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Abstract-A new approach is presented to solve common straight 
pipe-flow problems, namely, computation of the discharge Q, 
computation of the internal diameter D and computation of the 
energy slope J. The theoretical approach is based on a referential 
rough pipe model characterized by an arbitrarily assigned 
relative roughness value, taken in the fully turbulence flow 
regime. Thus, the friction factor of Colebrook-White remains 
constant whatever the Reynolds number value. Hence, applying 
the Darcy-Weisbach formula, all parameters of the flow in the 

chosen model, such as the flowing discharge Q , the internal 

diameter D and the energy slope J , are then well defined. These 

allow a direct determination of the required value of Q, D and J 
by the use of a non-dimensional correction factors. The efficiency 
of the proposed approach is put forward through a practical 
application. 
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I. INTRODUCTION 

In the field of turbulent pipe-flow, three great categories 
of problems are encountered. The first problem is to find the 
discharge capacity of the pipe, the second one is to evaluate 
the internal diameter in order to design the pipe and the third 
one is to determine the value of the energy slope in order to 
adjust the slope if necessary. To answer these problems, three 
fundamental relations are commonly used, namely Darcy-
Weisbach, Colebrook-White and Reynolds number 
relationships. Among these three parameters, only discharge 
can be explicitly computed when combining Darcy-Weisbach 
and Colebrook-White relationships that express the energy 
slope and the friction factor respectively. Reynolds number is 
a dimensionless number that expresses the ratio of inertial 
forces to viscous forces and quantifies then the relative 
importance of these two forces under a given flow conditions. 
Two others parameters influence turbulent pipe-flow, namely 
the absolute roughness which characterizes the state of the 
inner wall of the pipe and the kinematic viscosity. These last 
two parameters are measured in practice and rarely cause any 
particular problem. When it comes to answer the last two 
categories of problems, the difficulty lies in assessing the 
friction factor since the Colebrook-White is implicit, as it can 
be seen in Eq.(2). Moreover, equations (1), (2) and (3) do not 
allow to express the diameter in an explicit form. Currently, 
the form of the system of equations (1), (2) and (3) cannot 
lead to the resolution of the last two categories of the 
problems of turbulent pipe-flow. For all these reasons, some 
authors have proposed approximate relations for friction 
factor, diameter of the pipe and for energy slope as well.   

Turbulent pipe flow is governed by the following 
functional relationship ( , , , , ) 0Q J D    , where Q is the 

discharge, J is the hydraulic energy slope, D is the internal 

pipe diameter,  is the average roughness height and  is the 
kinematic viscosity. Among these, only Q, D and J are of 
practical interest.  

Turbulent pipe flow is modelled by the well known Darcy-
Weisbach formula, thereby accounting for the friction factor f 
according to Colebrook-White relationship. These are 
expressed respectively as: 
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where g is the acceleration due to gravity and R is the 
Reynolds number defined by : 
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R
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                                        (3) 

Relation (2) is valid for 2300R . 

When Q, D,  and  are given, equation (1) allows 
calculation of the energy slope J, once the friction factor f is 
determined from Eq.(1) by the use of an iterative procedure. 
References [1]-[3] gave the following approximate solution: 

                                                            

 0.9

1 / 5.74
2 log

3.7

D

Rf


                            (4) 

Equation (4) was established for 5 × 103
＜ R ＜

108and 26 10/10   D . The deviation between Eqs.(2) and 

(4) depends on both R and D/  as it can be seen in figure 1 
for some values of the relative roughness, taken as an example. 
Combining Esq. (1) and (4), the energy slope J is expressed as 
follows :  
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Provided J, D,   and  are given, a direct determination 
of the discharge Q is possible when eliminating f between Eq. 
(1) and Eq. (2). Thus, the following improved relationship is 
obtained [4, 5]:   
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where the non-dimensional parameters q and N are expressed 
as : 
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Fig. 1 Deviation between Eqs.(2) and (4) for  some values of / D   

On the other hand, computation of the diameter D is more 
complex. It requires an iterative procedure according to 
Eqs.(1) to (3). These were reduced to a single equation 
presented in terms of non-dimensional parameters as follows 
[1]-[3]: 
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Where *
/

o
D Q   is a kinematic parameter, 

2 1/5
[ / ( )]

o
D Q gJ is the so-called characteristic diameter, 

*
/

o
D D D is the relative diameter and 

*
/

o
D   is the 

relative roughness. As it can be seen, Eq.(7) is implicit 

in *D and its solution is not yet available. 

