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ABSTRACT

Since the first discovery of electroencephalography (EEG) principles in the 20’s

by Berger, scientists have used EEG signals in diagnosing brain conditions and other

wide applications. In the last 2 decades, brain-computer interfaces (BCIs) and their

technological advances have allowed people to use EEG for mind-controlling tasks,

especially controlling robots by decoding and classifying EEG signals using Deep

Learning (DL). However, anomalies in EEG signals induced by human abuses like

alcohol and drugs or some diseases like Parkinson’s, have made the classification task

very hard. In this thesis, we have implemented a multi-method approach that uses two

simultaneous models in order to generalize the motor imagery classification for mind-

controlled robots from healthy patients to drug-addicted and alcoholic patients, and we

discuss their applications to quad-rotors and wheeled mobile robots. We also accom-

plished the mind-controlling task in real time by accelerating our model’s predictions.

Finally, we realized the multi-robot controlling task, which would enable patients to

control multiple robots (UAVs, wheeled mobile robots,... etc). The test results showed

that the patients were able to use the proposed multi-method approach to control the

mobile robot. The effectiveness of our study shows the high precision of attention-

based Bi-LSTM compared to the SVM model, and by GCN compared to others, in

classifying motor imagery EEG. The results were accurate and achieved the goals of

the study. This will be a motivation to apply it to more complicated problems, like

Parkinson’s EEG studies.

Keywords: Brain-Computer Interface, Deep Learning, Machine Learning, Motor

Imagery, Robot controllati dalla mente, Classification.



RÉSUMÉ

Depuis la première découverte des principes de l’électroencéphalographie (EEG)

dans les années 20 par Berger, les scientifiques ont utilisé les signaux EEG dans le

diagnostic des troubles cérébraux et d’autres applications larges. Au cours des deux

dernières décennies, les interfaces cerveau-ordinateur (CEI) et leurs avancées tech-

nologiques ont permis aux gens d’utiliser l’EEG pour les tâches de contrôle mental,

en particulier le contrôle des robots en décodant et en classant les signaux EEG à

l’aide du Deep Learning (DL). Cependant, les anomalies dans les signaux EEG induits

par les abus humains comme l’alcool et les drogues ou certaines maladies comme la

maladie de Parkinson, ont rendu la tâche de classification très difficile. Dans ce mem-

oire, nous avons mis en œuvre une approche multi-méthode qui utilise deux modèles

simultanés afin de généraliser la classification de l’imagerie motrice pour les robots

contrôlés par l’esprit, des patients en bonne santé aux patients toxicomanes et al-

cooliques, et nous discutons de leurs applications àrotors et robots mobiles à roues.

Nous avons également accompli la tâche de contrôle mental en temps réel en accélérant

les prédictions de notre modèle. Enfin, nous avons réalisé la tâche de contrôle multi-

robots, qui permettrait aux patients de contrôler plusieurs robots (UAV, robots mobiles

à roues,... etc). Les résultats des tests ont montré que les patients ont pu utiliser

l’approche multi-méthode proposée pour contrôler le robot mobile. L’efficacité de

notre étude montre la haute précision du Bi-LSTM basé sur l’attention par rapport

au modèle SVM, et par GCN par rapport les autres, dans la classification de l’EEG

d’imagerie motrice. Les résultats étaient exacts et atteignaient les objectifs de l’étude.

Ce sera une motivation pour l’appliquer à des problèmes plus compliqués, comme les

études EEG de Parkinson.

Mots-clés: Interface cerveau-ordinateur, Apprentissage profond, Apprentissage

automatique, Imagerie des moteurs, Robots contrôlés par le cerveau, Classification.
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ASTRATTO

Dalla prima scoperta dei principi dell’elettroencefalografia (EEG) negli anni ’20

da parte di Berger, gli scienziati hanno utilizzato i segnali EEG nella diagnosi delle

condizioni cerebrali e in altre ampie applicazioni. Negli ultimi due decenni, le in-

terfacce cervello-computer (CBI) e i loro progressi tecnologici hanno permesso alle

persone di utilizzare l’EEG per compiti di controllo mentale, in particolare control-

lando i robot decodificando e classificando i segnali EEG utilizzando Deep Learning

(DL). Tuttavia, anomalie nei segnali EEG indotte da abusi umani come alcol e droghe

o alcune malattie come il Parkinson, hanno reso il compito di classificazione molto

difficile. In questa tesi, abbiamo implementato un approccio multi-metodo che utilizza

due modelli simultanei per generalizzare la classificazione delle immagini motorie per

i robot controllati dalla mente da pazienti sani a pazienti tossicodipendenti e alcolisti,

e discutiamo le loro applicazioni a quadrotori e robot mobili su ruote. Abbiamo anche

completato il compito di controllo mentale in tempo reale accelerando le previsioni

del nostro modello. Infine, abbiamo realizzato il compito di controllo multi-robot, che

avrebbe permesso ai pazienti di controllare più robot (UAV, robot mobili a ruote,...

ecc.). I risultati del test hanno dimostrato che i pazienti sono stati in grado di utiliz-

zare l’approccio multi-metodo proposto per controllare il robot mobile. L’efficacia del

nostro studio mostra l’elevata precisione dell’attenzione basata su Bi-LSTM rispetto al

modello SVM, e da GCN rispetto agli altri, nella classificazione delle immagini motore

EEG. I risultati sono stati accurati e hanno raggiunto gli obiettivi dello studio. Questa

sarà una motivazione per applicarlo a problemi più complicati, come gli studi EEG di

Parkinson.

Parole chiave: Interfaccia cervello-computer, Deep Learning, Machine Learning,

Motor Imagery, Mind Controlled robots, classificazione.
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Introduction

Since Berger’s first discovery of electroencephalography (EEG) principles in the

1920s, scientists have employed EEG signals in diagnosing brain diseases and in a va-

riety of other contexts. In the past two decades, brain-computer interfaces (BCIs) and

associated technological advancements have enabled humans to use EEG for mind-

controlled tasks, particularly for directing robots by decoding and classifying EEG

signals using Deep Learning (DL). However, abnormalities in EEG signals caused

by human abuses such as alcohol and narcotics, as well as certain disorders such

as Parkinson’s, have made classification extremely difficult. In this dissertation, we

have implemented a multi-method approach that employs two simultaneous models to

generalize the motor imagery classification for mind-controlled robots from healthy

patients to drug-addicted and alcoholic patients, and we discuss their applications to

quad-rotors and wheeled mobile robots. We also completed the mind-controlling task

in real time by speeding the predictions of our model. Finally, we implemented the

multi-robot control task, allowing patients to operate multiple robots (UAVs, wheeled

mobile robots,... etc). The test findings demonstrated that the patients were able to

control the mobile robot using the proposed multi-method strategy. In identifying mo-

tor imagery EEG, our study demonstrates the superior accuracy of attention-based Bi-

LSTM over the SVM model, and of GCN over other algorithms. The results were

accurate and accomplished the study’s objectives. This will encourage its use to more

complex situations, such as EEG investigations for Parkinson’s disease.

In the first chapter, we provide an overview of relevant research on Brain-Computer

Interfaces and its applications in robot control. The first section of this chapter de-

scribes how BCIs function, covering the key brain regions and data collection meth-

ods. The most prominent electroencephalographic (EEG) markers are then described.

The second section examines prior and ongoing BCI-based robotics development and

projects. The concluding portion focuses on the contributions of our research to the

advancement of BCIs for mind-controlling robots.
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In the second chapter, we discuss the background material relevant to the design

and implementation of a brain-computer interface, including a review of the various

recording and signal processing techniques required to produce a usable signal as well

as a discussion of BCI classification techniques. In order for you to comprehend our

work, we will describe each phase in greater detail in light of the BCI’s big picture.

In the third chapter, we describe the use of machine learning in the preprocessing

and categorization of EEG signals. In addition, we cover numerous machine learning

and deep learning classification algorithms for EEG inputs. In addition, we describe

how ML/DL and its hyperparameters will be utilized for EEG classification and de-

coding.

In the final chapter, we describe the algorithms, datasets, hardware, and software

that were used to generate the subsequent conclusions. In addition, we describe the nu-

merous technical components of our system’s deployment and execution. We explain

the acquisition of data from numerous local individuals, the conditions under which it

was collected, and the EEG headgear that was utilized. Then, we discuss our proposed

model and its flowchart, describing its components and the techniques employed (pre-

processing, artifact removal, feature extraction, classification, etc.). Lastly, we will

emphasize several robotic notations to ease our procedure.

In conclusion, we describe a novel multi-method approach that employs simulta-

neous models including SVM, attention-based Bi-LSTM, and GCN to classify motor

imagery tasks for healthy and sick (drugged, drunken) patients. The results of our tests

demonstrated that the suggested method significantly outperformed other methods that

have been applied to solely healthy patients in classifying human judgments to oper-

ate robots. It demonstrates that our model with an attention mechanism performed an

excellent job of identifying and differentiating EEG patterns that were distinct due to

the effects of drugs on the brain, but the most accurate models were the gcn, which

obtained very respectable results. However, we were able to accelerate models and

control robots in real time. Lastly, we discussed the obtained results in two studies: an

evaluation study and a comparative study.
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Chapter 1

Theoretical Background

This chapter provides an overview of related research in the subject of Brain-Computer

Interfaces and its implementations in the field of robot controlling. The first section

of this chapter explains how BCIs work, including what the primary brain structures

are and how brain data is collected. Following that, the most prevalent ElectroEn-

cephaloGraphy (EEG) markers are discussed. The second section surveys the previous

and current works and projects in robotic fields that are based on BCIs.The final sec-

tion deals with the contributions of our work in order to enhance the usage of BCIs for

mind-controlling robots.

1.1 Overview

Controlling a virtual world with one’s brain activity has long been considered by re-

searchers and artists. Examples of such interfaces can be found in science fiction. For

example, in the film ”X-Men,” ”Professor-X” has the ability to control everything with

his mind alone. In ”The Matrix,” humans have a connection port in the back of their

heads that allows them to connect to and interact with the Matrix, a virtual world. In

another 2011 film, ”Source Code,” a soldier is embodied into a deceased person during

her final 8 minutes in order to identify a bomber. This soldier is linked to a Brain-

Computer Interface (BCI), which allows him to view and interact with an alternate

reality. These examples pave the way for new applications of BCIs, particularly for

controlling virtual or real worlds[17]. The brain-computer interface (BCI) is a com-

munication and control channel that ”acquires brain signals, analyzes them, and con-

verts them into commands that are conveyed to an output device to carry out a desired

action” and ”does not rely on the brain’s usual output pathways in any way”[18]. BCIs



Figure 1.1: Professor-X in X-Men

are an intriguing method of controlling devices[19]. After several decades of research

and several advancements, notably in recent years, we are still a long way from using

BCI-applications for everyday chores[20]. The majority of their uses are in medicine

and research[21]. One reason for this is that their capabilities are still highly lim-

ited compared to popular human device interfaces such as button-based, touch-based,

voice-recognition-based, and gesture-recognition-based interfaces[22]. BCIs, on the

other hand, have one very appealing feature: they are the only known human device

interfaces that do not require muscle movements. As a result, BCIs are primarily ben-

eficial to people who have lost control of all muscles that could otherwise be used

for communication[23]. BCI systems come in a variety of flavors, and multiple tech-

nologies can be utilized to gather neurophysiological data from the brain. Functional

Magnetic Resonance Imaging (fMRI), functional Near Infrared Spectroscopy (fNIRS),

ElectroEncephaloGraphy (EEG), MagnetoEncephaloGraphy (MEG), and ElectroCor-

ticoGraphy are examples of these technologies (ECoG)[24][25][26]. Brain signal anal-

ysis necessitates some understanding of the human brain’s inner workings. This part

gives an overview of brain structure concepts, as well as how to execute brain data

acquisition and interpret the results. EEG is the most often used method among all

of them since it is non-invasive and gives excellent temporal resolution in terms of

recorded brain activity[27].
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1.2 Definitions of BCI

1.2.1 Synchronous or Asynchronous BCI

Either synchronous or asynchronous BCIs are possible. When operating a synchronous

BCI, the user has no control over when a command is received, and must instead

arrange their actions to correspond with the BCI’s timing in order to achieve optimal

performance; for instance, minimizing blinking and muscular movements prior to the

active time. Asynchronous BCIs, also known as self-paced BCIs, allow the user to

control the speed of the BCI and stop sending orders if desired. Asynchronous BCIs

are technically more difficult to implement than synchronous BCIs. This is mostly

owing to difficulty in recognizing the brain’s so-called ”idle” state, a misnomer as the

brain is always functioning. As a result, it is challenging to determine whether a user

does not wish to send a command. However, several methods have been developed

to achieve this asyn- chronicity, including: thresholding, where commands are only

sent when the user’s brain activity exceeds a predetermined threshold; using a so-

called ’brain-switch,’ where a neural command is used to start or stop the BCI from

sending commands; and using muscle movements or blinks as a trigger to initiate BCI

functions[28].

1.2.2 Invasive and Non-invasive BCI

Based on whether or not the BCI penetrates the skin, it can be classified as invasive

or non-invasive. Invasive BCIs assess local field potentials (LFP) directly by piercing

brain tissue[29], whereas noninvasive BCIs monitor scalp potentials from the head’s

surface. More information regarding invasive and non-invasive methods can be found

in the following chapter.
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1.3 Neurophysiological Foundations of BCI

1.3.1 Brain Structure

The brain stem, cerebellum, and cerebrum are the three sections that make up the

human brain. Left and right hemispheres divide the cerebrum. The cortex, which

covers the cerebrum’s surface, is divided into four ”lobes.”

Figure 1.2: Brain Lobes.

The central sulcus separates the frontal lobe from the parietal lobe, and the lateral

sulcus separates the frontal lobe from the temporal lobe. Higher executive skills such

as emotional regulation, planning, reasoning, and problem solving, as well as cogni-

tive processes such as speech and movement, are all performed in the frontal lobe.

The central sulcus separates the parietal lobe from the frontal lobe. Sensory integra-

tion, including touch, warmth, pressure, and pain, as well as reading/writing, language

comprehension, concentration, and spatial awareness, are all handled by areas in the

parietal lobe. The temporal lobe, which is separated from the frontal lobe by the lateral

fissure, comprises sensory-processing regions that are critical for hearing, language

recognition, and memory formation. Finally, the occipital lobe is the brain’s primary
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visual processing center. Visual information from the eyes is received by the primary

visual cortex, often known as V1. This data is sent to numerous secondary visual

processing areas, which evaluate depth, distance, location, and object identity[30].

Electrical fields, blood pressure, and magnetic fields can all be used to record brain

activity. The process of gathering this data is known as ”acquisition.” Depending on

whether the measurement equipment is put on the brain tissues directly or on the

scalp, retrieval of brain data can be accomplished via invasive or non-invasive pro-

cedures[31]. Signal acquisition techniques, which can be invasive or non-invasive, and

signal evocation methods, which can be exogenous or endogenous, distinguish BCIs

(the way a subject is stimulated to create the desired signals). Invasive systems are less

susceptible to noise than non-invasive interfaces, but they need a surgical procedure

to implant and must be removed or replaced after a certain period of time due to the

rejection phenomena [32]. Non-invasive BCIs can use EEG[27], near-infrared spec-

troscopy[33], magnetoencephalography[34], and functional magnetic resonance imag-

ing[35], while invasive BCIs mostly use electrocorticography[36]. In the non-invasive

technique the sensors are placed on the scalp to measure the electrical potentials pro-

duced by the brain (EEG) or the magnetic field (MEG) while the micro-electrodes are

inserted into the brain and used to measure the activity of a single neuron. The ex-

ists another technique named semi-invasive, where the electrodes are placed on the

exposed surface of the brain(ECoG).

EEG is used in many BCI systems because it is simple to utilize and inexpensive

compared to magnetoencephalography or functional magnetic resonance imaging[27].

Because of the electric potentials it emits, EEG uses active or passive electrodes placed

on the scalp to receive data from the brain. The EEG electrodes are usually linked to

a cap and put on the surface of the head[27]. To improve the conductivity between

the skull and the electrodes, gel or salty water is employed. This means that any EEG

system will take a certain amount of time to set up (typically 15 minutes). The 10-20

system is often used to put electrodes. There exist another EEG electrodes placement

system named 10-10 system and it contains basically 13 electrodes, but this last one is
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rarely used and that’s because of the high acquisition the first system gives.

Figure 1.3: EEG Electrodes Placement 10-20 International System

1.3.2 Electroencephalography Rhythms

Rhythms are oscillations which can be seen in specific areas of the brain and at spe-

cific frequency bands. The recorded wave forms reflect the cortical electrical activity.

They can provide some information about a person’s mental state and can be volun-

tarily controlled[37]. These rhythms are alpha, beta, gamma, delta, theta and mu. But

generally, only 4 periodic rhythms are used; alpha, beta, delta, and theta. The previ-

ous rhythms are identified by frequency (Hz or cycles/sec) and amplitude (generally

micro-volts uV).

• Alpha waves (8-13Hz) are found in the posterior part of the brain and are stronger

on the non-dominant side. It is most noticeable when the eyes are closed or in a

relaxed state: increased alertness reduces its amplitude.

• When the user is awake and conscious, the beta rhythm (13-30Hz) can be de-

tected and it is affected by movement.
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• The gamma rhythm (greater than 30Hz) is associated with cognitive and motor

activity but is difficult to detect using scalp-based EEG.

• The delta rhythm (1-4Hz) is mostly detected while sleeping or deep sleeping

(adults).

• The theta rhythm (4-8Hz) can be seen in young children during sleep and is

known to form a spike when the user is attempting to suppress a response or

action[38].

• The mu rhythm (8-13Hz) is motor-based and varies depending on how the user

moves[39].

Figure 1.4: EEG Rhythms

1.3.3 Effects of Drugs on EEG

Despite the fact that excessive beta activity and a slight theta rise may be the most typ-

ical EEG changes linked with medication, more spectacular changes may sometimes

occur. Although abnormalities such as diffuse delta, triphasic waves, bisynchronous

spikes or polyspikes, burst suppression, or electrocerebral inactivity are often indica-

tive of a poor prognosis, if drug administration is the only or primary reason, these

patterns may revert to a normal EEG[40].
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1.3.4 Brain Imagine Techniques

In this section, we provide a quick overview of typical non-invasive brain imaging

techniques and more fundamental information concerning non-invasive brain signal

detection (e.g. concepts, characteristics, advantages, and draw- backs). Figure 1.5

depicts a classification of non-invasive brain signals based on the manner of signal

collection. Noninvasive signals are classified as EEG, fNIRS, functional magnetic

resonance imaging (fMRI), and magneto-encephalography (MEG)[41]

Figure 1.5: Classification of noninvasive brain signals. The dashed quadrilaterals
(RAVP, SEP, SSAEP, and SSSEP) are omitted from this review because there is no
prior research that focuses on deep learning techniques for them. P300, a positive
potential recorded roughly 300 ms after the commencement of given stimuli, is not
included in this signal tree because it is included by ERP (which refers to all the po-
tentials after the presented stimuli). Other brain imaging techniques outside EEG (e.g.,
MEG and fNIRS) might theoretically include visual/auditory tasks in this categoriza-
tion (e.g., MEG and fNIRS), however we removed them because there is no prior work
employing deep learning on these tasks[1].

The second capability describes the properties of distinct brain signals. This survey

focuses primarily on EEG signals and their subtypes, as they predominate among non-
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Table 1.1: Summary of non-invasive brain signals’ characteristics[1]
Signals EEG fNIRS fMRI MEG

Spatial resolution Low Intermediate High Intermediate
Temporal resolution High Low Low High

Signal-to-Noise Ratio Low Low Intermediate Low
Portability High High Low Low

Cost Low Low High High
Characteristic Electrical Metabolic Metabolic Magnetic

invasive signals. EEG measures the voltage fluctuations created by an electrical current

within the neurons of a human subject. The electrodes linked to the scalp can measure

numerous EEG signal types, including spontaneous EEG [42] and evoked potentials

(EP) [43]. Depending on the context, spontaneous EEG subdivides further into sleep

EEG, motor imagery EEG, emotional EEG, and mental disorder EEG, among others.

According to the frequency of external stimuli, EP is also subdivided into ERPs [44]

and steady-state evoked potentials (SSEPs) [45]. Based on the sorts of external inputs,

each potential has visual, auditory, and somatosensory components.

1.3.5 Event-Related Desynchronisations/Synchronisations

Changes in SMRs that accompany imagined or actual motor tasks are known as event-

related desynchronisations (ERD) and event-related synchronisations (ERS). The ERD

is a drop in power in the upper alpha (mu) band and lower beta band, which occurs in

the contralateral hemisphere around two seconds before movement beginning and be-

comes bilaterally symmetrical just before movement onset[46]. The ERS is an increase

in strength that occurs following the completion of a motor task. ERS can also occur

concurrently with ERD, albeit in a distinct cortical region[47]. ERD/ERS are gener-

ated topographically relative to the homuncular organization of the sensory cortices

(Fig. 1.6). This indicates that ERD and ERS activity associated with foot movement

will be most evident in the foot portion of the sensorimotor cortex. The homuncular

organization also makes it difficult for existing non-invasive BCIs to differentiate be-

tween movements of the two feet, which are placed close together (roughly between

the brain’s medial longitudinal fissure), and between individual finger motions. Due
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to the great distance between foot, right-, and left-hand movements, they are able to

differentiate among them.

Figure 1.6: A 2-D cortical sensory homunculus, by OpenStax College (licensed under
CC BY 3.0)[2]

1.3.6 Event-related potentials

Some events, such as sensory stimuli, motor activity, and memory challenges, have

been observed to have a direct effect on the rhythms outlined in the previous sec-

tion[46]. A rise in rhythmic activity is known as a ”event-related synchronization”,

whereas a decline is known as a ”event-related desynchronization”. Event-related

desynchronizations can occur milliseconds or even seconds before a movement is

done or envisioned. For instance, picturing a right hand movement will result in a

desynchronization of the mu and beta rhythms in the left motor cortex, which is event-

related[5].

