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Abstract

This thesis tackles the problem of data consistency of Big data in the cloud.
Indeed, our research focuses on studying different adaptive consistency approaches
in the cloud and proposing a new approach for the Edge computing environment.
Managing consistency has major consequences for distributed storage systems.
Strong consistency models require synchronization after each update which affects
significantly the system’s performance and availability. Conversely, models with
low consistency provide better performance as well as better data availability.
However, these latter models can tolerate too much temporary inconsistency under
certain conditions. Therefore, an adaptive consistency strategy is needed to
tune, during run-time, the consistency level depending on the criticality of the
requests or the data items. This thesis provides two contributions. In the first
contribution, a comparative analysis of existing adaptive consistency approaches
is made according to a set of defined comparative criteria. This kind of survey
provides the user/researcher with a comparative performance analysis of the existing
approaches. Moreover, it clarifies the suitability of these approaches for candidate
cloud systems. In the second contribution, we propose MinidoteACE, a new
adaptive consistency system which is an improved version of Minidote a causally
consistent system for edge applications. Unlike Minidote which supports only
causal consistency, our model allows applications to run also queries with stronger
consistency guarantees. Experimental evaluations show that throughput decreases
only by 3.5% to 10% when replacing a causal operation with a strong operation.
However, update latency increases significantly for strong operations up to three
times for 25% update workload.
Keywords: Big data, cloud computing, data consistency, adaptive consistency,
adaptive policy, MinidoteACE, causal consistency.
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Résumé

Cette thèse aborde le problème de cohérence des données de Bigdata dans le
cloud. En effet, nos recherches portent sur l’étude de différentes approches de
cohérence adaptative dans le cloud et la proposition d’une nouvelle approche pour
l’environnement Edge computing. La gestion de la cohérence a des conséquences
majeures pour les systèmes de stockage distribués. Les modèles de cohérence
forte nécessitent une synchronisation après chaque mise à jour, ce qui affecte
considérablement les performances et la disponibilité du système. À l’inverse, les
modèles à faible cohérence offrent de meilleures performances ainsi qu’une meilleure
disponibilité des données. Cependant, ces derniers modèles peuvent tolérer trop
d’incohérences temporaires sous certaines conditions. Par conséquent, une stratégie
de cohérence adaptative est nécessaire pour ajuster, pendant l’exécution, le niveau
de cohérence en fonction de la criticité des requêtes ou des données. Cette thèse
apporte deux contributions. Dans la première contribution, une analyse comparative
des approches de cohérence adaptative existantes est effectuée selon un ensemble de
critères de comparaison définis. Ce type de synthèse fournit à l’utilisateur/chercheur
une analyse comparative des performances des approches existantes. De plus, il
clarifie la pertinence de ces approches pour les systèmes cloud candidats. Dans la
seconde contribution, nous proposons MinidoteACE, un nouveau système adaptatif
de cohérence qui est une version améliorée de Minidote, un système de cohérence
causale pour les applications Edge. Contrairement à Minidote qui ne fournit que la
cohérence causale, notre modèle permet aux applications d’exécuter également des
requêtes avec des garanties de cohérence plus fortes. Des évaluations expérimentales
montrent que le débit ne diminue que de 3,5 % à 10 % lors du remplacement d’une
opération causale par une opération forte. Cependant, la latence de mise à jour
augmente considérablement pour les opérations fortes jusqu’à trois fois pour une
charge de travail où le taux des opérations de mise à jour est de 25 %.
Mots Clés: Big data, cloud computing, cohérence des données, cohérence
adaptative, politique adaptative, MinidoteACE, cohérence causale.
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General Introduction

Nowadays, Social media, smartphones, tablets, GPS devices, sensors, log files, and a
variety of other devices and sources generate a tremendous amount of unstructured
data every second. Furthermore, the amount of data created each year is far greater
than it has ever been, which is why our era is known as the Information Age. This
data deluge, known as Big Data, adds a slew of problems to many facets of data
storage and administration. These issues arise not only because of the enormous
sizes, but also because of the required velocity and the complexity of data arriving
from several sources with varying requirements, all while dealing with significant
load variability. In order to deal with the related challenges, many Big Data systems
rely on large and novel infrastructures, as well as new platforms and programming
models that have become cheaper and more powerful than ever before due to the fast
development of processing and storage technologies and the success of the Internet.
In this context, the emerging paradigm of Cloud Computing [3] offers excellent
means for Big Data. Within this paradigm, users can lease on-demand computing
and storage resources in a Pay-As-You-Go manner [4]. Thereby, corporations can
acquire the resources needed for their Big Data applications at a low cost when
needed [5, 6]. Meanwhile, they avoid large investments on physical infrastructures
that need huge efforts for building and maintaining them, which, in addition,
requires a high level of expertise.

In distributed systems, replica technology [7] is a key technology in enhancing
the system’s performance. With the assistance of replica and redundancy of data
in several domains [8, 9, 10, 11, 12, 13], the distributed file system is able to reduce
access time lag, network bandwidth consumption and system unreliability. However,
this also leads to the problem of replica consistency management. Namely, when
data is accessed and read by multiple users, inconsistency occurs in replicas, and as
a result, the system’s consistency and accuracy are directly influenced. The study of
replica consistency aims to achieve synchronism among multiple replicas. The most
popular strategies provided by storage systems are strong consistency and eventual
consistency [14]. Strong consistency ensures all of the replicas to be updated
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immediately. There is no difference between replicas. Therefore, every access to
replicas will get fresh data. But the cost of maintaining the freshness of replicas
increases significantly, which cuts down the availability of replicas and the system’s
performance. For instance, Google BigTable [15], Microsoft Azure Storage [16] and
Apache HBase [17] provide strong consistency. Eventual consistency doesn’t update
all the replicas immediately, so it tolerates replica divergence. But it promises all
the replicas to be consistent at a specific time. For instance, Amazon Dynamo [18],
Cassandra [19] and MongoDB [20] provide eventual consistency.

Providing one consistency strategy is only suitable for particular scenes since
the clients of cloud storage are multifarious and not all the applications need the
same level of consistency. In addition, the required consistency strategy of an
application is variable at run-time. The management of consistency heavily impacts
storage systems. Furthermore, with Big Data scales, the management of consistency
is critical to meet performance, availability, and monetary cost requirements.
Traditional storage systems and databases that implement rigorous models such as
strong consistency have shown their limitations in meeting the scalability demands
and the performance requirements of nowadays Big Data applications. In this
context, researchers have introduced many improvements where they used intelligent
techniques to resolve the problem of consistency. Flexible and adaptive consistency
approaches are considered intelligent solutions since they inspect the application
requirements and the system context in order to provide adequate guarantees.

First Contribution

To develop a robust adaptive protocol, it is necessary to make a comparative
study of the proposed approaches by taking into consideration all the elements
around consistency in the cloud. All contributions that we have found described
few proposed approaches as related works but none, to our knowledge, established
an exhaustive analysis of the existing adaptive consistency approaches. In the first
contribution [21], we evaluate the most popular adaptive techniques in cloud systems
using a set of criteria proposed for this purpose. To achieve our goal, we first give the
main concepts of consistency in distributed systems including adaptive consistency.
Then, we define a set of criteria that describe the design or the behavior of such
an approach like: architectural model, operation level, granularity of consistency
strategy, adaptive policy, statistical based or predictive policy, conflict detection and
resolution, monetary cost consideration, threshold definition, security and privacy
and implementation tools. Thereafter, we review 19 proposed works by describing
their main contributions and then summarizing their behaviors towards the defined
criteria in a table. The table-based analysis gives us a global view and allows us to
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discuss different aspects of adaptive consistency.

Second Contribution

In the second contribution, we propose MinidoteACE [22] a new adaptive
consistency strategy that enables the client to choose the level of consistency for
each update he sends either causal or strong. For this purpose, we improve Minidote
system [23] to become able to support adaptive consistency. We keep the existing
behavior for causal operations, however we use the implementation of causal stability
[24] to carry out strong operations. An operation is stable if it is delivered to all
the node of the cluster. Hence, a strong operation will not be executed until it will
be stable. Towards that end, we delay the execution of strong queries until they
arrive at the other nodes. The new consistency level is weaker than the typical
strong consistency as it just ensures the arrival of queries to the system nodes,
not their execution. Our model provides stronger consistency guarantees to ensure
high availability. If we assume that operations will be executed correctly, replicas
will have all recent updates so clients will be able to regain their updates when
they switch from one node to another. Hence, in addition to causal consistency,
clients can also perform updates with stronger guarantees. Providing adaptive
consistency allows application designers to choose the convenient consistency level
for each operation according to application needs and the system’s context. The
application can specify which operations should be run under causal consistency
and which others should have stronger consistency guarantees.

Thesis structure

This thesis was divided into three chapters to address the issues raised. The first
chapter introduces basic definitions of big data and different computing paradigms:
Cloud, Fog, Edge and Cloudlet. In the same chapter, we present challenges and
issues of Big data within Cloud Computing, Edge and Fog.
The second Chapter gives a comparative study of adaptive consistency approaches
in the cloud. It tackles the concept of data consistency and its different models.
It proposes also a set of comparative criteria and discusses the existing adaptive
consistency solutions according to the proposed criteria. Then, it outlines challenges
and future research directions.
The third Chapter is dedicated to the proposed adaptive consistency approach in
Edge Computing environments. It gives a background to understand the context
of the work such as : Causal consistency, CRDTs and Causal Stability. Then, It
details the solution’s architecture and algorithms as well as its implementation and
obtained results.
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The thesis is concluded with a general conclusion that summarises all the work
mentioned in the thesis and the effectiveness of the achieved results. It presents
also the prospects of the proposed solutions.
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Chapter 1
General concepts and Context

Introduction

The last decade has known an exponential growing of data sizes within many
corporations and organizations. According to IDC, the overall global datasphere
reached 40 zettabytes by the end of 2019 [25]. while it is predicted to reach a huge
175 zettabytes by 2025. This fast growth of data, known as Big Data, introduces
many issues and challenges related to storing, managing, processing and querying
the huge amount of data. Big companies such as Facebook, Google, Amazon, and
Microsoft have tackled these issues by relying on novel large-scale infrastructures
and software platforms. However, small companies had struggled to keep pace
with the fast growth rate of data size and variety which prove the persistent need
for efficient solutions that enable them to address the emerging challenges. In
this context, Cloud Computing provides excellent tools for dealing with Big Data’s
most difficult features. This chapter introduces the Big Data phenomena, as well
as platforms and infrastructures for dealing with the issues it poses. Then, as an
effective platform for exploiting Big Data management, we concentrate in on Cloud
Computing. Finally, we go through Big Data difficulties and challenges, as well as
how key cloud companies approach them. As a result, we highlight replication in
the context of Cloud Computing, as well as its benefits and drawbacks.

1.1 Big data

1.1.1 Big Data Definitions
According to [26], Big data is “data that exceeds the processing capacity of
conventional database systems. The data is too big, moves too fast, or doesn’t
fit the structures of your database architectures”. Big Data doesn’t mean only the
large amount of data, it adresses also the complexity generated by the growing sizes

5



1.1. Big data

of datasets regarding to different aspects of data handling. This opinion is also
shared by [27], [28] and [29]. In [30], Stonebraker was the first who used the "3Vs"
model to introduce Big Data. The "3Vs" refer to a set of attributes identified as
defining characteristics of Big Data, according to their common name initial. Big
Data refers to data sets that are of a big volume, need big velocity, or exhibit big
variety. [1] considers two additional dimensions of Big data: Value and Veracity
which design the "5Vs" Model of Big data As shown in Figure 1.1.

Figure 1.1: 5 V’s of Big Data [1].

Volume: data sizes have known an exponential increasing in the last decade
due to Data Deluge phenomenon and the variety of data sources, including business
transactions, smart devices, industrial equipment, videos, social media and more.
This phenomenon is a result of lower storage costs and the analytical models that
need large data set to provide more accurate results. In fact, the size dimension of
Big Data represents the primary challenge to the existing data management systems.

Velocity: the speed of Data collection and its flow into the processing engines
make data velocity as importance as data volume [31]. At first, specific kinds of
applications have been characterized by velocity, but it becomes a larger issue with
the growth in the Internet of Things. Therefore, A wide range of applications require
fast data processing in near real-time manner. For instance, electronic trading,
Sensors and smart meters fit in this class of applications.

Variety: Data has many forms and rarely come in a perfectly ordered form
and ready for processing. These data are available in a variety of formats, ranging
from text to video and audio, relational databases to semi-structured data, and
massive binary objects. The major problem is to effectively integrate and manage
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all of these different forms of data. According to SAS [31], 80 percent of created
data is not numerical. Those data, on the other hand, should be used in analytics
and decision–making.

Value: Value means big data has a very high value if it is processed in an
appropriate way or it can also be said how valuable or meaningful data is. For
example, the biodata of employees of a company selling food raw materials will
not be of value for the benefit of predictive analysis of sales of raw materials to
customers. The data may be unimportant and of no value in one way, but it can be
very important and very valuable in another. Data that has no value in any part
will not be filtered in the Big data analytics application system.

Veracity: Veracity [31] refers to the quality of data mainly accuracy and
precision. The big variety of data sources makes linking, matching, cleansing
and transforming data across systems so difficult. Businesses need to connect and
correlate relationships, hierarchies and multiple data linkages. Otherwise, their data
can quickly become uncontrollable.

1.1.2 Big Data Platforms
Since Database Management Systems and traditional data querying paradigms
cannot fulfill the increasing requirements of Big data, multiple storage methods
and data processing approaches have been proposed to overcome this issue.

• Parallel File Systems: To address centralized file system scalability and fault
tolerance limits parallel file systems have been created. They depend on
decentralized storage, which allows for scalable performance and quick access.
The enormous parallel architecture of this file system class makes it possible
to distribute working loads over several servers, which may be extended across
large areas, to access the data and occasionally to access metadata. In addition,
replication allows file systems to have faster access to data from closer replicas.
Most parallel file system developers are unwilling to adhere to POSIX semantics
[32] for the provision of such scaling capabilities. Like the ACID criteria,
the POSIX standard enforces a strong semantic and restricts information
processing which penalizes system performance and is a key bottleneck for
scalability. However,many file systems such as GPFS [33] feel that POSIX
compatibility is highly important in spite of the performance penalty. Other
systems prefer to provide a basic POSIX-compliant data access interface even
when the system itself is not completely POSIX-compliant, like Luster file
system [34]. In the meanwhile, POSIX compatibility with contemporary file
systems for increased performance, scalability and availability, such as PVFS
[35], Ceph [36], Google File System [37] and HDFS [38].
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• NoSQL Datastores: RDBMS has over the past several years proven that
its scalability constraints are overwhelmingly high for Big Data. Strong
ACID semantics (Atomicity, Consistency, Isolation and Durability) are used
in RDBMS designs and query models (primarily SQL) which were deemed
necessary for many years in order to offer a "correct" model. However, enforcing
such semantics offers new constraints with the increasing size of applications,
in the age of big data [35]. To offer scalability, availability and excellent speed,
NoSQL rejects part or all ACID semantics. NoSQL datasets often rely on
considerably simpler data queering models than SQL, with key-based access
and key/value scheme-based data. Data may be stored and disseminated
massively based on appropriate algorithms and data structures. NoSQL data
storage and storage systems such as Amazon Dynamo [18], Google Big Table
[15] and Cassandra [19] have now proved to be very efficient in the use of global
data. Usually, these systems are developed for a certain application class (e.g.
Web applications, document storage, etc.). Therefore, they rely on concepts
that might loosen or sacrifice part of the strong semantics, in order to make
them more efficient, better available and more scalable.

• MapReduce: MapReduce [39] is a Google-inspired programming technique
that offers a massively parallel processing of huge data collections. Two
primary phases comprise the MapReduce frameworks: the Map Phase and
the Reduce Phase. The users provide a map function, dividing the incoming
into sub-problems and generating interim data as key-value pairs. These
intermediate data are also transmitted to a user-specified reduction function.
In the Reduce step all values with the same intermediate key are combined.
MapReduce has become an essential paradigm for Big Data data processing
because it offers scalability, availability, performance and reliability whereas
traditional RDBMS (with their SQL-based query architecture) struggle to fulfill
needs for scalability. MapReduce frameworks like Hadoop [38] can most of the
time efficient processing of data of broad size to substitute complicated SQL
queries. In this context, a large range of MapReduce applications has been
created including applications for distributed data querying, data analytics,
parallel sorting, data clustering, and machine learning.

