

RPEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIE

Ministery of Higher Education and Scientific Research

University Mohamed Khider – BISKRA

Faculty of Exact Sciences, Natural and Life Sciences

Computer Science Departement

Order N° : IA23/M2/2021

Dissertation

Presented to obtain the academic master’s degree in

Computer science

Option : Artificial Intelligence (AI)

Deep learning approach for early

diabetic retinopathy diagnosis

By :

FELLAH KAOUTHAR MANAR

Members of the jury :

FULL NAME Grade President

TIGANE Samir MCB Supervisor

FULL NAME Grade Examiner

Année universitaire 2021-2022

dedicace

To my parents Youssef and Naima

To my sisters Rihab and Meriem

To all my family members

Acknowledgements

First of all, I would like to thank God Almighty for giving me the opportunity and

guidance to achieving my goal and to be successful in this part of my life’s journey so far.

I would like to thank my parents for their love and support, especially within my last

three months of graduate studies. Without them, this day would not have been possible.

I would also like to thank my sisters Rihab and Meriem for not allowing me to give up

when the chips were down, for always being there.

Also, i would like to thank my supervisor Doctor TIGANE Samir and Professor

KAHLOUL Laid for their consistent support and guidance during the running of this

project.

Then I would like to thank all AI teachers, I learned a lot from them.

Finally, I would like to thank all my colleagues and my friends. They always kept me

motivated and helped me by giving me mental support and strength to finish my thesis.

Thank you for supporting and guiding me to where I am today. May the Almighty God

continue to bless you all!

FELLAH Kaouthar Manar

Abstract

Diabetes Mellitus (DM) is a metabolic illness that occurs when the body’s blood sugar
levels become excessively high. It is a serious public health problem, affecting 463 million
people worldwide and this number is projected to rise to 700 million by 2045. Diabetic
Retinopathy (DR) is the most common specific complication of DM. DR is a leading cause
of blindness among working-age adults. Early identification and treatment of DR can lower
the risk of vision loss greatly. Since a manual diagnosis is prone to misdiagnosis and requires
more effort, the automated methods for DR detection are cost and time effective. Deep
learning has recently been one of the most popular strategies for improving experience in
a range of fields, particularly medical image analysis and classifications. In this research,
we demonstrate the use of convolutional neural networks (CNNs) on color fundus images.
These images are preprocessed with various filters before being fed into the training model.
Finally, experimental results show that the proposed approach outperforms similar works
in the literature.

Key-words:Healthcare, Diabetic Retinopathy, CNN, Artificial Intelligence, Image Pro-
cessing, Convolutional Neural Networks.

4

Résumé

Récemment, l’intelligence artificielle (IA) a envahi tous les domaines de la recherche
scientifique, pour ce qu’elle apporte en termes de solutions. Le domaine de la santé n’est
pas une exception. Le diabète est l’une des maladies les plus fréequente dans le monde et en
Algérie. La Rétinopathie diabétique est la principale complication ophtalmologique chez les
patients diabétiques. Les études épidémiologiques citent la rétinopathie diabétique parmi
les 5 premières causes de cécité et la première cause de cécité avant l’âge de 50 ans. Une
détection précoce et un traitement adapté permettent de réduire considérablement le risque
de perte de vue. Les autorités médicales recommandent un examen annuel pour les patients
diabétiques. Dans notre projet de master, nous avons exploré le potentiel de l’apprentissage
profond pour l’analyse d’images rétine. Nous avons étudié les concepts de DL avec un
algorithme de réseau neuronal convolutionnel (CNN) pour construire un modèle efficace
qui peut détecter et classer automatiquement les niveaux de la rétinopathie diabetique.
Dans ce projet, nous avons appliqué une architecture CNN avec plusieurs paramètres sur
2 base de données différentes de rétinopathie diabétique avec des différentes structures.

Mots-clés: Soins de santé, Diabète, Rétinopathie diabétique, Intelligence artificielle,
réseau neuronal convolutionnel, Apprentissage profond.

Contents

General introduction 1

1 State of the art 3
1.1 Introduction . 3
1.2 Artificial intelligence in healthcare . 3

1.2.1 Clinical applications . 4
1.3 Machine Learning . 6

1.3.1 Supervised learning . 6
1.3.2 Unsupervised learning . 6
1.3.3 Reinforcement learning . 7
1.3.4 Semi-supervised learning . 7

1.4 Deep Learning . 8
1.4.1 Definition . 8
1.4.2 Types of Deep Learning architectures 8

1.5 Artificial neural networks . 9
1.5.1 Artificial neuron . 9
1.5.2 Artificial neural network . 9

1.6 Convolutional neural networks . 10
1.6.1 Definition . 10
1.6.2 Main operations of convolution . 10
1.6.3 Types of layers in a CNN . 12
1.6.4 Popular CNN architectures . 15

1.7 Transfer learning . 17
1.8 Diabetic retinopathy . 17

1.8.1 The retina of the eye . 17
1.8.2 Diabetes . 18
1.8.3 Diabetic retinopathy . 18
1.8.4 Fundus photography . 22
1.8.5 Related works . 22

1.9 Conclusion . 24

I

2 System design and implementation 25
2.1 Introduction . 25
2.2 Global architecture of the system . 25

2.2.1 Dataset . 26
2.2.2 Preprocessing . 27
2.2.3 Splitting dataset . 29
2.2.4 CNN Learning . 29
2.2.5 Prediction . 30
2.2.6 Evaluation of a CNN model . 31

2.3 Implementation of a Deep Learning architecture 31
2.3.1 Frameworks , tools and libraries . 31
2.3.2 Dataset preparation and preprocessing 32
2.3.3 Building the CNN Model . 36

2.4 Testing the CNN Model . 41
2.5 Conclusion . 43

3 Experimentation and Results 44
3.1 Introduction . 44
3.2 First proposed structure (Binary Classification) 44

3.2.1 The used Dataset . 44
3.2.2 Specification of the used parameters 45
3.2.3 Results and discussion . 45

3.3 Second Proposed Structure (Multiclass Classification) 48
3.3.1 The used Dataset . 48
3.3.2 Specification of the used parameters 49
3.3.3 Results and discussion . 49

3.4 Comparison with other related works . 52
3.5 Conclusion . 54

Conclusion and Perspectives 55

Bibliography 56

II

List of source code

2.1 Gaussian filter . 33
2.2 Histogram equalization . 33
2.3 Cropping and resizing . 34
2.4 Splitting dataset . 35
2.5 Dataset preparation . 36
2.6 necessary imports for building a CNN Model 36
2.7 Sequential model . 37
2.8 Diabetic retinopathy detection CNN model architecture 37
2.9 Optimizer used . 38
2.10 Model summary . 39
2.11 Fitting model . 40
2.12 Testning model . 41

III

List of Tables

2.1 CNN layers parameters and hyper-parameters 30
2.2 Google Colab resources . 31
2.3 Function description for the model fitting 41

3.1 Original structure . 44
3.2 first proposed structure . 45
3.3 Table of parameters for first proposed structure 45
3.4 Table of results first proposed structure. 47
3.5 Original structure . 48
3.6 Second proposed structure. 48
3.7 Second proposed structure before data augmentation. 49
3.8 Second proposed structure after data augmentation. 49
3.9 Table of parameters for second proposed structure. 49
3.10 Table of results second proposed structure. 51
3.11 Comparison of our proposition to other works. 53

IV

List of Figures

1.1 ECG signals generated from the single lead on an Apple Watch. 4
1.2 AI application in gastroenterology. 5
1.3 AI application in radiology. 5
1.4 Example of supervised learning. 6
1.5 Example of unsupervised learning. 7
1.6 Example of Reinforcement learning. 7
1.7 Example of semi-supervised learning. 8
1.8 Types of DL architectures . 9
1.9 Biological neuron to an artificial neuron. 9
1.10 An artificial neural network. 10
1.11 Edge detection using a convolution operator. 10
1.12 Zero padding of size 2. 11
1.13 Activation functions. 13
1.14 Difference between max and average pooling. 13
1.15 Fully Connected layer. 14
1.16 Dropout explanation. 15
1.17 VGG16 architecture. 16
1.18 LetNet-5 Architecture Summary. 16
1.19 AlexNet architecture. 17
1.20 The structure of the humain eye. 18
1.21 The difference between a normal retina and diabetic retinopathy retina . . 19
1.22 Mild diabetic retinopathy. 20
1.23 Moderate diabetic retinopathy. 20
1.24 Severe diabetic retinopathy. 21
1.25 Proliferative diabetic retinopathy. 21
1.26 The machine used to get retina images. 22
1.27 The proposed architecture. 23

2.1 General architecture. 25
2.2 Original Structure. 26
2.3 The first proposed structure. 27

V

2.4 The second proposed structure. 27
2.5 Gaussian filtering. 28
2.6 histogram equalization. 29
2.7 Model summary . 39
2.8 Early stopping based on the metric loss . 41

3.1 The model Accuracy for binary classification 46
3.2 The model Loss for binary classification . 46
3.3 Model testing first structure. 47
3.4 Confusion matrix first structure. 47
3.5 The model Accuracy for multi-class classification. 50
3.6 The model Loss for multi-class classification. 50
3.7 Model testing second structure. 51
3.8 Confusion matrix second structure. 51

VI

General introduction

Computer Science is the field of knowledge that deals with the study of computers
and computational systems. Its principal areas include artificial intelligence and machine
learning, computer systems and networks, security, databases, human-machine interaction,
computer vision, numerical analysis, programming languages, software engineering, bio in-
formatics and theory of computing.

Computer vision is an interdisciplinary sub-field of Computer Science that deals with
methods for understanding relevant information present in images. From an engineering
perspective, its main purpose is developing methods and algorithms for automatically ac-
quiring, processing, analyzing and understanding images. Typical problems addressed by
computer vision include image classification, object detection, segmentation, semantic seg-
mentation and text explanation generation.

Recently, Artificial Intelligence (AI), and in particular deep learning algorithms have
been significantly progressing in many applications in a way that exceeds human potential.
Moreover, the increase in computational resources and capabilities has created an oppor-
tunity to develop Deep Learning (DL) models for accurate detection and classification of
many pathologies.

In recent years, the number of diabetic patients suffering from diabetic retinopathy
(DR) is dramatically increased. DR is a complication of diabetes, causing abnormalities
in the retina, and in the worst case blindness. Regular DR screening is important so that
timely treatment can be implemented to prevent vision loss. Early detection, which is
critical for an adequate prognosis, is labor-intensive and time-consuming. This presents a
challenge in areas where skilled clinical facilities are traditionally rare.

Problematic
Diabetic Retinopathy is considered to be the world’s first cause of blindness. The World

Health Organization estimates that 347 million people have diabetes worldwide and the
number will increase to 552 million by the year 2030 [1]. DR is a time sensitive complica-
tion of diabetes that needs to be diagnosed early in order to prevent its ultimate evolution
towards irrevocable vision loss. It is frequent and needs a competent specialist to detect
it. This isn’t always possible in resource-limited regions.

1

Objective of the work
We aim in our research to build an efficient model that is capable of classifying DR

images into different levels, and try new preprocessing methods that will help the model
to learn better. We use color fundus images of Diabetic Retinopathy from the KAGGLE
website [2].

Our dissertation is structured as follows:

• Chapter 1: State of the art This chapter discusses healthcare, how artificial
intelligence has impacted the healthcare field and will continue to do so, the state
of the art of machine learning and deep learning techniques, as well as the various
levels of diabetes and diabetic retinopathy.

• Chapter 2: System design and implementation This chapter describes the
datasets and their structure, the system’s overall architecture, the tools for imple-
mentation, and the code in detail.

