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1. Introduction

The backward stochastic differential equation (BSDE) related to the stochastic maximum
principle of Pontryagin was introduced in 1965 and 1972 by Kushner [4, 5] and by J. M
Bismut [2] for the case when the generator f is linear with respect to the variables Y and Z. A
stochastic maximum principle of BSDE systems was studied by El-Karoui et al [6], where the
linear case is solved and some applications in finance are treated. Dokuchaev and Zhou [10]
established necessary as well as sufficient optimality conditions for nonlinear controlled BSDE
systems, where the control domain is not necessary convex. Bahlali et al [11], proved the
existence of optimal strict control systems governed by linear BSDEs. The control domain and
the cost functional are assumed convex and they established in this paper necessary as well as
sufficient conditions of optimality, satisfied by an optimal control, in the form of Pontryagin
stochastic maximum principle. The proof of this result is based on the convex optimization
principle.

Peng et al developed in [8] and [9] a new type of PDE which are formulated through a
classical BSDE in which the terminal values and the generators are allowed to be general
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functions of Brownian paths. For more information on this subject, the reader is directed to
[8].

In this work, we study the maximum principle in a non-Markovian framework, using the
approach developed by Bensoussan [1], to get the necessary conditions for optimality of
control. Hence we assume that the control domain is convex. Apparently, an argument of
convex perturbation can be used to derive the maximum principle.

Our objective here is to study a stochastic control problem where the system is governed by
a nonlinear BSDE of non-Markovian type. We shall establish necessary and sufficient
optimality conditions, in the form of a stochastic maximum principle, for this kind of systems.
The non-Markovians ystem under consideration is governed by a BSDE of the type

dyy,(t) = (s, B?,Y‘;t(s),Z;t(s),v(s))dt — Z3,(s)dB(s),
Y\}it(T) = é:a

where f is given map, B = (Bt)1..o IS a standard Brownian motion, defined on a probability
space (Q,F,P), and with values respectively in R.The control variable v = (v¢) is a
Fi-adapted process with values in a set U of R". We denote by U the set of all admissible
controls. The criterion to be minimized, over the set 4 of controls, has the form

3) = B 9B (®, Y1,0) + [ N6 BE,Y4(5),24,().v(s)ds |,

where g and h are given functions, and (y,Y7,,Z},) is the trajectory of the system controlled by
V.

The paper is organized as follows. In section 2 we introduce some preliminary background
and definitions about our new kind of BSDEs of a non-Markovian type. In Section 3, we
formulate the problem and give various assumptions used throughout the paper. Section 4 is
devoted to some preliminary results, which will be used in the sequel. In Section 5, we derive
necessary as well as sufficient optimality conditions in the form of a stochastic maximum
principle.

2. Definitions and Assumptions

The following notations are mainly from Dupire [3]. Let T > 0 be fixed. For each

t e [0, T], we denote by A; the set of cadlag RY —valued functions on [0, t].
For each y € At the value of y at time s € [0, T] is denoted by y(s). Thus y = y(S) gesr IS
a cadlag process on [0, T] and its value at time s is y(s). The path of y up to time t is denoted

by v, 1.8, Yt = y(S)oee € At. We use the notation A = Ute[oﬂ A+, and sometimes also

specifically write

7t = ¥(8)ocset = (7(8) gesern ¥ (1),
to indicate the terminal position y(t) of y, which often plays a special role in this framework.
For each y € A and x € R we denote y} = (7(8) gesetr ¥ (1) +X), Which is also an element in
At.
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Our interest here is in a function f of path, i.e., f : A » R+ This function f = f(y¢), yt € A
can also be regarded as a family of real-valued function:

f(ye) = f(7(S)geset) = FC¥(S)peeep¥t) 71 € Ay 1€ [0,T].
We also use the notation f(y{) = f(t, y($) g Yt + X) fOr yr € Ay, X € RY, te[0,T].