1.1.3 Big Data Infrastructures
The remarkable rise of Big Data demands efficient infrastructures and innovative
computing paradigms in order to handle large amounts of data and their big velocity.
Hereafter, we show three typical infrastructure models that give great ways to
manage Big Data.
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• Clusters: Cluster computing involves linking several computers over a local area
network (LAN) to their normal software stack (e.g. operational systems), to
construct a global system. One of the key inspirations for effective distributed
computing was cluster computing. This paradigm is primarily aimed at
providing improved performance and low cost availability. During the Big
Data era, specialized clusters are generally constructed by companies consisting
of commodity hardware. These clusters operate Big Data (such as Hadoop
and NoSQL systems) platforms to efficiently hold enormous amounts of data.
Simultaneously, they offer real-time treatment and high availability. These
cluster sizes can range from tens to tens of thousands of nodes [40].

• Grids: By definition in [41], the term “the Grid” refers to a system
that coordinates distributed resources using standard, open, general-purpose
protocols and interfaces to deliver non-trivial qualities of service. A grid is
therefore a system which:

– Coordinates users without centralized control over resources.
– Offers standard, open protocols and interfaces for broad use.
– Providing non-trivial service characteristics.

Grid Computing covers in general the federation and coordination of
heterogeneous sub-organizations and resources which might be distributed over
remote locations. It tries to hide from users and reveals to them the illusion of
a global system that the coordination of subsystems is complicated.

• Clouds: Over the years, parallel and distributed computing has evolved to
ensure greater service quality and efficiency in performance, cost and fault
tolerance. Cloud Computer is a rapidly emerging computing paradigm.
Software and/or hardware is provided through a computer network, often the
internet, as a service under this paradigm. In their abstraction level, cloud
services differ. They may be classified into three levels: software, infrastructure
and platform. Since it came into being, Big Data applications have taken over
cloud computing quickly. For many companies it was long-lastingly necessary
to acquire resources in Pay-as-You-Go ways to expand their big data platforms,
and cloud providers supply this. In addition, Big Data platforms are offered
to the most cloud service providers. They let customers to execute their apps
without worrying about the costly administration and upkeep of infrastructure.

1.2 Cloud Computing

Cloud Computing is a rising paradigm that has become increasingly popular in
the last decade, particularly in IT and economy community. Many authors have
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tried to give a clear definition of cloud computing. While various definitions exist,
they have common characteristics. [42, 43, 44, 45]. Cloud computing is defined by
the capability to supply software and hardware in a scalable manner. The basic
component of Cloud is architecturally a data center that includes raw hardware
processing and storage for renting in conjunction with software in a pay-as-you-go
manner. Buyya et al. [44] define a cloud as "a type of parallel and distributed system
consisting of a collection of inter-connected and virtualized computers that are
dynamically provisioned and presented as one or more unified computing resource(s)
based on service-level agreements established through negotiation between the service
provider and consumers". In [45], Berkeley RAD lab defined Cloud computing as
follows: "Cloud computing refers to both the applications delivered as services over
the Internet and the hardware and systems software in the data centers that provide
those services. The services themselves have long been referred to as Software as
a Service (SaaS). The data center hardware and software is what we will call a
Cloud. When a Cloud is made available in a pay-as-you-go manner to the general
public, we call it a Public Cloud; the service being sold is Utility computing. We
use the term Private Cloud to refer to internal data centers of a business or other
organization, not made available to the general public. Thus, Cloud computing
is the sum of SaaS and Utility computing, but does not include Private Clouds.
People can be users or providers of SaaS, or users or providers of Utility computing"
From a hardware perspective, Cloud computing characterizes itself from traditional
computing paradigms in three areas.

• Users of Cloud computing do not need to prepare ahead for future IT
infrastructure expansion. Cloud computing gives customers the illusion of
having boundless computing resources.

• Cloud customers can start using a few computing resources of Cloud resources
and then scale up as their needs grow.

• Cloud providers give short-term payment capabilities. Processors and storage
resources, for example, can be freed if they are no longer needed in order to
keep money. Cloud computing matches Big Data perfectly as it delivers nearly
unlimited resources on request. Moreover, it provides the Big Data processing
capability for any user who cannot create its own infrastructure, like clusters,
networks, and so on. Cloud customers might potentially conduct their big data
processing economically by leasing resources.

1.2.1 Cloud Service Levels
Cloud Computing services differ in their levels and can be categorized as seen in
Figure 1.2 into three tiers. Cloud customers now have multiple types of resources
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to acquire from different suppliers. A customer may Cloud clients nowadays can
purchase resources of different natures from various providers. A client can lease
infrastructure resources, platform resources, or software resources, possibly all three
types simultaneously.

Figure 1.2: Infrastructure layers of Cloud. [2].

• Software as a Service (SaaS): Software as a service is the most visible layer
for end-users. software is delivered as a service over a network, Internet
typically, by allowing customers to directly use applications deployed on
Cloud infrastructure. With recent developments in network hardware and
the high bandwidth, customers may run applications and software over the
Internet, which are previously running on local machines. Such a service
is advantageous to customer organizations, since it streamlines application
management. Moreover, it enables improved version homogenization between
application users, and gives global access and collaboration. In general, any
Web browser can be used as an interface of Cloud applications. Examples of
SaaS Clouds are Google Docs [46] and Microsoft Office Live [47], etc.

• Platform as a Service (PaaS): PaaS sits on the bottom of SaaS to offer a
high-level computing platform that often includes Operating System, database,
programming and execution environment. Using PaaS, software developers can
design their applications using specific frameworks provided by the platform
without the need to control the underlying hardware infrastructure (IaaS).
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In the last few years, PaaS has become very popular. The customers
export platform and infrastructure management to a third party with all its
complexity, which is generally better experienced and better suited to face the
accompanying infrastructure and platform difficulties. Google App Engine [48],
Microsoft Azure [49], and ConPaaS [50] are examples of PaaS.

• Infrastructure as a Service (IaaS): IaaS provides raw hardware resources on
demand in the form of virtualized resources, such as computing power, network
and storage. Infrastructure pools including storage, computer Servers, network,
and other hardware components are hosted, managed, and maintained by the
cloud provider. Customers have to manage and maintain the software stack.
Fees are levied on a model that reflects the real level of utilization of crude
resources: Volume storage, hourly cycles of CPU, etc. Examples of IaaS Cloud
platforms include: Eucalyptus [51], OpenNebula [52], and Amazon Elastic
Compute Cloud [53].

1.2.2 Cloud Computing Models
Many cloud models have been introduced to meet the needs of their targeted users
[54]. There are three main models :

1.2.2.1 Public Clouds

Public clouds are the most common type of cloud computing deployment. The cloud
resources (such as servers and storage) are owned, maintained, and distributed via
the Internet by a third party cloud service provider. With a public cloud, the
cloud provider owns and manages all hardware, software, and other supporting
infrastructure. Major Cloud providers like Amazon, Microsoft and Google target a
wide range of customers with reliable and effective services at reasonable pricing.
The concept of public cloud offers several benefits over other paradigms. Public
clouds cut financial costs dramatically, in particular for new projects, as the charge
comprises only the amount of resources usage. Public cloud customers access
services and manage their accounts using a web browser and share the same
hardware, storage, and network devices with other organizations or cloud tenants.

1.2.2.2 Private Clouds

Private clouds are platforms designed specifically to serve one organization. The
cloud platform might be built internally by the same organization or by a third
party. The versatility of the private cloud can help organizations since the platform
can be developed to meet the organization’s specific requirements. However, the
organization is obliged to handle (by itself or by delegating to a third party) the
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infrastructure and platform management and maintenance, which can be both
complicated and costly. Since only customers belonging to the organization are
allowed to access the cloud, private clouds are characterized by their high security
and privacy. However, they might suffer from limited scalability and elasticity
as the needs grow over the years. Private clouds are often used by government
agencies, financial institutions, any other mid- to large-size organizations with
business-critical operations seeking enhanced control over their environment.

1.2.2.3 Hybrid Clouds

A hybrid cloud is a combination of two or more clouds of different nature (public
and private). Hybrid cloud computing allows companies to seamlessly expand their
local infrastructure to the public cloud When the need for more computing and
processing resources rises. Such a solution allows companies to handle any overflow
— without access to the whole of their data by data centers. The heterogeneity of
resources in several clouds, however, can lead to an additional overall management
and fluctuation in performance. In spite of this, virtualization techniques were
mature enough to handle physical resource heterogeneity. In addition, in some
circumstances a combination of public and private resources can offer a vulnerability
to private data safety. Hybrid clouds remove huge investments in the management of
short-term demand growth as well as in the freely-funding of local resources to more
sensitive data or applications. They also enable organizations to scale up computer
resources. Instead of buying, programming and maintaining new resources and
equipment that can be idle for a long period, companies are paying for the resources
they temporarily use.

1.3 Emerging Computing Paradigms

With the Internet of Things (IoT) becoming part of our daily life and our
environment, a rapid growth in the number of connected devices is expected. IoT is
expected to connect billions of devices and humans to bring promising advantages.
According to [55] the number of connected objects in the world will increase from
11.7 billion in 2020 to 30.9 billion in 2025. Data generated by IoT devices is
tremendously huge which obligates companies to use the cloud to process and
store data. As the data velocity and volume increases, moving the big data from
IoT devices to the cloud might not be efficient, or might be even infeasible in
some cases due to bandwidth constraints. On the other hand, as time-sensitive
and location-aware applications emerge (such as patient monitoring, real-time
manufacturing, or self-driving cars), the distant cloud will not be able to satisfy
the ultra-low latency requirements of these applications, provide location-aware
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services, or scale to the magnitude of the data that these applications produce
[56] . Moreover, in some applications, sending the data to the cloud may not be a
feasible solution due to privacy concerns. In order to address these issues, there is a
quintessential need for a computing paradigm that takes place closer to connected
devices [57]. Therefore, Edge Computing [58] and Fog computing [59] paradigms
have been proposed to address such challenges. Figure 1.3 illustrates the difference

Figure 1.3: The difference between Cloud, Edge, and Fog Computing.

between Cloud, Edge, and Fog Computing.

1.3.1 Edge Computing
Edge computing is defined as a model of distributed computing that employs
technologies allowing to perform computation at the Edge of the network [58].
Edge computing augments the cloud computing paradigm, where all processing is
performed in data centers, in order to achieve better scalability, lower latencies,
better data privacy, and a more efficient usage of resources (including a more
effective energy consumption). In Edge computing, processing is performed
cooperatively by Edge devices and cloud servers. Which computations are
performed on which of these components depend on a number of factors, including
both the capacity of the nodes and the latency requirements. The term "Edge"
refers to any computing and network resources along the path between data sources
(devices) and cloud data centers. For example, a mobile phone is considered as an
Edge between body things and cloud as well as a gateway in a smart home is the
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Edge between home things and cloud. The same thing with a micro data center
and a Cloudlet [60] that form the Edge between mobile devices and cloud. The
rationale of Edge computing is that computing should happen as near as possible
to data sources. Edge computing is interchangeable with Fog computing [59], but
Edge computing focus more toward the thing’s side. Three possible approaches are:
Cloudlets [22], MEC [23], and Fog computing [24]. In [37], the main differences are:
Cloudlets are computers or clusters of computers with above average performance
and well-connected to the Internet; MEC is an architecture for deploying a wide
variety of applications on top of some host, and it is the key to the growth of the
Internet of Things (IoT); Fog computing needs both cloud and Edge nodes (the
others can exist without the cloud) and it runs applications for satisfying a specific
use case.

1.3.2 Fog Computing
Fog computing enables computation, storage, networking, and data management
on network nodes in close proximity to IoT devices, bridging the gap between
the cloud and end devices. As a result, computing, storage, networking, decision
making, and data management occur not only on the cloud, but also as data
travels the IoT-to-Cloud path (preferably close to the IoT devices). In Intelligent
Transportation Systems, for example, GPS data can be compressed at the Edge
before being transmitted to the cloud [61]. The OpenFog Consortium defines
Fog computing as [62] “a horizontal system-level architecture that distributes
computing, storage, control and networking functions closer to the users along a
cloud-to-thing continuum. ” In Fog computing, a "horizontal" platform permits
computer operations to be disseminated across platforms and industries, whereas a
"vertical" platform encourages segregated applications [63]. A vertical platform may
be well-suited to a siloed application, but it ignores platform-to-platform interaction
in other vertically focused platforms. Fog computing provides a flexible platform
for operators and customers to meet their data-driven needs while also allowing for
a horizontal design. Fog computing is intended to provide a solid foundation for the
Internet of Things.
Even though both Fog computing and Edge computing shift processing and storage
to the network’s Edge and closer to IoT devices, the two paradigms are not
interchangeable. In reality, the OpenFog Consortium claims that Edge computing is
frequently mislabeled as Fog computing. Fog computing is hierarchical and provides
computing, networking, storage, control, and acceleration everywhere from the cloud
to the Edge, whereas Edge computing is limited to processing at the Edge [62] (Refer
to Figure 1.3). Moreover, in a tutorial article [64] about Fog and Edge, the authors
explain that “Fog is inclusive of cloud, core, metro, Edge, clients, and things, ”
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and “Fog seeks to realize a seamless continuum of computing services from the
cloud to the things rather than treating the network Edges as isolated computing
platforms, ” and “Fog envisions a horizontal platform that will support the common
Fog computing functions for multiple industries and application domains, including
but not limited to traditional telco services. ” [64]

1.3.3 Cloudlet computing
The Cloudlet is proposed by Carnegie Mellon University as a new element that
extends the mobile device-cloud architecture, to meet the latency challenge of mobile
cloud computing. As defined in [60], "a Cloudlet is a trusted, resource-rich computer
or cluster of computers that is well-connected to the Internet and available for use by
nearby mobile devices". Cloudlets are small data centers (miniature clouds, as the
name suggests) that are typically one hop away from mobile devices A Cloudlet’s
logical closeness to the mobile device is required to reduce end-to-end latency
between the mobile device and the cloud. The network position is an appropriate
place for the Cloudlet. Which could, for example, be placed in a cellular base station
or a Wi-Fi access point (AP). The goal is to offload compute from mobile devices
to network Edge VM-based Cloudlets. Although contemporary Cloudlet computing
research is primarily driven by academia, it offers significant potential in areas such
as wearable cognitive assistance and web applications companies.

1.4 Challenges and Issues of Big data applications in
different computing paradigms

1.4.1 Data Durability
For Big Data applications, data Durability is a major challenge. Data loss can
have a variety of implications, ranging from catastrophic failures of mission-critical
programs to minor glitches. Storage architects have developed creative approaches
to ensure data durability over the years, relying on a variety of strategies like as
replication and log-based systems. At the level of disk storage, RAID (Redundant
Array of Independent Disks) is a very popular solution [65]. To ensure data
Durability, RAID systems integrate several disk drives with diverse data distribution
algorithms. However, such technology falls short of real-world cloud scales [66]. To
ensure data durability, cloud storage systems rely (at a higher level) on hinted Writes
(based on logs) and geo-graphical replication. Glacier [67] is an Amazon service that
allows you to store data for a long time. The data durability of Amazon Glacier
is guaranteed to be 99.999999999 percentile. Its architecture is based on a massive
number of geographically replicated tape libraries. Amazon Glacier, on the other
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hand, is not an online system because retrieving data takes hours.

1.4.2 Fast Access
The increase in data volume, variety, and velocity is accompanied by an increase
in demand for high performance and quick access. Given the massive volumes of
data, cloud providers and Big Data companies are employing a variety of ways
to handle this problem. When compared to traditional hard drives, technological
advancements in Flash Memory and Solid-State Drives (SSD) cut access time by
around 8 times [68]. Novel storage system architectures rely on replication to give
faster access to local copies of data at the software level. In the case of geographical
distribution, Optimistic Replication [69] allows substantially faster access because
data can be obtained immediately from a geographically close replica while being
asynchronously propagated to further copies. Allowing in-memory processing within
distributed storage systems is another way for enabling faster access. This allows
storage users to access the majority of their data from RAM rather than drives.
Memtables are in-memory data structures used by systems like Google BigTable
[15] and Cassandra [19] to give quick access to a huge amount of data directly from
memory.

1.4.3 Scalability
Cloud computing is a viable choice for Big Data applications if the services can
grow to meet the needs of the computation. To support the expanding amount or
veracity of Big Data sets, storage infrastructure must be able to efficiently utilize
a large number of resources (e.g., virtual disks) and combine them elastically and
constantly. At the same time, in order to minimize performance bottlenecks and
idle resources, the burden must be spread proportionally with the resources (i.e.
load balancing) [70]. This is true for handling data access requests as well as for
scheduling compute activities. To achieve system scalability and load balancing, it’s
crucial to know how traditional techniques designed for smaller scales (e.g., in the
field of distributed shared memory, cluster scheduling) can be leveraged, extended,
and adapted to the unprecedented scale brought to reality by cloud infrastructures.

