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Abstract— This paper deals mainly with the modelling of
induction machine inductances by taking into account all the
space harmonics, the introduction of the skewing rotor bars
effects and linear rise of MMF across the slot. The model is
established initially in the case of symmetric machine, which
corresponds to the case of a constant air-gap. Then in other cases
where the machine presents a static or dynamic eccentricity, an
axial or radial eccentricity. This objective would be achieved
by exploiting an extension in 2-D of the modified winding
function approach (MWFA). Moreover, the theoretical aspects
are presented and the stator current spectra analysis proves the
effectiveness of this approach in case of eccentricity.

I. I NTRODUCTION

The multiple coupled circuit, defined in the aim of ap-
proaching the real structure of the rotor cage, supposes that
this one gathers round a number of loops forming a polyphase
winding. Each loop consists of two adjacent bars and the
two portions of the end ring which connect them [1]. Such a
structure was used in aid of the induction machine diagnosis.
Several studies were carried out in this axis, and made possible
to reveal some phenomena rising from a defect. Such higher
or lower sideband frequencies appear in the stator frequency
spectral analysis of the line currents, the torque, the speed and
the power. Some papers suppose a perfect distribution of the
MMF in the air-gap, others adopt models taking into account
the real distribution of machine’s windings [2]. In particular
with the implication of winding function, then, MWFA [3], it is
possible to detect some phenomena accompanying a probable
eccentricity. Finally, the introduction of the axial dimension
was used [4], [5]. This approach takes advantage to define
inductances of a machine by taking into account the skew of
the slots, and it can be extended to the study of other types
of axial asymmetries, namely, the axial eccentricities.

In this work, a 2-D model of the induction machine will
be approached while focusing the study on its first aim;
the modelling of induction machine inductances with non-
sinusoidal distribution of the stator winding, the axial and
radial non-uniformity of the air gap. The study will be based
on an extension of the MWFA, simulation results as well as
comments will be exposed.

II. A 2-D PRESENTATION OF THE MODIFIED WINDING

FUNCTION APPROACH

To formulate the problem, we refer to the Fig. 1 which
gathers together two cylindrical masses separated by an air-
gap. One of it is hollow out and represents the stator, and
the other represents the rotor. Anabcda arbitrary contour is
defined thanks to a reference frame fixed on the stator, to an
axial reference and to the mechanical position of the rotor
measured by respecting a fixed stator reference. At a rotor
positionθr are defined the anglesϕ0 = 0, z0 = 0 and they are
located by the pointsa andb, and by the same way, the angle
ϕ and the lengthz are located by using the pointsc andd. On
another side,a andd are located on the stator inner surface,
andb andc on the rotor external surface.

Fig. 1. Elementary induction machine

Let us extend the approaches proposed in [3] by using
the axial dimension. Thus, according to the Gauss’s law, the
integral of the magnetic flux density on closed surfaceS of a
cylindrical volume defined in comparison to the average radius
of the air-gapr is null

∮

S

B ds = 0 (1)

By defining, at any of coordinates(ϕ, z), the magnetic field
intensityH, the magnetomotive forceF and the effective air-



gap functiong, such asB = µ0H andH = F/g, the Eq. (1)
becomes

µ0r

2π∫

0

l∫

0

F (ϕ, z, θr)
g(ϕ, z, θr)

dzdϕ = 0 (2)

wherel is the effective length of the air-gap. On another side,
and according to the Amper’s law, it is possible to write

∮

abcda

H(ϕ, z, θr)dl =
∫

Ω

Jds (3)

Ω is a surface enclosed by the closed pathabcda, andJ the
current density. According to the MMF and the number of
turns enclosed by the closed pathabcda and traversed by the
same currenti, (3) can be written as

Fab(0, 0, θr) + Fbc + Fcd(ϕ, z, θr) + Fda = n(ϕ, z, θr)i (4)

wheren(ϕ, z, θr)is called the 2-D spatial winding distribution
[5], or the 2-D turns function.

