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Abstract

A new class of composite materials known as "Functionally Graded Materials” (FGMs), has
been designed by Japanese scientists to compensate for certain defects that occur in traditional
laminated composites, such as stress concentration and delamination. FGMs are made from a
mixture of metals and ceramics distinguished by a gradual change in composition and
microstructure through the thickness, resulting in a smooth and continuous variation in material
properties. FGMs have been widely used in many structural applications that differ from their
first application as a thermal barrier for aerospace structures. The development of the use of
FGMs in structures requires a good understanding of their mechanical behavior in order to
provide an optimum profile to designers.

The main aim of the present work is to contribute to the modeling of static, stability and
dynamic behaviors of plates made of FGMs. First, a four-node rectangular finite element, with
five degrees of freedom per node, based on First-order shear deformation theory (FSDT), has
been adapted for static, mechanical buckling and free vibration analysis of FG single layer and
sandwich plates. The FSDT provides a sufficiently accurate description of response for thin to
moderately thick plates. However, it predicts constant transverse shear stresses across the
thickness and a shear correction factor is needed. To overcome problems related to FSDT, a
novel trigonometric shear deformation model with five unknowns has been proposed for the
analysis of FG plates behavior. The model accounts for the sinusoidal variation of the transverse
shear strains across the thickness and satisfies the shear stress-free boundary conditions on the
top and bottom surfaces of the plate. A four-node rectangular finite element based on the
proposed new model (R4SSDT), has been formulated to analyze the static, stability and
dynamic behavior of FG single layer plates. For the two formulated finite elements, assumed
natural shear strain and the physical neutral surface position procedures have been taken into
consideration. The performance and accuracy of the developed elements have been evaluated
through validation tests. The effects of various parameters on the behavior of FG plate have

been also studied.

Keywords: Functionally graded materials, Plates, Static, Stability, dynamic behavior,
Trigonometric model, Finite element method, Assumed natural shear strain technique, Neutral

axis.
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General introduction

Scientific progress in the field of materials technology and the continuous development of
modern industries have given rise to the continual demand for ever more advanced materials
with the necessary properties and qualities. The need for advanced materials with specific
properties has led to the gradual transformation of materials from their basic (monolithic) state

into composites.

A composite material is a class of advanced material, made up of two or more materials of
different nature, whose combination confers to the whole superior performances to those of the
components taken separately. It consists of a matrix in which particles or fibers called
"reinforcement™ are embedded. Thus, properties such as stiffness, fatigue resistance, corrosion
resistance, wear resistance, weight reduction and many others are improved. However, a major
problem with conventional composite materials, which are usually made of layers (i.e.,
laminated composites), is the discontinuity of properties and stresses at the interfaces. This
discontinuity leads to high stress concentrations, matrix cracking and a serious delamination
problem due to the abrupt composition transition, especially in a high temperature environment.

One way to overcome these adverse effects is to use the Functionally Graded Materials
(FGMs) in which material properties vary continuously. This is achieved by gradually changing
the volume fraction of the constituent materials, usually in the thickness direction only. FGM
eliminates the sharp interfaces that exist in composite materials and cause failures. It replaces
this sharp interface with a gradient interface which produces smooth transition from one
material to another. One unique characteristic of FGM is the ability to tailor a material for

specific application.
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FGMs occur in nature as bones, teeth etc., nature designed these materials to meet their
expected service requirements. This idea is emulated from nature to solve engineering problem
the same way artificial neural network is used to emulate human brain. FGMs were initially
designed in the early 1980s by Japanese scientists, as thermal barrier materials for aerospace
structural applications and fusion reactors. Nowadays, they have found application in various
branches of engineering as structural elements such as plates, beams, shells, etc, for example,
in aerospace structures, power generation industries, machine parts, etc. In recent years, these
new classes of materials have gained considerable attention that motivates the importance of a

deep understanding of their behavior.

FGMs possess complex behaviors that require sophisticated numerical tools for their
analysis. The finite element method has established itself in recent years as a powerful and
efficient method, which allows it to be widely used in the analysis of the complex behavior of

this type of materials.

In general, the behavior of structural elements made of FGMs, for instance plates, can be
described by three-dimensional (3D) or two-dimensional (2D) theories. The 3D approach is
more accurate, however, it is difficult to implement. Therefore, the 2D approach is widely used
due to its simplicity and low computational cost. For decades, the classical and first-order shear
deformation theories have been used for the analysis of FG structure components behaviors.
Although these theories give relatively accurate results, they show their shortcomings when
evaluating the transverse shear stresses and require shear correction factors. With higher-order
shear deformation theories (HSDTSs), more comprehensive shear stress/strain through the plate
thickness are obtained and shear stress-free boundary condition is satisfied at top and bottom
surfaces as the displacement field takes into account higher order terms, and no shear correction
factors are needed. It should be emphasized that the results derived from HSDTs are more
accurate than those of FSDT.
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Thesis objectives

The main objective of the present work is to contribute to the modeling of the static, stability
and dynamic behavior of plates made of functionally graded materials, by developing finite
elements that are able to describe in the most accurate way such behaviors. This work is divided
into two main parts. In the first part, a finite element based on first-order shear deformation
theory has been adapted to the analysis of FG single layer and sandwich plates. The element is
geometrically simple and has only four nodes and five degrees of freedom per node. In the
second part of this work, a novel trigonometric model has been proposed for the analysis of FG
plates behaviors. Based on this new model, a four node rectangular finite element with five
degrees of freedom per node, has been formulated, ensuring a better compromise between
accuracy and low cost. Furthermore, another objective of this work is to study the effect of
different parameters on the behavior of FG plate, such as the power-law index, side-to-thickness
ratio, boundary conditions, the aspect ratio, etc.

Thesis organization

This doctoral research work is divided into three parts:

Part one entitled ¢’literature review’’ contains Chapters 1 and 2

Chapter 1 provides an overview of functionally graded materials, their characteristics,
development history, fabrication techniques, application areas, and various micromechanical
models and gradation laws used to describe their effective properties. Some naturally existing

FGMs have been also presented.

In Chapter 2, the most commonly used plate theories for the analysis and modeling of FG
plates have been briefly described. A review of various investigations carried out in the existing

literature on static, vibration, and buckling analyses of FG plates has been also presented.
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Part two entitled >’Adaptation of a first-order shear deformation finite element model for
the analysis of FG plates behavior’’ includes Chapters 3 and 4

In Chapter 3, a four-node rectangular finite element (R4FSDT) with five degrees of freedom
per node, based on FSDT, previously developed for the analysis of angle-ply laminated
composite, has been adapted to FG plates analysis. The element has been used to analyze the
different behaviors (static, dynamic and buckling) of FG single layer and sandwich plates. The
material properties of the plates have been assumed to change continuously through the
thickness, depending on the volume fraction of the constituent materials based on the power-
law function. The von Karman strain tensor has been used to account for the second order effect
(Buckling). The concept of the neutral surface position has been introduced to simplify the
problem and to avoid the membrane—bending coupling. The total potential energy principal,
Hamilton’s principle and Lagrangian equation have been used for the derivation of the stiffness,
geometrical and mass matrices. The assumed natural shear strain technique has been introduced

to ensure the effectiveness of the element against the shear locking phenomenon.

Chapter 4 is devoted to the validation of the R4FSDT element, developed in the third chapter,
in static, stability and dynamic analysis of FG single layer and sandwich plates. The obtained
results in terms of deflection, stresses, critical buckling loads and natural frequencies have been
compared to those determined analytically and those obtained using finite element models
available in the literature. In addition, the effects of some parameters such as power-law index,
side-to-thickness ratio, shear correction factor on the static, buckling and free vibration
responses of FG single layer and sandwich plate have been shown.

Part three entitled ¢’Development of a new finite element model based on new trigonometric

shear deformation theory for the analysis of FG plates’’ includes Chapters 5 and 6

Chapter 5 presents a new trigonometric model for the analysis of FG plates behaviors. The
model accounts for a sinusoidal variation of the transverse shear strains across the thickness
and satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the

plate, without the need of shear correction factor.
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The development of a four node rectangular finite element (R4SSDT) with five degrees of
freedom per node, based on the proposed model has been also presented in this chapter. The
developed finite element has been intended for the analysis of static, buckling and dynamic
behaviors of FG single layer plates, considering that the material properties of the FG plates
change continuously through the thickness, depending on the volume fraction of the constituent
materials based on the power-law function. The von Karman strain tensor has been used to take
into account the second order effect. Total potential energy and Hamilton’ principles and
Lagrangian equation have been used to formulate the stiffness, geometric and mass matrices.
The assumed natural shear strain technique has been employed to prevent any potential shear
locking phenomenon. Moreover, the concept of the neutral plane has been introduced to avoid

the membrane—bending coupling.

Chapter 6 presents the static, mechanical buckling and free vibration analysis results
obtained using the finite element (R4SSDT), developed in chapter 5. The comparison of these
results with those reported in the available literature shows the performance and the accuracy
of the proposed formulation. The effect of some parameters such as power-law index, side-to-
thickness ratio...etc, on the variation of deflection, normal and shear stresses, natural

frequencies, as well as the critical loads of FG single layer plates has been also investigated.

Finally, the work ends with a general conclusion summarizing the problematic, objectives

and obtained results, followed by some perspectives.
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Chapter 1

Functionally Graded Materials: An

overview

1.1 Introduction

Material development is the key driver of the world we live in, as all areas of human
endeavor depend on material development for their performance. The evolution of materials,
from monolithic to alloy and the development of composites, is based on the limitation of one
class of materials that necessitates the development of other classes. Most applications
require materials with conflicting properties that may not be possible to achieve in a
monolithic material. Furthermore, the alloying of different materials is limited by the
thermodynamic behavior of the constituent and the limitation imposed by the degree to which
one material can be mixed with others. Functionally Graded Material (FGM) is the one that
can meet the demands of these applications. This material is an advanced composite material
that can survive in a harsh working environment, without losing its properties, and without

fail during service.

An FGM is characterized by a compositional gradient of one material into another, making
it completely different from conventional composite materials. The necessity of this material
was born out of the failure of conventional composites, resulting from their inability to
withstand harsh working conditions. The failure of traditional composite materials was due to
the distinct, or well-defined, interface that exists between composite materials layers. The
interface causes a high concentration of stresses which favors the initiation of cracks and their
eventual propagation which leads to the ultimate failure of the composite. This process is
known as "delamination™. This interface is systematically eliminated in FGMs, due to the
gradual change in the volume fractions of their components and, consequently, their

properties in a specific direction.
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The actual concept of FGM was acquired from nature and used to solve engineering
problems in the same way that nature has used such materials based on their application

requirement and areas of application.

FGM was initially developed for a thermal barrier application, now, the application of this
important advanced material has been increased and used to solve a number of problems in
engineering. Aerospace, automobile, and biomedical applications are some of the areas that

are benefitting from this novel material.

1.2 Definitions and concept of FGM

Functionally Graded Materials, or ‘‘gradient materials’” (FGMs), represent a novel, advanced
generation of composite materials and have been designed to achieve superior levels of

performance [1].

The term “Functionally Graded Materials” contains two important words: “functionally”
and “graded.” The word “functionally” modifies “graded.” These refer to not only simple

functional materials but also to graded materials [2].

FGMs are a class of composite materials that can be tailored for specific properties,
functions and applications. Such materials exhibit a gradual change in either
compositions/constituents or microstructures (e.g., grain size, texture, porosity, etc.) in
specific directions, resulting in corresponding changes in material properties [3], i.e., they are
inhomogeneous at the macroscopic and microscopic levels. [4]. In contrast, conventional
composite materials are either homogeneous mixtures involving a compromise between the
properties of the constituent materials, or two different materials joined together as in the
case of laminated composites. Figure 1.1 [5], presents the schematic diagram of (a) the FGM

and (b) the conventional laminate composite material.

FGMs do not contain distinct (well-distinguished) boundaries or interfaces between their
different regions as in the case of conventional composite materials. Therefore, FGMs
possess good chances of reducing mechanical and thermal stress concentration in many

structural elements, which can be developed for specific applications.
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EAREECIA oS

Figure 1.1 Schematic diagram of (a) FGM and (b) conventional laminate composite material [5].

FGMs were first used in Japan in 1984 during a space plane project for thermal barrier
application, where their concept was first proposed [6]. The concept of these materials was
proposed to reduce the thermal stresses in the conventional laminate composite materials

developed for reusable rocket engines [7].

A group of researchers at the (National Aerospace Laboratory, STA, Sendai) were faced
with the problem of developing a material that could withstand a high temperature difference.
The application required that one side of the composite materials be subjected to a
temperature of about 2000 K (1726,85°C) and this temperature should not be transmitted to
the other part of the composite. In other words, the body of the plane needs a composite
material that will be exposed to a temperature gradient of approximately 1000 K, between the
inside and the outside of the spaceplane, as shown in Figure 1.2 [1, 5, 8, 10]. Conventional
laminated composite materials that were tried for this project kept failing due to the
delamination (i.e., separation of the laminated composite materials from where the two
constituent materials were joined). The failure was a result of the distinct interface between
the constituent materials, which is a site of high stress concentration factor (Figure 1.3 [11]),
and the site where failure is usually initiated. The researchers knew that if the interface
between the two materials that form the composite could be eliminated, then the problem
would be solved. The researchers changed this sharp interface into a gradient interface

by gradually introducing the second material into the first material instead of 100% of
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one material and 100% of the second together. In this way, the sharp interface was
eliminated, and a novel material called FGM was developed [9].

In summary, FGM’s concept is to replace the sudden change in composition that occurs at
the interface between different materials, with a compositionally graded phase, in order to

reduce stress concentrations in the structure.

Outside

1700°C

10MM

Figure 1.2 First example for metallic FGM in Japan [10].
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Figure 1.3 Variation of strains and stresses through the thickness of a laminate plate [11].
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An FGM is usually made up of several materials with different properties. The overall
properties of FGM are unique and different from any of the individual constituents. In some
cases, there may be an FGM comprised of the same material but with different
microstructures. Pores also are important components of FGMs, in which a gradual increase
in pore distribution from the interior to the surface can confer many properties such as
mechanical shock resistance, thermal insulation, catalytic efficiency, and the relaxation of

thermal stress [3].