• Chapter 3: Experimentation and Results This chapter presents the results
of our work, discusses how specific parameters influence the obtained results, and
includes a comparative section to highlight the differences between this work and
previous ones.

• Conclusion and perspectives. In this final chapter, we summarize and review our
ideas and results, as well as provide some perspectives.

2

Chapter 1

State of the art
1.1 Introduction

Ever since the industrial revolution, there happened a vast development in the field
of technology. Many hard manual works had been replaced by technology, which helps
humankind a lot. Artificial Intelligence (AI) is one of the technological innovations that
happened, to replace the manual work that is done by human in various fields. Artificial
Intelligence is a branch of science and technology that creates intelligent machines and
computer programs to perform various tasks which requires human intelligence.

The rise of artificial intelligence has brought a positive shift in the sector by providing
accurate data-driven decisions. The data from large systems is used for the early detection
of chronic illnesses. These illnesses include cancer, diabetes, and cardiovascular diseases,
etc. With the advent of ML/AI in the healthcare system, we expect to see much automation
in clinical decision-making.

In this chapter we will investigate Artificial Intelligence in healthcare and its application
in the domain, take an overview on Machine Learning and Deep Learning, we will describe
diabetes and the different levels of diabetic retinopathy, and finally we will mention some
previous related works.

1.2 Artificial intelligence in healthcare

Artificial intelligence (AI) is gradually transforming medical practice. AI applications
are expanding into areas that were previously thought to be only the domain of human
experts.

The primary aim of health-related AI applications is to analyze relationships between
clinical techniques and patient outcomes [3]. AI programs are applied to practices such
as diagnostics, treatment protocol development, drug development, personalized medicine,
and patient monitoring and care.

What differentiates AI technology from traditional technologies in healthcare is the
ability to gather data, process it, and produce a well-defined output to the end-user. AI

3

State of the art

does this through machine learning algorithms and deep learning. These processes can
recognize patterns in behavior and create their own logic.

Clinical decision support and imaging analysis are currently the most common roles for
AI in medical settings. Clinical decision support tools assist providers in making decisions
about treatments, medications, mental health, and other patient needs by providing them
with quick access to relevant information or research. AI tools are being used in medical
imaging to analyze CT scans, x-rays, MRIs, and other images for lesions or other findings
that a human radiologist might miss.

1.2.1 Clinical applications

1. Cardiovascular
kokiIn cardiovascular medicine today ML/AI has found wide range of applications in
cardiovascular drug therapy, pharmacogenomics, heart failure management, cardio-
vascular imaging, and diagnostics. AI can provide tools to apply precision medicine
and big data in cardiovascular medicine therefore, augmenting the effectiveness of
the cardiologist.
kokiFor example, a Mayo Clinic study applied AI techniques to a new screening tool
for left ventricular dysfunction 1 in people without noticeable symptoms [4] [5].

Figure 1.1 – ECG signals generated from the single lead on an Apple Watch.

2. Gastroenterology
kokiAI has the potential to play a role in many aspects of gastroenterology [6]. Endo-
scopic 2 exams such as esophagogastroduodenoscopies (EGD) 3 [7] and colonoscopies
rely on the detection of abnormal tissue as quickly as possible. By incorporating AI
into these endoscopic procedures, clinicians can more quickly identify diseases, assess
their severity, and visualize blind spots. Early trials of AI detection systems for early
gastric cancer have shown sensitivity comparable to expert endoscopists [8] .

1. LV dysfunction occurs when the left ventricle of the heart is either defective or damaged
2. An endoscopy is a procedure used in medicine to look inside the body
3. EGD is an endoscopic procedure that allows the doctor to examine your esophagus, stomach and

duodenum

4

State of the art

Figure 1.2 – AI application in gastroenterology.

3. Radiology
kokiAI is being studied within the field of radiology to detect and diagnose diseases
through Computerized Tomography (CT) 4[9] and Magnetic Resonance (MR) Imag-
ing. It may be particularly useful in settings where demand for human expertise
exceeds supply, or where data is too complex to be efficiently interpreted by human
readers.

Figure 1.3 – AI application in radiology.

4. Ophthalmology
kokiOphthalmology, especially retina, is an area AI plays a prejudicial role given the
use of a multitude of digital images.
Two hundred forty-three articles of AI application in diagnosing ophthalmological
diseases have been published (search by PubMed, Sep 20, 2018)[10] [11]. Among
them, the most intensively studied are DR, glaucoma, AMD, and cataract.

4. refers to a computerized x-ray imaging procedure in which a narrow beam of x-rays is aimed at
a patient and quickly rotated around the body, producing signals that are processed by the machine’s
computer to generate cross-sectional images, or “slices”

5

State of the art

1.3 Machine Learning

Machine learning is a subset of the Artificial Intelligence (AI) field in which we can build
a model or algorithm for specific purposes based on given data using special techniques
such as programs and statistical computation [12]. The main types of ML include:

• Supervised learning.

• Unsupervised learning.

• Reinforcement learning.

• Semi-supervised learning.

1.3.1 Supervised learning

Algorithms require all the instances of the training set to be labeled. From this previous
knowledge the algorithm is able to learn and generalize, being able to predict new never
seen before samples. From a probability perspective these types of algorithms learn a
conditional distribution, i.e. P(c—X), being c the class to predict and X the sample [13].

Figure 1.4 – Example of supervised learning.

1.3.2 Unsupervised learning

Unsupervised learning, also known as unsupervised machine learning, uses machine
learning algorithms to analyze and cluster unlabeled datasets. These algorithms discover
hidden patterns or data groupings without the need for human intervention. Its ability to
discover similarities and differences in information make it the ideal solution for exploratory
data analysis, cross-selling strategies, customer segmentation, and image recognition [14].

6

State of the art

Figure 1.5 – Example of unsupervised learning.

1.3.3 Reinforcement learning

Algorithms give models the capacity of learning from environment, i.e. accumulating
experience from its interaction with the surroundings. Such models are goal oriented,
having an internal representation of the environment that is updated periodically with the
objective of maximizing gain [15].

Figure 1.6 – Example of Reinforcement learning.

1.3.4 Semi-supervised learning

There are techniques which combine supervised and unsupervised learning to build a
model which is able to predict a large number of unlabeled data. Supervised learning uses
a small number of label data initially to train the model with a known target to build
the model. Unsupervised learning is used by unlabeled data for the same model which
is trained prior to predicting this kind of data. This operation is named semi supervised
learning. This technique is used in web mining, text mining and video mining in which
there are huge numbers of unlabeled data and a small number of labeled data [16].

7

State of the art

Figure 1.7 – Example of semi-supervised learning.

1.4 Deep Learning

1.4.1 Definition

Deep learning is a type of Machine learning, which deals with the training of neural
networks. It is the most powerful technique in classification, which justifies its presence in
almost all applications and fields that use machine learning.
The main definition of DL is that it is a Neural Network with many hidden layers, so
“deep” here refers to the depth of layers consisting more than 2 hidden layers. It provides
automatic feature extraction by determining the properties of the input data which can be
used as a pointer to label the input data accurately. Each layer extracts features from the
output of previous layer [17].

1.4.2 Types of Deep Learning architectures

Neural networks are the architectures lying under the term of deep learning. They are
directed graphical models with a defined architecture formed by their building block, the
neuron. We can differentiate between three typical base architectures: fully connected,
convolutional and recurrent neural networks [18] [19].

8

State of the art

Figure 1.8 – Types of DL architectures

1.5 Artificial neural networks

1.5.1 Artificial neuron

Artificial neurons are modeled after the hierarchical arrangement of neurons in biolog-
ical sensory systems. It takes as input a number of variables (X), each input of artificial
neuron is associated to a weight w representing the value of the connection.

An activation function f transforms the weighted sum of the input variables and their
weights ∑n

i=1(wi × xi) to a value. The value will be transmitted to the output layer to be
compared with a threshold value, and then provide an output response [20] [21].

Figure 1.9 – Biological neuron to an artificial neuron.

1.5.2 Artificial neural network

The ANN (multi-layer) consists of an input layer to receive the external data to perform
pattern recognition, an output layer which gives the problem solution, and a hidden layer
(an intermediate layer) which separates the other layers [22].

9

State of the art

Figure 1.10 – An artificial neural network.

1.6 Convolutional neural networks

1.6.1 Definition

A convolutional neural network (CNN) is a type of artificial neural network used pri-
marily for image recognition and processing, due to its ability to recognize patterns in
images. The first CNN was created by Yann LeCun; at the time, the architecture focused
on handwritten character recognition, such as postal code interpretation [23].

1.6.2 Main operations of convolution

1. Edge Detection is known as the operation of specifying a method for finding vertical
or horizontal edges in images using a filter [24].

Figure 1.11 – Edge detection using a convolution operator.

10

State of the art

kokiAccording to Figure 1.11, a 3*3 kernel is constructed (also known as a filter or
vertical detector) and a 6*6 image is taken. The convolution operation (*) occurs by
applying the element product followed by summation. The first element on the top
right corner will be:

1 ∗ 1 + 0 ∗ 2 + 1 ∗ 3 + 0 ∗ 4 + 1 ∗ 5 + 1 ∗ 6 + 1 ∗ 7 + 0 ∗ 8 + 1 ∗ 9 = 31 (1.1)

kokiWe get the second element on the 4 * 4 output matrix by moving the blue box
one step to the right and performing the same convolution operation. This is done
for each element.

2. Padding
kokiIt refers to the number of pixels added to an image when it is being processed
by the kernel of a CNN [25]. It is used to avoid image downsizing when applying the
convolution operator every time (edge detection), and also to limit throwing away a
large amount of information near the image’s edges [24].
We used the following equation to specify the dimension of the output matrix:

(n + 2p − f + 1) × (n + 2p − f + 1) (1.2)

where n is the input image dimension, p is the padding and f is the filter.
In order to verify whether padding is to be used, we use:

• Valid convolution: there is no padding and the output dimension will be:

(n − f + 1) × (n − f + 1) (1.3)

• Same convolution: the output size is equal to the input size:

p = f − 1
2 (1.4)

Figure 1.12 – Zero padding of size 2.

11

State of the art

3. Stride
koIt is a parameter of the neural network’s filter representing the value by which the
kernel slides over the input data. By default, it is 1 [26]. The output dimension is:

(n + 2p − f

s
+ 1) × (n + 2p − f

s
+ 1) (1.5)

where n is the input image dimension, p is the padding, f is the filter, and s is the
stride.

1.6.3 Types of layers in a CNN

1. Convolutional layer
koA convolutional layer is the main building block of a CNN. It contains a set of filters
(or kernels), and parameters of which are to be learned throughout the training. The
size of the filters is usually smaller than the actual image. Each filter convolves with
the image and creates an activation map [27].
koEvery component of the activation map can be thought to be the output of a
neuron. Therefore each neuron is connected to a small local region in the input
image, and the size of the area equals the size of the filter. Every one of the neurons
calculates convolutions with small portions in LeCun et al. (2010), as shown in Eq.
(2.6).

yi = bi +
∑
xiϵx

Wij ∗ xi (1.6)

Where yiϵY , i = 1, 2, . . . D. D is the depth of the convolutional layer. Each filter Wij

is a 3D matrix of size [F × F × CX]. Its size is determined by a selected receptive
field (F), and its feature-map input’s depth (CX).
The main hyper-parameters of Convolution layer are size and number of filters,
padding, stride, and a activation function (linear and non-linear).

2. Non-linearity layer (activation layer)
koThis layer receives the Conv layer’s feature map stack and performs the non lin-
earity operation by adding bias and applying the activation function used for CNN.
koThe activation function of artificial neuron has continuous values allowing an in-
finity of possible values included in an interval of [-1,1] or [0,1].
koThe artificial neuron calculates the sum of the inputs and their weight ∑n

i=1(wi ×
xi) + bias. There are several forms of activation functions, each one is used in a
specific context [28].