A paradigm known as ”motor imagery” employs event-related desynchronization,

which relies mostly on the alpha and beta rhythms. Motor imagery depicts imagined

motor activity, while motor execution depicts actual motor activity[5]. After the execu-

tion or imagining of a motor activity, it is possible to detect an alpha- or beta-rebound.
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Motor imagery enables users to send commands to a brain-computer interface (BCI)

by picturing making a movement[42].

The P300 is a positive waveform that appears 300 milliseconds after a rare and

significant stimulation[48]. Commonly, the P300 paradigm is used to a grid of let-

ters known as a ”P300 speller”[49]. This grid contains letters that may be black or

light (ashing). The user must concentrate on one of the letters and mentally count the

number of times it has been ashed. This allows the algorithm to determine which let-

ter is focused. This paradigm has been applied successfully to paraplegic individuals,

allowing them to converse ”using thoughts”[50].

Figure 1.7: Illustration of Event-Related Potentials[2]

P300 evoked potential

A P300 evoked potential (also known as P3b) is an example of an ERP that consists

of a positive peak reported in the parietal cortex 300ms after stimulus initiation. It

was found by Sutton et al.[51] and is triggered when improbable events occur between

highly probable events. The primary use of the P300 in BCI research is the ’P300

speller’[52], a grid of letters (usually 66) from which a user can select specific char-

acters by concentrating their gaze on them. The letters flash randomly, but the BCI

is time-locked to these flashes (referred to as the ”oddball paradigm”[53]) and letter

selection is based on P300 wave production. Guger et al.[54] evaluated the usage of
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the P300 signal for spelling and found an overall classification accuracy of 91%. In

addition, 72.8% of subjects were able to spell sentences with perfect accuracy using

the P300 signal, while less than 3% displayed full BCI impairment with the P300. The

primary benefits of adopting a P300-based BCI are the low training times and great

accuracy. The primary downside is its slowness.

Error-related Potentials

Error-related potentials (ErrP) [55] refer to the brain’s response to a user identifying an

error, which can be utilized to control a BCI, typically for automatic error correction.

1.3.7 Steady State Visually Evoked Potential

The steady-state visually evoked potential (SSVEP) is a kind of the visually evoked

potential (VEP), which is a brain response produced by a visual input. The SSVEP

is phase-locked and induced by a repeated visual stimulus (RVS) such as a flickering

light[56], or a reversing pattern[57], and becomes’steady’ when the stimulus presen-

tation rate exceeds a particular frequency. SSVEP responses are primarily detected

by electrodes implanted above the occipital and parietal lobes[58], and have a spatial

structure resembling a wave[59] with frequency characteristics identical to the trigger-

ing input. The RVS commences the selection of a cortical network that can oscillate at

the same frequency[60], which means that the response has a high signal-to-noise ratio

compared to the input. Popular because of its quick training period, high classification

rate[60], and ability to be detected using non-invasive neuroimaging techniques such

as EEG. They have been utilized in a variety of BCI types, including exoskeletons op-

erated by BCI[61], [62], wheelchairs [62], [63], and robotic humanoids [64]. Using

various techniques, the objective is to maximize the signal-to-noise ratio (SNR), as is

the case with all other signal generating methods. By analyzing the brain impulses for

specific frequencies related to the RVS frequency, researchers may determine which

stimulus is being observed. While the brain is capable of producing SSVEP responses

at RVS frequencies ranging from 1 to 90 Hz[56], optimum stimulation frequencies are
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reported between 5.6 and 15.3 Hz, with the highest response occurring at 12 Hz[57].

Bakardjian et al.[57] stated that choosing between eight commands resulted in a mean

classification accuracy of 98% (96-100%) and a mean command recognition delay of

3.4s (2.5-4.2s). The primary benefit of an SSVEP-based BCI is its high signal-to-noise

ratio (SNR) and hence its excellent accuracy. The primary downside is that seeing the

RVS poses a risk of seizures[65], and protracted viewing sessions might produce user

weariness[66].

Figure 1.8: A system that uses SSVEP to pilot a spacecraft. a) A user observing a
computer screen with a game-like interface. (b) A spaceship operated by SSVEP and
three targets that must be destroyed[3].

1.3.8 Concentration and relaxation mental states

Additionally, a BCI can be utilized to measure mental status. For instance, George et

al.[4] devised a system for measuring the level of concentration and relaxation. Us-

ing ratios or combinations of the alpha, beta, and theta rhythms, this concentration

level can be determined[?][67][68]. These mental states can also be classified using

machine learning techniques[69].[4]George et al. contrasted these two strategies and

concluded that the machine learning methodology performed better. In addition, they

have discovered the optimal number and positioning of EEG electrodes on the skull.

Their user study was based on a basic game-like 2D environment in which users moved

an ascending or descending plane based on their mental state.
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Figure 1.9: A straightforward 2D application that displays the concentration/relaxation
mental state detected by a BCI[4].

1.4 Hybrid Brain-Computer Interfaces

A hybrid BCI (hBCI) is a system that combines at least two types of input signals, at

least one of which is a BCI signal. The other signal or signals can come from: another

BCI signal from the same modality, creating a system known as a ’pure’ hBCI; another

BCI signal from a different modality, such as combining EEG and fMRI; physiologi-

cal signals such as heart rate or EMG, although whether using EMG constitutes a true

hBCI is debatable; or from an intelligent device such as an eye tracker or intelligent

wheelchair. Sequential hBCIs execute a function from a single modality at a time,

whereas simultaneous hBCIs conduct actions from numerous modalities simultane-

ously. Numerous combinations of hBCIs, including P300 and SSVEP[70], ERD and

SSVEP[71], and ERD and P300[72], have been shown to be effective. The primary

benefit of hBCIs is their capacity to compensate for shortcomings in the modality or

modalities. hBCIs can improve upon normal BCIs by increasing the available degrees

of control (DoC)[71], raising the ITR[73], and enhancing accuracy[70].

A hybrid BCI system’s components can function sequentially or simultaneously.

Figure 1.8 depicts two hybrid BCIs (B and C) working concurrently and five operating

sequentially (A, D- G). The sequential processing displays the ”switch” and ”selec-

tion” modes, which may be used, respectively, to activate the second component or

choose between two additional components. The ”+” sign represents the ”fusion” pro-

cedure, indicating that the information received by various components is ”added” to
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produce the final output. This figure also depicts the many components of a hybrid

BCI, including a non-EEG BCI device employed in E, an electrocardiography device

in B and D, and an eye-tracking device in G. These devices will be discussed in the

sections that follow[5].

Figure 1.10: Illustrations of hybrid BCI components running sequentially or concur-
rently[5].

1.5 Principal ideas behind hybrid brain-computer interfaces

A hybrid brain-computer interface consists of numerous components that are inter-

connected to build a system. When BCIs are often associated, they are ”active” as

opposed to ”passive,” meaning that users actively submit commands through the inter-

face as opposed to being ”monitored” by it. The majority of BCI setups are active in

the sense that the user must consciously manage her brain activity in order to trigger an

event or accomplish a goal[74]. The data transfer rate of active BCIs is often below 25

bits per minute[75]. Passive BCIs are commonly employed in conjunction with other

inputs and, as a result, are regularly included into hybrid BCIs. This section begins

with an overview of the nature of the hybrid BCI’s constituent elements: ”mixed” (a

BCI integrated with other inputs) or ”pure” (only BCIs). The second element of this

section will discuss the sequentiality of data processing, such as whether data from one

component is handled before or simultaneously with data from another component[5].
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1.5.1 Brain-computer interfaces that are a mix or a pure hybrid

There are two categories of hybrid brain-computer interface systems, depending on

whether they contain exclusively BCI devices or a combination of BCI and non-BCI

equipment. Pure hybrid BCI refers to BCI systems that utilize solely BCI devices

with a single or several paradigms. Mixed hybrid BCI systems often employ elec-

trooculography, electromyography, and electrocardiography in addition to additional

components[5].

Figure 1.11: There are three conceivable component combinations within hybrid
BCI systems. (a) A hybrid BCI system employing two EEG sensors with distinct
paradigms. (b) Pure hybrid BCI system employing two BCI devices with the identical
paradigm. Mixed hybrid BCI system consisting of one BCI device and two non-BCI
devices[5].

1.5.2 Sequential or simultaneous processing

These interfaces can process incoming information sequentially or simultaneously. Se-

quential processing indicates that the data collected from one component will be uti-

lized prior to the data collected from other components. This is exemplified by the

”brain switch,” in which one component triggers the data processing of another com-

ponent[76]. This brain switch was employed by Pfurtscheller et al. to regulate an

orthosis [8]. Using LEDs and an SSVEP paradigm, the user can select which part

of the orthosis to move. The motor imagery paradigm is then employed to move the

orthosis effectively. This decreases the number of false positives and exemplifies one

application of a ”brain switch”[5]. Simultaneous processing entails processing all the

data sent by each component at the same time. This processing method was used by Li

et al. to operate a 2D cursor[77]. The P300 paradigm was employed for vertical move-

ment, whereas motor imagery was utilized for horizontal movement. Both components

engaged with the system simultaneously[5].
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1.5.3 Most prevalent input devices utilized in hybrid BCI

Brain-computer interfaces are frequently utilized in conjunction with a variety of tech-

nologies. The section that follows describes these devices and includes examples of

prior work.

Eye trackers

Electrooculography, the first type of eye tracker, detects the continuous electric po-

tential field emitted by the eyes as dipoles. The cornea would represent the positive

pole, whereas the retina would represent the negative pole[7]. Eye movement can be

evaluated by capturing the electric potential field by putting electrodes that, depend-

ing on the position of the retina and cornea, will receive a positive or negative signal

amplitude. Figure 1.10 illustrates an electrooculography apparatus. Other eye track-

ers utilize specialized contact lenses or video cameras[78]. Eye trackers can be used

to measure numerous motions and events, such as blinking, saccades, and xations. It

has been used in conjunction with a BCI to enable impaired individuals to control

robots[79] or to target an element on the screen, such as in a spell checker.

Electrocardiography

Electrocardiography utilizes chest-mounted electrodes to detect cardiac activity[80]. It

is used to monitor the pace and regularity of the heartbeat and facilitates the detection

of heart injury or anomalies. One use of electrocardiography in hybrid BCI systems

is effort measuring [76]. This effort assessment can then be utilized to activate or

deactivate a BCI device. This system aids in the prevention of false positives.

Electromyography

Electromyography can be performed on the surface of the skin or within the muscle to

measure the electrical activity generated during muscular activity. Electromyography

is used to extract information on the intensity and duration of muscle activity[?]. The

figure below depicts an electromyography device attached to a subject. In many BCIs,
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the function of electromyography devices is to measure muscle activity during a motor

imagery or motor execution job in order to enhance accuracy.

Figure 1.12: a device for electromyography that is placed on a user[0]. (b) Electroocu-
lography device[6][7].

Other input devices

Occasionally, mice, keyboards, and joysticks are also utilized with a BCI. A hybrid

system proposed by Leeb et al. consists of a joystick for controlling the movement

of a penguin on a slope and a BCI system for triggering jumps [81]. Kreilinger et

al. utilized a joystick whose performance degraded over time to represent the user’s

fatigue [49]. The user was automatically shifted between devices based on a ”device

score”[5].

1.6 Some instances of hybrid brain-computer connections

This section presents a variety of hybrid BCI setups based on the nature of its compo-

nent parts: pure hybrid BCIs (consisting just of BCI devices and paradigms) and mixed

hybrid BCIs (including non-BCI devices)[5].

1.6.1 Pure hybrid BCIs

Motor imagery and P300 combination

The motor imagery paradigm and the P300 paradigm have been merged in a system

created by Riechmann et al.[82]. This configuration suggests a parallel and asyn-
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chronous system that incorporates both paradigms. The level of false positives was

assessed when subjects were required to use either paradigm. The user was provided

with a single target: one of five P300 symbols or one of two motor imagery directions

(left or right)[5].

Motor imagery and SSVEP combination

Pfurtscheller et al.[8] have presented a method which integrates motor imaging with

SSVEP. Using the SSVEP and motor imagery paradigms, users were able to control

a four-step hand orthosis with the aid of this configuration. On the orthosis were

mounted two LEDs, one flashing at 8 Hz and the other at 13 Hz. The user utilized

these two LEDs to select which portion of the orthosis to open or close. Then, motor

imagery was used to complete the job. Each user carried out four distinct tasks. The

first permitted the user to open and close the orthosis using only SSVEP. The second

task required users to perform rapid foot motions in response to a cue displayed on a

computer screen in order to complete the motor imagery paradigm training. The third

consisted of using both paradigms to operate the orthosis at one’s own pace. The last

job consisted of utilizing the SSVEP paradigm exclusively and acted as a control setup.

One channel focused on the motor cortex while the other focused on the visual cortex.

This hybrid approach demonstrated a lower number of false positives compared to the

usage of event-related synchronization continuously[5].

P300 and SSVEP combination

Xu et al.[9] have proposed the combination of the P300 and SSVEP. This configuration

sought to improve the performance of a P300 speller by combining SSVEP with P300.

Twelve participants conducted an offline spelling test using the two methods. No prior

training has been conducted. Six of the patients began with the hybrid configuration,

whereas the remaining six began with the P300 paradigm alone. A 3x3 grid was uti-

lized to display the numerals 1 through 9 on a computer screen. In the hybrid system,

the highlighted sequence of characters was random. To induce a P300 response, the
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Figure 1.13: A hand orthosis controlled by a BCI. The SSVEP paradigm might be
used to determine which component of the orthosis should be activated, whilst the
motor imagery paradigm could be utilized to initiate movement execution. (A), (B),
(C), and (D) depict four distinct opening procedures for the orthosis[8].

size and font of the characters were altered, and flickering was employed to induce

an SSVEP response. Using a hybrid approach significantly increased spelling perfor-

mance, as shown by the findings[5].

Figure 1.14: Evolution over time of a P300 speller grid utilizing both the P300 and
SSVEP paradigms. A ”Event phase” is utilized to stimulate P300 activity, whereas a
”Flicker phase” is used to trigger SSVEP activity.

1.6.2 Mixed hybrid brain-computer interfaces

This section describes a variety of configurations that mix BCI paradigms with non-

BCI equipment.
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Combining motor imagery with electromyography, eye tracking, or

electrocardiography

Leeb et al. integrated EEG and electromyographic data, enabling partially paralyzed

individuals to employ residual muscle activity alongside motor execution or motor im-

agery[83]. In cases of partial paralysis, some residual muscle function can still be

utilized. Each trial consisted of xating a cross on a computer screen for three sec-

onds, followed by a five-second signal indicating which hand motor task was to be

performed. EEG and electromyography were simultaneously recorded, and their fu-

sion was performed using a naive Bayesian approach with weights that were evenly

balanced. This BCI was controlled using either one or all of its components. This con-

figuration demonstrated that the user can maintain control even when fatigued. The

classification scores for the EEG component alone were 73%, 87% for electromyog-

raphy, and 91% for the combination of the two[5]. Eye tracking technologies can be

Figure 1.15: A subject with an EEG cap and electromyography electrodes on their
head. The graphic depicts the various processing and fusing processes required for
each component of the hybrid BCI[9].

utilized to choose certain letters or words. Yong et al.[10] proposed a combination

of this device with motor imaging or motor execution. This system selected letters

or words using an eye tracking device and motor imagery (or motor execution). The

user was required to retain her sight on the desired word or letter for a predetermined

amount of time. The system also utilized a ”sleep mode” to limit the number of false

positives when no letter or word was shown. Additionally, the classifier used to iden-

tify the attempted hand extension was adaptively updated. This arrangement utilized
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the application Dynamic Keyboard, which allowed the user to type text by hitting huge

buttons and also included a word prediction function.

Figure 1.16: A person wearing an EEG cap and electrooculography electrodes, utiliz-
ing an eye tracker to indicate a spot on the screen and a hand extension attempt (motor
execution or motor imagery, depending on the user’s ability to extend her hands) to
simulate a mouse click[10].

Using a combination of motor imagery and electrocardiography, Shahid et al. sug-

gested a test to determine if a classification performance could be observed [11]. Multi-

ple trials were conducted, with each lasting 12 seconds: 6 seconds in a calm condition,

followed by 6 seconds during which a directional arrow indicated that a left foot or

left hand motor imagery task had to be performed. A third symbol represented a state

of inactivity. The processing technique is depicted as a block diagram in Figure 1.15.

The findings of a classification between a hand motor imagery task and a rest task were

subjected to two distinct analyses. The first study, which measured the average heart

rate during a motor imagery task, revealed that a 10 percent rise in heart rate may be

observed in this situation. The second analysis revealed that the simultaneous use of

both devices resulted in an average classification accuracy of 92%, whereas EEG alone

resulted in an accuracy of 73%. Due to the reduction of false positives, the combination

of electrocardiography and EEG features improved the classification of motor imagery

in both training and evaluation.
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Figure 1.17: A block diagram of a system that combines motor imagery with electro-
cardiography to evaluate a potential increase in classification ability[11].

Combining P300 and electrooculography

A method devised by Postelnicu et al. used a modified stimulus presentation paradigm

called the ”Half Checker Board Paradigm” to improve spelling speed by combining

the P300 paradigm and an electrooculography device[12]. Using electrooculography,

an 8x9 matrix was subdivided into chosen sections. Multiple characters and symbols

were highlighted at random in each of these regions. EEG was utilized to choose

the characters. Every two characters entered required a phase of electrooculography

calibration. The users were required to compose a 13-character calibration text and a

16-character evaluation paragraph. When employing the half checkerboard paradigm,

the time required to spell one character decreased, resulting in a more efficient P300

paradigm.

Figure 1.18: A character matrix for spelling purposes. The matrix (a) is subdivided into
selectable sections (b) using an electrooculography device, while character selection is
conducted using the P300 paradigm[12].
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1.7 Related Works

Deep Learning (DL) has recently gained significant interest from a variety of disci-

plines due to its promising performance in categorization problems[84]. Numerous

studies have demonstrated that deep learning will play a crucial role in the exact de-

coding of brain processes. Recent research has focused specifically on EEG motion

intention detection. Implementing the DL-based method for decoding EEG MI tasks,

which has yielded encouraging results, is a current priority.

1.7.1 Control of a wheelchair by motor imagery in real time

An implementation of a non-invasive brain machine interface (BMI) for operating a

motorized wheelchair. Subjects were educated utilizing an effective feedback training

method, after which they were able to freely maneuver the wheelchair, similar to using

a joystick. Through the use of efficient signal processing techniques and a feedback

training method, the subjects’ training time and effort have been lowered while their

accuracy has been improved. Using the motor imagery paradigm, trained subjects

could freely maneuver a wheelchair with several degrees of freedom and required rapid

response time. The used classifier in this experiment was Support Vector Machine

(SVM) and the output was turning right or turning left[85].

1.7.2 Quad-copter control in three-dimensional space

Using noninvasive scalp electroencephalography (EEG) to control a robotic quad-

copter in three-dimensional (3D) physical space with human beings. The authors then

measure the performance of this system utilizing metrics appropriate for asynchronous

BCI. Lastly, they compare the effect of operating a real-world gadget to a 2D vir-

tual cursor task on the control of individuals. Five human individuals were trained to

modify their sensori-motor rhythms in order to navigate a 3D physical world while

controlling an AR Drone. On the drone’s hull, a forward-facing camera offered visual

feedback. Key results. Individuals traveling at an average straight-line speed of 0.69

m s-1 were able to accurately acquire up to 90.5% of all valid targets given. Signifi-
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cance. The ability to freely explore and engage with the surrounding environment is

a critical aspect of autonomy that is lost in the context of neuro-degenerative disease.

Brain-computer interfaces are systems that try to restore or improve a user’s capacity to

interact with the environment using only mind and a computer. They demonstrate for

the first time that human EEG captured from the scalp may be used to operate a flying

robot in 3D physical space. Our research demonstrates the potential for noninvasive

EEG-based BCI systems to provide intricate spatial control in three dimensions. Using

tele-presence robotics, the present study may serve as a platform for the examination

of multidimensional noninvasive BCI control in a physical context. A linear classifier

has been used to classify 6 different movements[86].

1.7.3 EEG based BCI for controlling a robot arm movement

A unique BCI system that utilizes the user’s thoughts to operate a robot arm. Four

participants aged between 20 and 29 (one female and three males) participated in our

investigation. They have been told to visualize the execution of actions of the right

hand, the left hand, both the right and left hands, or the feet, depending on the set

protocol. Using an EMOTIV EPOC headset, neuronal electrical impulses from the

subject’s scalp were recorded and transferred to a computer for analysis. Utilizing the

Principal Component Analysis (PCA) technique in conjunction with the Fast Fourier

Transform (FFT) spectrum within the frequency region important for sensorimotor

rhythms (8 Hz–22 Hz), feature extraction was carried out. The outputs of a Support

Vector Machine (SVM) classifier based on a Radial Base Function (RBF) were then

translated into commands for controlling the robot arm. The suggested BCI enables

the control of the robot arm in four directions, including right, left, up, and down, with

an average accuracy of 85.45% across all individuals[87].

1.7.4 Control of Humanoid-Robot using an EEG-based BCI

An innovative interface for translating human intents into motion orders for robotic

devices. The experimental approaches include offline training, online testing with
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feedback, and real-time control sessions. EEG amplitude features are retrieved us-

ing power spectral analysis, and informative feature components are chosen using the

Fisher ratio. The two classifiers are trained to identify human intentions and are struc-

tured hierarchically to construct an asynchronous BCI system. For the performance

test, five healthy volunteers navigated a humanoid robot through an indoor maze using

their EEGs in conjunction with real-time pictures obtained from the robot’s head cam-

era. Using the suggested asynchronous EEG-based active BCI system, the subjects

were able to successfully control the humanoid robot in the indoor maze and achieve

the intended destination[88].

1.7.5 Classification of motor imagery using deep convolutional neu-

ral networks

Deep convolutional neural network (CNN)-based approach for feature extraction and

categorization of single-trial MI EEG. First, on the basis of the spatio-temporal char-

acteristics of EEG, a 5-layer CNN model is constructed to classify MI tasks (left hand

and right hand movement); next, the CNN model is applied to the experimental data

set collected from subjects and compared to three conventional classification meth-

ods (power + SVM, CSP + SVM, and AR + SVM). The results reveal that CNN may

further improve classification performance: the average accuracy using CNN (86.41

0.77%) is 9.24 percentage points, 3.80 percentage points, and 5.16 percentage points

higher than those obtained using power + SVM, CSP + SVM, and AR + SVM, respec-

tively. The proposed method was effective for classifying MI and provides a realistic

method for classifying EEG signals non-invasively in BCI applications[89].