For the practically smooth flow regime, corresponding 

to 0*  , Eq.(7) becomes : 
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Equation (8) is also implicit in *D and the following 
approximate solution is proposed [4, 5]: 
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which is valid for 3*9 1010   and 94 10410  R . The 
maximum deviation involved in Eq.(9) is 1.5%.  

For the rough flow regime, corresponding to 0*  , 
Eq.(7) is reduced to : 
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The obtained 
* * *
( , 0)D    relationship is implicit and 

[4] gave the following approximate explicit solutions, 
depending on the relative roughness range:  
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The most relevant and attractive equations for turbulent 
pipe flow computation are certainly those we have reviewed. 
Among the five parameters which govern the flow, only the 
discharge Q can be explicitly computed by the use of Eq.(6). 
The diameter D and the energy slope J are both given either 
by an iterative procedure or by approximate equations with 
respect to the flow regime. These approximate equations are 
not founded upon a theory. Moreover, most of the parameters 
that appear in these relationships have often no physical 
meaning, such as D*and V*of Eq.(7). Furthermore, these 
approximate equations are not valid in the entire domain of 
Moody diagram because their applicability depends strongly 
on the range of the relative roughness and Reynolds number. 
In addition, deviation involved in these relationships is 
sometimes important, depending on both R and / D , and 
may be unacceptable in some practical cases. For all these 
reasons, the main objective of this study is to propose a new 
approach for turbulent pipe-flow computation. The basic 
Eqs.(1) to (3) are applied to a rough pipe-flow characterized 
by an arbitrarily assigned relative roughness value. This is a 
referential rough model from which the current pipe-flow 
characteristics are directly deduced. Explicit relevant 

equations are presented for 2300R and for 05.0/0  D , 
covering the entire domain of Moody diagram [6].  

II. REFERENTIAL ROUGH PIPE MODEL 

The referential rough pipe-model we consider is a pipe 

characterized by / 0.037D  as the arbitrarily assigned 
relative roughness value. The prevailed flow regime is fully 

rough and the friction factor is 16/1f according to Eq.(2) for 

R R  tending to infinitely large value. Thus, applying Eq.(1), 

the energy slope J and the diameter D  are expressed as : 
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We thus deduce from Eq.(14) that the characteristic 
diameter in [1] corresponds, to within a constant, to the 

referential fulfilled rough pipe diameter for QQ   and JJ  . 

This is the physical meaning of the characteristic diameter. 
Applying Eq.(3) for the referential rough pipe model, results 
in : 

4Q
R

D 
                                      (15) 

Eliminating D  between Eqs. (14)and (15) leads to : 
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As it can be observed, the inverted kinematic parameter 
1* in [1] corresponds in fact, to within a constant, to the 

Reynolds number R  governing the flow in the referential 

rough pipe model for QQ   and JJ  . On the other hand, 

eliminating Q  between Eqs.(14) and (15) gives : 
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III. TURBULENT PIPE-FLOW COMPUTATION 

A. Q Is the Unknown Parameter 

1)  Reynolds Number R  

In this section, we assume JJ  and DD  . These identities 

imply QQ  and obviously RR  . Combining Eqs.(1) and (13) 

leads to : 

QQ Q                                     (18) 

where 

f
Q

4

1
                                     (19) 

In view of (18), Q is equal to Q  corrected for effect 

of Q which can be then considered as a non-dimensional 

correction factor of discharge. From Eqs.(3), (15) and (18) 

and bearing in mind that DD  , we thus deduce : 

       RR Q                                     (20) 

Substituting Eqs.(19) and (20) into (2), one may obtain : 
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Inserting Eq.(21) into (20), we derive the following 
explicit Reynolds number relationship:   
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Equation (22) permits a direct computation of the 

Reynolds number R provided J , D ,  and  are given. The 

Reynolds number R  is expressed by Eq.(17) for JJ   and 

DD  , whence : 



3

24
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Notice that in Eq.(23) ),,( JJDDQQRR  . 