FGMs can be classified into continuous and discontinuous graded materials, as
schematically shown in Figures 1.4 (a) and (b) [12], respectively. In continuous FGMs, the
material ingredients and /or microstructure change continuously with positions, no clear
zones or separation cut lines can be observed inside the material to distinguish the properties
of each zone, whereas, in discontinuous FGMs, the microstructure and/or material
composition change in a step-wise manner, resulting in a multilayered structure with an
interface lying between discrete layers [3, 12]. Similarly, material properties can be varied
from one surface to another, either continuously or discontinuously as shown in Figures 1.5
(@) and (b) [10], respectively. It is worthy of mention that the material ingredients may vary
spatially throughout the entire material volume, or only at a specific location in the material

such as the interface, a joint, or a surface as shown in Figure 1.6 [3, 13, 14].

(a) Continuous (b) Layered
4 Material 2 Material 2
v Material 1 Material 1

Figure 1.4 Types of FGMs (a) continuous FGM, and (b) discontinuous FGM [12].
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a = Material Gradation b Material Gradation
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Position Position

Figure 1.5 Variation of properties (a) Continuous and (b) discontinuous [10].

(b)

()

Figure 1.6 Graded structures (a) at the joint, and (b) Surface [3].
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Commonly used FGMs are continuously graded in one specific direction. But in all types
of FGMs, a smooth transition in thermomechanical properties is ensured, thereby mitigating
problems due to delamination and cracking. FGMs are typically manufactured from isotropic
components such as metals and ceramics. A continuous gradient microstructure with metal-
ceramic constituents is schematically represented in Figurel.7 [15]. In general, metal-ceramic
FGMs are used in high-temperature applications where the ceramic part of FGMs can
withstand high-temperature environments due to their better thermal resistance
characteristics; meanwhile, the metal part provides stronger mechanical performance and
reduces the possibility of catastrophic fracture. The transition phase provides thermal

protection as well as eliminates interface problems.

Ceramic
matrix with
metallic
inclusions

Figure 1.7 Schematic of continuously graded microstructure with metal-ceramic constituents
(a) Smoothly graded microstructure (b) Enlarged view and (c) Ceramic—Metal FGM [15].
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From the foregoing, it is possible to extract many advantages offered by functionally

graded materials, we intend to emphasize them here in some lines.

v’ Because of their gradient interfaces, FGMs can help minimize thermal-mechanical stress
concentrations, hence preventing delamination at crack-sensitive regions and improving

the durability of loadbearing structures.

v' Porosity-graded FGM helps in absorbing the shock from one face to the other, provides
thermal insulation, aids the catalytic efficiency; and also helps to relax the electrical and

the thermal stresses.

v FGM can act as an interface layer that connects two incompatible materials so as to
enhance the bond strength, reduce the crack driving force developed within the material,
provide multi-functionality namely, the ability to control deformation, wear corrosion,
dynamic response, etc. FGM coatings reduce the internal residual stresses.

v' Metal- ceramic FGM eliminates the abrupt transition between coefficients of thermal

expansion, offers thermal/corrosion protection, and provides load-carrying capability.

1.3 Brief background on the research and development of FGMs

Though the concept of FGMs has been introduced in the early 1980s by Japanese researchers,
the general idea for theoretical applications of graded structure composite and polymeric
materials was suggested as a concept for the first time in 1972, by Bever and Duwez [16],
and Shen and Bever [17]. However, their works had only limited impact, probably due to a

lack of suitable production methods and technologies for FGMs at that time.

In the year 1986, the official terming as “’Functionally Gradient Materials’’, FGM, was
done. As a consequence of a discussion at the Third International Symposium on FGMs held
in Lausanne in 1994, the full name was changed in 1995 to “’Functionally Graded Materials’’

because it is more accurate both descriptively and grammatically [3, 18].

In 1987, a five-year (1987 — 1992) research project was initiated. entitled “Research on the
basic Technology for the development of FGM for relaxation of thermal stress” (FGM

PART1). The program aimed to develop FGMs for high-temperature uses with the objective

14
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of using them for the hypersonic spaceplane. At the end of this project, samples of 300mm
square shell and 50mm diameter hemispherical bowls for SiC-C FGM nose cones were

prepared. [19].

In 1990, the first international conference on FGM (FGM 1990) was held in Sendai, Japan
which was followed by regular conferences held every two years [3]. In 1992, FGMs were
selected as one of the10 most advanced technologies in Japan [1].

Another 5-year (1993- 1998) project, a consequence of FGM (PART 1), has been
launched in 1993 as "Research on energy conversion materials with functional gradient
structures” (FGM part 2). This project focused to enhance energy conversion efficiency using
FG structure technology. [6, 19, 20].

In 2001, an international workshop presenting the recent trend and forecast has been
conducted under the chairmanship of Prof. Naotake Ooyama. Various topics like modeling
and simulation, automatic manufacturing systems for FGM, residual stress measurement,
ultrasonic imaging, and the biocompatibility of FG implant materials have been presented.
Since then regular research programs, international symposiums, and workshops have been
held across the world [18]. As the latest update to this, the 16th international conference on
FGM (FGM 2022) will be held On August 7-10, 2022 in Hartford, USA.

1.4 Functionally graded materials in nature

Although the concept of FGMs and the ability to manufacture them, appears to be an
advanced engineering invention, the concept is not new. It is basically bio-inspired [15, 21].
Scientists and engineers have always drawn inspiration from nature to solve scientific and
technological problems. One example is the artificial neural network, which mimics the
neural network of the human brain and how it processes information, and has been used to

solve many engineering problems.

Most materials found in nature are based on FGMs, as nature has produced them based on
the functionality required from these materials, as well as the working environment to which
they are subjected. There are a lot of natural FGMs that have inspired scientists and engineers
to design materials that are used to solve engineering and medical problems [22]. Bamboo is
an example of nature’s FGMs that possess continuously graded properties and is

characterized by non-uniform distribution of constituent material and varying microstructure
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[23]. Another important natural FGM is wood, which is composed of cellulose and lignin,
with the lignin forming the matrix while the cellulose is dispersed in varying degrees across

the entire material [24].

Some tissues and organs in the human body are also naturally existing FGMs, including
human skin, teeth, and bone. Human skin has a complex multi-layered structural system that
consists of the epidermis, the dermis, and the hypodermis [25]. Each layer has different
properties and also performs different functions. Human teeth have an outer part made with
high wear-resistant material that is referred to as enamel, while the internal core is made up
of dentine. The transition from the enamel to dentine is provided by an intermediate FGM
layer, where the composition gradually changes from one material to the other. The bone
tissue contains the cancellous (spongy bone) with changes in pore density and distribution

[5]. Figure 1.8 shows certain naturally occurring functionally graded materials [21].

high fiber  medium fiber

densil_\ density
-]
2
internod -;3
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-
&
2
=]
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50 mm
Cross Sections of Cross Section of Cross Section of
Bamboo Tree Palm Stem Dinosaur Bone

Figure 1.8 Some examples of naturally existing FGMs [21].
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1.5 Fabrication techniques of FGMs

The fabrication process is one of the most important fields in FGM research, where a large
part of the research work on FGMs has been devoted to processing. FGMs could be in the
form of thin coatings that are applied to the surface of the material to improve the surface
properties of such materials, or it could be in form of bulk material, in which the material
properties are changing across the whole volume of the material. Several techniques have
been introduced to fabricate FGMs depending on the requirement, either for surface coatings
or bulk FGM.

Surface coatings are thin FGMs typically deposited by several vapor deposition techniques
[26]. As well, surface coatings can also be prepared using techniques such as plasma spraying
[27], electrodeposition [28], electrophoretic [29], lon Beam Assisted Deposition (IBAD) [30]
and Self- Propagating High-temperature Synthesis (SHS) [31], etc.

Bulk FGMs could be fabricated by the Powder Metallurgy (PM) method [32], the
centrifugal casting method [33], the slip casting method [34], and the tape casting method
[35], etc. Among the advanced available methods, additive manufacturing [36] is one of the

promising processes for bulk and thin coating.

The fabrication process of an FGM can usually be divided into two steps. The initial one is
the building up of the spatially inhomogeneous structure called Gradation. The second is the
transformation of this structure into a bulk material called Consolidation. In detail, the
gradation process can be categorized into constitutive, homogenizing, and segregating
processes. The stepwise build-up of the graded structure from precursor materials is the
constitutive process. Homogenizing is a process of converting sharp interfaces between two
materials into a gradient by material support. Segregation starts with a macroscopically
homogeneous material, which is converted into graded material by material transport caused
by an external field (i.e. gravitational, electrical field, etc). Normally sintering and

solidification follow the gradation process [37].

The existing and most updated fabrication techniques of FGMs are discussed in the

following sections.
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1.5.1 Vapor deposition technique

The vapor deposition technique is one of the most important techniques to produce a graded
thin film (from nm to sub-mm) by the constructive process. The vapor deposition method
describes a process by which materials are condensed into a solid material during the vapor
cycle [38]. There are multiple versions of the vapor deposition techniques. Examples of these
techniques are Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and
sputter deposition, among others. These vapor deposition techniques are used to ensure slim
surface covering and a high-quality microstructure finish. However, these techniques produce
harmful gases by-products [39]. Therefore, precaution and safety measures need to be
undertaken if the VVapor Deposition Technique is chosen as a manufacturing method. Figures
1.9 [40] and 1.10 [21] illustrate the schematic diagram of CVD and PVD processes,

respectively.
1.5.2 Power metallurgy (PM)

The powder metallurgy (PM) [41] process is an old manufacturing process for making
engineering parts, which is also now used to produce FGMs through three basic steps,
namely: weighing and mixing of powder according to the predesigned spatial distribution as
dictated by the functional requirement, stacking and ramming of the premixed-powders, and
finally sintering, as illustrated in Fig 1.11 [42]. PM technique gives rise to a stepwise

structure. If a continuous structure is desired, then the centrifugal method is used.
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Figure 1.9 Chemical Vapor Deposition (CVD) process [40].

18



Chapter 1. Functionally Graded Materials: An overview

Substrate
Substrate heater / HV-chamber
\ Anode |+ /

Plasma

v Eﬁj
-‘ = | . :~\{ ===

o \Cathode
s Electrons

. . \
N Neutral/ionized | | Magnetron
gas atoms * * vacuum pump
0 Target atoms

Figure 1.10 Physical Vapor Deposition (PVD) process [21] .

1.5.3 Centrifugal casting method

The centrifugal casting method is performed by pouring a molten material containing another
reinforcing material, either in a molten state or solid, into a mold inside a rotating die to
produce a functionally graded material [43]. A centrifugal force is created by rotating the die
which helps to draw the molten material towards the mold and create separation in the
suspended solid powder material and the melting of the two materials, as a result of the
different densities of the two materials, and hence the creation of a FGM [33]. The graded
distribution of the FGM formed by the centrifugal casting method would be significantly
influenced by the processing parameters, such as the difference in density between the
reinforcing powder particles and the molten material, the particle size and the particle size
distribution of the powder, the viscosity of the molten material, and the solidification time.
The apparatus for the centrifugal method and motion of solid particles under the centrifugal

force are shown in Figure 1.12 [42].
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The main advantage of using the centrifugal casting method for the production of FGMs is
that a continuous gradient can be produced. The main disadvantages of the centrifugal casting

method include the following:

e It can only be used to produce a cylindrical section, such as a tube, bushing, and
cylindrical or tubular castings that are simple in shape.
e The gradation is limited by the centrifugal force and the density difference of the

constituent materials.
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Figure 1.11 Fabrication process of the FGMs by powder Metallurgy [42].
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Figure 1.12 The apparatus for the centrifugal method and motion of solid particles under
the centrifugal force [42].

1.5.4 Additive manufacturing (AM) method

Additive manufacturing (AM), also known as 3D printing, is an advanced manufacturing
method that can be used to fabricate three-dimensional (3D) components or parts by laying
one layer of material upon the other using computer-aided design (CAD) data [44]. By this
process, it is possible to produce complex shapes and customized products. AM provides
freedom to the designer to make the design as per his own specification with the least
consideration of design for manufacturing and assembly, thereby higher production speed and

maximum material utilization can be achieved.

AM has been proposed as an effective approach to fabricate FGMs with optimized stress
profiles and excellent formability [45]. Laser-based methods, stereolithography method,
materials jetting process, and fusion deposition simulation [14, 21] can be categorized widely
as additive manufacturing methods for production FGMs with discrete gradients. Figure 1.13

illustrates the representative diagram of additive manufacturing [21].

A considerable in-depth understanding of the various FGM’s fabrication process, large
research investments by industries, and mass production resulted in increasing applications of
functionally graded materials in comparison to conventional materials. Some of the areas of

application of FGMs are presented in the next section.
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1.6 Applications of FGMs

Nowadays, in view of the flexibility of producing composite materials as per application
requirements and functional suitability, the scope of FGM utilization is exceptionally wide.
Figure 1.14 summarized the different application areas of FGMs. FGM offers great promise
in applications with harsh operating conditions or very sensitive applications [40]. Some of
these applications, such as aerospace, automotive, biomedical, defense, energy, marine

industry, civil engineering and sports are presented in the following subsections.
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Figure 1.13 Representative diagram of additive manufacturing [21].
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Figure 1.14 FGMs fields of application and some examples [40].
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1.6.1 Aerospace applications

FGMs were first used in spacecraft for reducing thermal stresses between outside and inside
surfaces. Over the years, the use of such materials extended to various aerospace applications.
Most aircraft and spacecraft components are now made of FGMs such as rocket nozzle, heat
exchange panels, solar panels, turbine wheels, space plane nose, combustion chamber
protective layer, body components, rocket engine components, reflectors, camera housing,
caps, and the leading edge of missiles and space shuttle, etc., [46, 47] as shown in Figure 1.15
[21]. FGMs are also used to make a thermal barrier as a wall of a plane (spaceplane frame), to

resist the heat generated at the outer surface of the plane due to air friction.

Hubble Space Telescope Space Shuttle Orbiter parts Eurocopter Critical Parts

Figure 1.15 FGMs parts in Aerospace applications [21].

