
N

N
:f

or
ch

an
ne

le
st

im
at

io
n

an
d

di
re

ct
io

n
of

ar
riv

al
(D

O
V

)
es

tim
at

io
n

in
M

IM
O

[4
9]

.

U
se

r
Ex

pe
rie

nc
e

D
at

a
R

at
e

Su
pe

rv
ise

d
C

la
ss

ifi
er

:
to

dy
na

m
ic

al
ly

al
lo

ca
te

ne
tw

or
k

re
so

ur
ce

s
ac

co
rd

in
g

to
co

nn
ec

tiv
ity

pe
rf

or
m

an
ce

[4
5]

.
Q

-L
ea

rn
in

g:
to

op
tim

iz
e

th
e

ha
nd

ov
er

-d
ec

isi
on

in
H

et
N

et
s

ba
se

d
on

Q
oE

[5
4]

.

Sp
ec

tr
um

Effi
ci

en
cy

A
ct

or
-C

rit
ic

:
to

ac
ce

ss
th

e
sp

ec
tr

um
op

po
rt

un
ist

ic
al

ly
to

re
du

ce
in

tr
a/

in
te

r-
tie

r
in

te
rf

er
en

ce
[2

6]
.

H
ie

ra
rc

hi
ca

lC
lu

st
er

in
g:

to
de

te
ct

fa
ul

ts
an

d
in

tr
us

io
ns

in
th

e
w

ire
le

ss
sp

ec
tr

um
[5

0]
.

A
re

a
Tr

affi
c

C
ap

ac
ity

H
ie

ra
rc

hi
ca

lC
lu

st
er

in
g:

to
de

te
ct

fa
ul

ts
an

d
in

tr
us

io
ns

in
th

e
w

ire
le

ss
sp

ec
tr

um
[5

0]
.

A
ffi

ni
ty

Pr
op

ag
at

io
n

C
lu

st
er

in
g:

to
m

an
ag

e
ne

tw
or

k
re

so
ur

ce
s

in
ul

tr
a-

de
ns

e
sm

al
lc

el
ls

[5
3]

.

uR
LL

C
M

ob
ili

ty
D

R
L:

to
de

te
rm

in
e

th
e

se
t

of
po

ss
ib

le
co

nn
ec

tin
g

ne
ig

hb
ou

r
no

de
s

an
d

co
nfi

gu
re

ca
ch

in
g

pa
ra

m
et

er
s

in
jo

in
t

V
2V

ne
tw

or
ks

[5
2]

.
D

N
N

:t
o

pr
ed

ic
t

an
d

co
or

di
na

te
be

am
fo

rm
in

g
ve

ct
or

s
at

th
e

B
Ss

[4
8]

.

La
te

nc
y

k-
m

ea
ns

C
lu

st
er

in
g:

to
as

sis
t

in
pa

rt
iti

on
in

g
th

e
da

ta
ce

nt
re

co
nt

en
ts

in
bl

oc
ks

be
fo

re
st

or
ag

e,
to

re
du

ce
th

e
da

ta
tr

av
el

am
on

g
di

st
rib

ut
ed

st
or

ag
e

sy
st

em
s

[5
1]

.
Pr

ob
ab

ili
st

ic
Le

ar
ni

ng
:

to
ad

ju
st

th
e

T
D

D
up

lin
k-

do
w

nl
in

k
in

hy
br

id
fib

er
-w

ire
le

ss
ne

tw
or

k
ba

se
d

on
on

go
in

g
tr

affi
c

co
nd

iti
on

s
[4

6]
.

m
M

T
C

C
on

ne
ct

io
n

D
en

sit
y

Lo
gi

st
ic

R
eg

re
ss

io
n:

to
al

lo
ca

te
fr

eq
ue

nc
y

an
d

ba
nd

w
id

th
dy

na
m

ic
al

ly
in

de
ns

e
sm

al
lc

el
ld

ep
lo

ym
en

t[
44

].
M

ul
ti-

ar
m

ed
B

an
di

t:
to

in
cr

ea
se

th
e

ca
pa

ci
ty

by
op

tim
iz

in
g

th
e

ha
nd

ov
er

pr
oc

es
s

in
H

et
N

et
s

[3
7]

.

N
et

w
or

k
En

er
gy

Effi
ci

en
cy

Li
ne

ar
R

eg
re

ss
io

n:
to

pr
ed

ic
t

an
d

m
od

el
en

er
gy

av
ai

la
bi

lit
y,

in
or

de
r

to
de

fin
e

sc
he

du
lin

g
po

lic
ie

s
fo

r
ha

rv
es

tin
g

w
ire

le
ss

no
de

s
[3

6]
.

Q
-L

ea
rn

in
g:

to
m

od
el

se
lf-

ad
ap

tiv
e

sle
ep

-s
ch

ed
ul

in
g

al
go

rit
hm

s
fo

r
w

ire
le

ss
no

de
s

an
d

B
Ss

[3
5]

.

Ta
bl

e
2.

2:
Br

ie
fs

um
m

ar
y

of
co

rr
es

po
nd

in
g

M
L-

dr
iv

en
ap

pr
oa

ch
es

to
co

pe
w

ith
th

e
de

m
an

d
of

th
e

5G
st

an
da

rd
s[3

4]
.

35

Machine Learning and Networking

2.5 Related Works

Inspired by the success of machine learning in solving complicated control and decision making

problems, RL-based approaches can be an option for solving resource and service management prob-

lems in 5G networks, which are characterized by temporal variation and stochasticity of service and

resource availability as well as of system parameters and states. The SFC deployment, which is an

NP-hard problem, [42] has become a hot spot and various solutions based on RL/DRL approaches

have been proposed over the past few years, which allow network entities to learn and build knowl-

edge about the networks and even make optimal decisions locally and independently. Some of these

solutions are:

2.5.1 DRL for NFV-based Service Function Chaining in Multi-Service

Networks

Authors in [1] propose NFVDeep, which is a DRL-based approach for SFC deployment to minimize

the operational cost of NFV providers and maximize the total throughput requests of clients for the

total profits of the NFV system. They use DRL because of its ability to deal with large network state

spaces and real-time network state transitions, while Policy-Gradient (PG) shows good advantages in

improving the training efficiency and convergence to optimality. To evaluate the performance, they

compare their algorithm with the non-recursive greedy SFC placement (NGSP), where it preferentially

deploys VNFs of SFCs at used nodes with a high resource utilization rate and can get a feasible result

with O(m×n) time complexity. They also compare it with GPLL and Bayes (a Bayesian learning

based approach). Results show that NFVdeep achieves the highest total rewards with 32.59% higher

total throughput of accepted requests and a 33.29% lower operation cost on average.

2.5.2 Online Service Function Chain Deployment with DRL in 5G net-

works

Authors in [38] propose an SFC deployment model for 5G networks in the context of live streaming

to overcome traditional content delivery network problems by improving VNFs usage, content delivery

delay, throughput and operational costs, which are composed of data transmission costs and hosting

costs. They use a DRL-based approach to achieve this objective by enhancing the exploration mech-

anism over a Dueling Double Deep Q-Network (DDQN) agent, where Double Deep Q-Learning helps

to de-correlate the noise introduced by the parameters that approximate the function used to choose

the best actions from the noise of the parameters of the approximator used to evaluate the choices,

Dueling architectures have the ability to generalize learning in the presence of many similar-valued

actions. which leads to the convergence of sub-optimal SFC deployment policies. They compared

36

Machine Learning and Networking

their algorithm with the NFVDeep framework presented in [23] and they created three variants of it.

2.5.3 Adaptive Online SFC Deployment with Deep Reinforcement Learn-

ing

Authors in [39] present a Deep Reinforcement Learning (DRL) approach for the optimization

of SFC deployment problems in multi-service networks with coexistence of background flows (flows

without NFV/SFC) and SFC flows. The ultimate purpose is to achieve overall load balancing (in terms

of both traffic link load and computing load of NFV nodes) and low maximum flow path delay. The

proposed solution, Advantage Actor-Critic (A2C), has combined the strengths of deep neural networks

and reinforcement learning models for better training. They implement the theoretical mixed-linear

programming (MILP) model in order to evaluate the performance of the proposed scheme.

2.5.4 Q-Learning based SFC deployment on Edge Computing Environ-

ment

Authors in [30] use Reinforcement Learning based Q-Learning algorithm to find an optimal SCF

deployment path in edge computing with limited computing and storage resources. Configuring SFC

in edge computing environment comes with several challenges as the server resources limited in edge

computing, it is important to allocate resource intelligently to maximize the utilization and mini-

mize the latency. RL can provide optimal solution by exploring the environment without preparing

and training large datasets, they use RL based Q-Learning algorithm to find optimal path for SFC

deployment and because Q-Learning data structures are easy to modify, optimize and extend, also

because Q-Learning algoritm reduce the training time and computational complexity compare to

other approaches based on graph theory and linear programming. The authors evaluate their model

by changing the length of SFC and with high and low resources.

2.5.5 RL based QoS/QoE-aware Service Function Chaining in Software-

Driven 5G Slices

Authors in [41] proposes the reinforcement learning based QoS/QoE-aware service function chain-

ing framework in 5G Network. For improving QoE and maintaining QoS metrics (such as bandwidth,

delay, throughput, etc.). Compared with supervised learning, in that no prior extensive training

dataset is required, Training datasets from real-world networks are hard to acquire. On the one

hand, great efforts are required both in computing and storage to store operational statistics. The

model trained by supervised learning can hardly reflect the dynamics of a continuously changing

network environment. On the contrary, through the reward mechanism, reinforcement learning can

37

Machine Learning and Networking

better adapt to environmental changes. They compare their algorithm with violent search, which

guarantees the best service function chain with the highest QoE and random search, which gives a

functionally feasible chain with minimal response time.

2.5.6 Discussion

After analysing the works [23][38][39][41][30] presented in table 2.3 where the authors try to solve

SFC deployment problem focusing on improving various metrics in different type of networks and

often studying theirs reason of choosing DRL or RL approach and the arguments of choosing the

metrics introduced, we get into that decision:

In our proposed model, we will use Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) which allow for flexible and cost effective for 5G networks.

We will use Markov Decision Process (MDP) for modulating the SFC deployment problem. Also,

we will choose a DRL approach because traditional RL algorithms are tabular and evaluate the perfor-

mance of action under a state with a Q-table. Since the dimension of the Q-table is finite, traditional

RL is limited. Furthermore, RL has a weakness in making decisions in large environments with a

wide range of possibilities. We will choose the DQN approach, which is a combination of both neural

networks and Q-learning approaches, Deep Neural Network (DNN) is used to replace Q-table, DNN

can build the relations among high dimensional states, actions and Q-value to offer powerful learning

capacity to solve complex problems. DQN (Deep Q Network) uses the same RL agent, but instead

of updating the Q-table, which is hard to search in environments with large state space, it applies a

deep neural network as an approximation of the value-function.