Remark 2.1. Itis very important to conceive f(y{) as a function of t, f(t,7(S) o<, (1)) and x.
A typical case is f(yt) = f(t,7(S) geeer) = f(,y (L), 7t +X) Dyt € Ay, t e [0,T], where
r(t-) = limy(s).

We now introduce a distance on A. Let (. ) and |.| denote respectively the inner product and
norm in RY. Moreover, foreach0 <t <t < Tand Yo7 € A, let

lyell :=sup |y(r)|, and
ref0,t]

doo(y1,7) = maX(Sup Aye =73 sup {lye =74} +|t—t|>.

re[0,t] re[0,t]

It is obvious then that A: is a Banach space with respect to ||. ||, and since A is not a linear
space, d. is not a norm.

Definition 2.1. (Continuity) A function f : A —» R is said A —continuous at y; € A, if for any
€ > 0 there exists 6 > 0, such that for each 7, € A satisfying d.(yt,7;) <6, we have
[f(yt) — f(7;)| > €. fissaid to be A —continuous if it is A —continuous at each yt € A.

3. Formulation of the Problem

Let Q = C([0,T],RY) and P the standard Wiener measure defined on (Q, B(Q2)), and

consider the canonical process B(t) = B(t,w) = w(t), t € [0,T],w € Q. Then B(t),,.1 IS
d —dimensional Brownian motion defined on the probability space (Q, B(Q),P). Let A be the
collection of all P —null setin Q. Forany 0 <t < r < T, F} denotes the completion of
o(B(s)-B(t); t<s<r), ie, 7t =c{(B(s)-B(t); t<s<r)VN}. Wealsowrite 7;
for 72 and F for Ft.

For any 0 <t < T, we denote by L?(F;) the set of all square integrable F; —measurable
random variables, MZ2([t,T];RY) the space of all Fi- adapted, R —valued processes

T
(X(8)) sept 1 with EUJ(X(S))thJ <o, and S2([t, T];RY) the space of all Fi — adapted,

RY —valued continuous processes (X(S)) seq.y With E|: sup |(X(s))|2:| < o0,
' se(t, T]

Consider then a deterministic function f : [0,T] x A x R™ x R™d  R™ which will be, in
the following, the generator of our BSDEs. For this f, we will make the following assumptions:
x  f(yy,y,2) is a given continuous function on A x R™ x R™d,

* * There exists constants C > 0 and g > 0 such that: for y.,7, € A,y,y € R™,z,z € R™,

(e, y,2) = 7, 9.2 < CA+ Iyl T+ 17 D ye + 7 Ay = 91+ 12 - 2)).
The following result on Backward stochastic differential equation ( BSDES) is now well
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known, and for its proof the reader is referred to Pardoux-Peng [7].

Lemma 3.1. Let f satisfy the above conditions, then for each & € L?(Q, Fr,P;R"), the BSDE
T T
dY(t) = §+j f(s,Bs,Y(s),Z(s))dt—I Z(s)dB(s), 0<t<T,
t t
has a unique adapted solution(Y(t), Z(t)) o € S2([0, TI;R?) x M2([0, T; RY).

Let T be a positive real number, U be a nonempty set of R and B = (Bt) o7y Is standard

Brownian motion, defined on a complete probability space (Q,F,P) and with values in RY.
Let L2(Q, Fr,P;R") denote the space of all Fr-measurable, one-valued, random variable
satisfying E|&|? < oo.

Definition 3.1. An admissible control v is F; —adapted process with values in U such that

E|: sup |vt|2:| < oo, where U/ is the set of all admissible controls.
0<t<T

Given & € L?(Q, Fr,P;R") and for any v € U/, we consider the following controlled BSDE
non-Markovian system

dyy,(t) = —f(s,BE,YY,(5),Z%,(s),v(s))dt + ZY,(5)dB(s), @
Y;/’t(T) = é!

where f : [0,T] x A x R" x R™d x U —» R, and B{'(u) = yilpg(u) + (y:(t) + B(u) — B(t))