1.4.4 Low-latency and high-throughput access to data under
heavy concurrency

For data analysis, Big Data processing necessitates a high degree of parallelism
(i.e., many compute nodes concurrently access, process and share subsets of the
input data). As a result, many application instances use the cloud storage system
to receive input data, write results, report their state for monitoring and fault
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tolerance, and write their computation’s log files. For many scientific applications,
such data access have a significant impact on overall execution time. To provide
low-latency and high-throughput access to data in such settings, existing cloud
storage systems must be enhanced with means to enable extensive concurrent access
to shared data while avoiding the often high expense of traditional synchronization
mechanisms.

1.4.5 Stream processing
Stream processing is the management and analysis of continuous sequences of
relatively small data items [71], often known as events, in real time. Given large
amounts of data received in real-time, at rising rates in diverse circumstances,
stream processing is quickly becoming one of the most important classes in the
area of Big Data. Because of the continuous nature of the stream and often small
amounts of the events that make it up, managing such data is a different problem
than managing static or stored data. In reality, as reported in [72], an extensive
examination of thousands of commercial projects and millions of machine hours
of computing demonstrated that the performance of the stream process is strongly
dependent on the management and transfer of events, as well as their latencies. As a
result, there is an increasing demand for a high-performance system for cloud-based
event streaming.

1.4.6 Security and Privacy
The current state of big data development is beset by a slew of issues that have
been identified by people in recent years. Privacy and Security concerns have
long persisted among them [73]. There is a huge amount of data nowadays
that conventional hardware and software can’t keep up with the massive number
of different sorts of data being generated at breakneck speed. Traditional data
technologies can no longer process, store, analyze, or manage big data because it
has grown too complicated and dynamic. Then there’s the issue of data privacy,
which is worsening. Traditional security techniques, which are designed to protect
modest amounts of static data, are insufficient. Anomaly detection analytics, for
example, would yield much too many outliers. Similarly, utilizing existing cloud
computing technologies to solve them is difficult. Because huge data poses security
threats in terms of storage, processing, and transmission, among other things. It
is necessary to protect data security and privacy. Big data security and privacy
preservation, however, are more complex than other security challenges (such as
data security in cloud computing). Big data adds to the variety, velocity, and
volume of security management challenges that are already present in traditional
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security administration. Information from multiple sources across the company will
most likely be stored in big data repositories. Managing secure access to such a
diverse set of data is difficult.

1.4.7 Data Availability
Data is said to be available if all (or most) access requests result in a successful
response [74, 75]. For many Big Data applications, availability is a must-have.
Customers must constantly receive a response to their requests in order to avoid
financial losses, hence web services such as Web shops require a high level of
availability. For example, the average cost of IT downtime has been estimated
to 5,600 $ per minute [76]. In this context, other architectures that guarantee high
levels of availability at a large scale appeared. Amazon Dynamo storage [18] is used
by the Amazon.com e-commerce platform [77], as well as many other Amazon Web
Services, to achieve extraordinarily high levels of availability. For a peak client load
of 500 requests per second, Amazon Dynamo sacrifices a few of the ACID strong
semantics in order to provide a Service Level Agreement (SLA) guaranteeing that
a response will be supplied within 300 milliseconds for 99 percent of the time.

1.4.8 Failure Tolerance and Disaster Recovery
Commodity hardware is often used in cloud storage infrastructures. As a result,
failures of components are the rule rather than the exception. One of the most
difficult tasks for Big Data platforms and infrastructures is to keep them functioning
when one or more components fail.Fault tolerance is commonly achieved through
redundancy and replication. RAID (Redundant Array of Independent Disks) is a
frequently used solution. The scalability of these techniques, on the other hand, is
a serious concern. Optimistic asynchronous Replication [69] is a popular technique
that scales to large areas. This approach provides a fault-tolerant alternative to
synchronous replication that allows for scalable performance. Furthermore, disaster
recovery capabilities are provided by replicating data across multiple geographical
locations and ensuring its durability. Within major cloud providers, it is now quite
simple and inexpensive to replicate data across various continents. In this case,
systems can recover even if most or all of the data centers in a geographical area
have been compromised by a malicious actor.
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1.5 Our Focus: Replication and Consistency

1.5.1 Replication
Replication consists in storing multiple copies of the same data on multiple storage
devices or storage nodes. For Big Data, replication is a critical aspect because
it is required to handle the Big Data issues in the era of planet-scale services
and applications. It provides the necessary tools for ensuring data durability,
enabling fast access via local replicas, increasing data availability, and ensuring fault
tolerance. Data propagation from one replica to another has traditionally been done
asynchronously. Fundamentally, data is immediately propagated to other replicas
for each update or write before the operation is declared successful. However, with
today’s expanding sizes, this technique has shown its limitations, as it fails to deliver
scalable performance, particularly at large scale replication. Because read and write
operations must wait for answers from all replicas, regardless of their location, before
returning a success, the need for synchronization, along with high network latencies,
has a negative influence on operation latencies. To solve this problem, Optimistic
(or lazy) Replication [69, 78, 79] was introduced. The propagation of data to other
replicas (or a subset of replicas) is done lazily and at a later time. Update and
write operations are allowed to succeed in this circumstance since the data has been
committed locally but has not yet been fully propagated. Although, a transient
replica divergence may occur as a result of this condition, Optimistic Replication
enhances performance. The network latency has no effect on the latency of read and
write operations. Furthermore, the storage system’s throughput is not slowed down
by the additional traffic generated by immediate data propagation to other replicas.
However, this strategy raises a significant and difficult issue: data consistency.

1.5.2 Consistency
Data consistency is difficult to be guaranteed between different data copies.
Traditional databases (RDBMS) and file systems are constrained by strict semantics
(ACID for RDBMS and POSIX for file systems) where a strong data consistency
is one of the primary requirements. Strong consistency is frequently achieved
through synchronous replication, which ensures that consumers perceive replicas
of the same data in the same state. This was not a problem at the early systems
scales. Strong consistency however may be excessively costly in Big Data systems
and applications, incurring a significant performance overhead and limiting data
availability. To get around this issue, eventual consistency [80, 81] has gained
a lot of attraction in recent years. It allows for some temporal inconsistency at
times, but guarantees that all replicas will eventually converge to a consistent
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state. This is suitable for many modern Big Data applications, including a wide
range of Web applications where update conflicts are few and easy to resolve.
Furthermore, using Optimistic Replication improves performance and availability.
In this context, various trade-offs regarding consistency emerge. They include the
Consistency-Performance trade-off and the Consistency-Availability trade-off among
others. Therefore, managing consistency within storage systems management is
crucial especially how can they deal with Big Data challenges.

Conclusion

n recent years, the growth of data volumes has changed the way IT businesses
manage their hardware and software resources. New computing paradigms and data
processing platforms were introduced as a result. A few infrastructure types, such
as Cluster, Grid, and Cloud Computing, provide the required tools to efficiently
house, transmit, and analyze data to meet the demands of the developing Big
Data phenomena. The Cloud Computing paradigm, in particular, provides the
on-demand flexibility and elasticity of resource leasing that Big Data platforms
require. To deal with the wide range of Big Data applications, it presents several
models and service levels. Furthermore, replication is a crucial feature in the
cloud to deal with data availability, data durability, fast access, and fault tolerance
issues. Replication, on the other hand, raises the issue of data consistency between
replicas. In this context, We highlighted the issue of consistency management as
well as its significant impact and repercussions in dealing with Big Data challenges.
The next chapter will study the adaptive consistency model as a solution to the
trade-off consistency-performance. Moreover, it will highlight the existing adaptive
consistency approaches, make a comparative study according to a set of proposed
comparative criteria, and investigate the future research directions.
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Chapter 2
First Contribution: A comparative
analysis of adaptive consistency
approaches in cloud storage

Introduction

NoSQL storage systems are used extensively by web applications and provide an
attractive alternative to conventional databases due to their high security and
availability at a low cost. High data availability is achieved by replicating data in
different servers in order to reduce access time lag, network bandwidth consumption,
and system unreliability. Hence, data consistency is a major challenge in distributed
systems. In this context, strong consistency guarantees data freshness but affects
directly the performance and availability of the system. In contrast, weaker
consistency enhances availability and performance but increases data staleness.
Therefore, an adaptive consistency strategy is needed to tune, during run-time, the
consistency level depending on the criticality of the requests or data items. Although
there is a rich literature on adaptive consistency approaches in cloud storage, there
is a need to classify as well as regroup the approaches based on their strategies.
This Chapter will establish a comparative analysis of existing adaptive consistency
approaches. To achieve our goal, we first give the main concepts of consistency in
distributed systems including adaptive consistency. Then, we define a set of criteria
that describe the design or the behavior of such an approach. Thereafter, we review
19 proposed works by describing their main contributions and then summarizing in a
table their behaviors towards the defined criteria. This comparative analysis aims to
clarify the suitability of these approaches for candidate cloud systems. Furthermore,
it provides researchers with challenges and open issues in this research area. This
work is published in "Journal of Parallel and Distributed Computing" [21].
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2.1 Context and Problem statement

With the fast development of processing and storage technologies and the success
of the Internet, computing resources have become cheaper, more powerful and more
available than ever before. This technological trend has enabled the realization of a
new computing paradigm called cloud computing [3]. A client of the cloud can lease
just the resources he needs in a Pay-as-You-Go manner [4] with very little knowledge
of the physical resources. Nowadays, cloud computing is the best alternative to grid
and cluster computing because it performs well with data-intensive applications
[5, 6], and companies like Google, Amazon, and Facebook deal with peta- and
terabytes of data every day. In this context, storage management and performance
within clouds is extremely important.

In distributed systems, replica technology [7] is a key technology in enhancing
performance of the system. With the assistance of replica and redundancy of data
in several domains [8, 9, 10, 11, 12, 13], the distributed file system is able to reduce
access time lag, network bandwidth consumption and system unreliability. However,
this also leads to the problem of replica consistency management. Namely, when
data is accessed and read by multiple users, inconsistency occurs in replicas, and as a
result, the system’s consistency and accuracy are directly influenced. The study on
replica consistency aims to achieve synchronism among multiple replicas. The most
popular strategies provided by storage systems are strong consistency and eventual
consistency [14]. Strong consistency ensures all of the replicas to be updated
immediately. There is no difference between replicas. Therefore, every access to
replicas will get fresh data. But the cost of maintaining the freshness of replicas
increases significantly, which cuts down the availability of replicas and the system’s
performance. For instance, Google BigTable [15], Microsoft Azure Storage [16] and
Apache HBase [17] provide strong consistency. Eventual consistency doesn’t update
all the replicas immediately, so it tolerates replica divergence. But it promises all
the replicas to be consistent at a specific time. For instance, Amazon Dynamo [18],
Cassandra [19] and MongoDB [20] provide eventual consistency.

The data consistency can be encountered in cloud systems more than in
non-cloud systems [82]. V.Cheng and G.Wills define in [82] a model to compare
cloud and non-cloud storage of big data. One of their goal was to show the
consistency between the actual and expected execution time on cloud and non-cloud
systems. The paper confirms that there is no comparable consistency on a non-cloud
system. Therefore, in this comparative study we will only focus on data consistency
in cloud storage systems.

Providing one consistency strategy is only suitable for particular scenes since
the clients of cloud storage are multifarious and not all the applications need
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the same level of consistency. In addition, a required consistency strategy of an
application is variable at run-time. Take an online conference as an example [83],
in which the data should be modified under strong consistency when an important
speech is taking place. Otherwise, users accept eventual consistency for better
performance. In this context, a self-adaptive approach is needed to dynamically
adjust the consistency strategy according to the cloud system’s dynamicity and
the application’s demands. Therefore, adaptive replica consistency can satisfy the
application requirements and minimize the transaction cost at the same time.

Many works in the literature addressed the adaptive consistency and the
trade-off between consistency and availability. The proposed approaches have used
different protocols to provide adaptive consistency. Most of them defined a metric
such as: read/write frequency [84], file heat [85], stale reads [86], etc. and used
statistical or probabilistic models to calculate it. Hereafter, the system changes the
level of consistency when the calculated value exceeds the defined threshold. Some
approaches took monetary cost into consideration when they defined their metrics.
However, others used version vectors [87] (information about update history on the
data item) for every copy of data to choose the suitable consistency for every object.

To our knowledge, there is no work in this research area that established a
comparative analysis of the existing adaptive consistency approaches. Since the
works that we have reviewed described only a few proposed approaches as related
works. Establishing a comparative study of the proposed approaches is necessary to
propose a robust adaptive consistency approach. In the present work, we review the
most popular adaptive techniques in cloud systems using a set of criteria proposed
for this purpose.

2.2 Related work

This section discusses the main contributions of this work compared with the most
relevant existing comparative studies by noting all considered elements around
consistency in the cloud. Almost all of the comparative contributions that we have
found on this topic describe just some proposed approaches as related work. On the
other hand, we note that, in the literature, there is a lack of deep comparative
analysis that established an exhaustive analysis of the principle exist adaptive
consistency approaches. Hence, this section looks to evaluate the best known
comparative adaptive techniques in cloud systems by using a set of criteria and
measures for this purpose. In each comparative study between the proposed
approaches we will focus on these main issues: granularity of consistency strategy,
conflict detection and resolution, monetary cost consideration, threshold definition
and adaptive policy.
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Prior surveys [88, 89, 90] have covered different aspects of the adaptive
consistency approaches in cloud storage. In particular, surveys published by H-E
Chihoub et al. over the last few years elaborated on various topics within the
consistency scope such as the concept, benefits and models [91, 92], the architecture
elements and the design of the security challenges in adaptive consistency [88].
During the reviewing of some comparative analysis topics in some specific sections,
we have noted that none of these surveys has particularly focused on the exhaustive
analysis of the existing adaptive consistency approaches. While the data duplication
may be implemented using the existing distributed adaptive consistency approaches,
their great number along with their particular pros and cons made the choice
extremely difficult for those who attempted to adopt a distributed data duplication
architecture in a large-scale context. In order to assist and promote recent initiatives
to put into practice the adaptive consistency paradigm, this survey proposes original
classifications that make comparisons between the broad range of proposed platform
solutions with respect to various availability, reliability and performance criteria.

In this context and in line with the vision of Shin et al. [88], three main key
reasons for the problems studied in the management can be summarized as follows:

1. For the goal of high availability of the stored data, data replication across
storage entities in an efficient way is used. However, these schemes may
mitigate data lock-in mainly in case of the appearance of new data stores.
Hence, replication is a solution that offers availability. In fact, this solution
prevents other functionalities such as data lock-in, data protection and data
erasure coding.

2. In case that data-intensive applications are deployed within a single data store,
the problems of data overflow and network bottlenecks have appeared. The
survey of Shin et al. shows some proposed solutions to solve this problem.

3. Data security is one of the strongest factor in cloud storage and data
duplication. It concerns the implemented hardware, users’ access and the
designed architecture. Many parameters may be changed when the data
security plays its role such as data availability, data privacy, data location
and data storage size. To obtain secured distributed data in the cloud storage
the authors have referred to many solutions.

In the survey [90], data consistency was tackled, but not as a primordial
factor. The authors deal with the data management and they tackle the data
consistency only in one section by defining the three main aspects, i.e., level, metric,
and model. In the data consistency section, the authors show the taxonomy of
data consistency by focusing on these three main aspects in order to determine
how much a consistency is stronger than another. The authors explain in detail
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the I/O-level consistency which requires conservative assumptions like concurrent
write-write and read-write upon the same data. This survey focuses mainly on this
level of consistency. Furthermore, the authors of [90] have drawn a weak consistency
taxonomy together with the influenced factors to encounter the data conflicts which
happen as operations to the same data in multi-master systems. In fact, this survey
studies the data storage management in cloud environments. The consistency was
discussed as a secondary issue. Hence, this work is a global survey which requires the
design of a common data model and standard APIs for different cloud databases
to help application providers. To reach this end, the authors assume that the
ideal solutions for this challenge are to complete data transfer within a budget and
deadline especially for OLTP applications that demand high response time.

As another work, Viotti and Marko [89] defined a structured and
comprehensive overview of different consistency notions that appeared in distributed
systems research. Their work scope was restricted to non-transactional semantics
that apply to single storage object operations. The paper aims to complete
the existing surveys done in the context of transactional database consistency
semantics. The authors define their own non-transactional consistency model of a
distributed system for reasoning about different consistency semantics. In fact, this
work gives a deep knowledge about consistency for non-transactional systems, called
linearizability. The designed authors’s hierarchy of non-transactional consistency
models shows six main component models: Fork based, session, causal, per-object,
Synchronized and Staleness-based models. In all component models, the authors
focus on the explanation of the models use mode and discussion of the principal
existing work for these component models. We observe that this survey maps
the consistency semantics to different practical systems and research prototypes.
Therefore, the contribution of Viotti and Marko is to classify the existing work
of consistency in non-transaction distributed systems depending on the proposed
hierarchy. However, it does not include a comparative study of the existing work.