2)  Friction Factor 
f

 

The explicit friction factor relationship is obtained when 
combining Eqs.(19) and (20), whence : 
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Although the discharge Q is unknown, Eq.(24) permits a 
direct calculation of the friction factor f for R ＞ 2300, 
provided J, D,  and  are given. The Reynolds number R  
must be computed using Eq.(23). 

3)  Discharge 
Q

  

Inserting Eq.(21) into Eq.(18) results in : 
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where Q  is given by Eq.(13) for JJ   and DD  , whence : 

52 gJDQ                                (26) 

On the other hand, eliminating R between Eqs.(3) and 
(22), the discharge Q can also be  expressed as :  
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Equation (27), along with Eq.(23), permits calculation of 

the discharge Q provided J , D ,  and  are given.   

Introducing the kinematic parameter )/( DQ  , Eq.(27) 

becomes : 
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B. D Is the Unknown Parameter 

1) Reynolds Number R  

In this section, we assume QQ  and JJ  . Thus, one 

may write DD  and obviously RR  . When considering 

Eqs.(14) and (16), D  and R can be then expressed as 
follows : 
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On the other hand, Eqs.(1) and (13) lead to :  

DfD 5/1)16(                             (31) 

which can be simply rewritten as : 

DD                                        (32) 

where 

5/1)16( f                                (33) 

In view of Eq.(32), D is equal to D  corrected for effect of 

 which can be then considered as a non-dimensional 

correction factor of diameter. Combining Eqs.(3), (15) and 
(32) results in : 

RR 1                                 (34) 

Introducing Eqs.(32), (33) and (34) into Eq.(2), we thus 
derive :  
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Due to the implicit form of Eq.(35),  must be graphically 

estimated or computed with the aid of an iterative procedure. 
One way to avoid this is to use the following derived explicit 
relationship [7]: 

                                                          
5/2

5.8

75.4

/
log35.1
































R

D
                (36) 

A comparison was made between Eqs.(35) and (36), 

varying D/  from 0 to 0.02 (Fig.2). As it can be seen in 
figure 2, maximum deviation is less than 0.4% for 

2200R  corresponding to 2300R . 
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Fig. 2 Comparison between Eqs.(35) and (36) for some values of D/ . 

Assuming Eq. (36) and inserting it into Eq.(34) results in :  

                                                         
5/2

5.8

75.4

/
log

35.1 




























R

DR
R

           (37) 

Equation (37) permits calculation of the Reynolds number 

R even though the diameter D is unknown.  The diameter D  

and the Reynolds number R  are given by Eqs.(29) and (30) 

respectively. Notice that in Eq.(37) ),,( JJDDQQRR  . 

The maximum deviation involved in Eq.(37) should not 

exceed 0.4%, since 
max max( / ) ( / ) 0.4%R R      according 

to Eq.(34). If a better accuracy is sought, it is possible to 
establish a more suitable formulation for R, when assuming 
what follows. Taking into account Eq.(32), Eq.(23) can be 
written as : 
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On the other hand, combining Eqs.(19) and (33), one 
obtains : 
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With the aid of Eqs.(21),(32), (39) and (40), Eq.(34) 
becomes : 
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Equation (41) was compared to Eq.(34) along with 

Eq.(35), for 2200R  and 05.0/0  D . It found that the 
deviation is negligible since it is equal or less than 0.05%. 
Equation (41) allows then a direct determination of R, with 
respect to the following three steps: 

Knowing Q, J and , Eqs.(29) and (30) give D and R  
respectively. Notice that R  can also be computed from 

Eq.(15) for QQ  .  

Knowing  ,  D and R , the non-dimensional correction 

factor  follows then immediately from Eq.(36). 