The authors in [23] and [38] propose their models to minimize the operational cost of the provider

and maximize throughput for customers. Furthermore, [38] try to balance VNFs usage between large

numbers of requests. In [30] and [41] authors try to optimize SFC deployment by taking care of

different QoS/QoE requirements, authors in [39] evaluate their model based on maximum link usage

and VNFs usage. Based on their metrics, we will try to implement our model to provide load balancing

in terms of link and node.

38

Machine Learning and Networking

Papers Infrastructure
Network

Emerging
technolo-
gies

IA ap-
proach

DRL ap-
proach

Metric of Evalu-
ation

[2] 5G network SDN/NFV DRL PG operational cost
and Throughput.

[38] (core) DDQN VNFs us-
age,Throughput
and Operational
cost.

[39] Multi-service
networks (core)

A3C Link usage.VNVs
usage.

[41] 5G Network
(core)

RL DQN QoS/QoE.

[30] Edge Comput-
ing

Q-Learning Optimal SFC path
,resource usage and
latency.

Table 2.3: comparison between related works.

2.6 Conclusion

In this chapter, we have presented machine learning techniques focusing on Deep Reinforcement

Learning and its algorithms. After that, we presented machine learning applications in networking,

especially in 5G networks. Then, a comparative study of some recent related works was presented,

where the authors tried to solve the SFC deployment problem with different mechanism. Finally, by

taking care of different requirements and based on their work, we combined the advantages of each

one and gave a brief essential description of our proposed model.

In the next chapter, we will propose a new model for the SFC deployment approach by presenting

the general and detailed design of this proposed approach.

39

Chapter 3

Design

3.1 Introduction

In previous chapters, we presented the theoretical part of the basic concept used in these project

and some related work, which helped us to propose a new model for SFC deployment.

In this chapter, we will present the most important task in the project, which is the design. We start

with the system modulating by explaining the abstract definition of the network, the SFC request,

the mathematical formulation of the problem, and the MDP component description. After that, we

present the general and detailed architecture of the DRL-based approach for SFC deployment and

give a description of the DRL-based SFC deployment process. Then, we present the state of the

art for the compared algorithm RL-based approach. Finally, we end by giving an illustration of the

RL-based SFC deployment process.

3.2 System Modeling

3.2.1 Network Definition

The physical network presented as a graph G = (N,E), where N represent the set of nodes and E

the set of links. u, v ∈ N are two nodes, uv ∈ E stands for the physical link connecting node u with

v. The resource capacity of node u ∈ N represent as Cr
u, The bandwidth capacity of link uv ∈ E is

denoted as Cbw
uv .

3.2.2 Service Function Chain Request

An SFC request consist of source, destination and series of different VNFs, we use Ḡ = (N̄ , Ē)

to represent service function graph of SFC request, ū and v̄ stands for two hosted VNF nodes in

N̄ and the link between them denoted as ūv̄ ∈ Ē. Service function graph is a directed graph and

40

Design

the link directions satisfy the order of VNFs in SFC request. The arriving requests denoted by

Req = {SFCreq1 , SFCreq2 , ..., SFCreqi}, we use SFCreq = {vnf1, vnf2, ..., vnfk} to represent the

needed VNFs for an SFC request SFCreq ∈ Req, each SFCreq has its resource demand for each vnfk:

Dr
vnfk

and traffic bandwidth requirements Dbw
vnfk,vnfk+1

which is the same between all VNFs (ie; for

an SFCreq1 = {vnf1, vnf2, vnf3, vnf4} bandwidth requirement between vnf1 and vnf2 = bandwidth

requirement between vnf2 and vnf3 = bandwidth requirement between vnf3 and vnf4).

3.2.3 Problem Formulation

In this part we describe SFC deployment problem for SDN/NFV in 5G context. For an SFC

request the demand bandwidth of link ūv must not exceed the bandwidth capacity of link ūv:

Dbw
ūv ≤ Cbw

ūv , ∀ūv ∈ Ē.

Also, the demand resource of node ū must not exceed the resource capacity of this node:

Dr
ū ≤ Cr

ū, ∀ū ∈ N̄ .

In this study, we propose and implement two optimizing objectives, maximizing the remaining

resource capacity in each node:

Max(Rr
ū).

where:

Rr
ū = Cr

ū −Dr
ū, ∀ū ∈ N̄ .

and minimizing the usage of link bandwidth of each SFC request:

Min(Cbw
ūv).

3.2.4 Markov Decision Process (MDP) for SFC deployment

Since the SFC deployment problem is a continuous decision problem, to deal with network tran-

sition we formally present the MDP model, which is defined as < S,A,R, P, γ > where S is the set

of states, A set of actions, R for reward function, P transition probability distribution and γ the

discount factor.

41

Design

3.2.4.1 States representation

For each state s ∈ S we define it as vector (Cbw
j , Dbw

j′ , C
r
i , D

r
i′). where Cbw

j represent the bandwidth

of all links where Cbw
j = {Cbw

1 , Cbw
2 , ..., Cbw

j } , ∀j ∈ Ē, while Cr
i is the resource capacity of all nodes

where Cr
i = {Cr

1 , C
r
2 , ..., C

r
i } , ∀i ∈ N̄ . Dbw

j′ , D
r
i′ , ∀j′ ∈ Ē, ∀i′ ∈ N̄ represent the demand of bandwidth

and resource respectively.

3.2.4.2 Actions representation

A = {nId1, nId2, ..., nIdi} , ∀i ∈ N is the set of actions that agent could take, nId represent the

node identifier where VNFs will be deployed.

3.2.4.3 Reward function

The reward is designed to encourage the agent to optimize two objectives, maximizing the remain-

ing resource of nodes and minimizing the usage of links bandwidth for each SFC request, generally, we

return positive reward (3.1) for placing each VNF in appropriate node successfully, negative reward

(3.2) for punish failing actions and returning (3.3) for minimizing the maximum value of node and

link load balancing for optimizing the two objectives this formula taken from [55]. The mathematical

representation of reward function considering three case are:

R(s, a) =


1 node selected with success. (3.1)

−1 node selected with failure. (3.2)

0.5 ∗max(Cr
ū −Dr

ū) + 0.5 ∗max(Cbw
ūv −Dbw

ūv) SFC is deployed. (3.3)

3.2.4.4 State transition

MDP state transition defined as P = (st, at, rt, st+1) ∀st, st+1 ∈ S, ∀at ∈ A, ∀rt ∈ R and t is the

time step, where st is the current network state, at is the taken action to place requested VNF in

appropriate node, rt is the given reward by taken action at in state st, st+1 is the next network state.

3.3 General Architecture

The general architecture of our proposed approach is presented in figure 3.1 it contains three

principal parts which are:

Network topology it represents the physical description of the 5G network component (nodes

and links) it grouped into 3-layer RAN, Core and internet.

42

Design

Centralized Controller it controls the network by establish appropriate links between nodes,

Also, it enables the network to be intelligently controlled by using centralized applications.

IA based decision-making module this is the brain of the network, requested by the controller

to define the deployment rules.

Figure 3.1: General architecture for the proposed model.

3.4 Detailed Architecture

Figure 3.2 is the detailed architecture of our proposed DRL approach for SFC deployment in

5G context which is a composition of two emerging technologies SDN and NFV each one grouped

into many layers. To explain this architecture we will use this scenario: we have a source that need

to access to specific application, the appropriate SFC is: {V NF1, V NF2, V NF3, V NF4}, the traffic

will be steered from source to destination through the nodes that host these VNFs by forming VNF

forwarding Graph(VNF-FG). In the beginning when the request arrive the controller will receive it

and export the needed V NFs, after that the controller collect data about the state of the network

and try to find the optimal policy which satisfy the best action could take for hosting the VNFs in

appropriate nodes and chain them, all the work that the controller do is controlled by an software

application in this case this application is the decision making system we have proposed.

43

Design

Figure 3.2: Detailed architecture.

3.4.1 Source and Destination nodes

The source will be placed in the Radio Access Network (RAN). It represents the SFC request

provider, the request will reach its target, which represents the Internet by going through the core

nodes (VNF nodes).

3.4.2 Network Function Virtualization

NF is a network function run on physical hardware like firewall, load balancer, Intrusion Detection

System (IDS), etc. NFV is the virtual version of hardware devices of NF such as virtual firewall,

virtual load balancer, virtual IDS, etc. As we presented in section (1.4.1) NFV architecture contain

3 layer which are: Network Function Virtualization Infrastructure (NFVI) , NFV Management and

Orchestration (MANO) and Virtual Network Function layer.

• Network Function Virtualization Infrastructure (NFVI): Is a combination of hardware

resources (compute, storage, network) and virtualization software (hypervisor, container) to

provide virtual resources (compute, storage, network), which build up the environment for

where VNFs will be deployed, executed and managed. Virtualized Infrastructure Manager

(VIM) is a part of NFV Management and Orchestration (MANO) which control and manage

all the parts of NFVI. VIM responsible of allocation of virtual resources and the association

44

Design

of physical to virtual resources. Also, responsible for VNF service chaining, by chain multiple

VNFs together according to the order of the request we create Service Function Chain SFC.

• Virtual Network Function layer: VNF layer is where we find the VNFs software which

executed on NFVI, Virtual Network Function Manager (NFVM) represent the key component

of NFV MANO is responsible of life-cycle management of VNFs: instantiating, updating, termi-

nation, etc. Also, it determines how successfully VNFs in VNF layer are created and managed.

• NFV Management and Orchestration (MANO): it contain Virtual Network Function

Manager (VNFM), Virtualized Infrastructure Manager (VIM) and the DRL proposed module.

3.4.3 Software Define Network

It applies radical change in the networks by separating the control plane from the data plane

according to architecture presented in section (1.6.3) it contains 3 layers which are:

• Application plane: It’s the brain at the back of the control plane. It represents the application

that the controller calls to offer the best network control, it also contains the DRL model agent’s

decision-making system.

• Control plane: It is the most important part of SND. It represents the intelligence in the

network. In our case, it contains the SDN controller.

• Data plane: It is the network topology that represents the environment for the DRL model.

It contains the NFVI with its 3 sub-layers (hardware resources, virtualization layer,virtual

resources) and the VNF layer.

3.4.4 Network topology

In our project, we have studied and proposed a Service Function chain deployment based DRL

approach for dfn-bwin [56] SNDLib topology with 45 links and 10 nodes. It has high density of

connections, medium scale and widely used in literature, as figure 3.3 shows.

45

Design

Figure 3.3: SNDlib dfn-bwin topology [56].

3.4.5 DRL model architecture

Reinforcement Learning is the origin of Deep Reinforcement learning, generally RL problems are

solved by using Q-learning algorithms. As mentioned in chapter 2 (section 2.3), the agent interacts

with its environment to maximize the return (the sum of future rewards). Q-learning maps action and

state pairs to Q-values in a Q-table. However, in real world scenarios, there will be a huge number

of states, which makes it computationally intractable to build a Q-table. We use an action-value

function to overcome this limitation. Using an action-value function rather than a Q-table gives the

same results as mapping action and state into Q-values as figure 3.4 shows. Neural networks prove

that they are excellent at modelling complex functions by combining them with Q-learning under the

name of Deep Q-Learning, also called Deep Q-Network, to approximate action-value function. This

function maps a state to the Q-values of all the actions that can be taken from that state.