X|(t’T](U).
The functional cost to be minimized, is defined from I/ into R by

() = ]E|:g(BVt(t),Y‘y’t(t)) + j: h(s,B?,Y‘;t(s),Z‘;t(s),v(s))ds] )

whereg : AxR" > R, h:[0,T]xAxR"xR™xU >R, te[0,T],xeR,y e AvelU.
The control problem is to minimize the functional J over U. If u € U is an optimal solution,
that is

J(u) = infyg J(v). 3)
Now let us assume, as Al, that
o f is Fi-progressively measurable and satisfies b(w,t,0,0,0) € M?(0,T;R");
« f, and h are continuous and continuously differentiable with respect to (y,z,v);
« All the derivatives of fand h are bounded by ¢ > 0.
Under the above assumptions, for every v € U, equation (1) has an unique strong solution
(YY,ZY) € S?([0, T; RY) x M?([0,T];R?) (see Pardoux-Peng [7]) and the functional cost J is
well defined from ¢/ into R.
We remark that assumptions (A1) imply in particular that there exist constants ¢ > 0, such that
for any (y1,21,V1), (Y2,22,V2) € R" x R™4 x U, we have
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If(re,y1.21,v1) — f(rey2,22,v2)|? < c(ys —ya|? + llza = 22| * + V1 — v2|?),
IN(rt,y1,21,V1) = N(rt,Y2,22,V2)[* < c(lyr = Val? + 121 — 22 |1? + V1 = v2|?),
9(rtY1) — 9(ruy2)l® < clys - y2 [

4. Preliminary Results

Since the set I/ is convex, the classical way to derive necessary optimality conditions is to
use the convex perturbation method. More precisely, let u be an optimal control and let

(Y5, Z5,) be the corresponding trajectory. Then, for each s e [t,T], we can define a perturbed

control by
ué = U+ &(v(s) —u(s)),
where ¢ > 0 is sufficiently small and v is an arbitrary element of /. Denote then by (Y%,,Z%,)

the solution of (1) controlled by u®.
Since u is optimal, the variational inequality will be derived from the fact that

0 < J(?) —J(u).
Towards this end, we need the following lemmata.

Lemma 4.1.[9] Let 5(s) € M2([0, T];R™), B(s) € M?(t,T;R"), be such that
Y, (1) = a0+ j: 5(s)ds — j: B(s)dB(s),t < [0, T].
Then
W OF + [IBOF = laof +2 [ (4,(5),5)ds
-2[ (Y, 5()dBS),

B, (OF + B[] IO < Blaol + 28 [ (¥,,(0,5)ds

Lemma 4.2. Under the assumptions (Al), there holds

lim E|:sup IYZ.(S) —Ygt(s)|2:| =0, 4)
&0 t<s<T

lim EU:HZ;(S) 0 ||2ds] - 0. (5)
-0

Proof. Applying the generalized It6 formula (Lemma 4.1) to |Y4,(s) — Ygt(s)|2, we get
T
BIY:,(5) = Y4.()° + B[ 11Z5,(s) - 24,(s) | ds

< B[ {(Y5,(5) - Y3(5)),
f(s,BY', Y5,(5), Z5,(s),us(s)) — f(s, BE', Y4,(5), ZY,(5),u(s))) ds. ©
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2 2, (1-0)

2 . .
(1-a) 5C b, to the term in the right hand

Then apply Young’s formula, 2ab <

side to obtain
]
BIY:.(5) = Y4(O)|* + B[ 1Z5(s) - Z4.(5) | °ds

E[V5.(5) - Y4,(5)[ds

= (1 a)
+= “’Ej If(s, B, Y2,(5), Z5,(5), U (s)) — f(s, BL', YU.(5), Z4,(5), u(s)) | ds.