With , D , R and  , Eq.(41) gives finally the required 

value of  R. 

2) Friction Factor F  

Although the diameter D is the unknown parameter, the 
friction factor f can be computed using an explicit relationship, 

provided Q , J ,  and  are given. This can be derived from 

Eqs.(33) and (36), whence :  

2
/ 8,5

1,889 log
4,75

D
f

R




  
    
   

                (42) 

Both D and R must be computed using Eqs.(14) and 

(15) respectively, for Q Q and J J .  

The maximum error involved in Eq.(42) is less than 1% 
when compared to Eq.(2). When a better accuracy is needed, a 
more suitable relationship can be derived from Eq.(33), (34) 
and (41). One can write : 
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In Eq.(43), computation of D , R and  follows the same 

steps than those previously indicated. For R ＞ 300 

and 05.0/0  D , Eq.(43) allows a direct calculation of the 
practically exact value of f  when compared to Eq.(2). 

3) Diameter D    

Provided Q, J,  and  are given, the diameter D can be 
computed by the use of one of the two following explicit 
relations. The first one is deduced from Eqs.(32) and (36), the 
final result being : 
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The maximum deviation involved in Eq.(43) is 0.4% 
which is quite satisfactory for practical purposes. 

The second one is obtained when eliminating f between 
Eqs.(1) and (43). It reads: 
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Eq.(45) is a much better approximation than Eq.(44). It 
gives practically the exact value of the internal diameter D of 
the pipe. With the aid of Eq.(29), Eq.(45) can be written as : 

                                                        
5/2

2/3

04.10

7.3

/
log

2

1



































R

D
DD                (46) 

or, in terms of non-dimensional parameters, as :  
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C. J Is the Unknown Parameter 

1) Friction Factor F 

In this section, Q, D,  and  are given. Thus, the 

Reynolds number R and the relative roughness D/ are 

known. We assume QQ  , DD  , implying RR   in view 

of Eqs.(3) and (15). Furthermore, the friction factor f can be 

computed by Eq.(24), once R is determined using Eq.(22). 

The latter is however implicit in R and the following suitable 

),/( RDR  explicit relationship is recommended: 
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Assuming Eq.(48), a comparison was made between 
Eqs.(2) and (24). The result has been plotted in figure 3 from 
which one can observe that the deviation depends on both 

R and D/ , but remains less than 0.4% for 2300R  

and 05.0/0  D .  
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Fig. 3 Comparison between Eqs.(2) and (24), along with Eq.(48) for some 

values of D/  

2) Energy Slope J 

Combining Eqs.(1) and (24) results in the following 
explicit expression of the energy slope J : 

                                                    
2

52

2 04.10

7.3

/
log

2




















R

D

Dg

Q
J




             (49) 

where R is given by Eq.(48) for the known values of both 

D/ and R . Equation (49) is valid for 2300R , covering 
the entire range of the Moody diagram [6]. 

Assuming Q Q and D D , Eq.(13) gives : 

2

2 5
2

Q
J

g D

                                     (50) 

Combining Eq.(49) and (50), one can write : 

                                                    

2
1 / 10.04

log
2 3.7

D
J J

R




  
  

    
                 (51) 

Otherwise, the energy slope J can be written as: 

J JJ                                     (52) 

where J is the non-dimensional correction factor of energy 

slope, given by: 
                                                    

2
1 / 10.04

log
2 3.7

D

R
J






  
  

    
                (53) 

bearing in mind that R is defined by Eq.(48).  

IV. PRACTICAL APPLICATION 

Determine the internal diameter D of a pressure pipe for: 

4
2 10J


  , 

3
1.5 m /sQ  , 0  , 

6 2
10 m s/


  

The problem can be solved under the two following 
conditions: 

Q Q , J J  

The rough pipe model diameter D is given by Eq.(29) as : 

   
1/ 5 1/ 5

2 2
1/ 5 1/ 5

2 2

4

1.5
2 2 2.253361 m

9.81 2 10

Q
D

gJ
 

 


    

 

   
      
   

 

Using Eq.(15), Reynolds number R is then : 

4

6

4 1.5
847560.3329

2.253361 10

Q

D

R

  





 

 

 

With the aid of Eq.(36), the correction factor of diameter 
 is obtained as : 

2/5
/ 8.5

1.35 log
4.75

D

R






  
  

  
  

2/5
8.5

1.35 log 0.70923334
847560.3329



   
  

    
 

The required value of D is thus: 

0.70923334 2.253361 1.598 m 1.6 mD D      

For the same pipe, determine the discharge Q.  