Figure 3.4: DQN vs Q-learning.

46

Design

3.4.5.1 DQN Architecture Design

DRL approaches are classified into two types: off-policy, also called value-based approaches like

DQN, and on-policy, known as policy-based approaches like the Policy Gradient Approach. In the

SFC deployment problem, we have a large state-action space, for which the value-based approach

Deep Q-Learning is adopted. While MDP will allow us to automatically characterize the network

variations, we need an effective policy that can automatically take appropriate actions by placing

VNFs in nodes and building the chain of an SFC in each state to achieve positive reward. The goal

of planning an MDP is to maximize the expected future discounted reward when an agent chooses

an action according to policy π in the environment. The action-value function is used to evaluate the

policy. Its calculation is realized by an action-value function approximated using Q-network Q(s, a; θ)

which is a Q-function parameterized by theta, the weight of the Deep Neural Network.

3.4.5.2 DQN component

The DQN algorithm contains many components that help it to achieve better results and higher

performance, which are:

a. Experience replay Experience replay is the memory that stores < s, st+1, a, r > tuples where

s , st+1 the current and the next state respectively, a for action and r reward, this tuples rep-

resent the training data which gather it by interacting with the environment. When training

the neural network we take random batches from this memory to calculate the Q-values. Al-

gorithm 2 represent the pseudo code of how experience replay works, we start with creating

the memory D, in line (3− 5) for each time step we interact with the environment and collect

MDPs transition then store it in D, after that we chose random samples for train the network.

Algorithm 2: Experience replay pseudo code

1 Create: memory D

2 for t← 1 to T do

3 Interact with the environment by chose random actions at for T time.

4 Collect: tuple[t] = < st, st+1, at, rt >

5 Add: tuple[t] to D

6 end

7 for m← 1 to size(batch_memory) do

8 Sample: tuple[m] from D to M

9 Train the neural network

10 end

47

Design

b. ϵ-greedy method With ϵ-greedy, the agent selects a random action with a fixed probability

ϵ. Algorithm 3 shows the steps of ϵ-greedy method. we initialize ϵ and random generated

number p, if ϵ had a higher value than p a random action selected from action-space. Else, the

action will be chose greedily according to the learned action-value Q(s, a; θ). By applying this

method, we solve the dilemma of the exploration/exploitation trade-off. As we mentioned in

section (2.3.2),

Exploration: maximize the probability of choosing this action if it gives a high reward.

Exploitation: gather more information and explore all possible new paths.

Algorithm 3: ϵ-greedy pseudo code

1 Initialize: ϵ ∈ [0, 1], p ∈ [0, 1] randomly

2 if p < ϵ then

3 chose random action a

4 else

5 action a = argmaxaQ(st, at+1; θ)

6 end

c. Target-network and Q-network In DQN, we estimate target and Q-value-function by two

different neural networks, target and Q-network. The target network updates their weights with

the parameters of the Q-network. By giving current state s the Q-network calculate Q(s, a; θ)

and the target network calculate Q̄(st+1, a; θ̄).

3.4.5.3 DQN workflow

Figure 3.5 to represent the workflow of the Deep Q-learning model, we briefly explain it by

splitting it into 5 steps as follows:

• step 1: Start by executing a few actions and adding tuples to the replay memory. The Q-

network interacts with the environment and generates training samples. Experience replay

selects an ϵ-greedy action from the current state, executes it and receive the reward and next

state, this observation will be saved in replay memory which will be used as training data.

• step 2: We now start the training of the DQN model by selecting a random batch of samples

from the training data and giving them to the two networks as inputs.

• step 3: The Q network takes the current state st from each tuple in sample batch and predicts

the Q value Q(st, at; θ) for all actions at that could be taken, this is the predicted Q-Value. The

Target network takes the next state st+1 from the same tuple as input and predicts Q-value

48

Design

Q̄(st+1, at; θ̄) for all action at that could be taken, then select the best Q̄(st+1, at; θ̄) and observe

the reward rt for this data sample.

• step 4: We will compute the loss by calculating the difference (Q̄(st+1, at; θ̄)−Q(st, at; θ))
2.

• step 5: Then we will back-propagate the loss and update the Q-network weights using gradient

descent. And this end the DQN training process for one time step, the target-network is not

trained, so no loss calculation and no back-propagation.

This process will be repeated for T time step, the Q-network learn and update the weights and

target-network remain fixed. After T time step gone, we will copy the weights of Q-network to the

target-network and this will help it to predict more accurate Q-values.

Figure 3.5: DQN workflow.

3.4.5.4 Q-network and target-network design

We can build DQN without target network but Q-network will do two passes one for predict

Q-value for state s and the second for predict target-value for state st+1, this made a problem where

the direction of prediction of target-value will be changed. By using a second neural network target

network which does not get trained, we ensure that the target values remain stable for a short period.

The Target-network is still a prediction network, so it needs to update its parameters to improve

its outputs. After a period of time steps, its weights θ̄ will be updated by copying them from the

Q-network weights θ. figure 3.6 represent both DQN Deep neural networks.

49

Design

Figure 3.6: Q-network and target-network.

Each Deep Neural Network contains 3 main layers, As we mention before the target-network is

the same as the Q-network so its neural network architecture will be the same, the three layers are:

• Input layer: The number of neurons in the input layer is fixed and corresponds to the state

of the environment, which represent by 3 features Ri the remain resource in nodes, Ci the

bandwidth capacity and Di the VNF demands.

• Hidden layer: In general there will be one or more hidden layers in neural network architecture.

the number of the layers and neurons are hyper-parameters of the architecture. θX,Y represent

the weight of neuron where X is the number of origin neuron and Y is the number of destination

neuron in each layer, the Σ symbol represent the activation function in our model, we will use

ReLu.

• Output layer: The output layer represents the prediction of Q-value for each action that can

be taken from the given state that was passed as input, for Q-network it represents Q(st, at; θ)

where we pass state st, Q̄(st+1, at; θ̄) for target-network after passing state st+1

3.4.5.5 SFC deployment approach

The DQN agent deal with SFC request in chronological order, where an MDP transition will

happen if the request is deployed or rejected, figure 3.7 present SFC deployment approach in time

steps.

Figure 3.7: SFC deployment approach in time steps.

50

Design

As illustrated in figure 3.7 three SFC requests arrives in different time steps, SFC1 = {FW,DPI,

IPS}, SFC2 = {FW, IDS}, SFC3 = {NAT,LB, IPS} where: firewall(FW) Deep packet inspec-

tion(DPI), Intrusion prevention system(IPS), Intrusion detection system(IDS), Load balancer(LB)

and Network address resolution(NAT) represent the needed virtual network function in each request.

In the beginning the agent will monitor all the network and collect the statistics about nodes resources

and links bandwidth, Then receive the SFC requests based on arriving time, at time t = 1 the state

is: s1 = [Cbw
ūv∈Ē

, Dbw
1 , Cr

ū∈N̄
, Dr

1] where Cbw
ūv∈Ē

represent all the network links bandwidth, Cr
ū∈N̄

is

the resource capacity of all nodes, Dbw
1 , Dr

1 is the request demand of bandwidth and resource. DQN

agent will calculate the Q-value for each possible action Q1 = (s1, ai; θ) where ai ∈ A, A represent

the possible actions that represent the appropriate node Ids nIdi for deploying each VNF in the SFC

request. We assume that for SFC1 the chosen action is a1 = {nId4, nId1, nId2} which mean that:

FW will be deployed in node that identified by nId4, DPI will be deployed in node that identified

by nId1, IPS will be deployed in node that identified by nId2. SFC1 deployed successfully at state

s1 by taken action a1 which give the biggest value of Q1(s1, a1; θ) and gets positive reward r1. After

that, the model move to the next state s2, for SFC2 the chosen action is a2 = {nId3, ϕ} because

the second requested VNF IDS is not deployed which indicated by ϕ, a negative reward r2 will be

returned and the request will be rejected. At time t3, state s3, when the request demands satisfied

for SFC3 it will be deployed successfully with positive reward r3. Finally the model will pass into

the next state.

3.4.5.6 DRL based approach for SFC deployment algorithm

Algorithm 4 shows how the model learns the optimal policy π∗ for SFC deployment, it start with

instantiating of environment (network topology) and DQN agent (brain) which require the selection of

the hyper-parameter, the initialization of Q-network with θ and target-network with θ̄, the mini-batch

M and the experience replay memory D. Starts by calling reset function presented in algorithm 5

for initialize the environment nodes resources and links bandwidth. Then get SFC requests by calling

SFC_requests function presented in algorithm 6 by give it the number of SFCs requests and the

size of each request. After that, for each step the agent get the network current state by calling

start function presented in algorithm 7 which parameterised by the demands of the SFC request

bandwidth and resource. For each vnf in SFC request the agent will choose an action based on

algorithm 3 presented in section (3.4.5.2). At line(12) DQN agent call step function presented in

algorithm 8 by giving it the chosen action, it will indicate the deployment decision for the received

SFC, accepted or rejected and returns next_state, reward, terminal_state, terminal_state flag will

help the agent for determine if this state is the terminal state. The previous MDP transition will

be stored in replay memory D, after that, we will update the state of the environment and test the

51

Design

terminal state. A mini-batch M will be randomly sampled from D which eliminate the correlation

to avoid over-fitting for train the Q-network and update the weights based on algorithm 2. The

target-network will be updated periodically after C time steps as line 21 shows.

Algorithm 4: DQN SFC deployment

1 Instantiate environment

2 Instantiate DQN agent

3 Initialize hyper-parameter

4 Initialize Q-network Q with weight θ, Q-target Q̄ with weight θ̄

5 Initialize batch_size M and replay memory D

6 reset() ; // initialize the environment

7 Dbw
k , Dr

k← SFC_requests(number_requests, sfc_size); // get SFC requests

8 for step← 1 to STEPS do

9 state ←− start(Dbw
k , Dr

k) ; // get the current state

10 for vnf ← 1 to SFCvnfs do

11 action ←− chose_action(state) ; // chose action based on ϵ greedy method

12 next_state, reward, terminal_state ←− step(action) ; // get the deployment

decision

13 store_transition(state, action, reward, next_state) ; // store transition in D

14 state ←− next state ; // update the current state

15 if terminal_state then

16 break; // testing terminal state

17 end

18 end

19 sample randomly mini_batch M of transition from D

20 Train the Q-network and update the weights.

21 Every C steps copy weight from Q to Q̄

22 end

a. Reset function This function is responsible for the initialization of the environment by setting

the network link bandwidth and node resources.