2.2.1 The main contributions of this comparative analysis
The present work aims to fill this void by drawing a synthesized of comparative
study of 19 proposed consistency approaches for cloud storage. We investigate the
consistency in the cloud and take a strong overview of each analyzed consistency
approach. Hereafter, the comparison of the different approaches proposed for
adaptive consistency in the cloud is shown and discussed. We may cite the two
comparative studies in [93] and [91]. In [93], the authors presented a literature
review that summarized the consistency management in distributed systems, grids
and the cloud. For each proposed adaptive consistency approach in the cloud,

26



2.3. Consistency in the cloud

they gave a short description and criticized it. In [91], the authors defined three
comparison criteria: the level at which the consistency is specified, the cloud storage
system in which the approach is implemented and the test-bed which is used to
evaluate the solution. Then, they compared the three approaches according to
mentioned criteria.

2.3 Consistency in the cloud

Consistency concepts and its relationship with different storage system features,
such as performance and scalability, has been widely addressed. We first review the
definition consistency in traditional database systems. Then, we recall its definition
in distributed systems including cloud systems. Finally, we review the consistency
models and classifications.

2.3.1 Consistency in database systems
In traditional database systems, consistency is defined as a property of transactions
[94][95]. It builds with Atomicity, Isolation and Durability the well-known acronym:
ACID properties. Consistency refers to the fact that the transaction takes the
system from one consistent state to another. Note that a transaction may violate
some of the integrity constraints during its execution. However, once it terminates,
it must restore the system to a consistent state. When transactions are executed
concurrently, the transaction processing system must ensure that the execution of
a set of concurrent and correct transactions also maintains the consistency of the
data. Atomicity requires all the operations of a transaction to be treated as a single
unit; hence, everything in a transaction succeeds or the entire transaction is rolled
back. Isolation refers to the fact that transactions cannot interfere with each other,
i.e., transactions cannot read the intermediate results of other transactions. Finally,
durability requires the results of a committed transaction to be made permanent in
the system.

2.3.2 Consistency in distributed systems
In distributed systems, consistency is defined in a trade-off with availability and
partition tolerance in the CAP theorem [74, 75]. The theorem states that only two
of the three properties can be achieved simultaneously within a distributed system.
In this context, consistency refers to the requirement that the clients should have
the feeling of working on a single node regardless of the number of replicas. This
is equivalent to requiring a total order on all operations and operations act as they
are executing on a single node. Availability means that every request sent by a
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client to a non-failing node should obtain a successful response. Partition tolerance
means that the system should continue delivering its services even if some part of
the system loses many messages arbitrarily and only the total network failure is
allowed to cause the system to respond incorrectly.

2.3.3 The consistency’s use areas and benefits
Big data storage and processing are considered as one of the main applications for
cloud distributed systems. Additionally, the concept of the Internet of Things (IoT)
paradigm has advanced the research on Node to Node communications and enabled
novel tele-monitoring architectures for several applications such as E-Health, Forest
monitoring and others. However, there is a need for safe data storing in decentralized
cloud systems and IoT systems. The purpose of this subsection is to show the
gathered benefits of consistency by citing some existing work and some methods of
big data processing within cloud distributed systems.

Nowadays, cloud computing, fog computing, big data and the Internet of
Things are popular paradigms and their features can be combined for shaping the
next era of data processing, storing and forwarding. Many applications need a data
replication model, where the data consistency is a challenge [96, 97, 98]. We may
find many techniques which are proposed for systems restoring processes. In this
kind of systems, a restoring process fires a transaction consistency across consistency
groups, e.g., disaster recovery systems. Several consistency groups are defined for
replication. For instance, the author in [96] demonstrates a multi-purpose approach
for disaster recovery. The consistency is involved to check whether any data has
been lost, damaged or corrupted in the disaster recovery process.

We may cite several works in the literature where data consistency plays an
important role. In order to show its benefits in different fields, the data consistency
discussion will be divided into three main classes.

1. With the aim to provide an efficient disaster recovery system, the storage
manager must generate multiple recovery copies of the client file and oversee
the transmission of this recovery copies to remote sites. What is needed
in this situation, is a way to ensure the data consistency of the generated
multiple recovery copies. The author of [96] has proposed a big data system
disaster recovery which focuses on multi-site and multi-technique approaches
to ensure that if one method does not succeed, there are other methods
that can retrieve and restore the data. The author considers the the data
consistency as an essential parameter in the experimentation and result. To
reach this aim, the author has checked the data consistency of the proposed
system during its experimentation with the aim to identify whether any data
has been lost, damaged or corrupted in the disaster recovery process. The
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authors in [99] studied techniques that maintain stored data consistency when
migrating virtual machines from a first site to a second site. The main objective
aims to relocate the virtual machines when any migration is planned from
the source site to the destination site during maintaining a consistent data.
The data consistency challenge can be particularly observed while maintaining
a consistent set of data with a pair of consistent data images between the
protected source site and the destination recovery site. The authors uses the
disaster recovery as an exemplary scenario with the aim to avoid a disaster
that is predicted to occur in the vicinity of the source site. Another work can
be cited [100], in which the data consistency plays an important role. The
authors of [100] have tackled the problem of backing up an entire micro-service
architecture in their work, where a running application was decomposed into
multiple micro-services in such a way that it can be recovered after a disaster
strike. The main objective of this work aims to ensure, in case of disaster, the
impossibility to achieve a holistic recovery that brings back all micro-services
in a globally consistent state.

2. It is also necessary to know the data consistency advantages and uses in terms of
security and privacy challenges. For example, in applications where different
central entities collaborate with each other, they must be able to exchange
trust information in order to fix inconsistencies in the reputation values [101].
For instance, any time instantiation of edge devices in fog computing can be
used by multiple smart applications with set of users which raises the issue of
edge device security and makes appear the consistency challenges [102]. The
authors of [103] consider the consistency of data to be a primordial factor in
several security aspects. The data integrity needs the action of maintaining
consistency, where ethical values are important for cloud service providers to
protect integrity of cloud user’s data with honesty, truthfulness and accuracy
at all time. The work of [104] has studied the eventual consistency as a relaxed
trade-off model in order to link the strong consistency and availability. The
authors of this work introduce Byzec which is a protocol that makes eventual
consistency as secure as possible. The proposed protocol allows the service to
run in an eventually consistent manner.

3. Software Defined Networking (SDN) is a promising network paradigm that
aims to solve such problems and accelerate innovation. Its principal is to
decouple the control plane and the data plane to achieve a logically centralized
control architecture providing programmability to configure the network [105].
We may cite several works focussing on the design choice of distributed SDN
controller with the aim to show that to build an efficient distributed controller
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it should consider the following aspects: scalability, robustness, consistency
and security [106, 107, 108, 109]. The papers of [110, 111] define the use of
adaptive consistency models in the context of distributed SDN controllers. The
authors of [110] aim to show how the typical SDN controller architecture can
be extended in order to support adaptive consistency. The obtained results
showed that adaptive controllers were more resilient to sudden changes in the
network conditions than the non-adaptive consistency controllers. However,
in [111], an adaptive consistency model for SDN controllers that employs
concepts of eventual consistency models has been introduced by defining the
concept of runtime adaptation of consistency levels in state synchronization for
a distributed SDN control plane.

2.3.4 Consistency models
In this subsection, we introduce the main consistency models adopted in earlier
single-site storage systems and in current Geo-replicated systems. Many works
addressed this consistency models such as [91], [80] and [112]. They call the highest
level strong consistency, and the lowest level weak consistency. Between strong and
weak consistency, they define other models that provide better performance than
strong consistency and fewer conflicts than weak consistency. In the following, we
adopt the classification of Werner Vogels [80] due to its powerful discrimination and
characterization of models. He states that there are two ways to view consistency.
The first is from the client point of view: how the client observes writing operations.
The second point of view is from the server side: how the system manages updates
and which guarantees are provided with respect to updates.

1. Client-Side Consistency: this kind of consistency investigates in how the
client observes the changes. For instance let us assume that there are three
independent processes: A, B and C which need to communicate to share
information as shown in Figure 2.1. When process A updates a data item,
there are three possible cases:

• Strong consistency: An access by any process, after completeness of
the update, will return the recent data (Figure 2.2). In other words,
strong consistency guarantees that all replicas are in a consistent state
immediately after an update.

• Weak consistency: The system does not guarantee that subsequent accesses
will return the recent data (Figure 2.3). The period between the write
operation and the moment when it is guaranteed that any process can see
the recent data is called the inconsistency window.
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• Eventual consistency: After a window time, the storage system guarantees
that all processes will see the recent data if no new updates are made to
the object (Figure 2.4). This is a specific form of weak consistency and
the size of the inconsistency window can be determined based on factors
such as the load on the system, communication delays and the number of
replicas in the system.

Figure 2.1: Model.

Figure 2.2: Strong consistency.

2. Server-Side consistency: On the server-side, the consistency deals with how
the updates flow through the system to differentiate the modes that can be
experienced by application developers. For instance, let us suppose that N is
the number of replicas in the system, W the number of replicas involved in a

31



2.3. Consistency in the cloud

Figure 2.3: Weak consistency.

Figure 2.4: Eventual consistency.
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write/update operation and R the number of replicas that are contacted when
a data object is accessed through a read operation.

• Strong consistency: if W + R > N , the system will provide strong
consistency and two cases are possible in this formula:

– Case 1 : If the number of replicas is 5 (N = 5) and the number of
responses required to complete write queries is 5 too (W = 5), it is
sufficient to read from one replica (R=1) to get the most recent data
W + R > N .

– Case 2 : If the number of replicas is 5 (N = 5) and the client requires
just two replicas to response to his write queries (W=2), as shown
in Figure 2.5,and if he reads from more than three replicas during a
read operation (R > 3), then there will be at least one replica that
will give the most recent data and the system will still provide strong
consistency W + R > N .

• Weak consistency: If W + R ⩽ N , the system provides Weak/eventual
consistency. This means that there is small number of replicas that are
guaranteed to have the latest write, and during a read operation, it is less
likely to read from a replica that has the latest write (Figure 2.6).

Figure 2.5: Strong consistency.
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Figure 2.6: Weak consistency.

2.3.5 Adaptive consistency
In modern database systems, strong consistency generates always an additional
cost on request latency, availability and scalability of the system. In order to find a
trade-off between consistency and both performance and availability of the system,
most of the modern database systems guarantee eventual consistency by default
and allow increasing the level of consistency according to client needs. Increasing
the level of consistency ensures better data consistency but deceases the system
performance and availability. Therefore, instead of relying on a single consistency
level, tuning the consistency level with other supplementary consistency options
makes the system more proficient. This phenomenon of using the appropriate
consistency option depending on the criticality of the requests or data items is
known as adaptive consistency [112].
Several kinds of applications need adaptive consistency for example Web shop
applications store different kinds of data that need different consistency levels. The
customer’s credit card information and the price of the items must be handled under
strong consistency. However, clients buying preferences and logging information
could be handled under weak consistency. An online auction system is another
example that needs adapative consistency but the selection of a consistency level in
this case is based on time. At the beginning, the data is not so important for the
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final deal, so the requirement of consistency is low. With the deadline approaching,
auctioned items become very popular and the customers rely more and more on the
latest data to make the next bid. Eventually, the data should be always up-to-date
and modified under strong consistency.

2.4 Comparison criteria of adaptive consistency
approaches

When talking about adaptive consistency we distinguish numerous criteria that are
to be described. Among these issues we are particularly interested in the following
ones: architectural model, operation level, granularity, adaptive policy, prediction
or statistic based, conflicts consideration, threshold, monetary costs, security and
privacy, provided consistency and implementation tools. These criteria have a direct
influence on the development of adaptive consistency approaches.

2.4.1 Architectural model
Consistency management is a functionality of the storage system that is queried by
cloud clients. Thus, each proposed consistency approach should take a position in
the storage system architecture or his interaction with client applications. According
to their architectures, the proposed adaptive consistency approaches come in two
forms: either an additional module between the storage system and the application
or an entire storage system. In the first case, the additional module can be on the
top of the storage system, in bottom of client application or as a middleware.

2.4.2 Operation level
This criterion defines the side on which the approach is applied and divides the
approaches into two categories: query side approaches and object side approaches.
Approaches in the first category focus on the query or the transaction level which
means that the consistency level in these approaches is tuned according to the
application needs. The object side approaches, however, define the consistency
guarantees on the data by dividing them into categories and treat each category
differently depending on the provided consistency level.

2.4.3 Granularity
Granularity means that the consistency level is applied to the hole database or just
a part. In fact, among the proposed approaches some work on the global database,
others fragment the database onto categories and there exist who works on file.
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Applying strong consistency to part of the system or critical objects only can give
higher performance and optimize the cost of implementation.

2.4.4 Adaptive policy
An adaptive policy is a set of algorithms, models or techniques that are used to
provide adaptive consistency. It captures the system’s need and gives the best
trade-off between consistency and both performance and availability by tuning the
consistency to the suitable level during the execution time. These policies are
based on probabilistic models, artificial intelligence techniques or other predictive
algorithms. Choosing a good adaptive policy leads to a pertinent adaptive
consistency approach.

2.4.5 Prediction or statistic based
The adaptive policy may be based on prediction or statistic. Predictive policy uses
probabilistic models, regression models or other intelligent techniques to predict the
system state. This kind of models is very powerful in performance but it does not
give exact results. However, the statistic model calculates the rate of a given metric
during runtime and compares it to a defined threshold to change the consistency
level when it is achieved. The statistic model can give exact results but it produces
additional and complicate calculations.

2.4.6 Conflicts management
We chose this criterion to investigate wether the proposed approach has considered
or not conflicts between transactions . We define which mechanism was used to
detect and resolve the conflicts. Normally, conflicts between replica occur highly
when the storage system runs transactions optimistically i.e., provides a low level
of consistency. Contrarily, raising the level of consistency decreases the percentage
of conflicts.

2.4.7 Threshold
When an adaptive consistency policy uses a metric, it defines a minimum or
maximum value for this metric. Reaching the threshold triggers the system to
change his behavior. Defining a threshold in such an approach means that the
system does not calculate the application needs and that the tuning parameters are
put manually.
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2.4.8 Monetary costs
The cost of a consistency level in the cloud describes the different resources necessary
to obtain this level in geo-replicated storage systems. Different consistency levels
result in different costs; high consistency implies high cost per transaction and
reduced availability but avoids penalty costs. Low consistency leads to lower costs
per operation but might result in higher penalty costs. The monetary cost is one of
the most interesting advantages of cloud storage. Hence, any consistency approach
should take this criterion into consideration.

2.4.9 Security and privacy
Security and privacy are always key concerns in information technology to which
more challenges are brought about by cloud computing and big data. In fact, moving
data and applications to a third party service provider and replicating objects makes
the challenge more critical. Furthermore, the availability of cloud services is one
of the most important security issues which directly affects the business of cloud
service providers and also its customers. Thereby, any consistency approach should
take into consideration these two factors.

2.4.10 Provided consistency
Data consistency is already provided by storage systems which can ensure many
levels of consistency. Thereby, the application can choose the suitable level for
its needs from the beginning. Adaptive consistency approaches were proposed to
optimize consistency management by tuning the consistency to the suitable level
during the run-time. To achieve this goal, existing adaptive approaches behave
in three manners: switch between existing consistency levels to assign the nearest
one to the application needs and the system state, moderate the weak level by
an artificial delay to enhance consistency when it is needed, provide a new level
according to the application needs.

2.4.11 Implementation tools
Evaluating a proposed approach in cloud and big data environments is quiet difficult
due to the high monetary charges and the large amount of data needed to complete
the implementation. Nevertheless, using real implementation tools gives more
credibility to the evaluation results. Since they are free of charge and easy to
use, simulation tools are widely used to evaluate contributions and to emulate real
environments. However, the obtained results are less credible.
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2.5 Proposed approaches for adaptive consistency

In the literature, many approaches were proposed to adjust the consistency level
in the cloud. In this section, we discuss the different approaches and their
characteristics according to different criteria defined in the previous section.

2.5.1 IDEA
The infrastructure IDEA [113] (an Infrastructure for Detection-based Adaptive
consistency guarantees) was presented to guarantee the adaptive consistency of
replicated services. IDEA enables many functions including quick inconsistency
detection and resolution, consistency adaptation and quantified consistency level
guarantees. For each object of the system, IDEA divides the nodes into two layers
where the top layer includes those nodes that frequently update this object and
the bottom layer consists of the remaining nodes. The inconsistency detection and
resolution policies are based on a new extended version vector where a triple of
information is attached for every object (numerical error, order error, staleness).

2.5.2 Consistency rationing
Consistency rationing [114] divides the data into three consistency categories: A,
B, and C. The A category ensures strong consistency guarantees and shows high
cost per transaction. The C category ensures session consistency, shows low cost,
but will result in inconsistencies. Data in the B category are handled with either
strong or session consistency depending on the specified policy. In this paper,
the authors present and compare many policies to switch consistency guarantees
(conflict probability, time policy, fixed threshold, demarcation policy and dynamic
policy). The optimization in this paper is based on allowing the database to exhibit
inconsistencies if it helps to reduce the cost of a transaction but does not cause
higher penalty costs. The aim is to find a trade-off between transactions cost in
the case of strong consistency, and penalty costs (financial) in the case of weak
consistency.