12

State of the art

Figure 1.13 – Activation functions.

3. Pooling Layer
koThis type of layers is often placed between two convolution layers. It receives as
input several feature maps, and applies to each of them the pooling operation. The
pooling operation consists of reducing the size of the images, while preserving their
important features [29].
There are two types of pooling layers (avg-pooling and max-pooling). Max-pooling
is widely used and by applying the max pool, we slide the window of 2 × 2 regions
and take the max value on each part and place them into the new matrix. Average
pooling takes the average of the window of 2 × 2 regions.

Figure 1.14 – Difference between max and average pooling.

13

State of the art

4. Fully Connected neural networks are a set of dependent non-linear functions.
Each individual function consists of a neuron (or a perceptron). In fully connected
layers, the neuron applies a linear transformation to the input vector through a
weights matrix. A non-linear transformation is then applied to the product through
a non-linear activation function f [28].
We can also visualize this layer as follows:

Figure 1.15 – Fully Connected layer.

Figure 1.15 shows why we call these kinds of layers “Fully Connected” or sometimes
“densely connected”. All possible connections layer to layer are present, meaning
every input of the input vector influences every output of the output vector. However,
not all weights affect all outputs. Look at the lines between each node above. The
orange lines represent the first neuron (or perceptron) of the layer. The weights of
this neuron only affect output A, and do not have an effect on outputs of B, C or D.

5. Batch normalization layer
koBatch normalization (BN) is a layer that allows every layer of the network to do
learning more independently. It is used to normalize the output of the previous
layers. The activations scale the input layer in normalization. BN is used to reduce
the variety of distributions in the input layer during the training process using two
parameters:

• Shifting, by subtracting the mean.

14

State of the art

• Scaling, by dividing the batch standard. deviation

6. Dropout layer
koThis layer is a mask that nullifies the contribution of some neurons towards the
next layer and leaves unmodified all others. We can apply a Dropout layer to the
input vector, in which case it nullifies some of its features, but we can also apply it
to a hidden layer, in which case it nullifies some hidden neurons [30].

Figure 1.16 – Dropout explanation.

1.6.4 Popular CNN architectures

CNNs have been demonstrated to be very effective in solving complex classification,
detection and segmentation problems.
koThere are an infinite number of architectures, we will discuss some of the most popular
ones, such as VGG16, AlexNet, and the LetNet-5.

1. VGG16
is a convolutional neural network model proposed by K. Simonyan and A. Zisserman
from the University of Oxford in the paper “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. The model achieves 92.7% top-5 test accuracy in
ImageNet, which is a dataset of over 14 million images belonging to 1000 classes [28].

15

State of the art

Figure 1.17 – VGG16 architecture.

2. LetNet-5
Yann LeCun et al. introduced the first CNN architecture in 1995. The main goal
was to use Gradient-Based learning algorithms to classify low-dimensional pattern
recognition with minimal computational expenditure. The goal was to create an au-
tomatic handwritten binary classification system using the MNIST dataset, which
included 50,000 training images, 10,000 validation and test images, and a grayscale
resolution of 28x28 [31].

Figure 1.18 – LetNet-5 Architecture Summary.

3. AlexNet
Alexnet won the Imagenet large-scale visual recognition challenge in 2012. The model
was proposed in 2012 in the research paper named Imagenet Classification with Deep
Convolution Neural Network by Alex Krizhevsky and his colleagues.
The Alexnet has eight layers with learnable parameters. The model consists of five
layers with a combination of max pooling followed by 3 fully connected layers and
they use Relu activation in each of these layers except the output layer [32].

16

State of the art

Figure 1.19 – AlexNet architecture.

1.7 Transfer learning

The reuse of a pre-trained model on a new problem is known as transfer learning in
machine learning. A machine uses the knowledge learned from a prior assignment to in-
crease prediction about a new task in transfer learning.
Transfer learning offers a number of advantages, the most important of which are reduced
training time, improved neural network performance (in most circumstances), and the ab-
sence of a large amount of data [33].

1.8 Diabetic retinopathy

1.8.1 The retina of the eye

The retina is the layer at the very back of your eyeball. It captures the light that enters
your eye and helps translate it into the seen images [34]. Light passes through the lens
at the front of the eye and hits the retina. Photoreceptors 5 change light energy into an
electrical signal. This signal travels through the optic nerve and into the brain to become
the picture of the seen world.

5. cells inside the retina that react to light

17

State of the art

Figure 1.20 – The structure of the humain eye.

1.8.2 Diabetes

Diabetes mellitus is a disorder in which the body does not produce enough or respond
normally to insulin, causing blood sugar (glucose) levels to be abnormally high [34].
Such high blood glucose levels can damage blood vessels, nerves, and even organs , increas-
ing the probability in diabetic patients of developing other derived diseases, like in the
retina (diabetic retinopathy), kidneys (diabetic nefropathy), and nervous system (diabetic
neuropathy)
There are three main types of diabetes: type 1, type 2, and gestational diabetes (diabetes
while pregnant) [35].

• Type 1 diabetes This type is an autoimmune disease, meaning your body attacks
itself. In this case, the insulin-producing cells in your pancreas are destroyed. Up to
10% of people who have diabetes have Type 1. It’s usually diagnosed in children and
young adults (but can develop at any age).

• Type 2 diabetes With this type, the body either doesn’t make enough insulin or
the body’s cells don’t respond normally to the insulin. This is the most common
type of diabetes. Up to 95% of people with diabetes have Type 2. It usually occurs
in middle-aged and older people.

• Gestational diabetes This type develops in some women during their pregnancy.
Gestational diabetes usually goes away after pregnancy. However, if you have gesta-
tional diabetes you’re at higher risk of developing Type 2 diabetes later on in life.

1.8.3 Diabetic retinopathy

Diabetic Retinopathy is an associated disease derived from diabetes. It is caused by
the damage of the small blood vessels of the retina. Due to diabetes disease related sec-

18

State of the art

ondary effects, retinal blood vessels can break down, leak or become blocked, affecting
the transport of nutrients and oxygen to parts of the retina, causing impaired vision over
time. Due to the blockages, abnormal blood vessels can grow on the retina surface, causing
an increment of the probability of bleeding and liquid leakages. Such structural changes
can result initially in vision blurring and in last stages, even in retinal detachment and/or
glaucoma 6 [36, 37].

Diabetic retinopathy symptoms:

— Floaters.

— Spots in vision.

— gradually worsening vision.

— sudden vision loss.

Figure 1.21 – The difference between a normal retina and diabetic retinopathy retina

DR is detected by the appearance of different types of lesions on a retina image.
These lesions are microaneurysms (MA), haemorrhages (HM), soft and hard exudates
(EX) [38][39].

• Microaneurysms (MA) is the earliest sign of DR that appears as small red round
dots on the retina due to the weakness of the vessel’s walls. The size is less than 125
µm and there are sharp margins.

• Haemorrhages (HM)appear as larger spots on the retina, where its size is greater
than 125 m with an irregular margin. There are two types of HM, which are flame
(superficial HM) and blot (deeper HM).

6. Glaucoma is a common eye condition where the optic nerve, which connects the eye to the brain,
becomes damaged.

19

State of the art

• Hard exudates appear as bright-yellow spots on the retina caused by leakage of
plasma.

• Soft exudates (also called cotton wool) appear as white spots on the retina caused
by the swelling of the nerve fiber. The shape is oval or round.

Stages of diabetic retinopathy
There are three main stages of diabetic retinopathy which are:

• Stage 1: background retinopathy
The first stage is also called Mild Nonproliferative Retinopathy. It means that tiny
bulges (microaneurysms) have appeared in the blood vessels in the back of your eyes
(retina), which may leak small amounts of blood [40].

Figure 1.22 – Mild diabetic retinopathy.

• Stage 2: pre-proliferative retinopathy
The second stage is also called Moderate Nonproliferative Retinopathy. At this stage,
the blood vessels in the retinas swell. They may not carry blood as well as they used
to. These things can cause physical changes to the retina. These changes can lead
to diabetic macular edema (DME). This happens when blood and other fluids build
up in a part of the retina called the macula [40].

Figure 1.23 – Moderate diabetic retinopathy.

20

State of the art

• Stage 3: proliferative retinopathy There are two levels in this stage severe
retinopathy and Proliferative Diabetic Retinopathy (PDR) [40].
- Severe retinopathy:
The blood vessels become even more blocked. This means even less blood goes to
the retinas. Because of this, scar tissue forms. The lack of blood triggers a signal to
the retinas to create new blood vessels. If the blood vessels close off completely, it’s
called macular ischemia. This can lead to blurry vision with dark spots some people
describe as “floaters .”

Figure 1.24 – Severe diabetic retinopathy.

- Proliferative Diabetic Retinopathy:
koukiIn this advanced level, new blood vessels grow in the retinas and into the gel-like
fluid that fills the eyes. This growth is called neovascularization. These vessels are
thin and weak. They often bleed which causes scar tissue.

Figure 1.25 – Proliferative diabetic retinopathy.

21

State of the art

1.8.4 Fundus photography

Color Fundus Retinal Photography uses a fundus camera to record color images of the
condition of the interior surface of the eye, in order to document the presence of disorders
and monitor their change over time. A fundus camera or retinal camera is a specialized
low power microscope with an attached camera designed to photograph the interior surface
of the eye, including the retina, retinal vasculature, optic disc, macula, and posterior pole
[41].

Figure 1.26 – The machine used to get retina images.

1.8.5 Related works

In this subsection we will mention some of the previous works on classifying retina
images using different ML and DL techniques.

• A Deep Learning Approach for the Diabetic Retinopathy Detection
M.R. Sebti et al.[42] proposed two models binary classification and a multi class clas-
sification(No DR, moderate, severe). In the preprocessing stage, Gaussian filtering
and image resizing to (224x224x3) were performed. The CNN architecture is com-
posed firstly of convolutional layers each followed by a max pooling layer. Then, a
first fully connected layer followed by a drop-out layer, and a second fully connected
layer with Softmax as an activation function, are added. The proposed model was
trained on the first structure. The training accuracy and training validation were
found to be 96.93% and 95.08%, respectively. and than it was trained on the second
structure with 32 epoch, the results were 93.06% for training accuracy, 81.12% for
training validation.

22

State of the art

Figure 1.27 – The proposed architecture.

• Feature Visualisation of Classification of Diabetic Retinopathy Using a
Convolutional Neural Network
The authors of [43] proposed a method based on a CNN to classify images from the
Kaggle dataset into five DR stages. In the preprocessing stage, color normalization
and image resizing to 512 × 512 pixels were performed. Their custom CNN architec-
ture contained 10 CONV layers, eight max-pooling layers, and three FC layers. The
SoftMax function was used as a classifier for 80,000 test images. L2 regularization
and dropout methods was used in CNN to reduce overfitting. Their results had a
specificity of 95%, an accuracy of 75% and a sensitivity of 30%. Unfortunately, CNN
does not detect the lesions in the images, and only one dataset was used to evaluate
their CNN.

• Classification of diabetic and normal fundus images using new deep learn-
ing method
Esfahan et al. [44] used a known CNN, which is ResNet34 in their study to clas-
sify DR images of the Kaggle dataset into normal or DR image (see figure 2.30).
ResNet34 is one the available pre-trained CNN architecture on ImageNet database.
They applied a set of image preprocessing techniques to improve the quality of im-
ages. The image preprocessing included the Gaussian filter, weighted addition and
image normalization. The image number was 35000 images and its size was (512,512)
pixels. They reported an accuracy of 85% and a sensitivity of 86%.