52

Design

Algorithm 5: Reset function

1 Function reset():

2 Initialize_network_links_bandwidth() // network links bandwidth BWi

3 Initialize_network_nodes_resources() // network nodes resources COSTj

4 End Function

b. SFC request function Start by initializing the number of requests and each SFC request size,

then creating and initializing four variables that set the min and max values for bandwidth

and resource requirements. SFC_request function parameterized by the number of requests

number_requests and SFC request size sfc_size , we set the bandwidth requirement for the

sfc request as random number between Bmin and Bmax, after that, For each vnf in sfc_size we

set the required resources presented as random number between costmin and costmax. Finally,

we will return the SFC request, which a vector of two values required link bandwidth and node

resources.

Algorithm 6: SFC request function

1 initialize SFC requests number_requests

2 initialize SFC requests sfc_size

3 initialize Bmin and Bmax bandwidth requirement interval

4 initialize costmin and costmax resource requirement interval

5 Function SFC_requests(number_requests,sfc_size):

6 Dbw
k ← random_number(Bmin , Bmax)

7 for vnf ← 1 to sfc_size do

8 Dr
vnf ← random_number(costmin , costmax)

9 end

10 return (Dbw
k , Dr

sfc_size) // return the bandwidth and resoures requirments

11 End Function

c. Start function Each time step the agent calls this function, it returns the current state of

the environment, which is a combination of: BWi network links bandwidth, Dbw
k required

bandwidth, COSTj network node resources, Dr
k required resources.

53

Design

Algorithm 7: Start function

1 Function start(Dbw
k , Dr

k):

2 state← BWi, D
bw
k , COSTj , D

r
k

3 return state

4 End Function

d. Step function This function is responsible for SFC deployment. It starts by initializing

terminal_state flag by False, then, testing if the bandwidth and resources in the network

can allocate the required bandwidth and resources. After that, it sets the reward of the tran-

sition and the terminal_state flag by True for the terminal state and updates the current

state. Otherwise, the SFC request will be rejected for one of two reasons: the constraint of

the required bandwidth or resources is not satisfied and set terminal_state flag True for the

terminal state. Finally, return state, reward, terminal_state.

Algorithm 8: Step function

1 Function Step(action):

2 terminal_state← False

3 if Dbw
uv ≤ Cbw

uv and Dr
u ≤ Cr

u then

4 allocate Dbw
uv to Cbw

uv and Dr
uto Cr

u

5 reward← r(state, action)

6 terminal_state← True

7 update state

8 else

9 reject SFC

10 terminal_state← True

11 end

12 return state, reward, terminal_state

13 End Function

3.4.5.7 DRL based approach for SFC deployment process

Figure 3.8 represents a DRL-based SFC deployment process. It starts with the environment

instantiating and initialization with the configuration parameters. The DQN agent then instantiates

and initializes its hyperparameters. If a request is received, a resource test is launched to determine

if the demand constraint (bandwidth and node resources) is satisfied,so the request will be deployed

otherwise rejected. After that, the agent will allocate resources and bandwidth to SFC request based

on their requirements. Finally, we test if this is the last received request for stop the process.

54

Design

Figure 3.8: DRL based SFC deployment process.

3.5 Reinforcement Learning model architecture

We will compare our Deep Reinforcement Learning proposed approach Deep Q-learning with

the Reinforcement learning approach Q-learning, which uses the same environment configuration as

presented below:

3.5.1 RL based approach for SFC deployment algorithm

Q-learning is an off-policy algorithm that seeks to find the best action to take given the current

state to maximize the future reward.

Algorithm 9 present the SFC deployment approach based Q-learning,start with the initialization

of the environment and RL agent when q-learning is performed the agent initialize hyperparameters

and create a q-table of state, action pairs with the q-values Q(s, a), which will be updated after each

step. This q-table used as a reference table by our agent to select the best action based on the q-

value. It starts by, calling reset function presented in algorithm 5, then call SFC request generator

55

Design

function SFCrequests explained in algorithm 6. For each time step the agent get the network state

by calling start function in algorithm 7 with giving it the appropriate parameters, After that, for

each vnf in the SFC request the agent choose an action by following one of the two ways as algorithm

3 presented in section (3.4.5.2) shows:

• Exploration By using the information we have available in the q-table and viewing all possible

actions for a given state, the agent selects an action based on the maximum q-value of those

actions.

• Exploitation The agent selects an action by acting randomly, which allows it to explore new

states.

At line(10) the agent call step function presented in algorithm 8 by giving it the chosen action,

it will returns next_state, reward, terminal_state. The agent by interacting with the environment

will update q-table by calling agent_learn function presented in algorithm 10, then the current

state will be update and test if it is the terminal state for deploying the request. The agent will

not learn after a single step, but eventually with enough exploring (steps) it will learn the optimal

q-values Q∗(s, a).

Algorithm 9: Q-learning SFC deployment

1 instantiate environment

2 instantiate RL agent

3 initialize q-table

4 reset() ; // initialize the environment

5 Dbw
k , Dr

k← SFC_requests(number_requests, sfc_size); // get sfc requests

6 for step← 1 to STEPS do

7 state ←− start(Dbw
k , Dr

k); // get current state

8 for vnf ← 1 to SFCvnfs do

9 action ←− chose_action(state); // chose action based on ϵgreedy method

10 next_state, reward, terminal_state ←− step(action); // deployment decision

11 agent_learn(state, action, reward, next_state); // agent learn & update q-table

12 state ←− next state ; // update current state

13 if terminal_state then

14 break ; // testing terminal state

15 end

16 end

17 end

56

Design

a. Agent_learn function Algorithm 10 represent the function that enforce the agent to learn

the optimal policy, we start with initializing the discount factor γ and the learning rate lr, the

function parameterized by the previous MDP transition state, action, reward, next_state, at

line(3) the agent predict the q_value Q(state, action) if the current state exist in the q_table,

After that, the agent estimate the q_target Q̄(state, action) by add the reward to the multi-

plication of the maximum q_values and the discount factor γ, otherwise the agent update the

q_table based on the difference between the discounted new q_values and the q_target.

Algorithm 10: agent_learn function

1 initialize gamma γ and learning rate lr

2 Function agent_learn(state, action, reward, next_state):

3 Q(state, action) = q_table[state, action] // predict Q-value from q-table

4 if not terminal state then

5 Q̄(state, action)←− reward+ γ ∗max(Q(state, action)) // calculate

q-target

6 else

7 Q̄(state, action)←− reward

8 q_table←− lr ∗ (Q(state, action)− Q̄(state, action)) // update q-table

9 end

10 End Function

3.5.2 RL based approach for SFC deployment process

Figure 3.9 represents RL-based approach for the SFC deployment process. It is the same as the

DRL-based approach, but here we use a Q-learning agent initialized by learning rate, epsilon value,

and discount factor.

57

Design

Figure 3.9: RL based SFC deployment process.

3.6 Conclusion

Through this chapter we present the global design of our system, starting by presenting the

principle algorithms for SFC deployment based DRL and the algorithms for SFC deployment based

RL, then we formulate the problem and present the general and the detailed architecture. In the next

chapter we will see the experimental study after implement the presented algorithms and discuss the

different results of this models.

58

Chapter 4

Experimental study and results

4.1 Introduction

In the previous chapter, we presented our DQN model and propose Q-learning approach for

comparison. Furthermore, we have detailed the different design steps of our system to achieve these

results. In order to implement our model, we used several development tools. This chapter is devoted

to the presentation of the working environment, the programming language, and the tools we have

used to build this system. Thereafter, we will explain the results of the proposed method as well as

discuss it.

4.2 Development tools

We used the Python programming language for developing our system, with some libraries working

on Deep Reinforcement Learning and Reinforcement Learning. We also use Jupyter Notebook to

develop our model locally, and we use the internal cloud service Google Collaboratory. The different

used tools are presented in figure4.1.

Figure 4.1: Used tools.

59

Experimental study and results

4.2.1 IDE (integrated development environment)

4.2.1.1 Google Colab

Is a free tool offered by Google that allows users to write and execute Python code in their web

browsers. Colab is actually based on the Jupyter open source, and essentially allows us to create and

share computation files without having to download or install anything. However, we might need to

install some libraries in our environment during initialization [57].

4.2.1.2 Jupyter Notebook

Free software, open standards and web services for interactive computing across all programming

languages, also known as IPython Notebook, which is an interactive computational environment,

in which we can combine code execution, rich text, mathematics, plots, and rich media. It is an

incredibly powerful tool for interactively developing and presenting data science projects [58].

4.2.2 Programming language

4.2.2.1 Python

Python is a widely used general-purpose, object-oriented, high-level programming language. It

is one of the most popular coding languages due to its versatility. The language has a design that

emphasizes code readability and supports multiple programming paradigms. Python includes high-

level data structures, dynamic binding, dynamic typing, and some other features, making it suitable

for complex application development. It is used in Artificial Intelligence, Machine Learning, Gaming,

Product Development, Rapid Application Development, Testing, Automation, and more. Python is

growing in popularity as the primary language for many applications [59].

4.2.3 libraries

The libraries are called at the beginning of the program to use their predefined functions.

4.2.3.1 Keras

Keras is a powerful and easy-to-use open source Python library for developing and evaluating Deep

Learning models. It includes the efficient numerical computation libraries Theano and TensorFlow,

allowing us to define and train neural network models in just a few lines of code [60].

4.2.3.2 Numpy

NumPy stands for Numerical Python, it is a Python open-source project, used for working with

arrays. It has functions for working in the domains of linear algebra and Fourier transform [61].

60

Experimental study and results

4.2.3.3 Pandas

Pandas is an open source Python package that is most widely used for data science, data analysis,

and machine learning tasks. It allows manipulation and analysis of data and proposes, in particular,

data structures and numerical table manipulation operations [62].

4.2.3.4 Random

Random is an in-built module of Python that is used to generate random numbers. This module

can be used to perform random actions such as generating random numbers, printing random values

for a list or string, etc [63].

4.2.3.5 Matplotlib

Matplotlib is a comprehensive library for creating static and interactive visualizations in Python.

It produces publication-quality figures in a variety of paper formats and interactive environments

on all platforms. Matplotlib can be used in Python scripts, the Python and IPython shells, web

application servers, and various toolkits with graphical user interfaces [40].

4.2.3.6 Collections

The collection module in Python provides different types of containers. A container is an object

that is used to store different objects and provides a way to access the contained objects and iterate

over them. Some of the built-in containers are: tuple, list, dictionary, etc [32].

4.3 Implementation

The following steps present the implementations of our background Deep Reinforcement Learning

model DQN and Reinforcement Learning model Q-learning, which were mentioned in the previous

chapter:

4.3.1 Environment

The scenario proposed consists of the deployment of SFC requests comprised of ten nodes with 45

links and 200 different SFC requests for training, as table 4.1 summarizes the chosen configuration:

Parameter Value
Nodes 10
Links 45
SFC requests 200

Table 4.1: Environment configuration

61

Experimental study and results

4.3.1.1 Links

We use the link capacity offered by SNDlib Benchmark, figure4.2 presents the link configuration,

where table ’SNDlib bandwidth data’ represents the configuration taken from the SNDlib dfn-bwin

topology and ’environment bandwidth data’ represents the configuration used in our implementation,

where we change the string values of source and target to numerical values to deal with them easily.