1.6.2 Automotive applications

Due to the high cost [48], the use of FGMs is limited in automotive applications. Where, they
are only used in the critical parts of the car such as diesel engine pistons and cylinder liners,
combustion chambers, racing car brakes, driveshaft’s, and flywheels, as shown in Figure

1.16. FGMs can be also used in automotive body coatings [21].
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Figure 1.16 FGMs parts in automotive applications [21].

1.6.3 Biomedical applications

Human tissues, such as bones and teeth, are natural FGMs. These tissues may at times suffer
from damage that cannot be treated, necessitating their replacement. To replace these tissues,
a compatible material that can fulfill the function of the original bio-tissue is required. The
ideal candidate for this application is functionally graded materials. FGMs have found a wide
range of applications in the dental [49] and orthopedic fields for tooth and bone replacement
[50]. Figure 1.17 presents a schematic view of the FGM dental implant with graded material

composition [51].

1.6.4 Defense applications
The ability to inhibit crack propagation is one of the most important characteristics of
functionally graded materials that makes them useful in defense applications, as a penetration

resistant material used for armor plates and bullet-proof vests [52]. Another important
application of FGMs is in bulletproof vehicle bodies.
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Figure 1.17 Schematic view of the FGM dental implant with graded material composition [51].

1.6.5 Energy applications

FGMs are used in the energy sector to achieve good thermal barrier and protective coatings
on turbine blades in gas turbine engines. FGMs are also useful in thermoelectric generators,

energy conversion devices, solar cells, sensors, etc [53, 54].

1.6.6 Electrical/electronic applications

Functionally graded materials are used in the electrical and electronics industry in many
ways, including field stress relaxation in the electrode and field-spacer interface, in diodes, in
semiconductors, for insulators, and in the production of sensors. The thermal-shielding
elements in microelectronics are also made from carbon nanotube functionally graded

materials [55].

1.6.7 Marine applications

FGMs also have applications in the marine and submarine industry, including propeller
shafts, diving cylinders, sonar domes, composite piping systems, and cylindrical pressure
hulls. [55, 56]
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1.6.8 Opto-electronics applications

FGMs are used in optoelectronic devices because of the refractive index gradients that can be
achieved. Examples include lasers, magnetic storage media, sensors, fibers, solar cells,

computer circuit boards, and semiconductor applications [56].

1.6.9 Civil engineering applications

Functional gradation of concrete elements makes it possible to align the internal composition
of structural components with specific structural and thermal performance requirements. This
alignment is made possible by continuously altering the characteristics of the material,
including its porosity, strength, or rigidity, in up to three spatial dimensions. This principle
can be applied to minimize the mass of the element and to create multifunctional properties.
Minimizing porosity improves the structural characteristics of the concrete whereas
maximizing porosity enhances its heat insulation properties. Figure 1.18 shows the curves of

hardened concrete characteristics depending on a gradual increase in porosity [57].

RA GO7L GO5BL GO3L GO2LM GO1LM KLM

Bl Density, Compression Strength, E-modulus
I Porosity, 1/Thermal Conductivity

Figure 1.18 Curves of hardened concrete characteristics depending on a gradual increase in
porosity [57].
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1.6.10 Sport applications

FGMs, in particular those manufactured via AM techniques, are used for sports equipment
such as golf clubs, skis, tennis rackets, etc. This is mainly attributed to the graded
characteristics obtained and thus the reduction in weight and friction, improved durability,
higher strength to weight ratio, hardness, wear resistance, and several other desirable
attributes [56].

1.6.11 Other miscellaneous applications

Other uses of FGMs are in cutting tool inserts coating, in the heat exchanger, in tribology, in
the making of fire retardant doors, in defense pad making to inhibit crack propagation, etc.

The scope of application of functionally graded materials is expected to expand further if
the cost of production of these materials is reduced in the future.

1.7 Modeling of the effective material properties of FGMs

1.7.1 Micromechanical models (homogenization)

Most of the FGMs are manufactured by two phases of materials with different properties. The
volume fraction of each phase gradually varies in the gradation direction and the effective
properties of FGMs viz. elastic moduli, shear moduli, density, etc. change along this

direction.

One of the main tasks of the mechanics of materials is predicting the behavior of
materials. This requires the estimation of the effective (overall) properties of the two-phase
composition, commonly known as homogenization. Usually, precise information on the size,
shape, and distribution of the phases is not available, thus, the effective material properties of
graded microstructures must be estimated based on the volume fraction distribution and the
approximate shape of the dispersed phase. A variety of micromechanical models have been
developed over the years to infer the effective properties of macroscopically homogeneous
composites. These models can be extended to determine the effective material properties of

FGMs over the entire range of volume fractions [58,59].
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From the open literature, some of the micromechanical models used for modeling FGMs
could be remarked, as the rules of mixtures. (Voigt [60] and Reuss [61]) are the simplest of
them. Hashin—-Shtrikman bounds [62, 63], also called the composite sphere assemblage
model, determined the upper and lower bounds of the effective material properties by
applying the variational principle. The Mori-Tanaka scheme [64] and the self-consistent
scheme [65] estimated the effective material properties using the average local stress and
strain fields of the constituents of the composite. The three-phase model [66], is also referred
to as the generalized self-consistent method because it follows the original self-consistent
method. As well Wakashima—Tsukamoto [67], Halpin—Tsai [68], Tamura [69], and cubic
local representative volume elements(LRVE) [70] models, are also employed to achieve the
effective material properties of FGMs. All these models have been discussed in detail in
references [58], [59], [71-74] and a comparison of the estimated properties obtained from

these models has been performed.

It is visible from the available studies that most of the research into FGMs uses the Mori-
Tanaka and the rule of mixture (Voigt model) to evaluate the effective material properties.

These two models are briefly described in the following sections.

1.7.1.1 The Mori-Tanaka scheme

The Mori-Tanaka (1973) model (Tanaka, 1997) is used for estimating the effective moduli of
the material. It accounts approximately for the interaction among neighboring inclusions and
is generally applicable to regions of the graded microstructure that have a well-defined
continuous matrix and a discontinuous particulate phase as depicted in Figure 1.19 [15]. This
method assumes that the matrix phase, denoted by the subscript 1, is reinforced by spherical
particles of a particulate phase, denoted by the subscript 2.

Mori and Tanaka [64] derived a method to calculate the average internal stress in the
matrix of the material. It was reformulated by Benveniste [75] for use in the computation of
the effective properties of composite materials. According to Mori-Tanaka model, the
effective shear (G) and bulk moduli (K) can be stated in the form [74]
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Where V denotes the volume fraction of particles. With the help of shear and bulk moduli, the

effective Young’s modulus (E) and Poisson’s ratio (v) are then expressed as
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Figure 1.19 Two-phase material with particulate microstructure [15].
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1.7.1.2 The rule of the mixture (Voigt Model)

Voigt model, originally introduced by Voigt in 1889 [60], is a well-known model of
homogenization and usually used to predict the effective elastic properties for the different
kinds of composite materials. The Voigt idea was to define such properties by averaging
stresses over all phases with the strain uniformity assumption [59]. For the sake of
simplification, Voigt scheme is the most popular and most commonly used model for

estimating the properties of FGM.

According to this rule, an arbitrary material property P of the FGM is assumed to vary
smoothly along a direction (usually thickness direction), as a function of the volume fractions

and properties of the constituent materials. This property can be expressed as

P :izillpi *V/ (15)

P can represent, for example, the young’s modulus (E), the Poisson’s ratio (v) and the mass
density (p) etc. Piand Vi are respectively the material property and volume fraction of the
constituent i of FGM. The volume fractions of all the constituent materials should add up to

unity, such that

i=1

1.7.2 Gradation Laws

The variation of the desired property of an FGM across any direction can be designed
according to the requirement by considering various gradation laws. Power law, Exponential
and Sigmoid Laws are commonly used by researchers to describe the volume fractions, and

are presented in the following sections.
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Figure 1.20 Functionally Graded Plate.

1.7.2.1 Power-law (P-FGM)

The power law for the material gradation was first introduced by Wakashima et al. [76].
Further this law is widely used by many researchers and it is more common in the stress
analysis of FGM [77]. If FG plate of uniform thickness ‘h’, as shown in Figure 1. 20, is used
for the analysis then according to this law, the effective material property P(z)in a specific

direction (along z), can be determined by

P@)=P,+(R-R)V(2) .7

P represents every effective material property (E, « and p). P1 and P. are the material
properties at the top-most (z = +h/2) and bottom-most (z = -h/2) surfaces of the plate,
respectively. It can be seen that the material properties are dependent on the volume fraction

V of FGM, which follows the power law as:

1 2\

V(2)=|=+— 1.8
@=(3+¢] 8)
where, (0 < p <) is a volume fraction exponent (or power-law index).
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Figure 1.21 illustrates the variation of the volume fraction in the thickness direction of the
plate. It can be observed from the figure that the volume fraction decreases rapidly near the

lower surface for p<1 and increases rapidly near the upper surface for p> 1.
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Figure 1.21 Variation of the volume fraction throughout thickness of P-FGM plate.

1.7.2.2 Sigmoid Law(S-FGM)

When a single FGM power law function is added to the multilayered composite, the stress
concentrations appear in one of the interfaces in which the material is continuous but changes
rapidly. Therefore, Chung and Chi [78] developed another law called the sigmoid law, which
is a combination of two power law functions, to ensure the smooth distribution of stresses
among all the interfaces. This law is also used to reduce the stress intensity factors in cracked

structures [79]. The two power law functions are defined by:

1

V1(Z):1—§(

h/2-z
h/2

p
] For 0<z<h/2 (1.9)
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p
Vz(z):%(hf/zzj For -h/2<7<0 (1.10)

By using the rule of mixture, the effective properties of the S-FGM can be calculated by

1(h/2-z)°
p(z):p2+(pl_P2)[1_§( D j } For 0<z<h/2 (1.11)
p
P(z):P2+(a—P2)[%(h£]2/;ZJ } For -h/2<z<0 (1.12)

Figure 1. 22 shows the variation of volume fraction in Egs. (1.9) and (1.10) through the
thickness of S-FGM plate.

z/h
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Figure 1.22 Variation of the volume fraction throughout thickness of S-FGM plate.
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1.7.2.3 Exponential Law (E-FGM)

The exponential law is generally used to deal with problems related to fracture mechanism of
FGM. It is given by Kim and Paulino [80] and Zhang et al. [81]. The distribution of

properties of FG plates across the thickness according to the exponential law is as follows:
1[Infi]HD
P(z)= P2eh E [ 2] (1.13)

The material distribution (e.g Young’s Modulus E distribution) in the thickness direction
of the E-FGM plates is plotted in Figure 1.23.
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Figure 1.23 Variation of the Young’s Modulus E throughout thickness of E-FGM plate.

It should be mentioned that the effective mass density p is obtained by the rule of mixture,
regardless of the utilized micromechanical models [74]. The effect of Poisson's ratio on
deformation was reported by Delale and Erdogan (1983) [82] to be much less than that of

Young's modulus. Thus, the Poisson’s ratio of plates is assumed to be constant.
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1.8 Conclusion

Functionally Graded Materials (FGMs) have been introduced in this chapter. Japanese
researchers were confronted with the problem of composite failure through delamination
when trying to develop a suitable composite material for a harsh working environment in a
space project. This quest to solve the problem led to the development of FGM. FGMs are
differently distinguished from conventional composites. Some fundamental features of FGMs
have been therefore highlighted. A brief background on the research and development of
FGMs has also been presented. FGMs exist in nature, and some of them have been
mentioned. FGMs are used as surface coatings (thin coatings) and as bulk material depending
on the intended application. The fabrication techniques for the thin FG coating and the bulk
FGM have been discussed. FGMs have evolved from the initial thermal barrier application,
for which it was developed. The FGM is now used for other applications. Some of these
applications have been presented. At the end of the chapter, attention is devoted to the
description of micromechanics models and gradation laws employed to describe the effective

properties of FGMs.

Due to the wider applicability of FGMs, it is necessary to study their behavior. Thus, to
accurately predict FG structures’ behavior, several theories and analytical and numerical
methods are reported in the literature. The next chapter presents the various theories used for
the analysis of FG structures and summarizes the studies based on the static, vibration and

buckling behavior of FG structures.
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Chapter 2

Modeling and Analysis of FG plates
A Review

2.1 Introduction

Functionally graded materials (FGMSs) are increasingly used in the engineering field as
structural elements such as plates, beams, shells, etc. In a typical FG plate, the material
properties are tailored by mixing two distinct materials, for instance, ceramic and metal.
FGMs are well able to reduce thermal stresses, with stand high temperature environments and
prevent corrosion. In the case of FG sandwich plates, two types of sandwich are commonly
used: (a) sandwich plate with FG core and two isotropic skins; (b) sandwich plate with
isotropic core and two FG skins. To use them effectively, a good understanding of their
bending, dynamic and buckling behaviors is necessary.

In general, the behavior of FG plates can be described by three-dimensional (3D) or two-
dimensional (2D) theories. Although the first approach is more accurate it is difficult to
implement, while the second is more popular due to its simplicity and low computational

cost.
The most commonly used 2D plate theories are:

e The Classical Plate theory (CPT) that neglects transverse shear effects and it is only
suitable for thin plates.

e The First Order Shear Deformation Theory (FSDT) which includes transverse shear
effects and is dedicated to moderately thick plates.

e The Higher-Order Shear Deformation Theories (HSDTs) which are dedicated to the

plates of more important thickness.

These models are based on assumptions about strains or stresses through the thickness of

the plate, which allow the reduction of a 3D problem to a 2D problem.
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Since they were widely used in the modeling of FG plates, the above-named theories are
briefly described in this chapter. In addition, a review of the studies reported on the static,

vibration and buckling analyses of FG plates is presented.

2.2 Different plate theories for FG plates modeling and analysis

A plate is defined as a solid body, bounded by two parallel flat surfaces called faces whose
lateral dimensions (i.e., width and length in case of rectangular plates or the diameter in case
of circular plates) are large compared to the distance between the flat surfaces called

thickness of the plate.

Plates can be classified into two groups: thin plates and thick plates. A plate is said to be
thin when the ratio of the thickness to the length of a side is less than 1/20 [11].