2.5.3 An application-based adaptive replica consistency
This paper [84] proposed an adaptive mechanism for consistency management that
allows the system to automatically switch between consistency strategies according
to update frequency and read frequency at runtime. The authors also proposed
also a model structure that can manage the different consistency levels. The nodes
in the proposed structure are put in the following order: one master node, three
deputy nodes and many child nodes. The adaptive consistency mechanism divides
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the consistency levels into four categories according to statistical read frequency
Pr and update frequency Pw(a combination of high and low values for every one).
For each checkpoint interval τ , the system evaluates the consistency category that
the application needs according to Pr and Pw in the interval. If the category is
not the same as the current one, it will be changed in the next interval. They
demonstrated, via simulations, that the adaptive approach reduces significantly the
global throughput generated when applying strong consistency as well as it provides
better performance than weak consistency.

2.5.4 RedBlue
RedBlue consistency [115] was introduced to provide an adaptive consistency
approach by decoupling operations into two types: red operations that require a
strong consistency and blue operations that are executed under weaker consistency.
To color an operation red or blue, the authors define the conditions that ensure the
non-violation of application constraints and the convergence of all replicas to the
same final state. Intuitively, commutative operations may be blue if they do not
violate the application constraints. An extension of the proposed approach consists
in dividing original application operations into two categories: a generator operation
that has no side-effect and which is executed only at the primary site, and a shadow
operation, which is replicated to all sites. Only shadow operations are colored red
or blue.

2.5.5 Harmony
Harmony [86] is based on the estimation model of stale reads that will be adjusted
to the application needs. In this approach, the application provides the appropriate
stale read rate (app_stale_read) and the modules added by Harmony compute the
stale read rate of the system (θ) using a probabilistic model and compare it with
app_stale_read. If θ is the greater value, the algorithm calculates the number of
replicas (N) needed to attenuate the stale read rate and modifies the consistency
level according to the obtained N.

2.5.6 Bismar
Bismar [92] takes the monetary cost into consideration, both for the evaluation
and selection of consistency levels in the cloud. Accordingly, the authors define
a new metric called consistency-cost efficiency. Based on this metric, they
propose an economic consistency model, called Bismar, that adaptively tunes
the consistency level at run-time in order to reduce the monetary cost while
simultaneously maintaining a low fraction of stale reads. The proposed approach
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uses a probabilistic consistency model to estimate the stale reads and the relative
costs of the application according to the current read/write rate and the network
latency. Then the algorithm selects the consistency level that offers the most
equitable consistency or cost trade-off (given by the maximum consistency-cost
efficiency value: max[consistency(cl)/cost(cl)]).

2.5.7 Pileus
Pileus [116] is a key-value storage system that supports consistency-based service
level agreements (SLAs). With SLAs, applications can declare their consistency and
latency priorities. With the offered consistency choices, applications can indicate a
decreasing series of desired consistency/latency trade-offs (SubSLAs). Furthermore,
applications that share the same data are allowed to obtain different consistency
guarantees. Pileus tries to satisfy the best desired service due to the configuration
of replicas and the network conditions. It may not always succeed in satisfying the
first subSLA. Therefore, Pileus tries out lower subSLAs that are acceptable but
less desirable. Finally, the system returns an error code and no data if none of the
subSLAs can be satisfied.

2.5.8 DepSky
DepSky [117] is a virtual storage cloud, a cloud of clouds, which is accessed by
its users to manage data items stored in a group of individual clouds. It targets
four limitations of individual clouds: availability, consistency, privacy and monetary
costs. The DepSky system enhances data availability and consistency by exploiting
data replication on several clouds and by introducing proportional consistency.
Thus, the system allows access to the data whereas a subset of them is reachable
and provides the same level of consistency of the subordinate clouds. To minimize
the monetary cost and improve the privacy, DepSky uses erasure codes [118] to store
only a fraction (typically half) of the total amount of data in each cloud and to avoid
storing clear data. Furthermore, stored data are encrypted and the encryption key is
shared by the underlying clouds so that individual faulty clouds cannot reconstruct
it to disclose the data.

2.5.9 File heat-based self-adaptive replica consistency
This work proposed the algorithm MRFU [85] (Most Recent and Frequently Used)
to calculate the file heat during an interval of time I. The file heat in this algorithm
is a combination of access time and access frequency. The self-adaptive consistency
strategy proposed in this paper selects the consistency level of a file between strong
and eventual consistency according to the file heat. The value of file heat is
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calculated during a time interval I and compared with a threshold. The strong
consistency strategy is adopted when file heat exceeds the predefined threshold, and
the eventual consistency strategy is adopted when file heat is under the threshold
value to cut network bandwidth consumption. The authors also proposed a replica
management model that divides the system into three levels: one storage control
node that controls many main replicas, each of which is connected to many other
subreplicas.

2.5.10 Consistency tuner
Consistency tuner is a protocol based on the consistency index [119] (number
of correct reads/total number of reads). To adjust the consistency index to a
desired value the protocol predicts the correctness of an incoming read request
using a logistic regression classifier and a neural network classifier. These statistical
predictive models use the number of replicas Rp and the time gap Gp between
the read and the last update as input parameters. The authors also implemented
the CICT (consistency index based consistency tuner) in an architecture of a web
based database application and demonstrate the relationship between the number
of replicas and the threshold of a time gap (minimum value of time gap between an
update and a succeeding read request) using a statistical linear regression analysis.

2.5.11 Fine-tuning the consistency-latency trade-off
The trade-off consistency-latency is addressed by proposing and evaluating two
techniques [120]. The first is a novel technique called continuous partial quorums
(CPQ) that assigns the consistency level on a per- operation basis by choosing
randomly between multiple discrete consistency levels with a tunable probability.
The second technique, called artificial delays (AD) uses a weak client-side
consistency level and injects an artificially tunable delay into each storage operation.
This technique boosts consistency by allowing more time for updates to propagate
through the system, which decreases the likelihood of consistency anomalies at the
cost of increasing latency.

2.5.12 A self-adaptive conflict resolution with flexible
consistency guarantee

This paper [93] presents an adaptive and hierarchical model using version vectors
of replicas to ensure consistency management. The proposed approach divides the
consistency management into two levels: global management between data centers
in the cloud and local management in the data center. For the local management,
the multi-agent technology is used to modulate the different parts of the system
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which tunes the consistency between three levels (optimistic, hybrid and pessimistic)
according to the rate of write operations. The authors also propose the integration
of a conflict detection and resolution mechanism between the replicas based on
version vectors. This mechanism resolves the conflict in the local data center and
then the conflicts between different data centers in the cloud.

2.5.13 Incremental consistency guarantees
ICG [121] targeted the consistency/performance trade-off by developing an
abstraction interface, called Correctables, between applications and replicated
objects. Therefore, rather then struggling with the complexity of distributed storage
protocols, developers will just focus on tuning the consistency level of the ongoing
operation. After invoking an operation on a replicated object, the abstraction
interface provides a view on the operation result for each specific consistency level.
Primary obtained views reflect operation results under weak consistency while
stronger consistency will be guaranteed within latest views.

2.5.14 Safe serializable secure scheduling
The paper [122] addresses the trade-off between strong consistency guarantees
and strong security properties in decentralized systems. The authors state that
distributed transaction scheduling mechanisms cannot prevent unauthorized access
to confidential information. Security risks are potential due to the aborting messages
of failed transaction. Thus, they proposed the staged commit protocol that can
secure the transactions scheduling using relaxed monotonicity. The defined protocol
divides a transaction into stages, each of which can be securely committed using a
traditional protocol.

2.5.15 OptCon
OptCon [123] is a machine learning-based framework that can automatically predict
a matching consistency level that satisfies the latency and staleness thresholds
specified in a given service sevel agreement (SLA). For this reason, OptCon provides
the following dynamic parameters as input variables to the learning algorithms: the
read proportion in the operation, the number of user threads spawned by the client,
and the number of network packets transmitted during the operation in addition
to the client-centric consistency level. Many machine learning techniques were
implemented in OptCon: to visualize the significance of the model parameters and
the dependency relations among these parameters, it used Logistic regression and
Bayesian learning. Furthermore, for more accurate predictions computed directly
from the data, OptCon implemented Decision Tree, Random Forest, and Artificial
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Neural Networks (ANN). The framework provides to users and developers the choice
of a suitable learning technique that best suits the respective application domain
and use case.

2.5.16 SPECSHIFT
SPECSHIFT [124] is a tuning framework that uses artificial delays to adjust the
consistency level according to network conditions and workload characteristics. The
delay is calculated from a combination of empirical measurement and probabilistic
analysis and injected at the beginning of each read and at the end of each write.
Developers of this framework also presented a probabilistic model of consistency
under latency optimized settings that precisely captures the relationship between
consistency, system workload and network latency.

2.5.17 Selective data consistency
The paper [125] proposes a selective model for transactional application data
consistency. The model is built on the replicated data store MongoDB. To boost
application performance, strong consistency is only applied to selected critical data
objects. However, less critical objects can have lower consistency levels. The second
contribution of this paper is the mathematical function that analyses data criticality
using the number of reads and the number of writes of data items. This function
is designed for a shopping application and considers three indices for determining
total criticality: popularity index, stock sales index and stock purchase quantity
index.

2.5.18 Adaptive consistency policy for kafka
Kafka [126] is a distributed streaming platform that allows to build real-time data
pipelines and streaming applications. The work [127] proposes a replica adaptive
synchronization strategy for Kafka based on the message heat and replica update
frequency. For every period of time Ti, the heat and the update frequency of a
partition (unit of data replication) are calculated following particular formulas. If
the partition heat is greater than the update frequency, synchronous replication
(high consistency level) should be granted for this partition. Otherwise, the partition
will receive updates asynchronously.

2.5.19 FogStore
FogStore [128] is an extension designed on top of existing distributed storage
systems to allow their seamless integration into a Fog Computing environment.
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To provide best consistency management in Fog nodes, Fogstore ensures
two additional functionalities: Fog-aware replica placement and context-aware
differential consistency. A replica placement strategy should optimize the placement
to achieve minimal response time between the copy of a data record, the data
sources (devices) and the clients. Context-aware differential consistency matches the
consistency level of the client’s query to the client’s context. In fact, clients querying
the Fog data store often have an individual context, the position in particular, which
can influence their requirements on consistency.

2.6 A comparison of the different approaches
proposed for adaptive consistency in the cloud

Table 2.1 summarizes the evaluation of adaptive consistency approaches according
to the criteria.
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2.6. A comparison of the different approaches proposed for adaptive consistency in the cloud

ICG [121] Middleware Query Global
Coexistence of

multiple consistency
levels

× × × × ×

Switch between
strong and

eventual
consistency

Amazon EC2,
Cassandra/ZooKeeper,

Ycsb

4S [122] Entire CMS Query global Staged commit
protocol ×

√
× ×

√
New level Fabric system

OptCon
[123]

Middleware +
ACSM Query Global

Logistic regression,
Bayesian learning,

Decision Tree,
Random Forest and

ANN

√
× Latency, staleness × × New level

Amazon EC2,
Cassandra,

Ycsb

SPECSHIFT
[124] Middleware Query Global Probability

√ Uses artificial
delay to decrease

conflicts rate
× × × Moderated level

Amazon EC2,
Cassandra,

Ycsb

SCM [125] Middleware Object Critical
data Criticality analyser × × × × ×

Switch between
strong and

eventual
consistency

Amazon cloud,
MongoDB,

TPC-C

ACPK [127] Middleware Object Partition

Statistical
model(topic heat

and update
frequency)

√
× Topic heat and

update frequency × ×

Switch between
strong and

eventual
consistency

Kafka cluster

FogStore
[128] Middleware Query Regions Client

context-awareness
√

× × × ×

Switch between
strong and

eventual
consistency

MaxiNet,
OpenStack

ABARC:An Application-Based Adaptive Replica Consistency.
FHBC: File heat-based self-adaptive replica consistency.
SACRFCG:Self-adaptive conflict resolution with flexible consistency guarantee.
ICG:Incremental Consistency Guarantees.
SCM: Selective Consistency Model.
ACPK: Adaptive consistency policy for kafka.
4S:Safe Serializable Secure Scheduling.√

: the approach used the criterion.
× : the approach didn’t use the criterion.
CMS : Consistency Management System.
ACSM : Additional Client-Side Module.

Tableau 2.1: Summary table of evaluation criteria.
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2.7 Discussion

We have given a review of the works that propose adaptive approaches to managing
consistency in the cloud. The main goal of these approaches is to optimize the
performance of cloud systems and to provide a suitable consistency level to client
applications.
According to the architectural model of the proposed adaptive consistency
approaches, we state that most of the approaches provide adaptive consistency
as an additional functionality to the existing consistency policy. Since data
consistency is already managed by storage systems, this functionality is injected
in the middle between a server and a client application in the form of middleware.
Some approaches add a module to the client application to communicate with the
middleware like in Harmony and OptCon. However, authorś approaches implement
necessary adaptive functionalities in the client side module like in DepSky, CPQ,
and Artificial Delay. On the other hand, few propositions have designed an entire
consistency management system such as ABARC, Pileu, FHBC, SACRFCG, and
4S. Approaches that add adaptive consistency functionality to the existing storage
system are more effective, either as a middleware or on the client side. In fact, rather
than facing all challenges of designing an entire consistency management system,
these approaches focus only on the adaptive consistency challenge and avail of the
existing consistency management. Moreover, the additional module can be tested
in the real environment contrary to the consistency management system which is
usually tested by simulation tools.
Most of the studied approaches apply the chosen consistency level to the overall
system with the exception of six approaches: Consistency Rationing divides the
system into categories, SCM applies strong consistency on critical data, ACPK
divides the system into partitions, ForStore divides the system into regions and
FHBC and IDEA focus on the object. These works tune the consistency level
according to data importance unlike the other works that focus on application
needs. Only the FogStore approach considers client and data contexts at the same
time. Categorizing data objects according to their criticality allows the system to
apply lower consistency levels to lower critical categories, and therefore, enhance
performance mainly in the case of high-volume data with a small percentage of
critical data. On the other hand, data categorization may adversely affect system
performance if it relies on a statistical model or other complex functions.
To optimize the consistency/performance trade-off, the proposed approaches use
intelligent techniques that predict the suitable consistency level like Harmony,
Bismar, Consistency Rationing, CPQ, OptCon, SPACHIFT, and ACPK. However,
other approaches use statistics like Consistency Tuner, ABARC and SACRFCG.
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Unlike these approaches, FHBC, IDEA, 4S, FogStore and ICG use particular
protocols to enhance consistency management. Due to the large volume and variety
of data, applying statistical models obligates the system to collect statistics for each
operation or data object which will generate huge additional charges in processing
and storage. Therefore, approaches that use machine learning techniques overcome
statistics inconvenience by treating only a subset of data (training data) to generate
the predictive model. Thus, intelligent techniques enhance performance but provide
less accurate prediction.
When talking about conflicts, two approaches use version vectors to detect conflicts
between different replicas of the same object: SACRFCG and IDEA. AD and
SPECSHIFT use artificial delays to allow more time for update propagation through
the system, which decreases the likelihood of conflicts. Consistency rationing uses
the probability of conflicts as a metric that is used to tune the consistency level
when it is compared with defined thresholds. Staged protocol proposed in 4S aims
to reduce aborting messages and thereby it reduces the conflict rate. Traditional
conflict management mechanisms become more and more complex when moving
to the cloud and big data environments as they save all historical events for
each object. Artificial delay and probability represent an alternative solution of
traditional mechanisms as they have an optimistic behavior to predict and as they
reduce most conflicts without affecting performance.
The threshold is used by several approaches as a trigger to change the consistency
level when it is achieved by the value of the defined metric. Among these approaches
we find: consistency rationing, consistency tuner, ABARC, FHBC, SACRFCG,
OptCon and ACPK.
Only three works take into consideration the monetary costs of different consistency
levels. Consistency rationing optimizes the runtime cost and makes a trade-off
between consistency cost and penalty cost of inconsistencies. Bismar proposes a
method to calculate the cost of consistency and combines it with the rate of stale
reads to choose the best level of consistency. DepSky uses erasure codes to store
only a part of the total amount of data in each cloud, and therefore minimizes the
monetary cost. We state that the best way of considering monetary cost in an
adaptive consistency approach is to combine it with other input parameters. In this
case, the monetary cost can have a direct effect on the adopted level of consistency.
Despite its importance in cloud storage, security and privacy was not considered
by most of the proposed approaches. Only two works raised security issues with
adaptive consistency. DepSky used an erasure code and an encryption with a shared
key. 4S proposed the staged commit protocol which can prevent unauthorized access
to confidential information.
The proposed approaches adapt the consistency level during runtime by giving
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a suitable level according to application needs and the system state. Most
approaches switch between existing levels and give the nearest one. However, a
second type of approaches give a new calculated level from their defined policy like
IDEA, Harmony, Bismar, Consistency Tuner, 4S and OptCon. A third type of
approaches moderate the existing level to enhance consistency like ABARC, AD an
SPECSHIFT. We state that delivering a new calculated level should be the best
solution especially when the existing storage system provides few and divergent
consistency levels. Thus, calculating the desired level gives the most appropriate
consistency guarantees.
Only three works used simulation in their implementation: ABARC, FHBC and
SACRFCG. The remaining works used real implementation which adds more
credibility to their results.

