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Abstract

 
 

A new class of composite materials known as "Functionally Graded Materials" (FGMs), has 

been designed by Japanese scientists to compensate for certain defects that occur in traditional 

laminated composites, such as stress concentration and delamination. FGMs are made from a 

mixture of metals and ceramics distinguished by a gradual change in composition and 

microstructure through the thickness, resulting in a smooth and continuous variation in material 

properties. FGMs have been widely used in many structural applications that differ from their 

first application as a thermal barrier for aerospace structures. The development of the use of 

FGMs in structures requires a good understanding of their mechanical behavior in order to 

provide an optimum profile to designers. 

The main aim of the present work is to contribute to the modeling of static, stability and 

dynamic behaviors of plates made of FGMs. First, a four-node rectangular finite element, with 

five degrees of freedom per node, based on First-order shear deformation theory (FSDT), has 

been adapted for static, mechanical buckling and free vibration analysis of FG single layer and 

sandwich plates. The FSDT provides a sufficiently accurate description of response for thin to 

moderately thick plates. However, it predicts constant transverse shear stresses across the 

thickness and a shear correction factor is needed.  To overcome problems related to FSDT, a 

novel trigonometric shear deformation model with five unknowns has been proposed for the 

analysis of FG plates behavior. The model accounts for the sinusoidal variation of the transverse 

shear strains across the thickness and satisfies the shear stress-free boundary conditions on the 

top and bottom surfaces of the plate. A four-node rectangular finite element based on the 

proposed new model (R4SSDT), has been formulated to analyze the static, stability and 

dynamic behavior of FG single layer plates. For the two formulated finite elements, assumed 

natural shear strain and the physical neutral surface position procedures have been taken into 

consideration. The performance and accuracy of the developed elements have been evaluated 

through validation tests. The effects of various parameters on the behavior of FG plate have 

been also studied. 

Keywords: Functionally graded materials, Plates, Static, Stability, dynamic behavior, 

Trigonometric model, Finite element method, Assumed natural shear strain technique, Neutral 

axis. 



iii 
 

ملخص
 

 
، من قبل علماء المواد اليابانيين للتعويض عن بعض (FGMs) "تم تصميم فئة جديدة من المواد المركبة تعُرف باسم "المواد المتدرجة وظيفياً 

وظيفياً من . تصُنع المواد المتدرجة (انفصال طبقات المركب) مثل تركيز الإجهاد والتفكيكالعيوب التي تحدث في المواد المركبة التقليدية، 

لى تباين سلس ومس تمر في السمك تدريجي في التركيب والبنية المجهرية من خلال المعادن والسيراميك، تتميز بتغير مزيج من ، مما يؤدي اإ

 خصائص المواد. تم اس تخدام المواد المتدرجة وظيفياً على نطاق واسع في العديد من التطبيقات الهيكلية التي تختلف عن تطبيقها الأول

 كحاجز حراري لهياكل الفضاء. يتطلب تطوير اس تخدام المواد المتدرجة وظيفياً في الهياكل فهماً جيداً لسلوكها الميكانيكي من أأجل توفير

 .ملف تعريف مثالي للمصممين

من المواد المتدرجة المصنوعة  صفائحلل ، المس تقر والديناميكيالس تاتيكيهو المساهمة في نمذجة السلوك  هذا العملالهدف الرئيسي من 

تشوه القص من على نظرية  مبني حرية لكل عقدة، وخمس درجات عقدوظيفياً. أأولً، تم تكييف عنصر محدود مس تطيل الشكل باأربعة 

أأحادية الطبقة المتدرجة وظيفياً،  صفائحللالميكانيكي والاهتزاز الحر  لتواء، الاالس تاتيكيالسلوك لتحليل  ،(FSDT)الدرجة الأولى

لى متوسطة السمك الصفائح الرقيقةس تجابة وصفًا دقيقاً بدرجة كافية ل نظرية تشوه القص من الدرجة الأولى وفروالس ندويتش. ت . ومع اإ

نه لى  ثابتة عبر السمكجهادات قص تنباأ باإ ت  اذلك، فاإ ، تم FSDT . للتغلب على المشاكل المتعلقة بـالقص تصحيح معاملوهناك حاجة اإ

التباين المقترح، يراعي النموذج  الصفائح المتدرجة وظيفياً. ، لتحليل سلوكفقط مجاهيلوبخمسة مثلثي  ،جديد لتشوه القصنموذج اقتراح 

. تمت صياغة لى الأسطح العلوية والسفلية للصفيحةع انعدام اجهادات القص ويلبي شروط عبر السمك عرضيالقص ال نفعالتالجيبي ل

السلوك الس تاتيكي، المس تقر والديناميكي ، لتحليل  المقترحعلى النموذج الجديد  استناداعنصر محدود مس تطيل الشكل رباعي العقد 

يعي القص الطب  انفعال اس تخدام تقنيةدين اللذين تمت صياغتهما، فقد تم و بالنس بة للعنصرين المحد للصفائح المتدرجة وظيفياً أأحادية الطبقة.

. كما تمت المطورة من خلال اختبارات التحققموضع السطح الطبيعي المحايد في الاعتبار. تم تقييم أأداء ودقة العناصر  أأخذالمفترض و 

 وظيفياً.لصفائح المتدرجة ادراسة تاأثير العوامل المختلفة على سلوك 

 نظرية تشوه القص المثلثية، ،الديناميكيالسلوك الس تاتيكي، السلوك المس تقر، السلوك ، وظيفياً، صفائحالمواد المتدرجة  الكلمات المفتاحية:

 .المحور المحايد ،المفترضالقص الطبيعي  انفعالتقنية  المحدودة،العناصر  طريقة
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General introduction

 
 

 

Scientific progress in the field of materials technology and the continuous development of 

modern industries have given rise to the continual demand for ever more advanced materials 

with the necessary properties and qualities. The need for advanced materials with specific 

properties has led to the gradual transformation of materials from their basic (monolithic) state 

into composites. 

A composite material is a class of advanced material, made up of two or more materials of 

different nature, whose combination confers to the whole superior performances to those of the 

components taken separately. It consists of a matrix in which particles or fibers called 

"reinforcement" are embedded. Thus, properties such as stiffness, fatigue resistance, corrosion 

resistance, wear resistance, weight reduction and many others are improved. However, a major 

problem with conventional composite materials, which are usually made of layers (i.e., 

laminated composites), is the discontinuity of properties and stresses at the interfaces. This 

discontinuity leads to high stress concentrations, matrix cracking and a serious delamination 

problem due to the abrupt composition transition, especially in a high temperature environment. 

One way to overcome these adverse effects is to use the Functionally Graded Materials 

(FGMs) in which material properties vary continuously. This is achieved by gradually changing 

the volume fraction of the constituent materials, usually in the thickness direction only. FGM 

eliminates the sharp interfaces that exist in composite materials and cause failures. It replaces 

this sharp interface with a gradient interface which produces smooth transition from one 

material to another. One unique characteristic of FGM is the ability to tailor a material for 

specific application. 
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FGMs occur in nature as bones, teeth etc., nature designed these materials to meet their 

expected service requirements. This idea is emulated from nature to solve engineering problem 

the same way artificial neural network is used to emulate human brain. FGMs were initially 

designed in the early 1980s by Japanese scientists, as thermal barrier materials for aerospace 

structural applications and fusion reactors. Nowadays, they have found application in various 

branches of engineering as structural elements such as plates, beams, shells, etc, for example, 

in aerospace structures, power generation industries, machine parts, etc. In recent years, these 

new classes of materials have gained considerable attention that motivates the importance of a 

deep understanding of their behavior.  

FGMs possess complex behaviors that require sophisticated numerical tools for their 

analysis. The finite element method has established itself in recent years as a powerful and 

efficient method, which allows it to be widely used in the analysis of the complex behavior of 

this type of materials. 

In general, the behavior of structural elements made of FGMs, for instance plates, can be 

described by three-dimensional (3D) or two-dimensional (2D) theories. The 3D approach is 

more accurate, however, it is difficult to implement. Therefore, the 2D approach is widely used 

due to its simplicity and low computational cost. For decades, the classical and first-order shear 

deformation theories have been used for the analysis of FG structure components behaviors. 

Although these theories give relatively accurate results, they show their shortcomings when 

evaluating the transverse shear stresses and require shear correction factors. With higher-order 

shear deformation theories (HSDTs), more comprehensive shear stress/strain through the plate 

thickness are obtained and shear stress-free boundary condition is satisfied at top and bottom 

surfaces as the displacement field takes into account higher order terms, and no shear correction 

factors are needed. It should be emphasized that the results derived from HSDTs are more 

accurate than those of FSDT. 
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Thesis objectives 

The main objective of the present work is to contribute to the modeling of the static, stability 

and dynamic behavior of plates made of functionally graded materials, by developing finite 

elements that are able to describe in the most accurate way such behaviors. This work is divided 

into two main parts. In the first part, a finite element based on first-order shear deformation 

theory has been adapted to the analysis of FG single layer and sandwich plates. The element is 

geometrically simple and has only four nodes and five degrees of freedom per node. In the 

second part of this work, a novel trigonometric model has been proposed for the analysis of FG 

plates behaviors.  Based on this new model, a four node rectangular finite element with five 

degrees of freedom per node, has been formulated, ensuring a better compromise between 

accuracy and low cost. Furthermore, another objective of this work is to study the effect of 

different parameters on the behavior of FG plate, such as the power-law index, side-to-thickness 

ratio, boundary conditions, the aspect ratio, etc. 

 

Thesis organization 

This doctoral research work is divided into three parts: 

Part one entitled ‘’literature review’’ contains Chapters 1 and 2 

 

Chapter 1 provides an overview of functionally graded materials, their characteristics, 

development history, fabrication techniques, application areas, and various micromechanical 

models and gradation laws used to describe their effective properties. Some naturally existing 

FGMs have been also presented. 

 

In Chapter 2, the most commonly used plate theories for the analysis and modeling of FG 

plates have been briefly described. A review of various investigations carried out in the existing 

literature on static, vibration, and buckling analyses of FG plates has been also presented. 
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Part two entitled ‘’Adaptation of a first-order shear deformation finite element model for 

the analysis of FG plates behavior’’ includes Chapters 3 and 4 

 

In Chapter 3, a four-node rectangular finite element (R4FSDT) with five degrees of freedom 

per node, based on FSDT, previously developed for the analysis of angle-ply laminated 

composite, has been adapted to FG plates analysis. The element has been used to analyze the 

different behaviors (static, dynamic and buckling) of FG single layer and sandwich plates. The 

material properties of the plates have been assumed to change continuously through the 

thickness, depending on the volume fraction of the constituent materials based on the power-

law function. The von Karman strain tensor has been used to account for the second order effect 

(Buckling). The concept of the neutral surface position has been introduced to simplify the 

problem and to avoid the membrane–bending coupling. The total potential energy principal, 

Hamilton’s principle and Lagrangian equation have been used for the derivation of the stiffness, 

geometrical and mass matrices. The assumed natural shear strain technique has been introduced 

to ensure the effectiveness of the element against the shear locking phenomenon.  

 

Chapter 4 is devoted to the validation of the R4FSDT element, developed in the third chapter, 

in static, stability and dynamic analysis of FG single layer and sandwich plates. The obtained 

results in terms of deflection, stresses, critical buckling loads and natural frequencies have been 

compared to those determined analytically and those obtained using finite element models 

available in the literature.  In addition, the effects of some parameters such as power-law index, 

side-to-thickness ratio, shear correction factor on the static, buckling and free vibration 

responses of FG single layer and sandwich plate have been shown. 

 

Part three entitled ‘’Development of a new finite element model based on new trigonometric 

shear deformation theory for the analysis of FG plates’’ includes Chapters 5 and 6 

Chapter 5 presents a new trigonometric model for the analysis of FG plates behaviors. The 

model accounts for a sinusoidal variation of the transverse shear strains across the thickness 

and satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the 

plate, without the need of shear correction factor.  
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The development of a four node rectangular finite element (R4SSDT) with five degrees of 

freedom per node, based on the proposed model has been also presented in this chapter.  The 

developed finite element has been intended for the analysis of static, buckling and dynamic 

behaviors of FG single layer plates, considering that the material properties of the FG plates 

change continuously through the thickness, depending on the volume fraction of the constituent 

materials based on the power-law function. The von Karman strain tensor has been used to take 

into account the second order effect. Total potential energy and Hamilton’ principles and 

Lagrangian equation have been used to formulate the stiffness, geometric and mass matrices. 

The assumed natural shear strain technique has been employed to prevent any potential shear 

locking phenomenon. Moreover, the concept of the neutral plane has been introduced to avoid 

the membrane–bending coupling. 

 

Chapter 6 presents the static, mechanical buckling and free vibration analysis results 

obtained using the finite element (R4SSDT), developed in chapter 5. The comparison of these 

results with those reported in the available literature shows the performance and the accuracy 

of the proposed formulation. The effect of some parameters such as power-law index, side-to-

thickness ratio...etc, on the variation of deflection, normal and shear stresses, natural 

frequencies, as well as the critical loads of FG single layer plates has been also investigated. 

 

Finally, the work ends with a general conclusion summarizing the problematic, objectives 

and obtained results, followed by some perspectives. 
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Chapter 1   

Functionally Graded Materials: An 

overview  

 

 

 

1.1 Introduction  

Material development is the key driver of the world we live in, as all areas of human 

endeavor depend on material development for their performance. The evolution of materials, 

from monolithic to alloy and the development of composites, is based on the limitation of one 

class of materials that necessitates the development of other classes. Most applications 

require materials with conflicting properties that may not be possible to achieve in a 

monolithic material. Furthermore, the alloying of different materials is limited by the 

thermodynamic behavior of the constituent and the limitation imposed by the degree to which 

one material can be mixed with others. Functionally Graded Material (FGM) is the one that 

can meet the demands of these applications. This material is an advanced composite material 

that can survive in a harsh working environment, without losing its properties, and without 

fail during service. 

An FGM is characterized by a compositional gradient of one material into another, making 

it completely different from conventional composite materials. The necessity of this material 

was born out of the failure of conventional composites, resulting from their inability to 

withstand harsh working conditions. The failure of traditional composite materials was due to 

the distinct, or well-defined, interface that exists between composite materials layers. The 

interface causes a high concentration of stresses which favors the initiation of cracks and their 

eventual propagation which leads to the ultimate failure of the composite. This process is 

known as "delamination". This interface is systematically eliminated in FGMs, due to the 

gradual change in the volume fractions of their components and, consequently, their 

properties in a specific direction. 
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The actual concept of FGM was acquired from nature and used to solve engineering 

problems in the same way that nature has used such materials based on their application 

requirement and areas of application. 

FGM was initially developed for a thermal barrier application, now, the application of this 

important advanced material has been increased and used to solve a number of problems in 

engineering. Aerospace, automobile, and biomedical applications are some of the areas that 

are benefitting from this novel material. 

 

1.2 Definitions and concept of FGM 

Functionally Graded Materials, or ‘‘gradient materials’’ (FGMs), represent a novel, advanced 

generation of composite materials and have been designed to achieve superior levels of 

performance [1]. 

The term “Functionally Graded Materials” contains two important words: “functionally” 

and “graded.” The word “functionally” modifies “graded.” These refer to not only simple 

functional materials but also to graded materials [2].  

FGMs are a class of composite materials that can be tailored for specific properties, 

functions and applications. Such materials exhibit a gradual change in either 

compositions/constituents or microstructures (e.g., grain size, texture, porosity, etc.) in 

specific directions, resulting in corresponding changes in material properties [3], i.e., they are 

inhomogeneous at the macroscopic and microscopic levels. [4]. In contrast, conventional 

composite materials are either homogeneous mixtures involving a compromise between the 

properties of the constituent materials, or two different materials joined together as in the 

case of laminated composites. Figure 1.1 [5], presents the schematic diagram of (a) the FGM 

and (b) the conventional laminate composite material. 

FGMs do not contain distinct (well-distinguished) boundaries or interfaces between their 

different regions as in the case of conventional composite materials. Therefore, FGMs 

possess good chances of reducing mechanical and thermal stress concentration in many 

structural elements, which can be developed for specific applications.   
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FGMs were first used in Japan in 1984 during a space plane project for thermal barrier 

application, where their concept was first proposed [6]. The concept of these materials was 

proposed to reduce the thermal stresses in the conventional laminate composite materials 

developed for reusable rocket engines [7]. 

A group of researchers at the (National Aerospace Laboratory, STA, Sendai) were faced 

with the problem of developing a material that could withstand a high temperature difference. 

The application required that one side of the composite materials be subjected to a 

temperature of about 2000 K (1726,85℃) and this temperature should not be transmitted to 

the other part of the composite. In other words, the body of the plane needs a composite 

material that will be exposed to a temperature gradient of approximately 1000 K, between the 

inside and the outside of the spaceplane, as shown in Figure 1.2 [1, 5, 8, 10]. Conventional 

laminated composite materials that were tried for this project kept failing due to the 

delamination (i.e., separation of the laminated composite materials from where the two 

constituent materials were joined). The failure was a result of the distinct interface between 

the constituent materials, which is a site of high stress concentration factor (Figure 1.3 [11]), 

and the site where failure is usually initiated. The researchers knew that if the interface 

between the two materials that form the composite could be eliminated, then the problem 

would be solved. The researchers changed this sharp interface into a gradient interface 

by gradually introducing the second material into the first material instead of 100% of 

Figure 1.1 Schematic diagram of (a) FGM and (b) conventional laminate composite material [5]. 



Chapter 1.  Functionally Graded Materials: An overview  

 
 

10 
 

one material and 100% of the second together. In this way, the sharp interface was 

eliminated, and a novel material called FGM was developed [9]. 

In summary, FGM’s concept is to replace the sudden change in composition that occurs at 

the interface between different materials, with a compositionally graded phase, in order to 

reduce stress concentrations in the structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 First example for metallic FGM in Japan [10]. 

Figure 1.3 Variation of strains and stresses through the thickness of a laminate plate [11]. 



Chapter 1.  Functionally Graded Materials: An overview  

 
 

11 
 

An FGM is usually made up of several materials with different properties. The overall 

properties of FGM are unique and different from any of the individual constituents. In some 

cases, there may be an FGM comprised of the same material but with different 

microstructures. Pores also are important components of FGMs, in which a gradual increase 

in pore distribution from the interior to the surface can confer many properties such as 

mechanical shock resistance, thermal insulation, catalytic efficiency, and the relaxation of 

thermal stress [3]. 

FGMs can be classified into continuous and discontinuous graded materials, as 

schematically shown in Figures 1.4 (a) and (b) [12], respectively. In continuous FGMs, the 

material ingredients and /or microstructure change continuously with positions, no clear 

zones or separation cut lines can be observed inside the material to distinguish the properties 

of each zone, whereas, in discontinuous FGMs, the microstructure and/or material 

composition change in a step-wise manner, resulting in a multilayered structure with an 

interface lying between discrete layers [3, 12]. Similarly, material properties can be varied 

from one surface to another, either continuously or discontinuously as shown in Figures 1.5 

(a) and (b) [10], respectively. It is worthy of mention that the material ingredients may vary 

spatially throughout the entire material volume, or only at a specific location in the material 

such as the interface, a joint, or a surface as shown in Figure 1.6 [3, 13, 14]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Types of FGMs (a) continuous FGM, and (b) discontinuous FGM [12]. 



Chapter 1.  Functionally Graded Materials: An overview  

 
 

12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Variation of properties (a) Continuous and (b) discontinuous [10]. 

Figure 1.6 Graded structures (a) at the joint, and (b) Surface [3]. 
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Commonly used FGMs are continuously graded in one specific direction. But in all types 

of FGMs, a smooth transition in thermomechanical properties is ensured, thereby mitigating 

problems due to delamination and cracking.  FGMs are typically manufactured from isotropic 

components such as metals and ceramics. A continuous gradient microstructure with metal-

ceramic constituents is schematically represented in Figure1.7 [15]. In general, metal-ceramic 

FGMs are used in high-temperature applications where the ceramic part of FGMs can 

withstand high-temperature environments due to their better thermal resistance 

characteristics; meanwhile, the metal part provides stronger mechanical performance and 

reduces the possibility of catastrophic fracture. The transition phase provides thermal 

protection as well as eliminates interface problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Schematic of continuously graded microstructure with metal-ceramic constituents 

(a) Smoothly graded microstructure (b) Enlarged view and (c) Ceramic–Metal FGM [15]. 
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From the foregoing, it is possible to extract many advantages offered by functionally 

graded materials, we intend to emphasize them here in some lines. 

 Because of their gradient interfaces, FGMs can help minimize thermal-mechanical stress 

concentrations, hence preventing delamination at crack-sensitive regions and improving 

the durability of loadbearing structures. 

 

 Porosity-graded FGM helps in absorbing the shock from one face to the other, provides 

thermal insulation, aids the catalytic efficiency; and also helps to relax the electrical and 

the thermal stresses. 

 

 FGM can act as an interface layer that connects two incompatible materials so as to 

enhance the bond strength, reduce the crack driving force developed within the material, 

provide multi-functionality namely, the ability to control deformation, wear corrosion, 

dynamic response, etc. FGM coatings reduce the internal residual stresses. 

 

 Metal- ceramic FGM eliminates the abrupt transition between coefficients of thermal 

expansion, offers thermal/corrosion protection, and provides load-carrying capability. 

 

1.3 Brief background on the research and development of FGMs 

Though the concept of FGMs has been introduced in the early 1980s by Japanese researchers, 

the general idea for theoretical applications of graded structure composite and polymeric 

materials was suggested as a concept for the first time in 1972, by Bever and Duwez [16], 

and Shen and Bever [17]. However, their works had only limited impact, probably due to a 

lack of suitable production methods and technologies for FGMs at that time. 

In the year 1986, the official terming as ‘’Functionally Gradient Materials’’, FGM, was 

done. As a consequence of a discussion at the Third International Symposium on FGMs held 

in Lausanne in 1994, the full name was changed in 1995 to ‘’Functionally Graded Materials’’ 

because it is more accurate both descriptively and grammatically [3, 18]. 

In 1987, a five-year (1987 – 1992) research project was initiated. entitled “Research on the 

basic Technology for the development of FGM for relaxation of thermal stress” (FGM 

PART1). The program aimed to develop FGMs for high-temperature uses with the objective 
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of using them for the hypersonic spaceplane. At the end of this project, samples of 300mm 

square shell and 50mm diameter hemispherical bowls for SiC-C FGM nose cones were 

prepared. [19]. 

In 1990, the first international conference on FGM (FGM 1990) was held in Sendai, Japan 

which was followed by regular conferences held every two years [3]. In 1992, FGMs were 

selected as one of the10 most advanced technologies in Japan [1]. 

Another 5-year (1993- 1998) project, a consequence of FGM (PART 1), has been 

launched in 1993 as "Research on energy conversion materials with functional gradient 

structures" (FGM part 2). This project focused to enhance energy conversion efficiency using 

FG structure technology. [6, 19, 20]. 

In 2001, an international workshop presenting the recent trend and forecast has been 

conducted under the chairmanship of Prof. Naotake Ooyama. Various topics like modeling 

and simulation, automatic manufacturing systems for FGM, residual stress measurement, 

ultrasonic imaging, and the biocompatibility of FG implant materials have been presented. 

Since then regular research programs, international symposiums, and workshops have been 

held across the world [18]. As the latest update to this, the 16th international conference on 

FGM (FGM 2022) will be held On August 7-10, 2022 in Hartford, USA.  

1.4 Functionally graded materials in nature 

Although the concept of FGMs and the ability to manufacture them, appears to be an 

advanced engineering invention, the concept is not new. It is basically bio-inspired [15, 21]. 

Scientists and engineers have always drawn inspiration from nature to solve scientific and 

technological problems. One example is the artificial neural network, which mimics the 

neural network of the human brain and how it processes information, and has been used to 

solve many engineering problems. 

Most materials found in nature are based on FGMs, as nature has produced them based on 

the functionality required from these materials, as well as the working environment to which 

they are subjected. There are a lot of natural FGMs that have inspired scientists and engineers 

to design materials that are used to solve engineering and medical problems [22]. Bamboo is 

an example of nature’s FGMs that possess continuously graded properties and is 

characterized by non-uniform distribution of constituent material and varying microstructure 
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[23]. Another important natural FGM is wood, which is composed of cellulose and lignin, 

with the lignin forming the matrix while the cellulose is dispersed in varying degrees across 

the entire material [24]. 

Some tissues and organs in the human body are also naturally existing FGMs, including 

human skin, teeth, and bone. Human skin has a complex multi-layered structural system that 

consists of the epidermis, the dermis, and the hypodermis [25]. Each layer has different 

properties and also performs different functions. Human teeth have an outer part made with 

high wear-resistant material that is referred to as enamel, while the internal core is made up 

of dentine. The transition from the enamel to dentine is provided by an intermediate FGM 

layer, where the composition gradually changes from one material to the other. The bone 

tissue contains the cancellous (spongy bone) with changes in pore density and distribution 

[5]. Figure 1.8 shows certain naturally occurring functionally graded materials [21]. 

Figure 1.8 Some examples of naturally existing FGMs [21]. 
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1.5 Fabrication techniques of FGMs 

The fabrication process is one of the most important fields in FGM research, where a large 

part of the research work on FGMs has been devoted to processing. FGMs could be in the 

form of thin coatings that are applied to the surface of the material to improve the surface 

properties of such materials, or it could be in form of bulk material, in which the material 

properties are changing across the whole volume of the material. Several techniques have 

been introduced to fabricate FGMs depending on the requirement, either for surface coatings 

or bulk FGM. 

Surface coatings are thin FGMs typically deposited by several vapor deposition techniques 

[26]. As well, surface coatings can also be prepared using techniques such as plasma spraying 

[27], electrodeposition [28], electrophoretic [29], Ion Beam Assisted Deposition (IBAD) [30] 

and Self- Propagating High-temperature Synthesis (SHS) [31], etc. 

Bulk FGMs could be fabricated by the Powder Metallurgy (PM) method [32], the 

centrifugal casting method [33], the slip casting method [34], and the tape casting method 

[35], etc. Among the advanced available methods, additive manufacturing [36] is one of the 

promising processes for bulk and thin coating. 

The fabrication process of an FGM can usually be divided into two steps. The initial one is 

the building up of the spatially inhomogeneous structure called Gradation. The second is the 

transformation of this structure into a bulk material called Consolidation. In detail, the 

gradation process can be categorized into constitutive, homogenizing, and segregating 

processes. The stepwise build-up of the graded structure from precursor materials is the 

constitutive process. Homogenizing is a process of converting sharp interfaces between two 

materials into a gradient by material support. Segregation starts with a macroscopically 

homogeneous material, which is converted into graded material by material transport caused 

by an external field (i.e. gravitational, electrical field, etc). Normally sintering and 

solidification follow the gradation process [37]. 

The existing and most updated fabrication techniques of FGMs are discussed in the 

following sections. 
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1.5.1 Vapor deposition technique 

The vapor deposition technique is one of the most important techniques to produce a graded 

thin film (from nm to sub-mm) by the constructive process.  The vapor deposition method 

describes a process by which materials are condensed into a solid material during the vapor 

cycle [38]. There are multiple versions of the vapor deposition techniques. Examples of these 

techniques are Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and 

sputter deposition, among others. These vapor deposition techniques are used to ensure slim 

surface covering and a high-quality microstructure finish. However, these techniques produce 

harmful gases by-products [39]. Therefore, precaution and safety measures need to be 

undertaken if the Vapor Deposition Technique is chosen as a manufacturing method. Figures 

1.9 [40] and 1.10 [21] illustrate the schematic diagram of CVD and PVD processes, 

respectively. 

1.5.2 Power metallurgy (PM)  

The powder metallurgy (PM) [41] process is an old manufacturing process for making 

engineering parts, which is also now used to produce FGMs through three basic steps, 

namely: weighing and mixing of powder according to the predesigned spatial distribution as 

dictated by the functional requirement, stacking and ramming of the premixed-powders, and 

finally sintering, as illustrated in Fig 1.11 [42]. PM technique gives rise to a stepwise 

structure. If a continuous structure is desired, then the centrifugal method is used. 

  

 

 

 

 

 

 

 

 

Figure 1.9 Chemical Vapor Deposition (CVD) process [40]. 
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1.5.3 Centrifugal casting method  

The centrifugal casting method is performed by pouring a molten material containing another 

reinforcing material, either in a molten state or solid, into a mold inside a rotating die to 

produce a functionally graded material [43]. A centrifugal force is created by rotating the die 

which helps to draw the molten material towards the mold and create separation in the 

suspended solid powder material and the melting of the two materials, as a result of the 

different densities of the two materials, and hence the creation of a FGM [33]. The graded 

distribution of the FGM formed by the centrifugal casting method would be significantly 

influenced by the processing parameters, such as the difference in density between the 

reinforcing powder particles and the molten material, the particle size and the particle size 

distribution of the powder, the viscosity of the molten material, and the solidification time. 

The apparatus for the centrifugal method and motion of solid particles under the centrifugal 

force are shown in Figure 1.12 [42]. 

 

 

Figure 1.10 Physical Vapor Deposition (PVD) process [21] . 
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The main advantage of using the centrifugal casting method for the production of FGMs is 

that a continuous gradient can be produced. The main disadvantages of the centrifugal casting 

method include the following:  

 It can only be used to produce a cylindrical section, such as a tube, bushing, and 

cylindrical or tubular castings that are simple in shape.   

 The gradation is limited by the centrifugal force and the density difference of the 

constituent materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 Fabrication process of the FGMs by powder Metallurgy [42]. 
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1.5.4 Additive manufacturing (AM) method  

Additive manufacturing (AM), also known as 3D printing, is an advanced manufacturing 

method that can be used to fabricate three-dimensional (3D) components or parts by laying 

one layer of material upon the other using computer-aided design (CAD) data [44]. By this 

process, it is possible to produce complex shapes and customized products. AM provides 

freedom to the designer to make the design as per his own specification with the least 

consideration of design for manufacturing and assembly, thereby higher production speed and 

maximum material utilization can be achieved. 

AM has been proposed as an effective approach to fabricate FGMs with optimized stress 

profiles and excellent formability [45]. Laser-based methods, stereolithography method, 

materials jetting process, and fusion deposition simulation [14, 21] can be categorized widely 

as additive manufacturing methods for production FGMs with discrete gradients. Figure 1.13 

illustrates the representative diagram of additive manufacturing [21]. 

A considerable in-depth understanding of the various FGM’s fabrication process, large 

research investments by industries, and mass production resulted in increasing applications of 

functionally graded materials in comparison to conventional materials. Some of the areas of 

application of FGMs are presented in the next section. 

Figure 1.12 The apparatus for the centrifugal method and motion of solid particles under 

the centrifugal force [42]. 



Chapter 1.  Functionally Graded Materials: An overview  

 
 

22 
 

1.6 Applications of FGMs 

Nowadays, in view of the flexibility of producing composite materials as per application 

requirements and functional suitability, the scope of FGM utilization is exceptionally wide. 

Figure 1.14 summarized the different application areas of FGMs. FGM offers great promise 

in applications with harsh operating conditions or very sensitive applications [40]. Some of 

these applications, such as aerospace, automotive, biomedical, defense, energy, marine 

industry, civil engineering and sports are presented in the following subsections. 