2.2.1 Classical plate theory (CPT)

The Classical plate theory, the oldest and the simplest theory was developed in 1888 by Love
[83] using assumptions proposed by Kirchhoff in 1850 [84]. It is also called “Kirchhoff plate
theory”, “Kirchhoff-Love plate theory” or “Thin plate theory”. It is actually an extension of

the “Euler—Bernoulli beam theory” to thin plates.
The fundamental assumptions of CPT are:

e Plane sections initially normal to the midsurface remain plane and normal to the
midsurface after deformation, Figure 2.1 [85]. Analogous to beams, this assumption
implies that the effect of transverse shear strains is negligible. The deformation of the
plate is thus associated principally with bending strains. Consequently, the transverse
normal strain, &, resulting from transverse loading can be neglected.

e The transverse normal stress, o, is small compared to the other stress components of

the plate and, therefore, can be neglected.

For a vast majority of thin plate problems, the CPT vyields accurate results that do not
differ significantly from those obtained using the 3D theory of elasticity. Under the above-
mentioned assumptions, the displacement field of the CPT can be written in the following
form: [85, 86]
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u (X! Y, Z)=UO(X! y)_ZW,x
VX, Y, 2)=vo(x, ) - 2w, (21)
W (X, Y, Z) =Wy (X, Y)

where Uo, Vo and wo are the displacement components along the x, y and z-axes at the
midplane (z=0). wx and wy are the rotations due to bending in both directions.

ow 0
dx

Figure 2.1 Undeformed and deformed geometry of a plate under the Kirchhoff hypotheses.
[85].

Since the effect of transverse shear is not taken into account in this theory, the results for
thick plates (especially plates made of advanced composites) will be inaccurate. For this
purpose, the first- order shear deformation theory has been developed.

2.2.2 First-order shear deformation theory (FSDT)

The First-order shear deformation theory, also referred to as the Mindlin-Reissner theory
(Reissner, 1945 [87]; Mindlin, 1951 [88]) or the Mindlin plate theory, extended the classical
plate theory by taking into account the transverse shear strains effect. According to this
theory, the transverse straight lines before deformation remain straight after deformation but
they are not necessarily normal to the mid-plane after deformation, Figure 2.2 [85]. As a
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result, transverse shear strains are constant through the thickness. Also, this theory assumes

that the transverse normal stress, oz, is zero.

Figure 2.2 Undeformed and deformed geometry of a plate under the assumptions of the
FSDT [85].

The displacement field of the FSDT can be written as follows [85, 86]
u (X y, 2) =Up(X, y) + 24, (x,y)
v (X Yy, 2)=Vo(X, y) + 24, (X, Y) (2.2)
w (X, yl Z) =W0(X1 y)

where Uo, Vo and wo denote the displacement of a point on the plane z = 0. 4,, ¢, are the

rotations about the y and x axes, respectively.

Since the transverse shear strains are constant through the thickness of the plate, it follows
that the transverse shear stress will also be constant. In general, shear stress varies
parabolically through the plate thickness, and therefore a shear correction factor is required
in the FSDT for the compensation of the actual parabolic variation of shear stress and
satisfying the shear stress-free boundary conditions on the plate surfaces (i.e., the shear stress

must be equal to zero at the top and bottom plate surfaces).
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2.2.2.1 Shear Correction Factor (SCF)

The shear correction factor adjusts the transverse shear stiffness and thereby, the accuracy of
results of the FSDT will depend significantly on the SCF [89]. In order to improve the FSDT,
numerous studies have been conducted by many researchers using different approaches to
calculate the SCFs for homogeneous and composite plates. The first concept of the SCF for
isotropic homogeneous plates was presented by Reissner [87], where he proposed a value of
5/6 by using a calculation method based on static equilibrium and energy equivalence
considerations. Mindlin [88] was the first to predict the correction factor based on dynamic
analysis, where he proposed a value of %/12 by equating the approximate first antisymmetric
thickness-shear vibration frequency to the exact solution. When the FSDT is applied to
composite plates, the difficulty in accurately evaluating the SCFs presents their shortcomings.
For sandwich plates, Yu [90] gave an accurate analysis for the SCF based on the comparison
of the fundamental frequencies obtained by the theory of elasticity solution and by the FSDT
model of the structure. It was shown that for a typical sandwich plate the value of this factor
approaches unity. Chow [91] adopted a procedure based on the comparison of the shear strain
energies to obtain the SCF of orthotropic symmetric laminate. This procedure has been
extended by Whitney [92] to orthotropic nonsymmetrical laminates, and the accuracy of the
method was demonstrated by comparing the static bending solution for various laminated
plates against solutions obtained by satisfying the exact theory of elasticity in each ply as
well as the continuity conditions of the interface. Also, Whitney [93] derived an expression
for the SCF by considering cylindrical bending about the length and the width of the plate,
and discrete values of SCFs were presented for symmetric/anti-symmetric laminate plates and
sandwich plates. The author discussed the variation of the SCF due to variation in number of
layers of the laminate, and it was shown that the SCF does not approach the classical value
for homogeneous plates as the number of layers is increased. Predictor-corrector procedures
have been proposed by Noor et al. [94, 95] to correct the SCFs by using the iteration process.
The SCFs obtained from this method depend on boundary conditions, plate geometry, and

loading conditions, and, hence, they cannot be directly applied for other plate configurations.

For many applications of FGMs in plate structures, the SCF is assumed to be constant 5/6.
This value is not appropriate for FG plate analyses due to continuous variation of material
properties [96]. Efraim and Eisenberger [97] proposed a formula for SCF in terms of

Poisson’s ratio and volume fractions of both gradients in an FG plate. Furthermore, Nguyen
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et al. [98] obtained the SCFs for the FGM by comparing the strain energies of the average
shear stresses with those obtained from the equilibrium. They assumed a cylindrical bending
around the y axis and suppressed the effect of the weak terms on the shear stresses. The
authors showed that the SCF for FG plates are not the same as for homogeneous plates. In
fact, they showed that the SCF is as a function of the ratio between elastic modulus of
constituents and of the distribution of materials through the models. Also, Nguyen et al. [99]
identified the SCFs for the FSDT models made of FGMs through an energy equivalence
method. A new formula for the SCFs, used in the Mindlin plate theory, is obtained for FG
plates by Hosseini-Hashemi et al. [100]. In their work, a well-known commercially available
finite element (FE) method package was used for the extraction of the frequency parameters.
The authors obtained the SCF by making the frequency parameter of the analytic solution
based on the FSDT identical to that acquired by the FE method.

2.2.3 Higher-order shear deformation theories (HSDTS)

To overcome the limitations of the CPT and the FSDT (i.e., to get the realistic variation of the
transverse shear strains and stresses through the thickness of the plate and to avoid the use of
SCFs), several high-order shear deformation theories have been developed [101-107]. These
models are based on the assumption of nonlinear stress variation through the thickness and
are capable of representing the section warping in the deformed configuration, Figure 2.3
[85].

The most developed HSDTs are based on the Taylor series expansion of the displacement
fields to approximate the 3D theory [108]. The displacement is therefore assumed to be in the

following form:

Ui (% Y,2) = (6 Y) + 269 (6 y) + 2242 (x y) ++ 260 (0, Y) (2.3)
Where i = 1,2,3, and j defines the order used in the theory.

The Reissner-Mindlin first-order theory corresponds to the Taylor series up to the order j
=1 and ¢§1) =0. In the case where a first order model does not allow to approach a given

problem properly, it will be necessary to move to a higher order model (2nd order, 3rd order,

or even more), in the series expansion of the displacements.
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Figure 2.3 Undeformed and deformed geometry of a plate according to the CPT, FSDT and
HSDT [85].

The second-order shear deformation theories (SCSDT) [109] yield slightly better results
than the FSDT, but suffer from the same drawbacks as the latter (i.e., need correction

factors). The displacement field of these theories can typically be described as:

U(X, Y, 2) =Ug(X, Y) + 28, (X, ¥) + 2%, (X, Y)
V(X Y,2) =V (X, Y) + 2¢, (X, Y) + 2%, (X, Y) (2.4)
W(X, Y, 2) =Wy (X, Y) + 26, (X, ) + 22y, (X, Y)

where the parameters v, ,¥yand v, are the second order functions.

Several Third order shear deformation theories (TSDT) (Parabolic shear deformation
theory) have been proposed by many researchers [104-106]. The Reddy’s TSDT
displacement field [106] is given by:

U(X,Y,2) =Ug (%, Y) + 28, (X, ¥) + 220, (X, V) + Z°C, (X, Y)
V(X,Y,2) =Vo (X, ¥) + 28, (%, y) + 2%, (X, ¥) + 2°C (%, ) (2.5)
W(X, Y, Z) = WO (X1 y)

where the parameters v, , ¥, ¢, , ¢y are the high order functions.
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With increasing order of expansion, the number of additional parameters increases, which
are often difficult to interpret. Some Simplifications have been made to reduce the
displacement parameters. These simplifications consist in shortening the last terms of the
Taylor series by introducing a “’shear function’’. Following these simplifications, the form of

the displacement field is proposed as follows

u(x,y,z)=uqy(x, y)—z%+ f(2)6,(x,y)
V% .2) =¥o(x.y) -2 50+ (@6 () (26)
W(X, Y, 2) =Wy (X, Y)

Where f(z) is the shear function which determines the distribution of the transverse shear

strains and stresses across the plate thickness h, and 6, :%+¢X, 0, =%+¢y, with ¢,,4,
OX oy
denote the rotations about the y and x axes, respectively.

According to the equation (2.6), the displacement field of CPT is obtained by setting f(z) =
0, and that of the FSDT is obtained by setting f (z) = z. Moreover, the TSDT displacement
field of Reddy [85, 106] is obtained by taking the following function

47°

f(2)=z-2%
(z)=1 302

(2.7)

This theory accommodates a parabolic distribution of transverse shear stress and satisfies the
shear stress-free surface conditions on the top and bottom surfaces of the plate, thus, it
provides a good approximation of the transverse shear stresses compared to the three-

dimensional elasticity solution.

A different HSDT has been proposed by Touratier [110], based on a sinusoidal
trigonometric function, called The sinusoidal shear deformation theory (SSDT). This
theory is a seminal example of the family of trigonometric HSDT and is implemented by

setting

f@):%sm[%§j (2.8)
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A Hyperbolic shear deformation plate theory (HSDPT) has been proposed by Soldatos
[111], is obtained by taking

f(2)= hsinh[%j—zcosh% (2.9)

The exponential shear deformation theory (ESDPT) developed by Karama et al. [112]
is obtained by taking

f(2) = ze 2/ (2.10)

Although the HSDTs do not require an SCF, their equations of motion are more
complicated than those of the FSDT. Therefore, Shimpi [113] developed a simple plate
theory called the Refined Plate Theory (RPT) by separating the transverse displacement into
bending and shear parts. The most interesting feature of Shimpi's theory is that it has fewer
unknowns (four unknowns) and governing equations than the FSDT. In addition, this theory
does not require an SCF and gives a parabolic distribution of shear through the thickness of
the plate. Also, it presents many similarities with the CPT as regards the equations of motion,
the boundary conditions, and stress resultant expressions. The displacement field of the RPT
is presented as follows.

(y,2) =g (1) 2 I 1 DY)
V(X,Y,2)=Vy(X,y) -2 —22 22 b(x,y) f(z)awfg;( Y) (2.11)

W(X, Y, 2) =W, (X, y) + w5 (X, y)

Where wp and ws are the bending and shear components of transverse displacement,

respectively

It should be noted that the above-mentioned plate theories discard the thickness stretching
effect (i.e., &; = 0) due to assuming a constant transverse displacement through the thickness.
This effect plays a significant role in moderately thick and thick plates and should be taken
into consideration. Quasi-3D theories are HSDTSs that account for a higher-order variation of

both in-plane and transverse displacements through the thickness, and hence both the shear
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deformation effect and the thickness stretching effect are considered [114]. The displacement
field of the quasi-3D theory is given by

(% y.2) =Up(x.) 252 + 1 (D, (x.Y)

wﬁmn=%udrl%§+un%uw> (2.12)

W(X,Y,2) = Wo(x,y) +9(2), (X, y)

Whereuo, Vo, Wo, @x, @y and ¢; are six unknown displacements of the midplane of the plate

And g(z) and f (z) are shear functions with

o)

— (2.13)

9(2)=

All the previously mentioned theories have been extensively used by numerous
researchers to accurately predict the behavior of FG plates. The following section

summarizes the studies based on the static, vibration, and buckling behavior of FG plates.

2.3 Research studies reported on FG plates

Due to their inherent structural efficiency, there has been a great deal of interest in the
analysis of structures made of FGMs. In this section, we have attempted to provide a review
of the work done to date for the analysis of FG plates. The review is mainly focused on the
static, vibration, and buckling analysis of FG single layer and sandwich plates. The objective
here is to show the extent of the research field in the context of FGMs and that there is still

much to be done in this research area.

2.3.1 Static analysis of FG plate

The understanding of the static behavior of FG plates is one of the most important issues for
the design of these types of structures. Therefore, several investigators devoted themselves to
the study of the static behavior of FG single layer and sandwich plates by using a variety of
plate theories along with different analytical and numerical methods. Some of the papers
selected from the literature are presented in this section.
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Reddy and Cheng [115] analyzed the 3D thermomechanical deformations of simply
supported FG rectangular plates using an asymptotic method. The effective material
properties of the plates have been estimated using the Mori—Tanaka scheme. The
temperature, displacements, and stresses of the plate are computed for different volume
fractions of the constituents. Vel and Batra [116] presented an exact solution for 3D
deformations of a simply supported FG thick plate. The effective material properties are
estimated by either the Mori—Tanaka or the self-consistent schemes. The results are presented
in terms of temperature, displacements, and stresses at several locations for mechanical and
thermal loads. Pan [117] extended Pagano’s solution [118] to derive a 3D exact solution for
FG rectangular composite laminate with simply supported boundary conditions under a
surface load. The laminate layers have been made of FGMs with mechanical characteristics
varying exponentially through the thickness direction of the plate. The results are presented in
terms of displacements and stresses and it was clearly shown that the tensile stress at the top
or the compressive stress at the bottom inhomogeneous plate can be reduced by bonding a
suitable FGM layer to it. Elishakof and Gentilini [119] employed the Ritz energy method
based on the 3D elasticity theory to predict displacements and stresses of all-around clamped
FG plates subjected to a uniformly distributed normal load on the top surface. Kashtalyan
[120] and Woodward and Kashtalyan [121] derived exact solutions for the 3D static bending
analysis of simply supported FG plates subjected to transverse loading. The Young’s
modulus and shear modulus of the plate vary exponentially through the thickness, and the
Poisson’s ratio is assumed to be constant. Moreover, Kashtalyan and Menshykova [122]
carried out a 3D static bending analysis of simply-supported sandwich panels with an FG
core under transverse loadings. The Young’s modulus of the core is assumed to vary
exponentially through the thickness, and the Poisson’s ratio is assumed to be constant. This
work has been extended by Woodward and Kashtalyan [123] to simply-supported sandwich
panels subjected to distributed and concentrated loadings. Not long ago, Gholami et al. [124]
presented a 3D elasticity solution for the bending analysis of anisotropic FG Plates. The
differential quadrature method (DQM) has been applied to determine flexural characteristics
of the anisotropic FG plate. The obtained results from the DQM approach have been

compared with those of the FE method.