By the Lipschitz conditions for f , we have

]EjtT|f(s, BL', Y2 (5), Z5,(s), U%(s)) — (5, BL', YY,(5), Z4,(5), u(s))| ds

< 3B[T[f(s,BX' Y2,(5), Z5,(5), U(S)) — £(5, BL', Y4, (5),Z5,(5), U°(5)) | ds
+3E jtT|f(s, BL,YY.(S),Z5,(5),us(s)) — f(s,BL', YY.(S), Z,(5), us(s))[’ds
+3E jtT|f(s, BIY, YY (5),Z4,(5),u%(s)) — f(s, BL, Y¥.(5), Z4(5),u(s))| ds.
The use of the definition of u® leads to
]EIT|f(s BL,YE.(5),Z5,(s),us(s)) — f(s,BE", YU, (5),Z4,(5),u(s))| ?ds
< 3|\/|Ej IYe.(s) = YU.(5)| ds+3|v|Ej 1Z5,(s) — Z8,(5)|’ds
+3e2ME j vs) - u(s)|*ds.
Then we can rewrite (6) as follows
BIYS,(0) - Y5O + B[ 1Z5,(5) - Z4(5) I °ds

< (& + M EEIR[TY5 ) - Y3, (5)[ds

+3ME "”Ej 1Z5,(s) — 2¢,(5)|’ds

+ 8D 2ME j v(s) — u(s)|ds,

where
M= (20N (M)
From the above inequality, we derive the following two inequalities
BIYS, (1) = Y4 OF < 6B [[¥5,(5) - Y ()| s + cse?, (®)
E[11Z5,(5) - Z3,(s) I °ds < 265 [ [Y5,(5) - YY,(5)[ds + 2c3¢2. (9)

Consideration of (8),Gronwall’s lemma and the Bukholder—Davis—Gundy inequality yields
(4). Finally, (5) is deduced from (9) and (4).
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Lemma 4.3. Let (¥,Z) be the solution of the following linear equation (called variational
equation):

d ¥(s) = —[fy(s,BE", Y¥,(5), Z},(5),u(s))¥(s)
+f2(s,BL, YY.(5),ZY,(5), u(s))Z(s) ]ds
—fu(s,BE, Y4,(5), Z},(5),u(s) ) (v(s) — u(s))ds + Z(s)dB(s),

y(T) =0, (10)
then
B £ _Vu 2
lim E| sup ) = LA ~V(s) J =0, (11)
-0 | tss<T
B £ _7u 2
lim B| | £~ 206) 5 ds} _ 0. (12)
&-0 L

Proof. For the sake of simplicity, let us use the notation

Vi) - OO g

Zf,t(S) B Z;’,t(S)
€

Z'(s) = -7(s),
re(s) = (s,Y5,(5) + 2e(Y(s) +(5)), Z8.(s) + Ae(Z°(s) + 2(5)),

u(s) + Ae(v(s) —u(s))),

and write
~E 1 INZ 1 =7
dY ' (s) = —Uofy(l“g(s))Y (s)d/1+_“ofz(l“g(s))z (s)d/1+a8(s)st
+Z°(s)dB(s),
y(T) = 0,
where

af = [ (5, BE, Y4(9), Z4(9),U(s)) — [ fy(T*(9))dA |¥()
+ |:fz(s, BL,YY.(5),ZY.(s),u(s)) — j.; fz(Fg(s))d}t]Y(S)

+ [fv(s, BL,Y¥.(s),ZY,(s), u(s)) — jéfv(ms))dﬂ
x (V(s) —u(s)). (13)

By applying the generalized It6 formula to |Y¢ | > we get
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T 2 T)>e 2
E|Y°(s)| +Ejt 1Z°(s)|"ds
T|~e 1 N 1 =71
< ZEIt Y () - U fy(Te(s))Y (s)d/1+j f,(T"¢(s))Z (s)dA + ag(s)J ‘ds,
0 0
and by using Young’s formula in the term in the right hand side, for every 61 > 0, we have

E|Y:|*+E]|Z:| ds

< B[V )| ds
2

T| 2 NI 1 =1
+51B ] ‘ RIGIONAOLTEY RAONAOERZOIND

According to (Al), fy, f, are bounded by ¢ > 0, and this allows for
E[Y°(s)|" +E[|Z°(s)| ds
< (5% + 3c51)EjtT|Vg(s) | “ds + 3c61]EjtT(|Zg(s) |2>ds
+3C1E | (jag|?)ds.