1.7.6 LSTM-Based EEG Classification

A classification system for EEG data in motor imagery challenges. The suggested

framework consists of multiple steps and components, namely preprocessing, feature

extraction utilizing the 1d-AX, channel weighting, LSTM network, and softmax re-

gression. In contrast to the majority of previous methods that employ CSP techniques
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and deep networks, LSTM networks are used to extract critical features of EEG data so

that time-varying EEG signal characteristics can be exploited to improve classification

performance. In addition, the combination of 1d-AX with channel weighting makes

the EEG signal representation more concise, which facilitates the subsequent training

of LSTM networks. The experimental results based on the public BCI competition

dataset reveal that the proposed AX-LSTM has superior classification performance.

For online classification, the entire network can be trained offline using EEG data from

many subjects. It is then fed additional EEG segments and outputs the prediction label

probability. The scale of parameters in the proposed method is significantly less than

in existing deep neural networks, resulting in faster real-time processing and a reduced

likelihood of over-fitting[90].

1.7.7 Deep learning CNN-WNN approach to classifity EEG based

BCI

A unique deep learning algorithm with data augmentation to increase the classification

accuracy of motor imaging signals and prevent overfitting. Complex Morlet wavelets

were used to turn EEG data into tensors as inputs to the neural network. Two mod-

els, Convolutional Neural Networks and Wavelets Neural Networks, were presented to

identify and extract features from motor imaging inputs. To train the networks, the em-

pirical mode decomposition method was used to produce artificial EEG frames. In the

experiments, we examined the filter size and hyper-parameters, as well as the epoch

size for both networks. The optimal batch size was determined to be 300. In order to

test the performance of the suggested method, CNN and WNN models were compared

to tensor decomposition techniques. The experimental findings demonstrate that our

innovative approaches are superior to the tensor decomposition method. In addition,

we validate our suggested approaches using dataset III from the BCI Competition II.

The accuracy of the competition’s winning algorithm was 89.3%, whereas the accu-

racy performance of our proposed approaches was 90.1%. Specifically for the WNN

model, the bigger artificially created EEG frames can result in the network display-
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ing an exception of no convergence. In order to evaluate the viability of the newly

suggested WNN model, the actual motor imagery dataset was used to eliminate the in-

fluence of the false EEG frames. According to the results, the WNN model has greater

classification accuracy and a faster convergence rate than the CNN model[91].

1.7.8 Attention-based BiLSTM-GCN for Human Motor Imagery Recog-

nition

A revolutionary deep learning system aimed to recognize motor imagery (MI) with

exceptional accuracy and responsiveness using scalp EEG. Bidirectional Long Short-

term Memory (BiLSTM) with the Attention mechanism is employednvolutional neural

network (GCN) improves decoding performance by collaborating with the predicted

topological structure of features. Particularly, this method is trained and tested on short

EEG recordings with a duration of only 0.4 seconds, and the outcome has demonstrated

effective and efficient prediction based on individual and group-wise training, with

98.81 percent and 94.64 percent accuracy, respectively, outperforming all previous

studies. Deep feature mining can perfectly distinguish human motion intents from raw

and practically immediate EEG signals, paving the way for EEG-based MI recognition

to be implemented in a viable BCI system[92].

1.8 Problematic

Drugs, alcohol, Parkinson’s, and other things have a big effect on brain cells, so they

have a big effect on the quality of an EEG. Most of the research only looks at EEGs

from people who are healthy in order to improve how they are used. One of those

implementations is brain-controlling (games, robots, etc). However, this is not an easy

task to generalize among people, and that’s because of the following problems: (i)

EEG waves are not stable enough to deal with and this belongs to the human profile

and addictions (especially alcohol and drugs). (ii) Abnormal EEG are hard to classify.

Thus, the generalization task for allowing different types of subjects to control robots

using their minds is still hard, especially for Parkinson’s patients, drug addicts, and
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alcoholic people. (iii) Decoding of motor imagery is fast with machine learning but

not accurate enough with deep learning. (iv) Most current work for brain-controlled

robots is not in real time (some models are slow). (v) It’s very hard to control more

than a robot at once (multi-robot controlling issue).

1.9 The objective of our study

In this study, we proposed a novel multi-method approach that uses simultaneous

models (Deep/Machine Learning) in order to facilitate the classification of abnor-

mal EEGs and generalize the mind-controlling task for several subjects with different

backgrounds (healthy, drugged, and alcoholic). Second, we try to make the mind-

controlling task executed in real-time by speeding up our model’s predictions. Lastly,

we aim to realize the multi-robot controlling task, which allows the patients to control

several different robots (UAVs, wheeled mobile robots,... etc).

1.10 Multi-Method Approach

As discussed previously, we used 2 simultaneous models in order to increase the pre-

cision of our system. The multi-method approach is an auction-based system that uses

two different simultaneous models to enhance the prediction. In our study, we used dif-

ferent combinations; SVM and Bi-LSTM attention-based, Bi-LSTM with GCN, etc.

The multi-method approach works as follows: we compute the average result over a

specified time period range. The range depends on the execution time of the model.

Since the previous results were done in real time, we guessed that the period range

would be 5Hz. This means that the multi-method approach will figure out the average

precision over 5 trials, and then the controller will use the most accurate prediction to

move the robots. The major reason for using this method is to reduce the sensitivity

of the robots, so the execution time for each move will be 1 s (imagine the sensitivity

of the robots if the user used different maneuvers simultaneously). The benefit of this

method is that it makes robots easier to control by decoding both linear and nonlinear

features that come from an abnormal EEG (a sign of poor health).
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1.11 Conclusion

This chapter provides an overview of hybrid brain-computer interfaces, including how

its BCI components can be classified, merged based on their nature, and processed in

real time (sequentially or in parallel). Some examples of regularly used input devices

inside a hybrid BCI and typical examples of hybrid BCI systems have been provided.

Then we highlighted some previous works, highlighting their methods, techniques,

and outcomes and we provide the common used BCI applications. Those works are

connected in some way, particularly with ours. Lastly, we talked about the problems

EEG is having with controlling robots and what we want to do to solve them.
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Chapter 2

Technical Background

2.1 Introduction

This chapter discusses the background material pertinent to the design and implemen-

tation of a brain-computer interface, including a review of the various recording and

signal processing techniques required to produce a usable signal, and a discussion of

BCI classification techniques. The following diagram provides an overview of these

steps, which include[2]:

1. Brain Signal Acquisition: Recording neural data

2. Preprocessing: Utilizing signal processing techniques, such as filtering and ar-

tifact removal, to enhance signal quality.

3. Feature Extraction: Identification and extraction of informative elements from

brain data recordings

4. Classification: Using the retrieved information to develop a classifier capable

of distinguishing between various cognitive states

5. Device Control: Using the outputs of the classifier as a communication channel

that can communicate directly with an external device.

6. Feedback: Providing the user with real-time feedback that enables them to ad-

just their strategy as needed to increase performance.



Figure 2.1: BCI framework[2]

2.2 Brain Signal Acquisition

Methods for recording brain activity can be categorized into two major categories:

invasive methods, which require insertion of some components into the body, and non-

invasive methods. This section describes the most popular available approaches[2].

Figure 2.2: Neuron diagram by Nicolas Rougier (licensed under CC BY 3.0)
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2.2.1 Invasive Methods

Implanted arrays of intracortical microelectrodes in the cerebral cortex of the brain pro-

vide a resolution that is both spatial and temporal. Collinger et al. [93] and Hochberg

et al. [94] proved that tetraplegic users could learn to manipulate a robotic arm with 7

degrees of freedom. The main disadvantages of intra-cortical electrodes are that they

need surgery and that the brain can recognize them as a foreign body, frequently re-

sulting in inflammatory reactions such as ”glial scarring” [95]. Electrocorticography

(ECoG) is the measurement of cortical field potentials utilizing electrodes inserted on

the cerebral cortex’s outer surface. As it is placed below the skull but outside the brain,

technically speaking, ECoG might be classified as somewhat invasive. ECoG is ad-

vantageous because to its great temporal and spatial resolution. The primary problem

is that electrode implantation requires surgery.

Figure 2.3: Dry EEG headset

2.2.2 Non-invasive Methods

Electroencephalography (EEG), the primary technique utilized for this thesis, monitors

variations in electrical potential induced by neuronal activity in the brain. Electrodes

placed on the scalp are utilized to acquire EEG signals. Signal extraction involves the

coordinated activation of thousands or millions of cortical neurons [46], mostly be-

cause EEG scalp potentials become distorted as they move through the brain, skull,

and scalp tissues. Typically, scalp electrodes are positioned in accordance with the
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10-20 system, where electrode spacing between consecutive electrodes is either 10 or

20 percent of the diameter of the skull, front-to-back or left-to-right[96]. The labels

Fp, F, C, P, and O denote the frontopolar, frontal, central, parietal, and occipital brain

areas, respectively, when referring to electrode sites. Electrodes for electroencephalog-

raphy (EEG) might be water-based, gel-based, or dry (Fig. 2.4). Gel electrodes can

be time-consuming to install and require gel to be applied to the hair of participants,

which might be uncomfortable for certain users. It has been discovered that dry elec-

trodes contribute to an increase in impedance as well as broad-band noise[97], which

negatively impacts signal quality. Magnetoencephalography (MEG) is a technique for

measuring the magnetic perturbation induced by neural activity. Over the scalp, an

array of superconducting quantum interference devices (SQUIDs [98]) is used to cap-

ture MEG data. Functional magnetic resonance imaging (fMRI) identifies alterations

in blood oxygenation level; these alterations are related to brain activity. fMRI is

performed in an fMRI machine, which generates a magnetic field that modifies the

status of protons within the body. Different rates of’relaxation’ (the time required for

protons to return to their initial state) enable researchers to calculate the blood oxy-

genation level in every region of the brain at a given time. NIRS is also utilized to

measure brain changes related to blood oxygenation levels. On the surface of the head,

near-infrared light can pass through skin and bone and is absorbed by haemoglobin.

Researchers can monitor the oxygenation and haemodynamic activity associated with

brain activity by measuring the absolute change in oxyhaemoglobin (HbO2) and de-

oxyhaemoglobin (Hb) by measuring the absolute change in oxyhaemoglobin (HbO2)

and deoxyhaemoglobin (Hb)[99]. The aforementioned methods vary in terms of their

respective strengths and weaknesses: fMRI has poor temporal resolution (1-2 seconds)

and good spatial resolution (order: 64mm3) [100]. The spatial resolution of near- in-

frared spectroscopy (NIRS) techniques is on the order of centimeters, but the depth

resolution is inadequate [101].
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2.2.3 EEG Headsets

The number of portable, low-cost EEG-based systems on the market has expanded in

recent years[102]. Continuous recording of EEG data and/or the reproduction of bigger

EEG analytical systems using portable devices have been the focus of research on the

usage of low-cost EEG systems. In this review, we examined research papers that de-

tailed the use of low-cost EEG devices, with an emphasis on devices where the headset

cost less than $1,000 USD, excluding license fees: the InteraXon Muse, the Neurosky

MindWave, the Emotiv Epoc, the Emotiv Insight, and the OpenBCI. These gadgets are

representative of widely distributed commercial models. Although other devices and

suppliers have been used [103], the focus of this search was on non-invasive EEG

devices that were less than $1000, not marketed as medical devices, accessible to

consumers, prominent in the hobbyist community, and provided tools or options for

brain-computer interface (BCI) applications. Table 1 compares several commercially

available, low-cost EEG headsets. The majority of inexpensive headphones feature

dry electrodes, which are more convenient for casual users. Similarly, the majority of

headsets incorporate research tools, open-source software, and additional hardware as

packaged software[104][105]).

Figure 2.4: Comparison of consumer EEG headsets[13].
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InterAxon Muse

The InteraXon Muse is a tiny EEG system that detects brain activity using four EEG

sensors (Muse, InteraXon) and can transfer data to neighboring devices via Bluetooth.

Muse claimed that the headband might facilitate a state of profound relaxation. The

dry electrodes were positioned at FPz, AF7, AF8, TP9, and TP10 according to 10–20

International electrode placement convention[106]. The reference electrode was the

FPz electrode. The detailed specifications match those of the original Muse gadget.

Neurosky Mindwave

Neurosky designed the MindWave as a low-cost, single-channel, dry EEG headset

that can transmit EEG wirelessly over Bluetooth Low Energy or traditional Bluetooth

[107]. The MindWave device is a headset with a T-shaped headband, a larger ear clip,

and a bendable arm. The reference and ground electrodes of the device are placed

on the ear, whilst the EEG electrode is put on the forehead, above the eye. Neurosky

EEG headphones provide training software, instructional programs, and information

for software developers. For researchers, there are also available free development

tools. Despite the fact that Neurosky produces several models, the MindWave was the

most commonly utilized model in the studies considered[104][107]).

OpenBCI

The OpenBCI Ultracortex Mark IV is a 3D-printable, open-source headset designed to

function with any OpenBCI board. It is capable of recording EEG of a research-grade

quality. Based on the 10–20 International System, the Ultracortex Mark IV headset

is capable of sampling up to 16 channels of EEG from up to 35 different places[108].

The OpenBCI boards are available with four, eight, or sixteen channels. The OpenBCI

is a collection of open-source components that must be assembled prior to use[109].

Therefore, it is not as commonly utilized as consumer gadgets easily available for pur-

chase, but it theoretically allows for greater flexibility. It has previously been utilized

to identify tiredness in a driving simulator.
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Emotiv Insight and Epoc

Emotiv offers both the smaller, less priced Insight and the larger, more expensive Epoc

(as well as the improved Epoc+). The Emotiv Epoc is the most expensive of the re-

searched EEG headsets due to its greater number of electrodes [110]. Each of its two

electrode arms contains two sensor and two reference electrodes. These areas cover the

temporal, parietal, and occipital lobes. Emotiv offers a free companion application for

monitoring emotions. In addition, they provide pay-to-download games such as Arena,

which enables users to experience mental commands. Emotiv provides an SDK with

two tiers for the Epoc. The headset has been utilized in scientific research, including

BCI and brain state detection[111][112][113]. However, the Epoc and Epoc+ models

were the most prevalent. Using ”Insight” as a keyword resulted in references to the

Epoc and Epoc+.

Figure 2.5: Diverse wireless portable headsets and acquisition methods for EEG
recording. (a–c) Miniature Wireless Acquisition Systems by Cognionics with the
Quick-20 Dry EEG Headset, 72-Channel Dry EEG Headset, and Multiposition Dry
EEG Headband, respectively; (d and e) EPOC and Insight wireless EEG acquisition
systems by Emotiv; (f) g.Nautilus wireless EEG acquisition system by g.tec; (g) ENO-
BIO 8 wireless EEG system by Neuroelectrics; (h) MindWave Double-column image
proportions.

2.3 Preprocessing

The objective of preprocessing is to enhance the signal-to-noise ratio (SNR) and spa-

tial resolution by eliminating artifacts. Artifacts are undesirable additions to the signal
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that might contribute positively or negatively to the performance of a BCI. Artifacts

can be removed by referencing and filtering the data, among other techniques. Sanei

and Chambers[114] identify a variety of potential artifact sources, including muscles

(electromyogram, EMG), eyes (electrooculogram, EOG), electrical interference, and

cable defect artifacts. Signal amplification and filtering are necessary to remove arti-

facts. The common EEG artifacts are listed previously. In thresholding, a threshold is

set for an input signal (such as EOG), and epochs where the signal’s amplitude exceeds

the threshold are considered tainted and deleted[2].

2.3.1 Downsampling

EEG data is incredibly high-dimensional due to the intricacy of brain activity, making

it naturally challenging to classify. Downsampling is a dimension reduction technique

that decreases the sampling rate. By removing every other sample, EEG recordings at

1000 Hz can be downsampled to 500 Hz. This minimizes complexity and, if utilized

correctly, can increase BCI performance[2].

2.3.2 Temporal Filtering

Discrete Fourier Transform Filters The Discrete Fourier Transform (DFT) is a

method for transforming a signal from the time domain to the frequency domain by

eliminating all temporal information and expressing the signal as a sum of sinusoids.

The DFT filtering of a signal xn requires three steps: translating the signal into the

frequency domain, setting coefficients outside of the desired range to zero, and finally

transforming the signal back into the time domain[2]. DFT filtering can be accom-

plished by:

Xk =
N−1

∑
n=0

xne−
2πi
N kn (2.1)

k is the sinusoidal frequency at k/N samples, e is Euler’s constant, and i is an imaginary

number with i2 = -1, and N is the number of samples[2]. The signal is converted back

to the temporal domain using the inverse DFT (IDFT) after all coefficients outside of
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the desired frequencies are set to zero:

xn =
1
N

N−1

∑
k=0

Xke
i2πkn

N (2.2)

Finite Impulse Response Filters A finite impulse response (FIR) filter is a linear

filter with a limited-length input response. The FIR response is computed using the

previous M unfiltered signal samples s(n) . Find the filtered signal y(n) using:

y(n) =
M

∑
k=0

bks(n− k) (2.3)

where bk is a vector of feed-forward filter coefficients and s(n) is the unfiltered, unpro-

cessed signal.

Infinite Impulse Response Filters Infinite impulse response (IIR) filters are recur-

sive digital filters with an infinitely long input response[2]. The IIR response is depen-

dent on both the last M samples of s(n) and the prior P filter operations’ outputs. Find

the filtered signal y(n) using:

y(n) =
M

∑
k=0

bks(n− k)+
P

∑
k=1

axy(n− k) (2.4)

where ax is a vector holding the coefficients of the feedback filter.

2.3.3 Temporal Filter Applications

1. High-pass filtering: Low-frequency signals are frequently accompanied by ar-

tifacts, such as those caused by breathing, amplifier drift, and variations in skin

resistance caused by perspiration. The majority can be eliminated with a high-

pass filter with a cutoff frequency between 0.5 and 1 Hz. EEG may also detect

electrocardiogram (ECG) artifacts[115], but the impacts of this low-frequency

signal can be mitigated by a high-pass filter.

2. Low-pass filtering: Typically, low-pass filters with a cutoff frequency of 50-70
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Hz are used to eliminate high-frequency noise[114].

3. Band-pass filtering: Using band-pass filters, several relevant frequency bands

can be extracted, including those connected with motor imagery, such as the

mu and beta bands. Even BCIs that do not rely on spectral data, such as the

P300-BCI, are typically filtered before to detection. Typically, P300-BCI signal

identification requires band-pass filtering between 0.1 and 20 Hz.

4. Notch filtering: Notch filters are often extremely high-order band-stop filters.

They can eliminate 50 or 60 Hz line noise.

5. Zero-phase filtering: In order to prevent phase distortions and signal delay,

zero-phase filters apply a time reversal to data during the filtering process. The

filter operates by first filtering the data, then reversing and filtering the data again,

and then reversing the data once again. Zero-phase filtering is often reserved for

offline data due to the fact that it is non-causal and depends on future inputs.

2.3.4 Spatial Filtering

Reference Electrodes In EEG BCIs, reference electrodes are utilized to determine

the channel voltage. The voltage, which is the difference in electrical potential be-

tween two places, is determined by placing the reference electrode in close proximity

and computing the difference. The most common reference site is the mastoid bone

(behind the ear)[116][117][118]; nevertheless, tactical reference placement might give

considerable advantages.

Scalp Reference Using a scalp electrode as a reference eliminates common noise

in that region of the brain. Numerous investigations, such as SSVEP studies utilizing

references in central and parietal regions[119][120][121], have utilized this technique

to isolate SSVEP activity, which is typically best detected by electrodes above the

occipital lobe.
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Bipolar Reference By subtracting s j , the signal from channel j, from si, the signal

from channel i a new bipolar channel s̃i, j is created.

s̃i, j = si − s j (2.5)

Common Average Reference Common average reference (CAR) operates by sub-

tracting, at each time point, the average signal of all electrodes from the signal of each

electrode. This approach is effective in reducing noise common to all electrodes (e.g.,

50 or 60 Hz power supply noise) and boosting signals contained in a small number of

electrodes. However, it is not effective in reducing noise that is shared by a small num-

ber of electrodes, such as EOG or EMG. Because of this, CAR is typically employed

in concert with other techniques to remove additional artifacts. Utilized when CAR is

applied on an electrode montage with N electrodes:

s̃i = si −
1
N

N

∑
i=1

si (2.6)

where N is the number of channels and S̃i is a single channel with spatial filtering.

Surface Laplacian Adjusting the signal at each electrode by subtracting the average

of the four adjacent electrodes (’small Laplacian’)[122] or the four adjacent electrodes

(’large Laplacian’)[123] is how Laplacian reference works. This technique is helpful

for decreasing regionally-specific noise.

s̃i = si −
1
4 ∑

i∈Θ

si (2.7)

Θ stands for the electrodes of the small or large Laplacian reference. Individually or

in some situations jointly, a variety of referencing techniques may be utilized. The

objective is to employ approaches that remove the greatest noise from the signals of

interest without sacrificing too much meaningful information.
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Common Spatial Pattern (CSP) CSP is a technique that identifies spatial filters

that maximize the variance between two conditions’ EEG signals. Ramoser et al.[124]

popularized its application in BCI research, and since then it has undergone various

adjustments[125] and expansions for multiclass categorization[126]. Common Spatial

Pattern (CSP) functions by locating spatial filters w that maximize variance in one

class and minimize variance in another. A fully trained CSP spatial filter formats the

data such that the top row’s activity correlates predominantly to one class and the

bottom row’s activity predominantly to the other class. CSP is especially successful in

BCIs dependent on oscillatory activity, such as separating left- and right-hand motor

imagery. Initial bandpass filtering of data into a suitable band, such as 8-30 Hz (which

includes both the alpha and beta rhythms). Next, the normalized spatial covariance of

the EEG is calculated by:

C =
EET

trace(EET )
(2.8)

where E is the bandpass-filtered EEG data of size NxT , N is the number of channels,

and T is the sample size. Trace (·)T is the sum of the diagonal components of a

square matrix, while trace(·) signifies the transposition operator. Next, the spatial

covariance C̄d,∈ [l,r] is derived by averaging the values of C for each class across all

trials. Therefore, the composite spatial covariance is:

Cc = C̄l +C̄r (2.9)

C can be expressed in terms of eigenvalues and eigenvectors:

Cc =UcλcUT
c (2.10)

where λc is the diagonal matrix of eigenvalues and Uc is the matrix of eigenvectors.