• SVM and Neural Network based Diagnosis of Diabetic Retinopathy
The authors of [45] proposed a computer-vision-based approach for the detection of
diabetic retinopathy stages using color fundus images. They tried to extract features
from the raw image, using the image processing techniques, and fed them to the

23

State of the art

SVM for binary classification and achieved a sensitivity of 98%, specificity 96%, and
accuracy of 97.6% on a testing set of 250 images.

• An interpretable ensemble deep learning model for diabetic retinopathy
disease classification
The study of Jiang et al. reported in [46] integrates three pretrained CNN mod-
els, namely, Inception V3, Inception-Resnet-V2 and Resnet152 to classify their own
dataset as referable DR or non-referable DR. The work reaches an accuracy of 88.21%
and area under the curve (AUC) of 0.946.

• Diabetic retinopathy stage classification using convolutional neural net-
works
X. Wang et al.[46] studied the performance of the three available pretrained architec-
tures of CNN, VGG16 , AlexNet and InceptionNet V3 , to detect the five DR stages
in the Kaggle dataset [47]. The images were resized to 224 × 224 pixels for VGG16,
227 × 227 pixels for AlexNet, and 299 × 299 pixels for InceptionNet V3 at the pre-
processing stage. The dataset only contains 166 images. They reported an average
accuracy of 50.03% in VGG16, 37.43% in AlexNet and 63.23% in InceptionNet V3.

1.9 Conclusion

In this chapter, we covered some of the most important aspects of our current work. We
detailed the basics of machine learning and deep learning, then we discussed diabetes and
its complications, diabetic retinopath and its levels. Finally we mentioned some previous
related works. The following chapter will describe our system design and the implementa-
tion of a new deep learning architecture for diabetic retinopathy detection.

24

Chapter 2

System design and implementation
2.1 Introduction

Recently, Artificial Intelligence (AI) and deep learning algorithms have been signifi-
cantly progressing in many applications in a way that exceeds human potential. Moreover,
the increase in computational resources and capabilities has created an opportunity to
develop Deep Learning (DL) models for accurate DR detection and classification. In this
chapter we present the system design, the various datasets and their different structures,
the preprocessing phase, and finally our proposed CNN-architecture. We will mention the
used tools, frameworks, libraries, as well as how we implemented our system.

2.2 Global architecture of the system

The process used to detect and to classify DR images using DL begins by collecting the
dataset and applying the needed preprocess to improve and enhance the images. Then, it
is fed to the DL model to extract the features and to classify DR images.
Figure 2.1 depictes certain steps followed by our system.

Figure 2.1 – General architecture.

25

System design and implementation

2.2.1 Dataset

1. Dataset description: The two data sets that have been used in this study are
available on [2].
-The first original (2019) Dataset is available at APTOS 2019 Blindness Detection
[48]. It contains 3662 of retina images.
-The Second data also available on kaggle [47]. The training set contains 35126 of
retina images with various resolutions, ranging from 433 × 289 pixels to 5184 × 3456
pixels.

2. Original structure of the datasests: The images are ranked into five different
levels of diabetic retinopathy by specialists as it is shown in Figure 2.2.

(a) No DR which represents Level 0: The patient retina has no diabetic retinopa-
thy.

(b) Mild which represents Level 1: The patient retina has a mild diabetic retinopa-
thy.

(c) Moderate which represents Level 2: The patient retina has a moderate dia-
betic retinopathy.

(d) Severe which represents Level 3: The patient retina has a severe diabetic
retinopathy.

(e) Proliferate DR which represents Level 4: The patient retina has a proliferate
diabetic retinopathy.

Figure 2.2 – Original Structure.

26

System design and implementation

3. The first proposed structure (Binary classification)
We modify the structure of the original data set by grouping all diabetic retinopathy
levels (mild, moderate, sever, and proliferate) to represent class of DR. The other
side contains the healthy ones which represents NO DR (see Figure 2.3).

Figure 2.3 – The first proposed structure.

4. The second structure (Multi class classification)
In this structure we use the second data set, we group the last two classes together
due to lack of images. The structure becomes: (i) mild, (ii) moderate, (iii) sever with
proliferate, and healthy ones which represents NO DR. There are four levels in this
structure (see Figure 2.4).

Figure 2.4 – The second proposed structure.

2.2.2 Preprocessing

1. Resize Images Using Rescaling and Cropping

27

System design and implementation

kokRescaling multiplies the height and width of the image by a scaling factor. If the
scaling factor is not identical in the vertical and horizontal directions, then rescaling
changes the spatial extents of the pixels and the aspect ratio. Cropping extracts a
subregion of the image and preserves the spatial extent of each pixel [49] [50].
In this work, the dataset images were cropped in order to minimise the background
by detecting the contour of each retina image and cropping according to its position
then resized to (224x224).

2. Gaussian Filtering
kokA Gaussian filter is a low pass filter used for reducing noise (high frequency
components) and blurring regions of an image. The filter is implemented as an Odd
sized Symmetric Kernel (DIP version of a Matrix) passed through each pixel of the
region of interest to get the desired effect [51].
The result of applying this filter is shown in Fig. 2.5.

Figure 2.5 – Gaussian filtering.

3. Histogram equalization

• what’s an Histogram?
A histogram of an image is the graphical interpretation of the image’s pixel
intensity values. It can be interpreted as the data structure that stores the
frequencies of all the pixel intensity levels in the image.

• Histogram equalization is an image processing technique that adjusts the
contrast of an image by using its histogram. To enhance the image’s contrast, it
spreads out the most frequent pixel intensity values or stretches out the intensity
range of the image. By accomplishing this, histogram equalization allows the
image’s areas with lower contrast to gain a higher contrast [52] [53].

The result of applying this technique is shown in Fig 2.6.

28

System design and implementation

Figure 2.6 – histogram equalization.

4. Data Augmentation
Image augmentations are manipulations applied to images to create different ver-
sions of similar content in order to expose the model to a wider array of training
examples. For example, randomly altering rotation, brightness, or scale of an input
image requires that a model consider what an image subject looks like in a variety
of situations.
In this work, we increase the number of images in real-time to improve network
localization capability and reduce overfitting. During each epoch, a random rotation,
shear, and zoom were performed using ImageDataGenerator by TensorFlow.

2.2.3 Splitting dataset

In Deep Learning, dataset splitting is the process of dividing a dataset into training,
validation, and testing subsets. Our dataset is divided into three subsets: 70% images per
class for training, 20% for validation, and 10% for testing.

2.2.4 CNN Learning

CNN is very similar to artificial neural network. The network input consists of neurons
that are organized in layers with trainable weights and biases. Each neuron receives a
number of inputs and then calculates the multiplication of weights in inputs and finally,
using an error function which is a nonlinear conversion, generates the result. Next we will
detail the parameters and hyper-parameters of each layer.

1. CNN layers
The hyper-parameters of each layer are mentiend in Table 2.1.

29

System design and implementation

parameters Hyper-parameters
Convolutional layer Kernels Kernel size, number of kernels stride,

padding and activation function
Pooling layer None Pooling method ,filter size ,padding and strides
Fully connected layer weights number of weights
dropout layers None dropout rate

Table 2.1 – CNN layers parameters and hyper-parameters

2. Loss function
The loss function in a neural network quantifies the difference between the expected
outcome and the outcome produced by the machine learning model.

3. Optimizers in CNN
Optimizers are algorithms or methods used to change the attributes of the neural
network such as weights and learning rate in order to reduce the losses.
Examples: RMSprop, SGD, adam, adamx, etc.

Before we proceed to model training, some parameters must be explained due to their
importance.

• Input shape(width, height, channels): It is an image with the first two values
refers to the width and the height of the image, and the third one refers to the
image channels.

• Epoch: The number of epochs is a hyperparameter that defines how many
times the learning algorithm will work through the entire training dataset.

• Batch size: The batch size is a hyperparameter that defines the number of
samples to work through before updating the internal model parameters.

• Shuffle: When this value is set to ’True’, the dataset will be shuffled before
training.

• Step per epoch: The number of batch iterations before a training epoch is
considered finished. It is generally calculated by dividing the number of samples
in training subset on batch size.

• Learning rate: The learning rate controls how quickly the model is adapted
to the problem (usually very small).

2.2.5 Prediction

Following the training phase, the prediction phase is when a CNN model is ready to
classify images. For us, the third subset from the dataset splitting will be used to test our
CNN model.

30

System design and implementation

2.2.6 Evaluation of a CNN model

Evaluation metrics are used to measure the quality of the statistical or deep learning
model. Evaluating deep learning models or algorithms is essential for any project.
There are many different types of evaluation metrics available to test a model. These
include true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). These values are used to calculate variety of performance metrics including Accuracy,
Precision, and F1score according to the three equations:

ACCURACY = TP + TN

TP + TN + FP + FN

PRECISION = TP

TP + FP

F1SCORE = TP

TP + 1
2(FP + FN)

2.3 Implementation of a Deep Learning architecture

We described our system design in detail in the previous section. This section’s goal is
to discuss tools and frameworks, implement our system design, and present code.

2.3.1 Frameworks , tools and libraries

• Python
koIt is a high-level, interpreted, general-purpose programming language. Its design
philosophy emphasizes code readability with the use of significant indentation.

• Google Colab
koGoogle Colab was developed by Google to provide free access to GPU’s and TPU’s
to anyone who needs them to build a machine learning or deep learning model. Google
Colab can be defined as an improved version of Jupyter Notebook [54].

Table 2.2 – Google Colab resources
GPU Runtime RAM disk capac-

ity
Google Colab K80 12h 12GB 60GB

• OpenCv
koOpen Source Computer Vision Library is an open source computer vision and ma-

31

System design and implementation

chine learning software library. Originally developed by Intel. It was later supported
by Willow Garage then Itseez [55].

• Anaconda spyder
koSpyder, the Scientific Python Development Environment, is a free integrated de-
velopment environment (IDE) that is included with Anaconda. It includes editing,
interactive testing, debugging, and introspection features [56].

• Matplotlib
koMatplotlib is a plotting library for the Python programming language and its
numerical mathematics extension NumPy [57].

• Keras
koKeras is a powerful open source Python library for developing and evaluating deep
learning models [58].

• TensorFlow
koTensorFlow is open-source library for machine learning. It provides a collection
of workflows to develop and train models using Python or JavaScript, and to easily
deploy in the cloud, on-prem, in the browser, or on-device [59].

• NumPy
koNumPy is a python fundamental scientific computing library. It provides a high
performance multidimensional array object, and tools for working with these arrays
[60].

• Kaggle
koKaggle is an online community of data scientists and machine learning practition-
ers. Kaggle allows users to find and publish datasets [2].

2.3.2 Dataset preparation and preprocessing

1. Download Dataset to Google Colab
- First, we used the first dataset [48] API to download the datasets from Kaggle to
our Google Colab account.

1 ! kaggle competitions download -c aptos2019 -blindness - detection

- The second dataset [47] was downloaded to our local machine.

2. Functions and parameters of the used filters

(a) Gaussian filter cv2.addWeighted(source1,alpha,source2,beta,gamma).
source1 - first input.
alpha – weight of the first array.
source2 – second input array of the same size and channel. number as src1.
beta - weight of the second array elements.

32

System design and implementation

gamma - scalar added to each sum.
other function parameters were not modified [55].

(b) cv2.GaussianBlur(src, ksize, sigmaX)
src - input.
ksize - Gaussian Kernel Size.
sigmaX - Kernel standard deviation along X-axis (horizontal direction).
other function parameters were not modified.