2.8 Challenges and future research directions

2.8.1 Consistency in emerging computing architectures
The fast evolution of Internet of Things (IoT) applications has brought about more
challenges to classical centralized cloud computing such as network failure and high
response time. Fog and mobile edge computing targets these challenges by bringing
the cloud closer to IoT devices which provides low latency and secure services. An
adaptive consistency approach in this environment should consider more criteria
specifically replica and edge servers placement [129, 130], client context-awareness
[128], security and privacy [102]:

• Replica and Edge servers placement: Bringing computation power to the edge
of network reduces latency but obstructs many services that need to access
centrally stored data. Thus, a replica placement strategy is recommended to
place data originating from a central server towards the end devices in the cloud
network in order to decrease data access response time and enhance the benefits
of edge computing. Moreover, the locations of edge servers are critical to the
access delays of mobile users and the resource utilization of edge servers, which
makes edge servers placement highly crucial. Inefficient edge server placement
will result in long access delays and heavily unbalanced workload among edge
servers.

• Client context-awareness: Contrary to classical cloud computing, different
clients accessing the distributed Fog computing data store often have an
individual context. This context can influence their requirements on
consistency. For instance, a situation aware application [131] should consider
conditions and things that happen at a particular time and place.
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• Security and privacy: A hacker, for example, could deploy malicious
applications on an edge node by exploiting vulnerability. If a fog node is
hacked, it can get false input and formulate bad results which can affect
the performance of the whole application. Therefore, the development of
methods to characterize and detect malwares at large scale is recommended.
Moreover, since user specific data need to be temporarily stored on multiple
edge locations, privacy issues will need to be targeted along with security
challenges.

Consistency is also needed in another new paradigm: Software-Defined Networking
[132]. SDN is an emerging network architecture that separates the control plane
from the data plane in order to provide programming network configuration. To
avoid single point of failure and reduce response latency, multiple controllers are
needed. Therefore, consistency requires that every controller has an identical global
view of the network state. The challenging task in distributed SDN controllers is
to maintain a consistent and up-to-date global network view for SDN applications
while preserving good performance.

2.8.2 Data clustering to categories
Applying the same level of consistency for the overall system is not always practical
when data in the cloud have not the same importance or the same access frequency.
However, one difficulty that arises is the categorization of data objects due to large
volumes of data and various data types. The related challenge in this situation is to
provide an automatic mechanism that allows splitting data into different consistency
categories by applying clustering techniques [133]. In this way, according to its
enclosing data, every category should be given the most appropriate consistency
level.

2.8.3 Intelligent techniques for adaptation and other input
parameters

A statistic policy is very expensive to implement in big data due to the large amount
of heterogeneous data. So, using an intelligent technique is better in terms of
performance and costs. Traditional machine learning algorithms were restricted to
execution on large clusters given the large computational requirements. Thus, recent
researches in applying machine learning classification schemes are directed to the
cloud [134, 135] to exploit its availability and cheaper data storage. These researches
are branded under the name of ‘Deep Learning’. Deep learning frameworks, like
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Google TensorFlow1 and Nervana Cloud2, provide APIs and software libraries to
perform complex learning tasks in a reasonable time and to give more accurate
results.
Adaptive consistency approaches studied in this work have considered many
parameters in the input set of learning algorithms such as: number of replicas,
time gaps, network packet count, average throughput, etc. We propose to consider
other parameters to tune the consistency level, as for example, access permissions.
A role based access control is an access control policy that classifies clients according
to their roles in the system. Hence, clients that have the same role should get the
same consistency level. The client context in fog computing environments can be
also used to predict the adequate consistency level. Thus, client who changes his
place or access period should not maintain the same consistency guarantees.

2.8.4 Minimizing monetary cost
Taking monetary costs into consideration is very important in such approaches
because it is among the principle goals of using the cloud. Stronger consistency
causes higher monetary cost by means of synchronous replications that introduce
high latencies due to cross-sites communication. On the other hand, lower levels of
consistency may reduce the monetary cost by favoring performance to latency, but
increase the rate of stale reads which raises costs if the application imposes penalties
to incorrect operations. Partial replication [136] can give better performance with
low costs for some applications. In fact, placing replicas at only a subset of data
centers significantly reduces the number of messages sent with each write operation.
Thus, partial replication reduces both storage and communication costs.

Conclusion

In this chapter, we have presented a comparative study between adaptive
consistency approaches. A taxonomy of the adaptive consistency approaches has
been introduced by defining several comparison criteria such as architectural model,
conflicts, granularity, adaptive policy, operation level, threshold, monetary costs,
security and implementation tools. Furthermore, this work reviews an interesting
number of studies on adaptive consistency in cloud computing which allowed us
to build a table-based analysis that summarizes our comparative study. A deep
discussion of the behavior of each approach is also given for each criterion. According
to the results of the studied approaches, we have deduced for each criterion the
suitable choice for each situation. Based on the analysis, we have identified

1https://www.tensorflow.org/.
2https://www.nervanasys.com/cloud/.
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several research challenges that need further investigation. These challenges include
consistency in emerging computing architectures, intelligent learning techniques,
monetary cost and data clustering. The next chapter will introduce what we propose
in this research area: A new adaptive consistency approach in Edge Computing
Environments.
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Chapter 3
Second Contribution: A new adaptive
causal consistency approach in Edge
Computing Environment

Introduction

Edge computing is a new computing paradigm that has emerged to offload
computation and storage to edge devices in order to get a shorter response time
and more efficient processing. Nevertheless, adopting a consistency scheme that
can conserve multiple replicas while guaranteeing a good level of consistency is an
open issue. Moreover, a data store with only one consistency level is not suitable
for applications that have different consistency requirements. In this chapter, we
propose MinidoteACE, a new adaptive consistency system that is an improved
version of Minidote a causally consistent system for edge applications. Unlike
Minidote which supports only causal consistency, our model allows applications
to run also queries with stronger consistency guarantees. Hence, in addition to
causal consistency, clients can also perform updates with a stronger consistency level
which is weaker than the typical strong consistency as it just ensures the arrival of
queries to the system nodes, not their execution. Providing adaptive consistency
allows application designers to choose the convenient consistency level for each
operation according to application needs and the system’s context. The application
can specify which operations should be run under causal consistency and which
others should have stronger consistency guarantees. Experimental evaluations show
that throughput decreases only by 3.5% to 10% when replacing a causal operation
with a strong operation. However, update latency increases significantly for strong
operations up to three times for 25% update workload. This work is published in
"International Journal of Computing and Digital Systems" [22].
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3.1 Context and Problem statement

Choosing a consistency model in a distributed data store is a critical decision
mainly when the latter is geo-replicated. The growing requirement for short
response time and wide availability has led many geo-replicated data stores to prefer
weak consistency models over strong consistency models. However, using weak
consistency models, such as eventual consistency [80, 112] or adaptive consistency
[21], renders the programming model more complicated to application developers,
who are obligated to fix explicitly data inconsistency issues introduced by these
models. This has led to the emergence of the causal consistency model [137] that
has been demonstrated to be the strongest consistency model in an always-available
system. Causal consistency captures the potential causal relationships between
events within one client and also the reads-from relation between different clients.
The causal consistency model ensures that a write operation will not be applied
until all the operations that precede it are applied. Causal consistency is a good
choice for geo-replicated data stores, since it can reduce the anomalies issued by
eventual consistency, yet it tolerates partitions and avoids long latencies associated
with strong consistency. However, causal consistency is a relaxed consistency model
that optimistically allows replicas to confirm updates concurrently to achieve higher
availability. This sometimes leads to conflicts across replicas. A Conflict-free
Replicated Data Types (CRDTs) [138] are proposed as a proven solution to handle
conflicts. A CRDT is an abstract data type that ensures that replicas can be
modified without coordinating with each other and if they have received the same
set of updates, they reach the same state, deterministically.

In this context, AntidoteDB [139, 140] is a highly available geo-replicated
key-value data store. Thanks to causal consistency and CRDTs, AntidoteDB
allows developers to build solid applications without reducing performance or
horizontal scalability provided by AP/NoSQL storage systems (systems that
sacrifice consistency to ensure availability and Partition tolerance). Minidote [23] is
a lightweight version of AntidoteDB designed for Edge Computing Environment.
Like AntidoteDB, Minidote keeps providing causal consistency as the only
consistency level in the system. In fact, Minidote supports two types of operations:
read and write (update). Read operations are performed locally. After receiving
a client read query, the corresponding node uses only the local replica to answer
the query. Similarly, write operations are applied and committed locally before
broadcasting their effects and dependencies to other nodes. A node that receives
effects of a remote update, can apply them to the local replica after verifying
the update dependencies. Minidote then uses CRDTs to resolve inconsistencies
generated by concurrent updates.
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However, causally consistent systems including Minidote face two issues: 1)
They provide only a single consistency level which is not sufficient for particular
kinds of applications. Taking an online auction as an example of the systems that
change the recommended consistency level during the run-time. For the early bids
of the auction, the system does not require strong guarantees because the data
are not so important for the final deal. However, When the deadline draws near,
the participants should see the latest bids to make the next bid. Therefore, the
consistency requirements become higher and the data should be always modified
under strong consistency. 2) They do not distinguish between system replicas and
clients, in other words, each node of the cluster is considered as a replica of the
service and a client of the service at the same time. The latter assumption means
implicitly that every client is always associated with one of the nodes. In such a case,
the client sticks to the same replica, and the system provides Sticky availability [141]
. However, clients are independent entities, which can switch from one replica to
another, and which, in some situations, may lose communication to a system replica.
Namely, the client needs high availability. But if a client moves from one node to
an alternative one, it could mean giving up causal consistency: this can happen if
the alternative node does not receive all the client’s updates, and therefore it leads
to breaking the read-your-writes guarantee implied by causal consistency.

To overcome these issues, we propose a new adaptive consistency strategy
that we call: MinidoteACE. MinidoteACE offers clients two levels of consistency:
causal and strong. MinidoteACE behaves as Minidote system for Causal operations.
However, it uses the implementation of Causal Stability [24] to carry out strong
operations.

3.2 Related works

Many prior work efforts have studied data management, mainly the trade-off
between consistency and availability that has been involved in building distributed
data stores. Therefore, there are many systems providing different semantics to
application developers. For instance, Google BigTable [15], Microsoft Azure Storage
[16] and Apache HBase [17] provide strong consistency. These systems provide
simple semantics, but suffer from long latencies and partition-intolerance. Other
systems like Amazon Dynamo [18], Cassandra [19] and MongoDB [20] provide
eventual consistency which provides excellent performance and tolerates partitions,
but renders the programming model more complicated due to inconsistency handling
difficulties. MinidoteACE takes an intermediate position in this trade-off by
embracing causal consistency semantics.

Many previous works have recognized the convenience and applicability of
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causal consistency. COPS [137] was the first system that defined the concept
of Causal+ consistency, a causally consistent model that ensures the convergence
offered by eventual consistency. Causally consistent systems need to track causal
dependencies between operations in the form of a piggybacked metadata which is
used to tag operations and to capture the causal past of clients with each operation.
Multiple forms have been used to represent metadata, COPS [137] for instance
uses explicit causal histories that, for each operation, enumerate all the operations
that are in its causal path. Logical clocks are also used to track causality in
ChainReaction [142], SwiftCloud [143], and Orbe [144]. The simple logical clock
has an entry for each replica that will be incremented upon a new update is applied
on the replica. Other approaches like GentleRain [145],Saturn [146], Cure [147], and
Legion [148] use physical clocks that tag operations with the physical local time.
However, Okapi [149] and Eunomia [150] choose to make a combination between
logical and physical clocks: hybrid clocks. However, tracking causality accurately
requires maintaining an incremental size of metadata that may affect the system
performance. Our model uses smaller size timestamps than vector clocks to encode
the causality between messages, a causal graph to store the dependencies between
messages, and an efficient algorithm for causal delivery and stability. Several
recent works have developed storage systems for the edge environment. DPaxos
[151] and EdgeCons [152] rely on Paxos-based protocols that provide only strong
consistency and suffer from long latencies. FogStore [128] however, implements two
functionalities that allow it to manage consistency between Fog nodes in an optimal
manner. The first one aims to minimize the response time between the clients, the
devices, and the copy of a data record by relying on a replica placement strategy.
The second functionality is a context-aware mechanism that chooses the consistency
level of the client’s query according to the client’s context. PathStore [153] also
supports several consistency levels according to the client needs mainly, eventual,
session, and strong consistency. Although Fogstore and Pathstore strive to optimize
latency, they do not preserve causality. Gesto [154] is a hierarchical architecture that
allows cloud data stores to cover edge networks while providing causal consistency.
Gesto splits replicas into geo-replicated groups where each group of edge replicas
has one datacenter. The native replication protocol of the cloud data store is used
between data centers. However, a novel causality tracking mechanism is integrated
into each group. Moreover, Gesto uses a multipart timestamp enabling scalability
and fast migration. Minidote (detailed in section 4) is also a causally consistent
system for the edge. Unlike our model, Gesto and Minidote provide only causal
consistency which is not sufficient for all kinds of applications that require stronger
consistency guarantees.
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3.3 Background and definitions

In this section, we aim to understand the main concepts around our system. In fact,
our contribution is based on the Minidote system which is a lightweight key-value
storage system that is designed for Edge Computing Environment. Minidote is
a causally consistent system that allows it to provide fairly high scalability and
performance while keeping a good consistency level. We introduce firstly, causal
consistency by giving its definition, implementation, and causal stability concept.
Later, we define CRDT data types as a way of convergent conflict handling. Finally,
we give an overview of the computing environment of our system: Edge computing.

3.3.1 Causal Consistency
Causal consistency captures the notion that different data store nodes should
see causally-related operations in the same order. Causality [155, 156] is a
happens-before relationship between two events. For two operations, a and b, we
say that a happens before b or, alternatively, b causally depends on a, and we write
a ⇝ b, if and only if at least one of the taking after conditions hold:

• Thread-of-execution: a and b belong to a single thread of execution, and a
precedes b.

• Reads-from: b reads the value written by a when b is a read operation and a
is a write operation.

• Transitivity: There is some other operation c such that a ⇝ c and c ⇝ b.

Consequently, a storage system provides causal consistency, if it does not commit
any write operation before executing all its causally-related operations. For
example, in a social network, Mark updates an old post on his wall. Alan sees the
update and writes a comment about it. Then, Alan’s comment shouldn’t appear to
their friend Paul before he sees Mark’s update on the post as the comment of Alan
causally depends on the update of Mark.

3.3.1.1 Causal consistency implementation

The implementation of Causal consistency can be performed using two simple steps
[137]:

• Assign a set with all the preceding operations to each operation; this set we’ll
be called the dependencies of o and refer to it as dep[o].

• Perform o once all its preceding operations (operations in dep[o]) have been
executed.
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Also, let’s mention the set of executed operations by Executed.
If the process sends an operation o, then the dependencies of o will be the set of
operations that have been performed at that time, i.e. dep(o)=Executed. If the
operation p follows the operation o, then the dependencies set of p contains o :

o ∈ dep(p) (3.1)

It may however occur that p does not cause o and o does not cause p. If so, o and
p will be competing with each other :

o /∈ dep(p) ∧ p /∈ dep(o) (3.2)

3.3.1.2 Causal stability

An operation o is causally stable (denoted by stable(o)) if it belongs to the
dependencies set of each operation p that will be executed in the system [157, 24]:

stable(o) ≡ ∀p.p /∈ Executed ⇒ o ∈ dep(p) (3.3)

In other words, stable(o) means that o has been executed by all the nodes of the
system. Hence, every new operation will be in the future of o.
Let’s have a cluster with three nodes: a, b and c. o, p, q and r are operations that
will be Executed in the cluster.

• a performed o and then p.

• b noticed o and p, and then performed q.

• c noticed o and performed r.

So, the Executed sets for each node are the following Executed:

• Executed_a = {o,p}.

• Executed_b = {o,p,q}.

• Executed_c = {o,r}.