 

 

 

 

 

 

 

Figure 1.13 Representative diagram of additive manufacturing [21]. 

Figure 1.14 FGMs fields of application and some examples [40]. 
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1.6.1 Aerospace applications 

FGMs were first used in spacecraft for reducing thermal stresses between outside and inside 

surfaces. Over the years, the use of such materials extended to various aerospace applications. 

Most aircraft and spacecraft components are now made of FGMs such as rocket nozzle, heat 

exchange panels, solar panels, turbine wheels, space plane nose, combustion chamber 

protective layer, body components, rocket engine components, reflectors, camera housing, 

caps, and the leading edge of missiles and space shuttle, etc., [46, 47] as shown in Figure 1.15 

[21]. FGMs are also used to make a thermal barrier as a wall of a plane (spaceplane frame), to 

resist the heat generated at the outer surface of the plane due to air friction. 

 

 

 

 

 

 

 

 

 

 

 

 

1.6.2 Automotive applications 

Due to the high cost [48], the use of FGMs is limited in automotive applications. Where, they 

are only used in the critical parts of the car such as diesel engine pistons and cylinder liners, 

combustion chambers, racing car brakes, driveshaft’s, and flywheels, as shown in Figure 

1.16. FGMs can be also used in automotive body coatings [21]. 

Figure 1.15 FGMs parts in Aerospace applications [21]. 
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1.6.3 Biomedical applications 

Human tissues, such as bones and teeth, are natural FGMs. These tissues may at times suffer 

from damage that cannot be treated, necessitating their replacement. To replace these tissues, 

a compatible material that can fulfill the function of the original bio-tissue is required. The 

ideal candidate for this application is functionally graded materials. FGMs have found a wide 

range of applications in the dental [49] and orthopedic fields for tooth and bone replacement 

[50]. Figure 1.17 presents a schematic view of the FGM dental implant with graded material 

composition [51]. 

1.6.4 Defense applications 

The ability to inhibit crack propagation is one of the most important characteristics of 

functionally graded materials that makes them useful in defense applications, as a penetration 

resistant material used for armor plates and bullet-proof vests [52]. Another important 

application of FGMs is in bulletproof vehicle bodies. 

 

Figure 1.16 FGMs parts in automotive applications [21]. 
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1.6.5 Energy applications 

FGMs are used in the energy sector to achieve good thermal barrier and protective coatings 

on turbine blades in gas turbine engines. FGMs are also useful in thermoelectric generators, 

energy conversion devices, solar cells, sensors, etc [53, 54]. 

1.6.6 Electrical/electronic applications 

Functionally graded materials are used in the electrical and electronics industry in many 

ways, including field stress relaxation in the electrode and field-spacer interface, in diodes, in 

semiconductors, for insulators, and in the production of sensors. The thermal-shielding 

elements in microelectronics are also made from carbon nanotube functionally graded 

materials [55]. 

1.6.7 Marine applications 

FGMs also have applications in the marine and submarine industry, including propeller 

shafts, diving cylinders, sonar domes, composite piping systems, and cylindrical pressure 

hulls. [55, 56] 

Figure 1.17 Schematic view of the FGM dental implant with graded material composition [51]. 
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1.6.8 Opto-electronics applications 

FGMs are used in optoelectronic devices because of the refractive index gradients that can be 

achieved. Examples include lasers, magnetic storage media, sensors, fibers, solar cells, 

computer circuit boards, and semiconductor applications [56]. 

1.6.9 Civil engineering applications 

Functional gradation of concrete elements makes it possible to align the internal composition 

of structural components with specific structural and thermal performance requirements. This 

alignment is made possible by continuously altering the characteristics of the material, 

including its porosity, strength, or rigidity, in up to three spatial dimensions. This principle 

can be applied to minimize the mass of the element and to create multifunctional properties. 

Minimizing porosity improves the structural characteristics of the concrete whereas 

maximizing porosity enhances its heat insulation properties. Figure 1.18 shows the curves of 

hardened concrete characteristics depending on a gradual increase in porosity [57]. 

 

 

 

 

 

 

 

 

 

 

Figure 1.18 Curves of hardened concrete characteristics depending on a gradual increase in 

porosity [57]. 
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1.6.10 Sport applications 

FGMs, in particular those manufactured via AM techniques, are used for sports equipment 

such as golf clubs, skis, tennis rackets, etc. This is mainly attributed to the graded 

characteristics obtained and thus the reduction in weight and friction, improved durability, 

higher strength to weight ratio, hardness, wear resistance, and several other desirable 

attributes [56]. 

1.6.11 Other miscellaneous applications 

Other uses of FGMs are in cutting tool inserts coating, in the heat exchanger, in tribology, in 

the making of fire retardant doors, in defense pad making to inhibit crack propagation, etc. 

The scope of application of functionally graded materials is expected to expand further if 

the cost of production of these materials is reduced in the future. 

 

1.7 Modeling of the effective material properties of FGMs 

1.7.1 Micromechanical models (homogenization) 

Most of the FGMs are manufactured by two phases of materials with different properties. The 

volume fraction of each phase gradually varies in the gradation direction and the effective 

properties of FGMs viz. elastic moduli, shear moduli, density, etc. change along this 

direction. 

One of the main tasks of the mechanics of materials is predicting the behavior of 

materials. This requires the estimation of the effective (overall) properties of the two-phase 

composition, commonly known as homogenization. Usually, precise information on the size, 

shape, and distribution of the phases is not available, thus, the effective material properties of 

graded microstructures must be estimated based on the volume fraction distribution and the 

approximate shape of the dispersed phase. A variety of micromechanical models have been 

developed over the years to infer the effective properties of macroscopically homogeneous 

composites. These models can be extended to determine the effective material properties of 

FGMs over the entire range of volume fractions [58,59].  
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From the open literature, some of the micromechanical models used for modeling FGMs 

could be remarked, as the rules of mixtures. (Voigt [60] and Reuss [61]) are the simplest of 

them.  Hashin–Shtrikman bounds [62, 63], also called the composite sphere assemblage 

model, determined the upper and lower bounds of the effective material properties by 

applying the variational principle. The Mori–Tanaka scheme [64] and the self-consistent 

scheme [65] estimated the effective material properties using the average local stress and 

strain fields of the constituents of the composite. The three-phase model [66], is also referred 

to as the generalized self-consistent method because it follows the original self-consistent 

method. As well Wakashima–Tsukamoto [67], Halpin–Tsai [68], Tamura [69], and cubic 

local representative volume elements(LRVE) [70] models, are also employed to achieve the 

effective material properties of FGMs. All these models have been discussed in detail in 

references [58], [59], [71-74] and a comparison of the estimated properties obtained from 

these models has been performed. 

It is visible from the available studies that most of the research into FGMs uses the Mori-

Tanaka and the rule of mixture (Voigt model) to evaluate the effective material properties. 

These two models are briefly described in the following sections. 

 

1.7.1.1 The Mori–Tanaka scheme 

The Mori–Tanaka (1973) model (Tanaka, 1997) is used for estimating the effective moduli of 

the material. It accounts approximately for the interaction among neighboring inclusions and 

is generally applicable to regions of the graded microstructure that have a well-defined 

continuous matrix and a discontinuous particulate phase as depicted in Figure 1.19 [15]. This 

method assumes that the matrix phase, denoted by the subscript 1, is reinforced by spherical 

particles of a particulate phase, denoted by the subscript 2. 

Mori and Tanaka [64] derived a method to calculate the average internal stress in the 

matrix of the material. It was reformulated by Benveniste [75] for use in the computation of 

the effective properties of composite materials. According to Mori-Tanaka model, the 

effective shear (G) and bulk moduli (K) can be stated in the form [74] 
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Where V denotes the volume fraction of particles. With the help of shear and bulk moduli, the 

effective Young’s modulus (E) and Poisson’s ratio (ν) are then expressed as 
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Figure 1.19 Two-phase material with particulate microstructure [15]. 
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1.7.1.2 The rule of the mixture (Voigt Model) 

Voigt model, originally introduced by Voigt in 1889 [60], is a well-known model of 

homogenization and usually used to predict the effective elastic properties for the different 

kinds of composite materials. The Voigt idea was to define such properties by averaging 

stresses over all phases with the strain uniformity assumption [59]. For the sake of 

simplification, Voigt scheme is the most popular and most commonly used model for 

estimating the properties of FGM. 

According to this rule, an arbitrary material property P of the FGM is assumed to vary 

smoothly along a direction (usually thickness direction), as a function of the volume fractions 

and properties of the constituent materials. This property can be expressed as 

 
1

n

i i
i

P P V


   (1.5) 

 

P can represent, for example, the young’s modulus (E), the Poisson’s ratio (ν) and the mass 

density (ρ) etc. Pi and Vi are respectively the material property and volume fraction of the 

constituent i of FGM. The volume fractions of all the constituent materials should add up to 

unity, such that 
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1.7.2 Gradation Laws 

The variation of the desired property of an FGM across any direction can be designed 

according to the requirement by considering various gradation laws. Power law, Exponential 

and Sigmoid Laws are commonly used by researchers to describe the volume fractions, and 

are presented in the following sections. 
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1.7.2.1 Power-law (P-FGM) 

The power law for the material gradation was first introduced by Wakashima et al. [76]. 

Further this law is widely used by many researchers and it is more common in the stress 

analysis of FGM [77]. If FG plate of uniform thickness ‘h’, as shown in Figure 1. 20, is used 

for the analysis then according to this law, the effective material property P(z)in a specific 

direction (along z), can be determined by 

 
2 1 2( ) ( ) ( )P z P P P V z    (1.7) 

 

P represents every effective material property (E, α and ρ). P1 and P2 are the material 

properties at the top-most (z = +h/2) and bottom-most (z = -h/2) surfaces of the plate, 

respectively.  It can be seen that the material properties are dependent on the volume fraction 

V of FGM, which follows the power law as: 
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where, (0 ≤ p ≤ ∞) is a volume fraction exponent (or power-law index). 

Figure 1.20 Functionally Graded Plate. 
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Figure 1.21 illustrates the variation of the volume fraction in the thickness direction of the 

plate. It can be observed from the figure that the volume fraction decreases rapidly near the 

lower surface for p<1 and increases rapidly near the upper surface for p> 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7.2.2 Sigmoid Law(S-FGM) 

When a single FGM power law function is added to the multilayered composite, the stress 

concentrations appear in one of the interfaces in which the material is continuous but changes 

rapidly. Therefore, Chung and Chi [78] developed another law called the sigmoid law, which 

is a combination of two power law functions, to ensure the smooth distribution of stresses 

among all the interfaces. This law is also used to reduce the stress intensity factors in cracked 

structures [79]. The two power law functions are defined by: 
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Figure 1.21 Variation of the volume fraction throughout thickness of P-FGM plate. 
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By using the rule of mixture, the effective properties of the S-FGM can be calculated by 
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Figure 1. 22 shows the variation of volume fraction in Eqs. (1.9) and (1.10) through the 

thickness of S-FGM plate. 
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Figure 1.22 Variation of the volume fraction throughout thickness of S-FGM plate. 
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1.7.2.3 Exponential Law (E-FGM) 

The exponential law is generally used to deal with problems related to fracture mechanism of 

FGM. It is given by Kim and Paulino [80] and Zhang et al. [81]. The distribution of 

properties of FG plates across the thickness according to the exponential law is as follows: 
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The material distribution (e.g Young’s Modulus E distribution) in the thickness direction 

of the E-FGM plates is plotted in Figure 1.23. 

 

 

 

 

 

 

 

 

 

It should be mentioned that the effective mass density ρ is obtained by the rule of mixture, 

regardless of the utilized micromechanical models [74]. The effect of Poisson's ratio on 

deformation was reported by Delale and Erdogan (1983) [82] to be much less than that of 

Young's modulus. Thus, the Poisson’s ratio of plates is assumed to be constant. 
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Figure 1.23 Variation of the Young’s Modulus E throughout thickness of E-FGM plate. 
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1.8 Conclusion  

Functionally Graded Materials (FGMs) have been introduced in this chapter. Japanese 

researchers were confronted with the problem of composite failure through delamination 

when trying to develop a suitable composite material for a harsh working environment in a 

space project. This quest to solve the problem led to the development of FGM. FGMs are 

differently distinguished from conventional composites. Some fundamental features of FGMs 

have been therefore highlighted. A brief background on the research and development of 

FGMs has also been presented. FGMs exist in nature, and some of them have been 

mentioned. FGMs are used as surface coatings (thin coatings) and as bulk material depending 

on the intended application. The fabrication techniques for the thin FG coating and the bulk 

FGM have been discussed. FGMs have evolved from the initial thermal barrier application, 

for which it was developed. The FGM is now used for other applications. Some of these 

applications have been presented. At the end of the chapter, attention is devoted to the 

description of micromechanics models and gradation laws employed to describe the effective 

properties of FGMs. 

Due to the wider applicability of FGMs, it is necessary to study their behavior. Thus, to 

accurately predict FG structures’ behavior, several theories and analytical and numerical 

methods are reported in the literature. The next chapter presents the various theories used for 

the analysis of FG structures and summarizes the studies based on the static, vibration and 

buckling behavior of FG structures. 
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Chapter 2  

Modeling and Analysis of FG plates 

A Review 

 

 

2.1 Introduction  

Functionally graded materials (FGMs) are increasingly used in the engineering field as 

structural elements such as plates, beams, shells, etc. In a typical FG plate, the material 

properties are tailored by mixing two distinct materials, for instance, ceramic and metal. 

FGMs are well able to reduce thermal stresses, with stand high temperature environments and 

prevent corrosion. In the case of FG sandwich plates, two types of sandwich are commonly 

used: (a) sandwich plate with FG core and two isotropic skins; (b) sandwich plate with 

isotropic core and two FG skins. To use them effectively, a good understanding of their 

bending, dynamic and buckling behaviors is necessary.  

In general, the behavior of FG plates can be described by three-dimensional (3D) or two-

dimensional (2D) theories. Although the first approach is more accurate it is difficult to 

implement, while the second is more popular due to its simplicity and low computational 

cost. 

 The most commonly used 2D plate theories are:  

 The Classical Plate theory (CPT) that neglects transverse shear effects and it is only 

suitable for thin plates. 

  The First Order Shear Deformation Theory (FSDT) which includes transverse shear 

effects and is dedicated to moderately thick plates. 

 The Higher-Order Shear Deformation Theories (HSDTs) which are dedicated to the 

plates of more important thickness. 

 These models are based on assumptions about strains or stresses through the thickness of 

the plate, which allow the reduction of a 3D problem to a 2D problem.  
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Since they were widely used in the modeling of FG plates, the above-named theories are 

briefly described in this chapter. In addition, a review of the studies reported on the static, 

vibration and buckling analyses of FG plates is presented. 

2.2 Different plate theories for FG plates modeling and analysis 

A plate is defined as a solid body, bounded by two parallel flat surfaces called faces whose 

lateral dimensions (i.e., width and length in case of rectangular plates or the diameter in case 

of circular plates) are large compared to the distance between the flat surfaces called 

thickness of the plate.  

Plates can be classified into two groups: thin plates and thick plates. A plate is said to be 

thin when the ratio of the thickness to the length of a side is less than 1/20 [11]. 

 

2.2.1 Classical plate theory (CPT) 

The Classical plate theory, the oldest and the simplest theory was developed in 1888 by Love 

[83] using assumptions proposed by Kirchhoff in 1850 [84]. It is also called “Kirchhoff plate 

theory”, “Kirchhoff-Love plate theory” or “Thin plate theory”. It is actually an extension of 

the “Euler–Bernoulli beam theory” to thin plates.  

The fundamental assumptions of CPT are: 

 Plane sections initially normal to the midsurface remain plane and normal to the 

midsurface after deformation, Figure 2.1 [85]. Analogous to beams, this assumption 

implies that the effect of transverse shear strains is negligible. The deformation of the 

plate is thus associated principally with bending strains. Consequently, the transverse 

normal strain, εz, resulting from transverse loading can be neglected. 

 The transverse normal stress, σz, is small compared to the other stress components of 

the plate and, therefore, can be neglected. 

For a vast majority of thin plate problems, the CPT yields accurate results that do not 

differ significantly from those obtained using the 3D theory of elasticity. Under the above-

mentioned assumptions, the displacement field of the CPT can be written in the following 

form: [85, 86] 
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where u0, v0 and w0 are the displacement components along the x, y and z-axes at the 

midplane (z=0). w,x and w,y are the rotations due to bending in both directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the effect of transverse shear is not taken into account in this theory, the results for 

thick plates (especially plates made of advanced composites) will be inaccurate. For this 

purpose, the first- order shear deformation theory has been developed. 

 

2.2.2 First-order shear deformation theory (FSDT) 

The First-order shear deformation theory, also referred to as the Mindlin-Reissner theory 

(Reissner, 1945 [87]; Mindlin, 1951 [88]) or the Mindlin plate theory, extended the classical 

plate theory by taking into account the transverse shear strains effect. According to this 

theory, the transverse straight lines before deformation remain straight after deformation but 

they are not necessarily normal to the mid-plane after deformation, Figure 2.2 [85]. As a 

Figure 2.1 Undeformed and deformed geometry of a plate under the Kirchhoff hypotheses. 

[85]. 
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result, transverse shear strains are constant through the thickness. Also, this theory assumes 

that the transverse normal stress, σz, is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

The displacement field of the FSDT can be written as follows [85, 86] 
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 (2.2) 

where u0, v0 and w0 denote the displacement of a point on the plane z = 0. x , y  are the 

rotations about the y and x axes, respectively. 

Since the transverse shear strains are constant through the thickness of the plate, it follows 

that the transverse shear stress will also be constant. In general, shear stress varies 

parabolically through the plate thickness, and therefore a shear correction factor is required 

in the FSDT for the compensation of the actual parabolic variation of shear stress and 

satisfying the shear stress-free boundary conditions on the plate surfaces (i.e., the shear stress 

must be equal to zero at the top and bottom plate surfaces). 

Figure 2.2 Undeformed and deformed geometry of a plate under the assumptions of the 

FSDT [85]. 
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2.2.2.1 Shear Correction Factor (SCF) 

The shear correction factor adjusts the transverse shear stiffness and thereby, the accuracy of 

results of the FSDT will depend significantly on the SCF [89]. In order to improve the FSDT, 

numerous studies have been conducted by many researchers using different approaches to 

calculate the SCFs for homogeneous and composite plates. The first concept of the SCF for 

isotropic homogeneous plates was presented by Reissner [87], where he proposed a value of 

5/6 by using a calculation method based on static equilibrium and energy equivalence 

considerations. Mindlin [88] was the first to predict the correction factor based on dynamic 

analysis, where he proposed a value of π2/12 by equating the approximate first antisymmetric 

thickness-shear vibration frequency to the exact solution. When the FSDT is applied to 

composite plates, the difficulty in accurately evaluating the SCFs presents their shortcomings. 

For sandwich plates, Yu [90] gave an accurate analysis for the SCF based on the comparison 

of the fundamental frequencies obtained by the theory of elasticity solution and by the FSDT 

model of the structure. It was shown that for a typical sandwich plate the value of this factor 

approaches unity. Chow [91] adopted a procedure based on the comparison of the shear strain 

energies to obtain the SCF of orthotropic symmetric laminate. This procedure has been 

extended by Whitney [92] to orthotropic nonsymmetrical laminates, and the accuracy of the 

method was demonstrated by comparing the static bending solution for various laminated 

plates against solutions obtained by satisfying the exact theory of elasticity in each ply as 

well as the continuity conditions of the interface. Also, Whitney [93] derived an expression 

for the SCF by considering cylindrical bending about the length and the width of the plate, 

and discrete values of SCFs were presented for symmetric/anti-symmetric laminate plates and 

sandwich plates. The author discussed the variation of the SCF due to variation in number of 

layers of the laminate, and it was shown that the SCF does not approach the classical value 

for homogeneous plates as the number of layers is increased. Predictor-corrector procedures 

have been proposed by Noor et al. [94, 95] to correct the SCFs by using the iteration process. 

The SCFs obtained from this method depend on boundary conditions, plate geometry, and 

loading conditions, and, hence, they cannot be directly applied for other plate configurations. 

For many applications of FGMs in plate structures, the SCF is assumed to be constant 5/6. 

This value is not appropriate for FG plate analyses due to continuous variation of material 

properties [96]. Efraim and Eisenberger [97] proposed a formula for SCF in terms of 

Poisson’s ratio and volume fractions of both gradients in an FG plate. Furthermore, Nguyen 
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et al. [98] obtained the SCFs for the FGM by comparing the strain energies of the average 

shear stresses with those obtained from the equilibrium. They assumed a cylindrical bending 

around the y axis and suppressed the effect of the weak terms on the shear stresses. The 

authors showed that the SCF for FG plates are not the same as for homogeneous plates. In 

fact, they showed that the SCF is as a function of the ratio between elastic modulus of 

constituents and of the distribution of materials through the models. Also, Nguyen et al. [99] 

identified the SCFs for the FSDT models made of FGMs through an energy equivalence 

method. A new formula for the SCFs, used in the Mindlin plate theory, is obtained for FG 

plates by Hosseini-Hashemi et al. [100]. In their work, a well-known commercially available 

finite element (FE) method package was used for the extraction of the frequency parameters. 

The authors obtained the SCF by making the frequency parameter of the analytic solution 

based on the FSDT identical to that acquired by the FE method. 

 

2.2.3 Higher-order shear deformation theories (HSDTs) 

To overcome the limitations of the CPT and the FSDT (i.e., to get the realistic variation of the 

transverse shear strains and stresses through the thickness of the plate and to avoid the use of 

SCFs), several high-order shear deformation theories have been developed [101-107]. These 

models are based on the assumption of nonlinear stress variation through the thickness and 

are capable of representing the section warping in the deformed configuration, Figure 2.3 

[85]. 

The most developed HSDTs are based on the Taylor series expansion of the displacement 

fields to approximate the 3D theory [108]. The displacement is therefore assumed to be in the 

following form: 

 
(1) (2) ( )2( , , ) ( , ) ( , ) ( , ) .... ( , )jj

i i i i iu x y z u x y z x y z x y z x y        (2.3) 

Where i = 1,2,3, and j defines the order used in the theory. 

The Reissner-Mindlin first-order theory corresponds to the Taylor series up to the order j 

=1 and (1)
3 =0. In the case where a first order model does not allow to approach a given 

problem properly, it will be necessary to move to a higher order model (2nd order, 3rd order, 

or even more), in the series expansion of the displacements. 
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The second-order shear deformation theories (SCSDT) [109] yield slightly better results 

than the FSDT, but suffer from the same drawbacks as the latter (i.e., need correction 

factors). The displacement field of these theories can typically be described as: 
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where the parameters x , y and z  are the second order functions. 

Several Third order shear deformation theories (TSDT) (Parabolic shear deformation 

theory) have been proposed by many researchers [104-106]. The Reddy’s TSDT 

displacement field [106] is given by: 
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 (2.5) 

 

where the parameters x , y , x , x are the high order functions. 

Figure 2.3 Undeformed and deformed geometry of a plate according to the CPT, FSDT and 

HSDT [85]. 
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With increasing order of expansion, the number of additional parameters increases, which 

are often difficult to interpret. Some Simplifications have been made to reduce the 

displacement parameters. These simplifications consist in shortening the last terms of the 

Taylor series by introducing a ‘’shear function’’. Following these simplifications, the form of 

the displacement field is proposed as follows 
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 (2.6) 

Where f(z) is the shear function which determines the distribution of the transverse shear 

strains and stresses across the plate thickness h, and 0
x x

x

w
 


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
, 0

y y
y

w
 


 


, with x , y

denote the rotations about the y and x axes, respectively. 

According to the equation (2.6), the displacement field of CPT is obtained by setting f(z) = 

0, and that of the FSDT is obtained by setting f (z) = z. Moreover, the TSDT displacement 

field of Reddy [85, 106] is obtained by taking the following function  
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z
f z z

h
   (2.7) 

This theory accommodates a parabolic distribution of transverse shear stress and satisfies the 

shear stress-free surface conditions on the top and bottom surfaces of the plate, thus, it 

provides a good approximation of the transverse shear stresses compared to the three-

dimensional elasticity solution. 

A different HSDT has been proposed by Touratier [110], based on a sinusoidal 

trigonometric function, called The sinusoidal shear deformation theory (SSDT). This 

theory is a seminal example of the family of trigonometric HSDT and is implemented by 

setting 

 ( ) sin
h z

h
f z
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 
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  (2.8) 
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A Hyperbolic shear deformation plate theory (HSDPT) has been proposed by Soldatos 

[111], is obtained by taking 
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The exponential shear deformation theory (ESDPT) developed by Karama et al. [112] 

is obtained by taking 

 
22( / )( ) z hzef z   (2.10) 

 

Although the HSDTs do not require an SCF, their equations of motion are more 

complicated than those of the FSDT. Therefore, Shimpi [113] developed a simple plate 

theory called the Refined Plate Theory (RPT) by separating the transverse displacement into 

bending and shear parts. The most interesting feature of Shimpi's theory is that it has fewer 

unknowns (four unknowns) and governing equations than the FSDT. In addition, this theory 

does not require an SCF and gives a parabolic distribution of shear through the thickness of 

the plate. Also, it presents many similarities with the CPT as regards the equations of motion, 

the boundary conditions, and stress resultant expressions. The displacement field of the RPT 

is presented as follows. 
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 (2.11) 

 

Where wb and ws are the bending and shear components of transverse displacement, 

respectively 

It should be noted that the above-mentioned plate theories discard the thickness stretching 

effect (i.e., εz = 0) due to assuming a constant transverse displacement through the thickness. 

This effect plays a significant role in moderately thick and thick plates and should be taken 

into consideration. Quasi-3D theories are HSDTs that account for a higher-order variation of 

both in-plane and transverse displacements through the thickness, and hence both the shear 
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deformation effect and the thickness stretching effect are considered [114]. The displacement 

field of the quasi-3D theory is given by 
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Whereu0, v0, w0, 𝜑x, 𝜑y and 𝜑z are six unknown displacements of the midplane of the plate 

And g(z) and f (z) are shear functions with 
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dz

df z
g z   (2.13) 

 

All the previously mentioned theories have been extensively used by numerous 

researchers to accurately predict the behavior of FG plates. The following section 

summarizes the studies based on the static, vibration, and buckling behavior of FG plates. 

 

2.3 Research studies reported on FG plates 

Due to their inherent structural efficiency, there has been a great deal of interest in the 

analysis of structures made of FGMs. In this section, we have attempted to provide a review 

of the work done to date for the analysis of FG plates. The review is mainly focused on the 

static, vibration, and buckling analysis of FG single layer and sandwich plates. The objective 

here is to show the extent of the research field in the context of FGMs and that there is still 

much to be done in this research area. 

2.3.1 Static analysis of FG plate 

The understanding of the static behavior of FG plates is one of the most important issues for 

the design of these types of structures. Therefore, several investigators devoted themselves to 

the study of the static behavior of FG single layer and sandwich plates by using a variety of 

plate theories along with different analytical and numerical methods. Some of the papers 

selected from the literature are presented in this section. 
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Reddy and Cheng [115] analyzed the 3D thermomechanical deformations of simply 

supported FG rectangular plates using an asymptotic method. The effective material 

properties of the plates have been estimated using the Mori–Tanaka scheme. The 

temperature, displacements, and stresses of the plate are computed for different volume 

fractions of the constituents. Vel and Batra [116] presented an exact solution for 3D 

deformations of a simply supported FG thick plate. The effective material properties are 

estimated by either the Mori–Tanaka or the self-consistent schemes. The results are presented 

in terms of temperature, displacements, and stresses at several locations for mechanical and 

thermal loads. Pan [117] extended Pagano’s solution [118] to derive a 3D exact solution for 

FG rectangular composite laminate with simply supported boundary conditions under a 

surface load. The laminate layers have been made of FGMs with mechanical characteristics 

varying exponentially through the thickness direction of the plate. The results are presented in 

terms of displacements and stresses and it was clearly shown that the tensile stress at the top 

or the compressive stress at the bottom inhomogeneous plate can be reduced by bonding a 

suitable FGM layer to it. Elishakof and Gentilini [119] employed the Ritz energy method 

based on the 3D elasticity theory to predict displacements and stresses of all-around clamped 

FG plates subjected to a uniformly distributed normal load on the top surface. Kashtalyan 

[120] and Woodward and Kashtalyan [121] derived exact solutions for the 3D static bending 

analysis of simply supported FG plates subjected to transverse loading. The Young’s 

modulus and shear modulus of the plate vary exponentially through the thickness, and the 

Poisson’s ratio is assumed to be constant. Moreover, Kashtalyan and Menshykova [122] 

carried out a 3D static bending analysis of simply-supported sandwich panels with an FG 

core under transverse loadings. The Young’s modulus of the core is assumed to vary 

exponentially through the thickness, and the Poisson’s ratio is assumed to be constant. This 

work has been extended by Woodward and Kashtalyan [123] to simply-supported sandwich 

panels subjected to distributed and concentrated loadings. Not long ago, Gholami et al. [124] 

presented a 3D elasticity solution for the bending analysis of anisotropic FG Plates. The 

differential quadrature method (DQM) has been applied to determine flexural characteristics 

of the anisotropic FG plate. The obtained results from the DQM approach have been 

compared with those of the FE method.  

3D analytical solutions for FG plates are very useful since they provide benchmark results 

to assess the accuracy of various 2D plate theories and FE formulations. However, their 

solution methods involve mathematical complexities and are very difficult and tedious to 
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solve. Many 2D theories have been proposed for the static analysis of FG plates. Among all 

the plate theories, the CPT is the simplest theory for the analysis of plates. Since the CPT 

yields accurate results only for thin plates, few researchers employed this theory to analyze 

the static behavior of thin FG plates. One can refer to the work performed by Chi and Chung 

[78,125], where the bending analysis of FG plates under transverse load has been carried out 

using the CPT. The material properties of the FG plates are assumed to vary continuously 

throughout the thickness of the plate, according to the volume fraction of the constituent 

materials based on the power law, exponential, or sigmoid functions. The theoretical results 

have been checked by FE analysis. In the work by Amirpour et al. [126] the bending analysis 

of thin, through-the-length, FG plate has been performed using the CPT. The analytical 

results have been compared with FE simulation using graded solid elements. 

To overcome the limitation of the CPT, the FSDT has been employed for the analysis of 

the FG plates. The model of the FSDT plate is the simplest plate model that accounts for the 

transverse shear strains, which are assumed constant through the plate thickness. Praveen and 

Reddy [127] analyzed the nonlinear static and dynamic responses of FG plates using the FE 

method and the FSDT with von Karman assumptions. Della Croce and Venini [128] 

developed a hierarchic family of finite elements for the bending analysis of FG plates under 

mechanical and thermal loadings using the FSDT and a variational formulation. Singha et al. 