Next, deviations within Uc are equalized by means of the whitening transform:

P =

√
λ
−1
c UT

c (2.11)
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By transforming C̄l and C̄r, so that:

Sl = PC̄lPT and Sr = PC̄rPT (2.12)

It can be demonstrated that Sl and Sr share eigenvectors. If:

Sl = BλlBT , then Sr = BλrBT , and λl +λr = I (2.13)

where I denotes the identity matrix and B the eigenvectors. Due to the fact that two

corresponding eigenvalues total to one, an eigenvector with a large eigenvalue for Sl

will have a small eigenvalue for Sl , which provides the CSP method its ability to

successfully segregate the variances between classes. Lastly, the projection matrix

W = (BT P)T is utilized for spatial filtering:

Z =WE (2.14)

where Z represents the spatially filtered trial. The last chapter describes in detail how

this method can be used to extract class-relevant features from EEG.

2.3.5 Source Localisation

The activity detected by EEG sensors placed over a particular brain region is not neces-

sarily indicative of the activity occurring at that region. In addition to passing through

layers of bone, skin, and hair, EEG electrodes cover a considerable region. Source

Localisation (SL) is a source reconstruction method that models the spatiotemporal

dynamics of the brain’s neuronal currents using multichannel EEG data. SL operates

by translating EEG onto a source grid with a higher dimension[127], where dipoles

indicate individual source activity. SL typically requires an MRI imaging of the user’s

head, from which an anatomical model can be constructed; however, if this is not possi-

ble, a standard model can be altered to match the user’s head. Forward modeling seeks

to recreate EEG data given the source activity; inverse modeling aims to estimate the
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current source locations and intensities that produce a given collection of EEG data.

Figure 2.6: Strategies for artifact removal and filtering (A) Frequency range utilized
for EEG analysis in each identified investigation, arranged by task type. The bar colors
correspond to various artifact removal tactics. Red bars reflect research that addressed
the deliberate decision to leave artifacts as data pollutants, while dark grey bars repre-
sent studies that did not address any artifact removal approach. The studies are cate-
gorized by application type. (B) The proportion of distinct artifact removal procedures
utilized in all investigations.

2.4 Artifacts removal and Preprocessing methods

In this section we will discuss the popular used methods for artifacts removing and

EEG preprocessing.

2.4.1 Regression Methods

The regression method[128] is a standard way to artifact reduction; it eliminates es-

timated artifacts by finding the amplitude relation of the reference. Therefore, elec-
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trocardiogram (ECG) or electrooculogram (EOG) signals are necessary to distinguish

artifacts from EEG signals. The dependence of this approach on reference channels

for ECG and EOG elimination is a limitation[129], despite the fact that the regression

method is based on simple mathematical understanding and is consequently commonly

utilized due to the low computation required.

2.4.2 Blind Source Separation Methods

Blind source separation (BSS) approaches are based on the idea that the signals ob-

served on a multi-channel recording are the result of the combination of several differ-

ent originating signals; hence, neither additional reference channels nor previous infor-

mation is required[130]. Principal component analysis (PCA), independent component

analysis (ICA), and canonical correlation analysis are typical applications of the BSS

technique (CCA). ICA[131][?] is a statistical approach used to solve the BSS problem

that takes random factors into account to optimize the output components’ indepen-

dence through the finding of a linear transformation. In addition, ICA is a powerful

approach that minimizes signal dimensionality and extracts independent components.

This approach is effective in extracting artifacts such as eyeblinks and heartbeats be-

cause they are produced by independent sources and are not associated with specific

frequencies. Under the premise that the original signals are statistically independent

and have a non-Gaussian distribution, ICA is efficient. In addition, the signal dimen-

sion must exceed that of the source signal. PCA[132][133] optimizes the variance of

transformed data based solely on the second-order statistics of covariance[130]. PCA

is an established technique for reducing the dimensionality of features while preserv-

ing their statistical information. This strategy has the advantage of preserving the

variance of the data set. However, if the potentials of drifts and EEG data are compa-

rable, PCA is unable to identify the required interferences. CCA is commonly utilized

in SSVEP-based brain-computer interfaces (BCIs) to determine the frequency compo-

nents of EEG that characterize visual stimulus frequencies[134]. Notably, a compari-

son of BSS approaches is required, but that’s outside the scope of this review article.
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The reference[135] provides additional details regarding these strategies.

2.4.3 Wavelet Transform

Wavelet transform (WT)[136][137][138][139] is a spectral estimating technique that

turns a time-domain signal into a signal in the time and frequency domains. After

decomposition of wavelet transformation on EEG data and during artifact removal,

WT localizes the features and preserves them during the filtering process by defining

a noisy signal elimination threshold. While WT performs well when examining the

components of non-stationary signals, it is unable to identify artifacts that overlap with

spectral features. Consequently, novel hybrid approaches such as wavelet-BSS have

been proposed[140] to counteract this shortcoming.

2.4.4 Filtering Methods

Frequency filtering, adaptive filtering, and Wiener filtering[141] are among the various

filtering methods that have been utilized for EEG artifacts and noise cancellation.

Adaptive filtering: The assumption underlying adaptive filtering is that the EEG

signal of interest and the artifact are uncorrelated. This filter employs a reference sig-

nal to provide an estimated signal that is correlated with the artifact; the estimate is

then subtracted from the source signals to obtain a noise-free EEG signal[142]. Adap-

tive filtering use the least mean squares (LMS) technique, which converges in a linear

fashion, to evaluate the clean signals by enhancing the weight parameter. Another opti-

mization algorithm, the recursive least squares algorithm, is an extension of LMS[129]

with quadratic convergence. Depending on the type of recursive least squares method,

its convergence may be faster than that of the LMS algorithm, but it has a higher com-

puting cost. A downside of adaptive filtering is that it requires additional sensors to

provide reference input[142].

Wiener Filtering: Wiener filtering is a statistical technique that generates a linear

time invariant filter to minimize the mean square error between the signals of interest
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and the estimated signals[141]. Although Wiener filtering does not require an addi-

tional reference, the minimization approach used to estimate the power spectral densi-

ties of the EEG signal and artifact signal can complicate the computational process. In

addition to the techniques above, there are numerous other efficient strategies, includ-

ing CCA, empirical mode decomposition (EMD), and sparse decomposition methods.

Moreover, hybrid approaches combining these preprocessing algorithms with others,

such as EMD-BSS, wavelet-BSS, and others, have been employed to maximize the

algorithm’s efficiency[143][144]. Additional information is available in previous pub-

lications[145][146][129].

2.5 Feature Extraction

The objective of feature extraction is to identify characteristics of the user’s current

activity and represent them as a feature vector. EEG data is too complicated and high-

dimensional to manage a BCI without reduction; feature extraction effectively elimi-

nates irrelevant data while discarding irrelevant data. BCI employs numerous distinct

types of feature extraction. They can be divided into numerous categories, such as

time-domain, frequency-domain, and spatial characteristics. Switching between the

time and frequency domains can be accomplished using decomposition methods such

as the Discrete Fourier transform (DFT) and the inverse discrete Fourier transform

(IDFT), as well as algorithms referred to as fast Fourier transforms (FFTs) that en-

able the DFT to be calculated much more quickly. Analyzing a signal plotted in the

time-domain reveals how the signal evolves over time and consequently enables the ob-

servation of time-dependent phenomena, such as the P300 wave, which arises 300ms

after stimulus start and is only observable in the time-domain. Analyzing an EEG

signal in the frequency domain yields no temporal information; rather, it reveals the

proportion of a signal that resides in a certain frequency band relative to a number of

given frequencies. This can be used to identify SSVEPs, if a time window of the right

size is selected.
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2.5.1 Amplitude Features

The amplitude of a signal can be used to train a classifier, such as with the P300 wave

detector in the P300 speller.

2.5.2 Band power Features

As a feature, the average power of a signal inside a given frequency band is known as

a band power feature. This is determined by bandpass filtering the signal and calculat-

ing the mean absolute value inside the band. By applying the log-transform to these

features [42], which approximates the normal distribution, one can create a new type

of feature known as log-band power features. Either feature type may be utilized to

train a classifier for a BCI.

2.5.3 Power Spectral Density Features

Using the DFT to translate a signal into the frequency domain enables the production of

useable BCI characteristics. By squaring the power spectrum and utilizing the values

at the frequency of interest to train a classifier, it is possible to determine the power

spectral density (PSD) characteristics. This approach is applicable to motor imaging,

SSVEP[147][148][149], and numerous other BCI applications.

Canonical Correlation Analysis: CCA detects the association between two multi-

dimensional variables and can be utilized for unsupervised SSVEP detection on EEG

data[150][134][151][152][153]. Given two multidimensional variables X and Y with

weighted linear combinations x = XTWX and y = Y TWY , CCA determines the weight

vectors WX and WY that maximize correlation between x and y. This is accomplished

by addressing the subsequent optimization problem:

max
WX ,WY

ρ(x,y) =
E[xy]√

E[xx]E[yy]

=
E
[
W T

X XY TWY
]√

E
[
W T

X XXTW X
]

E
[
W T

Y YY TWY
] , (2.15)
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where E[x] is the expected value of x and ρ is the correlation value that is maximized

with regard to the weight vectors WX and WY to calculate the canonical correlation

between X and Y .

X ∈ RC×S is the multidimensional EEG signal with C channels and S samples dur-

ing SSVEP detection. Y f ∈ R2Nh×S is the collection of multidimensional reference

signals based on the stimulus frequency f , with 2Nh sine waves and S samples, where

Nh is the number of harmonics. Sine waves are arranged in a matrix [60]:

Yf =



sin(2π f t)

cos(2π f t)

· · ·

sin(2πNh f t)

cos(2πNh f t)


(2.16)

where t represents time in seconds. By running CCA on X and Yf for every f , the

stimulation frequency with the greatest canonical correlation value may be discovered;

this frequency is then chosen as the estimated SSVEP frequency.

Common Spatial Pattern Features: Method previously described for training spa-

tial filter W , which filters EEG data into spatially filtered signal Z. As the rows of

Z are separated maximally based on the variance between classes one and two, the

outermost m rows are chosen. Log-variance features can be retrieved from the signal

Zp(p = 1, ...,m) using:

fp = log
(

var(Zp)

∑
2m
i=1 var(Zi)

)
(2.17)

where fp is the feature vector (1X2m). The log transformation approximates the nor-

mal distribution, and the characteristics can be utilized to train a classifier and predict

the class of fresh data.
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2.6 Feature Extraction Methods

2.6.1 Principal Component Analysis

PCA is a widely used linear transformation that reduces dimension. PCA introduces

a vector in a lower-dimensional space to reduce the time- and space-dependent signal

complexity[154]. PCA is used to isolate artifacts from actual signals, however this

transformation can also be utilized to extract features without losing information[?].

PCA generates a set of non-correlated linear vectors (i.e., principal components) by

transforming correlated variables from the original signal[?]. Although principal com-

ponents improve signal similarity and data classification performance[?], they are less

interpretable than fundamental features. In addition, PCA is inadequate for analyzing

complicated data sets[?]. Several variations of PCA, such as kernel PCA[?] and sparse

PCA[?], have been proposed in EEG data processing to counteract these shortcomings.

2.6.2 Autoregressive Mode

The AR model is a method for feature extraction in frequency domain analysis that

has been used to analyze non-stationary signals such as EEG data[154]. AR posits that

the AR process can anticipate genuine EEG signals; this prediction can be made using

the order and parameters of the approximation model. The order of the AR model is a

number between 1 and 12, which shows the model’s performance. Choosing a suitable

value for the order of the AR can be difficult due to the fact that wrong order selection

leads to incorrect spectrum estimate, which may raise the computing costs[?]. AR ap-

proaches such as bilinear AAR, adaptive AR parameters, and multivariate AAR have

been utilized extensively in EEG data processing, allowing AR model parameters to

adjust to nonstationary EEG signals[155]. These strategies contribute to successive

parameter estimation and the reduction of prediction error. Using the Kalman filter to

evaluate AR parameters in an adaptive AR model, for instance, can improve classifi-

cation performance by up to 83%[156]. Other advantages of the AR model include its

suitable frequency resolution[157] and its applicability in estimating the power spectra
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of shorter EEG data segments[158]. However, AR is susceptible to improper parameter

selection and ordering[157].

2.6.3 Fast Fourier Transform

FFT is a reliable technique for stationary signals. It implements spectral analysis by

transforming signals from the time domain to the frequency domain[159]. In this pro-

cedure, features are extracted by calculating the PSD using mathematical tools. FFT,

which employs non-parametric approaches such as Welch’s method[159][160], can be

used to estimate PSD for a related band. Although FFT is frequently used in data anal-

ysis and is effective for stationary signals, it is ineffective for nonlinear and nonstation-

ary data, such as EEG signals, and its conclusions are unreliable. This deficiency has

inspired the development of novel processes and methods for the analysis of nonsta-

tionary signals, such as the Fourier decomposition method[161], the variational mode

decomposition (VMD) approach[162], and the Hilbert-Huang transform (HHT)[163].

2.6.4 Wavelet Transform

WT is a time-frequency transform that takes into account the characteristics of EEG

signals in the frequency domain and is completely localized in the time domain[164].

This approach performs well in the spectrum analysis of irregular and nonstationary

signals in windows of varying sizes[165]. WT has the advantage of providing precise

frequency and timing information at low and high frequencies, respectively. In other

words, a narrow window is often utilized to analyze high frequencies, and a broad win-

dow is used to evaluate low frequencies[166][167]. Thus, WT is appropriate for tran-

sient oscillation in signals, especially biosignal data, which consists of low-frequency

components with long-time periods and high-frequency components with short-time

periods[156]. However, WT is negatively impacted by Heisenberg uncertainty, which

hinders its performance[156]. WT examines small wavelets within a particular fre-

quency range for a short time. Beginning at 0, the oscillations of the wavelets grow

and subsequently drop back to zero [168].
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2.6.5 Common Spatial Pattern

CSP is a successful method for feature extraction in BCI applications, particularly mo-

tor imaging tasks[169], and can be utilized for spatial filtering by employing the entire

data trail or by dividing trails into temporal segments. CSP is commonly applied to

binary classification applications[170]. CSP aims to distinguish between classes by

decreasing the variance of one class and maximizing the variance of the other. This

procedure can be carried out by incorporating spatial filters for each class. Using this

method, EEG data are converted into a variance matrix that represents class discrim-

ination[171]. The primary advantage of utilizing CSP is its simplicity and speed of

execution[171]. However, there are intrinsic limits to this strategy for identifying opti-

mal features from raw EEG data[169]. Several studies have developed optimal spatial

feature selection strategies to overcome this issue. Using Dempster-Shafer theory and

factoring in feature distribution, Jin et al.[169] have devised a unique technique for se-

lecting features based on an enhanced objective function and considering feature dis-

tribution. Moreover, CSP is extremely sensitive to artifacts in the original data set, and

modifying the electrode placements affects classification performance[172][173]. Ac-

cording to reference[172], a number of characteristics, including the frequency band

filter, the time segment, and the subset of CSP filters to be employed, must be ad-

dressed in order to develop an effective CSP algorithm. Consequently, the performance

of the CSP algorithm is contingent upon the subject-specific frequency band. Com-

mon spatio-spectral pattern (CSSP), common sparse spectral-spatial pattern (CSSSP),

spectrally weighted common spatial pattern, sub-band common spatial pattern, and

discriminant filter bank common spatial pattern have been proposed to address the

problem of identifying the optimal frequency band for CSP algorithms. CSSP em-

ploys a simple time delay embedding with the CSP algorithm, which enhances the

algorithm’s performance by optimizing the frequency band at each electrode site [94].

However, the non-stationary EEG data diminish the CSSP’s efficacy. Cho et al.[174]

have added a noise reduction term in the Rayleigh coefficient of CSSP and devised an

invariant CSSP algorithm that is both consistent and noise-resistant to address this dif-
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ficulty. The invariant CSSP has the disadvantage that the optimal noise reduction value

must be found. CSSSP[175] has been proposed to improve CSSP’s performance. In

contrast to the CSSP, which identifies distinct spectral patterns for each channel, this

algorithm[176] seeks a spectral pattern shared by all channels. Sub-band common spa-

tial pattern[177] is an additional extension of CSP used to filter EEG signals at several

sub-bands in order to collect CSP characteristics from each sub-band, irrespective of

the correlations between features from various sub-bands[176]. In order to circum-

vent this constraint, a discriminant filter bank common spatial pattern[178] employing

the Fisher ratio of single channel band power values was also developed. Additional

information regarding the CSP’s scope of application can be found in[176].

2.7 Feature Selection

Feature vectors generated by feature extraction frequently require additional reduc-

tion, which can be accomplished by feature selection methods. This lessens the con-

sequences of an issue known as the ”curse of dimensionality”[179], in which the nec-

essary amount of training data grows exponentially with the size of the feature vector.

Other advantages include shorter training times, reduced storage needs, enhanced pre-

diction performance, and the facilitation of data visualization[180]. Feature selection

techniques can be categorized as filters, which choose subsets of variables as a pre-

processing step, and wrappers, which evaluate various subsets of variables using the

selected classifier[181]. Using techniques such as assessing the correlation between

the variable and the target, filtering methods aim to select the best individual features.

Wrappers evaluate subsets of features, which means they consider relationships be-

tween features. Effective application of both methods results in a model that can cor-

rectly classify a large subset of the data without ’overfitting’[181], where ’overfitting’

refers to the phenomenon that occurs when a trained model becomes too fixated on a

small number of data points to accurately classify new data. Forwards and backwards

stepwise selection are typical wrapper method implementations. In forward selection,

the model begins with a single feature and successively adds one variable at a time, as
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long as the accuracy improves [67]. Backwards stepwise selection operates identically

but in reverse, beginning with a complete set of features and removing them one by

one.

Figure 2.7: (A) Input formulations for each and every study. The inner circle indicates
the general input formulation, whilst the outside circle indicates more detailed options.
(B) A comparison of general input formulation across several tasks. Inputs for the
majority of tasks were calculated features, but research on seizure detection contained
a substantially higher amount of signal values. Key— CVT stands for complex value
transformation, CSP stands for common spatial pattern, DE stands for dynamic energy,
FFT stands for fast Fourier transform, MAD stands for mean absolute difference, PSD
stands for power spectral density, STFT stands for short time Fourier transformation,
SVD stands for singular value decomposition, and SWD stands for swarm decompo-
sition.

2.8 Classification

Classification infers the present state of a user based on the feature vectors generated

during feature extraction. Classification methods can be categorized into two groups:

supervised learning, in which an algorithm is shown labeled samples of each class and

then learns the classes to identify them later, and unsupervised learning, in which an

algorithm is given unlabeled data and determines which categories best represent the

data. The classification of BCI-controlled robots leads to a predetermined action (e.g.

movement). There are numerous classification techniques available, such as artificial
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neural networks, support vector machines, linear discriminant classifiers, and many

others. In the BCI literature, linear discriminant analysis (LDA[182]) and support

vector machine are two of the most used classification algorithms (SVM [183]).

2.8.1 Linear Discriminant Analysis

A common supervised learning approach, linear discriminant analysis separates classes

using hyperplanes that maximize class separability. LDA states that the separation

between classes is equal to the ratio of variance between classes to variance within

classes[182]. LDA operates by identifying the weight vector w that maximizes:

J(w) =
wT SBw
wT SW w

(2.18)

where SB represents the scatter matrix across classes and SW represents the scatter

matrix within classes. LDA presupposes a normal distribution and equal covariance

between classes.

2.8.2 Support Vector Machine

A support vector machine (SVM[183]) is another supervised classification method that

separates classes using a hyperplane; however, the emphasis is on maximising the

distance between the outer margins and the closest training data points on either side

of the hyperplane (Fig. 2.7), which are referred to as the support vectors. SVM can be

extended to non-linear classification via the ’kernel trick’ [184], despite its initial use

as a linear classification approach.

2.9 Conclusion

This chapter examined in depth the fundamental processes that allow a BCI to function,

as well as the diverse ways for implementing a BCI. There are numerous varieties of

BCI, and methodologies can differ in terms of signal detection and synthesis, feature

extraction and selection, classification, and translation; each has its own advantages
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and disadvantages. Although various neuroimaging techniques are BCI-capable, EEG

is the most practical because to its low cost and portability. Due to the strength of the

SSVEP response, SSVEP-BCIs are chosen for a fast-response BCI, and CCA-based

detection methods are appropriate for this purpose due to their accuracy and lack of

training data requirements. In contrast, motor imagery BCIs require no external input

and can be discovered using CSP-based techniques.
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Chapter 3

Machine and Deep Learning for EEG

3.1 Introduction

This chapter introduces the use of machine learning in the preprocessing of EEG sig-

nals and their classification. Furthermore, we discuss several machine learning and

deep learning algorithms to classify EEG signals. In this chapter, we provide a techni-

cal background on ML/DL and its hyperparamaters to be implemented in EEG classi-

fication and decoding.

3.2 Machine Learning Overview

The application of a collection of mathematical models and algorithms to steadily en-

hance the performance of a single task is machine learning. It uses training data sets as

input to generate estimates without being explicitly programmed to do so. In this area,

the tasks are extremely diverse and can be divided into two primary categories: su-

pervised and unsupervised learning. Unsupervised learning occurs when an algorithm

constructs a recognition pattern from a data set having only inputs and no predeter-

mined outputs. Semi-supervised learning is a subset of supervised learning. They are

identical in that they both learn from data sets with known inputs and outputs, with the

exception that semi-supervised is missing portions of the data set. Supervised learning

is typically employed in classification and regression applications, but unsupervised

learning lends itself to feature learning and the opposite, dimension reduction. This

study will examine some of the most prevalent machine learning algorithms and clas-

sify them according to the type of learning, with applications to EEG[185].