Figure 4.2: SNDlib and environment link data.

4.3.1.2 Nodes

Because SNDlib does not offer resource capacity for nodes, we assume that each node has an

capacity of 200 units.

4.3.1.3 SFC requests

We fix the SFC size by 5, where each SFC request contains 5 vnfs. The figure 4.3 represents a

sample of the used SFC requests in training phase, where bw represents the bandwidth requirement

which measured by units. From vnf0 to vnf4, represents the required resources for each vnf.

Figure 4.3: SFC requests sample.

62

Experimental study and results

4.3.2 Deep Q-learning Agent

This study is to understand how the DQN agent works and interact with its environment. We

mainly focus on 3 different metrics, which are: the evolution of the total reward, resource consumption,

and bandwidth consumption. The set of hyperparameters is presented in table 4.2.

Hyperparameter Value
Replay buffer size 2000
mini batch size 64
Learning rate 0.001
Discount factor 0.95
Epsilon 1
Epsilon decay 0.996
Hidden layers (layer 1,layer 2) (100,100)

Table 4.2: Hyperparameter configuration

4.3.2.1 DQN agent class

The DQN agent class contains many methods, which we will present separately as below:

• Import libraries first of all, we start by importing the different libraries that we need to

implement our DQN agent, which are:

1 # Import the used libraries in DQN agent

2 import numpy as np

3 # Deque module provide fast and memory-efficient ways to append

4 from collections import deque

5 # Create sequence of layers

6 from keras.models import Sequential

7 # Type of layers in neural network Dense:fully connected NN

8 from keras.layers import Dense

9 # Optimal set of weight in NN

10 from keras.optimizers import Adam

Listing 4.1: Used libraries

We use the Numpy library for dealing with arrays. Also, we use Deque from collections, which

provides a fast and memory-efficient way to append and pop operations from both ends of

memory. Then we import from keras a Sequential model for the layer plan stack, Dense for

the deeply connected neural network layer, and optimizer Adam, which is a stochastic gradient

descent method based on adaptive estimation of first-order and second-order moments.

• Initialization here, we initialize the hyperparameters as presented in table 4.1:

1 # Configuration parameters for the whole setup

2 def __init__(self, state_size, action_size):

3 self.state_size = state_size # State size

63

Experimental study and results

4 self.action_size = action_size # Action size

5 self.memory = deque(maxlen=2000) # Replay buffer size

6 self.gamma = 0.95 # Discount factor

7 self.epsilon = 1.0 # Epsilon greedy parameter

8 self.epsilon_min = 0.01 # Minimum epsilon greedy parameter

9 self.epsilon_decay = 0.996 # Epsilon greedy decay parameter

10 self.learning_rate = 0.001 # Learning rate

11 self.batch_size = 64 # Batch memory size

Listing 4.2: DQN agent initialization

• Build model the implementation of our model, is implemented by the _build_model() func-

tion:

1 def _build_model(self):

2 # Neural Net for Deep-Q learning Model

3 model = Sequential()

4 # Input layer

5 model.add(Dense(75, input_dim=self.state_size, activation='relu'))

6 # First hidden layer with 100 neuron

7 model.add(Dense(100, activation='relu'))

8 # Second hidden layer with 100 neuron

9 model.add(Dense(100, activation='relu'))

10 # Output layer

11 model.add(Dense(self.action_size, activation='linear'))

12 # defines the loss function and the optimizer

13 model.compile(loss='mse', optimizer=Adam(learning_rate=self.learning_rate))

14 return model

Listing 4.3: Build model

We build a sequential model with two hidden layers of 100 neurons for each one with an ac-

tivation function Relu, where in the output layer we specify the activation function as Linear,

which spits out the value that was given. Then we compile our model by specifying the loss

Mean Square Error and optimizer Adam.

• Store transition is implemented under the name memorize() as below:

1 # Store previous MDP transition in replay buffer

2 def memorize(self, state, action, reward, next_state, done):

3 self.memory.append((state, action, reward, next_state, done))

Listing 4.4: Memorize function

In the memorize function we get the input data, which is the previous MDP transition, and

store it in the replay buffer that we initialized before.

64

Experimental study and results

• Chose action We chose action based on the greedy method, as we explained in the previous

chapter in section (3.4.5.2), ϵ-greedy method is implemented as act() function:

1 # Chose action based on epsilon greedy method

2 def act(self, state):

3 # initialize random variable x

4 x = np.random.rand()

5 if x <= self.epsilon:

6 # return random action from action size

7 return random.randrange(self.action_size)

8 # predict action based on current state

9 act_values = self.model.predict(state)

10 # returns action (node ID)

11 return np.argmax(act_values[0])

Listing 4.5: ϵ-greedy function

• Agent learn the mechanism of how DQN agent will learn is implemented below:

1 # replay represent How DQN agent learn?

2 def replay(self, batch_size):

3 # sample minibatch randomply

4 minibatch = random.sample(self.memory, batch_size)

5 for state, action, reward, next_state, done in minibatch:

6 # Q-value of target network = reward

7 target = reward

8 if not done:

9 # Q value of target network = reward + discount factor * expected future

reward

10 target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0])

)

11 # target_f network predict action

12 target_f = self.model.predict(state)

13 # Take best action

14 target_f[0][action] = target

15 # fit the model

16 self.model.fit(state, target_f, epochs=1, verbose=0)

17 if self.epsilon > self.epsilon_min:

18 # Decay probability of taking random action

19 self.epsilon *= self.epsilon_decay

Listing 4.6: DQN agent learning function

The agent will sample a minbatch of replay buffer. Then estimate the Q-value for the current

state by target_f neural network and the next state by target neural network. Finally, decay

the probability of chosen random action.

65

Experimental study and results

4.3.2.2 Training results

The simulation will run for 600 steps of training and 200 SFC request, with an evaluation per-

formed every 100 steps. Then, all the information from the model is exported. We use the hyper-

parameters presented in table 4.1 which can help achieve better results. A sample of SFC requests

used in this phase is presented in figure 4.3.

• Reward We start by studying the evolution of the reward that is calculated by using the reward

function presented in section (3.2.4.3), which minimizes the maximum value of both link and

node load balancing for optimizing the two objectives of maximizing the remaining resources

of nodes and minimizing the usage of link bandwidth. Now we are going to present the return,

which is the sum of future discounted rewards calculated by using the following equation:

return =

600∑
step=1

reward (4.1)

Then we calculate the average return to measure the performance of the agent by the following

equation:

average_return =

∑600
step=1 reward

number_of_reward
(4.2)

The results obtained from the DQN model during training are shown in figure 4.4:

Figure 4.4: DQN training phase reward.

66

Experimental study and results

Reward discussion The total reward is increasing little by little while the policy is learning

good behavior. It peaks at the highest value 49.17 at step 422, then it goes down a little bit

until it reaches the value 36.17 at step 446, after that it continues to rise. That happens because

of the nature of agents that learn by training and make mistakes. These mistakes may happen

because the constraint of SFC requests is not satisfied. The total reward at step 600 is equal

to 49.17. The percentage of average return equal to 8.2%.

4.3.3 Q-learning Agent

Q-learning is the second approach studied in this thesis. First, it will be implemented to see the

impact of this approach on SFC deployment and compare that impact with the DQN impact based on

evolution of reward, bandwidth consumption, resource consumption and average return rate. Table

4.3 shows the set of hyperparameters for the Q-learning agent.

Hyperparameter Value
Learning rate 0.01
Discount factor 0.9
Epsilon 0.9

Table 4.3: Hyperparameter configuration

4.3.3.1 Q-learning agent class

The Q-learning agent class contains many methods, which we will present separately as below:

• Import libraries first of all, we start by importing the different libraries that we need to

implement our Q-learning agent, which are:

1 # Import the used libraries in Q-learning agent

2 import random

3 import numpy as np

4 import pandas as pd

Listing 4.7: Used libraries

We use Random library for generating random values, Numpy for dealing with arrays, and

Pandas for data analysis and associated manipulation of tabular data in dataframes.

• Initialization here, we initialize the hyperparameters as presented in table 4.3:

1 # Configuration parematers for the whole setup

2 def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):

3 self.actions = actions # Action

4 self.lr = learning_rate # Learning rate

5 self.gamma = reward_decay # Epsilon greedy decay parameter

6 self.epsilon = e_greedy # Epsilon greedy parameter

67

Experimental study and results

7 self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64) # initialize

q_table

Listing 4.8: Q-learning agent initialization

We initialize the q-table for mapping q-values for each state-action pair.

• Check state in q-table check_state_exist() function is for testing if the given state exist in

q_table:

1 # Test if the state exist in q-table

2 def check_state_exist(self, state):

3 if state not in self.q_table.index:

4 # append new state to q table

5 self.q_table = self.q_table.append(

6 pd.Series(

7 [0]*len(self.actions),

8 index=self.q_table.columns,

9 name=state,))

Listing 4.9: check_state_exist function

This function is responsible for testing if the current state exists in the q_table. If it does not

exist, it will create a item for each state-action pair and add it to q_table.

• Chose action is the ϵ-greedy method that presented in section (3.4.5.2):

1 # Chose action based on epsilon greedy method

2 def choose_action(self, state):

3 # Check if state exist in q-table

4 self.check_state_exist(state)

5 # Action selection

6 if np.random.uniform() < self.epsilon:

7 # choose best action

8 state_action = self.q_table.loc[state, :]

9 else:

10 # choose random action

11 action = np.random.choice(self.actions)

12 return action # return the chosen action

Listing 4.10: ϵ-greedy function

It starts by checking if the current state exists in q_table. After that, by choosing a random

value, the agent chooses random action if the value is less than epsilon, otherwise it chooses the

best action.

• Agent learn algorithm of which present how Q-learning agent will learn is implemented below:

68

Experimental study and results

1 # learn represent How Q-learning agent learn?

2 def learn(self, state, action, reward, next_state):

3 # Check if next_state exist in q-table

4 self.check_state_exist(next_state)

5 # Get the q-value of state action pair

6 q_predict = self.q_table.loc[state, action]

7 if next_state != 'terminal': # Next_state is not terminal state

8 # Calculate q_target value

9 q_target = reward + self.gamma * self.q_table.loc[next_state, :].max()

10 else: # Next_state is terminal state

11 q_target = reward

12 # Update q-table

13 self.q_table.loc[state, action] += self.lr * (q_target - q_predict)

Listing 4.11: Q-learning agent learning function

First of all, the agent tests if the given next_state exists in q_tabele. Then q_predict gets

the q_value of the given state and action from q_table . After that, the agent checks if

the next_state is not terminal state for predicts the maximum q_value for q_target ; if yes,

q_target gets the value of reward. Finally, update q_table by discount the difference between

q_target and q_predict.