1 import cv2
2 import os
3 import glob
4 os.chdir("/ content / dataset ") # dataset path example
5 for file in glob.glob("*. jpeg"):# look for this image format

using glob library ,our dataset images are in this format
6 img = cv2. imread (file) # load an image
7 gaussian = cv2. addWeighted (img , 4, cv2. GaussianBlur (img ,

(0 ,0) , 10) , -4, 128) #apply gaussin filtering
8 cv2. imwrite (file , gaussian) # save image
9

Listing 2.1 – Gaussian filter

(c) Histogram equalization this technique was used only to the mild and mod-
erate classes.

1 import cv2
2 import os
3 import glob
4 os.chdir("/ content / dataset ")
5 for file in glob.glob("*. jpeg"):
6 image_src = cv2. imread (file)
7

8 r_image , g_image , b_image = cv2.split(image_src)#split
the three chanels of the image

9

10 r_image_eq = cv2. equalizeHist (r_image)# equilise the red
channel

11 g_image_eq = cv2. equalizeHist (g_image)# equilise the
green channel

12 b_image_eq = cv2. equalizeHist (b_image)# equilise the blue
channel

13

14 image_eq = cv2.merge ((r_image_eq , g_image_eq , b_image_eq
))

15 cv2. imwrite (filename , image_eq)

Listing 2.2 – Histogram equalization

33

System design and implementation

(d) Cropping and resizing

1 import PIL
2 import os
3 import cv2
4 from skimage import io
5 from matplotlib import pyplot as plt
6 import glob
7 from PIL import ImageFile
8

9

10 desired_size =224
11 os.chdir("C:/ Users/kaouk/ OneDrive / Desktop / retinopathy dataset ")
12 for file in glob.glob("*. jpeg"):
13 img = cv2. imread (file)
14 img = cv2. copyMakeBorder (img ,10 ,10 ,10 ,10 ,
15 cv2. BORDER_CONSTANT ,
16 value =[0 ,0 ,0])
17 gray = cv2. cvtColor (img , cv2. COLOR_BGR2GRAY)
18 ret ,gray = cv2. threshold (gray ,10 ,255 , cv2. THRESH_BINARY)
19

20 contours , hierarchy = cv2. findContours (gray ,
21 cv2. RETR_EXTERNAL ,
22 cv2.

CHAIN_APPROX_SIMPLE)
23 contours = max(contours , key=cv2. contourArea)
24 x,y,w,h = cv2. boundingRect (contours)
25

26 if w >200 and h >200:
27 new_img = img[y:y+h,x:x+w]
28 height , width , _= new_img .shape
29

30 if max ([height , width]) > desired_size :
31 ratio = float(desired_size /max ([height , width]))
32 new_img = cv2. resize (new_img ,
33 tuple ([int(width*ratio), int(

height *ratio)]),
34 interpolation = cv2. INTER_CUBIC)
35

36 cv2. imwrite (file , new_img)
37 else:
38 print(f’No bounding for {file}’)
39 cv2. imwrite (file , img)

Listing 2.3 – Cropping and resizing

3. Preparing Dataset

(a) Dividing data into categories

34

System design and implementation

We divide data to five classes according to the labels file.
1 from __future__ import print_function
2 import pandas as pd
3 import shutil
4 import os
5 import sys
6

7 labels = pd. read_csv (r’/ content /train.csv ’)#csv file path of
labels

8

9 train_dir =r’/ content / train_images ’ # dataset path
10 DR = r"/ content / retinopathyD /DR_" # destination file path
11 if not os.path. exists (DR):
12 os. mkdir(DR)
13

14 for filename , class_name in labels . values :
15 # Create subdirectory with ‘class_name ‘
16 if not os.path. exists (DR + str(class_name)):
17 os.mkdir(DR + str(class_name))
18 src_path = str(train_dir) + ’/’ + str(filename) + ’.png ’
19 dst_path = DR + str(class_name) + ’/’ + str(filename) + ’.

png ’
20 try:
21 shutil .copy(src_path , dst_path)
22 print (" sucessful ")
23 except IOError as e:
24 print(’ Unable to copy file {} to {}’
25 . format (src_path , dst_path))
26 except :
27 print(’When try copy file {} to {}, unexpected error:

{}’
28 . format (src_path , dst_path , sys. exc_info ()))
29

(b) Splitting dataset
We have used split folder.ratio in order to split our dataset into 3 subsets as we
mentioned before. split folder.ratio parameters:
splitfolders.ratio(input folder,output,seed,ratio)

1 import splitfolders
2 input_folder ="/ content / dataset " # dataset path
3 output ="/ content / newDataset " # splitted dataset new path
4 splitfolders .ratio(input_folder ,output ,
5 seed =1337 ,# set seed value for shuffling the items.
6 ratio =(.7 ,.2 ,.1)) # 70% for training 20% for validation 10% for

35

System design and implementation

testing

Listing 2.4 – Splitting dataset

Now we have completed the preprocessing phase and splitted dataset, we will prepare
it for the CNN Model.

1 DATADIR = "/ content / DataSplitedBinary /train"
2 TESTDIR = "/ content / DataSplitedBinary /val"
3 LABELS = ["DR_0","DR_1"]
4 X_TRAIN = []
5 Y_TRAIN = []
6 X_VAL =[]
7 Y_VAL =[]
8 #Add train images to a numpy array
9 for label in LABELS :

10 path = os.path.join(DATADIR , label)
11 class_num = LABELS .index(label)
12 for img in os. listdir (path):
13 try:
14 img_array = cv. imread (os.path.join(path , img))
15 new_array = cv. resize (img_array , (224 , 224))
16 X_TRAIN . append (new_array)
17 Y_TRAIN . append (class_num)
18 except Exception as e:
19 pass
20 #Add Validation images to a numpy array
21 for label in LABELS :
22 path = os.path.join(TESTDIR , label)
23 class_num = LABELS .index(label)
24 for img in os. listdir (path):
25 try:
26 img_array = cv. imread (os.path.join(path , img))
27 new_array = cv. resize (img_array , (224 , 224))
28 X_VAL. append (new_array)
29 Y_VAL. append (class_num)
30 except Exception as e:
31 pass

Listing 2.5 – Dataset preparation

2.3.3 Building the CNN Model

1. Import libraries and modules
For building a CNN with keras we need to import libraries first.

1 import keras ,os
2 from keras. models import Sequential

36

System design and implementation

3 from keras. layers import Dense , Conv2D , MaxPool2D , Flatten , Dropout
4 from keras. preprocessing .image import ImageDataGenerator
5 import numpy as np
6 from keras. models import Sequential

Listing 2.6 – necessary imports for building a CNN Model

2. CNN parameters initialization
Since we have different data structures, we will delay the initialization to the next
chapter, in the next chapter we will give details of initialization for each structure.

3. Creating Diabetic Retinopathy Detection CNN Model
After trying many CNN configurations, the one that will be described had the best
results.

(a) Used CNN Model:
1 model = Sequential ()
2

Listing 2.7 – Sequential model

The sequential model is a way of creating a new deep learning models where an
instance of the Sequential class is created and model layers are added to it.

(b) Used CNN Architecture

1 #Layer number 1
2 model.add(Conv2D (input_shape =(224 ,224 ,3) ,filters =32, kernel_size

=(5 ,5) ,padding ="same", activation ="relu"))
3 model.add(MaxPool2D (pool_size =(2 ,2) ,strides =(2 ,2)))
4 model.add(Dropout (0.2))
5 #Layer number 2
6 model.add(Conv2D (filters =32, kernel_size =(5 ,5) , padding ="same",

activation ="relu"))
7 model.add(MaxPool2D (pool_size =(2 ,2) ,strides =(2 ,2)))
8 model.add(Dropout (0.2))
9 #Layer number 3

10 model.add(Conv2D (filters =32, kernel_size =(5 ,5) , padding ="same",
activation ="relu"))

11 model.add(MaxPool2D (pool_size =(2 ,2) ,strides =(2 ,2)))
12 model.add(Dropout (0.2))
13 #Layer number 4
14 model.add(Conv2D (filters =32, kernel_size =(5 ,5) , padding ="same",

activation ="relu"))
15 model.add(MaxPool2D (pool_size =(2 ,2) ,strides =(2 ,2)))
16 #Layer number 5
17 model.add(Conv2D (filters =64, kernel_size =(5 ,5) , padding ="same",

activation ="relu"))
18 model.add(MaxPool2D (pool_size =(2 ,2) ,strides =(2 ,2)))

37

System design and implementation

19 #Layer number 6
20 model.add(Conv2D (filters =64, kernel_size =(5 ,5) , padding ="same",

activation ="relu"))
21 model.add(MaxPool2D (pool_size =(2 ,2) ,strides =(2 ,2)))
22 model.add(Dropout (0.2))
23 #Layer number 7
24 model.add(Conv2D (filters =128 , kernel_size =(5 ,5) , padding ="same",

activation ="relu"))
25 model.add(MaxPool2D (pool_size =(2 ,2) ,strides =(2 ,2)))
26 #Layer number 8
27 model.add(Conv2D (filters =256 , kernel_size =(5 ,5) , padding ="same",

activation ="relu"))
28 model.add(MaxPool2D (pool_size =(2 ,2) ,strides =(2 ,2)))
29 #Layer number 9
30 model.add(Flatten ())
31 model.add(Dense(units =512 , activation ="relu"))
32 #Layer number 10
33 model.add(Dense(units =256 , activation ="relu"))
34 model.add(Dropout (0.2))
35 #Layer number 11
36 model.add(Dense(number_of_classes , activation =" softmax "))

Listing 2.8 – Diabetic retinopathy detection CNN model architecture

(c) Used optimizer

1 from keras. optimizers import Adam
2 opt = Adam(lr=1e -5)

Listing 2.9 – Optimizer used

An optimizer is one of the two arguments required for compiling a Keras model,
the optimizer controls learning rate, We have used adam as optimizer with a
learning rate= 0.00001.

(d) Used loss function
The loss function measures performance of a classification model. We have
used BinaryCrossentropy() for the binary classification and CategoricalCrossen-
tropy() for multi class classification.

4. Compiling CNN Model We used the code below to compile our model.
1 from keras. optimizers import Adam ,SGD , Adamax
2 opt = Adam(learning_rate =1e -3)
3 model. compile (optimizer =opt , loss=keras. losses .

categorical_crossentropy , metrics =[’ accuracy ’,’Precision ’,’
FalseNegatives ’,’ FalsePositives ’,’ TrueNegatives ’,’ TruePositives
’])

38

System design and implementation

5. Model summary
Once our model is ready, we can call summary() method to display its contents see
Figure 2.7.

1 model. summary ()

Listing 2.10 – Model summary

Figure 2.7 – Model summary

39

System design and implementation

6. Training CNN Model
We used fit generator, ModelCheckpoint, and EarlyStopping with different arguments
depending on the structure to train the model, in this section, we will explain the
role of each argument and other functions.

1 from keras. callbacks import ModelCheckpoint , EarlyStopping
2 checkpoint = ModelCheckpoint (" modelNAME .h5", monitor =’val_accuracy ’,

verbose =1, save_best_only =True , save_weights_only =False , mode=’
auto ’,period =1)

3 early = EarlyStopping (monitor =’monitor ’, min_delta =0, patience =
Number_of_patience , verbose =0, mode=’auto ’)

4 hist = model. fit_generator (X_TRAIN ,Y_TRAIN , epochs =200 ,
validation_data =(X_VAL ,Y_VAL),epochs =100 , shuffle = True ,
class_weight = class_weights , callbacks =[checkpoint ,early])

Listing 2.11 – Fitting model

• ModelCheckpoint
tf.keras.callbacks.ModelCheckpoint is used in conjunction with training using
model.fit() to save a model [61].
The arguments of ModelCheckpoint are:

— Filepath : string or PathLike, path to save the model file.