3D analytical solutions for FG plates are very useful since they provide benchmark results
to assess the accuracy of various 2D plate theories and FE formulations. However, their

solution methods involve mathematical complexities and are very difficult and tedious to
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solve. Many 2D theories have been proposed for the static analysis of FG plates. Among all
the plate theories, the CPT is the simplest theory for the analysis of plates. Since the CPT
yields accurate results only for thin plates, few researchers employed this theory to analyze
the static behavior of thin FG plates. One can refer to the work performed by Chi and Chung
[78,125], where the bending analysis of FG plates under transverse load has been carried out
using the CPT. The material properties of the FG plates are assumed to vary continuously
throughout the thickness of the plate, according to the volume fraction of the constituent
materials based on the power law, exponential, or sigmoid functions. The theoretical results
have been checked by FE analysis. In the work by Amirpour et al. [126] the bending analysis
of thin, through-the-length, FG plate has been performed using the CPT. The analytical

results have been compared with FE simulation using graded solid elements.

To overcome the limitation of the CPT, the FSDT has been employed for the analysis of
the FG plates. The model of the FSDT plate is the simplest plate model that accounts for the
transverse shear strains, which are assumed constant through the plate thickness. Praveen and
Reddy [127] analyzed the nonlinear static and dynamic responses of FG plates using the FE
method and the FSDT with von Karman assumptions. Della Croce and Venini [128]
developed a hierarchic family of finite elements for the bending analysis of FG plates under
mechanical and thermal loadings using the FSDT and a variational formulation. Singha et al.
[129] investigated the nonlinear behaviors of FG plates under transverse distributed load
using a high precision plate bending FE. The formulation has been developed based on the
FSDT, considering the physical neutral surface position concept. The SCFs have been
introduced and the equilibrium equations have been used for transverse shear stresses and
transverse normal stress components determination. Thai and Choi [130] presented a
simplified FSDT with four unknowns for the bending and free vibration analysis of FG single
layer and sandwich plates with FG core and isotropic skins by splitting the transverse
displacement into the bending and shear parts. Thai et al. [131] presented analytical solutions
for bending, buckling and free vibration analysis of FG single layer and sandwich plates with
FG skins under various boundary conditions using a new FSDT. The authors reformulated the
conventional FSDT to a simpler form by making a further assumption, in which the number
of unknowns is reduced to four. The use of SCF is no longer necessary in this theory since
the transverse shear stresses are directly computed from the transverse shear forces by using
equilibrium equations. Furthermore, Mantari and Granados [132] used a new FSDT with only

four unknowns for the static analysis of FG sandwich plates considering integral terms in the
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displacement field instead of derivative terms. Bellifa et al [133] presented an analytical
solution for bending and free vibration of FG plates using a new FSDT with just four
unknowns based on the exact position of the neutral surface. A few years ago, Srividhya et al.
[134] developed a C° continuous four-node isoparametric element based on FSDT to
investigate the effect of material homogenization scheme on the flexural response of FG
plate. For estimating the effective properties of the plate, the rule of mixtures and the Mori-
Tanaka schemes, have been used. Recently, Joshi and Kar [135] analyzed the bending
behavior of bi-dimensional FG plate subjected to uniform loading, using the FSDT and FE
method. The material properties are varied gradually in longitudinal and transverse
directions. According to the open literature, the FSDT has been widely used to model both
thin and thick plates owing to its high efficiency and simplicity. However, its accuracy

depends on the appropriate value of the shear correction factor [98, 99].

To avoid the use of SCFs, several HSDTs have been proposed and applied to FG plates.
Reddy [136] presented both analytical and FE formulations based on his TSDT. The
formulations account for the thermo-mechanical coupling, time dependency and von
Karman-type geometric non-linearity. Ferreira et al. [137] studied the static characteristics of
FG plates using the TSDT and a meshless method based on the multiquadrics radial basis
function. The effective properties of the composite have been derived either by the rule of
mixtures or by the Mori—Tanaka scheme. Saidi et al. [138] presented an analytical approach
based on the TSDT for bending-stretching analysis of thick FG rectangular plates. Gulshan
Taj et al. [139] also utilized Reddy’s TSDT to analyze the static behavior of FG plates by
applying the FE method. The Results have been obtained by employing a C° continuous
isoparametric Lagrangian FE with seven degrees of freedom for each node. Mori-Tanaka
scheme has been used to represent the material property of the FG plate at any point. For
extracting mechanical response of static bending and natural frequencies of FG plates with
different configurations (rectangular, circle, L-shape FG plates) in high temperature
environments, Bui et al. [140] developed a displacement-based FE formulation associated
with a novel TSDT without any requirement of SCFs. The new TSDT is based on rigorous
kinematic of displacements, deriving from an elasticity formulation rather than the hypothesis

of displacements.

The bending response of simply supported FG sandwich ceramic—metal panels has been
investigated by Zenkour [141]. The sandwich plates made of isotropic and homogeneous

ceramic core and FG skins have been studied, assuming the power law variation of ceramic
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and metal constituents through the thickness. The formulations have been done by the CPT,
FSDT, and an SSDT. Further, the same author [142], presented the static response of FG
plates using a generalized shear deformation plate theory (GSDT). The effective material
properties have been considered to vary according to the power-law through thickness. The
thermoelastic bending response of FG sandwich plates has been also studied by Zenkour and
Alghamdi [143] using the SSDT. Again, Zenkour and Alghamdi [144] analyzed the bending
response of sandwich plates made of FG skins and isotropic core subjected to sinusoidally
distributed thermo-mechanical loads using the SSDT. Once more, Zenkour [145] employed
the SSDT to solve the bending problem of FG plates with the derivation of the bending
relationships between the SSDT and CPT quantities.

Using an HPSDT, Mahi et al. [146] carried out bending and free vibration analysis of
isotropic, functionally graded, sandwich, and laminated composite plates. Mantari et al. [147]
combined exponential and trigonometric functions to develop an HSDT for the bending
analysis of FG plates. The static response of exponentially graded plates (i.e., The mechanical
properties of the plates are assumed to vary exponentially in the thickness direction) has been
analyzed by Mantari and Guedes Soares [148] using a new HSDT with a tangential function.
Again, Mantari and Guedes Soares [149] presented a generalized HSDT and its FE
formulation for the bending analysis of advanced composite plates such as FG plates. The
authors combined exponential and hyperbolic functions to develop the HSDT. The
generalized FE code is based on a continuous isoparametric Lagrangian FE with seven
degrees of freedom per node. Additionally, the same authors [150], studied the static response
of FG plate using a new HSDT. The displacement of the middle surface is expanded as a
combination of exponential and polynomial functions of the thickness coordinate. However,
the transverse displacement is supposed to be constant through the thickness. A tangential-
exponential HSDT has been proposed by Mantari et al. [151] for the bending analysis of FG
plates. Further, Mantari et al. [152] studied the static response for FG single and sandwich
plates using five different and non-existent displacement fields of the non-polynomial form
(sinusoidal, tangential, exponential, hyperbolic, and modified sinusoidal) via Carrera’s
Unified Formulation (CUF) [153]. Lately, Belkhodja et al. [154] analyzed the bending, free
vibration, and buckling mechanical behaviors of square and rectangular FG plates using an

exponential-trigonometric HSDT.

Matsunaga [155] presented a 2D-HSDT to calculate the displacements and stresses of

simply supported FG plates under thermal and mechanical loading, using several sets of
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governing equations of truncated approximate theories. Using HSDT with 11 unknowns and
FE models, Talha and Singh [156] studied the static response and free vibration analysis of
FG plates. Natarajan and Manickam [157] employed a C° 8-noded quadrilateral plate element
based on HSDT with 13 unknowns to study the static deflection and the free vibration
analysis of FG sandwich plates. The deflection and stresses of simply supported FG plates
under a uniformly distributed load have been analyzed by Tu et al. [158] using a new eight-
unknown HSDT based on a full twelve-unknown HSDT by satisfying the condition of zero

transverse stresses on the upper and lower surfaces of the FG plates.

Generally, most HSDTs are highly computationally cost due to involving in many
unknowns. To reduce the computational cost, HSDTs with four unknowns have been
developed for FG plates. Mechab et al. [159] used a two-variable RPT to study the bending
behavior of FG plates. This theory involves just four unknowns and satisfies the equilibrium
conditions at the plate’s top and bottom surfaces, with no need for any SCF. Navier method
has been applied to obtain solutions for simply supported FG plate subjected to sinusoidal
loading. Abdelaziz et al. [160] extended a two-variable RPT developed by Shimpi and Patel
[161] to the static response of FG sandwich plates. Also, Mechab et al. [162] presented
analytical solutions of static and dynamic analysis of FG plates using Four-variable RPT with
a new hyperbolic shear function. Thai and Choi [163] presented a FE formulation of various
four unknown shear deformation theories for bending and vibration analyses of FG plates.
Thai and Kim [164] presented analytical solutions for the bending and free vibration analysis
of simply supported FG plates using four unknowns HSDT. Li et al. [165] investigated the
thermomechanical bending behavior of a new type of FG sandwich plates which consist of
FG face sheets and FG core, using a four-variable RPT. Analytical solutions are obtained to
predict the deflections and stresses of simply supported FG sandwich plates. In order to
compare the static, free vibration and buckling of in-plane and through thickness FG plates,
Farzam and Hassani [166] used a new hyperbolic RPT based on physical neutral surface

position and isogeometric analysis (IGA) approach.

Carrera et al. [167] evaluated the effect of thickness stretching in plate/shell structures
made of FGMs, in the thickness directions. This effect plays a significant role in moderately
thick and thick plates and should be taken into consideration. Several studies have been
conducted considering the stretching effect, for instance, Mantari and Soares [168] presented

a generalized hybrid quasi-3D shear deformation theory for the bending analysis of FG
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plates. Many 6 DOF hybrid (polynomial and/or non-polynomial) HSDTSs, including the
stretching effect, can be derived by using this generalized formulation. Neves et al. [169-171]
used quasi-3D higher order theories with nine unknowns and meshless method to analyze the
static, free vibration and buckling behavior of FG isotropic and sandwich plates considering
sinusoidal [169], hyperbolic [170], and cubic [171] variations for in-plane displacements and
a parabolic variation for transverse displacement. Thai and Kim [172] presented a simple
quasi-3D sinusoidal shear deformation theory with only five unknowns for the bending
analysis of FG plates. This theory accounts for both shear deformation and thickness
stretching effects considering a sinusoidal variation of all displacements through the
thickness. Bessaim et al. [173] developed a five-variable HPSDT for the bending and free
vibration analysis of sandwich plates with FG isotropic face sheets. The theory accounts for
the stretching and shear deformation effects without requiring an SCF. Zenkour developed a
refined trigonometric HSDT with four unknowns for the bending analysis of FG isotropic
[174] and sandwich [175] plates. The effects of transverse shear strains as well as the
transverse normal strain have been taken into account. Hourai et al. [176] developed a five
unknowns HSDT with a sinusoidal distribution through the thickness of in-plane
displacements to investigate the thermoelastic bending of FG sandwich plates. The theory
accounts for the stretching and shear deformation effects without the use of SCF. Belabed et
al. [177] developed a new higher order shear and normal deformation theory with only five
unknowns for bending and free vibration FG plates. The theory accounts for both shear
deformation and thickness stretching effects by a hyperbolic variation of all displacements
across the thickness, and satisfies the stress-free boundary conditions on the upper and lower
surfaces of the plate without any SCF requirement. For the bending and free vibration
analysis of FG plates, Hebali et al. [178] developed a new quasi-3D hyperbolic shear
deformation theory with only five unknown displacement functions considering the stretching
effect. Amirpour et al. [179] develop an SSDT with five unknowns for the bending analysis
of FG plates with property variation throughout the length. The theory accounts for stretching
and shear deformation effects without requiring an SCF. The analytical solutions have been
verified against FE numerical solutions. Zenkour and Alghanmi [180] studied the bending of
an FG plate with two reverse simply supported edges, using a refined quasi-3D shear and
normal deformation theory with a third-order shape function. The proposed theory used only
four unknowns and satisfied the free transverse shear stresses condition on the upper and

lower surfaces of the plate, and therefore no SCFs are needed. Recently, Khiloun et al. [181]
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presented a new quasi-3D HPSDT with four unknowns for bending and free vibration of FG
plates. The theory accounts for the stretching and shear deformation effects without requiring
a SCF.

It can be observed from the above mentioned works that many papers have been also
dedicated to  the  vibration analysis of FG plates [127], [130],
[131], [133], [146], [154], [156], [157], [162-164], [166], [169-171], [173], [177], [178] and
[181]. Further studies on the vibration analysis of FG single layer and sandwich plates are

presented in the next section.