[129] investigated the nonlinear behaviors of FG plates under transverse distributed load 

using a high precision plate bending FE. The formulation has been developed based on the 

FSDT, considering the physical neutral surface position concept. The SCFs have been 

introduced and the equilibrium equations have been used for transverse shear stresses and 

transverse normal stress components determination. Thai and Choi [130] presented a 

simplified FSDT with four unknowns for the bending and free vibration analysis of FG single 

layer and sandwich plates with FG core and isotropic skins by splitting the transverse 

displacement into the bending and shear parts. Thai et al. [131] presented analytical solutions 

for bending, buckling and free vibration analysis of FG single layer and sandwich plates with 

FG skins under various boundary conditions using a new FSDT. The authors reformulated the 

conventional FSDT to a simpler form by making a further assumption, in which the number 

of unknowns is reduced to four. The use of SCF is no longer necessary in this theory since 

the transverse shear stresses are directly computed from the transverse shear forces by using 

equilibrium equations. Furthermore, Mantari and Granados [132] used a new FSDT with only 

four unknowns for the static analysis of FG sandwich plates considering integral terms in the 
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displacement field instead of derivative terms. Bellifa et al [133] presented an analytical 

solution for bending and free vibration of FG plates using a new FSDT with just four 

unknowns based on the exact position of the neutral surface. A few years ago, Srividhya et al. 

[134] developed a C0 continuous four-node isoparametric element based on FSDT to 

investigate the effect of material homogenization scheme on the flexural response of FG 

plate. For estimating the effective properties of the plate, the rule of mixtures and the Mori-

Tanaka schemes, have been used. Recently, Joshi and Kar [135] analyzed the bending 

behavior of bi-dimensional FG plate subjected to uniform loading, using the FSDT and FE 

method. The material properties are varied gradually in longitudinal and transverse 

directions. According to the open literature, the FSDT has been widely used to model both 

thin and thick plates owing to its high efficiency and simplicity. However, its accuracy 

depends on the appropriate value of the shear correction factor [98, 99].  

To avoid the use of SCFs, several HSDTs have been proposed and applied to FG plates. 

Reddy [136] presented both analytical and FE formulations based on his TSDT. The 

formulations account for the thermo-mechanical coupling, time dependency and von 

Karman-type geometric non-linearity. Ferreira et al. [137] studied the static characteristics of 

FG plates using the TSDT and a meshless method based on the multiquadrics radial basis 

function. The effective properties of the composite have been derived either by the rule of 

mixtures or by the Mori–Tanaka scheme. Saidi et al. [138] presented an analytical approach 

based on the TSDT for bending-stretching analysis of thick FG rectangular plates. Gulshan 

Taj et al. [139] also utilized Reddy’s TSDT to analyze the static behavior of FG plates by 

applying the FE method. The Results have been obtained by employing a C0 continuous 

isoparametric Lagrangian FE with seven degrees of freedom for each node. Mori-Tanaka 

scheme has been used to represent the material property of the FG plate at any point. For 

extracting mechanical response of static bending and natural frequencies of FG plates with 

different configurations (rectangular, circle, L-shape FG plates) in high temperature 

environments, Bui et al. [140] developed a displacement-based FE formulation associated 

with a novel TSDT without any requirement of SCFs. The new TSDT is based on rigorous 

kinematic of displacements, deriving from an elasticity formulation rather than the hypothesis 

of displacements. 

The bending response of simply supported FG sandwich ceramic–metal panels has been 

investigated by Zenkour [141]. The sandwich plates made of isotropic and homogeneous 

ceramic core and FG skins have been studied, assuming the power law variation of ceramic 
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and metal constituents through the thickness. The formulations have been done by the CPT, 

FSDT, and an SSDT. Further, the same author [142], presented the static response of FG 

plates using a generalized shear deformation plate theory (GSDT). The effective material 

properties have been considered to vary according to the power-law through thickness. The 

thermoelastic bending response of FG sandwich plates has been also studied by Zenkour and 

Alghamdi [143] using the SSDT. Again, Zenkour and Alghamdi [144] analyzed the bending 

response of sandwich plates made of FG skins and isotropic core subjected to sinusoidally 

distributed thermo-mechanical loads using the SSDT. Once more, Zenkour [145] employed 

the SSDT to solve the bending problem of FG plates with the derivation of the bending 

relationships between the SSDT and CPT quantities. 

Using an HPSDT, Mahi et al. [146] carried out bending and free vibration analysis of 

isotropic, functionally graded, sandwich, and laminated composite plates. Mantari et al. [147] 

combined exponential and trigonometric functions to develop an HSDT for the bending 

analysis of FG plates. The static response of exponentially graded plates (i.e., The mechanical 

properties of the plates are assumed to vary exponentially in the thickness direction) has been 

analyzed by Mantari and Guedes Soares [148] using a new HSDT with a tangential function. 

Again, Mantari and Guedes Soares [149] presented a generalized HSDT and its FE 

formulation for the bending analysis of advanced composite plates such as FG plates. The 

authors combined exponential and hyperbolic functions to develop the HSDT. The 

generalized FE code is based on a continuous isoparametric Lagrangian FE with seven 

degrees of freedom per node. Additionally, the same authors [150], studied the static response 

of FG plate using a new HSDT. The displacement of the middle surface is expanded as a 

combination of exponential and polynomial functions of the thickness coordinate. However, 

the transverse displacement is supposed to be constant through the thickness. A tangential-

exponential HSDT has been proposed by Mantari et al. [151] for the bending analysis of FG 

plates. Further, Mantari et al. [152] studied the static response for FG single and sandwich 

plates using five different and non-existent displacement fields of the non-polynomial form 

(sinusoidal, tangential, exponential, hyperbolic, and modified sinusoidal) via Carrera’s 

Unified Formulation (CUF) [153]. Lately, Belkhodja et al. [154] analyzed the bending, free 

vibration, and buckling mechanical behaviors of square and rectangular FG plates using an 

exponential-trigonometric HSDT. 

Matsunaga [155] presented a 2D-HSDT to calculate the displacements and stresses of 

simply supported FG plates under thermal and mechanical loading, using several sets of 
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governing equations of truncated approximate theories. Using HSDT with 11 unknowns and 

FE models, Talha and Singh [156] studied the static response and free vibration analysis of 

FG plates. Natarajan and Manickam [157] employed a C0 8-noded quadrilateral plate element 

based on HSDT with 13 unknowns to study the static deflection and the free vibration 

analysis of FG sandwich plates. The deflection and stresses of simply supported FG plates 

under a uniformly distributed load have been analyzed by Tu et al. [158] using a new eight-

unknown HSDT based on a full twelve-unknown HSDT by satisfying the condition of zero 

transverse stresses on the upper and lower surfaces of the FG plates. 

Generally, most HSDTs are highly computationally cost due to involving in many 

unknowns. To reduce the computational cost, HSDTs with four unknowns have been 

developed for FG plates. Mechab et al. [159] used a two-variable RPT to study the bending 

behavior of FG plates. This theory involves just four unknowns and satisfies the equilibrium 

conditions at the plate’s top and bottom surfaces, with no need for any SCF. Navier method 

has been applied to obtain solutions for simply supported FG plate subjected to sinusoidal 

loading. Abdelaziz et al. [160] extended a two-variable RPT developed by Shimpi and Patel 

[161] to the static response of FG sandwich plates. Also, Mechab et al. [162] presented 

analytical solutions of static and dynamic analysis of FG plates using Four-variable RPT with 

a new hyperbolic shear function. Thai and Choi [163] presented a FE formulation of various 

four unknown shear deformation theories for bending and vibration analyses of FG plates. 

Thai and Kim [164] presented analytical solutions for the bending and free vibration analysis 

of simply supported FG plates using four unknowns HSDT. Li et al. [165] investigated the 

thermomechanical bending behavior of a new type of FG sandwich plates which consist of 

FG face sheets and FG core, using a four-variable RPT. Analytical solutions are obtained to 

predict the deflections and stresses of simply supported FG sandwich plates. In order to 

compare the static, free vibration and buckling of in-plane and through thickness FG plates, 

Farzam and Hassani [166] used a new hyperbolic RPT based on physical neutral surface 

position and isogeometric analysis (IGA) approach. 

Carrera et al. [167] evaluated the effect of thickness stretching in plate/shell structures 

made of FGMs, in the thickness directions. This effect plays a significant role in moderately 

thick and thick plates and should be taken into consideration. Several studies have been 

conducted considering the stretching effect, for instance, Mantari and Soares [168] presented 

a generalized hybrid quasi-3D shear deformation theory for the bending analysis of FG 
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plates. Many 6 DOF hybrid (polynomial and/or non-polynomial) HSDTs, including the 

stretching effect, can be derived by using this generalized formulation. Neves et al. [169-171] 

used quasi-3D higher order theories with nine unknowns and meshless method to analyze the 

static, free vibration and buckling behavior of FG isotropic and sandwich plates considering 

sinusoidal [169], hyperbolic [170], and cubic [171] variations for in-plane displacements and 

a parabolic variation for transverse displacement. Thai and Kim [172] presented a simple 

quasi-3D sinusoidal shear deformation theory with only five unknowns for the bending 

analysis of FG plates. This theory accounts for both shear deformation and thickness 

stretching effects considering a sinusoidal variation of all displacements through the 

thickness. Bessaim et al. [173] developed a five-variable HPSDT for the bending and free 

vibration analysis of sandwich plates with FG isotropic face sheets. The theory accounts for 

the stretching and shear deformation effects without requiring an SCF. Zenkour developed a 

refined trigonometric HSDT with four unknowns for the bending analysis of FG isotropic 

[174] and sandwich [175] plates. The effects of transverse shear strains as well as the 

transverse normal strain have been taken into account. Hourai et al. [176] developed a five 

unknowns HSDT with a sinusoidal distribution through the thickness of in-plane 

displacements to investigate the thermoelastic bending of FG sandwich plates. The theory 

accounts for the stretching and shear deformation effects without the use of SCF. Belabed et 

al. [177] developed a new higher order shear and normal deformation theory with only five 

unknowns for bending and free vibration FG plates. The theory accounts for both shear 

deformation and thickness stretching effects by a hyperbolic variation of all displacements 

across the thickness, and satisfies the stress-free boundary conditions on the upper and lower 

surfaces of the plate without any SCF requirement. For the bending and free vibration 

analysis of FG plates, Hebali et al. [178] developed a new quasi-3D hyperbolic shear 

deformation theory with only five unknown displacement functions considering the stretching 

effect. Amirpour et al. [179] develop an SSDT with five unknowns for the bending analysis 

of FG plates with property variation throughout the length. The theory accounts for stretching 

and shear deformation effects without requiring an SCF. The analytical solutions have been 

verified against FE numerical solutions. Zenkour and Alghanmi [180] studied the bending of 

an FG plate with two reverse simply supported edges, using a refined quasi-3D shear and 

normal deformation theory with a third-order shape function. The proposed theory used only 

four unknowns and satisfied the free transverse shear stresses condition on the upper and 

lower surfaces of the plate, and therefore no SCFs are needed. Recently, Khiloun et al. [181] 
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presented a new quasi-3D HPSDT with four unknowns for bending and free vibration of FG 

plates. The theory accounts for the stretching and shear deformation effects without requiring 

a SCF.   

It can be observed from the above mentioned works that many papers have been also 

dedicated to the vibration analysis of FG plates [127], [130], 

[131], [133], [146], [154], [156], [157], [162-164], [166], [169-171], [173], [177], [178] and 

[181]. Further studies on the vibration analysis of FG single layer and sandwich plates are 

presented in the next section. 

2.3.2 Vibration analysis of FG plate 

The vibration responses of FG plates have been studied extensively. Several studies about 

finding the 3D exact solutions for FG plates vibration analysis have been carried out. Vel and 

Batra. [182] presented a 3D exact solution for the vibration of FG rectangular plates. Also, 

Uymaz and Aydogdu [183] presented 3D solutions for the vibration of arbitrary boundary 

conditions of FG rectangular plates using the Ritz method with Chebyshev displacement 

functions. For FG sandwich rectangular plates with simply supported and clamped edges, the 

free vibration response has been studies based on the 3D theory of linear elasticity by Li et al. 

[184]. Natural frequencies of two types of FG sandwich plates, i. e., the sandwich plate with 

FG skins and an isotropic core and the sandwich plate with isotropic skins and an FG core, 

have been obtained using the Ritz method with Chebyshev polynomials. Moreover, Reddy 

and Kant [185] presented an analytical solution for 3D free vibration analysis of 

exponentially simply supported FG plates, using the power series method. Jin et al. [186] 

presented a new 3D exact solution for the free vibrations of arbitrarily thick FG rectangular 

plates with general boundary conditions. Two years ago, Singh and Kumari [187] presented a 

3D elasticity based analytical solution for free vibration analysis of in-plane FG Levy-type 

rectangular plates. 

Using the CPT, the free vibration response of FG plates has been investigated by Abrate 

[188]. The author indicated that FG plates behave like homogeneous plates.  Zhang and Zhou 

[189] used the physical neutral surface concept and classical nonlinear von Karman plate 

theory for the vibration analysis of thin FG plates. Bending, buckling, and nonlinear bending 

behaviors analysis have been also carried out. Liu and Chen [190] used the CPT to study the 

free vibration of in-plane FG rectangular plates. Yin et al. [191] performed a free vibration 
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analysis of thin FG plates using CPT and physical neutral surface. Ramu and Mohanty [192] 

proposed a FE approach for modal analysis of rectangular FG plates based on the CPT. 

Recently, Loja and Barbosa [193] studied the free vibration and dynamic instability behaviors 

of in-plane FG plates based on the CPT, using Rayleigh-Ritz and Bolotin’s methods. The 

influence of in-plane volume fraction distributions on the free vibrations and dynamic 

instability of thin plates has been also studied.  

FSDT coupled with the FE method has been used by Batra and Jin [194] to perform the 

free vibrations of a FG anisotropic rectangular plate. Efraim and Eisenberger [97] presented 

an exact solution using the exact element method and the dynamic stiffness method for the 

vibration analysis of thick annular plates with variable thickness based on the FSDT. Later, 

Hosseini-Hashemi et al. [100] presented analytical solutions based on the FSDT for free 

vibration of moderately thick rectangular plates on elastic foundations. In this study, a new 

formula of the SCF for FG plates has been obtained. Zhao et al. [195] also used the FSDT 

and the element-free kp-Ritz method for the vibration analysis of FG plates with arbitrary 

boundary conditions. Mantari and Granados [196] used a novel FSDT with only four 

unknowns for the free vibration analysis of FG single-layered and sandwich plates.   

Bernardo et al. [197] studied the free vibration and static responses of FG plates by 

considering different numerical techniques based on the FSDT.  

Abrate [198] studied the free vibration, buckling and static deflection of FG plates using 

the CPT, the FSDT, and the TSDT. Examples have been presented for thick as well as thin 

plates, for rectangular plates with different aspect ratios as well as circular and skew plates 

and many combinations of boundary conditions. The author showed that the natural 

frequencies, buckling loads and static deflections of FG plates can be obtained from the 

corresponding results for isotropic plates so that direct analysis of FG plates is not necessary. 

To calculate the natural frequencies of FG plates, Ferreira et al. [199] used the FSDT, the 

TSDT, and meshfree method. The Mori–Tanaka technique has been used to homogenize 

material properties. Kim and Reddy [200] presented analytical solutions using a couple of 

stress methods based on TSDT for the vibration analysis of FG plates. Bending and buckling 

responses have been also investigated. 

Based on the SSDT, Zenkour [201] carried out the free vibration analysis of thick FG 

plates considering the effects of rotatory inertia. Using a 2D HSDT, Matsunaga [202] 

calculated the natural frequencies and buckling stresses of FG plates. Xiang et al. [203] 
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proposed an n-order shear deformation theory for free vibration of FG and composite 

sandwich plates. A High order shear and normal deformation theory with 12 unknowns has 

been used by Jha et al. [204] for the calculation of natural frequencies of FG plates Navier’s 

solution technique employing the double Fourier series has been used to give an analytical 

solution. Also, Sheikholeslami and Saidi [205] used the high-order shear and normal 

deformable plate theory of Batra and Vidoli [206] to investigate the free vibration of simply 

supported FG rectangular plates resting on a two-parameter elastic foundation. Based on a 

new exponential function, Mantari et al [207] proposed an HSDT for the vibration analysis of 

FG plates resting on elastic foundations. Ankit Gupta et al. [208] investigated the free 

vibration of simply supported FG square plates resting on elastic foundations. The authors 

used the theory proposed by Talha and Singh [156] with a C0 continuous isoparametric FE 

with 13 degrees of freedom per node. Mahmoudi. et al. [209] presented an analytical solution 

based on HPSDT for vibration behavior analysis of FG porous plates resting on elastic 

foundations. Zaoui et al. [210] devised a new 2D and Quasi-3D HSDT for analyzing the free 

vibration response of FG plates on elastic foundations. 

A four-variable RPT has been applied by Hadji et al. [211] for the free vibration analysis 

of FG sandwich rectangular plates. Benachour et al. [212] presented the free vibration 

analysis of FG plates with arbitrary gradient based on a four-variable RPT using Navier’s 

solution technique and Ritz method. The obtained results have compared well with those 

obtained using FSDT and TSDT. To analyze the vibrational behavior of FG plates, Thai et al. 

[213] developed an efficient shear deformation theory, which has a strong similarity with the 

CPT in many aspects and involves only four unknowns. Benferhat et al. [214] studied the free 

vibration analysis of an FG simply-supported plate resting on elastic foundations, using new 

four unknowns RPT, based on the neutral surface concept. The isogeometric analysis 

combined with an RPT has been employed by Xue et al. [215] to investigate the free 

vibration responses of in-plane FG plates. Merdaci et al. [216] presented a free vibration 

analysis of simply supported plate FG porous using four unknowns HSDT. Tabatabaei and 

Fattahi [217] recently developed a FE approach for modal analysis of square FG plates using 

the ABACUS software. 
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2.3.3 Buckling analysis of FG plates  

Buckling behavior is one of the critical design factors for plates subjected to compressions. 

There have been extensive investigations carried out for the buckling analysis of FG isotropic 

and sandwich plates to predict the critical buckling loads under various boundary and loading 

conditions. Among the primary investigations is the work of Birman [218], who presented a 

solution to the buckling problem of hybrid composite plates with stiffer FG fibers. Feldman 

and Aboudi [219] studied the elastic bifurcation buckling of FG plates under in-plane 

compressive loading. To analyze the problem, the authors employed a method based on a 

combination of micromechanical and structural approaches. 

Based on the CPT, Javaheri and Eslami [220, 221] studied the mechanical and thermal 

buckling behavior of thin FG plates. Authors [221] developed an analytical model to predict 

the critical buckling temperature of FG plates under the uniform, linear and non-linear 

thermal loads. Further to these studies, Shariat et al. [222, 223] investigated the mechanical 

and thermal buckling behavior of rectangular FG plates with geometrical imperfections. The 

equilibrium, stability, and compatibility equations of an imperfect FG plate have been derived 

using the CPT. Mahdavian [224] adopted the CPT to carry out the buckling analysis of 

simply-supported FG rectangular plates under non-uniform in-plane compressive loading. 

Mohammadi et al. [225] presented the Levy solution using the principle of minimum 

potential energy for the buckling analysis of thin FG plates based on the CPT subjected to 

different mechanical loads under various boundary conditions. Ramu and Mohanty [226] 

used the FE method and the CPT to study the buckling behavior of simply supported, 

rectangular FG plates under uniaxial and biaxial compression loads. The authors concluded 

that the critical buckling load of the rectangular plate under uniaxial compression is greater 

than the biaxial compression. Can et al. [227] also used the FE method to analyze the stability 

of thin FG plates under various boundary conditions. 

The FSDT has been employed by Lanhe [228] for the thermal buckling analysis of a 

simply supported moderately thick rectangular FG plate under uniform and nonlinear 

temperature rise. Zhao et al. [229] investigated the mechanical and thermal buckling behavior 

of FG plates using the FSDT and the element-free kp-Ritz method. FG sandwich plate 

buckling analysis has been carried out by Yaghoobi and Yaghoobi [230] using an analytical 

approach based on the FSDT, considering various boundary conditions under thermal, 

mechanical and thermomechanical loadings. The thermal buckling behaviors of FG plates 
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have been investigated by Lee et al. [231] based on the neutral surface concept using the FE 

method and the FSDT. In this study, the material properties of the plates are temperature 

dependent; the location of the neutral surface depends also on the temperature change. 

Shahbaztabar and Arteshyar [232] used the FDST and the differential quadrature element 

method (DQEM) to investigate the buckling characteristics of FG plate fully or partially 

resting on elastic foundation and subjected to uniaxial and biaxial in-plane loadings. By 

Shariat and Eslami [233] a closed form solution based on the TSDT has been presented for 

the mechanical and thermal buckling of thick FG plates. Furthermore, Foroughi and Azhari 

[234] used a TSDT and the B-spline finite strip method (FSM) to analyze the mechanical 

buckling and free vibration of thick FG plates resting on elastic foundations. A novel and 

effective approach based on IGA and TSDT has been applied by Yin et al. [235] for free 

vibration and buckling analysis of FG plates with in-plane material inhomogeneity. An 

accurate computational approach based on the FE method and a new TSDT has been 

developed by Van Do et al. [236] to analyze the buckling and bending behaviors of the bi-

directional FG plates. This approach does not require any special treatments of the shear-

locking effect, and the SCFs are not required as well. Moita et al. [237] used the FE model to 

compare between linear and nonlinear mechanical and thermo-mechanical buckling of 

rectangular FG plates. The model is based on Reddy’s TSDT, implemented in a 

nonconforming flat triangular plate/shell element with 24 degrees of freedom. 

SSDT has been used by Zenkour [238] to study the buckling and free vibration of simply-

supported FG sandwich plates. The obtained results were validated by comparing them with 

those obtained using CPT, FSDT, and TSDT. The critical buckling load obtained using non-

symmetric FG sandwich plates was found to be higher than those of symmetric plates. Also, 

Zenkour and Mashat [239] used the SSDT to obtain the buckling response of FG plates under 

different types of thermal loads (uniform, linear and non-linear thermal loads). Zenkour and 

Sobhy [240] studied the critical buckling temperature for FG sandwich plates. They used the 

SSDT to deduce the stability equations. 

Based on the HSDT, a Levy-type solution for buckling analysis of thick FG rectangular 

plates has been presented by Boghadi and Saidi [241]. Results show that the critical buckling 

load has an inverse relation to the aspect ratio, whereas buckling load increases as the 

thickness of the FG plate increases. Neves et al. [242] used a hyperbolic sine shear 

deformation theory for the linear buckling analysis of FG sandwich plates. The buckling 

governing equations and boundary conditions were derived using Carrera’s Unified 



Chapter 2.  Modeling and analysis of FG plates: A review 

 
 

57 
 

Formulation (CUF) and further interpolated by collocation with radial basis functions. In 

another research study, an HSDT has been developed and applied by Reddy et al. [243] to 

calculate the mechanical buckling load of the rectangular FG plate without enforcing zero 

transverse shear stresses on the top and bottom surfaces of the plate. A new eight-unknown 

HSDT based on full twelve-unknown HSDT has been proposed by Thinh et al. [244] to study 

the buckling and free vibration of FG plates. Van Do et al. [245] used an improved mesh-free 

radial point interpolation method (RPIM) and HSDT to investigate the buckling behavior of 

the FG sandwich plate under uniform, linear and nonlinear temperature rises. Zenkour and 

Aljadani [246] examined the mechanical buckling analysis of simply supported, rectangular 

FG plates by employing a refined higher-order shear and normal deformation theory and 

Navier’s technique. Nouri et al. [247] applied a CUF in conjunction with the FSM on the 

mechanical buckling and static analysis of the FG plate. Recently, Tati [248] used a four-

node FE with five degrees of freedom per node based on a simple HSDT to investigate the 

buckling behavior of FG rectangular plates under mechanical and thermal loading. The 

proposed model accounts for a quadratic variation of the transverse shear strains across the 

thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces 

of the plate without the use of SCF. The assumed natural shear strain (ANS) technique has 

been introduced to elevate the shear locking phenomenon. Farrokh et al. [249] studied the 

buckling instability of FG plates under mechanical loads as well as uniform, linear, and 

nonlinear temperature rise. The authors used an HSDT considering the CUF. They have 

concluded that the plate theory order, as well as the convective heat transfer boundary 

conditions, affects significantly critical instability loads. A new refined HPSDT having four 

unknowns has been developed by El Meiche et al. [250] for the buckling and free vibration 

analyses of FG sandwich plates. The obtained results have been validated by comparing with 

those obtained using CPT, FSDT, TSDT, SSDT, and 3D elasticity theory. Fekrar et al. [251] 

also used a new RPT with four unknowns to study the mechanical buckling of hybrid FG 

plates. The authors employed the principle of minimum total potential energy to derive 

governing equations and the Navier method to obtain the closed-form solution. Later, Thai 

and Choi [252] extended the RPT proposed by Shimpi [113] to the buckling analysis of FG 

plates subjected to in-plane loading. The accuracy of the obtained results was demonstrated 

by comparing them with those of CPT, FSDT and TSDT. Bateni et al. [253] did a 

comprehensive study on the stability of FG plates by employing a four-variable RPT and 

came to know the significance of in-plane boundary conditions for buckling analysis. Further, 
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Thai et al. [254] presented a new simple four-unknown shear and normal deformations theory 

and IGA for buckling, static and dynamic analyses of FG isotropic and sandwich plates. The 

mixture rule or the Mori-Tanaka technique has been used to homogenize the material 

properties. Several examples with different geometries, stiffness ratios, the value of power 

index, and boundary conditions have been illustrated. 

2.4 Conclusion  

In this chapter, the most commonly used plate theories, for the modeling and analysis of FG 

plates have been introduced. The earliest and simplest available theory is called the classical 

plate theory (CPT). However, this theory neglects the transverse shear deformation effects 

and hence predicts only the behavior of thin plates effectively. First-order shear deformation 

theory (FSDT) assumes a constant transverse displacement field across the plate’s thickness. 

The models based on this theory predict constant transverse shear stresses across the 

thickness. Actually, the transverse shear stresses are parabolic through the thickness in 

nature. To define the transverse stresses accurately, a shear correction factor is required. The 

shear correction factor depends upon various factors such as end conditions, material 

properties, thickness scheme, etc. In the case of high-order shear deformation theories 

(HSDTs), the in-plane displacement field is expanded as a higher-order variation concerning 

the thickness coordinate. 

A review of various investigations carried out in the existing literature on static, vibration, 

and buckling analysis of FG plates has been also presented in this chapter. Several theories 

and different analytical and numerical methods have been used to describe the behavior of 

FG plates.  

Following this review, it can be seen that the studies carried out by finite elements on the 

topic are even less numerous compared to those carried out analytically. The motivation 

behind this thesis is to study the static, vibratory, and buckling behaviors of single layer and 

sandwich FG plates using the finite element method based on different plate theories. 
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Chapter 3  

Adaptation of a rectangular finite element 

(R4FSDT) for static, free vibration and 

buckling analysis of FG single layer and 

sandwich plates 

 

 

 

3.1 Introduction 

In this chapter, an FSDT-based four-node rectangular finite element (R4FSDT) with five 

degrees of freedom per node, previously developed for the free vibration of thermally stressed 

angle-ply laminated composite [255], has been adapted for static, free vibration and buckling 

analysis of FG single layer and sandwich plates. The material properties of the considered 

plates have been assumed to change continuously through the thickness according to a power-

law function in terms of volume fractions of the constituents. Since the properties of FG plates 

are asymmetric with respect to mid-plane, the membrane and bending equations are coupled. 

Therefore, the concept of the neutral surface position has been introduced to simplify the 

problem and to avoid the membrane–bending coupling. The total potential energy and 

Hamilton’s principles and Lagrangian equation have been used for the derivation of stiffness, 

geometrical and mass matrices. To take into account the effect of second order (Buckling), the 

von Karman strain tensor has been used. The assumed natural shear strain technique has been 

introduced to ensure the efficiency of the element against the shear locking phenomenon.   
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3.2 Functionally graded plates  

Consider a rectangular plate of plan-form dimensions L and l and uniform thickness h. The 

coordinate system is taken such that the x–y plane (z = 0) coincides with the midplane of the 

plate (z ϵ [-h/2, h/2]). 

Two types of FG plates are studied: (A) FG single layer plates; (B) sandwich plates with FG 

skins and isotropic core. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Geometry of the functionally graded single layer plate. 

 

Figure 3.2 Geometry of sandwich plate with FG skins and homogeneous ceramic or 

metallic core. 
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3.2.1 FG single layer plate 

This  plate is graded from metal (z = -h/2) to ceramic (z = h/2) as shown in Figure 3.1. The 

effective material properties of the plate,including Young’s modulus E and mass density ρ are 

assumed to vary continusely through the thickness with a  power law distribution. According 

to Voigt’s rule of mixtures, Young’s modulus E(z) and mass density ρ(z) are given by 
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where the subscripts m and c represent the metallic and ceramic constituents, respectively; Vc(z) 

is the volume fraction of the ceramic phase and p is the power-law index that determines the 

volume fraction gradation, which takes values greater than or equal to zero (p ≥ 0). The value 

of (p =0) represents a fully ceramic plate, whereas (p=∞) indicates a fully metallic plate. 

For simplicity, Poisson’s ratio of the plate is assumed to be constant for that the effect of 

Poisson’s ratio on the deformation is much less than that of Young’s modulus. 

The variation of the volume fraction of ceramic Vc(z) through-the-thickness of the plate has 

been presented in Figure (1.21). 

 

3.2.2 Sandwich plate with FG skins and isotropic core 

The sandwich plate is composed of three layers: two FG skins and one homogeneous ceramic 

or metallic core layer. The homogeneous metallic core is commonly employed because of the 

light weight and high bending stiffness in the structural design. The homogeneous ceramic core 

is also employed in other fields such as control or in the thermal environments. 
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The material constituents of the bottom skin varies from a metal-rich surface (z = h0) to a 

ceramic-rich surface (z = h1) while the top skin varies from a ceramic-rich surface (z = h2) to a 

metal-rich surface (z = h3), or vice versa, as illustrated in Figure 3.2. 

The volume fraction of the ceramic and metal phase Vi (z) (i =c, m)  are obtained as 
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  (3.4) 

Where h0= -h/2, h1, h2, and h3= h/2 are the vertical positions of the bottom surface, the two 

interfaces between layers, and the top surface. 

For the brevity,  the ratio of the thickness of each layer from bottom to top is denoted by the 

combination of three numbers, i.e. (1-0-1), (1-1-1), (1-2-1) and (2-1-2).  

 The (1-0-1) FG sandwich plate: In this case the plate is symmetric and made of only two 

equal-thickness FG layers, i.e. there is no core layer. Thus, h1 = h2 = 0. 

 The (2-1-2) FG sandwich plate: The plate is also symmetric and the thickness of the core is 

half the skin thickness. So, one takes h1 = -h/10, h2 = h/10. 

 The (1-1-1) FG sandwich plate: Here, the plate is symmetric and made of three equal-

thickness layers. In this case, we have, h1 = -h/6, h2 = h/6. 

 The (1-2-1) FG sandwich plate: Here the plate is symmetric, in which the core thickness 

equals the sum of skins thickness. So,  h1 = -h/4, h2 = h/4.  