— Monitor: The metric name to monitor for example prefix the name with
”val accuracy” to monitor validation metrics.

— Verbose: Verbosity mode, 0 or 1. Mode 0 is silent, and mode 1 displays
messages when the callback takes an action.

— Save best only: if save best only=True, it only saves when the model is
considered the ”best” and the latest best model according to the quantity
monitored will not be overwritten.

— Mode: one of ’auto’, ’min’, ’max’.

— Save weights only: if True, then only the model’s weights will be saved.

• EarlyStopping
It is a feature that enables the training to be automatically stopped when a
chosen metric has stopped improving. It is form of regularization used to avoid
overfitting.
The most important argument in using EarlyStopping is Patience, which is
the number of epochs without improvement after which training will be early
stopped [62].

— How EarlyStopping works ?
Early stopping monitors the evolution of the given metric after every epoch.

40

System design and implementation

If the metric has not improved for Patience epochs in a row, the experiment
is early stopped.

Figure 2.8 – Early stopping based on the metric loss

• model.fit generator This function will train our model .

Function Arguments
fit generator -epochs = 200

-shuffle , when = true , dataset will be shuffled
before the training CNN
class weight , when data is unbalanced , class
weight takes the value ’balanced’
callbacks=[checkpoint,early] , fit model uses the
two previous functions

Table 2.3 – Function description for the model fitting

2.4 Testing the CNN Model

After training the model, we proceed to the testing phase, where we used the third
subset (test).

1 import numpy as np
2 import tensorflow as tf
3 import matplotlib . pyplot as plt
4 from tensorflow import keras
5 from keras. models import load_model
6 from tensorflow import keras
7 from keras. preprocessing import image
8 import PIL
9 import os

10 import os.path
11 from PIL import Image
12 from os import listdir

41

System design and implementation

13 from PIL import Image as PImage
14 import numpy as np
15 from keras. preprocessing .image import ImageDataGenerator
16 from keras. preprocessing .image import img_to_array
17 from keras. preprocessing .image import load_img
18 import numpy as np
19 import argparse
20 import glob
21 import PIL
22 import os
23 import os.path
24 from PIL import Image
25 indiceDR0 =0 #NO DR counter
26 indiceDR12 =0#YES Mild DR counter
27 indiceDR2 =0#YES moderate DR counter
28 indiceDR3 =0#YES severe DR counter
29 total =0# total of images
30

31 f = r’/ content /out/test/NO’ #path of third subset
32

33 for file in os. listdir (f):
34 f_img = f+"/"+file
35

36 img = image. load_img (f_img , target_size =(224 , 224)) # use the same
target size of CNN model

37 img = np. asarray (img) # converte image to an array
38 img = np. expand_dims (img , axis =0)
39 output = model. predict (img) #what the model pridected
40

41

42 if output [0][0] > output [0][1] and output [0][0] > output [0][2] and output
[0][0] > output [0][3] and output [0][0] > output [0][4] # if the
probability that this image belongs to NO DR is bigger than the
probability of that this image belongs to Mild , moderate , and sever:

43 print("No DR", output [0])
44 indiceDR0 += 1
45 total += 1
46 if output [0][1] > output [0][0] and output [0][1] > output [0][2] and output

[0][1] > output [0][3] and output [0][1] > output [0][4] :
47 print("MILD", output [0])
48 indiceDR1 += 1
49 total += 1
50 if output [0][2] > output [0][0] and output [0][2] > output [0][1] and output

[0][2] > output [0][3] and output [0][2] > output [0][4] :
51 print(" MODERATE ", output [0])
52 indiceDR2 += 1
53 total += 1

42

System design and implementation

54 if output [0][3] > output [0][0] and output [0][3] > output [0][1] and output
[0][3] > output [0][2] and output [0][3] > output [0][4] :

55 print(" SEVERE ", output [0])
56 indiceDR3 += 1
57 total += 1
58

59 print(" =============== ")
60 print(" Diabetic retinopathy predict ")
61 print(" =============== ")
62 print("No DR",indiceDR0 ,"Mild",indiceDR1 ," moderate ",indiceDR2 ," severe ",

indiceDR3)

Listing 2.12 – Testning model

2.5 Conclusion

In this chapter, we presented our dataset structures, described our system design, ex-
plained step by step the preprocessing phase, mentioned the tools, libraries, and frameworks
we used, presented the implementation of a large part of our system, and discussed our
CNN model in detail. In the following chapter, we will go over various experiments and
their outcomes.

43

Chapter 3

Experimentation and Results
3.1 Introduction

In the previous chapter we have discussed the global architecture of our system, the
structure of the dataset, and we have also presented code for each system design phase.
In this chapter we will present the obtained results of every proposed structure and explain
the remaining parameters. Finally, we will compare our results with some of the previous
related works.

3.2 First proposed structure (Binary Classification)

3.2.1 The used Dataset

We use the APTOS 2019 [48] dataset 1 presented in chapter 3. The next table explains
the orginal structure of the dataset with number of images per class.

Level Number of images

NO DR 1805
Mild 370

Moderate 999
Severe 193

Proliferate DR 295

Table 3.1 – Original structure

We modify the original structure by grouping all diabetic retinopathy levels (mild,
moderate, sever, and proliferate) to represent class of DR, and the healthy one represent
the class of No DR. The Dataset is splitted into 3 subsets: training subset, validation
subset and testing subset as it is shown in Table 3.2.1.

1. https://www.kaggle.com/c/aptos2019-blindness-detection/overview

44

Experimentation and Results

Training Validation Test Total

NO DR 1263 361 181 1805
YES DR 1299 371 187 1857

Total 2562 732 368 3662

Table 3.2 – first proposed structure

3.2.2 Specification of the used parameters

The table below presents the used parameters in this structure.

Informations
input shape (224,224,3)
Number of Epochs 60

early stopped
Batch size batch size =81
DropoutRate 20%
Patience 30
Last output Layer Dense(2)
ModelCheckpoint val acc
Monitor

EarlyStopping val acc
Monitor

Table 3.3 – Table of parameters for first proposed structure

3.2.3 Results and discussion

The evaluation metrics used are training accuracy, validation accuracy, training loss
and validation loss. To visualise the performance of the model, we present the following
plots.

• A plot of accuracy and validation accuracy over epochs:

45

Experimentation and Results

Figure 3.1 – The model Accuracy for binary classification

• A plot of loss and validation loss over epochs over epochs:

Figure 3.2 – The model Loss for binary classification

• The plots of learning curves 3.1 and 3.2 show a good fit because:
— The accuracy and validation accuracy are converging to the same value.
— The loss and loss validation are decreasing to the same value.

1. Saving Model
The best model was saved in the epoch number 15, the the early stopping was in the
epoch 31. Performance metrics of this model are in the Table 3.4.

46

Experimentation and Results

Accuracy Validation accuracy Loss Validation Loss
CNN Model 98.75% 95.35% 3,30% 19,20%

Table 3.4 – Table of results first proposed structure.

2. Testing Model
In this phase, we will use the third subset, in order to test the performance of our
CNN model on new images from the dataset.
After testing our model on the third subset:

(a) Metrics results on test subset

Figure 3.3 – Model testing first structure.

(b) Confusion matrix
The confusion matrix is a table that is often used to describe the performance
of a classification model.

Figure 3.4 – Confusion matrix first structure.

— The model could predict 173 images right out of 181 from the NO DR test
folder.

47

Experimentation and Results

— The model could predict 180 images right out of 187 from the YES DR test
folder.

3.3 Second Proposed Structure (Multiclass Classifi-
cation)

3.3.1 The used Dataset

In this structure we have used the 2015 Kaggle competition dataset 2. We only used
9726 images from the training set due to the lack of images in the two last classes (sever
and proliferate).

Level Number of images

NO DR 25810
Mild 2443

Moderate 5292
Severe 873

Proliferate DR 708

Table 3.5 – Original structure

We group the last two classes together due to lack of images. The structure becomes:
(i) mild, (ii) moderate, (iii) sever with proliferate, and healthy ones which represent NO
DR. There are four levels in this structure (see Table 3.6).

Table 3.6 – Second proposed structure.
Level of DR Class number of im-

ages used
NO DR Class of NO DR 2811
Mild Class of Mild

DR
2443

Moderate Class of Moder-
ate DR

2891

Sever Class of 873 + 708 =
Proliferate Sever DR 1581

After splitting dataset with this structure and augmenting the train subset we obtain
the Table 3.7.

• Before data augmentation

2. https://www.kaggle.com/c/diabetic-retinopathy-detection/data

48

Experimentation and Results

Training Validation Test Total

Lvl 0 1968 561 282 2811
Lvl 1 1710 488 245 2443
Lvl 2 2024 577 290 2891

Lvl 3&4 1106 315 160 1581

Table 3.7 – Second proposed structure before data augmentation.

• After Data augmentation

Training Validation Test

Lvl 0 19000 561 282
Lvl 1 17000 488 245
Lvl 2 20000 577 290

Lvl 3&4 11000 315 160

Table 3.8 – Second proposed structure after data augmentation.

3.3.2 Specification of the used parameters

Table 3.9 provides the values of the used parameters.

Informations
input shape (224,224,3)
Number of Epochs 26

early stopped
Batch size batch size =115
DropoutRate 30%
Patience 10
Last output Layer Dense(2)
ModelCheckpoint val acc
Monitor

EarlyStopping val acc
Monitor

Table 3.9 – Table of parameters for second proposed structure.

3.3.3 Results and discussion

The evaluation metrics used are training accuracy, validation accuracy, training loss
and validation loss. To visualise the performance of the model, we present the following
plots.

49

Experimentation and Results

• A plot of accuracy and validation accuracy over epochs:

Figure 3.5 – The model Accuracy for multi-class classification.

• A plot of loss and validation loss over epochs over epochs:

Figure 3.6 – The model Loss for multi-class classification.

• The plots of learning curves 3.5 and 3.6 show a good Fit because:

— The accuracy and validation accuracy are converging to the same value.

— The loss and loss validation are decreasing to the same value.

1. Saving Model

50

Experimentation and Results

The early stopping was in the epoch 26. Performance metrics of this model are in
the Table 3.10.

Accuracy Validation accuracy Loss Validation Loss
CNN Model 96.73% 93.45% 4.99% 3.24%

Table 3.10 – Table of results second proposed structure.

2. Testing Model
In this phase, we will use the third subset, in order to test the performance of our
CNN model on new images from the dataset.
After testing our model on the third subset:

(a) Metrics results on test subset

Figure 3.7 – Model testing second structure.

(b) Confusion matrix
This matrix shows the performance of our model.

Figure 3.8 – Confusion matrix second structure.

51

Experimentation and Results

The results of the confusion matrix are explained:

— Row 0 Column 0 = The NO DR correctly diagnosed as NO DR and its value is
277 image out of 282.

— Row 0 Column 1, Column 2, and Column = The NO DR incorrectly diagnosed
as Mild DR or Moderate DR or Sever DR and the values are 3, 2, 0 ,respectively
out of 282.

— Row 1 Column 0, Column 2, and Column 3 = The mild DR incorrectly diagnosed
as NO DR, moderate DR, or sever DR and the values are 0, 12, 16 ,respectively
out of 245.

— Row 1 Column 1 = The mild DR correctly diagnosed as mild DR and its value
is 217 out of 245. Row 2 Column 0, 1, and 3 = The moderate DR incorrectly
diagnosed as NO DR, Mild DR, or Severe DR, the values are 1, 14, 4 ,respectively
out of 290.

— Row 2 Column 2 = The moderate DR correctly diagnosed as moderate DR its
values is 271 out of 290.