Remember that: the set of operation dependencies is the set of operations
performed at the moment of operation submission. We know therefore at this
point that any submitted operation (at any node) will include o as a dependence.
This means that o is stable. We can’t say the same about any of the remaining
operations.

3.3.2 Conflict-free Replicated Data Type (CRDTs)
In a causally consistent system, there is no need to order concurrent operations;
two operations can be replicated in any order if they are not causally related, to
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avoid synchronization cost. However, If two concurrent update operations target
the same object, they are in conflict and produce an inconsistency in the system.
Avoiding conflicts usually requires ad-hoc handling [158, 159, 18] in the application
logic by employing an automatic strategy to handle conflicts deterministically, in
the same manner, at every replica. For example, the last-writer-wins rule has been
adopted by most of the existing causally consistent systems [137, 160, 145], where
the last update overwrites the other updates. Antidote and Minidote rely on CRDTs
[138, 139] which are an abstract data type built to be replicated at multiple replicas.
CRDTs have a clearly designed interface and exhibit two attractive properties: (1)
there is no need for coordination between replicas associated with update operations;
(2) two replicas can reach the same state after receiving the same set of updates since
they guarantee state convergence by adopting mathematically sound rules. CRDTs
include sets, counters, maps, LWW registers, lists, graphs, among others. As an
example, a counter data type can handle the following operations: increment(C)
and decrement(C). The implementation of a CRDT counter will guarantee that the
state of the counter will reach the same value at different replicas whatever the
order of increment and decrement operations.

3.3.3 Edge Computing
Edge computing [58] is defined as a model of distributed computing that employs
technologies allowing to perform computation at the edge of the network. In
contrast to the Cloud computing paradigm where data centers handle all storage
and processing services, Edge computing aims to improve system scalability and
data privacy, reduce latencies and ensure an effective usage of resources (mainly
reducing energy consumption). In edge computing, cloud servers and edge devices
work together to perform processing. Which computations are conducted on which
of these components is determined by a variety of factors, including node capacity
and latency requirements. We call an “edge“ any processing, storage, or networking
resource located along the path between cloud data centers and edge devices. A
cell phone, for example, is regarded as an edge between body things and the cloud,
whereas a gateway in a smart home is considered as an edge between house things
and the cloud.

3.4 An overview of Minidote system

Minidote [23] is a replicated key-CRDT store that provides causal consistency with
atomic batch-reads and batch-updates while the data is automatically replicated
on each node and concurrent updates are resolved using CRDTs. Compared to
Antidote, Minidote doesn’t support interactive transactions and replica sharding
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which makes it more lightweight and therefore allow it to run well on less powerful
devices. Minidote only has to keep the latest version available, whereas Antidote
must be able to serve all snapshots used by currently running transactions.

The inter-dc replication service of Antidote is replaced with a different causal
broadcast service provided by Camus [161]. Camus is a CAusal MUlticast Service,
that provides different back-ends to guarantee a reliable dissemination and delivery
respecting causal order at all replicas using the service. The back-end used in
Minidote is an implementation of tagged casual broadcast (TCB) protocol [24] which
guarantees that messages/operations will be delivered respecting the end-to-end
happen-before relation as seen by the application.

3.4.1 Concepts and data structures
Before we describe the different components of Minidote architecture, we will present
some concepts and data structure that will be used frequently in the next paragraphs
and sections.

• State: Each minidote_server instance has a state that describes the current
status. The state contains a vector clock, a list of dots that causally precede
the next update i.e, dependencies, and the dot: the tag of the current operation
of this node.

• CRDT object: like AntidoteDB, Minidote is a key-value data store so it
identifies each object with its key, type, and bucket. So we write Object = {key,
type, bucket}. When updating an object, the following parameters should be
introduced to the query: the object identifier, the update operation, and the
given value. For example, to increment a counter by 1, we write Update =
{Bobj, increment, 1}.

• Vector clock: A vector clock of a system of N nodes is an array of N logical
clocks used to manage a partial ordering of events in a distributed system
and to keep causality relationships [162, 163]. As in Lamport timestamps,
The causality relationship (called happened-before) captured is defined based
on passing of information, rather than passing of time. The vector clock is
used to track causal information between operations. Operations piggyback
this information to allow their delivery in an order respecting the causality of
events.

• Dot: a pair of (node_Id, counter), which serves as a unique identifier for an
operation/message of Minidote node to be broadcast.

• Dpgraph: The dependency graph is used to store messages that are not ready
to be delivered yet. Graphs better characterize the partial order rather than
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queues which are better for totally ordered events. The graph uses dots to
identify its vertices where each vertex contains the operation’s effects, the status
of the message (missed, received, delivered, or stable), successors_set, and
predecessors_set where predecessors_set/successors_set is a set of dots that
precede/succeed this dot.

Figure 3.1: A cluster of three Minidote nodes.

3.4.2 Minidote architecture
Figure 3.1 shows the architecture of Minidote node and its interactions with
clients and other nodes. Each Minidote node contains three principal modules:
Minidote_server, Camus_middleware, and CRDT storage.

3.4.2.1 Minidote_server

Minidote_server is the brain of Minidote node which interacts with clients and
other modules. A client can perform atomic batch-reads and batch-updates using
Minidote APIs: Read_objects (Keys, clock) and Update_objects (updates, clock).
For read operations, the client specifies Crdt keys of requested objects and a vector
clock. After execution, Minidote_server returns values of the input keys and a new
vector clock. However, for update operations, the client should specify a vector clock
and for each update: an object’s key, an update operation, and input parameters.
Minidote_server returns, after execution, a new vector clock. Since Minidote_server
has a state, vector clock, dot, and dependencies, for each read or update operation,
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it should wait if the operation’s vector clock is later than the current state’s vector
clock. Then, it asks for locks of the object’s keys, if they are not free the query should
wait. Hereafter is a brief description of the main procedures of Minidote_server:

• Read_objects: Minidote_server performs read operations from local storage
and then sends answers to the client.

• Update_objects: After acquiring locks, Minidote_server applies updates on
the local data store, and then it increments the value that corresponds to the
local node on the vector clock. After that and in a parallel way, it releases locks,
answers the client by the new vector clock, and calls the broadcast function of
the middleware which broadcasts the update effects to the other nodes.

• Deliver_remote_Update: this order is received from the middleware to apply
a remote update. Minidote_server sends the received update effects to its local
storage, updates the vector clock of the state, and adds the received dot to its
dependencies.

3.4.2.2 Camus_middleware

The middleware is a low-level layer that ensures causality between messages using
the following functions.

• Broadcasting updates (Tcbcast): When Minidote_server calls this function,
the middleware creates a new vertex for it in the Dpgraph and labels it as
’received’. Then, it broadcasts a message containing the update effects, its
dependencies, the dot, and the vector clock.

• Receiving a remote message: Upon receiving a remote message, the middleware
creates a new vertex in Dpgraph for the received dot with status ’received’. Then
it checks its dependencies, if they all have been received, it calls the function
Deliver. Otherwise, it creates a new vertex in Dpgraph for each dot in the
dependencies that have not yet been received with status ’missed’.

• Message delivery (Deliver): when this function is called, the middleware sends
the corresponding message to Minidote_server and labels the corresponding
vertex as ’delivered’ in the Dpgraph. Then, it checks each dot in the
successors_set. If all its predecessors have been delivered, it calls the function
Deliver for the corresponding message. The middleware notes also that each
dot in the predecessors_set has been received in the sender node. If a dot
is labeled as ’received’ in all the nodes, it will be labeled as ’stable’ and the
function Stable will be called for this dot.

• Stable: when a dot is labeled as ’stable’, it will be removed from each
predecessors_set in Dpgraph and then, its vertex will be removed from Dpgraph.

62



3.5. MinidoteACE: Proposed improvements and Adaptive consistency approach

3.4.2.3 Storage

Minidote uses the CRDT libraries developed in AntidoteDB. CDRTs support
high-level replicated data types such as counters, sets, maps, and sequences which
are designed to work correctly in the presence of concurrent updates and partial
failures.

3.4.3 Consistency Protocol
Hereafter, we will summarize the behavior of Minidote towards client requests:

• Each node has two main components: Minidote_server and
Camus_middleware.

• For read operations, Minidote performs the query from the local instance and
forwards the answer to the client.

• The client (Application) performs an update u via client api at Minidote_server
of a node i.

• Minidote_server applies the update u locally and tags it by a new dot. Then, it
calls the broadcast function of Camus that broadcasts the effects of the update
u to the other nodes. At the same time, it replies to the client request by the
new vector clock.

• When a node j receives the effects of u through its middleware, it delivers
the effects to Minidote_server to be applied if all its dependencies have been
already delivered. The update u will be then inserted into the dependencies of
new updates generated by the node j.

• When the node i receives updates from all nodes containing u in their
dependencies, it labels u as local stable.

• u becomes stable in the node j when it is included in the received update
dependencies of all other nodes except i.

3.5 MinidoteACE: Proposed improvements and
Adaptive consistency approach

Minidote provides only causal consistency and uses Crdts to handle conflicts. In
MinidoteACE, we keep the same architecture as Minidote and the same behavior
for read operations as well. However, MinidoteACE exposes two types of updates:
causal and strong. The system keeps the same behavior as Minidote for causal
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Figure 3.2: Flowchart for consistency proposal.

consistency operations. But in the case of strong consistency operations, it follows
these steps.

• The client performs an update u at a node i via its Minidote_server.

• Minidote_server tags the update u and broadcasts it through the middleware
to the other nodes without applying it locally.

• When a node j receives u, it inserts it to the strong received updates set SRUS.
The latter will be piggybacked to all updates and commits sent by the node j.

• When the node i receives updates from all other nodes containing u in their
SRUS, it considers u as stable. Then, it delivers u locally and broadcasts a
commit message to the other nodes.

• When the node j receives a commit message of u, it labels u as stable and
delivers it to Minidote_server to be applied.

Hence, Read_objects API keeps the same behavior. However, Update_objects API
needs a third parameter that specifies the consistency level of update operations.
Therefore, Update_objects API takes the following form: Update_objects
(updates, clock, consistency). Figure 3.2 summarizes the behavior of MinidoteACE
for read/update operations.

3.5.1 Detailed functions and Algorithms
• Read_objects: We keep the read operation behavior without modification.

When the client calls the Read_objects API, Minidote_server uses the function
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described in Algorithm 3.1 to perform read operations. Minidote_server
adds the current server state to the parameters introduced by the client
to form the input parameters of read operation. Before performing read
operations, Minidote_server ensures that the keys are free and compares the
operation clock with the state clock and locks the keys. After reading objects,
Minidote_server releases the keys and returns outputs to the client.

Algorithm 3.1: Read operation
Input: Keys, Clock, State
Output: Values, NewClock

1 wait_release_locks(Keys);
2 check_clock(Clock, State.Vc);
3 lock(Keys);
4 V alues = read_crdtObjects(Keys, Clock);
5 NewClock = State.V c;
6 unlock(Keys);

• Update_objects: We improve this function by adding the possibility to
handle strong consistency operations. Our improvements are illustrated in
Algorithm 3.2. The client who sends the update operation should specify the
vector clock, the consistency level, and the update details (object identification,
operation type, and the value). Minidote_server uses these elements in
addition to the current state as input parameters to the update function that
executes the following steps.

– Firstly, Minidote_server checks the keys of the corresponding objects, and
if they are acquired by another operation, it should wait. Then, it compares
the operation’s vector clock with that of the current state. If the stump of
the query is greater, this means that the node misses some updates so it
should wait until missed updates arrive (lines 1-3). After that, it acquires
the locks of targeted keys and then increments its own logical clock in the
vector by one (line 4).

– Secondly, Minidote_server checks the consistency parameter (lines 5-12),
if the consistency is ’causal’, it applies the updates locally by calling CRDT
APIs. Then, it calls the Tcbcast function of the middleware to broadcast
the updates to other nodes. However, if the consistency is ’strong’, it
broadcasts the updates directly and waits for its stability to be able to
apply them locally.

– Finally, Minidote_server updates its state’s vector clock by the current
vector clock. The latter is returned as an answer to the client query and
the Keys should be released(lines 13-15).
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Algorithm 3.2: Update operation.
Input: Updates, Clock, Cons, State
Output: NewClock

1 wait_release_locks(Updates.keys);
2 check_clock(Clock, State.Vc);
3 lock(Updates.Keys);
4 NewV c := increment(State.V c);
5 if Cons = ’causal’ then
6 apply_updates_locally(Updates);
7 State.Dot := tcbcast(Updates, NewV c, State.Deps, State.Dot, Cons);
8 else
9 State.Dot := tcbcast(Updates, NewV c, State.Deps, State.Dot, Cons);

10 wait_stability(Updates);
11 apply_updates_locally(Updates);
12 end
13 State.V c := NewV c;
14 NewClock := NewV c;
15 unlock(Updates.Keys);

• Broadcasting updates (Tcbcast): Tcbcast is a function of camus_middleware
which is called by Minidote_server to broadcast updates to other nodes
(Algorithm 3.3). When it is called, the middleware increments the dot by one
to identify the message holding the new update (line 1). Then, the middleware
adds a new vertex to the dependency graph for the new update (line 2). After
that, it checks the consistency. If the latter is strong, the dot is added to the set
of strong dots and the new vertex of the graph is labeled as ’received’. However,
in the case of causal consistency, the new vertex is labeled as ’delivered’ (lines
3-8). Finally, a message will be sent to the other nodes of the cluster. This
message contains the updates, its identification (Dot), the dependencies, the
consistency type, and the set of strong dots (lines 9 and 10).

Algorithm 3.3: Broadcasting updates(Tcbcast)
Input: Updates, Vc, Deps, Dot, Cons, Dpgraph
Output: NewDot, Dpgraph

1 NewDot := increment_dot(Dot);
2 Add NewVertex to Dpgragh for NewDot;
3 if Consistency = śtrong´ then
4 Add NewDot to StrongDots;
5 Mark NewVertex as ’received’;
6 else
7 Mark NewVertex as ’delivered’;
8 end
9 Msg := {Updates, NewDot, Deps, Cons, StrongDots};

10 broadcast_to_other_nodes(Msg);

• Receiving Remote updates: This function will be called when the middleware
receives a broadcasting message of remote updates from another node
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(Algorithm 3.4). Upon receiving a remote message, the receiver adds the
corresponding dot to the set of strong dots if the consistency is strong. Then
the function check_strong_dot is called to verify the status of strong dots (lines
2-5). After that, a new vertex in the dependency graph should be added, if it
has not been added before, for the received dot (line 6). Then, the middleware
creates a new vertex for each dot in the dependencies of the received dot if
it has not been created before and in the latter case the vertex is labeled as
’missed’ (lines 9-12). The received dot is inserted into the successors_set of all
the vertices of its dependencies (line 13). Finally, for a causal consistency dot,
it will be delivered if all its Dependencies have been delivered by calling the
function Deliver(lines 15 and 17).

Algorithm 3.4: Receiving Remote updates
Input: Msg, LSDots, Dpgraph
Output: LSDots, Dpgraph

1 {Updates, Dot, Deps, Cons, RSDots} := Msg;
2 if Consistency = ’strong’ then
3 Add Dot to LocalStrongDots;
4 end
5 {LSDots, Dpgraph} := check_strong_dot(LSDots, RSDots, Dpgraph);
6 Add NewEntry to Dpgragh for Dot, if it is not exist;
7 Mark Dot as ’received’;
8 foreach Dotd in Deps do
9 if not exist a vertex of Dotd in Dpgraph then

10 Add NewVertex to Dpgragh for Dotd, if it is not exist;
11 Mark NewVertex as ’missed’;
12 end
13 Add Dot to successors_set of Dpgraph(Dotd) ;
14 end
15 if all dots in Deps have been delivered and Cons = ’causal’ then
16 Deliver(Updates, Dot, Dpgraph);
17 end

• Delivering message (Deliver): Delivery means send the remote update from the
middleware component to Minidote_server of the same node. This function
has three steps (Algorithm 3.5):

– label the corresponding vertex in the dependency graph as ’delivered’ and
send the updates to Minidote_server (lines 1 and 2).

– Check the stability of the predecessors_set dots by noticing their vertices
in the dependency graph as arrived at the sender node. A dot becomes
stable if it is noticed as arrived at all the nodes (lines 3-8).