Figure 3.3 shows the through-the-thickness variation of the volume fraction Vi(z) of ceramic 

and metal for various values of the power-law index p. 
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Figure 3.3 The through-the-thickness variation of the volume fraction Vi(z) versus the power-

law index p for different sandwich plates. (a) The (1-0-1) FG sandwich plate. (b) The (2-1-2) 

FG sandwich plate. (c) The (1-1-1) FG sandwich plate. (d) The (1-2-1) FG sandwich plate. 
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3.3 Mathematical formulation 

3.3.1 Displacement field  

According to the first-order shear deformation theory, the displacement components vector u, 

v and w in x, y and z directions, respectively, of a point of coordinates (x, y, z) within the FG 

plate, are given by  
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  (3.5) 

where t is the time; u0, v0, and w0 are the in-plane and out-of-plane displacements on the mid-

plane of the plate, φx and φy represent the transverse normal rotations about the y and x axes, 

respectively. 

3.3.2 kinematics 

Using the Von-Karman nonlinear strain-displacement relationship, the strain vector 

components are given by 
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Equation (3.6) can be rewritten as follows 
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Where  
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 l : linear strain vector 

 0 : membrane strain vector. 

 k  : curvatures vector. 

 nl  : nonlinear strain vector. 

 0
z  : shear strain vector. 
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3.3.3 Constitutive equations 

The stress- strain relationships of an elastic FG plate can be written as  
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Where Qij are the elasticity stiffness coefficients given by 
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ks denotes the transverse shear correction coefficient. 

 

3.3.4 Force and moment resultants 

The asymmetry of material properties of FG plates with respect to midplane give rise to 

membrane–bending coupling effect in plates. Consequently, to avoid the complexity of 

membrane–bending coupling effect, the force and the moment resultants are calculated with 

respect to the physical neutral plane that does not coincide with the midplane of the plate as 

shown in Figure 3.1[248, 256]. 

 npz z C    (3.17) 

C is the distance between the neutral plane and the midplane of the plate. 
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The position of the physical neutral plane can be determined by choosing C such that the 

membrane force due to bending at the level of (z = C) must be zero [256]. 
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Substituting Eqs (3.14) and (3.15) into Eq (3.18), 
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By simplifying Eq (3.19), we obtain 
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Then, 
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So, the position of the neutral surface can be determined as [189] 
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The forces and moments can be obtained by integrating the corresponding stresses over the 

thickness as follows 
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The relation between the stress resultants and the strains can be expressed by 
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Equation (3.26) can be also rewritten as following 
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Where  A  ,  D  and sA 
 

are the extensional, bending and shear reduced elastic matrix, 

respectively, and are given by  
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In which Aij, Dij and As
ij are the reduced elastic matrices coefficients, defined by 
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3.4 Finite element formulation 

3.4.1 Element description 

A rectangular, four-node finite element based on the first-order shear deformation theory 

(R4FSDT), with five degrees of freedom per node is used to perform the static, free vibration 

and buckling analysis of FG single layer and sandwich plates. Figure 3.4 shows the geometry 

and corresponding nodal variables of the finite element. 

3.4.2 Displacement interpolation and shape functions 

The displacement field vector of the present finite element can be defined as 

  
4

1

( , ) ( , )          1,2,3,4,5i
i

i

x y N x y   


    (3.30) 

Where ( , )x y is the displacement or rotation of a given point M(x, y) within the element.  i


and ( , )iN x y  are the displacement vector and the bilinear Lagrange shape functions associated 

with node i, respectively. 

Where 0 0 0 = , , ,  and        ( 1,2,3,4)i i i i i i
x yu v w i     

Figure 3.4 Geometry and corresponding nodal variables of the present element. 
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The bilinear Lagrange shape functions have the following expressions 
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3.4.3 Strain-displacement relationship matrices 

Using the shape functions, the strain-displacement relationship of Eqs (3.8)-(3.11) can be 

rewritten as follows 
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Where  mB ,  bB  are (3×20) matrices, and the subscripts m and b denote the membrane and 

the bending strains, respectively.   sB  and  G are  (2×20)  matrices, and the subscripts s 

denotes the shear strain. These matrices can be obtained from the derivation of the shape 

functions of Eq (3.31) as below 

  

0 0 0 0

0 0 0 0          ( 1,2,3,4)

0 0 0

i

i
m

i i

N

x

N
B i

y

N N

y x

 
 
 

 
  

 
  
 
  

  (3.36) 



Chapter 3.  Adaptation of a rectangular finite element (R4FSDT) for static, free vibration and 

buckling analysis of FG single layer and sandwich plates 

 
 

72 
 

  

0 0 0 0

0 0 0 0          ( 1,2,3,4)

0 0 0

i

i
b

i i

N

x

N
B i

y

N N

y x

 
 

 
 

  
 

  
 

  

  (3.37) 

 

  
0 0 0

         ( 1,2,3,4)

0 0 0

i
i

s
i

i

N
N

x
B i

N
N

y

 
 
  

 
  

  (3.38) 

 

  
0 0 0 0

             ( 1,2,3,4)

0 0 0 0

i

i

N

x
G i

N

y

 
 
  

 
  

  (3.39) 

 q is the displacement vector (20×1) of the element which given by  

    , , , ,        ( 1,2,3,4)
T

i i i xi yiq u v w i     (3.40) 

3.4.4 Assumed natural strain technique 

The FSDT coupled with the FEM to analyze mechanical behaviors of FG plates has been 

successfully utilized. However, it is well-known that the FSDT based FEM approaches using 

low-order standard shape functions (Lagrangian-based, finite elements) without special 

treatments inherently produce inaccurate shear strains when dealing with thin plates, due to the 

shear locking phenomenon. To overcome this problem, Dvorkin and Bathe [257] and Huang 

and Hinton [258] proposed the so-called ‘’Assumed Natural Strain (ANS) technique’’ as a 

solution to eliminate (or at least alleviate) the shear locking phenomena. 

Here, the ANS is employed to alleviate the shear locking phenomenon. The assumed strains 

are derived by using the interpolation functions based on Lagrangian polynomial and the strain 

values at the sampling points where the locking does not exist [259]. 
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For natural assumed transverse shear strains  0 A

xz and  0 A

yz , the following sampling points 

[255, 256] are employed as shown in Figure 3.5. 

 0( ) 0( )(0, ) : (0, ) ,        ( ,0) : ( ,0)A A
xz A C yz B Db b a a       (3.41) 

Using Eq (3.41), the assumed natural strains can be defined in the following form 

 
2 2

0( ) 0( )

1 1

( ) ,        ( )A A
xz xz yz yzP y Q x 

 

 

   
 

     (3.42) 

Where δ is the position of the sampling point and the interpolation functions P and Q are given 

by  

 
   

   

1 2

1 2

1 1
( ) ,          ( )

2 2

1 1
( ) ,          ( )

2 2

P y b y P y b y
b b

Q x a x Q x a x
a a

   

   

  (3.43) 

The transverse shear strain–displacement relationship produced by the assumed strain 

method  can be rewritten in the following matrix form 

 

    
0

0

0

xz

z s

yz

B q





  
     

  

  (3.44) 

Where sB   is a (2×20) matrix, denotes the assumed natural shear strain-displacement relation 

matrix given by  
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  (3.45) 
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3.4.5 Derivation of the elementary matrices 

The total potential energy principle has been used to derive the elementary stiffness and 

geometrical matrices of the element.  

The total potential energy of an FG plate can be given as follows 

 U W     (3.46) 

Where U and W are respectively the strain potential energy and the external forces work. 

By introducing the assumed natural shear strain of Eq (3.44), The strain potential energy of 

the plate is defined as 
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2
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l

z z
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h

T TT

z z
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U d

z k dzd

   
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





    
 

     
 

 

 

  (3.47) 

And  

Figure 3.5 Positions of sampling points. 
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            0 01

2

T TT

zU N k M S d 


     
    (3.48) 

Ω is the surface of the plate. 

Using Eq (3.27), Eq (3.48) my be written as 

 

              0 0 0 0
1

2

         

T TT s
z z

U dA k D k A   


        (3.49) 

Substituting the strain-displacement relationship from Eqs (3.32), (3.33) and (3.44) in the 

above equation, we obtain 

                               

                 

    

1

2

 

         

      

T TT T

m m b b

TT s
s s

U q B A B q q B D B q

dq B A B q



 

          



   (3.50) 

3.4.5.1 Static analysis 

The external work done by the distributed transverse load f (x, y) applied to the plate can be 

expressed as 

 0( , ) ( , )W f x y w x y d



     (3.51) 

Using Eqs (3.50), (3.51), the total potential energy can be written as 
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dxdyq qB D B B A BB A B

f x y q dxdyN x y



 

 

           



 

 

  (3.52) 

The cancellation of the first variation of the total potential energy 0   , with respect to 

the nodal values  q  , leads to the following equilibrium equation 

    e eK q F      (3.53) 
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Where  eK is the elementary stiffness matrix defined by  

 
           
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m
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m m b b s s

e
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B A B B D B B A B
K dxdy
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             
 
 

    (3.54) 

and  eF  is the nodal load vector, 

    ( , ) ( , )

b a
T

e

b a

F f x y dxdyN x y

 

     (3.55) 

Where  ( , )N x y given by  

 0 0 0 0      ( 1,2,3,4)( , ) iN iN x y          (3.56) 

3.4.5.2 Mechanical buckling analysis 

The strain energy of the FG plate subjected to in-plane forces due to mechanical loading is 

given by 
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     (3.57) 

Using Eq (3.35), we obtain 
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  (3.58) 

Where  
x xy

xy y

N N
N

N N

 
  
 

 is the stress matrix resulting from mechanical loading. 

The cancellation of the second variation of the total potential energy with respect to the 

nodal values {q}, allows to obtain the following eigenvalue problem 

    0g
e e

qk k         (3.59) 
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g
ek   is the geometric stiffness matrix, given by  

     
b a

Tg
e

b a

dxdyk G GN
 

        (3.60) 

By introducing the loading factor λ, the stress resultant matrix can be expressed as

  0NN     , then the geometric stiffness matrix can be written as follows 

    0
0

b a

Tg
e

b a

dxdyNk G G
 

           (3.61) 

Where 
0N    is the stress resultant matrix due to the applied mechanical load. 

The eigenvalue problem used to evaluate the critical buckling load can be given by 

  0det 0g
e e

k k          (3.62) 

Finally, the critical buckling load is given as follows 

 0cri criN N   (3.63) 

3.4.5.3 Free vibration analysis 

In the free vibration analysis of plates,the kinetic energy of the FG plates is given by 

  
2

2 2 2

2

1
( ) ( ) ( ) ( )

2

h

h

z dzdu v wT 



     (3.64) 

Where ( )z  is the mass density calculated by law in Eq (3.2). (.) is the first derivative with 

respect to time. 

The variation of the kinetic energy with respect to time is obtained as follows. 
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  
2

2

( )

h

h

z dzdu u v v w wT    



     (3.65) 

Where (..) is a second derivative with respect to time. 

By carrying out the integration in thickness, equation (3.65) can be written as follows 

  20 0 0 0 0 0 0
( )( )  x x y yII u u v v w w dT      



       (3.66) 

Where  0 2, I I are moments of inertia defined by 

    
2

2
0 2

2

, ( ) 1,( )

h

h

I I z dzz c


    (3.67) 

Lagrangian of the system is given by  

 L U T    (3.68) 

In the case of free vibration, the Hamilton’s principal is given by 

 
0 0

0

t t

Ldt U Tdt       (3.69) 

Where t denotes the time. 

Using the Lagrangian equation, given by 

 0
Ld L

qdt q

  
    

  (3.70) 

We obtain the following motion equation  

       0ek q qM    (3.71) 

The substitution of    2q q  in the above equation leads to  

      2 0
e

qk M    (3.72) 

Where   is the natural frequency and  M is the mass matrix given by 
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        ( , ) ( , )
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dxdyM N x y N x ym
 

     (3.73) 

Where  m  is the inertia matrix and is given by 
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And  ( , )N x y  is the shape function matrix  

  

0 0 0 0

0 0 0 0

0 0 0 0        ( 1,2,3,4)( , )

0 0 0 0
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i

i

i

i

i
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 
 
 
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  (3.75) 

3.5 Conclusion 

A Four-node rectangular finite element, based on the first-order shear deformation theory 

(R4FSDT), with five degrees of freedom per node, has been adapted for the static, free vibration 

and buckling analysis of FG plates.  FG Single layer and sandwich plates with FG skins and 

both homogeneous ceramic core and metallic core have been considered. The material 

properties have been assumed to vary through the plate thickness according to a power-law 

distribution of the volume fraction of the constituents. To avoid the membrane-bending 

coupling caused by the asymmetry of the plate according to the thickness, the force and the 

moment resultants have been calculated with respect to the physical neutral plane which does 

not coincide with the midplane of the plate. Total potential energy and Hamilton’ principles 

and Lagrangian equation have been used to formulate the stiffness, geometric and mass 

matrices and the assumed natural shear strain technique has been introduced to alleviate the 

shear locking phenomenon. The results presented in the following chapter make it possible to 

clearly appreciate the contribution of the present finite element (R4FSDT) by comparing them 

with the results reported in the literature. 
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Chapter 4  

Application of R4FSDT-Results and 

discussions 

 

 

4.1  Introduction 

In this chapter, several numerical examples are presented and discussed to evaluate the 

performance of the present finite element (R4FSDT). in terms of the accuracy, convergence 

and stability. The static, mechanical buckling and free vibration behaviors of rectangular FG 

single layer and sandwich plates are considered. For verification purpose, the obtained results 

are compared with those reported in the literature. Effects of some parameters on the behaviors 

of the FG plates are investigated. 

4.2  Numerical results and discussions  

The static, mechanical buckling and free vibration analysis results of FG single layer and 

sandwich plates are presented in what follow. Here ceramic–metal functionally graded plates 

are considered, and their properties, including Young’s modulus, Poisson’s ratio and density 

are given in Table 4.1. 

 

Table 4.1 Material properties used in the functionally graded plates. 

Properties Metal Ceramic 

Aluminium 

 (Al) 

Alumina 

 (Al2O3) 

Zirconia-1  

(ZrO2-1) 

Zirconia-2 

(ZrO2-2) 

E (GPa) 70 380 151 200 

ρ(kg/m3) 2702 3800 3000 5700 

ν 0.3 0.3 0.3 0.3 



Chapter 4. Application of R4FSDT-Results and discussions 

 

81 
 

4.2.1 Static analysis  

This section presents the static analysis of isotropic, FG single layer and sandwich plates 

subjected to transverse load in the form of uniformly (UDL) and sinusoidally distributed load 

(SDL). 

Where the UDL is expressed as 

 0( , )q x y q   (4.1) 

and the SDL takes the form of 

 0 sin sin( , )
x y

L l
q x y q

 
   (4.2) 

For the following examples. the boundary conditions (BCs) are as follows 

Simply supported (SSSS) 

 
0

0

0   at   0   and     

0   at   0   and     

y

x

w x x L

w y y l





   

   
  (4.3) 

Clamped (CCCC) 

 0 0   at   0,     and    0,    x yw x L y l        (4.4) 

   

4.2.1.1 Isotropic plates analysis  

First, the effectiveness of the present formulation is evaluated by studying the static behavior 

of isotropic square plates. Two examples have been considered. 

The first example deals with a SSSS square isotropic plate subjected to UDL. The side-to-

thickness-ratio is taken as (L/h=10). The Young’s modulus and Poisson’s ratio used for this 

example are: E=210 GPa and ν=0.3. A shear correction factor of ks=5/6 is used. The results are 

presented in terms of deflection and stresses based on the following normalized quantities  
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  (4.5) 
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Table 4.2 Dimensionless deflection and stresses for isotropic square plate (L/h=10) subjected 

to UDL. 

 

 

The results obtained for different mesh sizes are presented in the Table 4.2 along with the 

Trigonometric Shear Deformation Theory 6 (TSDT6) and the exact solutions from Shimpi et 

al. [260] and they match very well.  

In the second example, a fully ceramic homogeneous square plate subjected to UDL is 

considered to validate the results of the proposed finite element. The material properties of the 

used ceramic (Alumina/Al2O3) are presented in Table 4.1. Four different side-to-thickness 

ratios h/L and two types of boundary conditions are considered. The shear correction factor is 

taken as ks=5/6.  

The results of dimensionless deflection obtained by the present formulation for different 

meshes are presented in Table 4.3 and compared with the exact values of deflection reported 

in reference [261].  

 
3

4
0

10
,

2 2
ch E L l

w w
q L

 
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 

   (4.6) 

It can be observed from Table 4.3 that the current formulation can well predict the deflection 

of the simply supported and clamped homogeneous square plates, which confirm the 

performance of the present finite element. 

 

 

 

Mesh 

size 

8×8 12×12 16×16 20×20 24×24 32×32 Exact 

[260] 

TSDT6 

[260] 

w  4.646 4.657 4.661 4.663 4.664 4.665 4.639 4.625 

x  0.277 0.283 0.285 0.286 0.286 0.287 0.290 0.307 

y  0.277 0.283 0.285 0.286 0.286 0.287 0.290 0.307 

xy  0.173 0.183 0.188 0.190 0.191 0.193 - 0.195 
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Table 4.3 Dimensionless deflection of SSSS and CCCC square plates. 

BCs h/L 8×8 12×12 16×16 20×20 24×24 32×32 Exact [261] 

SSSS 0.1 0.4646 0.4657 0.4661 0.4663 0.4664 0.4665 0.4666 

0.2 0.5344 0.5350 0.5353 0.5354 0.5354 0.5355 0.5357 

0.3 0.6508 0.6506 0.6506 0.6505 0.6505 0.6505 0.6504 

0.35 0.7264 0.7257 0.7255 0.7254 0.7253 0.7253 0.7252 

 

CCCC 0.1 0.1625 0.1635 0.1638 0.1640 0.1641 0.1642 0.1637 

0.2 0.2356 0.2365 0.2368 0.2369 0.2370 0.2371 0.2366 

0.3 0.3538 0.3542 0.3543 0.3543 0.3544 0.3544 0.3524 

0.35 0.4300 0.4299 0.4299 0.4299 0.4299 0.4299 0.4314 

 

4.2.1.2 FG plates analysis  

In this section, the static behavior of simply supported, square FG plates under distributed 

transverse load is taken up for investigation. Typical mechanical properties for metal and 

ceramics used in the FG plates are listed in Table 4.1. In the calculations, both FG single layer 

and FG sandwich plates are studied. The deflection and stresses are given in the dimensionless 

form given by the following formulas: 
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  (4.7) 

 

The shear correction factor for homogeneous plates is typically taken to be  

 5 / 6sk    (4.8) 

This constant shear correction factor is not appropriate for FG plates [96] since it may be a 

function of material properties and the geometric dimension of a FG plate. 

Efraim and Eisenberger [97] presented a shear correction factor for FG plates as 
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  (4.9) 

Where Vm. Vc and νm. νc are the volume fractions and Poisson’s ratios of metal and ceramic. 

respectively. 

In the following examples the two before mentioned shear correction factors are used.  

 

A. FG single layer plates  

In this example problem, a simply supported Al/Al2O3 square plate (L/h=10) subjected to both 

UDL and SDL, has been analyzed for various values of the power-law index p. The top surface 

of the FG plate is ceramic (Al2O3) rich and the bottom surface is pure metal (Al).  

The dimensionless deflections and stresses results obtained by the present formulation are 

compared with those obtained from the analytical solution of Zenkour [142], finite element 

models based on the FDST of Srividhya et al. [134] and Singha et al. [129]. The results agree 

well for both UDL and SDL, as presented in Tables 4.4 and 4.5, respectively. 

From Tables 4.4 and 4.5, It can be observed that the shear correction factor has a slight 

influence on the deflections while it has no effect on the dimensionless stresses values. In the 

case of dimensionless deflections, the shear correction factor ks=5/6 produces result closer to 

those of Zenkour and Singh. It can also be seen from these tables that the stresses of 

homogeneous ceramic (p=0) and metal (p=∞) plates are congruent, thus, they are independent 

of Young’s modulus. It can be also observed that as the power-law index increases, which 

means a gradual change from ceramic to metal, the dimensionless deflection w  and the normal 

stress x  increase, while the in-plane shear stress xy  decreases up to p=2 and then increases 

with another increase of p.  

For further illustration of the present finite element accuracy the variation of deflections w  

as a function of the power-law index p for side-to thickness ratio L/h = 10 under UDL and SDL 

is shown in Figure 4.1. From this figure, it can be seen that the dimensionless deflection 

increases with the increase of the power-law index p. This is because that increasing the power 

law index, increases the metallic volume fraction which reduces the plate rigidity. It is also 

observed that the present results closely match the analytical solutions given by Zenkour [142].  
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Table 4.4 Dimensionless stresses and deflections of a SSSS FG square plate(L/h = 10) under 

UDL . 

p Mesh ks 8×8 12×12 16×16 20×20 24×24 Singh 

[129] 

Srividhya 

[134] 

Zenkour 

[142] 

0 �̅� 5/6 0.4646 0.4657 0.4661 0.4663 0.4663 0.4666 0.4493 0.4665 

Eq(4.9) 0.4634 0.4646 0.4650 0.4651 0.4652 

�̅�𝒙(h/2) 5/6 2.7674 2.8263 2.8468 2.8563 2.8615 2.8688 2.8621 2.8932 

Eq(4.9) 2.7674 2.8263 2.8468 2.8563 2.8615 

�̅�𝒙𝒚(-h/3) 5/6 1.1532 1.2222 1.2512 1.2662 1.2750 _ 1.2628 1.2850 

Eq(4.9) 1.1532 1.2222 1.2511 1.2662 1.2750 

1 �̅� 5/6 0.9247 0.9270 0.9278 0.9282 0.9284 0.9290 0.8994 0.9287 

Eq(4.9) 0.9228 0.9251 0.9259 0.9262 0.9264 

�̅�𝒙(h/2) 5/6 4.2772 4.3681 4.3999 4.4146 4.4226 4.4303 4.4236 4.4745 

Eq(4.9) 4.2772 4.3681 4.3999 4.4146 4.4226 

�̅�𝒙𝒚(-h/3) 5/6 0.9957 1.0553 1.0804 1.0934 1.1010 _ 1.0905 1.1143 

Eq(4.9) 0.9957 1.0553 1.0804 1.0934 1.1010 

2 �̅� 5/6 1.1857 1.1886 1.1897 1.1901 1.1904 1.1952 1.1528 1.1940 

Eq(4.9) 1.1831 1.1861 1.1871 1.1876 1.1878 

�̅�𝒙(h/2) 5/6 4.9944 5.1005 5.1376 5.1548 5.1641 5.1689 5.1653 5.2296 

Eq(4.9) 4.9944 5.1005 5.1376 5.1548 5.1641 

�̅�𝒙𝒚(-h/3) 5/6 0.8874 0.9406 0.9629 0.9745 0.9813 _ 0.9719 0.9907 

Eq(4.9) 0.8874 0.9406 0.9629 0.9745 0.9813 

4 �̅� 5/6 1.3710 1.3744 1.3755 1.3761 1.3764 1.3908 _ 1.3890 

Eq(4.9) 1.3677 1.3711 1.3722 1.3728 1.3730 

�̅�𝒙(h/2) 5/6 5.6169 5.7362 5.7779 5.7972 5.8077 5.8035 _ 5.8915 

Eq(4.9) 5.6169 5.7362 5.7779 5.7972 5.8077 

�̅�𝒙𝒚(-h/3) 5/6 0.9258 0.9811 1.0043 1.0164 1.0235 _ _ 1.0298 

Eq(4.9) 0.9258 0.9811 1.0043 1.0164 1.0235 

5 �̅� 5/6 1.4144 1.4178 1.4190 1.4195 1.4198 _ 1.3664 1.4356 

Eq(4.9) 1.4108 1.4142 1.4154 1.4160 1.4162 

�̅�𝒙(h/2) 5/6 5.8616 5.9862 6.0297 6.0499 6.0608 _ 6.0622 6.1504 

Eq(4.9) 5.8616 5.9862 6.0297 6.0499 6.0608 

�̅�𝒙𝒚(-h/3) 5/6 0.9403 0.9965 1.0201 1.0324 1.0396 _ 1.0296 1.0451 

Eq(4.9) 0.9403 0.9965 1.0201 1.0324 1.0395 

10 �̅� 5/6 1.5631 1.5668 1.5681 1.5686 1.5689 _ 1.5029 1.5876 

Eq(4.9) 1.5586 1.5623 1.5636 1.5642 1.5645 

�̅�𝒙(h/2) 5/6 7.0277 7.1771 7.2292 7.2534 7.2665 _ 7.2682 7.3689 

Eq(4.9) 7.0277 7.1771 7.2292 7.2534 7.2665 

�̅�𝒙𝒚(-h/3) 5/6 0.9637 1.0213 1.0454 1.0580 1.0653 _ 1.0550 1.0694 

Eq(4.9) 0.9637 1.0213 1.0454 1.0580 1.0653 

  �̅� 5/6 2.5221 2.5282 2.5303 2.5313 2.5318 _ 2.4389 2.5327 

Eq(4.9) 2.5158 2.5219 2.5240 2.5250 2.5255 

�̅�𝒙(h/2) 5/6 2.7674 2.8263 2.8468 2.8563 2.8615 _ 2.8621 2.8932 

Eq(4.9) 2.7674 2.8263 2.8468 2.8563 2.8615 

�̅�𝒙𝒚(-h/3) 5/6 1.1532 1.2222 1.2512 1.2662 1.2750 _   1.2628 1.2850 

Eq(4.9) 1.1532 1.2222 1.2511 1.2662 1.2750 
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Table 4.5 Dimensionless stresses and deflections of a SSSS FG square plate (L/h = 10) under 

SDL. 

p Mesh ks 8×8 12×12 16×16 20×20 24×24 Zenkour 

[142] 

Srividhya 

[134] 

Singh 

[129] 

0 �̅� 5/6 0.2938 0.2951 0.2955 0.2957 0.2958 0.2960 0.2839 0.2961 

Eq(4.9) 0.2930 0.2943 0.2947 0.2949 0.2950 

�̅�𝒙(h/2) 5/6 1.8597 1.9235 1.9463 1.9568 1.9626 1.9955 1.9572 1.9679 

Eq(4.9) 1.8597 1.9235 1.9463 1.9568 1.9626 

�̅�𝒙𝒚(-h/3) 5/6 0.6676 0.6905 0.6987 0.7025 0.7045 0.7065 0.7026 _ 

Eq(4.9) 0.6676 0.6905 0.6987 0.7025 0.7045 

1 �̅� 5/6 0.5844 0.5869 0.5878 0.5882 0.5885 0.5889 0.5683 0.5891 

Eq(4.9) 0.5830 0.5856 0.5865 0.5869 0.5871 

�̅�𝒙(h/2) 5/6 2.8743 2.9729 3.0081 3.0244 3.0333 3.0870 3.0249 3.0389 

Eq(4.9) 2.8743 2.9729 3.0081 3.0244 3.0333 

�̅�𝒙𝒚(-h/3) 5/6 0.5765 0.5963 0.6034 0.6066 0.6084 0.6110 0.6067 _ 

Eq(4.9) 0.5765 0.5963 0.6034 0.6066 0.6084 

2 �̅� 5/6 0.7493 0.7526 0.7538 0.7543 0.7546 0.7573 0.7284 0.7582 

Eq(4.9) 0.7476 0.7509 0.7520 0.7526 0.7529 

�̅�𝒙(h/2) 5/6 3.3562 3.4714 3.5124 3.5315 3.5419 3.6094 3.5321 3.5456 

Eq(4.9) 3.3562 3.4714 3.5124 3.5315 3.5419 

�̅�𝒙𝒚(-h/3) 5/6 0.5138 0.5315 0.5378 0.5407 0.5423 0.5441 0.5408 _ 

Eq(4.9) 0.5138 0.5315 0.5378 0.5407 0.5423 

4 �̅� 5/6 0.8669 0.8707 0.8720 0.8726 0.8729 0.8819 _ 0.8831 

Eq(4.9) 0.8646 0.8684 0.8697 0.8703 0.8706 

�̅�𝒙(h/2) 5/6 3.7745 3.9041 3.9502 3.9716 3.9834 4.0693 _ 3.9813 

Eq(4.9) 3.7745 3.9041 3.9502 3.9716 3.9834 

�̅�𝒙𝒚(-h/3) 5/6 0.5359 0.5543 0.5608 0.5639 0.5655 0.5667 _ _ 

Eq(4.9) 0.5359 0.5543 0.5608 0.5639 0.5655 

5 �̅� 5/6 0.8946 0.8984 0.8997 0.9004 0.9007 0.9118 0.8636 _ 

Eq(4.9) 0.8921 0.8959 0.8973 0.8979 0.8982 

�̅�𝒙(h/2) 5/6 3.9390 4.0742 4.1223 4.1447 4.1570 4.2488 4.1454 _ 

Eq(4.9) 3.9390 4.0742 4.1223 4.1447 4.1570 

�̅�𝒙𝒚(-h/3) 5/6 0.5443 0.5630 0.5696 0.5727 0.5744 0.5755 0.5728 _ 

Eq(4.9) 0.5443 0.5630 0.5696 0.5727 0.5744 

10 �̅� 5/6 0.9892 0.9934 0.9948 0.9954 0.9958 1.0089 0.9500 _ 

Eq(4.9) 0.9861 0.9903 0.9917 0.9924 0.9928 

�̅�𝒙(h/2) 5/6 4.7226 4.8847 4.9424 4.9692 4.9839 5.0890 4.9701 _ 

Eq(4.9) 4.7226 4.8847 4.9424 4.9692 4.9839 

�̅�𝒙𝒚(-h/3) 5/6 0.5578 0.5769 0.5837 0.5869 0.5886 0.5894 0.5870 _ 

Eq(4.9) 0.5578 0.5769 0.5837 0.5869 0.5886 

  �̅� 5/6 1.5949 1.6018 1.6042 1.6053 1.6059 1.6070 1.5414 1.6072 

Eq(4.9) 1.5906 1.5975 1.5999 1.6010 1.6016 

�̅�𝒙(h/2) 5/6 1.8597 1.9235 1.9463 1.9568 1.9626 1.9955 1.9572 1.9679 

Eq(4.9) 1.8597 1.9235 1.9463 1.9568 1.9626 

�̅�𝒙𝒚(-h/3) 5/6 0.6676 0.6905 0.6987 0.7025 0.7045 0.7065 0.7026 _ 

Eq(4.9) 0.6676 0.6905 0.6987 0.7025 0.7045 
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The variation of the dimensionless stresses through the thickness of a square FG plate under 

SDL has been studied and the results are presented in Figures 4.2 and 4.3.  

The distribution of the dimensionless normal stress x  for different values of p through the 

thickness is shown in Figures 4.2. From this figure it can be noticed that the dimensionless 

normal stress increases with the increase of the power-law index p value. It can also be 

observed that the dimensionless normal stress is tensile at the top surface and compressive at 

the bottom surface. The homogeneous ceramic plate (p= 0) yields the maximum compressive 

stresses at the bottom surface and the minimum tensile stresses at the top surface of the plate. 

Figures 4.3 shows that the dimensionless in-plane shear stress xy is tensile at the bottom 

surface and compressive at the top surface of the FG plates. The homogeneous ceramic plate 

(p= 0) yields the maximum tensile stresses at the bottom surface and the minimum compressive 

stresses at the top surface of the FG plate. Unlike the dimensionless normal stress, the 

dimensionless in-plane shear stress decreases with the increasing of the power-law index. 