— Row 3 Column 0, 1, and 2 = The Sever DR incorrectly diagnosed as NO DR,
mild DR, or moderate DR, the values are 31, 2, 3 ,respectively out of 160.

— Row 3 Column 3 = The Severe DR correctly diagnosed as Sever DR its values
is 124 out of 160.

3.4 Comparison with other related works

To conclude this chapter, Table 3.11 compares our proposition to some related works,
where we have chosen accuracy and validation accuracy as comparison criteria.

52

Experimentation and Results

Accuracy ValidationNumber Dataset

accuracy of classes

Our work (Binary
classification)

98.75% 95.35% 2 [48]

Our work (Multi
class classification)

96.73% 93.45% 4 [47]

CNN model (Bi-
nary classifica-
tion)[42]

96.93% 95.08% 2 [48]

CNN model (Multi
class classification)
[42]

93,06% 81,12% 3 [48]

ResNet34 [63] 85% - 2 [47]

VGGNet [64] 92% 89% 3 [48]

Pretrained CNNs
[65]

88.21% - 2 -

Pretrained CNN
InceptionNet V3
[46]

63.23% - 5 [47]

A method based on
CNN [43]

75% - 5 [47]

Table 3.11 – Comparison of our proposition to other works.

53

Experimentation and Results

3.5 Conclusion

In this chapter, we detailed the different parameters for each structure, worked on differ-
ent datasets, explained all experiments, and illustrated results with plots and the confusion
matrix for the test phase. The obtained outcomes are highly good, which encourages us to
improve our model architecture.

54

Conclusion and Perspectives

Artificial Intelligence has grown to be very popular in today’s world, it has undoubtedly
brought new efficiencies and quality to healthcare outcomes. Deep learning enhanced
algorithms have been demonstrated to achieve state-of-the-art results on complex computer
vision tasks, including medical image diagnosis of Diabetic Retinopathy (DR) which is
considered a devastating disease that causes visual loss and blindness.
Throughout this work we have proposed a CNN model for two different structure (Binary
classification and multi class classification) for the detection and classification of diabetic
retinopathy levels. The CNN model showed very excellent results compared to other works
where accuracy for binary and multi class was 98,75% 96.73% ,respectfully.
Finally, from a technical engineering perspective this work paves the way for future work
such as model improvement to avoid the overfitting, and using differents datasets, as well
as many other deep learning techniques and preprocessing methods.

55

Bibliography

[1] World health organization. Diabetic retinopathy. url: https://www.who.int/.

[2] kaggle. Datasets. url: https://www.kaggle.com/datasets.

[3] Wikipedia. Artificial intelligence in healthcare. url: https://en.wikipedia.org/
wiki/Artificial_intelligence_in_healthcare#cite_note-1.

[4] Mayo clinic. Cardiovascular Medicine. url: https://www.mayoclinic.org/departments-
centers/ai-cardiology/overview.

[5] Terri Malloy. Mayo researchers use AI to detect weak heart pump via patients’ Apple
Watch ECGs. url: https://newsnetwork.mayoclinic.org/discussion/mayo-
researchers- use- ai- to- detect- weak- heart- pump- via- patients- apple-
watch-ecgs/.

[6] Parambir S Dulai Ariela K Holmer. Using Artificial Intelligence to Identify Patients
With Ulcerative Colitis in Endoscopic and Histologic Remission. url: https://doi.
org/10.1053/j.gastro.2020.04.01.

[7] JOHNS HOPKINGS medecine. Gastroenterology and Hepatology. url: https://
www.hopkinsmedicine.org/gastroenterology_hepatology/clinical_services/
basic_endoscopy/esophagogastroduodenoscopy.html.

[8] Anirvan P et al. “Artificial Intelligence in Gastrointestinal Endoscopy in a Resource-
constrained Setting: A Reality Check”. In: Euroasian journal of hepato gastroenterol-
ogy (2019).

[9] National Institute of Biomedical Imaging and Bioengineering (NIBIB). Computed
Tomography (CT). url: https : / / www . nibib . nih . gov / science - education /
science-topics/computed-tomography-ct.

[10] Pub med. url: https://pubmed.ncbi.nlm.nih.gov/?linkname=pubmed_pubmed&
from_uid=30581604.

[11] Lu W et al. “Applications of Artificial Intelligence in Ophthalmology General Overview”.
In: J Ophthalmol (2018).

[12] Ed Burns. Machine learning. url: https://www.techtarget.com/searchenterpriseai/
definition/machine-learning-ML.

56

https://www.who.int/
https://www.kaggle.com/datasets
https://en.wikipedia.org/wiki/Artificial_intelligence_in_healthcare#cite_note-1
https://en.wikipedia.org/wiki/Artificial_intelligence_in_healthcare#cite_note-1
https://www.mayoclinic.org/departments-centers/ai-cardiology/overview
https://www.mayoclinic.org/departments-centers/ai-cardiology/overview
https://newsnetwork.mayoclinic.org/discussion/mayo-researchers-use-ai-to-detect-weak-heart-pump-via-patients-apple-watch-ecgs/
https://newsnetwork.mayoclinic.org/discussion/mayo-researchers-use-ai-to-detect-weak-heart-pump-via-patients-apple-watch-ecgs/
https://newsnetwork.mayoclinic.org/discussion/mayo-researchers-use-ai-to-detect-weak-heart-pump-via-patients-apple-watch-ecgs/
https://doi.org/10.1053/j.gastro.2020.04.01
https://doi.org/10.1053/j.gastro.2020.04.01
https://www.hopkinsmedicine.org/gastroenterology_hepatology/clinical_services/basic_endoscopy/esophagogastroduodenoscopy.html
https://www.hopkinsmedicine.org/gastroenterology_hepatology/clinical_services/basic_endoscopy/esophagogastroduodenoscopy.html
https://www.hopkinsmedicine.org/gastroenterology_hepatology/clinical_services/basic_endoscopy/esophagogastroduodenoscopy.html
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct
https://pubmed.ncbi.nlm.nih.gov/?linkname=pubmed_pubmed&from_uid=30581604
https://pubmed.ncbi.nlm.nih.gov/?linkname=pubmed_pubmed&from_uid=30581604
https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML

Bibliography Experimentation and Results

[13] Jordi DE LA TORRE GALLART. “Diabetic Retinopathy Classification and Inter-
pretation using Deep Learning Techniques”. In: (2018).

[14] IBM Cloud Education. Unsupervised Learning. url: https://www.ibm.com/cloud/
learn/unsupervised-learnin.

[15] edureka. What is Machine Learning? Machine Learning For Beginners. url: https:
//www.edureka.co/blog/what-is-machine-learning.

[16] IBM Cloud Education. Semi-supervised learning. url: https://www.ibm.com/
cloud/learn/semi-supervised-learnin.

[17] deepAI. What is Deep Learning? url: https://deepai.org/machine-learning-
glossary-and-terms/deep-learning.

[18] Samaya Madhavan and M. Tim Jones. IBM developer, Deep learning architectures.
url: https://developer.ibm.com/articles/cc- machine- learning- deep-
learning-architectures/.

[19] Saptarshi Sengupta et al. “A review of deep learning with special emphasis on ar-
chitectures, applications and recent trends”. In: Knowledge-Based Systems 194 (Feb.
2020), p. 105596. doi: 10.1016/j.knosys.2020.105596.

[20] The Relation Between Artificial And Biological Neuron? url: https://smhatre59.
medium.com/what-is-the-relation-between-artificial-and-biological-
neuron-18b05831036.

[21] Claude Touzet. les réseaux de neurones artificiels, introduction au connexionnisme.
EC2, 1992.

[22] Neural Network Architecture. url: https://www.sciencedirect.com/topics/
engineering/neural-network-architecture.

[23] CNN definition and tutorial. url: https://www.simplilearn.com/tutorials/
deep-learning-tutorial/convolutional-neural-network.

[24] INAS AL-KAMACHY. CLASSIFICATION OF DIABETIC RETINOPATHY US-
ING PRE-TRAINED DEEP LEARNING MODELS. ÇANKAYA UNIVERSITY,
2019.

[25] deepAI. Padding (machine learning). url: https://deepai.org/machine-learning-
glossary-and-terms/padding.

[26] Calculate output size of Convolution (stride). url: https://iq.opengenus.org/
output-size-of-convolution.

57

https://www.ibm.com/cloud/learn/unsupervised-learnin
https://www.ibm.com/cloud/learn/unsupervised-learnin
https://www.edureka.co/blog/what-is-machine-learning
https://www.edureka.co/blog/what-is-machine-learning
https://www.ibm.com/cloud/learn/semi-supervised-learnin
https://www.ibm.com/cloud/learn/semi-supervised-learnin
https://deepai.org/machine-learning-glossary-and-terms/deep-learning
https://deepai.org/machine-learning-glossary-and-terms/deep-learning
https://developer.ibm.com/articles/cc-machine-learning-deep-learning-architectures/
https://developer.ibm.com/articles/cc-machine-learning-deep-learning-architectures/
https://doi.org/10.1016/j.knosys.2020.105596
https://smhatre59.medium.com/what-is-the-relation-between-artificial-and-biological-neuron-18b05831036
https://smhatre59.medium.com/what-is-the-relation-between-artificial-and-biological-neuron-18b05831036
https://smhatre59.medium.com/what-is-the-relation-between-artificial-and-biological-neuron-18b05831036
https://www.sciencedirect.com/topics/engineering/neural-network-architecture
https://www.sciencedirect.com/topics/engineering/neural-network-architecture
https://www.simplilearn.com/tutorials/deep-learning-tutorial/convolutional-neural-network
https://www.simplilearn.com/tutorials/deep-learning-tutorial/convolutional-neural-network
https://deepai.org/machine-learning-glossary-and-terms/padding
https://deepai.org/machine-learning-glossary-and-terms/padding
https://iq.opengenus.org/output-size-of-convolution
https://iq.opengenus.org/output-size-of-convolution

Bibliography Experimentation and Results

[27] Sakib Mostafa and Fang-Xiang Wu. “Chapter 3 - Diagnosis of autism spectrum
disorder with convolutional autoencoder and structural MRI images”. In: Neural
Engineering Techniques for Autism Spectrum Disorder. Ed. by Ayman S. El-Baz
and Jasjit S. Suri. Academic Press, 2021, pp. 23–38. isbn: 978-0-12-822822-7. doi:
https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 822822 - 7 . 00003 - X. url: https :
//www.sciencedirect.com/science/article/pii/B978012822822700003X.

[28] PRAMOD GUPTA and NARESH K. SINHA. “CHAPTER 14 - Neural Networks
for Identification of Nonlinear Systems: An Overview”. In: Soft Computing and
Intelligent Systems. Ed. by NARESH K. SINHA and MADAN M. GUPTA. Aca-
demic Press Series in Engineering. San Diego: Academic Press, 2000, pp. 337–356.
isbn: 978-0-12-646490-0. doi: https : / / doi . org / 10 . 1016 / B978 - 012646490 -
0/50017- 2. url: https://www.sciencedirect.com/science/article/pii/
B9780126464900500172.

[29] A Gentle Introduction to Pooling Layers for Convolutional Neural Networks. url:
https://machinelearningmastery.com/pooling-layers-for-convolutional-
neural-networks/.

[30] How ReLU and Dropout Layers Work in CNNs. url: https://www.baeldung.com/
cs/ml-relu-dropout-layers.

[31] Understanding and Implementing LeNet-5 CNN Architecture (Deep Learning). url:
https://towardsdatascience.com/understanding-and-implementing-lenet-
5-cnn-architecture-deep-learning-a2d531ebc342.

[32] AlexNet. url: https://en.wikipedia.org/wiki/AlexNet.