2.3.2 Vibration analysis of FG plate

The vibration responses of FG plates have been studied extensively. Several studies about
finding the 3D exact solutions for FG plates vibration analysis have been carried out. Vel and
Batra. [182] presented a 3D exact solution for the vibration of FG rectangular plates. Also,
Uymaz and Aydogdu [183] presented 3D solutions for the vibration of arbitrary boundary
conditions of FG rectangular plates using the Ritz method with Chebyshev displacement
functions. For FG sandwich rectangular plates with simply supported and clamped edges, the
free vibration response has been studies based on the 3D theory of linear elasticity by Li et al.
[184]. Natural frequencies of two types of FG sandwich plates, i. e., the sandwich plate with
FG skins and an isotropic core and the sandwich plate with isotropic skins and an FG core,
have been obtained using the Ritz method with Chebyshev polynomials. Moreover, Reddy
and Kant [185] presented an analytical solution for 3D free vibration analysis of
exponentially simply supported FG plates, using the power series method. Jin et al. [186]
presented a new 3D exact solution for the free vibrations of arbitrarily thick FG rectangular
plates with general boundary conditions. Two years ago, Singh and Kumari [187] presented a
3D elasticity based analytical solution for free vibration analysis of in-plane FG Levy-type

rectangular plates.

Using the CPT, the free vibration response of FG plates has been investigated by Abrate
[188]. The author indicated that FG plates behave like homogeneous plates. Zhang and Zhou
[189] used the physical neutral surface concept and classical nonlinear von Karman plate
theory for the vibration analysis of thin FG plates. Bending, buckling, and nonlinear bending
behaviors analysis have been also carried out. Liu and Chen [190] used the CPT to study the

free vibration of in-plane FG rectangular plates. Yin et al. [191] performed a free vibration
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analysis of thin FG plates using CPT and physical neutral surface. Ramu and Mohanty [192]
proposed a FE approach for modal analysis of rectangular FG plates based on the CPT.
Recently, Loja and Barbosa [193] studied the free vibration and dynamic instability behaviors
of in-plane FG plates based on the CPT, using Rayleigh-Ritz and Bolotin’s methods. The
influence of in-plane volume fraction distributions on the free vibrations and dynamic

instability of thin plates has been also studied.

FSDT coupled with the FE method has been used by Batra and Jin [194] to perform the
free vibrations of a FG anisotropic rectangular plate. Efraim and Eisenberger [97] presented
an exact solution using the exact element method and the dynamic stiffness method for the
vibration analysis of thick annular plates with variable thickness based on the FSDT. Later,
Hosseini-Hashemi et al. [100] presented analytical solutions based on the FSDT for free
vibration of moderately thick rectangular plates on elastic foundations. In this study, a new
formula of the SCF for FG plates has been obtained. Zhao et al. [195] also used the FSDT
and the element-free kp-Ritz method for the vibration analysis of FG plates with arbitrary
boundary conditions. Mantari and Granados [196] used a novel FSDT with only four
unknowns for the free vibration analysis of FG single-layered and sandwich plates.
Bernardo et al. [197] studied the free vibration and static responses of FG plates by
considering different numerical techniques based on the FSDT.

Abrate [198] studied the free vibration, buckling and static deflection of FG plates using
the CPT, the FSDT, and the TSDT. Examples have been presented for thick as well as thin
plates, for rectangular plates with different aspect ratios as well as circular and skew plates
and many combinations of boundary conditions. The author showed that the natural
frequencies, buckling loads and static deflections of FG plates can be obtained from the
corresponding results for isotropic plates so that direct analysis of FG plates is not necessary.
To calculate the natural frequencies of FG plates, Ferreira et al. [199] used the FSDT, the
TSDT, and meshfree method. The Mori-Tanaka technique has been used to homogenize
material properties. Kim and Reddy [200] presented analytical solutions using a couple of
stress methods based on TSDT for the vibration analysis of FG plates. Bending and buckling

responses have been also investigated.

Based on the SSDT, Zenkour [201] carried out the free vibration analysis of thick FG
plates considering the effects of rotatory inertia. Using a 2D HSDT, Matsunaga [202]

calculated the natural frequencies and buckling stresses of FG plates. Xiang et al. [203]
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proposed an n-order shear deformation theory for free vibration of FG and composite
sandwich plates. A High order shear and normal deformation theory with 12 unknowns has
been used by Jha et al. [204] for the calculation of natural frequencies of FG plates Navier’s
solution technique employing the double Fourier series has been used to give an analytical
solution. Also, Sheikholeslami and Saidi [205] used the high-order shear and normal
deformable plate theory of Batra and Vidoli [206] to investigate the free vibration of simply
supported FG rectangular plates resting on a two-parameter elastic foundation. Based on a
new exponential function, Mantari et al [207] proposed an HSDT for the vibration analysis of
FG plates resting on elastic foundations. Ankit Gupta et al. [208] investigated the free
vibration of simply supported FG square plates resting on elastic foundations. The authors
used the theory proposed by Talha and Singh [156] with a C° continuous isoparametric FE
with 13 degrees of freedom per node. Mahmoudi. et al. [209] presented an analytical solution
based on HPSDT for vibration behavior analysis of FG porous plates resting on elastic
foundations. Zaoui et al. [210] devised a new 2D and Quasi-3D HSDT for analyzing the free

vibration response of FG plates on elastic foundations.

A four-variable RPT has been applied by Hadji et al. [211] for the free vibration analysis
of FG sandwich rectangular plates. Benachour et al. [212] presented the free vibration
analysis of FG plates with arbitrary gradient based on a four-variable RPT using Navier’s
solution technique and Ritz method. The obtained results have compared well with those
obtained using FSDT and TSDT. To analyze the vibrational behavior of FG plates, Thai et al.
[213] developed an efficient shear deformation theory, which has a strong similarity with the
CPT in many aspects and involves only four unknowns. Benferhat et al. [214] studied the free
vibration analysis of an FG simply-supported plate resting on elastic foundations, using new
four unknowns RPT, based on the neutral surface concept. The isogeometric analysis
combined with an RPT has been employed by Xue et al. [215] to investigate the free
vibration responses of in-plane FG plates. Merdaci et al. [216] presented a free vibration
analysis of simply supported plate FG porous using four unknowns HSDT. Tabatabaei and
Fattahi [217] recently developed a FE approach for modal analysis of square FG plates using
the ABACUS software.
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2.3.3 Buckling analysis of FG plates

Buckling behavior is one of the critical design factors for plates subjected to compressions.
There have been extensive investigations carried out for the buckling analysis of FG isotropic
and sandwich plates to predict the critical buckling loads under various boundary and loading
conditions. Among the primary investigations is the work of Birman [218], who presented a
solution to the buckling problem of hybrid composite plates with stiffer FG fibers. Feldman
and Aboudi [219] studied the elastic bifurcation buckling of FG plates under in-plane
compressive loading. To analyze the problem, the authors employed a method based on a

combination of micromechanical and structural approaches.

Based on the CPT, Javaheri and Eslami [220, 221] studied the mechanical and thermal
buckling behavior of thin FG plates. Authors [221] developed an analytical model to predict
the critical buckling temperature of FG plates under the uniform, linear and non-linear
thermal loads. Further to these studies, Shariat et al. [222, 223] investigated the mechanical
and thermal buckling behavior of rectangular FG plates with geometrical imperfections. The
equilibrium, stability, and compatibility equations of an imperfect FG plate have been derived
using the CPT. Mahdavian [224] adopted the CPT to carry out the buckling analysis of
simply-supported FG rectangular plates under non-uniform in-plane compressive loading.
Mohammadi et al. [225] presented the Levy solution using the principle of minimum
potential energy for the buckling analysis of thin FG plates based on the CPT subjected to
different mechanical loads under various boundary conditions. Ramu and Mohanty [226]
used the FE method and the CPT to study the buckling behavior of simply supported,
rectangular FG plates under uniaxial and biaxial compression loads. The authors concluded
that the critical buckling load of the rectangular plate under uniaxial compression is greater
than the biaxial compression. Can et al. [227] also used the FE method to analyze the stability
of thin FG plates under various boundary conditions.

The FSDT has been employed by Lanhe [228] for the thermal buckling analysis of a
simply supported moderately thick rectangular FG plate under uniform and nonlinear
temperature rise. Zhao et al. [229] investigated the mechanical and thermal buckling behavior
of FG plates using the FSDT and the element-free kp-Ritz method. FG sandwich plate
buckling analysis has been carried out by Yaghoobi and Yaghoobi [230] using an analytical
approach based on the FSDT, considering various boundary conditions under thermal,
mechanical and thermomechanical loadings. The thermal buckling behaviors of FG plates
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have been investigated by Lee et al. [231] based on the neutral surface concept using the FE
method and the FSDT. In this study, the material properties of the plates are temperature
dependent; the location of the neutral surface depends also on the temperature change.
Shahbaztabar and Arteshyar [232] used the FDST and the differential quadrature element
method (DQEM) to investigate the buckling characteristics of FG plate fully or partially
resting on elastic foundation and subjected to uniaxial and biaxial in-plane loadings. By
Shariat and Eslami [233] a closed form solution based on the TSDT has been presented for
the mechanical and thermal buckling of thick FG plates. Furthermore, Foroughi and Azhari
[234] used a TSDT and the B-spline finite strip method (FSM) to analyze the mechanical
buckling and free vibration of thick FG plates resting on elastic foundations. A novel and
effective approach based on IGA and TSDT has been applied by Yin et al. [235] for free
vibration and buckling analysis of FG plates with in-plane material inhomogeneity. An
accurate computational approach based on the FE method and a new TSDT has been
developed by Van Do et al. [236] to analyze the buckling and bending behaviors of the bi-
directional FG plates. This approach does not require any special treatments of the shear-
locking effect, and the SCFs are not required as well. Moita et al. [237] used the FE model to
compare between linear and nonlinear mechanical and thermo-mechanical buckling of
rectangular FG plates. The model is based on Reddy’s TSDT, implemented in a

nonconforming flat triangular plate/shell element with 24 degrees of freedom.

SSDT has been used by Zenkour [238] to study the buckling and free vibration of simply-
supported FG sandwich plates. The obtained results were validated by comparing them with
those obtained using CPT, FSDT, and TSDT. The critical buckling load obtained using non-
symmetric FG sandwich plates was found to be higher than those of symmetric plates. Also,
Zenkour and Mashat [239] used the SSDT to obtain the buckling response of FG plates under
different types of thermal loads (uniform, linear and non-linear thermal loads). Zenkour and
Sobhy [240] studied the critical buckling temperature for FG sandwich plates. They used the
SSDT to deduce the stability equations.

Based on the HSDT, a Levy-type solution for buckling analysis of thick FG rectangular
plates has been presented by Boghadi and Saidi [241]. Results show that the critical buckling
load has an inverse relation to the aspect ratio, whereas buckling load increases as the
thickness of the FG plate increases. Neves et al. [242] used a hyperbolic sine shear
deformation theory for the linear buckling analysis of FG sandwich plates. The buckling

governing equations and boundary conditions were derived using Carrera’s Unified
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Formulation (CUF) and further interpolated by collocation with radial basis functions. In
another research study, an HSDT has been developed and applied by Reddy et al. [243] to
calculate the mechanical buckling load of the rectangular FG plate without enforcing zero
transverse shear stresses on the top and bottom surfaces of the plate. A new eight-unknown
HSDT based on full twelve-unknown HSDT has been proposed by Thinh et al. [244] to study
the buckling and free vibration of FG plates. Van Do et al. [245] used an improved mesh-free
radial point interpolation method (RPIM) and HSDT to investigate the buckling behavior of
the FG sandwich plate under uniform, linear and nonlinear temperature rises. Zenkour and
Aljadani [246] examined the mechanical buckling analysis of simply supported, rectangular
FG plates by employing a refined higher-order shear and normal deformation theory and
Navier’s technique. Nouri et al. [247] applied a CUF in conjunction with the FSM on the
mechanical buckling and static analysis of the FG plate. Recently, Tati [248] used a four-
node FE with five degrees of freedom per node based on a simple HSDT to investigate the
buckling behavior of FG rectangular plates under mechanical and thermal loading. The
proposed model accounts for a quadratic variation of the transverse shear strains across the
thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces
of the plate without the use of SCF. The assumed natural shear strain (ANS) technique has
been introduced to elevate the shear locking phenomenon. Farrokh et al. [249] studied the
buckling instability of FG plates under mechanical loads as well as uniform, linear, and
nonlinear temperature rise. The authors used an HSDT considering the CUF. They have
concluded that the plate theory order, as well as the convective heat transfer boundary
conditions, affects significantly critical instability loads. A new refined HPSDT having four
unknowns has been developed by EI Meiche et al. [250] for the buckling and free vibration
analyses of FG sandwich plates. The obtained results have been validated by comparing with
those obtained using CPT, FSDT, TSDT, SSDT, and 3D elasticity theory. Fekrar et al. [251]
also used a new RPT with four unknowns to study the mechanical buckling of hybrid FG
plates. The authors employed the principle of minimum total potential energy to derive
governing equations and the Navier method to obtain the closed-form solution. Later, Thai
and Choi [252] extended the RPT proposed by Shimpi [113] to the buckling analysis of FG
plates subjected to in-plane loading. The accuracy of the obtained results was demonstrated
by comparing them with those of CPT, FSDT and TSDT. Bateni et al. [253] did a
comprehensive study on the stability of FG plates by employing a four-variable RPT and

came to know the significance of in-plane boundary conditions for buckling analysis. Further,
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Thai et al. [254] presented a new simple four-unknown shear and normal deformations theory
and IGA for buckling, static and dynamic analyses of FG isotropic and sandwich plates. The
mixture rule or the Mori-Tanaka technique has been used to homogenize the material
properties. Several examples with different geometries, stiffness ratios, the value of power

index, and boundary conditions have been illustrated.
2.4 Conclusion

In this chapter, the most commonly used plate theories, for the modeling and analysis of FG
plates have been introduced. The earliest and simplest available theory is called the classical
plate theory (CPT). However, this theory neglects the transverse shear deformation effects
and hence predicts only the behavior of thin plates effectively. First-order shear deformation
theory (FSDT) assumes a constant transverse displacement field across the plate’s thickness.
The models based on this theory predict constant transverse shear stresses across the
thickness. Actually, the transverse shear stresses are parabolic through the thickness in
nature. To define the transverse stresses accurately, a shear correction factor is required. The
shear correction factor depends upon various factors such as end conditions, material
properties, thickness scheme, etc. In the case of high-order shear deformation theories
(HSDTys), the in-plane displacement field is expanded as a higher-order variation concerning
the thickness coordinate.

A review of various investigations carried out in the existing literature on static, vibration,
and buckling analysis of FG plates has been also presented in this chapter. Several theories
and different analytical and numerical methods have been used to describe the behavior of
FG plates.