By considering the permeability of the iron as infinity,Fbc

andFda are null. The substitution of these values in (4) gives

Fcd(ϕ, z, θr) = n(ϕ, z, θr)i− Fab(0, 0, θr) (5)

By introducing the average value of the inverse air-gap func-
tion 〈g−1(ϕ, z, θr)〉 with

〈g−1(ϕ, z, θr)〉 =
1

2π

2π∫

0


1

l

l∫

0

g−1(ϕ, z, θr)dz


dϕ (6)

and while exploiting (2) and (5), it will be possible to lead to
the expression givingFcd(ϕ, z, θr) such as

Fcd(ϕ, z, θr) = n(ϕ, z, θr)i−
1

2πl〈g−1(ϕ,z,θr)〉
2π∫
0

l∫
0

n(ϕ, z, θr)g−1(ϕ, z, θr)i dzdϕ
(7)

The 2-D winding function can be obtained by dividing the
members of (7) by the currenti

N(ϕ, z, θr) = n(ϕ, z, θr)−
1

2πl〈g−1(ϕ,z,θr)〉
2π∫
0

l∫
0

n(ϕ, z, θr)g−1(ϕ, z, θr)dzdϕ
(8)

It is to be noticed that this new expression does not hold any
restriction as for the axial uniformity, in particular in term of
skewed slots and axial air-gap non uniformity.

III. C ALCULATION OF INDUCTANCES

A. Machine with uniform air-gap

Firstly, we suppose that the machine is symmetrical. The
air-gap lengthg is reduced tog0which is the average value
of the radial air-gap length in the case of no eccentricity.
Defining F the MMF distribution in the air-gap due to the
current iAi flowing in an arbitrary coilAi, the elementary
flux corresponding in the air-gap is measured in comparison
to an elementary volume of sectionds and lengthg0 such as

dφ = µ0Fg−1
0 ds (9)

The calculation of total flux is made through a calculation of a
double integral. By carrying out the change of variablex = r ϕ
and xr = r θr, the study is transformed to a reference with
axes X and Z where we can imagine a plane representation of
the machine. It is clear that, in this case,x translates correctly
the linear displacement along the arc corresponding to the
angular openingϕ. It is the same thing concerningxrandθr.

Knowing that N is the MMF per unit of current, the
expression giving the flux seen by all the turns of coilBj

of winding B due to iAi flowing in coil Ai will be reduced
as

φBjAi =
µ0

g0

x2j∫

x1j

z2j(x)∫

z1j(x)

NAi(x, z, xr)nBj(x, z, xr)iAidzdx

(10)
That is due to the fact that by taking account the axial
asymmetry,nBj(x, z, xr) will be defined so as to be able to
translate the skew of the slots. In 2-D, it will be written in the
following way

nBj(x, z, xr) ={
wBj x1j < x < x2j , z1j(x) < z(x) < z2j(x)
0 in the remaining interval

(11)

wherewBj is the number of turns of coilBj . It is equal to
1 in the case of a rotor loop. Generally, the total fluxψBA

relating to all coils composing windingA and B holds its
general expression by integrating over the whole surface. And
knowing that the mutual inductanceLBA is the fluxψBA per
unit of the current, it yields

LBA(xr) =
µ0

g0

2π r∫

0

l∫

0

NA(x, z, xr)nB(x, z, xr)dzdx (12)

Let us notice that a rearrangement of (12) makes possible to
define an inductance in per unit of the length as described in
[4]

LBA(xr) =

l∫

0

L′BA(z, xr)dz (13)

In the same way as [1], and according to the manner of
connections of the coils translated by the sign in (14), this
inductance can be obtained by summing all mutual inductances
between theq and p coils of winding A and B respectively,
such as

LBA(xr) =
q∑

i=1

p∑

j=1

±LBjAi(xr) (14)

B. Bars skewing

Figure 2 depicts the crossing of a rotor looprj under the
field of a stator coilAi. The skew is written thanks to the
definition ofz(x) (10) which will be a function describing the
uniform skew, or particularly, the case of spiral skew.

We can notice that the pitchαAi of the coilAi is defined in
comparison to its sides placed atx1i = r ϕ1i andx2i = r ϕ2i,
and that the effect of linear rise of MMF across the slot is
note represented in this figure.



Fig. 2. Representation of the skew

C. Slot opening

Let us examine the case of coilAi with wAi turns placed in
slots which can present an opening of the widthβ according to
the configuration considered. Figure 3 shows the turns function
of coil Ai when the slot opening is taken into account in the
calculation using a linear rise of the MMF across the slot.