[33] Hoo-Chang Shin et al. “Deep Convolutional Neural Networks for Computer-Aided
Detection: CNN Architectures, Dataset Characteristics and Transfer Learning”. In:
IEEE Transactions on Medical Imaging 35.5 (2016), pp. 1285–1298. doi: 10.1109/
TMI.2016.2528162.

[34] Erika F. Brutsaert. Diabetes Mellitus (DM). url: https : / / www . msdmanuals .
com/home/hormonal-and-metabolic-disorders/diabetes-mellitus-dm-and-
disorders-of-blood-sugar-metabolism/diabetes-mellitus.

[35] Centers for Disease Control and Prevention. Diabetes Basics. url: https://www.
cdc.gov/diabetes/basics/diabetes.

[36] Roy Taylor and Deborah Batey. Handbook of retinal screening in diabetes: diagnosis
and management. John Wiley & Sons, 2012.

[37] Kierstan Boyd. “American Academy of Ophthalmology-What is Diabetic Retinopa-
thy”. In: Accessed: Sep 10 (2020), p. 2021.

58

https://doi.org/https://doi.org/10.1016/B978-0-12-822822-7.00003-X
https://www.sciencedirect.com/science/article/pii/B978012822822700003X
https://www.sciencedirect.com/science/article/pii/B978012822822700003X
https://doi.org/https://doi.org/10.1016/B978-012646490-0/50017-2
https://doi.org/https://doi.org/10.1016/B978-012646490-0/50017-2
https://www.sciencedirect.com/science/article/pii/B9780126464900500172
https://www.sciencedirect.com/science/article/pii/B9780126464900500172
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://www.baeldung.com/cs/ml-relu-dropout-layers
https://www.baeldung.com/cs/ml-relu-dropout-layers
https://towardsdatascience.com/understanding-and-implementing-lenet-5-cnn-architecture-deep-learning-a2d531ebc342
https://towardsdatascience.com/understanding-and-implementing-lenet-5-cnn-architecture-deep-learning-a2d531ebc342
https://en.wikipedia.org/wiki/AlexNet
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TMI.2016.2528162
https://www.msdmanuals.com/home/hormonal-and-metabolic-disorders/diabetes-mellitus-dm-and-disorders-of-blood-sugar-metabolism/diabetes-mellitus
https://www.msdmanuals.com/home/hormonal-and-metabolic-disorders/diabetes-mellitus-dm-and-disorders-of-blood-sugar-metabolism/diabetes-mellitus
https://www.msdmanuals.com/home/hormonal-and-metabolic-disorders/diabetes-mellitus-dm-and-disorders-of-blood-sugar-metabolism/diabetes-mellitus
https://www.cdc.gov/diabetes/basics/diabetes
https://www.cdc.gov/diabetes/basics/diabetes

Bibliography Experimentation and Results

[38] Early Treatment Diabetic Retinopathy Study Research Group et al. “Grading dia-
betic retinopathy from stereoscopic color fundus photographs—an extension of the
modified Airlie House classification: ETDRS report number 10”. In: Ophthalmology
98.5 (1991), pp. 786–806.

[39] Wejdan L. Alyoubi, Wafaa M. Shalash, and Maysoon F. Abulkhair. “Diabetic retinopa-
thy detection through deep learning techniques: A review”. In: Informatics in Medicine
Unlocked 20 (2020), p. 100377. issn: 2352-9148. doi: https://doi.org/10.1016/
j.imu.2020.100377. url: https://www.sciencedirect.com/science/article/
pii/S2352914820302069.

[40] Diabetic retinopathy stages. url: https://www.nhs.uk/conditions/diabetic-
retinopathy/stages/.

[41] the Ophthalmic Photographers Society. Fundus Photography Overview. url: https:
//www.opsweb.org/page/fundusphotography.

[42] M.R. Sebti et al. “”A Deep Learning Approach for the Diabetic Retinopathy Detec-
tion””. In: The Sixth Smart City Applications Iinternational Conference (2021).

[43] Harry Pratt et al. “Convolutional neural networks for diabetic retinopathy”. In: Pro-
cedia computer science 90 (2016), pp. 200–205.

[44] Mehdi Torabian Esfahani, Mahsa Ghaderi, and RJLEJPT Kafiyeh. “Classification of
diabetic and normal fundus images using new deep learning method”. In: Leonardo
Electron. J. Pract. Technol 17.32 (2018), pp. 233–248.

[45] Yung-Hui Li et al. “Computer-assisted diagnosis for diabetic retinopathy based on
fundus images using deep convolutional neural network”. In: Mobile Information
Systems 2019 (2019).

[46] Xiaoliang Wang et al. “Diabetic retinopathy stage classification using convolutional
neural networks”. In: 2018 IEEE International Conference on Information Reuse and
Integration (IRI). IEEE. 2018, pp. 465–471.

[47] ilovescience. Diabetic Retinopathy Detection 2015 Competition. url: https://www.
kaggle.com/c/diabetic-retinopathy-detection/data.

[48] Asia Pacific Tele-Ophthalmology Society (APTOS). APTOS 2019 Blindness Detec-
tion. url: https : / / www . kaggle . com / c / aptos2019 - blindness - detection /
overview.

[49] Andrew G Howard. “Some improvements on deep convolutional neural network based
image classification”. In: arXiv preprint arXiv:1312.5402 (2013).

[50] Stephan Zheng et al. “Improving the robustness of deep neural networks via stabil-
ity training”. In: Proceedings of the ieee conference on computer vision and pattern
recognition. 2016, pp. 4480–4488.

59

https://doi.org/https://doi.org/10.1016/j.imu.2020.100377
https://doi.org/https://doi.org/10.1016/j.imu.2020.100377
https://www.sciencedirect.com/science/article/pii/S2352914820302069
https://www.sciencedirect.com/science/article/pii/S2352914820302069
https://www.nhs.uk/conditions/diabetic-retinopathy/stages/
https://www.nhs.uk/conditions/diabetic-retinopathy/stages/
https://www.opsweb.org/page/fundusphotography
https://www.opsweb.org/page/fundusphotography
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/aptos2019-blindness-detection/overview
https://www.kaggle.com/c/aptos2019-blindness-detection/overview

Bibliography Experimentation and Results

[51] Suvajit Dutta et al. “Classification of diabetic retinopathy images by using deep
learning models”. In: International Journal of Grid and Distributed Computing 11.1
(2018), pp. 89–106.

[52] Mohammad Abdullah-Al-Wadud et al. “A dynamic histogram equalization for image
contrast enhancement”. In: IEEE Transactions on Consumer Electronics 53.2 (2007),
pp. 593–600.

[53] Carson Lam et al. “Automated detection of diabetic retinopathy using deep learning”.
In: AMIA summits on translational science proceedings 2018 (2018), p. 147.

[54] Goole Colaboratory. url: https://colab.research.google.com.

[55] OpenCV Documentation ,Operations on Arrays , URL:https://docs.opencv.org/
2.4/modules/core/doc/operations_on_arrays.html#addweighted.

[56] Spyder IDE. url: https://www.spyder-ide.org/.

[57] Matplotlib - visualization with python. url: https://matplotlib.org/.

[58] Keras: the Python deep learning. url: https://keras.io/.

[59] TensorFlow. url: https://www.tensorflow.org/resources/learn-ml?gclid=
CjwKCAjwtcCVBhA0EiwAT1fY7_V3GuCJmsl_YsGhshq-3C7ySEknxCBQN5So2iflIaDxHQp4ckftshoCmagQAvD_
BwE.

[60] NumPy. url: https://numpy.org/.

[61] model checkpoint keras. url: https://keras.io/api/callbacks/model_checkpoint/.

[62] Early stopping keras. url: https://keras.io/api/callbacks/early_stopping/.

[63] Mehdi Torabian ESFAHANI, Mahsa GHADERI, and Raheleh KAFIYEH. “Classifi-
cation of diabetic and normal fundus images using new deep learning method”. In:
Leonardo Electron J Pract Technol 17.32 (2018), pp. 233–248.

[64] Mohamed Shaban et al. “A convolutional neural network for the screening and staging
of diabetic retinopathy”. In: Plos one 15.6 (2020), e0233514.

[65] Hongyang Jiang et al. “An Interpretable Ensemble Deep Learning Model for Diabetic
Retinopathy Disease Classification”. In: 2019 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). 2019, pp. 2045–
2048. doi: 10.1109/EMBC.2019.8857160.

60

https://colab.research.google.com
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html##addweighted
https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html##addweighted
https://www.spyder-ide.org/
https://matplotlib.org/
https://keras.io/
https://www.tensorflow.org/resources/learn-ml?gclid=CjwKCAjwtcCVBhA0EiwAT1fY7_V3GuCJmsl_YsGhshq-3C7ySEknxCBQN5So2iflIaDxHQp4ckftshoCmagQAvD_BwE
https://www.tensorflow.org/resources/learn-ml?gclid=CjwKCAjwtcCVBhA0EiwAT1fY7_V3GuCJmsl_YsGhshq-3C7ySEknxCBQN5So2iflIaDxHQp4ckftshoCmagQAvD_BwE
https://www.tensorflow.org/resources/learn-ml?gclid=CjwKCAjwtcCVBhA0EiwAT1fY7_V3GuCJmsl_YsGhshq-3C7ySEknxCBQN5So2iflIaDxHQp4ckftshoCmagQAvD_BwE
https://numpy.org/
https://keras.io/api/callbacks/model_checkpoint/
https://keras.io/api/callbacks/early_stopping/
https://doi.org/10.1109/EMBC.2019.8857160

	Contents
	Acknowledgments
	Abstract
	Resume
	General introduction
	1 State of the art
	1.1 Introduction
	1.2 Artificial intelligence in healthcare
	1.2.1 Clinical applications

	1.3 Machine Learning
	1.3.1 Supervised learning
	1.3.2 Unsupervised learning
	1.3.3 Reinforcement learning
	1.3.4 Semi-supervised learning

	1.4 Deep Learning
	1.4.1 Definition
	1.4.2 Types of Deep Learning architectures

	1.5 Artificial neural networks
	1.5.1 Artificial neuron
	1.5.2 Artificial neural network

	1.6 Convolutional neural networks
	1.6.1 Definition
	1.6.2 Main operations of convolution
	1.6.3 Types of layers in a CNN
	1.6.4 Popular CNN architectures

	1.7 Transfer learning
	1.8 Diabetic retinopathy
	1.8.1 The retina of the eye
	1.8.2 Diabetes
	1.8.3 Diabetic retinopathy
	1.8.4 Fundus photography
	1.8.5 Related works

	1.9 Conclusion

	2 System design and implementation
	2.1 Introduction
	2.2 Global architecture of the system
	2.2.1 Dataset
	2.2.2 Preprocessing
	2.2.3 Splitting dataset
	2.2.4 CNN Learning
	2.2.5 Prediction
	2.2.6 Evaluation of a CNN model

	2.3 Implementation of a Deep Learning architecture
	2.3.1 Frameworks , tools and libraries
	2.3.2 Dataset preparation and preprocessing
	2.3.3 Building the CNN Model

	2.4 Testing the CNN Model
	2.5 Conclusion

	3 Experimentation and Results
	3.1 Introduction
	3.2 First proposed structure (Binary Classification)
	3.2.1 The used Dataset
	3.2.2 Specification of the used parameters
	3.2.3 Results and discussion

	3.3 Second Proposed Structure (Multiclass Classification)
	3.3.1 The used Dataset
	3.3.2 Specification of the used parameters
	3.3.3 Results and discussion

	3.4 Comparison with other related works
	3.5 Conclusion

	Conclusion and Perspectives
	Bibliography