A further choice of §; = — in the previous inequality reduces it to

6C
BV s)|* + LB[|2°()|ds < CE ! |Ve| “ds + CoB [ (faz|?)ds.
From this result we deduce the following two inequalities
E[Y°(s)|” < C1E ! | Ve *ds + CE [ (lag[?)ds, (14)

B['|2°s)|*ds < 2C,B [ |Ve| ds + 2CB [ (jaz[*)ds. (15)

Now, since fy, f, and by are continuous and bounded, then by using the Cauchy-Schwartz
inequality, we may show that

lim Ef:(|a§|2)ds - 0. (16)

e-0
This relation is obtained by applying Gronwall’s lemma and letting ¢ go to O in (13). Finally,
(11) and (12) are deduced from (14), (15) and (16). H

Since u is an optimal control, then
+(J(u(s) +&v(s)) — J(u(s))) > 0. (17)
And equipped with (17) and Lemma 4.3, we can state the lemma that follows.

Lemma 4.4. Let u be an optimal control minimizing the cost J over U4, and assume the validity
of Al, then the following variational inequality holds.
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0 < E[gy(B™ (1), Y5, (t)y(t)] +
+E| tT hy(s, B, Y4,(5), Z4,(S), u(s) )Y (s)ds

+E J.tT h, (s, B?‘,Yﬁt(s), Z3.(s),u(s))z(s)ds

+ EjtT hy(s,BE", YY.(5),ZY,(s),u(s))(v(s) — u(s))ds.

Proof. Starting from (17), since u is optimal, we have
0 < +B[g(B" (1), Y5.(1) — 9(B7(1), Y},(1))]

e T

%E. [h(s,BE, Y£,.(5),Z5,(5),u?(s)) — h(s, B{', YU.(5), 24.(s),u(s))]ds

el

<E| gy (e +2e(Y ) +y1) ) (Y (®) + y(©))dA

0

+

—

+E tT j ; fy(2()) (Y°(s) + y(5) ) dAds

oT oL e
+B[ jofz(r ) (Y°(s) + ¥(5))dads

T p1
+Ej j £, (T(5))(V(S) — u(s))dAds + ne(b).
t Y0
then
0 < L E[g(B7(1), Y5,(1)) — g(B(1), Y¥,(1)]

+1E I:[h(s, BL, Yz,(5), Z5,(5),U%(S))
—h(s, B, Y¥,(s),Z4,(5),u(s))]
<B[ g,(¥h0 +22(V 0 +70)) (©)d2
T el T el
+E j t jo f,(0%())(Y(s))dAds + E j t j (1%())(¥())d2ds

T p1
+ Ej f f,(T£(3))(V(S) — u(s))dAds + ¢ (t),
t Y0
where n?(t) is given by

10 = B[ g, (Y40 + 26 (Y +70)) (V' ©)d
B[ [ f0e) (V) dads
+ B j tT j: f,(r2(s)) (Y (s) ) dads.

(18)

(19)

Apply then the Cauchy Schwartz inequality, the fact that gy, fy and f, are bounded, and use
(12) with (13) to show that lim n#(t) = 0. Finally, by letting ¢ go to 0 in (19), the proof is

e-0

completed.
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5. Adjoint Equation and Maximum Principle

In this section, we derive the variational inequality from (18). For this end, we introduce
the following adjoint equation