Following this review, it can be seen that the studies carried out by finite elements on the
topic are even less numerous compared to those carried out analytically. The motivation
behind this thesis is to study the static, vibratory, and buckling behaviors of single layer and

sandwich FG plates using the finite element method based on different plate theories.
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Chapter 3

Adaptation of a rectangular finite element
(RAFSDT) for static, free vibration and
buckling analysis of FG single layer and

sandwich plates

3.1 Introduction

In this chapter, an FSDT-based four-node rectangular finite element (R4FSDT) with five
degrees of freedom per node, previously developed for the free vibration of thermally stressed
angle-ply laminated composite [255], has been adapted for static, free vibration and buckling
analysis of FG single layer and sandwich plates. The material properties of the considered
plates have been assumed to change continuously through the thickness according to a power-
law function in terms of volume fractions of the constituents. Since the properties of FG plates
are asymmetric with respect to mid-plane, the membrane and bending equations are coupled.
Therefore, the concept of the neutral surface position has been introduced to simplify the
problem and to avoid the membrane—bending coupling. The total potential energy and
Hamilton’s principles and Lagrangian equation have been used for the derivation of stiffness,
geometrical and mass matrices. To take into account the effect of second order (Buckling), the
von Karman strain tensor has been used. The assumed natural shear strain technigque has been

introduced to ensure the efficiency of the element against the shear locking phenomenon.
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3.2 Functionally graded plates

Consider a rectangular plate of plan-form dimensions L and | and uniform thickness h. The

coordinate system is taken such that the x-y plane (z = 0) coincides with the midplane of the
plate (z € [-h/2, h/2]).

Two types of FG plates are studied: (A) FG single layer plates; (B) sandwich plates with FG
skins and isotropic core.

Ceramic

A
A TZns Neutral surface + h/2
< Middle surface C

Metal

Figure 3.1 Geometry of the functionally graded single layer plate.

A

<
‘_“_hj
h/2 h:
! Ceramic or Metal . X
h/2 hi
L*T ho

4

A\ 4

L

Figure 3.2 Geometry of sandwich plate with FG skins and homogeneous ceramic or
metallic core.
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3.2.1 FG single layer plate

This plate is graded from metal (z = -h/2) to ceramic (z = h/2) as shown in Figure 3.1. The
effective material properties of the plate,including Young’s modulus E and mass density p are
assumed to vary continusely through the thickness with a power law distribution. According

to Voigt’s rule of mixtures, Young’s modulus E(z) and mass density p(z) are given by

E(Z) = Em + (Ec - Em)Vc(Z) (3.1)
p(Z) =Pmt (pc _pm)vc (Z) (3-2)
with
z 1) h h
VC(Z):[H+EJ , Ze{—a,z} (3.3)

where the subscripts m and c represent the metallic and ceramic constituents, respectively; V¢(z)
is the volume fraction of the ceramic phase and p is the power-law index that determines the
volume fraction gradation, which takes values greater than or equal to zero (p > 0). The value

of (p =0) represents a fully ceramic plate, whereas (p=) indicates a fully metallic plate.

For simplicity, Poisson’s ratio of the plate is assumed to be constant for that the effect of

Poisson’s ratio on the deformation is much less than that of Young’s modulus.

The variation of the volume fraction of ceramic Vc(z) through-the-thickness of the plate has

been presented in Figure (1.21).

3.2.2 Sandwich plate with FG skins and isotropic core

The sandwich plate is composed of three layers: two FG skins and one homogeneous ceramic
or metallic core layer. The homogeneous metallic core is commonly employed because of the
light weight and high bending stiffness in the structural design. The homogeneous ceramic core

is also employed in other fields such as control or in the thermal environments.
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The material constituents of the bottom skin varies from a metal-rich surface (z = ho) to a
ceramic-rich surface (z = h1) while the top skin varies from a ceramic-rich surface (z=hy) to a

metal-rich surface (z = hz), or vice versa, as illustrated in Figure 3.2.

The volume fraction of the ceramic and metal phase Vi (z) (i =c, m) are obtained as

Vi(z):( Gl jp, ze[hy,h|  (Bottom layer)

hy —T
Vi(2) =1, ze[h,h,]  (Ceramic or Metallic core) (3.4)
p
V. (2) {hz—_r:? ] , ze[hy,hs]  (Top layer)

Where ho=-h/2, h1, h2, and hs=h/2 are the vertical positions of the bottom surface, the two

interfaces between layers, and the top surface.

For the brevity, the ratio of the thickness of each layer from bottom to top is denoted by the
combination of three numbers, i.e. (1-0-1), (1-1-1), (1-2-1) and (2-1-2).

The (1-0-1) FG sandwich plate: In this case the plate is symmetric and made of only two

equal-thickness FG layers, i.e. there is no core layer. Thus, hy=h, = 0.

e The (2-1-2) FG sandwich plate: The plate is also symmetric and the thickness of the core is
half the skin thickness. So, one takes hy = -h/10, h, = h/10.

e The (1-1-1) FG sandwich plate: Here, the plate is symmetric and made of three equal-

thickness layers. In this case, we have, hy = -h/6, h2 = h/6.

e The (1-2-1) FG sandwich plate: Here the plate is symmetric, in which the core thickness

equals the sum of skins thickness. So, hy=-h/4, ho = h/4.

Figure 3.3 shows the through-the-thickness variation of the volume fraction Vi(z) of ceramic

and metal for various values of the power-law index p.
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Figure 3.3 The through-the-thickness variation of the volume fraction Vi(z) versus the power-
law index p for different sandwich plates. (a) The (1-0-1) FG sandwich plate. (b) The (2-1-2)
FG sandwich plate. (c) The (1-1-1) FG sandwich plate. (d) The (1-2-1) FG sandwich plate.
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3.3 Mathematical formulation
3.3.1 Displacement field

According to the first-order shear deformation theory, the displacement components vector u,

v and w in x, y and z directions, respectively, of a point of coordinates (X, y, z) within the FG
plate, are given by

u (X! y! Z,t)=U0(X, ylt)+2(px(xv y,t)
V(XY ) =v(X Y, 1) + 20, (X, Y1) (3.5)
W (Xv y! Z!t):WO(X' y!t)

where t is the time; uo, Vo, and wo are the in-plane and out-of-plane displacements on the mid-

plane of the plate, px and ¢y represent the transverse normal rotations about the y and x axes,
respectively.

3.3.2 kinematics

Using the Von-Karman nonlinear strain-displacement relationship, the strain vector
components are given by

2 2

gxza—u+1(@j =%+z%+l(%j =&+ 7k, +é&

OX 2\ 0OX OX ox 2\ OX

o 1faw) o, 0o, 1faw) ’
Ey=—+-| | = ti—+Z| | =&tk +ey

oa 2\ a oy 20

0

7/Xy:a_u+@+@@:%+%+z aﬂ_’_ﬂ +8_W@:7/3y+zkxy+7/;; (36)

oy Ox oxoy oy Ox oy oX OX oy

_ou ow_ oW

Pe =5 Tax TP T o
Yy oy ?y o

Equation (3.6) can be rewritten as follows
{e}={e't+{e"}, &'} ={&"}+2{K}
0 (3.7)
{r} {7}

Yy
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Where
2,
&l OX
{6‘0}= & (= No (3.8)
o oy
Pl oy %
oy Ox
90y
K, aa;(
k== 5 (3.9)
k)(
Y%, 09y
oy  OX
i(%j
o 2\ oX
&y 2
1( ow,
gMl=ggll= —[—Oj (3.10)
ey
VO] o Oy
ox oy
g+ 2o
0  t——
Vxa OX
{y3}={ 0}= A (3.11)
S

g'} - linear strain vector

g"} : membrane strain vector.

{
{
{k} : curvatures vector.
{g”'} - nonlinear strain vector.
{

77} : shear strain vector.
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3.3.3 Constitutive equations

The stress- strain relationships of an elastic FG plate can be written as

Q

o @ o=
oy r=|Qn Qp 0 53', or {J}z[Q]{g'}
Ty 0 0 Qg ;/)'(y

and

IS S SR CI R

Where Qjj are the elasticity stiffness coefficients given by

E
Q11 = sz :ﬁ

E(z)
1-v°

Q=

E
Qus = Qs5 = Qs :ﬁ

ks denotes the transverse shear correction coefficient.

3.3.4 Force and moment resultants

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

The asymmetry of material properties of FG plates with respect to midplane give rise to

membrane-bending coupling effect in plates. Consequently, to avoid the complexity of

membrane—bending coupling effect, the force and the moment resultants are calculated with

respect to the physical neutral plane that does not coincide with the midplane of the plate as

shown in Figure 3.1[248, 256].
Zyp=2-C

C is the distance between the neutral plane and the midplane of the plate.
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The position of the physical neutral plane can be determined by choosing C such that the

membrane force due to bending at the level of (z = C) must be zero [256].

h/2 h/2

d
_[ oydz,, = _[ {Qll(z_c)%Jrle(z—C)di;y}:O

—hy2 —hy2

Substituting Egs (3.14) and (3.15) into Eq (3.18),

b2
E@) (,_cy 90, VE@) ()99 |_
J.L—vz (2-C) dx +1—v2 (2-C) dy} 0

—hy2

By simplifying Eq (3.19), we obtain

h/2
! [d¢x +Vd(pyj j E(z)(z-C)dz=0

2
1-v={ dx dy 2
Then,
h/2 h/2 h/2
j E(z)(z-C)dz =0, j E(z)zdz-C j E(z2)dz=0
—h/2 —h/2 —h/2

So, the position of the neutral surface can be determined as [189]

h/2

J. E(z)zdz

_ —hp2
C= h/2

j E(z)dz

—hy2

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

The forces and moments can be obtained by integrating the corresponding stresses over the

thickness as follows

Nx h/2 Oy
(N} =N, t= [ {oy 2
ny —h/2 Txy
Mx h/2 Oy
{(M}=4M, —j o, 1(z-C)dz
Mxy —h/2 Txy
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SXZ h/z TXZ
{5}={S }= ] {T }dz (3.25)
) Py

The relation between the stress resultants and the strains can be expressed by

Nl [[A] 0 0 |[&°
M:=| 0 [D] 0 [ik (3.26)
S 0o o [A]|l7

Equation (3.26) can be also rewritten as following

(N} =[A]{°}
{ }=[D]{k] (3.27)

sj=[ & ]ir)

Where [A] ,[D] and [ A® are the extensional, bending and shear reduced elastic matrix,

respectively, and are given by

Ay A, O

[A]: A12 A22 0

0 0 A,

Dll D12 0
[D]=|D, D, O (3.28)

D66

In which Ajj, Dijand A% are the reduced elastic matrices coefficients, defined by

h/2

(A.D;)= j (L(z-CPRy@)dz  (i,j=126)
—h/2
h/2/

(A)=k | Q%(@dz  (i,i=45)

h/2

(3.29)
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Figure 3.4 Geometry and corresponding nodal variables of the present element.

3.4 Finite element formulation

3.4.1 Element description

A rectangular, four-node finite element based on the first-order shear deformation theory
(R4FSDT), with five degrees of freedom per node is used to perform the static, free vibration
and buckling analysis of FG single layer and sandwich plates. Figure 3.4 shows the geometry

and corresponding nodal variables of the finite element.
3.4.2 Displacement interpolation and shape functions

The displacement field vector of the present finite element can be defined as
4 -
5, (6Y)=D> Ni(x,y)8,  (2=1,234,5) (3.30)
i=1

Where &, (x, y) is the displacement or rotation of a given point M(x, y) within the element. &
and N;(x,y) are the displacement vector and the bilinear Lagrange shape functions associated

with node i, respectively.

Where &' =up, Vo, W5, and @}, (1=1,2,3,4)
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The bilinear Lagrange shape functions have the following expressions

N, (X,Y) =4711b(a—x>(b— y)

1
N,(4y) = 4 2+ (b~ ) i
N3(, y)=4711b<a+x)<b+ y)

N, (% y):rib(a_x)(b+ y)

3.4.3 Strain-displacement relationship matrices

Using the shape functions, the strain-displacement relationship of Eqs (3.8)-(3.11) can be

rewritten as follows

{°} =[B,]{a} (3.32)
{k}=[B,{a} (3.33)
{r’}=[8]{a} (3.34)
o
> L=[e]{a} (3.35)
Y

Where [B,], [B,] are (3x20) matrices, and the subscripts m and b denote the membrane and

the bending strains, respectively. [B;] and [G]are (2x20) matrices, and the subscripts s

denotes the shear strain. These matrices can be obtained from the derivation of the shape
functions of Eq (3.31) as below

N; 0 0O
OX
ON. .
[Bm]z 0 E‘ 0 0O (i=12,3,4) (3.36)
NN
Loy OX |
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0 0O N,
OX
B]=j0 0 0 o M (i=1234)
oy
000 M AN
i oy X |
00 % N, 0
B]-| (i-1234)
00 E 0 N,
00 % 00
[6]= N (i=1234)
00 — 00
o

{q} is the displacement vector (20x1) of the element which given by

{Q}T ={uiivi’wi’§0xi’¢yi} (i=12,3,4)

3.4.4 Assumed natural strain technique

(3.37)

(3.38)

(3.39)

(3.40)

The FSDT coupled with the FEM to analyze mechanical behaviors of FG plates has been

successfully utilized. However, it is well-known that the FSDT based FEM approaches using

low-order standard shape functions (Lagrangian-based, finite elements) without special

treatments inherently produce inaccurate shear strains when dealing with thin plates, due to the

shear locking phenomenon. To overcome this problem, Dvorkin and Bathe [257] and Huang

and Hinton [258] proposed the so-called ’Assumed Natural Strain (ANS) technique’” as a

solution to eliminate (or at least alleviate) the shear locking phenomena.