 

 

 

Figure 4.1 Variation of dimensionless deflections versus the power-law index under UDL 

and SDL, (L/h=10). 
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Figure 4.2 Variation of the dimensionless normal stress of a FG square plate under 

SDL for different power-law index values (L/h = 10). 
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Figure 4.3 Variation of the dimensionless in-plane shear stress  of a FG square plate 

under SDL for different power-law index values (L/h = 10). 
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The effect of side-to-thickness ratio L/h on the dimensionless deflection w  and the normal 

stress x  of a simply supported, FG square plates subjected to sinusoidal load are presented in 

Table 4.6. The results obtained using a 20 × 20 mesh size, are compared with the quasi-3D 

solutions generated by Neves et al. [171]. As it can be seen, the values of deflection and normal 

stress obtained by the present finite element are in good agreement with those of the reference. 

This reiterates the fact that FSDT may be well suited to simpler geometries and moderately 

thick plates.  

 

Table 4.6 Effect of side-to-thickness ratio L/h on the dimensionless deflection and normal 

stress of SSSS Al/Al2O3 square plate under SDL. 

P Theory 

 

�̅�𝒙(h/3) �̅� 

L/h=4 L/h=10 L/h=100 L/h=4 L/h=10 L/h=100  

0 Neves [171] 0.5151 1.3124 13.1610 0.3786 0.2961 0.2803 

Present (5/6) 0.5218 1.3046 13.0463 0.3789 0.2957 0.2800 

Present (Eq(4.9)) 0.5218 1.3046 13.0463 0.3739 0.2949 0.2800 

0.5 Neves [171] 0.5736 1.4629 14.6720 0.5699 0.4579 0.4365 

Present (5/6) 0.5802 1.4505 14.5057 0.5677 0.4535 0.4320 

Present (Eq(4.9)) 0.5802 1.4505 14.5058 0.5609 0.4524 0.4320 

1 Neves [171] 0.5806 1.4874 14.944 0.7308 0.5913 0.5648 

Present (5/6) 0.5930 1.4825 14.8258 0.7287 0.5882 0.5618 

Present (Eq(4.9)) 0.5930 1.4825 14.8259 0.7203 0.5869 0.5618 

4 Neves [171] 0.4338 1.1592 11.7370 1.1552 0.8770 0.8241 

Present (5/6) 0.4723 1.1808 11.8087 1.1120 0.8726 0.8275 

Present (Eq(4.9)) 0.4723 1.1808 11.8087 1.0977 0.8703 0.8275 

10 Neves [171] 0.3112 0.8468 8.6011 1.3760 0.9952 0.9228 

Present (5/6) 0.3529 0.8822 8.8223 1.3173 0.9954 0.9348 

Present (Eq(4.9)) 0.3529 0.8822 8.8223 1.2981 0.9924 0.9348 
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From Table 4.6, one can clearly observe that the dimensionless deflection decreases as the 

side-to thickness ratio (L/h) increase, while the dimensionless normal stress increases. 

Additionally, it is easily observable that the influence of the shear correction factor on the 

dimensionless deflection decreases as the side-to-thickness ratio L/h increases. 

 

B.  FG sandwich plates analysis 

In this section, the deflections and stresses of a simply supported sandwich plate with FG skins 

and homogeneous core are presented and compared with the existing solutions to verify the 

accuracy of the present formulation. FG sandwich plates made of two sets of material 

combinations of metal and ceramic, Al/ZrO2-1 and Al/Al2O3 are considered. Their material 

properties are given in Table 4.1. 

Two cases of FG sandwich plates are studied: 

 Sandwich plate with ceramic core: homogeneous core with ZrO2-1 and FG skins with 

top and bottom surfaces made of Al. 

 Sandwich plate with Metallic core: homogeneous core with Al and FG skins with top 

and bottom surfaces made of Al2O3. 

At First, a convergence study was performed for the dimensionless deflection w  and normal 

stress x of a square  Al/ZrO2-1 sandwich plate under SDL considering p=2. Four 

configurations of sandwich plates (1-0-1, 1-2-1, 1-1-1 and  2-1-2 ) are considered. The results 

for several meshes are reported in Table 4.7. It is observed that the present results converge 

rapidly to those of Zenkour’s FSDT [141].  

 

Tables 4.8 and 4.9 contain the dimensionless deflection w  and normal stress x  of square 

Al/ZrO2-1 sandwich  plates with homogeneous ceramic core. A 20 × 20 mesh is considered.  

The results are considered for different values of p and for different types of sandwich plates. 

The obtained results using the present finite element are compared with the SSDT, TSDT and 

FSDT results generated by Zenkour [141]. In general, a good agreement is found.  
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Table 4.7 Convergence of the dimensionless deflection and normal stress under SDL for p=2 

and L/h=10. 

 

 

From Table 4.8, it can be seen that the shear correction factor has an effect on the 

dimensionless deflection w  as previously indicated. It can be observed from the table that when 

the shear correction factor is ks=5/6, the deflection results by the present formulation are close 

to those obtained by FSDT. However, in the case of ks (see Eq (4.9)), the present dimensionless 

deflection results are identical to those of TSDT and SSDT. The values of the dimensionless 

normal stresses x   do not depend of the used shear correction factor, as shown in Table 4.9. 

In general, the difference between several types of sandwich plates is insignificant for fully 

ceramic plates (p = 0). The fully ceramic plates give the smallest deflections and the largest 

normal stresses. As the power-law index p increases, the dimensionless deflection and normal 

stress increase, excepted for the case of (p = 0). These results decrease as the core thickness, 

with respect to the total thickness of the plate, increases (1-2-1).  

 

Mesh size Sandwich plate configurations 

1-0-1 2-1-2 1-1-1 1-2-1 

Dimensionless deflection w  

4×4 0.3627 0.3422 0.3232 0.2936 

8×8 0.3722 0.3513 0.3318 0.3013 

12×12 0.3738 0.3529 0.3332 0.3026 

16×16 0.3744 0.3534 0.3338 0.3031 

20×20 0.3747 0.3536 0.3340 0.3033 

24×24 0.3748 0.3538 0.3341 0.3034 

FSDT [141] 0.3751 0.3541 0.3344 0.3037 

Dimensionless normal stress x  

4×4 1.3821 1.3072 1.2350 1.1206 

8×8 1.6668 1.5766 1.4895 1.3515 

12×12 1.7240 1.6307 1.5406 1.3978 

16×16 1.7444 1.6500 1.5588 1.4144 

20×20 1.7539 1.6589 1.5673 1.4221 

24×24 1.7591 1.6638 1.5719 1.4262 

FSDT [141] 1.7709 1.6750 1.5824 1.4358 
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Table 4.8 Dimensionless deflection of SSSS FG sandwich square plate with ceramic core 

under SDL (L/h= 10). 

p Theory w  

1-0-1 2-1-2 1-1-1 1-2-1 

0 SSDT [141] 0.1961 0.1961 0.1961 0.1961 

TSDT [141] 0.1961 0.1961 0.1961 0.1961 

FSDT [141] 0.1961 0.1961 0.1961 0.1961 

Present (5/6) 0.1958 0.1958 0.1958 0.1958 

Present (Eq(4.9)) 0.1953 0.1953 0.1953 0.1953 

1 SSDT [141] 0.3235 0.3062 0.2919 0.2709 

TSDT [141] 0.3236 0.3063 0.2920 0.2709 

FSDT [141] 0.3248 0.3075 0.2930 0.2717 

Present (5/6) 0.3244 0.3071 0.2926 0.2713 

Present (Eq(4.9)) 0.3237 0.3065 0.2920 0.2707 

5 SSDT [141] 0.4091 0.3916 0.3713 0.3347 

TSDT [141] 0.4093 0.3918 0.3715 0.3348 

FSDT [141] 0.4112 0.3942 0.3736 0.3363 

Present (5/6) 0.4107 0.3937 0.3731 0.3359 

Present (Eq(4.9)) 0.4097 0.3929 0.3724 0.3352 

10 SSDT [141] 0.4175 0.4038 0.3849 0.3412 

TSDT [141] 0.4177 0.4041 0.3855 0.3482 

FSDT [141] 0.4192 0.4066 0.3879 0.3499 

Present (5/6) 0.4187 0.4061 0.3874 0.3495 

Present (Eq(4.9)) 0.4177 0.4052 0.3866 0.3488 

 

Figure 4.4 illustrates the variation of dimensionless deflection w  of square Al/ZrO2-1  

sandwich  plates with homogeneous ceramic core versus the power-law index p. Side-to-

thickness ratio is taken equal to L/h=10.  

Figures 4.5 and 4.6 contain the plots of  the dimensionless normal stress x  through the 

thickness of  (1-1-1) and (1-2-1) sandwich plates with homogeneous ceramic core and for p = 

0,1,4. It is clear from those two figures that the stress profile for plate made of pure material 

(ceramic, p=0) changes linearly through the thickness. However, the normal stress variation is 

not linear for FG plate (p=1, 4). It can be seen that the normal stress is tensile at the top surface 

and compressive at the bottom surface. The  homogeneous ceramic plate (p=0) yields the 
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maximum compressive stresses at the bottom surface and the minimum tensile stresses at the 

top surface of the sandwich plate. 

Tables 4.10 and 4.11 list the dimensionless deflection w  and normal stress x for p = 0,0.5,1, 

5, 10 and different types of square Al/Al2O3 sandwich plate with homogeneous metallic core. 

The results obtained using the present formulation are compared with those based on the 

Hyperbolic refined four-variable theory (HRPT) of  Boucheta [262]. It can be noted that the 

results are in a good agreement. Contrary to the case of ceramic core, it can be observed that 

the dimensionless deflection and normal stress for FG plates decrease with increasing the 

power-law index p. It is also observed from Tables 4.10 and 4.11 that as the core thickness, 

with respect to the total thickness of the plate increases, both dimensionless deflection and 

normal stress increase. 

 

Table 4.9 Dimensionless normal stress of SSSS FG sandwich square plate with ceramic core 

under SDL (L/h= 10). 

P Theory ( 2)x h  

1-0-1 2-1-2 1-1-1 1-2-1 

0 SSDT [141] 2.0545 2.0545 2.0545 2.0545 

TSDT [141] 2.0499 2.0499 2.0499 2.0499 

FSDT [141] 1.9758 1.9758 1.9758 1.9758 

Present (5/6) 1.9568 1.9568 1.9568 1.9568 

Present (Eq(4.9)) 1.9568 1.9568 1.9568 1.9568 

1 SSDT [141] 1.5820 1.4986 1.4289 1.3259 

TSDT [141] 1.5792 1.4959 1.4262 1.3231 

FSDT [141] 1.5325 1.4517 1.3830 1.2809 

Present (5/6) 1.5178 1.4378 1.3698 1.2687 

Present (Eq(4.9)) 1.5178 1.4378 1.3698 1.2687 

5 SSDT [141] 1.9957 1.9155 1.8184 1.6411 

TSDT [141] 1.9927 1.9130 1.8158 1.6381 

FSDT [141] 1.9358 1.8648 1.7699 1.5931 

Present (5/6) 1.9172 1.8469 1.7529 1.5778 

Present (Eq(4.9)) 1.9172 1.8469 1.7529 1.5778 

10 SSDT [141] 2.0336 1.9731 1.8815 1.6485 

TSDT [141] 2.0304 1.9713 1.8838 1.7042 

FSDT [141] 1.9678 1.9217 1.8375 1.6584 

Present (5/6) 1.9490 1.9033 1.8199 1.6428 

Present (Eq(4.9)) 1.9490 1.9032 1.8199 1.6428 
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Figure 4.4  Variation of the dimensionless deflection  of Al/ZrO2-1  sandwich square plates 

with ceramic core under SDL for different power-law index values (L/h = 10), ks=5/6. 
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Figure 4.5 Variation of the dimensionless normal stress  of  Al/ZrO2-1 sandwich square 

plate (1-1-1)  with ceramic core under SDL for different power-law index values (L/h = 10). 
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Figure 4.7 shows the variation of dimensionless deflection w  of square Al/Al2O3 sandwich  

plates with homogeneous metallic core versus the power-law index p. Side-to-thickness ratio 

is taken to equal L/h=10. 

Figures 4.8 and 4.9 illustrate the variation of the dimensionless normal stress x  through 

the thickness of  (1-1-1) and (1-2-1) sandwich plates with homogenous metallic core for p = 

0,1,4. As shown in figures, the dimensionless axial stress of purely metallic plate (p=0) varies 

linearly through the thickness. However, the variation of this stress is not linear for cases of 

p>0. The maximum values of the normal compressive and tensile stresses are found on the 

lower and upper extreme surfaces of the plate respectively. 

 Effect of  side-to-thickness ratio on the dimensionless deflection of FG sandwich plate 

with homogeneous core either ceramic or metallic 

The variation of the dimensionless deflection w  of square FG sandwich plate with 

homogeneous core either ceramic or metallic versus side-to-thickness ratio L/h is shown in 

Figures 4.10 and 4.11.  
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Figure 4.6 Variation of the dimensionless normal stress  of Al/ZrO2-1  sandwich square 

plate (1-2-1)  with ceramic core under SDL for different power-law index values (L/h = 10). 
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Table 4.10 Dimensionless deflection of SSSS FG sandwich square plate with metallic core 

under SDL (L/h= 10). 

p Theory w  

1-0-1 2-1-2 1-1-1 1-2-1 

0 HRPT [262] 0.4229 0.4229 0.4229 0.4229 

Present (5/6) 0.4224 0.4224 0.4224 0.4224 

Present (Eq(4.9)) 0.4213 0.4213 0.4213 0.4213 

0.5 HRPT [262] 0.1292 0.1404 0.1510 0.1700 

Present (5/6) 0.1266 0.1367 0.1465 0.1651 

Present (Eq(4.9)) 0.1261 0.1361 0.1460 0.1644 

1 HRPT [262] 0.1015 0.1103 0.1190 0.1355 

Present (5/6) 0.0996 0.1070 0.1147 0.1300 

Present (Eq(4.9)) 0.0992 0.1066 0.1142 0.1295 

5 HRPT [262] 0.0802 0.0843 0.0897 0.1015 

Present (5/6) 0.0796 0.0826 0.0868 0.0966 

Present (Eq(4.9)) 0.0793 0.0823 0.0864 0.0962 

10 HRPT [262] 0.0787 0.0819 0.0864 0.0971 

Present (5/6) 0.0784 0.0805 0.0839 0.0926 

Present (Eq(4.9)) 0.0781 0.0802 0.0836 0.0923 

 

Table 4.11 Dimensionless normal stress of SSSS FG sandwich square plate with metallic core 

under SDL (L/h= 10). 

p Theory ( / 2)x h  

1-0-1 2-1-2 1-1-1 1-2-1 

0 HRPT [262] 1.9933 1.9933 1.9933 1.9933 

Present (5/6) 1.9568 1.9568 1.9568 1.9568 

Present (Eq(4.9)) 1.9568 1.9568 1.9568 1.9568 

0.5 HRPT [262] 3.1927 3.4362 3.6778 4.1362 

Present (5/6) 3.1206 3.3551 3.5902 4.0405 

Present (Eq(4.9)) 3.1206 3.3551 3.5902 4.0405 

1 HRPT [262] 2.5155 2.6915 2.8776 3.2509 

Present (5/6) 2.4582 2.6250 2.8041 3.1685 

Present (Eq(4.9)) 2.4582 2.6250 2.8041 3.1685 

5 HRPT [262] 2.0273 2.0921 2.1887 2.4238 

Present (5/6) 1.9858 2.0425 2.1317 2.3558 

Present (Eq(4.9)) 1.9858 2.0425 2.1317 2.3558 

10 HRPT [262] 2.0015 2.0431 2.1203 2.3270 

Present (5/6) 1.9624 1.9965 2.0664 2.2617 

Present (Eq(4.9)) 1.9624 1.9965 2.0664 2.2617 
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Figure 4.8 Variation of the dimensionless normal stress  of Al/Al2O3 sandwich square 

plate (1-1-1) with metallic core under SDL for different power-law index values (L/h = 10). 
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Figure 4.7 Variation of the dimensionless deflection  of Al/Al2O3 sandwich square plates 

with metallic core under SDL for different power-law index values (L/h = 10), ks=5/6. 
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Figure 4.9 Variation of the dimensionless normal stress  of Al/Al2O3 sandwich square 

plate (1-2-1) with metallic core under SDL for different power-law index values (L/h = 10). 
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Figure 4.10 Variation of dimensionless deflection  of  (2-1-2) FG sandwich square plate 

with homogeneous ceramic core under SDL versus side-to-thickness ratio L/h, (ks=5/6). 
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Figures 4.10 depicts the variation of dimensionless deflection of a simply supported (2-1-2) 

sandwich plate with homogeneous ceramic core versus side-to-thickness ratio  for different 

values of power- law index p. It can be observed that the dimensionless deflection increases 

with the increase of L/h. it is also noticed that the dimensionless deflection of the metallic plate 

is the largest and that of the ceramic plate is the smallest. This is due to the fact that the metallic 

plate is less rigid than the ceramic plate. All plates with intermediate properties (p= 1, 2, 5) 

exhibit corresponding intermediate values of dimensionless deflection. 

Figures 4.11 shows the variation of dimensionless deflection of a simply supported (2-1-2) 

sandwich plate with homogeneous metallic core versus side-to-thickness ratio. Unlike the case 

of homogeneous ceramic core, it can be observed that for FG plates with homogeneous metallic 

core, dimensionless deflection decreases as power law index p is increased. 
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Figure 4.11 Variation of dimensionless deflection of  (2-1-2) FG sandwich square plate 

with homogeneous metallic core under SDL versus side-to-thickness ratio L/h, (ks=5/6). 
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4.2.2 Mechanical buckling analysis 

The aim of this section is to verify the accuracy of the present finite element (R4FSDT) in 

predicting the critical buckling load of FG sandwich plates. Square Al/Al2O3 sandwich plates 

with homogeneous core either ceramic (Alumina, Al2O3) or metallic (Aluminum, Al) are 

considered. Young’s modulus and Poisson’s ratio of aluminum are Em=70 GPa, νm= 0.3, 

respectively, and those of alumina are Ec=380 GPa, νc= 0.3. Three different types of in-plane 

loads, uniaxial compression, biaxial compression and biaxial compression and tension are 

considered. 

For convenience, the following dimensionless critical buckling load is used 

 03
0

2

,          1 GPa    
100

cri cri E
L

N N
E h

   (4.10) 

The plates are assumed to be simply supported at all edges, (Eq (4.3)). The shear correction 

factor is taken as 5/6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 The rectangular plate subjected to in-plane loads. 
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4.2.2.1 Convergence of the dimensionless critical buckling load of (2-1-2) Al/Al2O3 

sandwich plate with homogeneous ceramic core and metallic core 

Table 4.12 shows the critical buckling loads criN  obtained for the square (2-1-2) Al/Al2O3 

sandwich plate with homogeneous ceramic core and metallic core under uniaxial (λ1= -1, λ2 = 

0), biaxial compression (λ1= λ2 = -1) and biaxial compression and tension (λ1= -1, λ2 = 1), 

Figure 4.12. Different mesh sizes are considered. It can be observed that the obtained results 

for power-law index p=5 and side-to-thickness L/h=10 compare well with those obtained using 

the analytical solutions with improved transverse shear stiffness based on the FSDT of Nguyen 

et al. [263]. These results confirm the performance of the present finite element. 

 

Table 4.12 Convergence of the dimensionless critical buckling loads criN  of (2-1-2) Al/Al2O3 

sandwich plate with homogeneous ceramic core and metallic core under different loading, p=5, 

L/h= 10. 

 

 
 
 
 
 
 

Mesh 8×8 12×12 16×16 20×20 24×24 32×32 FSDT 

[263] 

Uniaxial compression 

Ceramic core 3.0870 3.0509 3.0384 3.0327 3.0296 3.0265 3.0226 

Metallic core 12.5021 12.3622 12.3139 12.2917 12.2796 12.2676 12.2523 

Biaxial compression 

Ceramic core 1.5435 1.5254 1.5192 1.5163 1.5148 1.5132 1.5113 

Metallic core 6.2510 6.1811 6.1570 6.1458 6.1398 6.1338 6.1261 

Biaxial compression and tension 

Ceramic core 6.4145 6.2037 6.1350 6.1039 6.0873 6.0709 6.0501 

Metallic core 24.300 23.6362 23.4095 23.3070 23.2520 23.1978 23.1287 
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4.2.2.2 The dimensionless critical buckling loads of square Al/Al2O3 sandwich plate with 

homogeneous ceramic core and metallic core under different loading 

A moderately thick square Al/Al2O3 sandwich plate with the side-to-thickness ratio L/h =10 

and the power-law index p varied from 0 to 10 is analyzed. Dimensionless critical buckling 

loads criN  of  the square sandwich plates with homogeneous ceramic core and metallic core 

under uniaxial compression, biaxial compression and biaxial compression and tension are 

presented in Tables 4.13, 4.14 and 4.15, respectively. The obtained results using a 24×24 mesh 

size are compared with those generated by Nguyen et al. [263] based on the FSDT. A good 

agreement between the results is observed for all plate configurations and values of power-law 

index. 

 

Table 4.13 Dimensionless critical buckling loads criN  of square Al/Al2O3 sandwich plates 

subjected to uniaxial compressive load (λ1= -1, λ2 = 0) with homogeneous ceramic core and 

metallic core, L/h=10. 

p Theory 
criN  

1-0-1 2-1-2 1-1-1 1-2-1 

Ceramic core 

0 FSDT [263] 13.0045 13.0045 13.0045 13.0045 

Present (5/6) 13.0340 13.0340 13.0340 13.0340 

0.5 FSDT [263] 7.3279  7.9056 8.4041 9.1905 

Present (5/6) 7.3542 7.9314 8.4296 9.2162 

1 FSDT [263] 5.1424  5.8138 6.4389 7.4837 

Present (5/6) 5.1542 5.8272 6.4538 7.5009 

5 FSDT [263] 2.6385  3.0226 3.5596 4.7147 

Present (5/6) 2.6445 3.0296 3.5679 4.7257 

10 FSDT [263] 2.46906  2.7262 3.1752 4.2604 

Present (5/6) 2.4747 2.7326 3.1826 4.2703 

Metallic core 

0 FSDT [263] 2.3956 2.3956 2.3956 2.3956 

Present (5/6) 2.4010 2.4010 2.4010 2.4010 

0.5 FSDT [263] 8.0036 7.4133 6.9129 6.1347 

Present (5/6) 8.0125 7.4226 6.9223 6.1439 

1 FSDT [263] 10.1653 9.4620 8.8256 7.7859 

Present (5/6) 10.1880 9.4830 8.8450 7.8030 

5 FSDT [263] 12.7196 12.2523 11.6639 10.4751 

Present (5/6) 12.7483 12.2796 11.6897 10.4982 

10 FSDT [263] 12.9143 12.5714 12.0602 10.9258 

Present (5/6) 12.9435 12.5995 12.0870 10.9499 
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Tables 4.13-4.15 show that the dimensionless critical buckling loads are the highest when 

(λ1= -1, λ2 = 1) and are the lowest when (λ1= λ2 = -1) for all power-law index values. In the 

case of p =0, the dimensionless critical buckling load for several kinds of sandwich plates has 

the same value. From these tables, it can be observed that with the increase of the power-law 

index, the dimensionless critical buckling loads decrease for sandwich plate with homogeneous 

ceramic core, and increase for sandwich plate with homogeneous metallic core. This is due to 

the fact that higher values of power-law index correspond to high portion of metal in 

comparison with the ceramic part for homogeneous ceramic core and inversely for 

homogeneous metallic core.  

Table 4.14 Dimensionless critical buckling loads criN  of square Al/Al2O3 sandwich plates 

subjected to biaxial compressive load (λ1= λ2 = -1) with homogeneous ceramic core and 

metallic core, L/h=10. 

p Theory 
criN  

1-0-1 2-1-2 1-1-1 1-2-1 

Ceramic core 

0 FSDT [263] 6.5022 6.5022 6.5022 6.5022 

Present (5/6) 6.5170 6.5170 6.5170 6.5170 

0.5 FSDT [263] 3.6639 3.9528 4.2020 4.5952 

Present (5/6) 3.6771 3.9657 4.2148 4.6081 

1 FSDT [263] 2.5712 2.9069 3.2195 3.7418 

Present (5/6) 2.5771 2.9136 3.2269 3.7504 

5 FSDT [263] 1.3193 1.5113 1.7798 2.3574 

Present (5/6) 1.3223 1.5148 1.7839 2.3629 

10 FSDT [263] 1.2345 1.3631 1.5876 2.1302 

Present (5/6) 1.2374 1.3663 1.5913 2.1352 

Metallic core 

0 FSDT [263] 1.1978 1.1978 1.1978 1.1978 

Present (5/6) 1.2005 1.2005 1.2005 1.2005 

0.5 FSDT [263] 4.0018 3.7066 3.4564 3.0674 

Present (5/6) 4.0063 3.7113 3.4611 3.0719 

1 FSDT [263] 5.0827 4.7310 4.4128 3.8929 

Present (5/6) 5.0940 4.7415 4.4225 3.9015 

5 FSDT [263] 6.3598 6.1261 5.8320 5.2376 

Present (5/6) 6.3741 6.1398 5.8449 5.2491 

10 FSDT [263] 6.4571 6.2857 6.0301 5.4629 

Present (5/6) 6.4717 6.2998 6.0435 5.4749 
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It is also observed from the above mentioned tables that as the core thickness, with respect 

to the total thickness of the plate, increases, the dimensionless critical buckling loads increase 

for sandwich plate with homogeneous ceramic core, and decrease for sandwich plate with 

homogeneous metallic core.  

 

 

Table 4.15 Dimensionless critical buckling loads criN  of square Al/Al2O3 sandwich plates 

subjected to biaxial compression and tension load (λ1= -1, λ2 = 1) with homogeneous ceramic 

core and metallic core, L/h=10. 

p Theory 
criN  

1-0-1 2-1-2 1-1-1 1-2-1 

Ceramic core 

0 FSDT [263] 25.0840 25.0840 25.0840 25.0840 

Present (5/6) 25.2251 25.2251 25.2251 25.2251 

0.5 FSDT [263] 14.3784 15.5078 16.4695 17.9713 

Present (5/6) 14.4773 15.6103 16.5755 18.0831 

1 FSDT [263] 10.1694 11.5009 12.7216 14.7378 

Present (5/6) 10.2302 11.5698 12.7975 14.8251 

5 FSDT [263] 5.2314 6.0501 7.1299 9.4086 

Present (5/6) 5.2627 6.0873 7.1739 9.4661 

10 FSDT [263] 4.8580 5.4545 6.3687 8.5206 

Present (5/6) 4.8867 5.4881 6.4081 8.5729 

Metallic core 

0 FSDT [263] 4.6207 4.6207 4.6207 4.6207 

Present (5/6) 4.6467 4.6467 4.6467 4.6467 

0.5 FSDT [263] 15.0457 13.8664 12.8978 11.4306 

Present (5/6) 15.1125 13.9288 12.9564 11.4835 

1 FSDT [263] 19.1529 17.6932 16.4292 14.4373 

Present (5/6) 19.2545 17.7852 16.5136 14.5107 

5 FSDT [263] 24.2966 23.1287 21.8390 19.4317 

Present (5/6) 24.4302 23.2520 21.9529 19.5306 

10 FSDT [263] 24.7766 23.8189 22.6471 20.3011 

Present (5/6) 24.9142 23.9470 22.7661 20.4050 
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4.2.3 Free vibration analysis 

Through this section, the dynamic behavior of square FG single layer and sandwich plates are 

numerically studied. In order to verify the accuracy of the present finite element, convergence 

and comparison study is shown through some examples by comparing the results with the 

available results in the literature.  Two sets of material combinations of metal and ceramic, 

Al/ZrO2-2 and Al*/Al2O3 are considered, which their material properties are listed in Table 

4.1. Young’s modulus, Poisson’s ratio and mass density of (Aluminum*/Al*) are Em=70 GPa, 

νm=0.3 and ρm= 2707 kg/m3, respectively. 

  For convenience, following dimensionless natural frequency parameters are used in 

presenting the numerical results in tabular form. 

 3
0 0 0 0

²
,       ,       1 /  ,   1 GPa             m m

L
h E E Kg m E

h


          (4.11) 

 

The plates are simply supported (SSSS) at all four edges. 
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    
  (4.12) 

 

4.2.3.1 FG single layer plates  

This example is carried out for Al/ZrO2-2 square plates with different values of side-to-

thickness ratio L/h and power-law index p. The dimensionless fundamental frequencies   are 

obtained using the present finite element (R4FSDT), considering different mesh sizes. The 

value of shear correction factor is taken as ks=5/6. The obtained results are compared with those 

of 3D exact solutions of Vel and Batra [182], 2D-HSDT solutions of Matsunaga [202] and 

FSDT-based analytical solutions of Hosseini-Hashemi et al. [264] in Table 4.16. 

It can be seen from Table 4.16 that the results are in good agreement, however the present 

formulation results are identical to those acquired by the 2D-HSDT [202] and FSDT [264] for 

both thin and thick plates with various values of power law index p. Ones again, the obtained 

results show the rapidity and stability of the present finite element. 
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Table 4.16 Dimensionless fundamental frequency  of single layer Al/ZrO2-2 square plates. 

 

* c c
h E    

4.2.3.2 FG sandwich plates  

In the following, the natural frequency   of square sandwich plates with FG skins and 

homogeneous ceramic or metallic core is analyzed. The plates are made of a mixture of 

Aluminum (Al*) and Alumina (Al2O3). Three shear correction factors, ks from Eq (4.9), 

5 6sk   and 2 12sk  , are considered.  

The convergence of the dimensionless natural frequency   of (2-1-2)  Al*/Al2O3 square 

sandwich plate with homogeneous ceramic (Al2O3) or metallic (Al*) core is presented in Table 

4.17. The results are presented for power-law index p=1, 10 and side-to-thickness ratio L/h=5, 

considering different meshes. The obtained results are compared with those obtained 

analytically by Thai et al. [131] based on a new FSDT with four unknowns using a shear 

correction factor ks =5/6 and with the exact 3D solutions reported by Li et al. [184] 

It can be seen from Table 4.17, that the shear correction factor has a slight influence on the 

dimensionless natural frequency  . In the case of sandwich plate with ceramic core, the 

obtained results using the shear correction factor of Eq (4.9) are close to 3D solutions [184], 

while the results obtained using  shear correction factors 5 6sk   and 2 12sk   converge to 

those based on FSDT [131]. In the case of sandwich plate with metallic core, it is observed that 

whatever the shear correction factor value, the obtained results using the present formulation 

Mesh  p=0* p=1 L/h=5 

L/h=√𝟏𝟎 L/h=10 L/h=5 L/h=10 L/h=20 p=2 p=3 p=5 

8×8 0.4678 0.0587 0.2311 0.0629 0.0161 0.2298 0.2310 0.2325 

12×12 0.4645 0.0581 0.2292 0.0623 0.0160 0.2279 0.2291 0.2306 

16×16 0.4633 0.0579 0.2285 0.0621 0.0159 0.2272 0.2285 0.2299 

20×20 0.4628 0.0578 0.2282 0.0620 0.0159 0.2269 0.2282 0.2296 

24×24 0.4625 0.0578 0.2280 0.0620 0.0159 0.2267 0.2280 0.2295 

32×32 0.4622 0.0578 0.2278 0.0619 0.0159 0.2266 0.2278 0.2293 

3D [182] 0.4658 0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225 

2D-HSDT [202] 0.4658 0.0578 0.2285 0.0619 0.0158 0.2264 0.2270 0.2281 

FSDT [264] 0.4618 0.0577 0.2276 0.0619 0.0158 0.2264 0.2276 0.2291 
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are in good agreement with those of FSDT [131]. For the following calculation, a 20×20 mesh 

size and shear correction factor 5 6sk   are used.  