With the help of machine learning techniques, EEG waves can be used as markers



Figure 3.1: Based on supervised and unsupervised learning found in the literature,
machine learning applications for EEG have been created. The subcategories of super-
vised learning are classification and regression, which generate discrete and continuous
outcomes, respectively. Unsupervised learning is divided into clustering and dimen-
sionality reduction, which generate discrete and continuous outcomes, respectively.

of difficult-to-detect medical disorders. The applications of machine learning on EEG

signals based on supervised and unsupervised learning are depicted in the image below.

Supervised learning creates a prediction model based on both input and desired output

data, which is categorized into classification and regression, which provide discrete and

continuous results, respectively. Unsupervised learning creates a predictive model by

categorizing input data according to clustering and dimensionality reduction in order

to generate discrete and continuous variables.

3.2.1 Regression

Regression modeling is a popular statistical technique because it provides a straight-

forward method for establishing a functional link between variables. Univariate and

multivariate for quantitative response variables; simple and multiple for predictor vari-

ables; linear for linearly transformable data; nonlinear for nonlinearly transformable

data; analysis of variance for qualitative variable predictors; analysis of covariance

for the combination of qualitative and quantitative variable predictors; and logistic

for qualitative response variables [186]. Legendre and Gauss were the first to use

regression using the Least Squares Method. In Linear Regression, this method pro-
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duces approximations by summing the squares of each equation’s residual to best fit

the data[185]. Linear Regression is one of the most widely used regression methods. In

this approach, the parameters are defined as a linear combination, despite the fact that

each independent variable is not always linear. Multiple linear regression is analogous

to simple linear regression, with the addition of multiple independent variables. Non-

linear regression must be applied when the parameters are not linear. This minimizes

the function using a sum of squares technique, but with an iterative procedure[185].

3.2.2 Support Vector Machine

SVM is a subclass of supervised learning that is utilized to analyze data for classifi-

cation and regression. The objective is to map points in space so that examples of the

target categories are separated by the greatest margin possible. This enables SVM to

have a smaller generalization error as a classifier in general[187]. In an N-dimensional

space, the goal is to locate a hyperplane or set of hyperplanes. Support vectors are

the data points closest to a certain hyperplane. By adjusting the position and orienta-

tion of the hyperplane, they maximize the classifier’s margin. Due to the location of

the data, it is also possible that the points in this space cannot be separated linearly.

SVM is possible to apply created kernel functions, often known as ”kernel trick,” to

the data set in order to resolve this issue. This approach requires transforming the ex-

isting algorithm from a lower-dimensional to a higher-dimensional data set[185]. In

this higher-dimensional space, it is possible to develop a linear classifier despite the

fact that the amount of data remains unchanged. Multiple K kernels are assigned to

each point in order to determine the optimal hyperplane for the transformed feature

space. With sufficient K functions, it is possible to achieve accurate separation. The

only significant issue is overfitting[188].

3.2.3 KNN K-Nearset Neighbours

KNN is one of the algorithms for supervised machine learning. In supervised learning,

the relationship between input and output is already established in the training data set,
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Figure 3.2: Higher dimension kernel separation. The kernel trick requires transforming
the existing method from a lower-dimensional to a higher-dimensional data set.

i.e. the output for a given input is already known. The categories of supervised learning

are regression and classification. KNN is applicable for classification and regression.

The inputs for classification and regression are same, but their corresponding outputs

differ[185]. Example input-output pairs are used to anticipate the output of a data

set that has not been trained. KNN classifies the input based on its K neighbors’

classifications. To discover the nearest neighbors, Euclidean distance or Mahalanobis

distance is calculated between all known data points and the input. After calculating

the distance, the K nearest neighbors are selected. The input is then categorized based

on similarities between the input and its K-neighbors. The size of the data collection

is used to determine the value of K. If the result of taking the square root of the size

of the data collection is an even integer, 1 is added or subtracted. The outcome is then

determined to be K for the given data set. K is chosen to be an odd number to prevent

bias in input prediction[188].

3.2.4 Artificial Neural Networks ANN

Neural networks, often known as artificial neural networks in the computing field, is a

mathematical model that closely resembles the neural network structure seen in the hu-

man brain. Several ideas and examples demonstrating the interaction between different

layers of neural networks to transform the provided input into the desired output have
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been proposed by researchers in an effort to explain how the model functions[185].

Imagine you are in a bar, perusing the menu for a tasty drink. You order IPA as soon

as you see it on the menu since it is your favorite. So, what occurred in your brain was

that you offered several inputs for beer choice to your brain’s neural network, with IPA

having a preferential weight as your favorite beer; the brain then made a decision and

provided you with an output. This is a fundamental illustration of how neural networks

function. The model’s design illustrates the decision-making process, which consists

of considerably deeper layers of interaction between the input and output layers[185].

Figure 3.3: FeedForward Neural Network

As each application is unique and requires a specific technique – long-term or short-

term EEG segment analysis, real-time or time-delayed process, type of EEG channel

analysis (single or multiple) – these approaches may be readily targeted and synthe-

sized with the help of ANN. Once the EEG signals have been translated to waveforms

in user-friendly GUIs, they are classified using ANN, with a specific type of network

selected for a given use case – Feedforward backpropagation, Radial basis function, or

Recurrent Neural networks. It is essential to understand how various forms of ANN

operate and the architecture that enables their operation.

1. FeedForward Neural Networks: This is a sort of network in which data flows

in a single direction, beginning at the input nodes, passing via the hidden nodes,

and ending at the output nodes. This network prevents the formation of loops

and cycles, allowing information to flow in just one direction.
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2. Radial basis function: RBF is a sort of artificial neural network (ANN) that uses

radial basis functions in the fields of artificial neural networks and mathematical

modeling (An arbitrary real-valued function, the value of which is determined

by functions location from the origin). Thus, the output of the network is deter-

mined by a linear combination of RBF of the inputs and provided parameters for

the neurons. As shown in Figure 5, the structure generates the final output by

summing the centers/widths of the points with their corresponding weights.

3. Recurrent Neural Networks: As the name suggests, RNN is a sort of Artificial

Neural Network having connections between distinct nodes and a defined output

flow direction to a certain node. In this case, the data flow can form loops and

cycles to return data to the intended node. This method is demonstrated

3.2.5 Naive Bayes

The popular Naive Bayes classifier employs Bayes’ theorem to segregate data based

on simple training features. Within a limited set, the model assigns labels as feature

vectors. With sufficient preprocessing, it can compete with more advanced algorithms,

such as SVM, mentioned above. The one shortcoming of the naive Bayes[185] tech-

nique is that it treats all feature vectors as independent from one another, regardless of

any actual correlation. The primary advantage is that it just requires a limited number

of training data sets to begin accurately estimating the classification parameters. The

Bayes technique can be implemented with many models. The most prevalent is the

prob- probabilistic model. In this paradigm, features are represented by vectors, and

probabilities are assigned to each instance or result. Event models can be divided into

two major categories: Gaussian and Multinomial Naive Bayes. A fair assumption for

a data collection with continuous values is that it follows a Gaussian distribution. The

Bayes technique assigns probability based on the curve using this method. A multi-

nomial event model derived from multinomials, typically shown as a histogram. A

potential cause for concern is the absence of a feature from the data set. This results

in the multiple of all estimations being equal to zero. It can be rectified with a pseu-
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docount to smooth out data set outliers[189]. Represents the frequencies of particular

events generated by multinomials, typically as a histogram. A potential cause for con-

cern is the absence of a feature from the data set. This results in the multiple of all

estimations being equal to zero. It can be rectified with a pseudocount to smooth out

data set outliers[189].

3.2.6 Decision Tree and Random Forest

To classify data, decision trees ask questions about the characteristics of an object.

Each question can be represented as a node, and each answer can be represented as a

child node. This results in the formation of a hierarchy, or a tree. The simplest tree

would be one in which each inquiry yields a yes or no response. Therefore, there is a

yes or no child node query for each parent node. The data is sorted through the tree

by beginning at the root, also known as the node at the very top, and working its way

down to the leaf, which is the node with no children. The path followed depends on

the characteristics of the data. Once data reaches a leaf, it can be categorized accord-

ing to the class associated with that leaf[190].The advantages of decision trees are that

they are straightforward and may be easily coupled with various strategies for deci-

sion making. The downsides of decision trees include that they are relatively unstable

as well as imprecise, especially with varied level sizes which generate biases towards

higher levels. In the study of machine learning and various classification and distribu-

tion methods, we encounter the Random Forest methodology, which may be utilized

for both data categorization and regression. As its name implies, Random Forest op-

erates by generating a large number of decision trees and is trained by performing

a bagging operation to merge many decision trees or models to produce more stable

and accurate data predictions. Random Forest adds randomization to the data being

organized; i.e., rather than identifying the most significant feature from the given set,

it identifies the best feature from a random subset of features. This results in a more

diverse and superior model of outcomes. In Random forest, the solutions from all trees

are summed, and classification is determined by majority vote, with the most appro-
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Figure 3.4: Random Forest as a type of ensemble learning primarily used for classifi-
cation and regression

priate classification selected. Nonetheless, if the trees are proven to be unstable, such

that little changes in the data set might alter the entire decision tree, we may arrive at

an incorrect categorization[189].

3.2.7 Ensemble Learning

Ensemble learning is a form of supervised learning. As its name suggests, ensem-

ble learning combines multiple algorithms to create a model with improved prediction

performance. The general objective is to increase overall performance by merging

judgments from many multiple models. Based on the concept of diversity, while ob-

taining results for the same problem, more diverse models are considered than single

models. This provides a collection of theories that can be merged to improve perfor-

mance. All of the individual models are referred to as basic learners when merged

into an ensemble. The ensemble is generally superior to the learners from which it

was formed. Ensemble learning can be implemented in various domains, including

medicine, fraud detection, banking, malware and intrusion detection, face and emotion

identification, etc[185].
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3.2.8 Fuzzy Logic

Fuzzy Logic is utilized by the vast majority of household appliances and machines,

like the air conditioner, washing machine, etc. This logic is given to a control system

typically referred to as the Fuzzy system control, where each component is designed

to operate and modify another physical operating system in order to achieve the de-

sired functionality[185]. To comprehend how a fuzzy system operates, it is crucial

to examine the system’s requirements and its intended use[191]. A knowledge-based

functional element with the capacity to apply human cognitive processes, such as rea-

soning and thinking, must have a stable component that can deliver output depending

on the degree of truth for a particular set of input variables in order to constitute a

system. For a fuzzy system to work, several components must be reliable:

Figure 3.5: Example of a Fuzzy System

1. Fuzzy sets: A fuzzy set corresponds to a member function defined in a fuzzy

space. A member function gives any element in well-defined fuzzy sets a mem-

bership degree. The member function assigns these elements a value between 0

and 1, where 0 means the element is not in the fuzzy set and 1 means it is.

2. Fuzzy Rules: A collection of fuzzy rules determines the output of fuzzy logic’s

IF-THEN rules. IF-THEN rules construct fuzzy logic conditional statements.

IF-THEN assumes X and Y are intended terms and evaluated by fuzzy sets with

range U and V. This separates antecedent and consequent. If the antecedent

states X and U, the consequent should state Y and V. X is U if Y is V. These

principles are based on natural language, fuzzy sets, and logic.
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3. Fuzzy Logic Inference or Fuzzy Inference System (FIS): Once the fuzzy rules

and membership functions are developed, the FIS is implemented for process

simulation and control. FIS has 3 stages: First, numerical input variables are

mapped for fuzzy set compatibility. This is Fuzzification. This technique trans-

lates input and output into fuzzy-readable language. Second, the system pro-

cesses rules based on each input variable’s strength. Defuzzification converts

fuzzy values to numbers in the third stage. This method transfers fuzzy output

to crisp, making it apparent.

4. Fuzzy Score: The FIS system outputs a fuzzy score for all known input scores.

FIS generates the fuzzy score by considering all fuzzy restrictions and member-

ship functions. Score depends on applied rules and input factors. The FIS scores

every input variable using fuzzy rules.

As pattern identification of EEG data is the primary application of Machine Learning,

Fuzzy Logic can be utilized to determine the proper recognition rate of EEG classifica-

tions at various stages. However, a combination of Fuzzy logic and Neural networks,

typically referred to as the Neuro-Fuzzy system, is utilized. This system applies fuzzy

parameters (such as fuzzy sets and fuzzy rules) and combines them with neural network

approximation techniques for extended analysis. For medical condition diagnosis, den-

sity and regression estimates, pattern recognition, and data analytics, the Neuro-Fuzzy

system[192] has been found to be extraordinarily effective[185].

3.2.9 Linear Discriminant Analysis

For a particular data set including a large number of random variables, it is important to

execute dimensionality reduction to decrease the number of parameters to certain prin-

cipal variables in order to lower the dataset’s dimensional space. As there are numerous

ways to classify data, the dimensionality reduction methodology is accomplished using

two methods: the Principle component analysis and the linear discriminant analysis.

PCA and LDA have functions and applications that are comparable. However, the

LDA method can handle circumstances in which the within-class frequencies do not
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need to be equal, and it gives a high ratio and large separation between between-class

variance and within-class variance. The primary distinction between PCA and LDA is

that PCA is more relevant for feature classification, whilst LDA is applicable for data

classification. Linear discriminant analysis is the most often used method for dimen-

sionality reduction (LDA). This technique’s primary criteria are to provide effective

separation between distinct classes and to prevent curve overfitting. By projecting the

supplied feature space with n-dimensional samples onto a more precise and smaller

featuresubspace, this greatly reduces processing costs and improves categorization. In

a typical PCA analysis, the location, shape, and structure of the data set undergo rad-

ical transformations. In contrast, the LDA approach preserves the location and shape

of the data set as it is translated into a smaller space. This is achieved by establishing

a collection of vectors to distinguish and separate on the modified space[185].

3.2.10 K-Means

K-means is a method of unsupervised learning used to solve the clustering problem.

Using an algorithm, it finds a partition that minimizes the difference between a clus-

ter’s empirical mean and points within. K-means uses these K clusters to attempt to

minimize the sum of squared errors[193]. There are two typical initialization methods:

Forgery and Random Partition. The Forgy approach selects K observations at random

from the data collection. Then, these observations serve as the initial mean. For the

Random Partitioning approach, random clusters are initially allocated to each observa-

tion. This is then changed as the initial mean is computed to be in the cluster’s center.

Given that K is relatively small, one of the benefits of K-means is its easy implementa-

tion of high computing speed. The substantial significance of initial circumstances on

final outputs, sensitivity to scaling, and a link between data order and end findings are

all downsides of K-means[185].

Page 70



Figure 3.6: An overview of signal processing approaches for the extraction, selection,
and categorization of characteristics.

3.3 Machine Learning for EEG Classification

Artificial intelligence encompasses machine learning, and deep learning is a rapidly

expanding field with applications in classification [99]. Classification’s purpose is to

predict the class label of fresh data pieces for a variety of activities [27]. Classification

algorithms can be categorized into two groups: traditional classification algorithms and

DL algorithms [100]. Using input data and statistical analysis to categorize output val-

ues, conventional classification algorithms construct classification models with great

precision. The majority of conventional classification techniques include hand-crafted
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input features for model training. This process, known as feature creation, is limited

in its ability to process input from high-dimensional data sets [100]. DL techniques

rely on representation learning [101] and can address the limits of standard classifica-

tion algorithms by automatically learning features at several abstraction levels [100].

Among standard classification algorithms such as supervised learning and unsuper-

vised learning, supervised algorithms are the most well-known technique for analyzing

EEG data [102]. Artificial neural networks are one of the most widespread supervised

algorithms (ANNs). ANNs are computational models [103] that employ multi-layered

neural networks with weighted connections between units, often followed by a static

non-linearity function (e.g., ReLu). During the learning phase, the network can alter

its weights to improve its classification performance on test data [104]. Similar and

well-known supervised techniques include naı̈ve Bayes (NB), support vector machine

(SVM), k-nearest neighbor (KNN), logistic regression (LR), random forest (RF), and

linear discriminant analysis (LDA). Each supervised model uses a learning algorithm

to produce an increasingly accurate model [105]. NB is a probabilistic classifier that

employs Bayes’ theorem to categorize data based on particular characteristics [106]. It

is a straightforward and effective classifier that requires just short training data sets to

estimate the classification parameters. This advantage makes NB a robust classifier for

the study of EEG data in a variety of tasks, including ER [107], seizure detection (SD)

[108], and MI [109]. NB is based on the premise that all qualities are independent

of one another and that all feature vectors have the same effect on the outcome [106].

SVM has been shown to be a good supervised model based on a statistical learning

instrument with a high degree of generalization. SVM is based on the notion of sep-

arating two data sets. This division may be linear or nonlinear. In the case of linear

separation, SVM distinguishes classes using a discriminant hyperplane. In the event

of non-linear separation, however, SVM employs the kernel function to determine de-

cision boundaries. In comparison to other supervised algorithms, such as ANNs and

KNN, SVM has a low computational complexity [110, 111]. Although increasing

the k-value lessens the computational cost of KNN, it also affects its classification ef-
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ficiency [110,112]. In addition, with the development of DL algorithms, SVM has

continued to be frequently employed in EEG signal categorization due to its mathe-

matically sound computation. Nevertheless, the effectiveness of SVM is dependent

on the kernel function and penalty coefficient parameters; improving the parameters

included into SVM classifiers is crucial [113]. Huange et al. [114] have used a ge-

netic algorithm to optimize SVM parameters, and Wang et al. [115] have proposed

particle swarm optimization. According to our investigation, SVM has been widely

employed in the categorization of EEG signals due to its simplicity and adaptability in

handling classification problems such as the diagnosis of brain illnesses (e.g., SD and

Alzheimer’s disease) [116–118]. RF is a supervised tree-based technique that builds

an ensemble of decision trees. During the training phase, each decision tree is pro-

duced. RF draws predictions from each tree and determines the final conclusion via

a voting technique or by averaging the findings [119] in order to determine the class

that is most frequently utilized. This and related ensemble methods are based on the

premise that a set of weak classifiers can generate a strong classifier to create a success-

ful learning algorithm. However, the overfitting and instability of trees might impact

the performance of RF models, especially with trees of various sizes [106]. Unlike the

LR model, which is a probabilistic classification model for both binary and multi-class

classification tasks [120], the RF model operates on both discrete and continuous data,

hence giving models for classification and regression problems. In addition, the paral-

lelization structure of RF enables it to outperform other supervised algorithms on large

EEG data sets when handling classification challenges [109]. LDA is a linear trans-

formation approach that is used to determine the linear combinations of variables that

most effectively distinguish classes [121, 122]. LDA is predicated on the assumption

that the data density is normally distributed, with equal covariance between classes.

Obtaining the separating hyperplane is accomplished by maximizing the distance be-

tween the two classes while minimizing the distance between points within each class

[123]. This method is simple to implement and requires very little processing. As a

result, LDA has been effectively used to handle classification issues in BCI systems
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such as MI-based BCI [124], P300 speller [125], and multiclass BCI [126]. However,

the most significant restriction of this model is its linearity, which hinders competitive

findings on nonlinear EEG data [127,128].

3.4 Deep Learning

In-depth analysis is required to extract all the useful information from huge datasets.

Traditional classification techniques perform poorly with big, dynamic datasets be-

cause they cannot account for all variety states within the data [18]. DL is a subfield of

machine learning that aims to emulate the activity of the human brain by constructing

a sophisticated, interconnected neural architecture and, as a result, retrieving a generic

model capable of handling several input sources. DL strives to overcome the limita-

tions of conventional neural networks by including all information within a training

dataset. DL is an end-to-end methodology [78], which means that raw data can be

supplied directly into the DNN for learning the parameters and hyperparameters. Al-

ternatively stated, DL allows DNNs to be fed raw data with minimal or no prepro-

cessing; additionally, DL performs feature extraction, selection, and classification as a

single pipeline. In addition, the DL method is regarded as universal, robust, general,

and scalable [35]. However, training DNN requires a large number of parameters and

hyperparameters, which extends the training time relative to other methods and con-

sumes significantly more hardware resources [71,79,80]. Nevertheless, it is possible to

address these issues using other processing technologies, such as GPUs.

3.4.1 Architecture design choices

CNN’s (43 percent) architecture design framework consists of alternating layers of

convolution and pooling layers (typically maximum pooling layers). The number of

convolutional layers and the type of final classifier were the most important design el-

ements of CNNs. 18 percent of viewers choose DBN after CNN as the second most

popular option. DBNs consist of a number of stacked limited Boltzmann machines

followed by an end classifier, which consists of a number of typically fully-connected
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layers. 12 percent of the total number of studies comprised hybrid architectures, which

were separated, as indicated in the figure below, into two categories: hybrid CNNs and

hybrid MLPs. In addition to convolutional and pooling layers, hybrid CNNs incorpo-

rate an extra architecture type, such as recurrent layers or limited Boltzmann machines.

Hybrid MLPs consist of multiple dense layers and another sort of deep learning algo-

rithm. RNNs (10 percent of the total number of studies) are formed of recurrent layers

(each layer containing a study-specific number of recurrent units) followed by fully-

connected layers. MLPNNs, whose sole evaluated characteristic was the number of

hidden layers, accounted for 9 percent of the total number of studies. The third group

of research (8 percent) utilized an SAE, which consists of the entire number of fully

connected levels followed by a single fully linked layer in every case.

Figure 3.7: Deep learning architectures across all studies.
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3.4.2 Activation functions

All research collected activation functions for appropriate deep learning architectures.

Seventy percent of research adopting convolutional layers for deep learning architec-

tures employed rectified linear unit (ReLU) as the activation function for the layer’s

convolutional layer. No other activation function surpassed 10 percent of all studies

that reported activation functions. Eight percent of activation functions are exponen-

tial linear unit (ELU), eight percent are leaky rectified linear unit (leaky ReLU), and

eight percent are hyperbolic tangent (tanh) (5 percent ). In addition, there were individ-

ual experiments employing the activation function types parametric ReLU (PReLU),

scaled exponential linear unit (SELU), and split tanh. In the discussion section, fur-

ther examination of convolutional activation functions is elaborated. Non-classifier

fully-connected layers and classifier fully-connected layers can be categorized accord-

ing on their activation functions. The vast majority of classifier fully-connected layers

used the softmax activation function, while non-classifier fully-connected layers em-

ployed the sigmoid activation function. Only three SAE research examined activation

functions, and there was no unanimity among them; [194][15] used sigmoid activation

functions for non-classifier AE layers, whereas[195] employed ReLU. To further com-

prehend the most effective activation function for SAE architectures, more research is

required.