Fig. 3. Turns function of coilAi

D. Machine with an eccentric rotor

Equation (12) takes its generalized form as

LBA(xr) =

µ0

2πr∫
0

l∫
0

NA(x, z, xr)nB(x, z, xr)g−1(x, z, xr)dzdx
(15)

With the use of (14) and (15), it will be possible to calculate
all inductances of the machine where the inverse of the air-gap
expression is defined by

g−1 = g−1(x, xr) : in case of a purely radial eccentricity
g−1 = g−1(x, z, xr) : in case of eccentricity along axisz

whereg is giving by its general expression as follows

g(x, z, xr) =
g0 [1− δs(z) cos(x/r)− δd(z) cos((x− xr)/r)] (16)

where δs and δd are the amount of static and dynamic
eccentricity respectively which are function ofz. A numerical
calculation makes possible to find the integral (15), however,
an analytical resolution must call upon an approximated ex-
pression ofg−1 by carrying out a development in Fourier
series. A perfect result would be obtained while stopping at
the third term, such as

g−1(x, z, xr) ≈
P0(z) + P1(z) cos(x/r − ρ) + P2(z) cos(2(x/r − ρ))

(17)
ρ and coefficientsP0, P1andP2 are calculated fromg0, δs(z),
δd(z) andθr like describing in [6] and [7]. It is to be recalled
that for any windingA andB, equalityLAB = LBA is always
checked [6]. All inductances are calculated at each time. They
used an average radius of the air-gapr in the case or not
of eccentricity, which can admit of variations of the air-gap

radiusR due to the eccentricity. These one are negligible in
front of the average radius itself. Nevertheless, it is not the
true concerning the air-gap. Consequently, the ratio can be
rewritten as

R(x, z, xr)
g(x, z, xr)

=
r ±∆R(x, z, xr)
g0 ±∆g(x, z, xr)

≈ r

g0 ±∆g(x, z, xr)
(18)

IV. SIMULATION RESULTS

A. Machine with uniform air-gap

The first induction machine studied in this paper is a three-
phase, 4-pole motor [4], whose parameters appear in the
Appendix. The structure of the stator coils is presented in the
Fig. 4, where only the phaseA is considered. Each circle
represents the section of an elementary coil ofw turns.A, B,
andC are the three stator phases, andrj is thejth rotor loop.

Fig. 4. Winding of the stator phaseA

Figure 5 illustrates the functions which describe the mutual
inductancesLr1A between the first stator phaseA and the
first rotor loop. The four cases are considered with or not
the taking into account the slots opening and the rotor bars
skewing. A rotor loop is seen as being one coil with one turn.
We have to notice that the mutual inductance between phase
A and the seconde rotor loop is identical to the first loop
but shifted to the left by the angle2π/Nb. Thus, the other
inductances,Lr1B and Lr1C are identically reproduced, but
shifted to the right by the angleπ/3. The mechanical skewing
angle of the rotor bars isγ = π/12rad, which is selected
equal to one stator slot pitch. The width of the slot opening is
β = π/24rad. In each figure, the function whose maximum
value is the most significant, represents the first derivative of
the mutual inductanceLr1A.

The self inductances and the mutual inductances between
windings of the same frame (stator or rotor) are not affected by
the skew effect. However, a variation of the stator inductances
values is appeared. This is due to the taking into account of
the linear rise of MMF across the slot (Table I).

B. Machine with an eccentric rotor

1) Radial eccentricity:The second specific induction motor
studied is a three-phase, 11kw, 50Hz, 4-pole motor, having
four coils per phase group, eight coils per phase, series con-
nected [8]. The others parameters are given in the Appendix.
Figures 6-11 show the results of simulation for different
degrees of eccentricity, and with three termsP0, P1 and P2

used in the development ofg−1.

TABLE I

STATOR INDUCTANCES

LA(H) LAB(H)
β = 0 0.1198 −0.0532
β = π/24 0.1165 −0.0529



Fig. 5. Mutual inductance between stator phaseA and rotor loopr1

C. Axial eccentricity

To examine the case of the static eccentricity, the expression
of δs(z) must be defined. According to Fig. 12 showing the
external diameter of the rotor and the internal diameter of the
stator with exaggeration in the representation of the air-gap,
δs(z) can be written as

δs(z) = δs0 (1− z

L
). (19)

As presented in Fig. 12, the minimum air-gap forz = 0 is
supposed atϕ = 0 along the vertical axis. The minimal air-
gap has a fixed angular position for the different values ofz
lesser thanL, but its value depends onz.

On another side, if the perfectly concentric section of the

Fig. 6. Lr1A and dLr1A
dθr

: (a) symmetric machine, (b)δs = 35%,δd = 0%

rotor corresponds toz = L, thus, the modelling of the
eccentricity,L must be selected greater than a certain value
guaranteeing the existence of an air-gap withg(x, z, xr) 6= 0
along the rotor length. ForL → +∞, as a resultδs(z) → δs0,
and the study is identical to the case of a radial eccentricity.
Figure 13 shows the mutual inductance between stator phase
A and the first rotor loop with rotor position withδs0 = 70%
andL = l/2.