4.4 Results

The simulation will run for 380 steps for both approaches, DQN and Q-learning. After saving the

DQN model every 100 steps, we choose 3 different models with a long time period between them.

agent 1 taken in step 100, agent 2 in step 300 and agent 3 in step 600. The data used in the DQN

evaluation phase is generated randomly and it will be used by all DQN agents and by the Q-learning.

Figure 4.5 shows a sample of the used data, where bw represents the bandwidth requirement for

each request, while from vnf0 to vnf4 represents resource requirements.

Figure 4.5: SFC request used in evaluation.

69

Experimental study and results

4.4.1 DQN models evaluation results

In this section we are going to present the evaluation results of Deep Q-learning agents:

4.4.1.1 Reward

Figure 4.6 represents the total reward of the three DQN agents, where axis x represents the

steps of training and axis y represents the value of the rewards.

Figure 4.6: DQN agents reward.

Reward discussion We observe that from step 0 to 50 all the DQN agents increase together,

with a negligible difference between them. After step 50, agent1 and agent2 rise very slowly compared

with agent3, which rises very fast because it trained very well more than the other agents, where

agent1 has the shortest training period and agent2 has the medium training period. At the end

of this simulation, we note that agent2 and agent3 achieve the highest rewards 30.14 and 58.08,

respectively, in the last step, while agent1 achieves 40.14 in step 333, then decreases to the end

because the remaining capacities do not satisfy the requested requirements. The obtained total

reward at step 380 for agent1 is : 24.14. While the average return percentages for agent1, agent2,

and agent3 are 6.35%, 7.93%, and 15.28%, respectively. Based on those results, we come to the

conclusion that the third agent is the best trained once, whose behavior improves quite a lot.

4.4.1.2 Node consumption

The reward gives information about the performance of the agent, but it is necessary to look at

the other metrics to know if the behavior is as desired. Now, we are going to study the evolution of

70

Experimental study and results

the nodes resource consumption, which is calculated by using the following equation:

resource_consumption =

∑
node_resources

number_of_nodes
(4.3)

Figure 4.7 represents the total resource consumption of the three DQN agents, where axis x rep-

resents the steps of training and axis y represents the value of the resource consumption which is

divided by 100 to make the curve readable.

Figure 4.7: DQN agents resource consumption.

Resource consumption discussion

We see that the capacity is assigned according to the available resources in the environment.

When the SFC request resources constraint is lower than the total capacity available in nodes, the

resources are efficiently allocated to each SFC request. However, as the SFC request resources go up,

the allocated capacity will increase, which will lead to a decrease in the nodes capacity. As shown in

figure 4.7, the third DQN agent3 still produces the best results, where in step 380 uses only half of

the node capacity, where agent2 uses a little less than half, and agent1 produces the worst results,

using almost all of the node capacity. As a result, the third agent outperformed the others and learned

extremely well. We see that from step 0 to 25, all the DQN agents resource consumption decreases

slowly. After that, we observe that agent3 continues to decrease slowly, while agent2 decreases a little

bit faster than agent3, and agent1 is the fastest one. At the end of simulation, we observe that at step

380, the remaining resources in the environment of agent3 are 102 unit, which consumes 44% of the

total environment resources, agent2 is equal to 89 unit and consumes 55.5%, and agent1 is equal to 9

unit and consumes 95.5%. Based on these results, we find that agent1, which has the shortest period

71

Experimental study and results

of training, does not know how to maximize his total reward, so he still makes mistakes and does not

know how to deal with new different requests. He consumes all the resources of its environment and

allocates resources without taking into consideration the objectives that we built him to optimize,

and that leads to rejecting all the new arrival requests. While agent2 achieves little different results

than agent3, who achieves the best resource consumption due to the powerful training that he has

taken.

4.4.1.3 Link consumption

After that, we are going to study the evolution of the links bandwidth consumption, which is

calculated by using the following equation:

bandwidth_consumption =

∑
link

number_of_links
(4.4)

Figure 4.8 represents the total bandwidth consumption of the three DQN agents, where axis x

represents the steps of training and axis y represents the value of the bandwidth consumption which

is divided by 100 to make the curve readable.

Figure 4.8: DQN agents bandwidth consumption.

Bandwidth consumption discussion We see that the bandwidth capacity is assigned according

to the offered bandwidth in the environment. When the SFC request bandwidth constraint is lower

than the available bandwidth, the bandwidth is efficiently distributed and allocated to each SFC

request. However, as the SFC request bandwidth requirements go up, the allocated bandwidth will

increase, which will lead to a decrease in the link capacity. As we see in figure 4.8 for the first 25

72

Experimental study and results

steps, all the agents consumes slightly the same bandwidth. After that, we observe a convergence of

consumption between agent2 and agent3 with a little difference, but agent1 decreases rapidly, where

he consumes bandwidth much faster than the others. By the end of the simulation, we find that the

third DQN agent still achieves the highest results, where in step 380 only 8% of the total bandwidth

capacity is used, while agent2 uses 8.4%, but agent1 gives the worst result, which uses 27.3%. Based

on that, the third agent achieved the best performance and trained very well.

4.4.2 DQN vs Q-learning comparison results

In our work, we will evaluate two approaches: DQN based DRL and Q-learning based RL. For

Q-learning, it is necessary to tune the hyperparameters configuration to optimize the learning pro-

cess, for which we use hyperparameters presented in table4.3. After training the DQN model and

implementing Q-learning, we are going to compare their results, the simulation were made in the

same environment condition with the same number of SFC requests (100).

4.4.2.1 Reward

Figure 4.9 represent the evolution of total reward for both Deep Q-learning agent and Q-learning

agent where axis x represents the steps of evaluation and axis y represents the value of the total reward.

Figure 4.9: DQN vs Q-learning reward.

Reward discussion Here, we focus on the behavior of the policy obtained in each approach,

figure 4.9 shows that the reward of the DQN agent is much higher than the Q-learning agent

because the DQN uses Deep Neural Network as a function approximator, which makes him learn

73

Experimental study and results

much faster than the approach based q-table. The return of both approaches is: DQN 15.28% and

Q-learning 7.40%. The highest reward for DQN is 58.08, achieved in step 380. For Q-learning it is

32.14, achieved in step 332. In the step 380 Q-learning decrease till achieve 28.15 because the DQN

agent benefits from neural network advantages, which give him the ability to work with insufficient

knowledge.

4.4.2.2 Resource consumption

Now, we will compare the resource consumption of both approaches. The resource consumption for

Deep Q-learning agent and the Q-learning agent is presented in figure 4.10, where axis x represents

evaluation steps and axis y represents resource consumption which is divided by 100 to make the

curve readable.

Figure 4.10: DQN vs Q-learning resource consumption.

Resource consumption discussion From the beginning to step 40, the Q-learning agent con-

sumed fewer resources than the DQN agent. From 40 to 56, the consumption is slightly similar

between them, with total resource consumption equal to 8% for DQN and 8.5% for Q-learning. After

step 56, we observe that the DQN decreases more slowly than Q-learning, where the DQN agent

consumes only 44% of the total resources at step 380 and the Q-learning agent consumes 56% of

the total resources at the same step. Although the difference between DQN and Q-learning resource

consumption not much difference, it has a non-negligible effect on the remaining resources in the

environment. These results demonstrate that DQN interacts with the environment more effectively

than Q-learning.

74

Experimental study and results

4.4.2.3 Bandwidth consumption

Finally, we will compare both approaches in term of bandwidth consumption. Figure 4.11 shows

how DQN and Q-learning agents consume environment bandwidth, with time steps represented by

axis x and bandwidth consumption represented by axis y which is divided by 100 to make the curve

readable..

Figure 4.11: DQN vs Q-learning bandwidth consumption.

Bandwidth consumption discussion From the first step to 275, we observe that both agents

decrease continuously together, where the DQN agent consumes 6.8% of the total bandwidth and

the Q-learning agent consumes 7.8% of the total bandwidth in the environment. After that step, we

notice that the DQN agent decreases slowly, which means that he consumes bandwidth in an effective

way, whereas the Q-learning agent decreases a little bit faster than DQN, which means the way he

consumes bandwidth doesn’t give good results as the DQN mechanism. We find that, at step 380,

the DQN agent consumes 8%, while Q-learning consumes 11.4% of the total bandwidth.

4.5 Final discussion

Table 4.4 represents the final comparison between all agents in terms of return, resource and

bandwidth consumption.

75

Experimental study and results

model return Resource consumption Bandwidth consumption
DQN agent1 6.35% 95.5% 27.3%
DQN agent2 7.93% 55.5% 8.4%
DQN agent3 15.28% 44% 8%
Q-learning 7.4% 56% 11.4%

Table 4.4: Comparison between all models

Based on the results presented above, we conclude that DQN agent3 approach outperforms other

agents in solving SFC deployment problem by achieving the best return while consuming the least

amount of resource and bandwidth. The second agents who gives acceptable results agent2 and Q-

learning agent which achieves a slightly difference than agent2, while agent1 remains at the bottom

of the list with its poor performance.

4.6 Conclusion

In this last chapter, we presented the different software tools that we used for the implementation

of our project. Next, we described the implementation of our approaches, starting from the steps

of configuring the environment, building DQN and Q-learning algorithms and selecting different

hyperparameters that are included in the training of the model and validating our model.At the end,

we discussed the different results obtained, which show the performance of our model compared with

the RL-based approach.

76

General conclusion

Traditional networks have reached their maximal capabilities. The increase in throughput and

the number of users cannot be met by simple hardware evolution. The management of networks must

also evolve. This evolution began with the introduction of Software Defined Network (SDN) and Net-

work Function Virtualization (NFV). These two paradigms enable programmable networks, resource

abstraction and enabling automatic management. 5G increases the need for network management

evolution and innovation. It imposes severe constraints on latency, mobility, throughput, energy

efficiency, security, and, most importantly, resource utilization. The infrastructure of 5G networks is

also evolving, but this must be coupled with a change in the network management approaches. The

great heterogeneity of use cases and service requirements in 5G networks led to the introduction of

the Service Function Chain (SFC), this new paradigm involves the use of the capabilities supplied by

SDN and NFV to create virtual network services. With the new technologies come new algorithms

with many objectives will be proposed.

Artificial Intelligence not only provides the ability for our devices to perceive, reason, and act

intuitively, but also changes how we approach and solve technical challenges. The advent of 5G is

introducing new challenges for network service providers, where they face a problem in deploying

network services intelligently with a guarantee of using the minimum resources of nodes and links.