The problem can be solved under the following conditions: 

D D , J J  

The Reynolds number R is given by Eq.(23), whence : 
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3 4 3

6

9.81 2 10 1.6
4 2 4 2 507112.6739

10

gJD
R







  
    

The discharge Q flowing in the rough model is given by 

Eq.(26), hence :  

5 4 5 3
2 2 9.81 2 10 1.6 0.63725658 m /sQ gJD 


         

Applying Eq.(21), the non-dimensional correction factor 

of discharge Q
 is then : 

1 10.04 1 10.04
log log 2.35168538

2 2 507112.6739
Q

R

      
   
   
   

 

Finally, Eq.(18) gives the required discharge Q as : 

3 -1 3
2.35168538 0.63725658 1.4986 m s 1.5 m /sQQ Q      

Consider the same pipe and evaluate the energy slope J. 

The problem can be solved under the following conditions: 

Q Q , D D  

Eq.(3) allows calculation of Reynolds number R , whence: 

6

4 4 1.5
1193662.07

1.6 10

Q
R

D  
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
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 

 

Furthermore, by the use of Eq.(48), the Reynolds number 
of the flow in the rough model is then: 

0.9
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2 logR

R

R




  

  
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1

0.9

5.5
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

   
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Using Eq.(49), the energy slope J is finally : 

2 2

2 5

2 10.04
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Q
J

Rg D
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 
  

    

2 2

2 5

2 1.5 10.04
log 2 10

504844.5089.81 1.6
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 
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V. CONCLUSIONS 

Turbulent flow-pipe characteristics are computed by a new 
approach based on a referential rough pipe model. This is 
characterized by the arbitrarily assigned relative roughness 

value 037.0/ D . The flow is supposed to be fully rough so 

that the friction factor is 16/1f according to Colebrook-

White equation. Applying the Darcy-Weisbach relation 
[Eq.(1)], it is then possible to express the characteristics of the  

 

 

 

 

 

rough pipe-flow model, in particular the energy slope J , the 

diameter D  and the Reynolds number R . These are given by 
Eqs. (13) to (17).  

Furthermore, computation of the three pipe-flow 

parameters of practical interest namely, ),,,( JDQ ),,,( JQD  

and ),,,( DQJ is worked out conformably to the following 

steps :  

Computation of the discharge ),,,( JDQ is conducted by 

assuming the three following conditions, namely QQ  DD   

and JJ  . The Reynolds number R is then well defined by 

Eq.(23) and the required discharge Q follows then from 
Eq.(24) which is the exact solution of the original implicit 
Colebrook’s equation. Otherwise, the discharge Q can be 

obtained once the friction factor ),/( RDf  is determined by 

using Eq.(26) and putting the result in the Darcy-Weisbach 
equation. 

Computation of the diameter ),,,( JQD is conducted by 

assuming the following conditions, namely, QQ  , DD   and 

JJ  . The diameter D  and the Reynolds number R are 

determined by using Eq.(27) and (28) respectively. Thus, the 
required diameter D is computed by Eq.(44) which is of 
simple formulation, involving only 0.4% of maximum 
deviation. Otherwise, D can be computed with a better 
accuracy by the use of Eq.(45) once the correction factor 

),/( RD is determined from Eq.(34).  

Computation of the energy slope ),,,( DQJ is conducted 

under the same conditions than those in (i), i.e. QQ  , DD   

and JJ  . The Reynolds number R is then well defined by 

Eq.(48) for the known values of D/  and R. Furthermore, 

Eq.(49) gives the required value of the energy slope J. 
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