D. Operation under condition of mixed eccentricity

Knowing that the squirrel cage can be viewed as identical
and equally spaced rotor loops, it is possible to establish
voltage equations of stator and rotor loops as [1], [2]:

[Us] = [Rs] [Is] +
d [ψs]

dt
(20)

[ 0 ] = [Rr] [Ir] +
d [ψr]

dt
(21)

[ψs] = [Lss] [Is] + [Lsr] [Ir] (22)

[ψr] = [Lrs] [Is] + [Lrr] [Ir] (23)

The vector[Us] corresponds to the stator voltages,[Is] and
[Ir] to the stator and rotor currents.m is the number of
stator phases andNb the number of rotor bars.[Rs] is an
m dimensional diagonal matrix,[Lss] is anm×m symmetric
matrix, [Lsr] is anm× (Nb + 1) matrix, and[Rr] and [Lrr]
are(Nb +1)× (Nb +1) matrix. Adding to these equations the
mechanical expression and the equation of the electromagnetic
torque yields to

Ce−Cr = Jr
dωr

dt
, Ce =

(
dWco

dθr

)∣∣∣∣
(Is,Ir=constant)

(24)



Fig. 7. Mutual inductancesLr1A, Lr1B , Lr1C : (a) δs = 35%,δd = 0%, (b)
δs = 0%, δd = 50%

Fig. 8. Lr1A , Lr1B , Lr1C in case of mixed eccentricity ofδs = 35% and
δd = 25%

and

Wco = 1
2 ([Is]T [Lss][Is] + [Is]T [Lsr][Ir]
+[Ir]T [Lrr][Ir] + [Ir]T [Lrs][Is])

(25)

where Wco is the coenergy,Ce the electromagnetic torque,
Cr the load torque,Jr the rotor load inertia, andωr is the
mechanical speed of the rotor. Figure 14 shows the simulation
result of the operation of machine (2) under conditions of
mixed eccentricity ofδs = 40%, δd = 20%.

In the spectra of Fig. 14 relating to the current of the first
stator phase, it is possible to see the first components which
are function of the static eccentricity. This result is derived
from the general equation given in [7], and described by

fslot+ecc = fs

(
Nb

p
(1− s)± 1

)
(26)

fs represents the main frequency ands the slip in per unit.
In the low frequency, components near the fundamental show

Fig. 9. Self inductance of phaseA for different degrees of dynamic
eccentricity

Fig. 10. Self inductance of rotor loopr1 for 50% of static eccentricity

Fig. 11. Mutual inductanceLr1A for different degrees of eccentricity: (a)
Static eccentricity, (b) Dynamic eccentricity.



Fig. 12. Illustration of the axial eccentricity

Fig. 13. Lr1A for δs0= 70% andL = l/2

up. This result is as predicted in [8] and described by

fecc = fs

(
1± 1− s

p

)
(27)

V. CONCLUSION

In this work, the bases of MWFA were presented with
introduction of the axial dimension. It was applied in the
calculation of the induction machine inductances with, ini-
tially, taking into account of all the space harmonics due to
the nonsinusoidal distribution of the MMF in the air-gap.
Secondly, we took into consideration the effects generated
by the skew and the linear rise of MMF across the slots.
Then finally, the modelling of these inductances in the case of
air-gap eccentricity conditions are presented (cases of: static,
dynamic, radial and axial eccentricity ). For that, a simulation
tools was established. The spectral components in the stator
current allow to identify eccentricity faults. The obtained
results were compared with the final results of [4] and [9], and
a good agreement was noted. Now, it is advisable to integrate
the magnetic saturation effect, and to envisage other faults
conditions. It is our work perspective.

APPENDIX

Machines Parameters
-Machine (1) :g0 = 0.0006m, r = 0.066m, l = 0.115m, w =
20, Nb = 36, Ne = 24.
- Machine (2) :g0 = 0.0008m, r = 0.082m, l = 0.11m, w =
28,Nb = 40,Ne = 48,Lb = 95nH, Le = 18nH, Rs = 1.75Ω,
Rb = 31µΩ , Re = 2.2 µΩ, Jr = 0.0754kgm2, γ = π/20rad,
β = π/86rad

Fig. 14. Stator current spectra with mixed eccentricity condition which are
δs = 40%,δd = 20%,s = 2.5%
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