3.4.3 Task specific deep learning trends

On tasks involving emotion identification, motor imagery, and sleep stage scoring,

there was no unanimity about the selection of deep learning algorithms. Studies on

seizure detection utilized either CNNs or RNNs, with the highest proportion of stud-

ies employing RNNs relative to other tasks. Only one of these investigations used an

SAE or MLPNN, and none of the seizure detection experiments used DBNs. Sleep

stage scoring tasks had the highest proportion of research employing hybrid formula-

tions, which were equally represented in comparison to studies employing CNNs[15].

ERP studies clearly favored CNN’s coverage (the highest percentage of CNN studies
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compared to all other tasks). Decisions on task-specific deep learning strategies are

depicted in the image below[14].

Figure 3.8: The proportions of deep learning architectures by task type[14].

3.4.4 Input formulation by deep learning architecture

Depending on the type of deep learning architecture, the specific input formulation

methodologies differed substantially. It is hardly unexpected that none of the DBN,

MLPNN, or SAE experiments employed images as inputs, since image processing is

regarded to be the realm of CNNs. The average accuracy of CNN experiments that

used photos as inputs was comparable to CNN studies that used calculated features

as inputs, with both input formulation methodologies obtaining an average accuracy

of 84%. In comparison, the average accuracy of CNN experiments employing signal

values as inputs was 87%. This contradicts the common belief that the more time

invested in the pre-processing stages, the more precise the categorization will be. This

leads to the unexpected conclusion that future research, rather than being hampered

by the desire to spend less time on preprocessing, may instead improve outcomes by
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passing signal values directly to the deep learning framework[14].

Figure 3.9: The proportions of input formulations by deep learning architecture types.

The DBN studies revealed a similar tendency to the CNN studies. Using signal

values or calculated features in DBN investigations was a toss-up, with calculated fea-

tures being the more popular choice. Studies utilizing computed features achieved an

average accuracy of 85%, whilst studies utilizing signal value achieved an average ac-

curacy of 86%. No studies compared the classification accuracies of signal values and

computed features, indicating that additional research is required. In contrast, RNNs

did not exhibit the same pattern as CNNs and DBNs. All three types of picture for-

mulations were represented by a similar amount of examples in RNN research. The

average accuracy of RNN studies that used signal values as inputs was 85 percent,

which is lower than the accuracy of studies that employed computed features (89 per-

cent) and photos (100 percent ). However, much fewer studies have utilized RNNs,

therefore additional study is required to determine the best effective input formulation

technique for RNNs[14]. Feature selection appeared to be the only viable option for

MLPNN and SAE research, as just one study for each architecture opted to use sig-
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nal values instead. The only MLPNN study to use signal values [55] attained a 75

percent accuracy rate[15]. The solitary SAE investigation employing signal values as

inputs [53] had just one channel for processing, but was able to obtain an accuracy of

96%[14].

3.5 Deep Learning Models

In this section, we provide a formal introduction to the deep learning models, encom-

passing concepts, structures, and methodologies typically employed in brain signal

research. Deep learning is a category of machine learning algorithms that employs

multiple layers of information processing stages in hierarchical architectures for pat-

tern classification and feature/representation learning[31]. Several subcategories of

deep learning algorithms exist dependent on the objective of the approaches (figure):

Figure 3.10: Deep learning architectures

Discriminative deep learning models: based on the adaptively learnt discrimina-

tive features, which classify the input data into a predefined label. Discriminative

algorithms are capable of learning distinctive characteristics by non-linear transforma-

tion and classifying via probabilistic prediction9. Consequently, these algorithms can

do both feature extraction and classification (corresponding to figure 1). Multi-layer

perceptron (MLP) [40], recur- rent neural networks (RNNs) [41], and convolutional

neural networks (CNNs) [42], as well as their variants, are the predominant discrimi-

native designs.
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Figure 3.11: llustration of standard neural network and multilayer perceptron.

Representative deep learning models: which learn the representative and pure char-

acteristics from the supplied data. These algorithms can only extract features (figure

1), but they cannot perform classification. Autoencoder (AE) [43], restricted Boltz-

mann machine (RBM) [44], and deep belief networks (DBNs) [45], in addition to their

variants, are often employed deep learning techniques for representation.

Generative deep learning models: which discover the joint probability distribution

of input data and target label. J. Neural Eng. 18 (2021) 031002 X Zhang et al. are gen-

erated primarily by generative algorithms in the brain signal domain. Figure 3. Deep

learning models. Based on the algorithm functions, they can be categorized into dis-

criminative, representational, generative, and hybrid models. Multi-layer perceptron

(MLP), recurrent neural networks (RNN), and convolutional neural networks (CNN)

constitute the majority of discriminative models (appendix B.1) (CNN). Long short-

term memory (LSTM) and gated recurrent unit are the two primary components of an

RNN (GRU). Representative models (appendix B.2) are authoencoder (AE), restricted

Boltzmann machine (RBM), and deep belief networks (DBN). Deep-Autoencoder, or

D-AE, refers to an Autoencoder with numerous concealed layers. Similarly, D-RBM

refers to a deep-restricted Boltzmann machine with numerous concealed layers. Deep

belief network can be composed of either AE or RBM, therefore we separated DBN

into DBN-AE and DBN-RBM. Commonly used generative models in non-invasive

brain signal analysis include variational autoencoder (VAE) and generative adversar-

ial networks (appendix B.3) (GANs). A collection of brain signal samples used to
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augment the training set[15]. Commonly used generative models in brain signal anal-

ysis include variational autoencoder (VAE)10 [46], generative adversarial networks

(GANs) [47], and others.

Hybrid deep learning models: can incorporate more than two models of deep learn-

ing. Typical hybrid deep learning models, for instance, employ representation tech-

niques for feature extraction and discriminative algorithms for classification.

Table 3.1: Summary of deep learning model types.
Deep learning Output Function Training method
Discriminative Label Feature extraction Supervised

Classification
Representative Representation Feature extraction Unsupervised
Generative New Sample Generation, Unsupervised

Reconstruction
Hybrid — — —

3.5.1 Discriminative Deep Learning Models

Since brain signal detection is the primary function of BCIs, discriminative deep learn-

ing models are the most common and effective algorithms. Assume we have a dataset

of brain signal samples, X, Y, where X is the set of brain signal observations and Y is

the set of sample ground truth values (i.e., labels). Consider the sample-label pair x

RN, y RM, where N and M are the number of observations and sample categories, re-

spectively. The objective of discriminative deep learning models is to learn the function

x y[15]. Briefly, discriminative models receive input data and return the corresponding

category or label. All of the discriminative models shown in this section are supervised

learning techniques that require both observation and ground truth information.

Multi-Layer Perceptron (MLP)

Multilayer Perceptron, one of the simplest and most fundamental deep learning mod-

els, is derived from the classic neural network’s three neuron layers (i.e., an input layer,
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a hidden layer, and an output layer). MLP differs significantly from conventional neu-

ral networks in that it contains multiple hidden layers. Each node is fully connected

to the nodes of the neighbouring layers but not to the nodes of the same layer. MLP

contains numerous concealed layers. As illustrated in the preceding figure, we use

a structure with two hidden layers to illustrate the data flow in MLP[14]. First, an

operation τ(x) is defined as follows:

τ(x) = w∗ x+b (3.1)

τ(x,x
′
) = w∗ x+b+w

′
∗ x

′
+b

′
(3.2)

where x and x
′

denote two variables while w, w
′
, b, and b

′
denote the corresponding

weights and basis. The input layer receives observation x and forwards it to the initial

hidden layer,

xh1 = σ(τ(x)) (3.3)

where xh1 represents the data flow in the initial hidden layer and σ is the non-linear

activation function. There are various regularly used activation functions, such as sig-

moid/Logistic, Tanh, and ReLU. In this part, we will utilize the sigmoid activation

function as an example[14]. The data flow then proceeds to the second hidden layer

and output layer,

xh2 = σ(τ(xh1)) (3.4)

x
′
= σ(τ(xh2)) (3.5)

x
′

represents the predicted outcomes in one-hot format. The error (or loss) could be

determined based on the distance between y
′

and y. For instance, the error based on

Euclidean distance can be calculated by:

error = ||x
′
− y||2 (3.6)
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where ||.||2 represents the Euclidean mean The error will then be back-propagated

and optimized by an appropriate optimizer. The optimizer will modify the model’s

weights and basis until the error converges. The most popular loss functions con-

sist of cross-entropy, negative log likelihood, mean square estimation, and others. The

most popular optimizers are Adaptive moment estimation (Adam), Stochastic Gradient

Descent (SGD), and Adagrad (Adaptive sub-gradient approach), among others. Sev-

eral terms are readily misconstrued, including Artificial Neural Network (ANN), Deep

Neural Network (DNN), and Multilayer Perceptron (MLP)[14]. These concepts have

no clear distinction and are frequently interchanged in literature. In general, ANN are

neural networks with fewer hidden layers (shallower) than DNN (in this case, DNN is

equivalent to MLP).

Figure 3.12: Illustration of RNN and CNN models.

Recurrent Neural Networks (RNN)

Recurrent Neural Networks are a subclass of discriminative deep learning models de-

signed to capture temporal correlations between input data. The previous figure depicts

the time domain activity of a given RNN node. At each time range [1, t + 1], the node

receives an input It and the prior time’s hidden state c. (except the first time). At time

t, for example, it receives both the input It and the hidden state of the preceding node

ct−1. The hidden state can be thought of as the nodes ”memory”. which aids the RNN

in ’remembering’ the historical input. Long short-term memory and gated recurrent

units are two exemplary RNN designs that have garnered a considerable deal of inter-

est and enjoyed a great deal of success. They both adhere to the fundamental principles

of RNN, and we will focus on the intricate internal structures of each node. We refer to
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this structure as a ’cell’ because it is far more complex than simple neural nodes[14].

Cells in RNN are equivalent to nodes in MLP.

Figure 3.13: Illustration of detailed LSTM and GRU cell structures.

Long Short-Term Memory (LSTM)

At time t, Figure 3.12a depicts the structure of a single LSTM cell. It ,Ot−1,andCt−1,

Ot1, and ct1 are the three inputs and two outputs of the LSTM cell CtandOt−1. As

follows is the procedure:

It ,Ot−1,ct−1 → ct ,Ot (3.7)

It represents the input value at time t, Ot−1 represents the output at the preceding time

(i.e., time t −1), and ct−1 represents the hidden state at the preceding time. ct and

Ot signify the concealed state and output at time t, respectively. Therefore, we can

observe that the output Ot t at time t is tied not just to the input It , but also to the in-

formation from the prior time. Thus, LSTM is enabled to recall pertinent information

in the temporal domain[15]. In addition, the primary purpose of LSTM is to regu-

late the memory of specific information. In order to accomplish this, the LSTM cell

employs four gates: the input gate, the forget gate, the output gate, and the input mod-

ulation gate. Each gate is a weight that controls the amount of information that can

pass through it. For instance, if the weight of the forget gate is zero, the LSTM cell

will recall all the information passed since time t −1; if the weight is one, the LSTM

cell will forget everything. The weight is determined by the activation function that
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corresponds to it. The specific data flow looks as follows:

f = σ(τ(It ,Ot−1)) (3.8)

i = σ(τ(It ,Ot−1)) (3.9)

o = σ(τ(It ,Ot−1)) (3.10)

m = σ(tanh(It ,Ot−1)) (3.11)

ct = f ∗ ct−1 + i∗m (3.12)

ht = o∗ tanh(ct) (3.13)

Gated Recurrent Units (GRU)

GRU is another popular RNN design. Similarly to LSTM, GRU aims to exploit his-

torical information. GRU does not require hidden states, but it only receives temporal

data from the output of time t −1. Figure 3.13b demonstrates that GRU has two inputs

(It and Ot−1) and one output (Ot). The mapping is described as follows:

It ,Ot → Ot (3.14)

Two gates make up GRU: reset gate r and update gate z. The former determines how

the input is combined with past memories. Comparable to the forget gate of LSTM, the

latter determines how much of past memory to retain. The flow of data is as follows:

z = σ(τ(It ,Ot−1)) (3.15)

r = σ(τ(It ,Ot−1) (3.16)

Ōt = tanh(τ(It ,r ∗Ot−1) (3.17)

Ot = (1− z)∗Ot−1 + z∗ Ōt (3.18)
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Observation reveals that the intermediate variable Ōt is comparable to the hidden state

of LSTM. However, Ōt only functions at this time point and cannot pass to the fol-

lowing time point. We provide a brief comparison of LSTM and GRU given their

similarities. According to research, LSTM and GRU have equivalent performance.

For every specific task, it is recommended to compare the performance of two options

to determine which one is superior. Second, GRU is a lightweight algorithm with only

two gates and no hidden state. GRU is hence easier to train and requires fewer training

examples for generalization. Third, LSTM generally performs better if the training

dataset is sufficiently large.

Convolutional Neural Networks (CNN)

Convolutional Neural Networks are one of the most prevalent deep learning models

specializing in the investigation of spatial data. This section will provide a basic

overview of CNN’s operational structure. CNN is frequently utilized to uncover the la-

tent spatial information in applications such as image recognition, ubiquity, and object

search- ing because to its prominent characteristics, including regularized structure,

good spatial localization, and translation invariance. CNN is intended to capture the

differential interdependence between the patterns associated with various brain signals

in BCI. The conventional CNN architecture is seen in Figure 3.12b. One input layer,

two convolutional layers, each followed by a pooling layer, one fully-connected layer,

and one output layer comprise the CNN[15]. Each layer’s square patch indicates the

processing status of a batch of input values. The objective of the CNN is to transform

the input data into a form that is simpler to recognize with minimal information loss.

CNN is composed of three layers: the convolutional Layer, the pooling Layer, and the

fully-connected Layer. The convolutional layer comprises a set of filters to convolute

the input data, followed by a nonlinear transformation to extract geographical char-

acteristics[15]. Several essential hyper-parameters, such as the number of filters and

the size of each filter, must be configured in the convolutional layer of the deep learn-

ing implementation. The pooling layer follows the convolutional layer in most cases.
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The objective of the pooling layer is to gradually lower the spatial size of the features.

Thus, it is possible to reduce the number of parameters (e.g., weights and base) and

the computational overhead. Three types of pooling operations exist: maximum, min-

imum, and average. Take maximum pooling for instance. The procedure of pooling

yields the maximum value of the pooling area. The pooling layer’s hyper-parameters

consist of the pooling operation, pooling area size, strides, etc. In the fully-connected

layer, as in the fundamental neural network, the nodes have complete connections to

all activations in the layer underneath them.

3.5.2 Representative Deep Learning Models

Autoencoders and limited Boltzmann machines are the building elements of represen-

tative deep learning models. Deep Belief Networks consist of either AE or RBM.

Unsupervised learning approaches comprise the representative models AE, RBM, and

DBN. Consequently, they can learn the representative characteristics using only the

input observations x and not the ground truth y. Briefly, representative models receive

the input data and generate a dense representation of the data. Several models (such

as DBN, Deep RBM, and Deep AE) have multiple definitions in different research; we

have selected the most understandable definitions and will discuss them in depth in this

part.

Autoencoder (AE)

An autoencoder is a neural network with three layers, as shown in Figure 3.14a: the

input layer, the hidden layer, and the output layer. The AE is trained to rebuild its

inputs, which forces the hidden layer to attempt to learn accurate representations of

the inputs. AE’s structure consists of two blocks. The first block is known as the

encoder, and it encodes the observation into a latent representation (sometimes known

as a ”code”).

xh = σ(τ(x)) (3.19)
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Figure 3.14: Illustration of standard representative models for deep learning. a) A fun-
damental autoencoder has three layers, with the input layer and output layer having
identical values. Encoding occurs from the input layer to the hidden layer, whereas
decoding occurs from the hidden layer to the output layer. b) In the Restricted Boltz-
mann Machine, the transformation weights of the encoder and decoder are identical.
The input and output layers are combined to form the visible layer. (c) The stacked
autoencoder conceals multiple layers. Typically, there are an odd number of concealed
layers, and the intermediate layer contains learnt representative features[15]. d) The
deep RBM consists of one visible layer and numerous hidden levels, with the last layer
containing the encoded representation.

where xh is the layer that is hidden. The second block is known as the decoder since it

decodes the representation into the original space.

y
′
= σ(τ(xh)) (3.20)

where y
′

represents the output. AE equalizes y
′

to the input x and determines the error

based on the distance between them. Consequently, AE can only compute the loss
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function using x, not the ground truth y.

error = ||y
′
− x||2 (3.21)

Unlike Equation 3.6, this equation does not include the variable y because it uses

the input x as the starting point. This explains why AE is capable of unsupervised

learning. Obviously, one type of AE is Deep-AE (D-AE), which has multiple hidden

layers. Figure 3.14c depicts the construction of D-AE with three hidden layers. From

the illustration, we can see that both the encoder and the decoder have an additional

hidden layer[15]. The symmetry of the structure guarantees the efficiency of the en-

coding and decoding processes. Thus, D-AE typically has an odd number of hidden

layers (e.g., 2n+1), where the first n layers belong to the encoder, the (n+1)− th

layer serves as the shared code between the encoder and decoder, and the last n layers

belong to the decoder. The data flow of D-AE can be represented as (Figure 3.14c):

xh1 = σ(τ(x)) (3.22)

xh2 = σ(τ(xh2)) (3.23)

xh2 represents the middle hidden layer (the code). Then we may decode the hidden

layer to obtain

xh3 = σ(τ(xh2)) (3.24)

y
′
= σ(τ(xh3)) (3.25)

D-AE is nearly identical to AE except that it contains more hidden layers. AE has

numerous versions than D-AE, including denoising autoencoder, sparse autoencoder,

contractive AE, etc. Because the D-AE is readily mistaken with the AE-based deep

belief network, we simply introduce it here.

The basic principle behind AE and its derivatives is straightforward: condense

the input data x into a code xh (the code layer often has smaller dimension) and then

recreate the data using the code. If the reconstructed y
′
can resemble the input data x, it
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can be shown that the condensed code xh has sufficient information about x; therefore,

xh can be regarded as a representation of the input data for future operations (e.g.,

classification)

Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine is a neural network that can learn a probability dis-

tribution across its inputs. As shown in Figure 3.14b, it consists of two layers: one

visible layer (input layer) and one buried layer. The connection lines between the two

levels are bidirectional, as shown in the diagram. RBM is a variation of the Boltz-

mann Machine that has more stringent restrictions regarding the absence of intra-layer

connections. Similarly to AE, the RBM technique consists of two phases. The initial

stage compresses the input data from the original space to the latent space’s hidden

layer[15]. The hidden layer is then utilized to reconstruct the input data identically.

RBM has a stricter constraint than AE, which is that the encoder and decoder weights

must be identical. We have

xh = σ(τ(x)) (3.26)

x
′
= σ(τ(xh)) (3.27)

In the two equations presented above, the weights of τ(.) are identical. The training

error can then be estimated by:

error = ||x
′
− x||2 (3.28)

Figure 3.14d reveals that the Deep-RBM (D-RBM) is an RBM with numerous con-

cealed layers. The visible layer’s input data travel first to the first hidden layer and

then to the second hidden layer. The code will then flow in reverse into the visible

layer for reconstruction.
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Figure 3.15: Exemplification of extensive belief networks A DBN made up of autoen-
coders. DBN-AE consists of numerous AE components (in this case, two AE), with the
hidden layer of the preceding AE functioning as the input layer of the following AE.
The last AE’s hidden layer is the learned representation. (b) DBN made up of RBM.
The first RBM’s hidden layer functioning as the visible layer of the second RBM. The
final hidden layer is the representation code. While DBN-RBM and D-RBM have a
similar architecture (Figure 3.14d), the former is trained greedily while the latter is
trained cooperatively.

Deep Belief Networks (DBN)

A Deep Belief Network (DBN) is a stack of simple networks including AEs and RBMs

[53]. Thus, we separated DBN into DBN-AE (also referred to as stacked AE) which

consists of AE and DBN-RBM (also referred to as stacked RBM) which consists of

RBM.

As depicted in Figure 3.15a, the DBN-AE is comprised of two AE structures, with

the hidden layer of the first AE functioning as the input layer of the second AE. This

graphic consists of two steps. In the initial stage, the input data fed to the initial AE

adhere to the preceding principles[15]. Calculating and back propagating the recon-

struction error to modify the weights and base. This cycle is repeated until the AE

converges. We acquire the mapping:

x1 → xh1 (3.29)

Then, we proceed to the second stage, where the learned representative code in the
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hidden layer xh1 is utilized as the input layer of the second AE, which is:

x2 = xh1 (3.30)

and then, after the second AE converges, we have

x2 = xh2 (3.31)

xh2 represents the hidden layer of the second AE, whereas xh3 represents the ultimate

result of the DBN-AE. AE is based on the concept of learning a representative code

with lower dimensionality that contains the majority of the input data’s information.

The purpose of DBN-AE is to acquire a more pure and representational code.

Likewise, the DBN-RBM is formed by a number of individual RBM structures.

Figure 3.15b depicts a DBN comprised of two RBMs in which the hidden layer of the

first RBM serves as the visible layer of the second RBM.

Compare the DBN-RBM (Figure 3.15b) with D-RBM (Figure 3.15a) (Figure 3.14d).

They nearly share the same architectural design. Moreover, the architectures of DBN-

AE (Figure 3.15a) and D-AE (Figure 3.14c) are comparable. The most significant

distinction between the DBN and deep AE/RBM is that the former is trained in-

dependently while the latter is developed collaboratively. In specifically, the first

AE/RBM is trained initially for the DBN, and when it converges, the second AE/RBM

is trained[54]. For the deep AE/RBM, jointly training entails training the entire struc-

ture, regardless of how many levels it contains.