([ —dp(s) = [fy(s,BL', Y4,(5). Z4,(5), u(s))P(S)
+hy(s,BE, YY.(5),Z4.(5),u(s))]ds
< + [f2(s,BE, Y5,(5), Z3,(5), u(s))p(s) (20)
+ h(s, B?,Ygt(s),zgt(s), u(s))JdB(s),
p(t) = gy(B"(1), Yy (1), t=s=T,
with
p € L3([0, T];R").
By applying It6’s formula to (p(s)¥(s)) and invoking the expectation, we have
E(®Y®) = E(@EMY()) - ELT hy(s,BE', Y4,(s), Z5,(s),u(s))y(s)ds
- EjtThz(s, BL, Y¥,(5), ZY,(s), u(s))Z(s)ds
+ Ej:[p(s)fv(s, BY', YY.(5), ZY,(5),u(s))](v(s) — u(s))ds. (21)
We remark that Y(T) = 0, and p(t) = gy(B”'(t),Yy,(t)). Then (21) becomes
E(gy(B™(1), Y5,(1)) V(1))
- —ELT hy(s, B, YY,(5), 24, (S), u(s) )Y (s)ds
_E| tT hy(s,BZ, YY,(5), 24 (5), u(s))Z(s)ds
+ Ej:[p(s)fv(s, BL,YY.(5),ZY,(5),u(s))](v(s) — u(s))ds.
Finally, we can rewrite (18) as
(22)

0< ELT[HV(S,B?,Y%(S),Z%(S),p(S),U(S))(V(S) —u(s))]ds,

where the Hamiltonian H is defined from [0, T] x A x R" x Mpn.4(R) x R" x U into R by
H(s,BE', YY.(s),ZY,(s),p(s), u(s))
= f(s,BE, YU, (5),ZY,(5),u(s))p(s)

+h(s,BE, YU, (5),ZY,.(5),u(s)).
From the above variational inequality, we can straightforwardly derive the necessary

conditions for optimality.

(23)
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Theorem 5.1. (The necessary condition of optimality) Let u be an optimal control minimizing
the functional J over U and (Y},(s),Z},(s)) denotes corresponding optimal trajectory. Then
there are two unique adapted processes p € L%([0,T];R"), which are respectively solutions of
the stochastic differential equation (20) such that a.e., a.s., we have

0< EftT Hy (s, B?,Ygt(s),zgt(s),p(s),u(s))(v(s) —u(s))ds.

Proof. The prove flows directly from (22). |
5.1. Sufficient optimality conditions

In this subsection, we study when the necessary optimality conditions (22) become
sufficient. For any v € U, we denote by (Y},(s),Z},(s)) the solution of equation (1) controlled
by v, to state the following result.

Theorem 5.2. (Sufficient optimality conditions) Assume that the functions g(y,y), and
(Yy.(8),Zy.(s)) — H(s,7,Y}.(s),Z}.(s),p(s),v(s)) are convex, and for any v € U, y'(T) = 0
is an m —dimensional F; —measurable random variable such that E|£|* < . Then, u is an
optimal solution of the control problem {(1),(2),(3)}, if it satisfies (22).

Proof. Let u; be an arbitrary element of ¢/ ( candidate to be optimal). For any u; € U, we have

J(u1) —J(uz)

= Bg(B™(1), Y7 (1)) — g(B™*(t), Yy (1))]

+1 [ Th(s,BE, Y¥1(6),24(8),U1(5)) — (s, BY', YH£(5), 24 (5),Ua()) 1.
Since g(y,Yy) is convex with respect to y, then

g(B7 (1), Y71 (1)) —g(B(1), Yy (1)) = g(B"'(1), Y72 (D)) (Yri(t) — Y32 (1)),
Thus

J(u1) = J(u2)

= B[g(B™(1), Y22 (D)) (Yri (1) — Y3 (D)]

+15 [ h(s,BE Y4(),Z4(5),Us(6)) - (s, BE. YA (5), Z%(5),ua()) I
It follows from (20) that p(t) = gy(B”(t),Y},(t)). Then we have

J(u1) = J(u2)

> Blp0) (Y7 () - Yy ()]