Table 4.17 Convergence of the dimensionless natural frequency    of (2-1-2) Al*/Al2O3 

square sandwich plate with homogeneous ceramic core and metallic core , L/h= 5. 

p ks 8×8 12×12 16×16 20×20 24×24 FSDT 

[131] 

3D 

[184] 

Ceramic core   

1 Eq (4.9) 1.2371 1.2265 1.2228 1.2211 1.2202 1.2145 1.2292 

5/6 1.2334 1.2229 1.2192 1.2175 1.2166 

π²/12 1.2324 1.2219 1.2183 1.2166 1.2157 

10 Eq (4.9) 0.9043 0.8964 0.8937 0.8924 0.8918 0.8881 0.8923 

5/6 0.9022 0.8943 0.8916 0.8904 0.8897 

π²/12 0.9016 0.8938 0.8911 0.8898 0.8891 

Metallic core  

1 Eq (4.9) 1.5546 1.5423 1.5380 1.5360 1.5350 1.5237 1.4333 

5/6 1.5456 1.5334 1.5291 1.5272 1.5262 

π²/12 1.5432 1.5311 1.5269 1.5249 1.5239 

10 Eq (4.9) 1.7321 1.7321 1.7321 1.6583 1.6583 1.6827 1.6091 

5/6 1.7321 1.6583 1.6583 1.6583 1.6583 

π²/12 1.7321 1.6583 1.6583 1.6583 1.6583 

 

Tables 4.18 and 4.19 list the dimensionless natural frequency   of simply supported, 

Al*/Al2O3 square sandwich plates with homogeneous ceramic or metallic core for side-to 

thickness ratio L/h= 5 and L/h= 10, respectively. The obtained results for different values of 

power-law index p are compared with the 3D exact solutions given by Li et al. [184], analytical 

solutions based on FSDT presented by Thai et al. [131] and Nguyen et al. [263] using shear 

correction factor equal to 5 6 . It can be observed that a good agreement exists between the 

results, however, in the case of sandwich plates with metallic core the obtained results are in 

excellent agreement with those obtained based on FSDT. 

For both side-to-thickness ratios, it can be seen that for p=0 the dimensionless natural 

frequencies of the several kinds of sandwich plates are the same. Furthermore, it is seen that as 

the power-law index increase the dimensionless natural frequencies decrease for sandwich 

plate with homogeneous ceramic core, whereas they increase for sandwich plate with 

homogeneous metallic core. This is because higher values of the power-law index correspond 



Chapter 4. Application of R4FSDT-Results and discussions 

 

108 
 

to a high portion of metal in comparison with the ceramic part for homogeneous ceramic core 

and inversely for the homogeneous metallic core. 

Tables 4.18 and 4.19 also show that as the core thickness, with respect to the total thickness 

of the plate, increases, the dimensionless natural frequencies increase for sandwich plate with 

homogeneous ceramic core, while they decrease for sandwich plate with homogeneous metallic 

core.  

Table 4.18 Dimensionless natural frequency  of simply supported Al*/Al2O3 square 

sandwich plates with homogeneous ceramic or metallic core for L/h= 5.  

p Theory   

1-0-1 2-1-2 1-1-1 1-2-1 

Ceramic core  

0 

 

3D[184] 1.6771 1.6771 1.6771 1.6771 

FSDT [131] 1.6697 1.6697 1.6697 1.6697 

Present (5/6) 1.6583 1.6583 1.6583 1.6583 

0.5 

 

3D[184] 1.3536  1.3905  1.4218  1.4694 

FSDT [131] 1.3395  1.3764  1.4081  1.4571 

Present (5/6) 1.3428 1.3798 1.4116 1.4607 

1 

 

3D[184] 1.1749  1.2292  1.2777  1.3534 

FSDT [131] 1.1607  1.2145  1.2632  1.3403 

Present (5/6) 1.1635 1.2175 1.2663 1.3435 

5 

 

3D[184] 0.8909  0.9336  0.9980  1.1190 

FSDT [131] 0.8836  0.9256  0.9862  1.1056 

Present (5/6) 0.8858 0.9279 0.9887 1.1084 

10 3D[184] 0.8683  0.8923  0.9498  1.0729 

FSDT [131] 0.8613  0.8881  0.9406  1.0596 

Present (5/6) 0.8634 0.8904 0.9430 1.0622 

Metallic core 

0 

 

3D[184] 0.8529 0.8529 0.8529 0.8529 

FSDT [131] 0.8491 0.8491 0.8491 0.8491 

Present (5/6) 0.8511 0.8511 0.8511 0.8511 

0.5 

 

3D[184] 1.3789  1.3206  1.2805  1.2258 

FSDT [131] 1.4242  1.3816  1.3423  1.2766 

Present (5/6) 1.4275 1.3847 1.3454 1.2795 

1 

 

3D[184] 1.5090  1.4333  1.3824  1.3213 

FSDT [131] 1.5626  1.5237  1.4835  1.4101 

Present (5/6) 1.5640 1.5272 1.4868 1.4133 

5 

 

3D[184] 1.6587  1.5801  1.5028  1.4267 

FSDT [131] 1.6774  1.6718  1.6491  1.5876 

Present (5/6) 1.6583 1.6583 1.6583 1.5811 

10 3D[184] 1.6728  1.6091  1.5267  1.4410 

FSDT [131] 1.6778  1.6827  1.6672  1.6130 

Present (5/6) 1.6583 1.6583 1.6583 1.5811 
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Table 4.19 Dimensionless natural frequency   of simply supported Al*/Al2O3 square 

sandwich plates with homogeneous ceramic or metallic core for L/h= 10. 

p Theory   

1-0-1 2-1-2 1-1-1 1-2-1 

Ceramic core 

0 

 

3D[184] 1.8268 1.8268 1.8268 1.8268 

FSDT [263] 1.8244 1.8244 1.8244 1.8244 

Present (5/6) 1.8292 1.8292 1.8292 1.8292 

0.5 

 

3D[184] 1.4461 1.4861 1.5213 1.5767 

FSDT [263] 1.4408 1.4809 1.5164 1.5723 

Present (5/6) 1.4455 1.4855 1.5210 1.5769 

1 

 

3D[184] 1.2447 1.3018 1.3552 1.4414 

FSDT [263] 1.2403 1.2973 1.3507 1.4372 

Present (5/6) 1.2436 1.3007 1.3543 1.4410 

5 

 

3D[184] 0.9448 0.9810 1.0453 1.1757 

FSDT [263] 0.9426 0.9787 1.0418 1.1716 

Present (5/6) 0.9451 0.9813 1.0446 1.1747 

10 3D[184] 0.9273 0.9408 0.9952 1.1247 

FSDT [263] 0.9251 0.9396 0.9926 1.1207 

Present (5/6) 0.9275 0.9421 0.9952 1.1237 

Metallic core 

0 3D[184] 0.9290 0.9290 0.9290 0.9290 

FSDT [263] 0.9278 0.9278 0.9278 0.9278 

Present (5/6) 0.9302 0.9302 0.9302 0.9302 

0.5 3D[184] 1.5735 1.5259 1.4846 1.4166 

FSDT [263] 1.5916 1.5503 1.5094 1.4369 

Present (5/6) 1.5949 1.5536 1.5127 1.4401 

1 3D[184] 1.7223 1.6744 1.6305 1.5579 

FSDT [263] 1.7427 1.7102 1.6712 1.5936 

Present (5/6) 1.7472 1.7147 1.6756 1.5977 

5 3D[184] 1.8420 1.8261 1.7896 1.7267 

FSDT [263] 1.8488 1.8617 1.8493 1.7941 

Present (5/6) 1.8536 1.8665 1.8541 1.7987 

10 3D[184] 1.8402 1.8399 1.8081 1.7481 

FSDT [263] 1.8421 1.8679 1.8650 1.8204 

Present (5/6) 1.8469 1.8728 1.8698 1.8250 
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4.3  Conclusion 

In this chapter, the present finite element (R4FSDT) has been used to investigate the static, 

mechanical buckling and free vibration behaviors of FG single layer and sandwich plates. 

numerical results in terms of deflection, stresses, critical buckling loads and natural frequencies 

are presented and compared with those available in the literature. All the comparisons show 

that the results obtained with the present element and those of the references are in good 

agreement, confirming the performance and accuracy of the present formulation. The effects 

of some parameters like power-law index p, side-to-thickness ratio L/h, etc on the behaviors of 

the FG plates, have been also investigated. The important conclusions that emerge from this 

study can be summarized as follows: 

 The present results show that the developed finite element R4FSDT can well predict the 

static, stability and vibration responses of FG single layer and sandwich plates. 

 The obtained results using the R4FSDT element reiterate that FSDT may be well suited 

to simpler geometries and moderately thick plates.  

 The shear correction factor has a slight influence on the dimensionless deflections and 

natural frequency while it has no effect on the dimensionless normal stresses values. The 

influence of the shear correction factor on the dimensionless deflection decreases as the 

side-to-thickness ratio L/h increases. 

 In the case of FG single layer plates, the dimensionless deflection decreases by increasing 

the L/h ratio whereas it increases with the increasing of power-law values.  

 In the case of a sandwich plate with a ceramic core, the dimensionless deflection 

increases as the power-law index increases and decreases as the core thickness increases. 

The opposite has been observed for the homogeneous metallic core. For sandwich plate 

with either ceramic or metallic core the dimensionless deflection increases with the 

increase of side-to-thickness ratio L/h. 

 The dimensionless critical buckling loads and natural frequencies decrease for sandwich 

plate with homogeneous ceramic core with the increase of the power-law index, whereas 

they increase for sandwich plate with homogeneous metallic core. The results increase 

for sandwich plate with homogeneous ceramic core as the core thickness, with respect to 

the total thickness of the plate increases, while they decrease for sandwich plate with 

homogeneous metallic core.  

 



 

111 
 

 

 

 

 

 

Part Ⅲ 

Development of a new finite 

element model based on new 

trigonometric shear deformation 

theory for the analysis of FG plates 

behavior 

 



 

112 
 

Chapter 5  

Development of a new rectangular finite element 

based on a novel trigonometric shear 

deformation theory (R4SSDT) for the analysis of 

FG single layer plates behavior 

 

 

5.1 Introduction 
This chapter aims to present a novel trigonometric shear deformation model with only five 

unknowns for the analysis of FG plates behavior. The model presents a sinusoidal variation of 

the transverse shear strains across the thickness and satisfies the shear stress-free boundary 

conditions on the top and bottom surfaces of the plate, without the need of shear correction 

factor.  Based on the proposed model, a rectangular finite element has been developed for the 

static, buckling and dynamic analysis of FG single layer plates. The present finite element, has 

been defined by four nodes and five degree of freedom per node. The considered FG plates 

have been assumed to have isotropic, two constituent material distribution through the 

thickness, and the material properties have been assumed to vary according to a power-law 

distribution in terms of volume fractions of the constituents. To take into account the effect of 

second order, the von Karman strain tensor has been used. Total potential energy and Hamilton’ 

principles and Lagrangian equation have been used to formulate the stiffness, geometric and 

mass matrices. The assumed natural shear strain technique has been employed to prevent any 

shear locking phenomenon. Furthermore, the concept of the neutral plane has been introduced 

to avoid the membrane–bending coupling. 
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5.2 A novel trigonometric shear deformation theory for FG plates 

In this chapter, a novel trigonometric shear deformation model has been proposed.  The model 

is an amelioration of the Reissner–Mindlin model by introducing the effect of stretching.   

5.1.1 The proposed displacement field  

The in-plane displacements u, v and the transverse displacement w for the plate are assumed 

as, 
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Where u, v and w denote the displacements of a point M (x, y, z) within the FG plate. u0 and v0 

are the in-plane displacement vector components at any point of the midplane in x and y 

directions, respectively. w0 (x, y) is the transverse displacement of the midplane points of the 

plate and z is the stretching contributions of the displacement in the transverse direction. The 

variable z  will be eliminated on the assumption of zero shear stress at the top and the bottom 

surfaces of the plate and that the transverse shear strains are sinusoidally distributed through 

the thickness. 

5.1.2 Kinematics 

According to the Von Karman deformation tensor, the vector strains components are expressed 

as follows 
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To eliminate the variable ( , , )z x y t ,  the condition of zero shear stress at the free top and 

bottom surfaces of the plate is imposed. 

 0
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h h
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  (5.3) 

The variable ( , )z x y , can be expressed in term of 0
xz  and 0

yz as follows 
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Using Eq (5.4), the transverse shear strain components of Eq (5.2) can be expressed by 
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Eq (5.5) can be rewritten as  
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With 1( )f z is a shear function defined by 
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 Enhancement of the shear function 

In the case of the Reissner–Mindlin theory, correction factors are introduced to take into 

account the supposition of constant shear deformation through the thickness of the plate. These 

factors are obtained by comparing the energy of shear deformation according to tridimensional 

elasticity theory and that of Reissner–Mindlin theory. Therefore, the shear stress for assumed 

isotropic material is given by 
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Where 44Q  and 55Q are the stiffness coefficients of the elasticity matrix of the material. 

The shear strain energy per unit area can be expressed by 
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By integrating over the thickness, Eq (5.9) can be written as 
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The shear strain varying through the thickness according to the following expressions  

 00( ) ,        ( )xz yz yzxzf z f z      (5.11) 

Where  

 1( ) ( )f z f z   (5.12) 

 denotes the enhancement factor. 

The shear stresses are given by 
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The shear strain energy per unit area can be written as follows 
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The integration through the thickness of Eq (5.14) leads to 
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The equalization of the two expressions of energy in Eqs (5.10) and (5.15) allows to have  

 23 5

8 6
h h    (5.16) 
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Then  
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Finally, the enhanced shear function can be written as 
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After the elimination of the variable ( , , )z x y t ,  The displacement field of the new model is 

given as follows [256] 
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Where ( , , )G x y t  is a function defined by  
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It can be seen that the displacement field in Eq (5.19) contains only five unknowns as in 

Reissner–Mindlin model. 

The strain field can be rewritten in matrix form as  
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Where  
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5.2.3 Constitutive equations 

The same rectangular FG single layer plate studied in chapter 3 is considered here. As shown 

in Figure (3.1), the plate is assumed to be composed of metal and ceramic. The Young’s 

modulus E and mass density ρ of the plate are assumed to vary depending on the thickness 

according to the power-law distribution and  are defined in the same way as in Chapter 3  
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Subscripts m, c and the index p retains the same definitions. The Poisson’s ratio ν is assumed 

to be constant through the thickness of the plate. 

For an elastic FG plate, the constitutive relations can be given by 

 
2

1 0 0 0

1 0 0 0

1
0 0 0 0

( ) 2

1 1
0 0 0 0

2

1
0 0 0 0

2

l
xx

l
y y

xz xz

yz yz

l
xy xy

E z



 

 

 
 

 

 

 
 

    
            

     
     

    
        
  

  (5.30) 

 

5.2.4 Force and moment resultants 

As indicated in chapter 3, to avoid the membrane-bending coupling caused by plate asymmetry, 

the force and the moment resultants are calculated with respect to the physical neutral plane, 

which does not coincide with the midplane of the plate. 

The definition of the position of the neutral surface remains the same and is given as follows 
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Using the constitutive equations, the force and moment results can be expressed as follows 
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The stress resultants-strains relationship can be written in matrix form as below 
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And the reduced elastic matrices coefficients Aij, Dij and As
ij are defined by 
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5.2 Finite element formulation 

Based on the proposed trigonometric (sinusoidal) shear deformation model, a four-node 

rectangular finite element, named (R4SSDT) has five degrees of freedom per node is 

formulated for the analysis of the  static, free vibration and mechanical buckling responses of 

FG single layer plates.  
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5.3.1 Kinematic relationships 

The displacements within the element are interpolated using the bilinear Lagrange shape 

functions that were expressed before in Eq (3.30) in Chapter 3. 

The strains can be expressed in terms of nodal displacements using the matrices given in 

Eqs (3.36)-(3.39).  

To prevent any potential shear locking phenomenon, the assumed natural shear strain 

technique is employed. Therefore, the  sB matrix from Eq (3.38) is replaced by the assumed 

natural deformation displacement relationship matrix sB   given in Eq (3.45). 

5.3.2 Derivation of the elementary matrices 

The total potential energy principle has been used to derive the elementary stiffness and 

geometrical matrices of the element.  

 U W     (5.37) 

For static analysis, the equilibrium equation can be obtained by the cancellation of the first 

variation of the total potential energy 0   , with respect to the nodal values  q . 

     e eK q F   (5.38) 

Where  eK  and  eF  are the elementary stiffness matrix and the nodal load vector, 

respectively. 
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For the mechanical buckling analysis, the cancellation of the second variation of the total 

potential energy leads to the following eigenvalue problem  
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The elementry geometric stiffness matrix is given by  
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Using the loading factor λ, the stress resultant matrix can be expressed as   0NN     , 

then the geometrical matrix can be rewritten as 
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To evaluate the critical buckling load The following eigenvalue problem is used  
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The critical buckling load is finally given as follows 

 0cri criN N   (5.45) 

For free vibration problem we set the external forces and the damping to zero . by applying 

Lagrangian equations (see, Eq (3.68) and (3.70)), the equations of motion can be expressed by  

       0ek q qM    (5.46) 
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Where   is the natural frequency;  M is the element mass matrix given by 
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Where  m  And  ( , )N x y  are respectively the inertia matrix and the shape function matrix, 

given as in Eqs (3.74) and (3.75), respectively. 
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5.3 Conclusion 

In this chapter, a novel trigonometric shear deformation model with five unknowns, has been 

proposed for the analysis of FG plates behavior. The model accounts for the sinusoidal 

variation of the transverse shear strains across the thickness and satisfies the shear stress-free 

boundary conditions on the top and bottom surfaces of the plate. A shear correction factor, 

therefore, is not required. On the basis of the proposed model, a four-node rectangular finite 

element, with five degrees of freedom per node, has been formulated for the static, free 

vibration and buckling analysis of FG single layer plates. The material properties have been 

assumed to vary through the plate thickness according to a power-law distribution of the 

volume fraction of the constituents. To avoid the membrane-bending coupling caused by the 

asymmetry of the plate according to the thickness, the force and the moment resultants have 

been calculated with respect to the physical neutral plane which does not coincide with the 

midplane of the plate. Total potential energy and Hamilton’ principles and Lagrangian equation 

have been used for the derivation of the stiffness, geometric and mass matrices. Furthermore, 

the assumed natural shear strain technique has been introduced to prevent any shear locking 

phenomenon. 
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Chapter 6  

Application of R4SSDT- Results and 

discussions  

 

 

 

6.1 Introduction 

Through this chapter, a number of numerical examples are conducted to show the performance 

and the accuracy of the proposed finite element model in predicting the static, mechanical 

buckling and free vibration responses of rectangular FG single layer plates. Numerical results 

in terms of deflection, stresses, critical buckling loads and frequencies are obtained and 

compared with the existing results in the literature. Effects of various parameters such as 

boundary conditions, aspect ratio, plate thickness, and material distribution across the thickness 

of the plate are investigated. 

6.2 Numerical results and discussions 

In this section, one presents the static response, the critical buckling loads and the natural 

frequencies of rectangular FG single layer plates using the developed finite element based on 

the new proposed model (R4SSDT). Two types of FG plates, one made up of Al/Al2O3, and 

the other made up of Al/ZrO2 are considered. The material properties of these constituents are 

listed in Table 6.1.  

Table 6.1 Material properties used in the functionally graded plates. 

Properties Metal Ceramic 

Aluminium (Al) Alumina (Al2O3) Zirconia (ZrO2) 

E (GPa) 70 380 200 

ρ(kg/m3) 2702 3800 5700 

ν 0.3 0.3 0.3 
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6.2.1 Static analysis  

The static behavior of a rectangular FG plate comprised of Aluminum/Alumina under 

distributed transverse load is taken up for investigation. The top surface of the FG plate is 

ceramic (Alumina) rich and the bottom surface is pure metal (Aluminum). Material properties 

of the aluminum and alumina are shown in Table 6.1. Transverse load ( , )q x y  is applied on the 

top surface (z = h/2) of the plate, in the form of  uniformly distributed load (UDL), 0( , )q x y q

, or sinusoidal loads (SSL), 0 sin sin( , )
x y

L l
q x y q

 
  .  

For all the following examples, only simply supported boundary conditions are considered 

and are as follows 
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For convenience, the following relations for the non-dimensional deflection and stresses are  
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6.2.1.1 FG square plate with L/h=10 subjected to uniform and sinusoidal loading  

Firstly, a simply supported, moderately thick Al/Al2O3 square plate under UDL has been 

examined (L/h = 10). The plate has been subdivided into 8 × 8, 12 × 12, 16 × 16, and 20 × 20 

mesh size. Table 6.2 contains the dimensionless deflection and stresses for different values of 

power-law index p. The obtained results using the present finite element (R4SSDT) are 

compared with those obtained using the present FSDT- based finite element (R4FSDT) with 

20 × 20 mesh size, the SSDT developed by Zenkour [142], the finite element model based on 

the HSDT of Tati [256] and the finite element model based on the TSDT of Reddy [136]. 
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Table 6.2 Dimensionless deflection and stresses of a SSSS Al/Al2O3 square plate under UDL 

for different power-law index values (L/h=10). 

p  R4SSDT R4FSDT 

20 × 20 

SSDT 

[142] 

HSDT  

[256] 

TSDT 

 [136] 8×8 12×12 16×16 20×20 

Ceramic �̅� 0.4646 0.4657 0.4661 0.4663 0.4663 0.4665 0.4663 0.4665 

𝜎𝑥 2.7674 2.8263 2.8468 2.8563 2.8563 2.8932 2.856 2.8920 

𝜎𝑦 1.8450 1.8842 1.8979 1.9042 - 1.9103 1.904 1.9106 

𝜏�̅�𝑦 1.1532 1.2222 1.2512 1.2662 1.2662 1.2850 1.266 1.2855 

𝜏�̅�𝑧 0.4963 0.5314 0.5492 0.5600 - 0.5114 0.4696 0.4963 

𝜏�̅�𝑧 0.3722 0.3986 0.4119 0.4200 - 0.4429 0.4174 0.4411 

1 �̅� 0.9247 0.9270 0.9278 0.9282 0.9282 0.9287 0.9282 0.9421 

𝜎𝑥 4.2772 4.3681 4.3999 4.4146 4.4146 4.4745 4.415 4.2598 

𝜎𝑦 2.0966 2.1412 2.1567 2.1639 - 2.1692 2.164 2.2569 

𝜏�̅�𝑦 0.9957 1.0553 1.0804 1.0934 1.0934 1.1143 1.093 1.1573 

𝜏�̅�𝑧 0.4963 0.5314 0.5492 0.5600 - 0.5114 0.4696 0.4963 

𝜏�̅�𝑧 0.4577 0.4901 0.5065 0.5165 - 0.5446 0.5133 0.5425 

2 �̅� 1.1922 1.1951 1.1961 1.1966 1.1901 1.1940 1.1948 1.2228 

𝜎𝑥 4.9944 5.1005 5.1376 5.1548 5.1548 5.2296 5.155 4.8881 

𝜎𝑦 1.9689 2.0107 2.0253 2.0321 - 2.0338 2.032 2.1663 

𝜏�̅�𝑦 0.8876 0.9407 0.9630 0.9746 0.9745 0.9907 0.9745 1.0449 

𝜏�̅�𝑧 0.4763 0.5100 0.5271 0.5374 - 0.4700 0.4368 0.4538 

𝜏�̅�𝑧 0.5032 0.5388 0.5568 0.5678 - 0.5734 0.5469 0.5686 

4 �̅� 1.3934 1.3966 1.3976 1.3982 1.3761 1.3890 1.3916 - 

𝜎𝑥 5.6169 5.7362 5.7779 5.7972 5.7972 5.8915 5.797 - 

𝜎𝑦 1.6699 1.7054 1.7178 1.7236 - 1.7197 1.724 - 

𝜏�̅�𝑦 0.9261 0.9814 1.0045 1.0165 1.0164 1.0298 1.016 - 

𝜏�̅�𝑧 0.4480 0.4797 0.4958 0.5055 - 0.4204 0.3926 - 

𝜏�̅�𝑧 0.4934 0.5283 0.5460 0.5567 - 0.5346 0.5124 - 

5 �̅� 1.4419 1.4452 1.4463 1.4468 1.4195 1.4356 1.4389 1.4647 

𝜎𝑥 5.8616 5.9862 6.0297 6.0499 6.0499 6.1504 6.050 5.7065 

𝜎𝑦 1.5654 1.5987 1.6103 1.6157 - 1.6104 1.616 1.7144 

𝜏�̅�𝑦 0.9407 0.9969 1.0204 1.0326 1.0324 1.0451 1.032 1.1016 

𝜏�̅�𝑧 0.4481 0.4798 0.4959 0.5057 - 0.4177 0.3905 0.4004 

𝜏�̅�𝑧 0.4674 0.5005 0.5172 0.5274 - 0.5031 0.4827 0.4950 

10 �̅� 1.5945 1.5979 1.5992 1.5997 1.5686 1.5876 1.5934 1.6054 

𝜎𝑥 7.0277 7.1771 7.2292 7.2534 7.2534 7.3689 7.253 6.9540 

𝜎𝑦 1.2476 1.2741 1.2834 1.2877 - 1.2820 1.288 1.3350 

𝜏�̅�𝑦 0.9641 1.0216 1.0457 1.0581 1.0580 1.0694 1.058 1.1119 

𝜏�̅�𝑧 0.4791 0.5130 0.5302 0.5407 - 0.4552 0.4298 0.4392 

𝜏�̅�𝑧 0.3853 0.4125 0.4264 0.4348 - 0.4227 0.4096 0.4180 

Metal �̅� 2.5221 2.5282 2.5303 2.5313 2.5313 2.5327 - - 

𝜎𝑥 2.7674 2.8263 2.8468 2.8563 2.8563 2.8932 - - 

𝜎𝑦 1.8450 1.8842 1.8979 1.9042 - 1.9103 - - 

𝜏�̅�𝑦 1.1532 1.2222 1.2512 1.2662 1.2662 1.2850 - - 

𝜏�̅�𝑧 0.4963 0.5314 0.5492 0.5600 - 0.5114 - - 

𝜏�̅�𝑧 0.3722 0.3986 0.4119 0.4200 - 0.4429 - - 
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The bending behavior of the previous plate has also been analyzed for a SDL. The 

dimensionless deflection and stresses using different mesh sizes for different values of power 

law-index p are presented in Table 6.3. The obtained results are compared with those obtained 

using the present R4FSDT with 20 × 20 mesh size, the results reported by Zenkour [142] 

obtained analytically using an SSDT and those obtained using a finite element model based on 

HSDT of Tati [256].  

As shown in Tables 6.2 and 6.3, it is clear, for all the power-law values, that the obtained 

results using the element R4SSDT are generally in good agreement with those reported in the 

before mentioned references. However, the values of the shear stress xz  is quite greater. Also, 

It can be observed, that the deflection results obtained using the R4SSDT are more accurate 

than those of R4FSDT, while the stresses are the same. These results confirm the performance 

of the present finite element R4SSDT in terms of both accuracy and rate of convergence.  

 

Tables 6.2 and 6.3 show that the stresses for a fully ceramic plate are the same as that for a 

fully metal plate. This is because the plate for these two cases is fully homogeneous, and the 

stresses do not depend on the young’s modulus. It is important to observe that the 

dimensionless deflection w  and normal stress x  increase as the power law index increases. 

The in-plane shear stress xy decreases in range of p from 0 to 2, then increases with increasing 

power-law index. The transverse stress xz  and yz remain mostly unchanged in range of p 

from 0 to 1, decreases in range of p from 1 to 5, and then increases with the increasing of the 

power-law index. 

 

Figures 6.1, 6.2 and 6.3, exhibit  respectively the variation of the dimensionless  normal 

stress x , in-plane shear stress xy , and transverse shear stress xz  across the thickness for 

different power-law index values p, of a simply supported FG square plate subjected to UDL.  

The side-to-thickness ratio L/h is taken to be 4. It can be observed that all the stresses of the 

fully ceramic and metal plates (homogeneous) are matched with each other because they are 

not depending on Young’s modulus.  
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Table 6.3 Dimensionless deflection and stresses of a SSSS Al/Al2O3 square plate under SDL 

for different power-law index values (L/h=10). 

p  R4SSDT R4FSDT 

20×20 

Zenkour 

[142] 

Tati 

[256] 

 

8×8 12×12 16×16 20×20 

Ceramic �̅� 0.2938 0.2951 0.2955 0.2957 0.2957 0.2960 0.2957  

𝜎𝑥 1.8597 1.9235 1.9463 1.9568 1.9568 1.9955 1.9570  

𝜎𝑦 1.2398 1.2824 1.2975 1.3046 - 1.3121 1.3050  

𝜏�̅�𝑦 0.6940 0.7025 0.7054 0.7068 0.7025 0.7065 0.7025  

𝜏�̅�𝑧 0.2703 0.2783 0.2811 0.2824 - 0.2462 0.2368  

𝜏�̅�𝑧 0.2027 0.2087 0.2108 0.2118 - 0.2132 0.2105  

1 �̅� 0.5844 0.5869 0.5878 0.5882 0.5882 0.5889 0.5882  

𝜎𝑥 2.8743 2.9729 3.0081 3.0244 3.0244 3.0870 3.0240  

𝜎𝑦 1.4089 1.4573 1.4745 1.4825 - 1.4894 1.4820  

𝜏�̅�𝑦 0.5993 0.6067 0.6092 0.6104 0.6066 0.6110 0.6066  

𝜏�̅�𝑧 0.2703 0.2783 0.2811 0.2824 - 0.2462 0.2368  

𝜏�̅�𝑧 0.2493 0.2566 0.2592 0.2604 - 0.2622 0.2588  

2 �̅� 0.7538 0.7571 0.7582 0.7587 0.7543 0.7573 0.7575  

𝜎𝑥 3.3562 3.4714 3.5124 3.5315 3.5315 3.6094 3.5320  

𝜎𝑦 1.3231 1.3685 1.3847 1.3922 - 1.3954 1.3920  

𝜏�̅�𝑦 0.5342 0.5407 0.5430 0.5440 0.5407 0.5441 0.5406  

𝜏�̅�𝑧 0.2594 0.2670 0.2697 0.2710 - 0.2265 0.2202  

𝜏�̅�𝑧 0.2741 0.2821 0.2850 0.2863 - 0.2763 0.2758  

4 �̅� 0.8823 0.8859 0.8872 0.8878 0.8726 0.8819 0.8832  

𝜎𝑥 3.7745 3.9040 3.9502 3.9716 3.9716 4.0693 3.9720  

𝜎𝑦 1.1222 1.1607 1.1744 1.1808 - 1.1783 1.1810  

𝜏�̅�𝑦 0.5571 0.5639 0.5663 0.5674 0.5639 0.5667 0.5639  

𝜏�̅�𝑧 0.2440 0.2512 0.2537 0.2549 - 0.2029 0.1979  

𝜏�̅�𝑧 0.2688 0.2766 0.2794 0.2807 - 0.2580 0.2584  

5 �̅� 0.9135 0.9172 0.9185 0.9191 0.9004 0.9118 0.9136  

𝜎𝑥 3.9390 4.0742 4.1223 4.1447 4.1447 4.2488 4.1450  

𝜎𝑦 1.0519 1.0880 1.1009 1.1069 - 1.1029 1.1070  

𝜏�̅�𝑦 0.5658 0.5727 0.5752 0.5763 0.5727 0.5755 0.5727  

𝜏�̅�𝑧 0.2441 0.2512 0.2538 0.2550 - 0.2017 0.1969  

𝜏�̅�𝑧 0.2546 0.2621 0.2647 0.2659 - 0.2429 0.2434  

10 �̅� 1.0108 1.0148 1.0162 1.0168 0.9954 1.0089 1.0125  

𝜎𝑥 4.7226 4.8847 4.9424 4.9692 4.9692 5.0890 4.9690  

𝜎𝑦 0.8384 0.8672 0.8774 0.8822 - 0.8775 0.8822  

𝜏�̅�𝑦 0.5798 0.5869 0.5894 0.5905 0.5869 0.5894 0.5868  

𝜏�̅�𝑧 0.2610 0.2686 0.2714 0.2726 - 0.2198 0.2167  

𝜏�̅�𝑧 0.2099 0.2160 0.2182 0.2192 - 0.2041 0.2065  

Metal �̅� 1.5949 1.6018 1.6042 1.6053 1.6053 1.6070 -  

𝜎𝑥 1.8597 1.9235 1.9463 1.9568 1.9568 1.9955 -  

𝜎𝑦 1.2398 1.2824 1.2975 1.3046 - 1.3121 -  

𝜏�̅�𝑦 0.6940 0.7025 0.7054 0.7068 0.7025 0.7065 -  

𝜏�̅�𝑧 0.2703 0.2783 0.2811 0.2824 - 0.2462 -  

𝜏�̅�𝑧 0.2027 0.2087 0.2108 0.2118 - 0.2132 -  
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Figure 6.1 Variation of the dimensionless normal stress  of a SSSS FG square plate under 

UDL for different power-law index values (L/h =4 ). 
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Figure 6.2 Variation of the dimensionless in-plane shear stress  of a SSSS FG square plate 

under UDL for different power-law index values (L/h = 4). 
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Figure 6.1 shows that the in-plane stress x  is tensile at the upper surface while becoming 

compressive at the lower surface of the FG square plate and the homogeneous plate gives the 

maximum compressive stresses at the lower surface and the minimum tensile stresses at the 

upper surface of the FG square plate. 