In this thesis, we propose a Deep Reinforcement learning model Deep Q-learning (DQN) for solving

the SFC deployment problem in 5G networks. We focus on minimizing the use of node resources

and link bandwidth. We start by implementing our environment where the DQN agent will learn

how to deploy SFC requests based on its requirements and the network state. We also propose a

Reinforcement Learning approach (Q-learning) that helps us evaluate the performance of our DQN

model. We can say that both approaches succeeded in solving the problem successfully, but with

different performances, where the experimental results show that the DQN agent achieves 15.28% of

the average return while Q-learning achieves 7.4%, which confirms that adopting the DRL approach

gives great potential in solving networking problems, especially with the presence of neural networks.

Although our proposed DRL approach can achieve good results, there are still some shortcomings

77

Experimental study and results

that need to be resolved. Firstly, there is no free simulator for 5G networks that support SDN, NFV

and SFC, to assess how the network will behave for deploying SFC requests using both approaches.

Secondly, the parameters of neural networks and Deep Reinforcement Learning, including hidden

layers, neuron number, batch size, learning rate and other hyperparameters, are designed through

manual choice, by doing several tests and varying the different model hyperparameters. Finally, we

can’t guarantee that this performance is the best.

Future development

In this thesis, we have seen the use of DRL-based approach for SFC deployment in order to evaluate

bandwidth and resource consumption on 5G networks, but there are some enhancements that can be

done to gain more performance:

• Optimize the used hyperparameters of the agent and also the environment configuration.

• Apply the DQN model in a network emulator environment like (Mininet or Openmano) to

achieve the experimental results in line with the actual conditions.

78

Bibliography

[1] Series, M. (2015). IMT Vision–Framework and overall objectives of the future development of

IMT for 2020 and beyond. Recommendation ITU, 2083, 21.

[2] Gausseran, A. (2021). Optimization algorithms for network slicing for 5G (Doctoral dissertation,

Université Côte d’Azur).

[3] Mobile industry approves completion of standalone release 15 5G specifications. (2018,). ICT

Monitor Worldwide.

[4] Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J. J., Lopez-Soler,

J. M. (2020). A survey on 5G usage scenarios and traffic models. IEEE Communications Surveys

and Tutorials, 22(2), 905-929. https://doi.org/10.1109/COMST.2020.2971781

[5] Gupta, A., Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies.

IEEE Access, 3, 1206-1232. https://doi.org/10.1109/ACCESS.2015.2461602

[6] Medhat, A. M., Taleb, T., Elmangoush, A., Carella, G. A., Covaci, S., Magedanz, T. (2017). Ser-

vice function chaining in next generation networks: State of the art and research challenges. IEEE

Communications Magazine, 55(2), 216-223. https://doi.org/10.1109/MCOM.2016.1600219RP

[7] Basavarajappa, V. (2018).A Proposal of Antenna Topologies for 5G Communication Systems

(Doctoral dissertation,universidad de cantabria).

[8] Chen, S., Zhao, J. (2014). The requirements, challenges, and technologies for 5G of terrestrial

mobile telecommunication. IEEE Communications Magazine, 52(5), 36-43. https://doi.org/

10.1109/MCOM.2014.6815891

[9] Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J. J., Lorca, J., Folgueira, J.

(2017). Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE

Communications Magazine, 55(5), 80-87. https://doi.org/10.1109/MCOM.2017.1600935

[10] Fan, J., Wang, Z., Xie, Y., Yang, Z. (2019). A theoretical analysis of deep Q-learning.

79

https://doi.org/10.1109/COMST.2020.2971781
https://doi.org/10.1109/ACCESS.2015.2461602
https://doi.org/10.1109/MCOM.2016.1600219RP
https://doi.org/10.1109/MCOM.2014.6815891
https://doi.org/10.1109/MCOM.2014.6815891
https://doi.org/10.1109/MCOM.2017.1600935

BIBLIOGRAPHY

[11] Barakabitze, A. A., Ahmad, A., Mijumbi, R., Hines, A. (2020;2019;). 5G network slicing using

SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks

(Amsterdam, Netherlands : 1999), 167, 106984. https://doi.org/10.1016/j.comnet.2019.

106984

[12] European Telecommunications Standards Institute. (2014). Network functions virtualisation

(NFV); architectural framework.

[13] Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., De Turck, F., Boutaba, R. (2016;2015;).

Network function virtualization: State-of-the-art and research challenges. IEEE Communications

Surveys and Tutorials, 18(1), 236-262. https://doi.org/10.1109/COMST.2015.2477041

[14] Best practices to accelerate 5g base station deployment: Mas-

sive mimo. Available online: https://www.qorvo.com/design-hub/blog/

best-practices-to-accelerate-5g-base-station-deployment. (accessed on 20/03/2022)

[15] European Telecommunications Standards Institute. (2014). Network functions virtualisation

(NFV); management and orchestration.

[16] Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., Viljoen, N.,

Miller, M., Rao, N. (2013). Are we ready for SDN? implementation challenges for software-

defined networks. IEEE Communications Magazine, 51(7), 36-43. https://doi.org/10.1109/

MCOM.2013.6553676

[17] Open Networking Foundation. Available online: https://www.opennetworking.org/. (accessed

on 08/01/2022)

[18] 5g bytes: Beamforming explained, https://spectrum.ieee.org/

5g-bytes-beamforming-explained . (accessed on 09/01/2022)

[19] Ahmadi, S. (2019). 5G NR: Architecture, technology, implementation, and operation of 3GPP

new radio standards. https://doi.org/10.1016/C2016-0-04944-6

[20] Yan, W., Zhu, K., Zhang, L., Su, S. (2017). Efficient dynamic service function chain combination

of network function virtualization. Paper presented at the 163-168. https://doi.org/10.1109/

ICDCSW.2017.39

[21] Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., Rappaport,

T. S., MacCartney, G. R., Sun, S., Nie, S. (2014). Millimeter-wave enhanced local area sys-

tems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in

Communications, 32(6), 1152-1163. https://doi.org/10.1109/JSAC.2014.2328111

80

https://doi.org/10.1016/j.comnet.2019.106984
https://doi.org/10.1016/j.comnet.2019.106984
https://doi.org/10.1109/COMST.2015.2477041
https://www.qorvo.com/design-hub/blog/best-practices-to-accelerate-5g-base-station-deployment
https://www.qorvo.com/design-hub/blog/best-practices-to-accelerate-5g-base-station-deployment
https://doi.org/10.1109/MCOM.2013.6553676
https://doi.org/10.1109/MCOM.2013.6553676
https://www.opennetworking.org/
https://spectrum.ieee.org/5g-bytes-beamforming-explained
https://spectrum.ieee.org/5g-bytes-beamforming-explained
https://doi.org/10.1016/C2016-0-04944-6
https://doi.org/10.1109/ICDCSW.2017.39
https://doi.org/10.1109/ICDCSW.2017.39
https://doi.org/10.1109/JSAC.2014.2328111

BIBLIOGRAPHY

[22] Schaller, S., Hood, D. (2017). Software defined networking architecture standardization. Com-

puter Standards and Interfaces, 54, 197-202. https://doi.org/10.1016/j.csi.2017.01.005

[23] Xiao, Y., Zhang, Q., Liu, F., Wang, J., Zhao, M., Zhang, Z., Zhang, J. (2019). NFVdeep: Adap-

tive online service function chain deployment with deep reinforcement learning. Paper presented

at the 1-10. https://doi.org/10.1145/3326285.3329056

[24] Koo, J., Mendiratta, V. B., Rahman, M. R., Walid, A. (2019). Deep reinforcement learning

for network slicing with heterogeneous resource requirements and time varying traffic dynamics.

Paper presented at the https://doi.org/10.23919/CNSM46954.2019.9012702

[25] Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F.,

Caicedo, O. M. (2018). A comprehensive survey on machine learning for networking: Evolution,

applications and research opportunities. Journal of Internet Services and Applications, 9(1), 1-99.

https://doi.org/10.1186/s13174-018-0087-2

[26] Alnwaimi, G., Vahid, S., Moessner, K. (2015). Dynamic heterogeneous learning games for

opportunistic access in LTE-based Macro/Femtocell deployments. IEEE Transactions on Wireless

Communications, 14(4), 2294-2308. https://doi.org/10.1109/TWC.2014.2384510

[27] Ayoubi, S., Limam, N., Salahuddin, M. A., Shahriar, N., Boutaba, R., Estrada-Solano, F.,

Caicedo, O. M. (2018). Machine learning for cognitive network management. IEEE Communica-

tions Magazine, 56(1), 158-165. https://doi.org/10.1109/MCOM.2018.1700560

[28] Arulkumaran, K., Deisenroth, M. P., Brundage, M., Bharath, A. A. (2017). Deep reinforcement

learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38. https://doi.org/10.

1109/MSP.2017.2743240

[29] Wang, M., Cui, Y., Wang, X., Xiao, S., Jiang, J. (2018;2017;). Machine learning for networking:

Workflow, advances and opportunities. IEEE Network, 32(2), 92-99. https://doi.org/10.1109/

MNET.2017.1700200

[30] Pandey, S., Hong, J. W., Yoo, J. (2020). Q-learning based SFC deployment on edge computing

environment. Paper presented at the 220-226. https://doi.org/10.23919/APNOMS50412.2020.

9236981

[31] Fourati, H., Maaloul, R., Chaari, L. (2020;2021;). A survey of 5G network systems: Challenges

and machine learning approaches. International Journal of Machine Learning and Cybernetics,

12(2), 385-431. https://doi.org/10.1007/s13042-020-01178-4

[32] Python Collections Module. Available online: https://www.geeksforgeeks.org/

python-collections-module/ (accessed on 05/06/2022)

81

https://doi.org/10.1016/j.csi.2017.01.005
https://doi.org/10.1145/3326285.3329056
https://doi.org/10.23919/CNSM46954.2019.9012702
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1109/TWC.2014.2384510
https://doi.org/10.1109/MCOM.2018.1700560
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.23919/APNOMS50412.2020.9236981
https://doi.org/10.23919/APNOMS50412.2020.9236981
https://doi.org/10.1007/s13042-020-01178-4
https://www.geeksforgeeks.org/python-collections-module/
https://www.geeksforgeeks.org/python-collections-module/

BIBLIOGRAPHY

[33] Chang, Z., Lei, L., Zhou, Z., Mao, S., Ristaniemi, T. (2018). Learn to cache: Machine learning

for network edge caching in the big data era. IEEE Wireless Communications, 25(3), 28-35.

https://doi.org/10.1109/MWC.2018.1700317

[34] Morocho-Cayamcela, M. E., Lee, H., Lim, W. (2019). Machine learning for 5G/B5G mobile and

wireless communications: Potential, limitations, and future directions. IEEE Access, 7, 137184-

137206. https://doi.org/10.1109/ACCESS.2019.2942390

[35] Ye, D., Au, M. Z. (2018). A self-adaptive Sleep/Wake-up scheduling approach for wireless sensor

networks. IEEE Transactions on Cybernetics, 48(3), 979-992. https://doi.org/10.1109/TCYB.