3.5.3 Generative Deep Learning Models

The primary purpose of generative deep learning models is to produce training samples

or augment data. In other words, generative deep learning models benefit the BCI

sector by improving the quality and amount of training data. After augmenting the

data, discriminative models will be used for classification. This method is designed

to improve the robustness and efficacy of trained deep learning networks, particularly
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when training data is limited. In brief, the generative models receive the input data and

generate a set of similar output data. In this part, we will introduce two standard deep

learning generative models: VAE and GAN.

Variational Autoencoder (VAE)

Initiated in 2013 [55], Variational Autoencoder is a significant version of AE and one

of the most potent generative algorithms. The standard AE and its variants can be

utilized for representation, but cannot be used for generation because the learned code

(or representation) may not be continuous. Therefore, it is impossible to generate a

random sample that resembles the input sample. In other words, interpolation is not

supported by the standard AE. Thus, the input sample can be replicated, but a similar

sample cannot be generated. This trait is what makes VAE so valuable for generative

modeling: the latent spaces are meant to be continuous, which makes random sampling

and interpolation straightforward[15]. Next, we shall explain how VAE operates.

Similar to regular AE, VAE can be divided into an encoder and decoder, with the

encoder embedding input data into a latent space and the decoder transferring data from

the latent space to the original space. Nevertheless, the learned representation in the

latent space is constrained to approximate a prior distribution p(z̄), which is typically

set to Standard Gaussian distribution. Based on the re-parameterization approach [55],

the first hidden layer of VAE is composed of two portions, one of which represents the

expectation µ and the other the standard deviation σ . Consequently, we have:

µ = σ(τ(x)) (3.32)

σ = σ(τ(x)) (3.33)

The latent coding in the hidden layer is then sampled from a Gaussian distribution

N(µ,σ2) rather than being directly calculated. Statistical code:

z = µ +σ ∗ ε (3.34)
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where ε ∼ N(0, I) The representation z is constrained to a prior distribution, and Kull-

Back Leibler divergence is used to estimate the distance errorKL.

errorKL = DKL(z, p(̄z)) (3.35)

where p(̄z) is the preceding distribution. The decoder converts z into the output y
′
,

y
′
= σ(τ(z)) (3.36)

and the reconstruction error is

errorrecon = ||y
′
− x||2 (3.37)

The overall error for VAE is combined by the DL divergence and the reconstruction

error,

error = errorKL + errorrecon (3.38)

The most important aspect of VAE is that all latent representations z must adhere to

the normal distribution. Thus, it is possible to randomly pick a representation z
′ ∈ p(̄z)

from the previous distribution and then reconstruct a sample using z
′
. This is the reason

VAE is so effective in generation.

Generative Adversarial Networks (GAN)

The Generative Adversarial Networks [56] paper was published in 2014 and has been

a huge success in a variety of academic fields (e.g., computer vision and natural lan-

guage processing). GAN consists of two neural networks containing a generator and

a discriminator that are simultaneously trained. The generator captures the distribu-

tion of the input data, while the discriminator estimates the likelihood that a sample

was drawn from the training data. The generator strives to produce bogus samples,

whereas the discriminator seeks to determine whether the sample is authentic. Be-

cause the functions of the generator and discriminator are opposed, GAN is referred
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Figure 3.16: Illustration of deep learning generative models. (a) VAE has two con-
cealed layers. The first hidden layer consists of two components that are learned in-
dependently from the input layer: the expectation and the standard deviation. The
encoded information is represented by the second hidden layer. represents the normal
distribution standard. b) GAN primarily consists of the generator network and the dis-
criminator network. The former gets a latent random variable to generate a fictitious
brain signal, whereas the latter receives both the real and generated brain signals and
attempts to discern whether the signal was generated or not. Instead of categorization,
GAN reconstructs or augments data in BCI.

regarded as adversarial. After both the generator and discriminator have converged,

the discriminator should be unable to recognize the generated samples. Thus, the pre-

trained generator can be used to generate a batch of samples for classification and other

activities[14].

Figure 3.16b depicts the conventional GAN technique. The generator receives a

noise signal s sampled at random from a multimodal Gaussian distribution and out-

puts simulated brain signals xF . The discriminator receives genuine brain signals xR

and a created fake sample xF , and then guesses whether the sample received is real or

phony[14]. The generator and discriminator’s internal architectures are created based

on the data kinds and circumstances. CNN’s exceptional ability to extract spatial char-

acteristics allows us, for instance, to construct GAN using convolutional layers on

fMRI pictures. Together, the discriminator and the generator are trained. After conver-

gence, the generator can generate many brain signals xG. To train a more effective and

resilient classifier, the training set is expanded from xR to {xR,xG}.
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3.5.4 Hybrid Model

Hybrid deep learning models are models comprised of at least two deep basic learning

models, where the basic model is either a discriminative, representative, or generative

deep learning model. Based on their objectives, hybrid models are divided into two

subcategories: classification-aimed (CA) hybrid models and non-classification-aimed

(NCA) hybrid models[14].

The majority of deep learning-related BCI investigations concentrate on the first

group. The representative and generative models are employed to improve the dis-

criminative models based on the available literature. The representative models can

provide more informative and low-dimensional features for discriminating, whilst the

generative models can help improve the quality and quantity of training data, hence

providing more information for classification. The CA hybrid models can be further

subdivided as follows: 1) several discriminative models combined to extract more dis-

tinct and robust features (e.g., CNN+RNN); 2) a representative model followed by

a discriminative model (e.g., DBN+MLP); 3) a generative model combined with a

representative model followed by a discriminative model; and 4) a generative model

combined with a representative model followed by a non-deep learning classifier. A

few NCA hybrid models seek to reconstruct brain signals. St-yves et al. [57] used

GAN to recreate visual stimuli from fMRI pictures, for instance[14].

3.6 Conclusion

In this chapter, we provide a comprehensive overview of current breakthroughs in deep

learning and machine learning as they pertain to brain-computer interface applications.

Deep learning allows us to acquire high-level features automatically from BCI signals

and relies less on manually-crafted features and domain knowledge than conventional

methods. We present a summary of the most prevalent deep learning models.
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Chapter 4

Experimental implementation and results

4.1 Introduction

In this chapter, we will describe the algorithms, datasets, hardware, and software uti-

lized to produce the following findings. In addition, we detail the many technical

aspects associated with the deployment and implementation of our system. We discuss

the dataset collection from several local subjects and the conditions while collecting

it and the used EEG headset. Then, we discuss our proposed model and its flowchart,

detailing each part of it and the algorithms that we have used (preprocessing, arti-

fact removing, feature extraction, classification, etc.). Finally, we will highlight some

robotic notations in order to facilitate our process.

4.2 Development software and hardware

4.2.1 EEG Headset

As discussed previously, there are two methods for acquiring EEG signals: invasive

and noninvasive. We concentrate on the noninvasive technique on which all EEG-

based brain-controlled robotics examples are built. In accordance with the worldwide

10–20 standard, raw electrical signals are captured by sensors (electrodes) placed on

the scalp in this procedure. The spacing between adjacent pairs of electrodes in this

standard system is either 10 or 20 percent of the diameter of the scalp. In our study,

we used Emotiv EPOC+, it is a wireless, multi-channel, high-resolution neuroheadset.

The EPOC utilizes a set of 14 sensors and two references to tune into electric impulses

produced by the brain in order to detect the user’s thoughts, emotions, and facial ex-

pressions in real time with a sampling rate of 128 Hz, that registers brain signals (in



µV) through different softwares, in this project we used the EMOTIV-PRO app, it

comes with several features, however we only focused on the registration, labeling and

data exportation. The EPOC wirelessly connects to the PC.

Figure 4.1: Framework of MI-BCI control system

4.2.2 EEG Electrodes Gel

Electrode Gel is a highly conductive saline gel that has been rigorously tested and is

highly recommended for Neuroelectrics studies needing gel. This comprises tests and

interventions including the use of NG Geltrodes and Foretrodes for EEG monitoring

and NG Pistims for hybrid tES/EEG applications. The gel is utilized to transport an

electrical current from the skin to a measurement device. A sticky patch may be used

to adhere the gel electrode to the skin in order to measure the electrical activity of the

heart or brain. In this study, i used Bio True gel (BAUSCH + LOMB).

4.2.3 EEG Mice Software

EEG mice have a graphical user interface built by me with the NeuroScience Labora-

tory at Sapienza University. Its main role is to preprocess EEG signals; cream extrac-
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Figure 4.2: The used Gel Electrodes

tion, search by time, search by epochs, filtering, etc. EEG mice have been built using

the Tkinter Library in Python and several novel algorithms designed for preprocessing

EEG. It has been widely used in this study, especially in preprocessing steps.

4.2.4 Training Hardware

For the preprocessing and model training, i have used my own laptop with the follow-

ing characteristics:

1. CPU: AMD Ryzen 7 4800H @2.90 GHz.

2. GPU: Gtx 1660ti.

3. RAM: 16.00 GB DDR4

4. Storage: 512GB SSD, 1.00TB HDD

4.2.5 Languages and FrameWorks

Python: Python is a high-level, interpretable, object-oriented programming lan-

guage with dynamic semantics [2021]. Its high-level data structures, dynamic typing,

and vast library collection make it the ideal language for AI and IoT programming.

OpenCV: OpenCv is a real-time optimized Computer Vision library, tools, and

hardware that was created by Intel.
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Figure 4.3: GUI of eeg mice for EEG signal preprocessing

Pycharm: The coding platform is ”pycharm,” an integrated development environ-

ment (IDE) used in computer programming, specifically for the Python language. It is

being developed by JetBrains, a Czech business. It provides code analysis, a graphi-

cal debugger, an integrated unit tester, version control system (VCS) integration, and

support for web development with Django and data science with Anaconda.

Matplotlib: Matlplotlib is a plotting library for the Python computer language and

NumPy, its extension for numerical mathematics. It provides an object-oriented API

for embedding charts into applications utilizing GUI toolkits such as Tkinter, wx-

Python, Qt, and GTK+.

Tensorflow: TensorFlow is an open-source machine learning library. It can be ap-

plied to a variety of tasks, but its primary focus is on the training and inference of deep

neural networks and machine learning.
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PyTorch: PyTorch is an open source machine learning framework based on the

Torch library that is used for applications such as computer vision and natural language

processing. It was developed primarily by Meta AI. It is open-source, free software

distributed under the Modified BSD license.

Keras: The open-source library Keras provides a Python interface for artificial neu-

ral networks. Keras serves as the TensorFlow library’s interface. Keras supported many

backends prior to version 2.3, including TensorFlow, Microsoft Cognitive Toolkit,

Theano, and PlaidML.

Numpy: NumPy is a Python library that adds support for massive, multidimensional

arrays and matrices, as well as a vast number of high-level mathematical functions to

operate on these arrays.

MNE Library: MNE-Python is an open-source Python tool for exploring, display-

ing, and interpreting human neurophysiological data, including MEG, EEG, sEEG,

and ECoG, among others.

Jupyter NoteBook: The mission of Project Jupyter is to ”create open-source soft-

ware, open-standards, and services for interactive computing in dozens of program-

ming languages.” It was derived from IPython by Fernando Pérez and Brian Granger

in 2014

4.3 Proposed Model

Exogenous and endogenous brain-computer interface systems are the two types. The

Exogenous brain-machine interface must employ exterior inputs to induce precise

brain responses. Electroencephalogram (EEG) evoked patterns of brain-machine in-

terfaces generally consist of the event-related potential P300[196] and steady-state vi-

sual evoked potentials (SSVEP)[197]. Endogenous brain-computer interfaces rely on

the brain’s ability to maintain its own rhythm and do not require external stimulation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: (a) Python Logo (b) Pycharm Logo (c) Pytorch Logo (d) OpenCV Logo
(e) Matplotlib logo (f) Keras Logo (g) Tensorflow logo (h) numpy logo

They are intrinsically linked to human motion intent and can more precisely reflect

the subject’s autonomous intent. The most commonly employed paradigm for exter-

nal BCIs is motor imagery (MI), also known as active BCIs. Exogenous BCIs have a

stable signal, require less time for specialized training, and are easy to configure, mak-

ing the system adaptable to a wide spectrum of persons. However, because exogenous

BCIs are not directly controlled by the user, not only are they dependent on external

stimuli, but they also require the user’s attention, which is likely to cause fatigue[1]. A

full EEG-based BCI system consists of four components: EEG data acquisition, sig-

nal preprocessing, feature extraction, and pattern classification[?]. As depicted in the

image below, we suggest a multi-method approach that simultaneously employs SVM

and attention-based Bi-LSTM in the final phase to control robots. Later, the controller

will receive the most accurate prediction across a given timestamp.

4.4 Data Set

The employed data set in this study is our collected data-set and its currently under

licensing. Several 14-channel EEG trials acquired from 8 male drug addicted patients,

6 male healthy patients, and 3 alcoholic patients. Six patients were under drug effects

and caffeine effects in the last 12h before the experiments. The mean age of patients

was 24.5 year. The first part of trials is paced breathing while the patients are asked to
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Figure 4.5: Framework of MI-BCI control system

relax and breath in order to use it as a rest reference. The second part is performing

four motor imagery (MI) tasks i.e., imagining right-hand fist (RH), imagining left-

hand fist (LH), imagining right-leg fist(RL), imagining left-leg fist(LL). Each trial is

a 16-seconds experiment with only one single task and 128 Hz sample rate; in total

16 trials for each task has been recorded. The timestamps for each trial is 2040 time

stamp. After explaining the constraints, requirements, and potential uses of the trials,

all volunteers gave their written agreement.

4.5 System Overview

4.5.1 Support Vector Machine

Data Preprocessing: The raw EEG data was collected with the EMOTIV EPOC+

headset, which comprises 14 electrodes whose placements do not correspond perfectly

to those of the standard 10–20 system. According to Pfurtscheller[198][42], due to

the fact that the C3 and C4 locations can encompass a portion of the motor cortex,

they are the best sites for exploiting Event Related De-synchronization (ERD) and

Event Related Synchronization (ERS). In order for F3 and F4 to cover the positions of
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Figure 4.6: Data visualization of sample eeg raw.

C3 and C4, the headset was angled along the axis of the reference electrodes located

behind the ears[199]. In addition, we utilized AF3 and AF4 electrodes as well as two

reference electrodes to eliminate EMG and EOG artifacts. Then, we employed a high-

pass filter to eliminate frequencies below 0.1 or 1 Hz and a low-pass filter to eliminate

frequencies above 40 or 50 Hz.

High/low-pass filters and notch When analyzing the measurement of a hole, large

variations are crucial. To eliminate these gradual changes unrelated to the brain, we

apply some filtering. The same method is used for frequencies above those emitted by

the brain. This is the whole spectrogram of each channel’s raw data. It is carried out
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Figure 4.7: Data visualization of AF3 electrode data.

utilizing Welch’s approach.

Figure 4.8: Data before applying filters.

Additionally, there are set frequencies associated with electromagnetic noise. For

example, the extremely intense peak at 50Hz (and its harmonic at 100Hz) corresponds

to power-line diploe emission.

This is filtered with a notch filter.

Since we’ve made sure of good electrode placement while collecting the dataset,

we didn’t remove ”bad electrode data” and filter it. Because of The brain is not a

unique source of electrical activity in the body. Hearbeat, muscle contraction, and
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Figure 4.9: Data After applying high/low-pass filters with filtering parameters.

others introduce peridoic noise. These activities can be recorded simultaneously and

can be used to remove their induced artifacts. In our case, we did not apply this step,

and that is because we chose only 4 electrodes to work with. The EOG artifact has

been removed manually with matlab scripts using differential potentials between each

pair of electrodes. Finally, we visualize wave bands in the following figure.

Feature Extraction: The Fourier transform method was used with Principal Com-

ponent Analysis to reduce the dimensionality of the retrieved features when analyzing

EEG data. The frequency ranges [8 Hz–12 Hz] and [12 Hz–22 Hz] are responsi-

ble for sensorimotor rhythms that develop when a person makes or imagines a move-

ment[200]. We were especially concerned with frequency components between 8 and

22 hertz. Principal component analysis is a common statistical technique for feature

extraction and dimensionality reduction. Principal component analysis (PCA) is a lin-

ear projection that reduces a set of potentially correlated variables to a smaller set of

uncorrelated variables known as principal components. Each next principle component
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Figure 4.10: Data After applying notch filter with filtering parameters.

has the highest variance and is orthogonal to the existing components. Karl Pearson

initially created PCA in 1901. Either the Covariance or Correlation matrix is utilized.

These matrices can be calculated using the data matrix. It involves a mathematical

procedure known as Eigen analysis; normally, after normalizing (zero-mean) the data

matrix for each characteristic, the analysis can be carried out via eigenvalue decompo-

sition of a data covariance (or correlation) matrix of a data matrix. The fundamental

purpose of principal component analysis (PCA) is to eliminate unwanted signal com-

ponents by performing an orthogonal projection on the data[201]. We reduced the

2040 time stamps of each experiment using PCA.

SVM classifier: In BCI research, Support Vector Machine (SVM) is regarded as one

of the most accurate classifiers[202][203]. SVM differentiates between classes using

hyperplanes or groups of hyperplanes in a very high (or even infinite) dimensional

space. Performance of a particular linear SVM is based on the trade-off parameter C,

which balances the relative value of minimizing training error and maximizing mar-

gins between classes, which directly affect the classifier’s generalizability. The kernel

determines the classification accuracy of an SVM-based classifier. BCI systems often
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Figure 4.11: Wave bands visualization.

employ a Gaussian kernel or a Radial Base Function (RBF)[204]. Cross-validation

improves the accuracy of the model by preventing overfitting. In K-fold cross vali-

dation, data are initially separated into k segments or folds of equal (or nearly equal)

size. Cross-validation is used in this instance to determine the ideal RBF kernel pa-

rameters C and gamma and to estimate the model’s performance. In this experiment, a

multiclass approach with 10-fold cross-validation was implemented in the RBF kernel

SVM system. With C equal to 400 and gamma equal to 4∗10−5, the best results were

obtained.

Results: Six individuals were tested, three of whom were healthy and three of whom

were drug dependent. The precision and recall obtained during the testing phase after

completing each of the four tasks are displayed in Table 1. Six individuals were tested,

three of whom were healthy and three of whom were drug dependent. High precision

and recall suggest that the model has a high level of performance.

These outcomes indicated outstanding performance, especially for the last three

patients (healthy patients). Nevertheless, the first three patients executed the four tasks

with less precision than the healthy subjects. High precision and recall suggest that the
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Figure 4.12: Visualization of FC5 data after preprocessing.

model has a high level of performance.

4.5.2 Attention-based Bi-LSTM

Bidirectional Long Short-Term Memory: LSTM has established its presence in

the field of sequence signal analysis by sharing weights[205]. It is capable of learning

long-term dependencies and adjusting for the issue of disappearing gradients success-

fully. Unlike the conventional unidirectional LSTM, the bidirectional LSTM is capable

of capturing dynamic information from both earlier and later EEG sequence segments

[206]. The bidirectional LSTM network consists of a forward layer and a backward

layer, as shown in Figure 1. ht is the hidden output sequence of the forward layer,

which is computed using EEG samples from time index 1 to t. LSTM stores informa-
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Figure 4.13: Visualization of FC6 data after preprocessing.

tion using three custom-built gates[207]. In Hochreiter’s[205] original architecture, the

update to the cell output state depends on the previous output of the hidden layer and

the current input. In addition, they employed the previous cell condition as a parameter

and attached a peephole connection. The data flow between the gates and inputs of a

single LSTM cell is seen in Figure 2. At each time t, the current input is xt, the prior

hidden state is ht−1, and the previous output state of the cell is ct−1. These equations

can be used to determine the outputs of three gates:

it = δ (Xixt +Hiht −1+Cict −1+bi) (4.1)

ot = δ (X0xt +H0ht −1+C0ct −1+b0) (4.2)
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Figure 4.14: Data Visualization Before cleaning (red) and after cleaning (black).

ft = δ (X f xt +H f ht −1+C f ct −1+b f ) (4.3)

The forget gate f t determines if the ct−1 was retained, the input gate it determines

if the state was modified by the current input xt, and the output gate ot determines if

the ht −1 was transmitted to the next cell. At each timestamp t, at is the contender for

updating the memory cell. Using the following equations, calculate the output of the

current LSTM cell ct and the current hidden state ht.

at = δ (Xaxt +Haht −1+Cact −1+ba) (4.4)

ct = ft
⊗

ct −1+ ii
⊗

at (4.5)

ht = ot
⊗

tanh(ct) (4.6)

Attention Mechanism: Imitated from the human visual system, the Attention mech-

anism is vital to Computer Vision (CV), Natural Language Processing (NLP), and Au-

Page 111



(a)

(b)

(c)

(d)

(e)

Figure 4.15: (a) Final Beta Wave (b) Final Theta Wave (c) Final Alpha Wave (d) Final
Delta Wave (e) Final Gamma Wave
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Table 4.1: The precision, recall of the four classes using SVM.

LH LL RH RL
Precision 0.712 0.721 0.719 0.720Patient 01 Recall 0.717 0.712 0.725 0.713

Precision 0.715 0.721 0.709 0.710Patient 02 Recall 0.722 0.723 0.714 0.705

Precision 0.720 0.716 0.702 0.706Patient 03 Recall 0.721 0.719 0.709 0.712

Precision 0.782 0.784 0.779 0.776Patient 04 Recall 0.790 0.788 0.775 0.781

Precision 0.775 0.779 0.770 0.772Patient 05 Recall 0.781 0.782 0.769 0.776

Precision 0.781 0.782 0.776 0.762Patient 06 Recall 0.775 0.786 0.773 0.769

(a) (b)

Figure 4.16: (a) Illustration of Bi-LSTM network (b) Illustration of LSTM Cell

tomatic Speech Recognition (ASR) [208][209][210][211]. Not all signals contribute to

classification in the same way. Thus, an Attention mechanism s(t) is jointly trained as

a weighted sum of the BiLSTM, with the Attention output dependent on the weights.

u(t) = tanh(Wwy(t)+bw) (4.7)

α(t) =
exp(u(t)T uw)

∑exp(u(t)T uw)
(4.8)

s(t) = ∑α(t)y(t) (4.9)

Following the Fully-connected layer u(t) for learning features of y(t) is a Softmax

layer α(t) that provides a probability distribution. The values WW , uw, and bw reflect
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trainable weights and bias, accordingly. It selects and extracts the most relevant tem-

poral and spatial information from y(t) by multiplying α(t) according to its contribution

to decoding tasks. A major advantage of the attention mechanism is that it provides

our model with a deep mining feature extraction.