Unlike the in-plane stress, the in-plane shear stress becomes tensile at the lower surface and 

compress at the upper surface and the homogeneous plate gives the maximum tensile stress at 

the lower surface and the minimum compressive stress at the upper surface of the FG 

rectangular plate as shown in Figure 6.2. 

As depicted in Figure 6.3,  the shear stress xz  of homogenous plates is sinusoidally 

distributed through the thickness. However, it is not perfectly sinusoidal in the case of FG 

plates. 
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Figure 6.3 Variation of the dimensionless transverse shear stress  of a SSSS FG square 

plate under UDL for different power-law index values (L/h = 4). 
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6.2.1.2 FG rectangular plate subjected to uniform loading with different side-to-thickness 

and aspect ratios  

To investigate the effects of side-to-thickness and aspect ratios, two examples have been 

considered using the element R4SSDT with a 20 × 20 mesh size.  

The first example is about a SSSS plate with (L/l = 1). The power-law index is taken as p = 

0. The second is performed for a SSSS plate with (l = 3L) and p = 2. Tables 6.4 and 6.5 present 

the deflection and stresses corresponding to various side-to-thickness ratio (L/h= 4, 10, 20 and 

100). Several results obtained using the present element are compared with those given by 

Zenkour [142], Reddy [136] and Tati [256] and a good agreement is observed. 

It is seen from Tables 6.4 and 6.5, that the dimensionless deflection w  decreases with the 

increasing of the side-to-thickness ratio L/h, while the in-plane stresses x  , y  and xy  

increase. It can be also noted that although the side-to-thickness changes, the dimensionless 

transverse shear stresses xz  and yz  remain unchanged. 

Figure 6.4 shows the variation of the dimensionless deflection w  of a square SSSS FG plate 

with the L/h ratio considering different values of p. The plate is subjected to UDL. As can be 

seen, the dimensionless deflection decreases by increasing the L/h ratio whereas it increases 

with the increasing of power-law values.  

Figure 6.5 illustrates the variation of dimensionless deflection w  of a moderately thick FG 

plate  versus the aspect ratio L/l. The results are presented for p values and L/h=10. It can be 

seen that the dimensionless deflection decreases as the aspect ratio increase.  

 

Table 6.4 Deflections  and stresses of a FG square plate (L/l = 1) under UDL,  p = 0. 

L/h Theory �̅� �̅�𝒙 �̅�𝒚 �̅�𝒚𝒛 �̅�𝒙𝒛 �̅�𝒙𝒚 

4 SSDT [142] 0.5865 1.1988 0.7534 0.4307 0.4973 0.4906 

TSDT [136] 0.5868 1.1959 0.7541 0.4304 0.4842 0.4913 

HSDT [256] 0.5872 1.1425 0.7617 0.4173 0.4695 0.5070 

Present 0.5872 1.1425 0.7617 0.4199 0.5599 0.5071 

10 SSDT [142] 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850 

TSDT [136] 0.4666 2.8920 1.9106 0.4411 0.4963 1.2855 

HSDT [256] 0.4663 2.8560 1.9040 0.4174 0.4700 1.2660 

Present 0.4663 2.8563 1.9042 0.4200 0.5600 1.2662 

100 SSDT [142] 0.4438 28.7342 19.1543 0.4472 0.5164 13.0125 

TSDT [136] 0.4438 28.7341 19.1543 0.4448 0.5004 12.9885 

HSDT [256] 0.4435 28.5600 19.0400 0.4174 0.4696 12.6500 

Present 0.4435 28.5646 19.0431 0.4200 0.5600 12.6505 
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Figures 6.6-6.10  represent the dimensionless in-plane normal stresses x  , y , in plane 

shear stress xy , and  xz , yz shear stresses distribution across the thickness for different values 

of the aspect ratio of a SSSS FG plate under UDL, respectively. In these figures, the power-

law index is assumed to be p=2 and side-to-thickness ratio is equal as L/h=10.  

As exhibited in Figures 6.6 and 6.7, the in-plane normal stresses x and y  are compressive 

throughout the plate up to 0.15z  and then they become tensile. The maximum compressive 

stresses occur at a point on the bottom surface and the maximum tensile stresses occur, of 

course, at a point on the top surface of the FG plate. However, the tensile and compressive 

values of the in-plane shear stress xy , as shown in Figure 6.8, are maximum at a point on the 

bottom and top surfaces of the FGM plate, respectively. It is clear that the minimum value of 

zero for all in-plane stresses occurs at 0.14904z and this is irrespective of the aspect ratio. 

 

 

Table 6.5 Deflections  and stresses of a FG square plate (l = 3L) under UDL, p = 2. 

L/h Theory �̅� �̅�𝒙 �̅�𝒚 �̅�𝒚𝒛 �̅�𝒙𝒛 �̅�𝒙𝒚 

4 SSDT [142] 3.9900 5.3144 0.6810 0.6096 0.6796 0.5646 

TSDT [136] 4.0529 5.2759 0.6652 0.6058 0.6545 0.5898 

HSDT [256] 3.9908 5.1100 0.6878 0.5843 0.6441 0.5653 

Present 4.0148 5.1244 0.6899 0.6277 0.8031 0.5728 

10 SSDT [142] 3.5235 12.9374 1.7292 0.6211 0.6910 1.4500 

TSDT [136] 3.5537 12.9234 1.6941 0.6155 0.6672 1.4898 

HSDT [256] 3.5090 12.7800 1.7200 0.5843 0.6441 1.4110 

Present 3.5178 12.8111 1.7246 0.6278 0.8031 1.4307 

20 SSDT [142] 3.4567 25.7748 3.4662 0.6232 0.6947 2.9126 

TSDT [136] 3.4823 25.7703 3.3972 0.6171 0.6704 2.9844 

Present 3.4468 25.6224 3.4491 0.6278 0.8031 2.8602 

100 SSDT [142] 3.4353 128.7130 17.3437 0.6238 0.6963 14.5840 

TSDT [136] 3.4594 128.7283 17.0009 0.6177 0.6718 14.9303 

HSDT [256] 3.4185 127.8000 17.1900 0.5844 0.6442 14.1000 

Present 3.4245 128.1251 17.2475 0.6138 0.8032 14.2983 

 

As depicted in Figures 6.9 and 6.10, the transverse shear stress xz , yz   distributions are not 

perfectly sinusoidal through the thickness, and the stresses increase as the aspect ratio 

decreases. It is to be noted that the maximum value occurs at 0.1z  , not at the plate center as 

in the homogeneous case. 
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Figure 6.4 Variation of the dimensionless deflection  of a square SSSS FG plate subjected 

to UDL with the L/h ratio considering different values of p. 
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Figure 6.5 Variation of dimensionless deflection  of a SSSS moderately thick FG plate 

subjected to UDL versus the aspect ratio L/l. 
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Figure 6.6 Variation of in-plane normal stress  through-the thickness of a SSSS FG plate 

(L/h=10) subjected to UDL for different values of the aspect ratio, p=2.  
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Figure 6.7 Variation of in-plane normal stress  through-the thickness of a SSSS FG plate 
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Figure 6.8 Variation of in-plane shear stress through-the thickness of a SSSS FG plate 

(L/h=10) subjected to UDL for different values of the aspect ratio, p=2. 
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6.2.2 Mechanical buckling analysis 

In the next examples the present element R4SSDT is used for the mechanical buckling analysis 

of Al/Al2O3 rectangular plates. Three different types of in-plane loadings, uniaxial compression 

(λ1= -1, λ2 = 0), biaxial compression (λ1= λ2 = -1), and biaxial compression and tension (λ1= -

1, λ2 = 1) are considered, Figure 4.12. The effects of power-law index, side-to-thickness, aspect 

ratio and boundary conditions on the critical buckling load have been presented.   

The dimensionless critical buckling load is presented using the following expression 

 
3

2

cri cri

m

L
N N

E h
   (6.3) 

The used boundary conditions are as follows 

Simply supported (SSSS) 

 
0

0

0      at   0,    

0      at   y 0,    y

y

x

w x x L

w l





   

   
  (6.4) 
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Figure 6.10 Variation of transverse shear stress yz through-the thickness of a SSSS FG plate 

(L/h=10) subjected to UDL for different values of the aspect ratio, p=2. 
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Clamped (CCCC) 

 0 0      at   0,  and  0,x yw x L y l        (6.5) 

Simply-Clamped (SCSC) 

 
0

0

0              at   0,    

0      at   y 0,    y

y

x y

w x x L

w l



 

   

    
  (6.6) 

Simply and Clamped (SSSC) 

 

0

0

0

0             at   0,    

0             at   y 0

0     at   y

y

x

x y

w x x L

w

w l
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 

   

  
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  (6.7) 

 

Clamped-Simply-Clamped (CSCC) 

 

0

0

0

0     at   0,    

0             at   y 0

0     at   y

x y

x

x y

w x x L

w
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

 
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  

   

  (6.8) 

Simply and Free (SSSF) 

 

0

0
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x

w x x L
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  (6.9) 

Clamped and Free (CFCC) 

 

0

0
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  (6.10) 

Simply-Clamped-Simply-Free (SCSF) 

 

0

0
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  (6.11) 
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6.2.2.1 FG square plate with different side-to-thickness ratio and power-law index values 

under different loading  

In this section, the buckling behavior of a simply supported Al/Al2O3 square plate subjected to 

three different in-plane loads is analyzed. Six mesh sizes ranging from 8×8 to 32×32 elements 

have been used. Different side-to-thickness ratios and power-law index values have been 

considered. The dimensionless critical buckling loads of the FG square plate under uniaxial 

compression, biaxial compression and biaxial compression and tension are reported in Tables 

6.6-6.8, respectively. The obtained results show the convergence and the stability of the present 

element. The comparison of the present results with those obtained by the HSDT-based finite 

element model of Tati [248], the RPT of Thai and Choi [252], the quasi-3D refined theory of 

Zenkour and Aljadani [246] and the HSDT of Reddy et al. [243] show the accuracy of the 

results obtained using the present finite element R4SSDT.  

From Tables 6.6-6.8 and Figure 6.11, it can be observed that the dimensionless critical 

buckling load of plate subjected to uniaxial compression loading is greater than that subjected 

to biaxial compression and less than those subjected to biaxial compression and tension loads. 

This is due the fact that the application of a tension load to the plates increases their bending 

stiffness. It can also be seen that the dimensionless critical buckling load decreases with the 

increase of power-law index value while it increases with the increase of side-to-thickness 

ratio. 

6.2.2.2 FG rectangular plate with different side-to-thickness ratio and power-law index 

values subjected to different loading  

For this example, the dimensionless critical buckling loads 
criN for simply supported, Al/Al2O3 

rectangular plates subjected to uniaxial, biaxial compression and biaxial compression and 

tension are investigated. The obtained results are listed in Tables 6.9-6.11, respectively. 

Different values of the power-law index p with aspect ratio L/l (L/l = 0.5, 1, 1.5, 2) and side-

to-thickness ratio L/h (L/h= 5, 10 and 20) are considered. The results of the proposed 

formulation are compared with those given by RPT of Thai and Choi [252] and the solutions 

of the CUF-based finite strip method (FSM) [247] and they are in good agreement. However, 

the obtained results are closer to those given by the RPT. As observed in the previous example, 

the dimensionless critical buckling load decreases with the increase of power-law index value 

whereas it increases with the increase of side-to-thickness ratio. Also, increasing of aspect ratio 

increases the critical buckling load values. 
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Table 6.6 Dimensionless critical buckling load 
criN  of SSSS Al/Al2O3 square plate under 

uniaxial compression (λ1= -1, λ2 = 0). 

L/h Mesh size p=0 p=1 p=2 p=5 p=10 p=20 

5 8×8 16.2986 8.3720 6.3852 4.9731 4.4167 3.9914 

12×12 16.1390 8.2875 6.3222 4.9279 4.3776 3.9552 

16×16 16.0837 8.2583 6.3004 4.9122 4.3640 3.9427 

20×20 16.0583 8.2448 6.2903 4.9050 4.3578 3.9369 

24×24 16.0445 8.2375 6.2849 4.9011 4.3544 3.9337 

32×32 16.0308 8.2303 6.2795 4.8972 4.3510 3.9306 

HSDT [248]  16.0582 8.2448 6.3250 5.0010 4.4178 3.9509 

RPT [252] 16.0211 8.2245 6.3432 5.0531 4.4807 4.0070 

Quazi-3D [246]  16.0210 8.2244 6.3431 5.0530 4.4806 4.0069 

HSDT [243]  16.0000 8.1460 6.2300 4.9700 4.4400 3.9800 

10 8×8 18.9631 9.5342 7.3910 6.0990 5.5120 4.9033 

12×12 18.7474 9.4248 7.3068 6.0311 5.4512 4.8488 

16×16 18.6729 9.3870 7.2777 6.0077 5.4301 4.8299 

20×20 18.6386 9.3696 7.2643 5.9969 5.4205 4.8212 

24×24 18.6200 9.3602 7.2570 5.9910 5.4152 4.8165 

32×32 18.6015 9.3508 7.2498 5.9852 5.4100 4.8119 

HSDT [248]  18.6385 9.3696 - 6.0323 5.4435 4.8265 

RPT [252] 18.5785 9.3391 7.2630 6.0353 5.4528 4.8346 

Quazi-3D [246]  18.5785 9.3391 7.2630 6.0353 5.4528 4.8346 

HSDT [243]  18.5400 9.2990 7.2100 5.990 5.4200 4.8200 

50 8×8 20.0097 9.9772 7.7833 6.5753 5.9871 5.2900 

12×12 19.7696 9.8575 7.6899 6.4965 5.9154 5.2266 

16×16 19.6868 9.8162 7.6577 6.4693 5.8906 5.2047 

20×20 19.6486 9.7972 7.6428 6.4567 5.8792 5.1946 

24×24 19.6280 9.7868 7.6348 6.4500 5.8730 5.1892 

32×32 19.6075 9.7766 7.6268 6.4432 5.8669 5.1837 

HSDT [248]  19.6486 9.7971 7.6433 6.4584 5.8803 5.1948 

RPT [252] 19.5814 9.7636 7.6177 6.4373 5.8614 5.1782 

Quazi-3D [246]  19.5814 9.7636 7.6176 6.4372 5.8613 5.1781 

HSDT [243]  19.5400 9.7430 7.6010 6.4200 5.8400 5.1600 

100 8×8 20.0435 9.9913 7.7959 6.5912 6.0031 5.3029 

12×12 19.8026 9.8712 7.7022 6.5120 5.9310 5.2392 

16×16 19.7195 9.8298 7.6699 6.4847 5.9061 5.2172 

20×20 19.6812 9.8107 7.6550 6.4721 5.8947 5.2071 

24×24 19.6605 9.8004 7.6469 6.4653 5.8884 5.2016 

32×32 19.6399 9.7901 7.6389 6.4585 5.8823 5.1961 

HSDT [248]  19.6812 9.8107 7.6551 6.4724 5.8949 5.2071 

RPT [252] 19.6145 9.7775 7.6293 6.4507 5.8752 5.1897 

Quazi-3D [246]  19.6145 9.7775 7.6293 6.4507 5.8752 5.1896 

HSDT [243]  19.5700 9.7500 7.6100 6.4300 5.8600 5.1700 
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Table 6.7 Dimensionless critical buckling load 
criN  of SSSS Al/Al2O3 square plate under 

biaxial compression (λ1=λ2 =-1). 

L/h  p=0 p=1 p=2 p=5 p=10 p=20 

5 8×8 8.1493 4.1860 3.1926 2.4865 2.2084 1.9957 

12×12 8.0695 4.1438 3.1611 2.4639 2.1888 1.9776 

16×16 8.0419 4.1292 3.1502 2.4561 2.1820 1.9713 

20×20 8.0291 4.1224 3.1452 2.4525 2.1789 1.9684 

24×24 8.0222 4.1188 3.1424 2.4505 2.1772 1.9669 

32×32 8.0154 4.1151 3.1397 2.4486 2.1755 1.9653 

HSDT [248]  8.0291 4.1224 3.1625 2.5005 2.2089 1.9754 

RPT [252] 8.0110 4.1120 3.1720 2.5270 2.2400 2.0040 

Quazi-3D [246]  8.0105 4.1122 3.1715 2.5265 2.2403 2.0034 

HSDT [243]  8.0010 4.0730 3.1200 2.4870 2.2210 1.9940 

10 8×8 9.4815 4.7671 3.6955 3.0495 2.7560 2.4516 

12×12 9.3737 4.7124 3.6534 3.0156 2.7256 2.4244 

16×16 9.3364 4.6935 3.6388 3.0038 2.7151 2.4150 

20×20 9.3193 4.6848 3.6321 2.9984 2.7102 2.4106 

24×24 9.3100 4.6801 3.6285 2.9955 2.7076 2.4083 

32×32 9.3008 4.6754 3.6249 2.9926 2.7050 2.4059 

HSDT [248]  9.3193 4.6848 3.6379 3.01613 2.7217 2.4132 

RPT [252] 9.2890 4.6700 3.6320 3.0180 2.7346 2.4170 

Quazi-3D [246]  9.2892 4.6695 3.6315 3.0176 2.7264 2.4173 

HSDT [243]  9.2730 4.6500 3.6080 2.9980 2.7150 2.4100 

50 8×8 10.0048 4.9886 3.8916 3.2876 2.9935 2.6450 

12×12 9.8848 4.9287 3.8450 3.2482 2.9577 2.6133 

16×16 9.8434 4.9081 3.8288 3.2346 2.9453 2.6023 

20×20 9.8243 4.8986 3.8214 3.2284 2.9396 2.5973 

24×24 9.8140 4.8934 3.8174 3.2250 2.9365 2.5946 

32×32 9.8037 4.8883 3.8134 3.2216 2.9335 2.5919 

HSDT [248]  9.8243 4.8986 3.8217 3.2292 2.9401 2.5974 

RPT [252] 9.7910 4.8820 3.8090 3.2190 2.9310 2.5890 

Quazi-3D [246]  9.7907 4.8818 3.8088 3.2186 2.9306 2.5890 

HSDT [243]  9.7720 4.8720 3.8010 3.2120 2.9250 2.5840 

100 8×8 10.0217 4.9956 3.8980 3.2956 3.0016 2.6514 

12×12 9.9013 4.9356 3.8511 3.2560 2.9655 2.6196 

16×16 9.8597 4.9149 3.8349 3.2423 2.9531 2.6086 

20×20 9.8406 4.9053 3.8275 3.2360 2.9473 2.6035 

24×24 9.8302 4.9002 3.8235 3.2326 2.9442 2.6008 

32×32 9.8199 4.8950 3.8195 3.2292 2.9411 2.5981 

HSDT [248]  9.8406 4.9053 3.8275 3.2362 2.9474 2.6035 

RPT [252] 9.8070 4.8890 3.8150 3.2250 2.9380 2.5950 

Quazi-3D [246]  9.8072 4.8887 3.8146 3.2253 2.9375 2.5948 

HSDT [243]  9.7880 4.8790 3.8070 3.2190 2.9320 2.5900 
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Table 6.8 Dimensionless critical buckling load 
criN  of SSSS Al/Al2O3 square plate under 

biaxial compression and tension (λ1= -1, λ2 = 1). 

  

L/h  p=0 p=1 p=2 p=5 p=10 p=20 

5 8×8 27.0191 14.3294 10.6646 7.6726 6.6664 6.1448 

12×12 26.5159 14.0361 10.4615 7.5601 6.5764 6.0554 

16×16 26.3495 13.9392 10.3943 7.5228 6.5466 6.0258 

20×20 26.2742 13.8954 10.3639 7.5060 6.5331 6.0124 

24×24 26.2337 13.8718 10.3475 7.4969 6.5259 6.0052 

32×32 26.1937 13.8485 10.3314 7.4880 6.5187 5.9981 

RPT [252] 26.2058 13.8486 10.5589 7.9590 6.8970 6.2320 

Quazi-3D [246]  26.2057 13.8486 10.5589 7.9589 6.8970 6.2320 

HSDT [243]  26.1600 13.6200 10.2600 7.7600 6.8100 6.1800 

10 8×8 37.8002 19.2461 14.7776 11,7809 10.5352 9.4617 

12×12 36.6652 18.6519 14.3309 11.4516 10.2480 9.1978 

16×16 36.2936 18.4575 14.1847 11.3436 10.1537 9.1113 

20×20 36.1259 18.3698 14.1187 11.2948 10.1111 9.0722 

24×24 36.0359 18.3228 14.0833 11.2686 10.0882 9.0512 

32×32 35.9472 18.2764 14.0484 11.2428 10.0657 9.0305 

RPT [252] 35.8416 18.2206 14.1073 11.4583 10.2468 9.1281 

Quazi-3D [246]  35.8416 18.2205 14.1072 11.4582 10.2468 9.1281 

HSDT [243]  35.7100 18.0400 13.9000 11.3000 10.1500 9.0700 

50 8×8 43.3334 21.6200 16.8581 14.2171 12.9381 11.4374 

12×12 41.7827 20.8454 16.2547 13.7099 12.4771 11.0294 

16×16 41.2785 20.5935 16.0585 13.5450 12.3272 10.8968 

20×20 41.0514 20.4801 15.9701 13.4707 12.2596 10.8370 

24×24 40.9296 20.4192 15.9227 13.4309 12.2234 10.8050 

32×32 40.8097 20.3593 15.8761 13.3916 12.1878 10.7734 

RPT [252] 40.6574 20.2833 15.8219 13.3554 12.1543 10.7401 

Quazi-3D [246]  40.6573 20.2832 15.8218 13.3553 12.1542 10.7400 

HSDT [243]  40.4600 20.1790 15.7300 13.280 12.0900 10.6800 

100 8×8 43.5319 21.7033 16.9324 14.3094 13.0309 11.5124 

12×12 41.9652 20.9219 16.3229 13.7948 12.5624 11.0984 

16×16 41.4558 20.6679 16.1248 13.6275 12.4101 10.9638 

20×20 41.2264 20.5535 16.0356 13.5521 12.3415 10.9032 

24×24 41.1034 20.4921 15.9877 13.5118 12.3047 10.8707 

32×32 40.9823 20.4317 15.9406 13.4720 12.2684 10.8387 

RPT [252] 40.8291 20.3554 15.8823 13.4250 12.2256 10.7998 

Quazi-3D [246]  40.8290 20.3553 15.8822 13.4249 12.2255 10.7998 

HSDT [243]  40.6200 20.2500 15.8000 13.3500 12.1600 10.7400 
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6.2.2.3 FG square plate subjected to uniaxial compression with different L/h values 

In this example, simply supported, Al/Al2O3 square plates under uniaxial compression (𝜆1= −1, 

𝜆2= 0) have been considered for different values of side-to-thickness ratio L/h and power-law 

index p = 1 and 10. The dimensionless critical buckling loads 
criN have been obtained using a 

24 × 24 mesh size. Table 6.12 compares the results predicted by the proposed formulation with 

the results of research studies in which the CPT [220], FSDT [265], HSDT [243] and high-

order plate theory considering Carrera’s unified formulation (CUF) [249] have been used. As 

it can be seen, the results obtained using the FSDT, HSDT, CUF and the present formulation 

diverge from those obtained using CPT for L/h =10 and converge for higher values of L/h. 

Good agreement between the present results and those obtained by HSDT and CUF can be 

observed.  However, for L/h ≥ 40 the present study and CUF results are identical.
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Figure 6.11 The effect of power-law index p on dimensionless critical buckling load  

of SSSS square plate (L/h=10) with different types of loading. 
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Table 6.9 Dimensionless critical buckling load 
criN of SSSS Al/Al2O3 rectangular plate 

subjected to uniaxial compression along the x-axis (λ1= -1, λ2 = 0). 

L/l L/h Theory p 

0 1 2 5 10 20 100 

0.5a 5 RPT [252] 6.7203 3.4164 2.6451 2.1484 1.9213 1.7115 1.3737 

Present 6.7664 3.4404 2.6444 2.1159 1.8942 1.6995 1.3767 

10 RPT [252] 7.4053 3.7111 2.8897 2.4165 2.1896 1.9387 1.5251 

CUF [247] 7.3760 3.6940 2.8720 - 2.1760 - - 

Present 7.4635 3.7405 2.9067 2.4203 2.1936 1.9463 1.5351 

20 RPT [252] 7.5993 3.7930 2.9582 2.4944 2.2690 2.0054 1.5683 

CUF [247] 7.5910 3.7890 2.9530 - 2.2650 - - 

Present 7.6609 3.8238 2.9806 2.5106 2.2838 2.0197 1.5805 

 

1b 5 RPT [252] 16.0211 8.2245 6.3432 5.0531 4.4807 4.0070 3.2586 

Present 16.0445 8.2375 6.2849 4.9011 4.3544 3.9337 3.2413 

10 RPT [252] 18.5785 9.3391 7.2631 6.0353 5.4528 4.8346 3.8198 

CUF [247] 18.3650 9.2170 7.1520 - 5.3780 - - 

Present 18.6200 9.3602 7.2570 5.9910 5.4152 4.8165 3.8208 

20 RPT [252] 19.3528 9.6675 7.5371 6.3448 5.7668 5.0988 3.9923 

CUF [247] 19.2940 9.6350 7.5070 - 5.7450 - - 

Present 19.3984 9.6903 7.5489 6.3437 5.7664 5.1028 3.9996 

 

1.5c 5 RPT [252] 28.1996 15.0344 11.4234 8.4727 7.2952 6.6106 5.6325 

Present 28.2144 15.0526 11.1518 7.9118 6.8494 6.3341 5.5479 

10 RPT [252] 40.7476 20.8024 16.0793 12.9501 11.5379 10.2958 8.3112 

Present 40.9869 20.9291 16.0345 12.6846 11.3173 10.1852 8.3131 

20 RPT [252] 45.8930 23.0286 17.9221 14.9472 13.5273 11.9843 9.4447 

Present 46.2175 23.1927 18.0054 14.9373 13.5225 12.0108 9.4964 

 

2d 5 RPT [252] 37.7404 20.7491 15.5819 10.9554 9.1505 8.3988 7.4403 

Present 37.5590 20.6808 14.9524 9.7017 8.1340 7.7421 7.2321 

10 RPT [252] 64.0842 32.8980 25.3727 20.2123 17.9227 16.0280 13.0345 

Present 64.5559 33.1501 25.2887 19.7115 17.5104 15.8208 13.0397 

20 RPT [252] 74.3140 37.3564 29.0523 24.1413 21.8114 19.3385 15.2794 

Present 74.9896 37.6991 29.2271 24.1244 21.8047 19.3950 15.3873 

a 288 elements   b 576 elements 

c 384 elements   d 288 elements 
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Table 6.10 Dimensionless critical buckling load 
criN of SSSS Al/Al2O3 rectangular plate 

subjected to biaxial compression (λ1= -1, λ2 = -1). 