2017.2669996

[36] Azmat, F., Chen, Y., Stocks, N. (2016). Predictive modelling of RF energy for wireless powered

communications. IEEE Communications Letters, 20(1), 173-176. https://doi.org/10.1109/

LCOMM.2015.2497306

[37] Dhahri, C., Ohtsuki, T. (2012). Q-learning cell selection for femtocell networks: Single- and

multi-user case. Paper presented at the 4975-4980. https://doi.org/10.1109/GLOCOM.2012.

6503908

[38] Moreno, J. F. C., Sattler, R., Caulier Cisterna, R. P., Celsi, L. R., Rodríguez, A. S., Mecella,

M. (2021). Online service function chain deployment for live-streaming in virtualized content

delivery networks: A deep reinforcement learning approach. Future Internet, 13(11), 278. https:

//doi.org/10.3390/fi13110278

[39] Ning, Z., Wang, N., Tafazolli, R. (2020). Deep reinforcement learning for NFV-based service

function chaining in multi-service networks : Invited paper. Paper presented at the , 2020-https:

//doi.org/10.1109/HPSR48589.2020.9098994

[40] Matplotlib: Visualization with Python. Available online: https://matplotlib.org/ (accessed

on 05/06/2022 at 17:35)

[41] Chen, X., Li, Z., Zhang, Y., Long, R., Yu, H., Du, X., Guizani, M. (2018). Reinforcement

learning–based QoS/QoE‐aware service function chaining in software‐driven 5G slices. Transac-

tions on Emerging Telecommunications Technologies, 29(11), e3477-n/a. https://doi.org/10.

1002/ett.3477

[42] Tomassilli, A., Giroire, F., Huin, N., Perennes, S. (2018). Provably efficient algorithms for

placement of service function chains with ordering constraints. Paper presented at the , 2018-

774-782. https://doi.org/10.1109/INFOCOM.2018.8486275

[43] Roderick, M., MacGlashan, J., Tellex, S. (2017). Implementing the deep Q-network.

82

https://doi.org/10.1109/MWC.2018.1700317
https://doi.org/10.1109/ACCESS.2019.2942390
https://doi.org/10.1109/TCYB.2017.2669996
https://doi.org/10.1109/TCYB.2017.2669996
https://doi.org/10.1109/LCOMM.2015.2497306
https://doi.org/10.1109/LCOMM.2015.2497306
https://doi.org/10.1109/GLOCOM.2012.6503908
https://doi.org/10.1109/GLOCOM.2012.6503908
https://doi.org/10.3390/fi13110278
https://doi.org/10.3390/fi13110278
https://doi.org/10.1109/HPSR48589.2020.9098994
https://doi.org/10.1109/HPSR48589.2020.9098994
https://matplotlib.org/
https://doi.org/10.1002/ett.3477
https://doi.org/10.1002/ett.3477
https://doi.org/10.1109/INFOCOM.2018.8486275

BIBLIOGRAPHY

[44] Bojović, B., Meshkova, E., Baldo, N., Riihijärvi, J., Petrova, M. (2016). Machine learning-based

dynamic frequency and bandwidth allocation in self-organized LTE dense small cell deployments.

EURASIP Journal on Wireless Communications and Networking, 2016(1), 1-16. https://doi.

org/10.1186/s13638-016-0679-0

[45] Martin, A., Egana, J., Florez, J., Montalban, J., Olaizola, I. G., Quartulli, M., Viola, R., Zorrilla,

M. (2018). Network resource allocation system for QoE-aware delivery of media services in 5G

networks. IEEE Transactions on Broadcasting, 64(2), 561-574. https://doi.org/10.1109/TBC.

2018.2828608

[46] Sarigiannidis, P., Sarigiannidis, A., Moscholios, I., Zwierzykowski, P. (2017). DIANA: A ma-

chine learning mechanism for adjusting the TDD uplink-downlink configuration in XG-PON-LTE

systems. Mobile Information Systems, 2017, 1-15. https://doi.org/10.1155/2017/8198017

[47] Sanchez-Fernandez, M., de-Prado-Cumplido, M., Arenas-Garcia, J., Perez-Cruz, F. (2004).

SVM multiregression for nonlinear channel estimation in multiple-input multiple-output sys-

tems. IEEE Transactions on Signal Processing, 52(8), 2298-2307. https://doi.org/10.1109/

TSP.2004.831028

[48] Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., Tujkovic, D. (2018). Deep learning coor-

dinated beamforming for highly-mobile millimeter wave systems. IEEE Access, 6, 37328-37348.

https://doi.org/10.1109/ACCESS.2018.2850226

[49] Huang, H., Yang, J., Huang, H., Song, Y., Gui, G. (2018). Deep learning for super-resolution

channel estimation and DOA estimation based massive MIMO system. IEEE Transactions on

Vehicular Technology, 67(9), 8549-8560. https://doi.org/10.1109/TVT.2018.2851783

[50] Parwez, M. S., Rawat, D. B., Garuba, M. (2017). Big data analytics for user-activity analysis and

user-anomaly detection in mobile wireless network. IEEE Transactions on Industrial Informatics,

13(4), 2058-2065. https://doi.org/10.1109/TII.2017.2650206

[51] Liao, Z., Zhang, R., He, S., Zeng, D., Wang, J., Kim, H. (2019). Deep learning-based data

storage for low latency in data center networks. IEEE Access, 7, 26411-26417. https://doi.org/

10.1109/ACCESS.2019.2901742

[52] Tan, L. T., Hu, R. Q. (2018). Mobility-aware edge caching and computing in vehicle networks:

A deep reinforcement learning. IEEE Transactions on Vehicular Technology, 67(11), 10190-10203.

https://doi.org/10.1109/TVT.2018.2867191

83

https://doi.org/10.1186/s13638-016-0679-0
https://doi.org/10.1186/s13638-016-0679-0
https://doi.org/10.1109/TBC.2018.2828608
https://doi.org/10.1109/TBC.2018.2828608
https://doi.org/10.1155/2017/8198017
https://doi.org/10.1109/TSP.2004.831028
https://doi.org/10.1109/TSP.2004.831028
https://doi.org/10.1109/ACCESS.2018.2850226
https://doi.org/10.1109/TVT.2018.2851783
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/ACCESS.2019.2901742
https://doi.org/10.1109/ACCESS.2019.2901742
https://doi.org/10.1109/TVT.2018.2867191

BIBLIOGRAPHY

[53] Wang, L., Cheng, S. (2019;2018;). Data-driven resource management for ultra-dense small cells:

An affinity propagation clustering approach. IEEE Transactions on Network Science and Engi-

neering, 6(3), 267-279. https://doi.org/10.1109/TNSE.2018.2842113

[54] Tabrizi, H., Farhadi, G., Cioffi, J. (2012). Dynamic handoff decision in heterogeneous wireless

systems: Q-learning approach. Paper presented at the 3217-3222. https://doi.org/10.1109/

ICC.2012.6364194

[55] Yang, Y., Meng, X., Kang, Q., Zhao, W. (2021). Reliable service function chain deployment

method based on traffic optimization. Xi Tong Gong Cheng Yu Dian Zi Ji Shu, 43(10), 3017-3025.

https://doi.org/10.12305/j.issn.1001-506X.2021.10.38

[56] Orlowski, S., Wessäly, R., Pióro, M., Tomaszewski, A. (2010;2009;). SNDlib 1.0-survivable

network design library. Networks, 55(3), 276-286. https://doi.org/10.1002/net.20371

[57] Google Colaboratory. Available online: https://research.google.com/colaboratory/faq.

html (accessed on 05/06/2022)

[58] What is the Jupyter Notebook?. Available online: https://

jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html

(accessed on 05/06/2022)

[59] What is Python? Executive Summary?. Available online:https://www.python.org/doc/

essays/blurb/ (accessed on 05/06/2022)

[60] About Keras. Available online: https://keras.io/about/ (accessed on 05/06/2022)

[61] What is numpy?. Available online: https://numpy.org/doc/stable/user/whatisnumpy.html

(accessed on 05/06/2022)

[62] pandas - Python Data Analysis Library. Available online: https://pandas.pydata.org/ (ac-

cessed on 05/06/2022)

[63] Python Random Module . Available online: https://www.geeksforgeeks.org/

python-random-module/ (accessed on 05/06/2022)

84

https://doi.org/10.1109/TNSE.2018.2842113
https://doi.org/10.1109/ICC.2012.6364194
https://doi.org/10.1109/ICC.2012.6364194
https://doi.org/10.12305/j.issn.1001-506X.2021.10.38
https://doi.org/10.1002/net.20371
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
 https://www.python.org/doc/essays/blurb/
 https://www.python.org/doc/essays/blurb/
https://keras.io/about/
https://numpy.org/doc/stable/user/whatisnumpy.htm
https://pandas.pydata.org/
https://www.geeksforgeeks.org/python-random-module/
https://www.geeksforgeeks.org/python-random-module/

	Acknowledgement
	Abstract
	List of Abbreviation
	List of Figures
	List of Tables
	List of Algorithms
	List of listings
	General introduction
	5G Network on General
	Introduction
	Mobile Network Evolution
	5G Network
	5G Architecture
	5G Key Performance Indicators (KPI)
	5G Enabling Technologies

	Network Function Virtualization (NFV)
	NFV architecture

	Software Defined Network (SDN)
	SDN architecture

	Service Function Chain (SFC)
	Static service function chaining
	Dynamic service function chaining
	Service function chaining architecture
	SDN/NFV architecture for SFC deployment

	Conclusion

	Machine Learning and Networking
	Introduction
	Machine Learning
	Machine Learning Types
	Difference between Machine Learning types

	Deep Reinforcement Learning
	Policy and Value function
	Exploration vs Exploitation
	Deep Q-learning

	Machine Learning in Networking
	Special Considerations to deploy ML in Networking
	Machine Learning for 5G Network

	Related Works
	DRL for NFV-based Service Function Chaining in Multi-Service Networks
	Online Service Function Chain Deployment with DRL in 5G networks
	Adaptive Online SFC Deployment with Deep Reinforcement Learning
	Q-Learning based SFC deployment on Edge Computing Environment
	RL based QoS/QoE-aware Service Function Chaining in Software-Driven 5G Slices
	Discussion

	Conclusion

	Design
	Introduction
	System Modeling
	Network Definition
	Service Function Chain Request
	Problem Formulation
	Markov Decision Process (MDP) for SFC deployment

	General Architecture
	Detailed Architecture
	Source and Destination nodes
	Network Function Virtualization
	Software Define Network
	Network topology
	DRL model architecture

	Reinforcement Learning model architecture
	RL based approach for SFC deployment algorithm
	RL based approach for SFC deployment process

	Conclusion

	Experimental study and results
	Introduction
	Development tools
	IDE (integrated development environment)
	Programming language
	libraries

	Implementation
	Environment
	Deep Q-learning Agent
	Q-learning Agent

	Results
	DQN models evaluation results
	DQN vs Q-learning comparison results

	Final discussion
	Conclusion

	General conclusion
	Bibliography