+5 [ h(s,BY Y4(),Z8(5),Us(6)) - h(s, BE. Y4 (5), Z%(5),Ua(s)) I
Applying It6’s formula to p(s)(Y5i(s) — Yy%(s)) leads to
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E[p(t) (Vi (1) - Y5:(1))]
= B[p(T)(Y$:(T) - Y5(T))]
[} Hy(5,BY, Y4,(5), Z5,(5), p(8), U2(9)) (Y5 (1) — Y3 (1))t
~B [} Ha(5, BL, Y5,(5), Z4,(8), P(S), Ua () (Z5: (1) — Z5: (1) )t
+B ] p(S)[T(s, BY, YVH(5), 24 (5),ua(s)) — (5, B, YH2(5), 252 (5), Ua(5)) Ids.
Then
3(u1) —I(uz) = B [H(s, BL, Y4,(5), Z4,(5). p(S), Ur(s))
—H(s, B, Y4,(5), Z4,(5), P(8), Uz(s)) ]ds
—I [} Hy(5,BY, Y4,(5), Z5,(5), P(8), U2(8))(Y5: 5) — Y¥:(s))ds
B[] Ha(5,BL, Y5,(5), 24, (), P(S), Ua(5)) (Z5: () — ZY (5))ds. (24)

Since H is convex in (Y,.(S),Z,.(s)), then by using the Clarke generalized gradient of H
evaluated at (Yyi(s),Zy:(s),u) and the necessary optimality conditions we arrive at

[H(s,BE, YY.(5),Z},(5), p(), us(8))
—H(s,B{', YY.(), Z4,(s), p(s), uz(s))]ds
> Hy(s,BE, Y1,(5),Z3,(5), p(s), U2(8)) (Y#i () — Y¥i(s))ds
+H2(8,BE, Y4.(8), Z5,(8), P(5), U2(8)) (Zi (5) — Zy2(5))ds,
or equivalently
0< EIZ[H(S, BL,YY.(5),Z4.(5),p(s),u1(s))
— H(s, B?,Ygt(s),zgt(s),p(s),uz(s))]ds
~E ] Hy(5,BY, Y4,(5), Z4(5), P(5), U2()) (Y5 () - Y¥2(s)))ds

- EJ.:- HZ(Sl Bgti Ygt(s), Z;‘Ift(s)1 p(s)1 UZ(S))(thl (S) - Z?/f (S))ds
Then from (24), we get J(u1) — J(uz) > 0. Here the proof completes. H

Acknowledgements
The author wishes to thank an anonymous referee for his critical reading of the typescript.This
work is partially supported by the Algerian PNR project N:8/u07/857.

References

[1] A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic
Control, Proceedings of the 3rd Session of CIME, held at Cortona, 1981.



Condition for Optimality of a Backward Non-Markovian System 13

[2] J. M. Bismut, An introductory approach to duality in optimal stochastic control, SIAM
Review 20 (1), (1978), 62-78.

[3] B. Dupire, Functional It6 calculus, Portfolio Research Paper 2009-04, Bloomberg, 2009.

[4] H. J. Kushner, On the stochastic maximum principle : fixed time of control, Journal of
Mathematical Analysis and its Applications 11, (1965), 78-92.

[5] H. J. Kushner, Necessary conditions for continuous parameter stochastic optimization
problems, SIAM Journal on Control 10, (1972), 550-565.

[6] N. El Karoui, S. Peng, and M. C. Quenez, Backward stochastic differential equations in
finance, Mathematics of Finance 7 (1), (1997), 1-71.

[7] E. Pardoux, and S. Peng, Adapted solutions of backward stochastic differential equations,
Systems and Control Letters 14, (1990), 55-61.

[8] S. Peng, Note on Viscosity Solution of Path-Dependent PDE and G-Martingales,
arXiv:1106.1144, 2011.

[9] S. Peng, and F. Wang, BSDE, Path-dependent PDE and Nonlinear Feynman-Kac Formula,
arXiv:1108.4317, 2011.

[10] N. Dokuchaev, and X. Y. Zhou, Stochastic controls with terminal contingent conditions,
Journal of Mathematical Analysis and its Applications 238, (1999), 143-165.

[11] S. Bahlali, A. Elouaflin, and M. N’zi, Backward stochastic differential equations with

stochastic monotone coefficients, Journal of Applied Mathematics and Stochastic Analysis 4,
(2004), 317-335.

Avrticle history: Submitted May, 12, 2012; Accepted February, 02, 2013.