L/l L/h Theory p 

0 1 2 5 10 20 100 

0.5a 5 RPT [252] 5.3762 2.7331 2.1161 1.7187 1.5370 1.3692 1.0990 

CUF [247] 5.2440 2.6530 2.0450 1.6630 1.4950 1.3330 - 

Present 5.4177 2.7545 2.1173 1.6942 1.5167 1.3608 1.1023 

10 RPT [252] 5.9243 2.9689 2.3117 1.9332 1.7517 1.5510 1.2200 

CUF [247] 5.9020 2.9560 2.2980 1.9200 1.7410 1.5420 - 

Present 5.9759 2.9949 2.3274 1.9379 1.7564 1.5584 1.2291 

20 RPT [252] 6.0794 3.0344 2.3665 1.9955 1.8152 1.6044 1.2547 

CUF [247] 6.0730 3.0310 2.3620 1.9910 1.8120 1.6020 - 

Present 6.1339 3.0617 2.3866 2.0102 1.8286 1.6171 1.2655 

 

1b 5 RPT [252] 8.0105  4.1122  3.1716  2.5265  2.2403  2.0035  1.6293 

CUF [247] 7.7350 3.9420 3.0240  2.4180  2.1590  1.9320 - 

Present 8.0222 4.1188 3.1425 2.4505 2.1772 1.9669 1.6206 

10 RPT [252] 9.2893  4.6696  3.6315  3.0177  2.7264  2.4173  1.9099 

CUF [247] 9.1930 4.6140 3.5800 2.9740 2.6920 2.3880 - 

Present 9.3100 4.6801 3.6285 2.9955 2.7076 2.4083 1.9104 

20 RPT [252] 9.6764  4.8337  3.7686  3.1724  2.8834  2.5494  1.9961 

CUF [247] 9.6480 4.8180 3.7540 3.1590 2.8730 2.5410 - 

Present 9.6992 4.8452 3.7745 3.1719 2.8832 2.5514 1.9998 

 

1.5c 5 RPT [252] 11.6820  6.0799  4.6637  3.6176  3.1718  2.8510  2.3600 

CUF [247] 11.1630 5.7490 4.3840 3.4270 3.0340 2.7250 - 

Present 11.7085 6.0955 4.6015 3.4631 3.0459 2.7769 2.3418 

10 RPT [252] 14.6084  7.3793  5.7279  4.7124  4.2384  3.7657  2.9959 

CUF [247] 14.3530 7.2300 5.5950 4.6040 4.1550  3.6930 - 

Present 14.6700 7.4110 5.7243 4.6616 4.1958 3.7463 2.9992 

20 RPT [252] 15.5887  7.7977  6.0761  5.1006  4.6300  4.0961  3.2135 

CUF [247] 15.5090 7.7530 6.0350 5.0650  4.6020  4.0720 - 

Present 15.6603 7.8336 6.0962 5.1032 4.6330 4.1045 3.2256 

 

2d 5 RPT [252] 15.7235  8.3092  6.3353  4.7754  4.1382 3.7392 3.1534 

CUF [247] 14.9130 7.7730  5.8940  4.5000  3.9440  3.5560 - 

Present 15.7761 8.3425 6.2227 4.5084 3.9245 3.6113 3.1211 

10 RPT [252] 21.5050  10.9323  8.4644  6.8750 6.1481  5.4769  4.3958 

CUF [247] 21.3690 10.615  8.186  6.657  5.982  5.331 - 

Present 21.6709 11.0187 8.4692 6.7766 6.0668 5.4431 4.4092 

20 RPT [252] 23.6970  11.8755 9.2469  7.7327 7.0067 6.2040  4.8802 

CUF [247] 23.5120 11.7700  9.1520  7.6520  6.9430  6.1500 - 

Present 23.9038 11.9797 9.3095 7.7516 7.0255 6.2336 4.9164 

a 288 elements   b 576 elements 

c 384 elements   d 288 elements 
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Table 6.11 Dimensionless critical buckling load 
criN of SSSS Al/Al2O3 rectangular plate 

subjected to biaxial compression and tension (λ1= -1, λ2 = 1). 

a 288 elements   b 576 elements 

c 384 elements   d 288 elements 

L/l L/h Theory p 

0 1 2 5 10 20 100 

0.5a 5 RPT [252] 8.9604  4.5551  3.5268  2.8646  2.5617  2.2820  1.8316 

CUF [247] 8.6840 4.3890  3.3820  2.7510  2.4730  2.2040 - 

Present 9.0090 4.5807 3.5208 2.8172 2.5221 2.2628 1.8330 

10 RPT [252] 9.8738  4.9481  3.8529  3.2219  2.9195  2.5850  2.0334 

CUF [247] 9.8300 4.9230  3.8270  3.1970  2.9000  2.5690 - 

Present 9.9372 4.9802 3.8701 3.2225 2.9206 2.5914 2.0439 

20 RPT [252] 10.1324  5.0574  3.9442  3.3259  3.0253  2.6739  2.0911 

CUF [247] 10.1200 5.0410 3.9360  3.3190 3.0200  2.6700 - 

Present 10.2000 5.0912 3.9685 3.3427 3.0408 2.6890 2.1044 

 

1b 5 RPT [252] 26.2058  13.8486  10.5589  7.9590  6.8970  6.2320  5.2556 

CUF [247] 25.7960 13.3200  9.8780  7.4320  6.6750  5.9810 - 

Present 26.2337 13.8718 10.3475 7.4969 6.5259 6.0052 5,1900 

10 RPT [252] 35.8416 18.2206 14.1073 11.4583  10.2468  9.1281  7.3263 

CUF [247] 35.4130 17.9560  13.8350  11.2180  10.0690  8.9760 - 

Present 36.0359 18.3228 14.0833 11.2686 10.0882 9.0512 7.3319 

20 RPT [252] 39.4951 19.7925  15.4115  12.8878 11.6779 10.3400 8.1336 

CUF [247] 39.2880 19.6750  15.2960 12.7800  11.6050  10.2800 - 

Present 39.7470 19.9207 15.4805 12.8899 11.6826 10.3657 8.1754 

 

1.5c 5 RPT [252] 29.0249 15.7823  11.9009  8.5250  7.2422  6.6008  5.7477 

CUF [247] 28.3740 15.1430  11.1580  8.2260  7.1430  6.5220 - 

Present 29.0555 15.8171 11.5384 7.8142 6.6865 6.2487 5.6351 

10 RPT [252] 37.9819  19.1863  14.8925  12.2523  11.0199  9.7909  7.7894 

CUF [247] 37.1410 18.7180  14.4760  11.8970  10.7290  9.5380 - 

Present 38.0669 19.2306 14.8540 12.0964 10.8875 9.7211 7.7825 

20 RPT [252] 40.5307  20.2740  15.7980  13.2616  12.0379  10.6500  8.3551 

CUF [247] 40.2960 20.1450  15.6810  13.1580  11.9530  10.5780 - 

Present 40.6366 20.3273 15.8190 13.2421 12.0222 10.6506 8.3699 

 

2d 5 RPT [252] 26.2058  13.8486  10.5589  7.9590  6.8970  6.2320  5.2556 

CUF [247] 25.5270 13.4040  9.9970  7.5810  6.7590  6.1010 - 

Present 26.2337 13.8718 10.3475 7.4969 6.5259 6.0052 5.1900 

10 RPT [252] 35.8416  18.2206  14.1073  11.4583  10.2468  9.1281  7.3263 

CUF [247] 34.8690 17.6560  13.6110  11.0610  9.9370  8.8570 - 

Present 36.0359 18.3228 14.0833 11.2686 10.0882 9.0512 7.3319 

20 RPT [252] 39.4951  19.7925  15.4115  12.8878  11.6779  10.3400  8.1336 

CUF [247] 39.1740 19.6110  15.2490  12.7470  11.5660  10.2440 - 

Present 39.7470 19.9207 15.4805 12.8899 11.6826 10.3657 8.1754 
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Table 6.12 Comparison of dimensionless critical buckling load 
criN of simply supported 

Al/Al2O3 plate subjected to uniaxial compression (λ1= -1, λ2 = 0). 

L/h p = 1 p =10 

CPT 

[220] 

FSDT 

[265] 

HSDT 

[243] 

CUF 

[249] 

Present CPT 

[220] 

FSDT 

[265] 

HSDT 

[243] 

CUF 

[249] 

Present 

10 9.78 9.33 9.29 9.21 9.36 5.87 5.66 5.42 5.38 5.42 

20 9.78 9.66 9.64 9.64 9.69 5.87 5.78 5.75 5.75 5.77 

40 9.78 9.75 9.73 9.77 9.78 5.87 5.85 5.83 5.86 5.86 

50 9.78 9.76 9.74 9.79 9.79 5.87 5.86 5.84 5.87 5.87 

100 9.78 9.77 9.75 9.82 9.80 5.87 5.87 5.86 5.90 5.89 

 

 

 

6.2.2.4 The effects of different parameters on the critical buckling load 

The main objective of this example is to investigate the effects of some parameters including 

power-law index p, aspect ratio L/l, side-to-thickness ratio L/h and boundary conditions on the 

dimensionless critical buckling load 
criN  of FG plates.  

Figures (6.12)-(6.14) show the variation of the dimensionless critical buckling load 
criN  of 

square plates (L/h=10) with different boundary conditions under uniaxial compression, biaxial 

compression, and biaxial compression and tension with respect to the power-law index p. It 

can be observed that the dimensionless critical buckling load decreases by increasing the 

power-law index p. This is because that the increase of the power-law index decreases the 

volume fraction of the ceramic and, consequently, the plate bending stiffness. It can be also 

seen from those figures that as the boundary constraints increase, the dimensionless critical 

buckling load increases. 

Figure 6.15 depicts the variation of the dimensionless critical buckling loads 
criN versus the 

side-to-thickness ratio L/h for square FG plate with different values of power-law index p 

subjected to uniaxial compression. It can be seen that the dimensionless critical buckling load 

increases by the increase of side-to-thickness ratio up to L/h=10 and then becomes almost 

constant for L/h>10. 
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Figure 6.12 The variation of the dimensionless critical buckling load of square plate 

(L/h=10) with different boundary conditions under uniaxial compression. 
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Figure 6.13 The variation of the dimensionless critical buckling load  of square 

plate (L/h=10) with different boundary conditions under biaxial compression. 
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Figure 6.14 The variation of the dimensionless critical buckling load  of square 

plate (L/h=10) with different boundary conditions under biaxial compression and 

tension. 
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Figure 6.15 The variation of the dimensionless critical buckling loads  vs. the 

side-to-thickness ratio L/h for SSSS square plate (L/h=10) with different values of 

power-law index p under uniaxial compression. 
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The variation of the dimensionless critical buckling loads with respect to the aspect ratio l/L 

for simply supported rectangular plates with different values of the power-law index p 

subjected to uniaxial and biaxial loading is illustrated in Figures 6.16 and 6.17 respectively. As 

depicted in the two figures, the dimensionless critical buckling load decreases by increasing 

the aspect ratio. In the case of uniaxial compression loading it can be seen that the critical 

buckling modes change by the increase of the aspect ratio l/L as indicated by [252] and [247]. 

While, in the case of biaxial compression loading, the graph appears smooth, meaning that, 

whatever the aspect ratio, the plate buckles with only one mode. 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

0 0,5 1 1,5 2 2,5 3

l/L

Ceramic

p=1

p=2

p=5

p=10

Metal

     

Figure 6.16 The variation of the dimensionless critical buckling loads vs. the aspect 

ratio l/L for SSSS rectangular plate with different values of power-law index p under 

uniaxial compression. 
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6.2.3 Free vibration analysis  

In this section, the accuracy and the performance of the present finite element formulation is 

evaluated. Numerical examples for free vibration analysis of FG plates with various indexes 

that specify the material variation profile through the thickness and several values of the side-

to-thickness ratio L/h and aspect ratio L/l are also presented. Typical mechanical properties for 

metal and ceramics used in the numerical examples are listed in Table 6.1.  

 

For this study the following relations for presentations of dimensionless frequencies are 

utilized 
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Figure 6.17 The variation of the dimensionless critical buckling loads vs. the 

aspect ratio l/L for SSSS rectangular plate with different values of power-law index p 

under biaxial compression. 
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The used boundary conditions are as follows 

Simply supported (SSSS) 

 
0 0

0 0

0       at   0,    

0       at   0,    

y

x

u w x x L

v w y y l





    

    
  (6.13) 

Clamped (CCCC) 

 
0 0

0 0

0       at   0,  

0       at   0,  

x y

x y

u w x L

v w y l

 

 

    

    
  (6.14) 

Simply-Clamped (SCSC)  

 
0 0

0 0

0               at   0,  

0       at   0,  

y

x y

u w x L

v w y l



 

   

    
  (6.15) 

Simply and Clamped (SSSC) 

 

0 0

0 0

0 0

0              at   0,    

0              at   0

0      at   

y

x

x y

u w x x L

v w y

v w y l





 

    

   

    

  (6.16) 

Simply-Free-Simply (SFSS) 

 

0 0

0 0

0     at   0,    

Free                        at   0

0      at   

y

x

u w x x L

y

v w y l





    



   

  (6.17) 

Simply-Free (SFSF) 

 
0 0 0     at   0,    

Free                        at   0,     

yu w x x L

y y l

    

 
  (6.18) 

Simply-Free-Simply-Clamped (SFSC) 

 

0 0

0 0

0            at   0,    

Free                               at   0

0     at   

y

x y

u w x x L

y

v w y l



 

    



    

  (6.19) 
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6.2.3.1 Fundamental frequency �̅� for simply supported Al/ ZrO2 square plate  

The aim of this example is to show the performance of the present finite element in predicting 

the free vibration response of a simply supported Al/ ZrO2 square plate.  The dimensionless 

fundamental frequencies  obtained using the present formulation with different meshes are 

presented in Table 6.13 for different values of power-law index p and side-to-thickness ratio 

L/h. The present results are compared with the exact 3D solutions of Vel and Batra [182], 

simplified FSDT solutions of Thai and Choi [130], HSDT solutions of Matsunaga [202] and 

Mantari et al [207], quasi-3D solutions of Neves et al [169] and the results obtained using the 

present R4FSDT.  It can be noticed that the present results are in good agreement with those 

of the mentioned references. However, it is clear from the results presented in the table that the 

convergence of the present finite element results to HSDT solutions is very good.  

It is also observed from Table 6.13 that for p equal to 0 and 1, the present results are the 

same as those obtained using the R4FSDT element, while for other values of p, a slight 

difference is observed.   

 

Table 6.13 Dimensionless fundamental frequency   of Al/ZrO2 square plates. 

Theory p=0* p=1 L/h=5 

L/h=√10 L/h=10 L/h=5 L/h=10 L/h=20 p=2 p=3 p=5 

3D [182] 0.4658 0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225 

S-FSDT [130] 0.4618 0.0577 0.2173 0.0592 0.0152 0.2189 0.2207 0.2222 

2D-HSDT [202] 0.4658 0.0578 0.2285 0.0619 0.0158 0.2264 0.2270 0.2281 

HSDT [207] 0.4624 0.0577 0.2277 0.0619 0.0158 0.2257 0.2263 0.2271 

Quasi-3D [169] - - 0.2193 0.0596 0.0153 0.2198 0.2212 0.2225 

R4FSDT 32×32 0.4622 0.0578 0.2278 0.0619 0.0159 0.2266 0.2278 0.2293 

Present 8×8 0.4678 0.0587 0.2311 0.0629 0.0161 0.2283 0.2283 0.2288 

Present 16×16 0.4633 0.0579 0.2285 0.0621 0.0159 0.2258 0.2258 0.2263 

Present 24×24 0.4625 0.0578 0.2280 0.0620 0.0159 0.2253 0.2254 0.2258 

Present 32×32 0.4622 0.0578 0.2278 0.0619 0.0159 0.2251 0.2252 0.2257 
 

 

* c c
h E    
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6.2.3.2 Fundamental frequency �̂� for simply supported Al/Al2O3 square plate  

This example is performed for thin and thick SSSS, Al/Al2O3 square plates. The first two 

dimensionless frequencies   for various values of side-to-thickness ratio L/h and power-law 

index p are presented in Table 6.14. The obtained results using the element R4SSDT with a 24 

× 24 mesh size are compared with solutions based on HSDT presented by Matsunaga [202] 

and solutions reported by Thai and Choi [130] using a simple FSDT. In general, a good 

agreement between the results is found. It can be observed that the solutions from this 

formulation are very close to those reported by Matsunaga [202] for all FG plates with various 

values of power-law index p. 

Table 6.14 The first two dimensionless frequencies   of Al/Al2O3 square plates. 

Mode L/h Theory Power-law index p 

0 1 4 10 

1 5 FSDT [130] 0.2112  0.1631 0.1397 0.1324 

HSDT [202] 0.2121  0.1640 0.1383 0.1306 

Present  0.2116 0.1634 0.1363 0.1285 

10 FSDT [130] 0.0577   0.0442 0.0382 0.0366 

HSDT [202] 0.0578  0.0443 0.0381 0.0364 

Present  0.0578 0.0443 0.0380 0.0363 

2 5 FSDT [130] 0.4618  0.3604 0.3049 0.2856 

HSDT [202] 0.4658  0.3644 0.3000 0.2790 

Present  0.4642 0.3624 0.2923 0.2713 

10 FSDT [130] 0.1376  0.1059 0.0911 0.0867 

HSDT [202] 0.1381  0.1063 0.0905 0.0859 

Present  0.1385 0.1066 0.0900 0.0853 

 

6.2.3.3 Fundamental frequency �̅� for simply supported Al/Al2O3 rectangular plates  

In this example, an Al/Al2O3 FG plates with simply supported edges are analyzed. In Table 

6.15, dimensionless fundamental frequencies  for different values of aspect ratio l / L, side-

to-thickness L / h and power-law index p are calculated and compared with the 3D exact 

solution proposed by Jin et al. [186], HSDT results of Mantari et al. [207] and Quasi-3D 

solutions reported by Zaoui et al. [210]. For all cases, a good agreement is found.  
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Table 6.15 The dimensionless fundamental frequencies  of Al/Al2O3 plates. 

a 576 elements    b 288 elements 

6.2.3.4 The effects of different parameters on the fundamental frequency �̅� of an Al/Al2O3 

square plate 

In this section, the dimensionless fundamental frequencies   of an Al/Al2O3 plates are 

determined to show the effect of some parameters like side-to-thickness ratio, power-law index, 

aspect ratio and boundary conditions on the vibrational behavior of FG plates. The obtained 

results using the present finite element with a 24 × 24 mesh size are listed in Table 6.16 and 

plotted in Figures 6.18 and 6.19. 

Table 6.16 presents the dimensionless fundamental frequency   for square FG plate with 

different boundary conditions for various values of power-law index p and side-to-thickness 

l/L L/h p Theory 

3D  

[186] 

HSDT  

[207] 

Quazi-3D  

[210] 

Present 

1a 10 0 0.1135 0.1134 0.1137 0.1136 

1 0.0870 0.0868 0.0883 0.0870 

2 0.0789 0.0788 0.0807 0.0788 

5 0.0741 0.0740 0.0756 0.0738 

5 0 0.4169 0.4151 0.4178 0.4156 

1 0.3222 0.3205 0.3267 0.3210 

2 0.2905 0.2892 0.2968 0.2883 

5 0.2676 0.2666 0.2725 0.2632 

2 0 1.8470 1.8277 1.8583 1.8224 

1 1.4687 1.4460 1.4830 1.4435 

2 1.3095 1.2896 1.3269 1.2675 

5 1.1450 1.1312 1.1576 1.0829 

       

2b 10 0 0.0719 0.0717 0.0719 0.0722 

1 0.0550 0.0549 0.0558 0.0553 

2 0.0499 0.0498 0.0511 0.0501 

5 0.0471 0.0470 0.0480 0.0472 

5 0 0.2713 0.2705 0.2718 0.2721 

1 0.2088 0.2081 0.2119 0.2094 

2 0.1888 0.1882 0.1930 0.1888 

5 0.1754 0.1750 0.1788 0.1743 

2 0 0.9570 1.2910 1.3086 1.2943 

1 0.7937 1.0137 1.0378 1.0172 

2 0.7149 0.9067 0.9322 0.8988 

5 0.6168 0.8064 0.8250 0.7824 
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ratio.  Figure 6.18 depicts the variation of the dimensionless frequency   versus side-to-

thickness ratio L/h for square FG plate with different boundary conditions and p=2.  

The variation of the dimensionless frequency versus power-law index p is sown in Figure 

6.19 for square FG plate (L/h=5) with different boundary conditions.  It can be seen from Table 

6.16 and Figure 6.18 that the increase of the side-to-thickness ratio results in an increase in the 

dimensionless frequency, this is probably due to the effects of shear deformation as indicated 

by [163]. It is also observed from Table 6.16 and Figure 6.19 that increasing the power-law 

index leads to a reduction of the dimensionless frequency. This is due to the fact that increasing 

the power-law index increases the volume fraction of metal which reduce the FG plate bending 

stiffness. 

Table 6.16 Dimensionless fundamental frequency �̅� of Al/Al2O3 square plates. 

L/h p Boundary conditions 

CCCC SCSC SSSC SSSS SFSC SFSS SFSF 

5 0 8.0511 6.7836 5.9747 5.2889 3.4447 3.2437 2.7242 

1 6.3451 5.3189 4.6459 4.0845 2.6558 2.4952 2.0931 

2 5.6174 4.7243 4.1514 3.6683 2.3897 2.2493 1.8896 

5 4.8888 4.1616 3.7281 3.3496 2.1957 2.0785 1.7532 

10 4.6219 3.9498 3.5572 3.2111 2.1089 1.9995 1.6881 

10 0 9.8818 8.0981 6.7919 5.7799 3.7152 3.4494 2.8636 

1 7.6376 6.2442 5.2170 4.4273 2.8456 2.6396 2.1901 

2 6.8712 5.6277 4.7155 4.0103 2.5785 2.3936 1.9872 

5 6.2861 5.1801 4.3848 3.7576 2.4185 2.2510 1.8721 

10 6.0243 4.9735 4.2230 3.6273 2.3353 2.1752 1.8099 

20 0 10.6329 8.6000 7.0711 5.9311 3.8061 3.5147 2.9050 

1 8.1466 6.5836 5.4068 4.5313 2.9084 2.6849 2.2186 

2 7.3840 5.9712 4.9082 4.1162 2.6418 2.4394 2.0162 

5 6.9241 5.6123 4.6287 3.8908 2.4966 2.3074 1.9084 

10 6.6830 5.4208 4.4754 3.7648 2.4154 2.2330 1.8473 

50 0 10.8873 8.7628 7.1577 5.9760 3.8382 3.5371 2.9181 

1 8.3155 6.6919 5.4650 4.5621 2.9304 2.7003 2.2276 

2 7.5573 6.0824 4.9680 4.1477 2.6641 2.4550 2.0254 

5 7.1527 5.7693 4.7069 3.9313 2.5246 2.3269 1.9201 

10 6.9229 5.5751 4.5572 3.8068 2.4444 2.2532 1.8593 

100 0 10.9257 8.7870 7.1703 5.9824 3.8436 3.5408 2.9201 

1 8.3408 6.7078 5.4734 4.5665 2.9339 2.7027 2.2289 

2 7.5834 6.0989 4.9767 4.1522 2.6677 2.4576 2.0268 

5 7.1880 5.7815 4.7185 3.9372 2.5294 2.3303 1.9219 

10 6.9602 5.5985 4.5693 3.8128 2.4495 2.2567 1.8612 
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Figure 6.18 The effect of side-to-thickness ratio L/h on the dimensionless 

frequency   for FG square plate with different boundary conditions and p=2. 
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Figure 6.19  The effect of power-law index p on the dimensionless frequency   for 

square FG plate (L/h=5) with different boundary conditions. 



Chapter 6. Application of R4SSDT- Results and discussions  

 

156 
 

 

It can be also noticed from the above mentioned table and figures that the dimensionless 

frequency increases with the increasing constraints at the edges of plates. This behavior is due 

to the fact that higher constraints at the edges increase the bending stiffness of the plate, 

resulting in higher vibrational responses. 

Figure 6.20 shows the variation of the dimensionless fundamental frequency   for SSSS 

rectangular FG plate (L/h=5) with different values of the power-law index p with respect to the 

aspect ratio l/L. From this figure, it can be seen that with a particular power-law index p, the 

dimensionless fundamental frequency decreases as aspect ratio l/L increases. 
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Figure 6.20  The effect of aspect ratio l/L on the dimensionless frequency   for  

SSSS FG rectangular plate (L/h=5). 
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6.3 Conclusion 

By using the present finite element (R4SSDT), numerical results of the static, mechanical 

buckling and free vibration analysis of FG single layer plates have been presented in this 

chapter. The obtained results in terms of deflection, stresses, critical loads and frequencies were 

in good agreement with those available in the literature which confirms the performance of the 

present element. The effects of some parameters like as power-law index, boundary conditions, 

aspect and side-to-thickness ratios on the behaviors of the FG plates, have been also 

investigated and discussed in detail. Some of the important observations can be concluded from 

this work in the following points 

 The present results show that the developed finite element R4SSDT can well predict 

the static, stability and vibration responses of FG single layer plates. 

 The dimensionless deflection decreases by increasing the side-to-thickness ratio 

whereas it increases with the increasing of power-law values.  

 The dimensionless critical buckling loads and frequencies increase as the side-to 

thickness ratio and the boundary constraints increase and they decrease as the power-

law index and aspect ratio increase. 

 The dimensionless critical buckling load of plate subjected to uniaxial compression 

loading is greater than that subjected to bi-axial compression and less than those 

subjected to bi-axial compression and tension loads. 

 The critical buckling modes change by the increase of the aspect ratio l/L in the case of 

uniaxial compression loading. While, in the case of biaxial compression loading the 

plate buckles with only one mode whatever the aspect ratio. 
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General conclusion

 
 

 

 
Despite their advantages, conventional composite materials suffer from discontinuity of 

material properties at the interfaces of the layers and constituents of the composite. As a result, 

the stress fields in these regions create interface problems and stress concentrations, especially 

in a high temperature environment. As well, large plastic deformation of the interface may 

trigger the initiation and propagation of cracks that lead to ultimate failure of the composite. 

These problems can be decreased by gradually changing the volume fraction of constituent 

materials and tailoring the material for the desired application, as in Functionally Graded 

Materials (FGMs). 

FGMs are advanced composites with varying composition, microstructure and properties, 

usually in the thickness direction. They represent a rapidly evolving field in science and 

engineering with many practical applications. Research needs in this area are particularly 

numerous and varied, FGMs promise significant potential benefits that justify the need for 

significant efforts. The design and development of these materials requires the development of 

analysis tools adapted to their geometric and material specificities. 

Application of 3D analysis, in general, is quite cumbersome while dealing with complex 

loading and boundary conditions. Hence, the analysis of FG plates are carried out numerically 

as well as analytically using 2D plate theories. Classical Plate Theory (CPT) is the simplest 

model which is suitable for thin plates where the transverse shear effects are neglected. For 

improving the limitations of CPT, the first-order shear deformation theory (FSDT) was 

proposed. FSDT is suitable for moderately thick to thin plates. Herein, the FSDT shear stresses 

need to be justified by shear correction factors (SCFs) to tune for the shear energy. As known, 

the choice of SCFs is a problem dependent. To avoid this difficulty, higher- order shear 

deformation theories were developed. In the HSDT, the transverse shear stresses are more 
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correctly approximated throughout the thickness and consequently no shear correction factors 

are needed. 

 The principal objective of this work is to contribute to the modeling of the static, stability 

and dynamic behaviors of plates made of functionally graded materials, by developing finite 

elements capable of accurately describing such behaviors. First, an FSDT-based finite element 

has been adapted to the analysis of FG single layer and sandwich plates. The element is 

geometrically simple and has only four nodes and five degrees of freedom per node. Secondly, 

a new trigonometric model has been proposed for the analysis of FG plates behaviors.  On the 

basis of this new model, a four-node rectangular finite element with five degrees of freedom 

per node, has been developed, providing a better compromise between accuracy and low cost. 

Furthermore, the effects of different parameters on the static, buckling and free vibration 

responses of FG plates, including the power-law index, side-to-thickness ratio, etc have been 

investigated. 

In the first part of the thesis, an overview on FGMs have been presented. The most 

commonly used plate theories for the analysis and modeling of FG plates have been briefly 

described in chapter two. A review of various research in the existing literature on static, 

vibration, and buckling analysis of FG plates has been also presented. It has been seen that the 

studies carried out by finite elements on the topic are even less numerous compared to those 

carried out analytically. 

In the second part, a four-node rectangular finite element (R4FSDT) with five degrees of 

freedom per node, based on FSDT, previously developed for the analysis of angle-ply laminated 

composite, has been adapted for the analysis of various behaviors of FG plates. The von Karman 

strain tensor has been used to account for the second order effect (Buckling). The concept of 

the neutral surface position has been introduced to simplify the problem and to avoid the 

membrane–bending coupling. The total potential energy and Hamilton’s principles and 

Lagrangian equation have been used for the derivation of stiffness, geometrical and mass 

matrices. The assumed natural shear strain technique has been introduced to ensure the 

effectiveness of the element against the shear locking phenomenon. The performance and 

reliability of the developed element (R4FSDT) have been evaluated through a series of 

applications in static, buckling and free vibration of FG single layer and sandwich plates with 

different loading cases, geometry, etc.  
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In the third part, a new trigonometric model with five unknowns has been proposed for the 

analysis of FG plates behaviors. The model accounts for a sinusoidal variation of the transverse 

shear strains across the thickness and satisfies the shear stress-free boundary conditions on the 

top and bottom surfaces of the plate with no requirement for a shear correction factor. Based 

on this model a new finite element R4SSDT has been formulated in the same manner as the 

first element R4FSDT. The developed finite element has been used to analyze the static, 

buckling and dynamic behaviors of FG single layer plates. For the purpose of validation of the 

element, the obtained results in terms of deflection, normal and shear stresses, critical loads and 

natural frequencies have been compared with those existing in the available literature. All the 

comparisons show that the results obtained with the present element and those of the references 

are in good agreement, confirming the performance and accuracy of the present formulation. 

Furthermore, for the sake of comparison, the present results obtained using the R4SSDT have 

been also compared with those obtained using the R4FSDT.It has been seen, that the R4SSDT 

results are more accurate than those of R4FSDT. 

In addition, the effects of some parameters such as power-law index, side-to-thickness ratio, 

etc on the static, buckling and free vibration responses of FG plates has been also shown. 

In the following, some of the important observations can be concluded from this work: 

 The present results show that the developed finite elements R4FSDT and R4SSDT can 

well predict the static, stability and vibration responses of FG single layer and sandwich 

plates. 

 The obtained results using the R4FSDT reiterate that FSDT may be well suited to 

simpler geometries and moderately thick plates.  

 The shear correction factor has a slight influence on the dimensionless deflections and 

natural frequency while it has no effect on the dimensionless normal stresses values. 

The shear correction factor has almost no effect on the dimensionless deflection in case 

of thin plates. 

 In the case of FG single layer plates, the dimensionless deflection decreases by 

increasing the side-to-thickness ratio whereas it increases with the increasing of power-

law values.  

 In the case of a sandwich plate with a ceramic core, the dimensionless deflection 

increases as the power-law index increases and decreases as the core thickness increases. 

The opposite has been observed for the homogeneous metallic core.  
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 For sandwich plate with either ceramic or metallic core the dimensionless deflection 

increases with the increase of side-to-thickness ratio L/h. 

 The dimensionless critical buckling loads and natural frequencies decrease for sandwich 

plate with homogeneous ceramic core with the increase of the power-law index, whereas 

they increase for sandwich plate with homogeneous metallic core. 

  The dimensionless critical buckling loads and natural frequencies increase for sandwich 

plate with homogeneous ceramic core as the core thickness, with respect to the total 

thickness of the plate increases, while they decrease for sandwich plate with 

homogeneous metallic core.  

 The dimensionless critical buckling loads and frequencies of FG single layer plate 

increase as the side-to thickness ratio and the boundary constraints increase and they 

decrease as the power-law index and aspect ratio increase. 

 The dimensionless critical buckling load of plate subjected to uniaxial compression 

loading is greater than that subjected to bi-axial compression and less than those 

subjected to bi-axial compression and tension loads. 

 The critical buckling modes change by the increase of the aspect ratio l/L in the case of 

uniaxial compression loading. While, in the case of biaxial compression loading the 

plate buckles with only one mode whatever the aspect ratio. 

 

 

Perspectives 

In perspective, it is planned to apply the R4SSDT element for the analysis of thermal buckling 

response of FG plates and to analyze the static, dynamic and stability behaviors of FG sandwich 

plates. 

It is also planned to use the trigonometric model for the analysis of various forms of thin and 

thick FG structures behaviors. 

Finally, this doctoral research work is part of the contribution of LGEM and MN2I2S 

laboratories in the development of new theories, finite elements for the analysis of FG structures 

behaviors. 
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