Experimental setup The preprocessing and feature extraction were identical to those

described previously, with one exception: the filters were applied to all 14 channels,

as opposed to just C3 and C4 in the previous section, and the data now contains 14

channels instead of 2. The proposed model consists of one improved Bi-LSTM layer,

an attention weighting layer, two completely linked layers, and a softmax classifica-

tion layer. At each timestamp t, all channels were utilized concurrently as input and

sent to the Bi-LSTM layer, followed by the application of the attention method to its

output. On layers with complete connectivity, the dropout approach is used to pre-

vent overfitting, and the activation function is ReLU. Each patient was trained on four

tasks, therefore the output size of the final, fully-linked layer is set to 4. Finally, the

largest output value index is deemed the robot’s direction decision. The hyperparam-

eters (such as the dropout rate and regularization coefficient) were found via trial and

error. The network parameters were updated using stochastic gradient descent and the

Adam optimizer.

Table 4.2: Hyper-parameters of our proposed model
No Hyper-parameter Value

1 Bi-LSTM Layers 1
2 Attention Layers 1
3 Fully connected Layers 2
4 Train Set 80%
5 Test Set 20%
6 Optimizer Adam
7 Learning Rate 10−3

8 Dropout 0.2
9 Batch Size 32

Results Experiments were conducted using an AMD Ryzen 7 4800H 2.90 GHz com-

puter with 16GB of RAM and a Gtx 1660Ti GPU in this investigation. The code was
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Figure 4.17: Attention based Bi-LSTM architecture

written in Keras with a backend of Tensorflow. After training the model with 200

epochs, the model is finally tested using test data to offer a valid assessment of the

model’s precision and recall, which at the last epoch have reached a saturation level

of approximately 81%. Table 2 provides a summary of the accuracy, recall, and over-

all average obtained during the testing phase after completing each of the four tasks of

our methodology. Six individuals were tested, three of whom were healthy and three of

whom were drug dependent. Examining the confusion matrix linked with Figure 6 will

provide additional information regarding this classification. These outcomes demon-

strated exceptional performance. However, the first three patients performed the four

tasks with less accuracy than the healthy participants. High precision and recall are

indicative of the model’s superior performance. According to the confusion matrix,

the average accuracy of the testing phase is 81.60 percent, and the model is completely

confused between the linked tasks (left and right hand, left and right legs) rather than

the other tasks.
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Table 4.3: The precision, recall of the four classes and the total average using attention
based Bi-LSTM.

LH LL RH RL
Precision 0.776 0.744 0.769 0.794Patient 01 Recall 0.772 0.782 0.790 0.813

Precision 0.751 0.801 0.762 0.771Patient 02 Recall 0.774 0.752 0.786 0.792

Precision 0.764 0.795 0.754 0.798Patient 03 Recall 0.798 0.804 0.782 0.803

Precision 0.836 0.852 0.842 0.846Patient 04 Recall 0.813 0.846 0.844 0.841

Precision 0.851 0.857 0.849 0.850Patient 05 Recall 0.856 0.854 0.852 0.843

Precision 0.864 0.859 0.829 0.830Patient 06 Recall 0.842 0.841 0.832 0.842

Precision 0.807 0.818 0.800 0.814Average Recall 0.809 0.813 0.814 0.822

4.6 Graph Convolutional Neural Network

4.6.1 Mathematical Background

The majority of current models that decode EEG using Deep Learning, notably CNNs

(e.g. EEG-Net), employ the Euclidean coordinates of a given EEG electrode in a man-

ner analogous to how picture coordinates are used by a conventional CNN. Neverthe-

less, a graphical representation of intra-cortical connectivity (particularly correlation)

may be a more meaningful input for characterizing the topological relationship (con-

nectivity) between network nodes [1]. Alternative connection measures to correlation

(such as coherence) have not yet been investigated for this Graph Convolutional Net-

work (GCN) idea. In the meantime, Layerwise Relevance Propagation (LRP) has been

recently applied to EEG classification problems [2], providing visual insight on in-

ner network mechanics, which can explain classification errors and facilitate important

modifications, as well as providing a more detailed analysis of neural mechanisms.

Spectral Convolution: As described in [3], the ideal convolution in the case of GCN

is spectral rather than spatial. This form of convolutional filter has the advantage of
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Figure 4.18: Confusion matrix obtained from testing

identifying local characteristics that are independent of Euclidean coordinates, and

GCNs [4] typically prefer this.

Node Localization: Therefore, the connection matrix (adjacency matrix), Wi j can

provide more information regarding the structure of nodes than Euclidean coordinates.

Wi j is derived using Spearman’s power correlation between nodes in our scenario (elec-

trodes). The diagonal degree matrix isDii =Wi j, and the Laplacian L is L = D−W .

The Laplacian is diagonalized by the Fourier basis U so that L =UUT is a diagonal

matrix of eigenvalues. The Fourier basis U is known as the graph Fourier transform. In

conclusion, the pairwise node connectivity is related to the Laplacian, and the Lapla-

cian is related to U , which is utilized to transform the input into the spectral convolution

domain.

Implementing Convolution: In the Fourier domain, the graph convolution (denoted

by ∗G) of signals x and y is defined as:

ht = ot
⊗

tanh(ct) (4.10)
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To assure localisation of the convolution filter and enhance its computational efficiency,

a polynomial filter:

gθ (Λ) =
K−1

∑
k=0

θkΛ
k (4.11)

A vector of polynomial coefficients θ is formed. The Chebyshev family is an

obvious option, as its coefficients can be learned recursively and it is frequently used

to create filters for signal processing. In summary, each convolutional layer consists of

filters whose coefficients represent the parameters that can be learned. (i) RGB values

→ node spectral features, (ii) spatial localization → connectivity between nodes, and

(iii) learned NN weights → Chebyshev polynomial coefficients. Concerning the final

point, the backpropagation algorithm computes the (in our case, cross-entropy) loss

in relation to the filter coefficients. In addition, all the standard network parameter

options (pooling, activation function, optimization, learning rate, etc.) are applicable

to GCNs, therefore the same code structure as CNNs can be utilized. In order to

reduce dimensionality, pooling, also known as graph coarsening in this context, causes

the signal properties of well-connected nodes to be summed, similar to how localized

picture information is added in a CNN.

4.7 Diverse Features Graph Convolutional Neural Network

4.7.1 Implementation

Processing: Each raw recording was processed as follows: a common subset of

bipolar montage electrodes was picked from the raw channels, the recording was re-

sampled to 250Hz, then a highpass filter at 1Hz, and a notch filter at the power-line

frequency of 50Hz was applied. We note that neither typical physiological EEG arti-

facts such as eye blinks or muscle movements nor defective channels were eliminated

directly. Implementation was accomplished using MNE-python library methods. We

separated the preprocessed recordings into 10s windows that did not overlap. As pre-

viously established, each window consists of an EEG recording from 14 bipolar chan-

nels. We adopt the simplification assumption that each 1s window’s signal is indepen-
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dent of other windows in the same recording. Notably, while ML training is conducted

using windows, window predictions are combined to generate subject predictions.

Feature Extraction: In this model, each trial is regarded to be an independent graph

with 14 electrodes as nodes and bidirectional fully linked links between each electrode

pair as edges; therefore, categorization of motor imagery has been performed in a

graph classification manner. Before feature extraction, the raw EEG data were pre-

processed using StandardScaler normalization based solely on the mean and standard

deviation of the training data (see train-valid-test segmentation details in the model

details subsection under Model 2). To compute the trial’s feature matrix, we extracted

temporal, spectral, and connectivity properties from the trial’s normalized EEG sig-

nals for each node (channel). Mean Absolute Value (MAV), Variance, Mean Square

Root (MSR), Root Mean Square (RMS), Log Detector (LD), Waveform Length (WL),

Difference Absolute Standard Deviation Value (DASDV), Zero Crossing (ZC), Skew-

ness, and Kurtosis were computed for the temporal features according to [6]. For the

frequency characteristics, the mean power density of the five conventional frequency

bands Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-35 Hz), and Gamma

(¿35 Hz) was computed. For the connectivity characteristics, the mean and standard

deviation of MS-coherence over each electrode pair (182 pairings in total, excluding

self-coherence) were derived from the same five frequency bands. Therefore, the size

of the feature matrix for each trial is 14x25, which includes 10 time features, 5 fre-

quency features, and 10 connection features for each node (channel). The characteris-

tics were normalized with StandardScaler before to being input to the GCN model, as

ZC has a substantially larger scale than other features.

Architecture: Although conventional deep learning techniques such as Long short-

term memory (LSTM) and Convolutional Neural Network (CNN) have been exten-

sively implemented in the similar field of research (EEG-based motor imagery clas-

sification), these models disregard the connectivity and strength of the connectivity

between electrode pairs. In this study, we propose a Graphical Convolutional Network
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(GCN) that not only takes connectivity and its strength into account, but also uses the

spatial feature extraction power of CNN in order to decode the underlying neurophys-

iological properties from motor imaging tasks.

Our proposed GCN model is comprised of three Chebyshev spectral graph convo-

lutional operators, each containing a Chebyshev convolutional (ChebConv), a Batch

Normalization, and a Rectified Linear Unit (ReLU) layer. On each ChebConv layer,

the GCN has 64, 128, and 264 filters with 3, 4, and 5 filter sizes, respectively. In the

conclusion, we forward feed the concatenated outputs of global average pooling and

global maximum pooling to a dense layer with 512 cells, followed by a Log Softmax

activation, to achieve the class prediction probability (task).

Table 4.4: Hyper-parameters of GCN Model
No Hyper-parameter Value

1 Number of Epochs 200
2 Window Size 0.5
3 Train Set 70%
4 Test Set 30%
5 Optimizer Adam
6 Learning Rate 4∗10−4

7 Dropout 0.2
8 Batch size 64
9 Loss Function Cross-Entropy
10 Regularization 10−3

Table 4.5: Architecture of the proposed GCN Model
Layer Type Parameters

CC1 Chebyshev convolutional (ChebConv) Filters : 64, K = 3
BL1 Batch Normalization1d Features: 64 Momentum = 0.1
CC2 Chebyshev convolutional (ChebConv) Filters : 128, K = 4
BL2 Batch Normalization1d Features: 128 Momentum = 0.1
CC3 Chebyshev convolutional (ChebConv) Filters : 256, K = 5
BL3 Batch Normalization1d Features: 256 Momentum = 0.1
RL ReLU Layer -
DN Dense Layer 512
AC Log SoftMax Activation Function -
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Figure 4.19: Screenshot of the proposed architecture

(a)

(b)

Figure 4.20: (a) Results after 10 epochs (b) Results after 200 epochs

4.7.2 Results

The suggested GCN model with different features achieves 87 percent validation ac-

curacy, 86.43 percent precision, 86.01 percent recall, and 86.21 percent F1-score. Due

to the minimal number of trainable parameters, the training method is so efficient that

training per iteration takes 1,1 seconds. At epoch 80, the suggested model converges

(convergence time: 117s). The details of training and performance are displayed in

the accuracy plot. The accuracy plot shows that the training and validation accuracy

converge with the same rate to the same values, thus the model fits well.
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Figure 4.21: Train and validation accuracy.

Table 4.6: Classification Report
Class Precision Recall F1-Score

Left Hand 0.8742 0.8709 0.8725
Right Hand 0.8739 0.8697 0.8718
Left Leg 0.8523 0.8486 0.8504
Right Leg 0.8569 0.8512 0.8540

4.8 Time Domain Graph Convolutional Neural Netowk

4.8.1 Preprocessing

Each raw recording was processed as follows: a common subset of bipolar montage

electrodes was picked from the raw channels, the recording was resampled to 250Hz,

then a highpass filter at 1Hz, and a notch filter at the power-line frequency of 50Hz was

applied. We note that neither typical physiological EEG artifacts such as eye blinks or

muscle movements nor defective channels were eliminated directly. Implementation

was accomplished using MNE-python library methods. We separated the preprocessed

recordings into 0.5s windows that did not overlap. As previously established, each

window consists of an EEG recording from 14 bipolar channels. We adopt the simpli-

fication assumption that each 1s window’s signal is independent of other windows in

the same recording. Notably, while ML training is conducted using windows, window

predictions are combined to generate subject predictions.
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4.8.2 Feature Extraction

The Power Spectral Density (PSD) was used to summarize the frequency content of the

win- dowed EEG signals into the primary brain wave bands: delta (1-4Hz), theta (4-

7.5Hz), alpha (7.5-13Hz), lower beta (13- 16Hz), higher beta (16-30Hz), and gamma

(30-40Hz). We extracted the total band power from each of the 8 modulation channels,

resulting in a feature matrix of shape (14 channels 6 features) for each window.

Figure 4.22: Feature Extraction technique inspired from[16].

4.8.3 Architecture

Our goal is to train a TimeDomain-GCN to classify 4 classes: left hand, right hand,

left reg, right leg. The preceding assertion holds valid for both hypothetical and ac-

tual facts. Separate consideration was given to simulated and actual data in 4-class

classification jobs.

The initial input dimensions are Nsub jects ∗Nclasses ∗Nsegments ∗N f eatures ∗Nchannels =

17∗4∗32∗6∗14. However, this is reconfigured so that the first four dimensions are

merged, resulting in dimensions equal to 17∗4∗32∗6∗14 = 13056∗14. Therefore,

all time samples for all participants, all classes, all seconds, and all timestamps have

been merged into a single dimension, N. Then, a N minus 1 element vector contain-

ing related labels is generated. Finally, the data features and labels are randomized,

resulting in N random time samples with 14 channel values each. This can be depicted

using N instantaneous brain signal heat maps. The electrodes FC5 and FC6 show a
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high activity (motor imagery area). We also find that, particularly in those electrodes,

hypothetical patterns are scaled-down counterparts of implemented patterns. Before

feeding the input to the model, the Spearman Power correlation is computed for all

concatenated time samples (not shuffled, in Nx14 format), followed by the calcula-

tion of the Adjacency and Laplacian Matrices. The Laplacian is then used to execute

the graph Fourier transform on the GCN input, while the adjacency matrix is used to

specify how coarsening operations (similar to pooling in a ConvNet) are applied at

each layer. Figure 2 displays the Adjacency and Laplacian Matrices produced from

the Spearman correlation.

Figure 4.23: Laplacian matrix of a subject.

4.8.4 Training

All the experiments above were performed and executed on the previously mentioned

laptop.

4.8.5 Results

The model is evaluated on six individuals, three of whom are healthy and three of

whom are not. The suggested GCN model with varied characteristics achieves 91%

validation accuracy, 91.16% precision, 90.75% recall, and 90.95% F1-score. Due to
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Table 4.7: Architecture of the proposed second GCN Model
Layer Type Parameters Activation

CC1 Chebyshev convolutional (ChebConv) Filters : 16 SoftPlus
PL1 Graph Pooling Layer MAX -
BL1 Batch Normalization1d Features: 16 Momentum = 0.1 -
CC2 Chebyshev convolutional (ChebConv) Filters : 32 SoftPlus
PL2 Graph Pooling Layer MAX -
BL2 Batch Normalization1d Features: 32 Momentum = 0.1 -
CC3 Chebyshev convolutional (ChebConv) Filters : 64 SoftPlus
PL3 Graph Pooling Layer MAX -
BL3 Batch Normalization1d Features: 64 Momentum = 0.1 -
CC4 Chebyshev convolutional (ChebConv) Filters : 128 SoftPlus
PL4 Graph Pooling Layer MAX -
BL4 Batch Normalization1d Features: 128 Momentum = 0.1 -
CC5 Chebyshev convolutional (ChebConv) Filters : 256 SoftPlus
PL5 Graph Pooling Layer MAX -
SM Softmax Layer - Softmax

Table 4.8: Hyper-parameters of second GCN Model
No Hyper-parameter Value

1 Number of Epochs 200
2 Window Size 0.5
3 Train Set 85%
4 Test Set 15%
5 Optimizer Adam
6 Learning Rate 10−7

7 Batch size 16
8 Loss Function Cross-Entropy
9 L2 Norm 10−7

the small number of trainable parameters, the training method is so effective that train-

ing per iteration requires only 1.4 seconds. The recommended model converges at

epoch 120. The accuracy plot displays training and performance-related information.

The accuracy plot demonstrates that the training and validation accuracy converge to

the same values at the same rate, indicating that the model is well-fitting. From the

confusion matrix we notice that the model reduced the confusion between the inner

classes (Legs and Hands), and almost killed the confusion between outer classes.

Page 125



Figure 4.24: Train and validation accuracy.

Table 4.9: Model Evaluation
Subject Precision Recall F1-Score

1 93.85% 93.42% 93.63%
2 94.31% 93.95% 94.13%
3 89.47% 89.63% 89.55%
4 88.81% 88.22% 88.51%
5 92.62% 91.54% 92.08%
6 87.92% 87.79% 87.85%
Average 91.16% 90.75% 90.95%

4.9 Discussion

4.9.1 Evaluation study:

Regarding the dataset of drug-dependent individuals, which may significantly impact

the model’s precision. Our suggested method consists of two models, the first of which

is based on machine learning (SVM) and the second on deep learning (Attention-based

Bi-LSTM), and achieves high performance and classification accuracy. Due to the fact

that the noisy data (drug effects) are not geometrically separable, the first SVM-based

model has only been applied to two filtered channels (C3 and C4) and has obtained

roughly 74% precision. In contrast, the second model that applies attention-based Bi-

LSTM to the 14 channels demonstrates greater precision than the first model, which

is one of the advantages of our design (it provides deep mining). In this classification

task, the evaluation study indicates that the second model is more accurate than the
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Figure 4.25: The Confusion Matrix.

first. We propose that the attention mechanism allowed Bi-LSTM achieve these out-

comes compared to SVM, taking into account the abnormalities caused by the drug-

induced changes in the values of beta and gamma (generally). In an experiment in-

volving the classification of EEG data, LSTM designs fared better than cutting-edge

methods. There are two reasons behind the results. First, EEG signals often comprise

components that are different and difficult to distinguish. Because they are statisti-

cal features, the spatial-frequency features accurately reflect ”categorizable portions”

that are simple to identify. However, because ”hard sections” are not linear and do

not remain constant, statistical characteristics cannot be used to model them success-

fully[212][213]. We observe that our results are better after applying the first GCN

model with diverse features and observing the similarity convergence of both train

and validation accuracy which means that the model is fitting well. The major advan-

tage of using GCN is to detect the non-linearity in our patterns and provide a deep

mining technique that helped us to increase the precision, recall, and F1-score to ap-

proximately 86%. This average illustrates that the classification for unhealthy subjects

reduces the previous measures. The final Time Domain GCN model provided is ca-

pable of meeting the challenge of subject-specific adaptation. It obtained competitive
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results, with an average of 91 % for accuracy, precision, recall, and F1-score. The

above positive results revealed that the introduced technique successfully filtered raw

EEG signals and classified MI tasks including the abnormal signals.

4.9.2 Comparative study:

As noted, the relative precisions obtained from references[214][215] were 82.70 per-

cent and 88.00 percent. Our model exceeds theirs in terms of classification accu-

racy and number of classes. Article [216] utilized an additional dataset of healthy

subjects, and the experiment utilized all 128 channels. The achieved categorization

performance was 84.00 percent. Our model is able to maintain and extract the prior

long-term and short-term sequence characteristics, as well as account for the dynamic

linkage between the past and future to the present in electrical activation. Our al-

gorithm extracts the most significant EEG segment from a full EEG recording. The

subject-level prediction comparison between the presented GCN methods and com-

petitive models[217][218][219][91][220][221]] was proposed. The presented method

has enhanced classification precision and achieved state-of-the-art results. The excep-

tional performance was a result of the feature extraction method’s ability to extract

useful features from raw EEG signals. The following GCN model identified features

successfully by collaborating with the topological link between overall features. The

last model shows a high classification for all the subjects, thus we conclude that we

successfully achieved the goal of this study of studying different medical backgrounds

and generalizing the brain-controlling technique. Those results will be used later to

control robots in 4 directions by mapping the classes with robot degrees of freedom.

4.10 Contributions

The first contribution obtained from our study is to collect an important EEG dataset

that contains several medical backgrounds. Second, we have achieved the first re-

sults ever that classified motor imagery for both normal and abnormal EEG signals of

healthy and unhealthy subjects. The third contribution is that we evaluated our model
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so that we achieved very respectable results. The fourth contribution is to build a pow-

erful multi-method approach which is able to classify motor imagery for both healthy

and unhealthy subjects in real-time, thus achieving another goal of our study. Finally,

my biggest contribution is to work with some of the best professors and scientists in

Algeria and Italy and publish some scientific papers together.
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Chapter 5

Conclusion and future works

This thesis reports a novel multi-method approach that uses simultaneous models such

as SVM, attention-based Bi-LSTM, and GCN to classify motor imagery tasks for

healthy and unhealthy (drugged, alcoholic) patients. Our test results showed that the

proposed approach achieved significant improvement in classifying human decisions

to control robots over some other approaches that have been applied to only healthy

patients. It shows that our model with an attention mechanism did a good job of catch-

ing and separating EEG features that were different because of how drugs affected the

brain, but the most accurate models were the gcn, which achieved very respectable

results. However, we succeeded in speeding up models, thus controlling robots in real

time.

In future research, we will use other revolutionary methods, such as combining

EOG and EEG, to control multiple robots. We will also study the relationship between

the precision of those models on all the channels and the models that learn only from

specific channels (like the example of SVM and channels C3 and C4). Finally, we will

apply a benchmark with several machine learning and deep learning models applied

to our dataset with several preprocessing and feature extraction methods. The further

objective will be studying the effects of Parkinson’s on EEG signals and trying to

improve their lives by facilitating robots and smart houses to control them.
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[55] M. Spüler, M. Bensch, S. Kleih, W. Rosenstiel, M. Bogdan, and A. Kübler,
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