– Check the dots in the successors_set if they can be delivered (lines 9-13).
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Algorithm 3.5: Deliver Msg
Input: Updates, Dot, Dpgraph
Output: Dpgraph

1 Mark Dpgraph(Dot) as ’delivered’;
2 Send Updates to Minidote_server;
3 foreach Dotd in Predecessors_set of Dpgraph(Dot) do
4 Find Dotd in Dpgraph and notice it as arrived at SenderNode;
5 if Dotd is noticed as arrived at all the nodes of the cluster then
6 Dpgraph := Stable(Dotd, Dbgraph);
7 end
8 end
9 foreach Dotd in Successors_set of Dpgraph(Dot) do

10 if all Predecessors of Dotd have been delivered then
11 Deliver Dotd ;
12 end
13 end

• Check strong dots: It is a new function that we have added to manage strong
consistency operations (Algorithm 3.6). It is called when the middleware
receives any message from the other nodes by exploring the piggybacked set of
strong dots. So the local node can determine which dots among its broadcast
dots have arrived at the sender node to notice them. If a dot has arrived
at all the cluster nodes, the middleware labels its vertex in the Dpgraph as
’stable’ and then notify Minidote_server to apply the corresponding updates
locally. Finally, a commit message is broadcast to the other nodes. When a
node receives the commit message, its middleware calls the functions Deliver
and Stable for the corresponding dot.

Algorithm 3.6: Check strong dots
Input: LocalStrongDots, RemoteStrongDots, Dpgraph, SenderNode
Output: LocalStrongDots, Dpgraph

1 foreach Dotd in LocalStrongDots do
2 if Dotd exist in RemoteStrongDots then
3 Notice Dotd as arrived at SenderNode;
4 if Dotd has arrived at all the nodes then
5 Notify Minidote_server to Apply the corresponding updates locally;
6 Dpgraph := stable(Dotd, Dbgraph);
7 Broadcast a commit message to the other nodes for Dotd;
8 end
9 end

10 end

• Stable dot: When a dot becomes ’stable’, it should be removed from the
predecessors_set in the overall graph and its vertex should be removed from
the dependency graph as well (Algorithm 3.7).
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Algorithm 3.7: Stable dot
Input: Dotd, Dpgraph
Output: Dpgraph

1 foreach Vertex of Dpgraph do
2 Remove Dotd from Predecessors_set if it is exist;
3 end
4 Remove Vertex of Dotd from Dpgraph;

3.5.2 Clarification example
Take a cluster of two nodes MinidoteACE as shown in Figure 3.3. We will show
how MinidoteACE handles client reads and updates.

Figure 3.3: An example of cluster of two MinidoteACE nodes.

Let Ctr1= {"g1", crdt_counter, "bucket"} be an object of MinidoteACE where
his key is “g1”, his type is a counter, and his bucket is “bucket”.

Update_object: When Client 1 wants to update the object Ctr1, he sends the
following instruction to MinidoteACE 1:

Vc1 = update_objects([{Ctr1,increment,3}], {0,0}, causal).
This instruction increments Ctr1 three times ( Ctr1 = Ctr1+3) under causal

consistency. {0,0} is a vector clock that means that this operation has no
dependencies. If the instruction is executed in the first node, the resulting vector
clock Vc1 will take the value {1,0}.

Read_object: To read this object, the Client 2 send the following query:
{Value1,Vc2} = read_objects([Ctr1],{0,0}).
He should then obtain {Value1,Vc2} = {3,{1,0}}. In fact, Client 2 can read

the value that has been updated by Client 1 and replicated by the system. Moreover,
the obtained vector clock indicates that Client 1 has performed one update.

3.5.3 Implementation
We have implemented MinidoteACE by working on Minidote-tcb: a branch of
Minidote GitHub repository which is written in Erlang and uses Camus. We
have used the branch with stability of Camus that contains the implementation
of stability. The main modules that we have replaced are: Minidote
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API, Minidote_server, Camus and Camus_middleware. The source code of
MinidoteACE is available in our GitHub repository 1. We have made the necessary
amendments in the other modules of Minidote and Camus to enable MinidoteACE
to work conveniently.

3.6 Evaluation

We have used the benchmark Basho_bench which is developed within the project
AntidoteDB[164, 165]; the latter is built on the original benchmark for Riak core.
Basho_Bench[166] is a popular Erlang application that has a pluggable driver
interface. Basho_Bench can be extended to serve as a benchmarking tool for
data stores and generate performance graphs. The benchmarking tool is useful
for repeatable and accurate performance. Basho_bench utilizes two particular
indicators of performance: throughput and latency.

• Throughput: the number of operations performed over the defined period of
time, including all possible types of operations.

• Latency: the time between sending a query and the completion of the reply.

The experiments have been performed on a cluster of MinidoteACE nodes
incorporated with a traffic generator node. A traffic generator runs one copy of
Basho_Bench that generates and sends commands to MinidoteACE nodes which
are identified by their IP addresses and port numbers. Figure 3.4 shows how traffic
generators and MinidoteACE nodes are organized in a cluster.

Figure 3.4: A cluster of MinidoteACE nodes with a traffic generator.

3.6.1 Experimental structure
Figure 3.5 illustrates our experimental setup. Hereafter, we describe the main
components of the experimental architecture.

1https://github.com/nacer-git/MinidoteACE
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Figure 3.5: Experimental structure.

3.6.1.1 Traffic generator

The benchmark of AntidoteDB has two additional files, that make the original
Basho_bench compatible with Antidote:

• The driver (basho_bench_driver_antidote_pb.erl): This file defines the
initialization of a benchmarking thread and how it executes transactions. We
have adapted the driver file to work properly with our system. Therefore, it
can generate three kinds of operations: read, causal update, and strong update.
Each generated operation is sent within a transaction of a single operation to
the target MinidoteACE node through the protocol buffer interface.

• The configuration file (antidote_pb.config): This file is given as a starting
parameter to the Basho_bench, it contains the benchmark parameters that
can be adjusted according to the test’s purpose. The configuration file contains
the following parameters:

– Target: defines the ip addresses and the ports of MinidoteACE nodes.
– Driver: defines the file name of the driver which makes the workloads that

were configured to be benchmarked for the specified targets.
– Operations: This parameter configures which operations the driver should

run and the weight of each operation. We put the following operations in
the benchmark: read, causal update, and strong update.

– Duration: An integer that defines the duration of the benchmark in
minutes.

– Threads: The number of parallel threads that will be run during one
benchmark.
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– Data type: defines data types for generated data as well as operations to
be applied for each defined type in the benchmark.

– Keys generators: takes the form {key_distribution, Max_key} which
defines the key generator distribution (Pareto or Uniform) in which the
keys will be generated as well as the maximum value.

– Values generators: takes the same form as keys generator.

3.6.1.2 Protocol Buffer Interface and data flow inside the system

We have adapted the Protocol Buffer of AntidoteDB to work conveniently with
MinidoteACE. A worker process randomly selects one of the defined operations in
the configuration file. Then, the selected operation is encapsulated in a transaction
before encoding it using the protocol buffer. Each encoded command is sent to
a target MinidoteACE node which is selected randomly too. Upon receiving a
command, the Protocol Buffer API of MinidoteACE decodes the command and
sends it to MinidoteACE API. The API then encodes the response of MinidoteACE
and transfers it to the traffic generator. In the traffic generator, there is a module
that catches results and collects it in a result file.

3.6.2 Experiment Setup
The experiments were performed in an environment using a laptop with 8 GB DDR3
RAM, AMD Quad-Core Processor A8-7410 (up to 2.5 GHz), and 1 TB of Hard Disk
Drive. Ubuntu 18.0.4 LTS (64-bit) was installed.

3.6.3 Performance configuration
Based on measuring performance and workload, Basho-bench is a benchmarking tool
that performs reads and updates. After adapting the driver according to the input
format of MinidoteACE, The operations that a driver might run are in the format
of (causal update,x,strong update,y,read,z) which means that in each generated
(x+y+z) operations, Basho_bench will generate x causal update operations, y
strong update operation and z read operations. When y=0, This means that the
benchmark does not contain any strong operation. Therefore, MinidoteACE will
act like a Minidote system which allows us to compare our consistency approach
with the existing approach. To evaluate the performance of MinidoteACE system
and compare it with Minidote, we launched the experiments illustrated in Table 3.1
on a cluster of 3 to 6 nodes during one minute. The grey rows contain experiments
that evaluate our adaptive consistency approach (Experiments: 3, 4, 6, and 7). The
white rows, however, will evaluate Minidote behavior (Experiments: 1, 2, and 5).

72



3.6. Evaluation

For simplicity, we fixed the number of concurrent threads to 10, we chose the Pareto
distribution for key generation and the Uniform distribution for value generation.

Tableau 3.1: Experiments details and abbreviations.

Causal updates Strong updates Reads Notation
Experiment 1 0 0 1 Read only
Experiment 2 1 0 9 1C_9R (10% updates)
Experiment 3 0 1 9 1S_9R (10% updates)
Experiment 4 1 1 18 1C_1S_18R (10% updates)
Experiment 5 5 0 15 5C_15R (25% updates)
Experiment 6 4 1 15 4C_1S_15R (25% updates)
Experiment 7 3 2 15 3C_2S_15R (25% updates)

3.6.4 Results and discussion
In the following sections, we address the performance indicators and describe the
results according to different experimental scenarios between reads, causal updates
and strong updates.

3.6.4.1 Throughput results

The experimental results about throughput performance for each experiment are
illustrated in Figure 3.6. As it is shown in the results, the throughput performance
in the read only experiment is almost three times bigger than the other cases
(2440 operations) due to the absence of update operations that have a higher
latency which decreases the performance. For the other experiments, we notice that
the performance decreases when we increase the proportion of update operations.
Moreover, the throughput performance is inversely proportional to the number of
nodes i.e, a cluster that has a small number of nodes has a higher performance.
Despite strong updates having higher latency, the difference with causal updates in
performance is not huge between workloads when executing them. For experiments
2 and 3, the performance will be reduced by 3.5% when replacing causal update
operations by strong operations. However, it will be less than 10% when replacing
two out of five causal update operations by strong operations (Experiments 5 and
7).

3.6.4.2 Read latency results

Figure 3.7 illustrates the 95th percentile read latencies that we have measured in
each experiment. The results show that read operations have the smallest latency
for the read only workload (about 12 milliseconds for whatever the number of nodes
in the cluster). However, this latency increases when the proportion of updates or
the number of nodes in the cluster increases. We note also that sticking strong
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updates to the workload gives a remarkable decrease of read latency (up to 30% for
10% updates between experiment 2 and 3). This happened because strong updates
have higher latency so the workload should have lower throughput performance,
and hence, lower latency for read operations.

Figure 3.6: Throughput performance.

3.6.4.3 10% update results

Figure 3.8 and figure 3.9 illustrate the latencies of causal and strong updates
for experiments 2, 3 and 4 where update operations account for 10% of the
workload. In these figures, the abbreviation 1C_9R_causal_upd represents the
95th percentile/average latency of a causal update operation in experiment 2.
Similarly, 1S_9R_strong_upd represents the 95th percentile/average latency of
a strong update operation in experiment 3. The same notation is used by
1C_1S_9R_causal_upd and 1C_1S_9R_strong_upd in experiment 4. The results
show that replacing causal updates by strong updates increases update latency
between 23% and 100% according to the number of nodes in the cluster for average
latency results (experiments 2 and 3). However, for 95th latency results, latencies of
the two types are almost the same. We notice also that when dividing the proportion
of updates between the two types, strong update latency is greater almost four times
for a cluster of three nodes and two times for a cluster of six nodes.
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Figure 3.7: 95th percentile read latency.

3.6.4.4 25% update results

Figure 3.10 and figure 3.11 illustrate the latencies of causal and strong updates for
experiments 5, 6 and 7 where update operations account for 25% of the workload.
These figures use the same notation used in figures 3.8 and 3.9. Mean latency results
show that when replacing one out of five causal updates by a strong update, its
latency becomes three to two times greater according to the number of nodes in the
cluster. Moreover, strong update latency becomes five to three times greater when
replacing two out of five causal updates by strong operations. However, for 95th
percentile results, strong operation latency is almost double of causal operation’s
latency when replacing one or two out of five causal operations for three or four
nodes in the cluster. But when the number of nodes increases the gap between the
two cases widens and becomes 70 milliseconds of difference for six nodes.

3.6.5 Limitations of the proposed approach
Although MinidoteACE allows to overcome causal consistency issues, It suffers from
several limitations that we highlight in the following points:

• The strong consistency level introduced in MinidoteACE enables it to
execute operations under stronger consistency guarantees. However, strong
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Figure 3.8: 10% updates: 95th percentile update latency.

consistency decreases the system performance (it increases Latency and
decreases throughput). Hence. Clients should find a suitable trade-off between
consistency and performance.

• Evaluations show that the latency of strong updates becomes quite high when
the rate of update operations exceeds 25% of overall operations.

• "Strong updates" risque to be aborted due to a possibly long waiting time. The
protocol used to enforce "total" requires stability information to be collected
from all nodes. If this information is not collected after some timeout an "error"
state is reached.

Conclusion

n this chapter, we have presented MinidoteACE, a new adaptive consistency
approach in the edge computing environment. Our model enables applications
to run queries with causal or strong consistency. To achieve this aim, we have
improved the Minidote system by adding the ability to handle strong consistency
operations. The new consistency level is stronger than causal consistency, but
it does not emulate the typical strong consistency since it only checks that the
update has arrived at the nodes of the cluster. We have experimentally evaluated
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Figure 3.9: 10% updates: Average update latency.

MinidoteACE using Bash_bech: a benchmarking tool that has been modified to
evaluate AntidoteDB. To do that, We performed the necessary amendment on the
Basho benchmark to fit MinidoteACE. Our evaluation proves that MinidoteACE
can support certain proportions of strong operations without significantly affecting
latency or throughput. To the best of our knowledge, MinidoteACE is the
only causally consistent system that provides more than consistency level in edge
computing environment.
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3.6. Evaluation

Figure 3.10: 25% updates: 95th percentile update latency.

Figure 3.11: 25% updates: Average update latency.
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Conclusion and perspectives

Consistency management in the cloud is an open issue that has been tackled
in many works in the literature. The main issue in consistency is the trade-off
between consistency in one hand and availability and performance on the other
hand. Adaptive consistency is a consistency approach that tune the consistency level
according to application needs as well as the system state. This thesis investigates
adaptive consistency management of Big data in the cloud and offers two major
contributions.

First Contribution

We established in the first contribution a comparative study of the proposed
adaptive consistency models considering all aspects of data consistency in the Cloud
as well as in emerging computing paradigms. To perform this study, we have first
defined a set of comparative criteria that describe the design or the behavior of
such an approach. Then, we analyze the most popular adaptive techniques in the
literature. For each work, we highlighted its main contribution and summarized
its behavior towards the defined criteria. We summarized then our analysis in a
table in order to view globally the study and be able to discuss different aspects
of adaptive consistency. Finally, We gave challenges and future research directions.
We can outline the main results of this contribution in the following points:

• A middleware is the suitable architectural model to add the adaptive
consistency functionality to an existing storage system and enhance its
consistency management strategies.

• A statistical policy is very expensive to implement in big data due to large
amount of heterogeneous data. So, using an intelligent technique is better in
terms of performance and costs.

• Taking monetary costs into consideration is very important in such approaches
because it is one the principal goals of using the cloud.
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• Applying the same level of consistency for the overall system is not always
practical when data in the cloud have not the same importance or the same
access frequency.

• It is necessary that the adaptive policy makes a combination between
transaction level and object statistics (operation side and data side) to define
the consistency guarantees.

Second Contribution

In the second contribution, we proposed an adaptive consistency approach in Edge
Computing environments. Our system offers two levels of consistency to clients:
causal and strong for each update they send. To achieve our goal, we relied on
Minidote, a causally consistent system for Edge Computing applications, where we
used its behavior to perform causal operations. However, for strong operations, we
used the existing implementation of causal stability which ensures that a strong
operation will not be executed until it will arrive at all other nodes. The new
consistency behavior that our system provides does not wait for update operations
to be committed, it ensures just their arrival to all the system nodes to commit
the operation. Hence, the new consistency level is weaker than the typical strong
consistency. Our system allows application designers to adaptively choose the
convenient consistency level for each operation according to application needs and
the system’s context. The application can specify which operations should be
run under causal consistency and which others should have stronger consistency
guarantees.

Perspectives

To overcome the thesis’s drawbacks and improve its results, the future aims and our
suggestions for future works are:

• Applying the same level of consistency for the overall system is not always
practical when data in the cloud have not the same importance or the
same access frequency. The related Challenge to this situation is to provide
an automatic mechanism that allow splitting data into different consistency
categories by applying clustering techniques. And so, according to its enclosing
data, Every category should be given the most appropriate consistency level.

• Considering other parameters to tune consistency level. For example, Role
Based Access control which is an access control policy that classify clients
according to their roles in the system. Hence, clients that have the same role
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should get the same consistency level. Client context in the fog computing
environments can be also used to predict the adequate consistency level. thus,
client change his place or access period should not maintain his in consistency
guarantees.

• For MinidoteACE, we aim to improve its performance by enabling it to support
a higher rate of strong consistency updates. Moreover, we aim to avoid waiting
for a long timeout by investigating the possibility of implementing ”strong”
operations while collecting only a majority of confirmations. which gives
quorum consistency: another consistency level between causal and strong.
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