Here, the ANS is employed to alleviate the shear locking phenomenon. The assumed strains

are derived by using the interpolation functions based on Lagrangian polynomial and the strain

values at the sampling points where the locking does not exist [259].
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For natural assumed transverse shear strains 72* and )/yz , the following sampling points

[255, 256] are employed as shown in Figure 3.5.
7o = (0,b) 41 (0,-b)c, ?73%(A) —(a,0)5 :(-a,0)p (3.41)

Using Eq (3.41), the assumed natural strains can be defined in the following form

7 —ZP Nie:  79P —ZQg(x)yyz (3.42)

o=1

Where ¢ is the position of the sampling point and the interpolation functions P and Q are given
by

R(y)= b(b+y) BKW—Zb( -y)

Ql(x)=2_a(3+x)’ Qz(X)=2—a(a_X)

(3.43)

The transverse shear strain—displacement relationship produced by the assumed strain

method can be rewritten in the following matrix form

=[ B, ]{a} (3.44)

Where [ ]ls a (2x20) matrix, denotes the assumed natural shear strain-displacement relation

matrix given by

0 0 mw wm R(y) N; (0,b) 0
. J= +

0 0 Q) ay' (a,0) 0 Q.(x) Ni(a,0)

1
o

(3.45)

0 0 Ry %(o,—b) P,(¥) N; (0,-b) 0
(i=12,3,4)
00 Q2 (aO) 0 Q,(9) Ny (-a,0)
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Y
0,b
4 A @b 3
D (-a, 0) B@0)
1 2
C (0,-b)

Figure 3.5 Positions of sampling points.

3.4.5 Derivation of the elementary matrices

The total potential energy principle has been used to derive the elementary stiffness and
geometrical matrices of the element.

The total potential energy of an FG plate can be given as follows

7=U+W (3.46)

Where U and W are respectively the strain potential energy and the external forces work.

By introducing the assumed natural shear strain of Eq (3.44), The strain potential energy of
the plate is defined as

c

Il
N |-
0 —
N | T

| =

(3.47)

I
N [T

N~
O —

N| =

And
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U =%£({50}T{N}+{k}T{M}+{77Z°}T {S})dQ (3.48)

Q is the surface of the plate.

Using Eq (3.27), Eq (3.48) my be written as

:—j( o (k)T D]k} (70 [ A ]{72) o2 (349)

Substituting the strain-displacement relationship from Eqgs (3.32), (3.33) and (3.44) in the

above equation, we obtain

Z%i(({Q}T (8.1 [Al[B]{a})+ ({a" [T [P][B: ){a})
+({q}T (8] [AS][gs]{q}))dQ (3.50)

3.4.5.1 Static analysis

The external work done by the distributed transverse load f (x, y) applied to the plate can be

expressed as

=— j f (X, Y)W, (X, y)dQ (3.51)

Q

Using Egs (3.50), (3.51), the total potential energy can be written as

e [ Tl (.1 (A I+ (5 (o1l 1[5, ] [][8.])a) oy

e (3.52)
[ [ foan{a) NGy dxdy
-b-a

The cancellation of the first variation of the total potential energy o7z =0 , with respect to

the nodal values {q} , leads to the following equilibrium equation

[KeJ{a}={F:} (359)
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Where [K,]is the elementary stiffness matrix defined by

[K,]= ] j[[BmT[AuBmHBJ [D][BbHEsT[AS][EJ]dxdy

_b-a membrane bending shear (3 ' 54)
and {F,} is the nodal load vector,
b a "
{R)=] [ foenINy)] dxdy (3.55)
-b-a
Where [N(x,y)]given by
[N(x,y)]=[0 0 N; 0 0] (i=1234) (3.56)

3.4.5.2 Mechanical buckling analysis
The strain energy of the FG plate subjected to in-plane forces due to mechanical loading is

given by

0= [ f i ) {72} 45} o [} (357)

Q

Using Eq (3.35), we obtain

0= 4 ((1)" .7 [Aeuia))+ )" (8T (0] o)

+({ay"[B.] [AS][ES]{q}))dmj%{q}T (6T [N]iG]{a}do

Q

(3.58)

X Xy
NXY Ny

N
Where [N] { } is the stress matrix resulting from mechanical loading.

The cancellation of the second variation of the total potential energy with respect to the

nodal values {q}, allows to obtain the following eigenvalue problem

(TkJ+[K¢ J){a}=0 (3.59)
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[keg] is the geometric stiffness matrix, given by

[G]" [N][G Jxdy (3.60)

-{

m'."""

By introducing the loading factor A, the stress resultant matrix can be expressed as

[N]= ﬁ[l\_loj , then the geometric stiffness matrix can be written as follows

[ke°]= [ [ eI [Ny JicTxdy (3.61)

—b-a
Where [N0] is the stress resultant matrix due to the applied mechanical load.
The eigenvalue problem used to evaluate the critical buckling load can be given by
det([k, ]+ 2[ ke ])=0 (3.62)
Finally, the critical buckling load is given as follows

Ncri = ﬂ’cri '\_lo (363)

3.4.5.3 Free vibration analysis

In the free vibration analysis of plates,the kinetic energy of the FG plates is given by

T=2| | p(@)((0)° +(¥)* +(w)* Jdzd 2 (3.64)

r\>||—\
0 —
N | T

N

Where p(z) is the mass density calculated by law in Eq (3.2). () is the first derivative with

respect to time.

The variation of the kinetic energy with respect to time is obtained as follows.
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h
2
ST = | p@)(wsu + oy + wisw)dzdQ (3.65)
Q

_h
2

Where () is a second derivative with respect to time.

By carrying out the integration in thickness, equation (3.65) can be written as follows
(3.66)

oT = j(IO(U'Oéuo +VpSVg + WigSWy ) +12 (505 + Py 5, ) ) Q2

Q

Where (1,, 1, )are moments of inertia defined by

h
2
(|0, |2): IP(Z)(l,(Z—C)z)dZ (3.67)
Lagrangian of the system is given by
L=U-T (3.68)
In the case of free vibration, the Hamilton’s principal is given by
t t
5]’ Ldt = 5ju ~Tdt=0 (3.69)
0 0
Where t denotes the time.
Using the Lagrangian equation, given by
dfaby g (3.70)
dt\ aq ) &g
We obtain the following motion equation
[k.]{a}+[Mm]{d} =0 (3.71)
The substitution of {¢} =-«”{q} in the above equation leads to
(3.72)

([k.]-@’[M1){a} =0

Where @ is the natural frequency and [M ]is the mass matrix given by
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[M]= j T([N(x, ] [m][N(x, y)])dxdy (3.73)

-b-a

Where [m] is the inertia matrix and is given by

1, 0 0 0 0]
01, 0 0 O
[ml=|0 0 1, 0 0 (3.74)
00 01, O
100 0 0 1]
And [N(x,y)] is the shape function matrix
N, 0 0 0 0]
0O N O 0 0
[N(x,y)]=[0 0 N, 0 O (i=12,3,4) (3.75)
0 0 0 N 0
0 0 0 0 N

3.5 Conclusion

A Four-node rectangular finite element, based on the first-order shear deformation theory
(R4FSDT), with five degrees of freedom per node, has been adapted for the static, free vibration
and buckling analysis of FG plates. FG Single layer and sandwich plates with FG skins and
both homogeneous ceramic core and metallic core have been considered. The material
properties have been assumed to vary through the plate thickness according to a power-law
distribution of the volume fraction of the constituents. To avoid the membrane-bending
coupling caused by the asymmetry of the plate according to the thickness, the force and the
moment resultants have been calculated with respect to the physical neutral plane which does
not coincide with the midplane of the plate. Total potential energy and Hamilton’ principles
and Lagrangian equation have been used to formulate the stiffness, geometric and mass
matrices and the assumed natural shear strain technique has been introduced to alleviate the
shear locking phenomenon. The results presented in the following chapter make it possible to
clearly appreciate the contribution of the present finite element (R4FSDT) by comparing them

with the results reported in the literature.
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Chapter 4
Application of R4FSDT-Results and

discussions

4.1 Introduction

In this chapter, several numerical examples are presented and discussed to evaluate the
performance of the present finite element (R4FSDT). in terms of the accuracy, convergence
and stability. The static, mechanical buckling and free vibration behaviors of rectangular FG
single layer and sandwich plates are considered. For verification purpose, the obtained results
are compared with those reported in the literature. Effects of some parameters on the behaviors

of the FG plates are investigated.

4.2 Numerical results and discussions

The static, mechanical buckling and free vibration analysis results of FG single layer and
sandwich plates are presented in what follow. Here ceramic—metal functionally graded plates
are considered, and their properties, including Young’s modulus, Poisson’s ratio and density

are given in Table 4.1.

Table 4.1 Material properties used in the functionally graded plates.

Properties Metal Ceramic
Aluminium Alumina Zirconia-1 Zirconia-2
(Al (Al20s) (ZrO,-1) (ZrO.-2)
E (GPa) 70 380 151 200
p(kg/md) 2702 3800 3000 5700
v 0.3 0.3 0.3 0.3
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4.2.1 Static analysis

This section presents the static analysis of isotropic, FG single layer and sandwich plates
subjected to transverse load in the form of uniformly (UDL) and sinusoidally distributed load
(SDL).

Where the UDL is expressed as

a(x,y)=0do (4.1)

and the SDL takes the form of

q(x,y) =0, sinﬂTXsin”I—y 4.2)

For the following examples. the boundary conditions (BCs) are as follows
Simply supported (SSSS)

Wo=¢p,=0 at x=0 and x=L 43)
w,=¢,=0 at y=0 and y=I

Clamped (CCCC)

Wy=¢,=p,=0 at x=0,L and y=0, I (4.4)

4.2.1.1 Isotropic plates analysis

First, the effectiveness of the present formulation is evaluated by studying the static behavior
of isotropic square plates. Two examples have been considered.

The first example deals with a SSSS square isotropic plate subjected to UDL. The side-to-
thickness-ratio is taken as (L/h=10). The Young’s modulus and Poisson’s ratio used for this
example are: E=210 GPa and v=0.3. A shear correction factor of ks=5/6 is used. The results are

presented in terms of deflection and stresses based on the following normalized quantities

& _ 100E W[E,Ij; 5o L JX(L,L,EJ; s-L.
5 2'2'2

(4.5)
Gy =t G[L'_EJ- P (ooﬁ)
y qOSZ y 2’2'2 ! Xy qOSZ Xy ' ’2
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Table 4.2 Dimensionless deflection and stresses for isotropic square plate (L/h=10) subjected
to UDL.

Mesh  8x8  12x12  16x16 20x20  24x24  32x32 Exact TSDT6
size [260] [260]
W 4646 4657 4661 4663 4664  4.665 4.639 4625
G, 0277 0283 0285 0286 0286  0.287 0.290 0.307
5, 0277 0283 0285 0286 0286  0.287 0.290 0.307
z 0173 0183 0188 0190 0191  0.193 - 0.195

The results obtained for different mesh sizes are presented in the Table 4.2 along with the
Trigonometric Shear Deformation Theory 6 (TSDT6) and the exact solutions from Shimpi et
al. [260] and they match very well.

In the second example, a fully ceramic homogeneous square plate subjected to UDL is
considered to validate the results of the proposed finite element. The material properties of the
used ceramic (Alumina/Al.O3) are presented in Table 4.1. Four different side-to-thickness
ratios h/L and two types of boundary conditions are considered. The shear correction factor is
taken as ks=5/6.

The results of dimensionless deflection obtained by the present formulation for different
meshes are presented in Table 4.3 and compared with the exact values of deflection reported

in reference [261].

_ L |

It can be observed from Table 4.3 that the current formulation can well predict the deflection
of the simply supported and clamped homogeneous square plates, which confirm the

performance of the present finite element.
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Table 4.3 Dimensionless deflection of SSSS and CCCC square plates.

BCs h/L 8x8 12x12 16x16 20x20 24x24  32x32  Exact [261]

SSSS 0.1 0.4646  0.4657  0.4661  0.4663  0.4664  0.4665 0.4666
0.2 0.5344  0.5350 0.5353 0.5354  0.5354  0.5355 0.5357
0.3 0.6508  0.6506  0.6506  0.6505  0.6505  0.6505 0.6504
035 07264 0.7257 0.7255  0.7254  0.7253  0.7253 0.7252

CCCC 0.1 0.1625 0.1635 0.1638  0.1640 0.1641 0.1642 0.1637
0.2 0.2356  0.2365  0.2368  0.2369  0.2370  0.2371 0.2366
0.3 0.3538 0.3542  0.3543  0.3543 0.3544 0.3544 0.3524
035 04300 0.4299 0.4299 0.4299  0.4299 0.4299 0.4314

4.2.1.2 FG plates analysis

In this section, the static behavior of simply supported, square FG plates under distributed
transverse load is taken up for investigation. Typical mechanical properties for metal and
ceramics used in the FG plates are listed in Table 4.1. In the calculations, both FG single layer
and FG sandwich plates are studied. The deflection and stresses are given in the dimensionless

form given by the following formulas:

=10h3EC W(E I_) N h 0'(
gol* 2'2) " gL

10hEOW(£ l)-& 10h20[
Qo2 2'2) % ql?

_ h
Xy :qO—LTXy (0,0,Z). EO =1GPa

=
| —

1)

'5 zj' 4.7)

>
Il

r\J|I_ N

)

The shear correction factor for homogeneous plates is typically taken to be
k,=5/6 (4.8)

This constant shear correction factor is not appropriate for FG plates [96] since it may be a

function of material properties and the geometric dimension of a FG plate.

Efraim and Eisenberger [97] presented a shear correction factor for FG plates as
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5

k= (4.9)
6— (Vv +V.Ve)

Where Vm. Ve and vm. ve are the volume fractions and Poisson’s ratios of metal and ceramic.
respectively.

In the following examples the two before mentioned shear correction factors are used.

A. FGsingle layer plates

In this example problem, a simply supported Al/Al>Oz square plate (L/h=10) subjected to both
UDL and SDL, has been analyzed for various values of the power-law index p. The top surface

of the FG plate is ceramic (Al2Oz) rich and the bottom surface is pure metal (Al).

The dimensionless deflections and stresses results obtained by the present formulation are
compared with those obtained from the analytical solution of Zenkour [142], finite element
models based on the FDST of Srividhya et al. [134] and Singha et al. [129]. The results agree
well for both UDL and SDL, as presented in Tables 4.4 and 4.5, respectively.

From Tables 4.4 and 4.5, It can be observed that the shear correction factor has a slight
influence on the deflections while it has no effect on the dimensionless stresses values. In the
case of dimensionless deflections, the shear correction factor ks=5/6 produces result closer to
those of Zenkour and Singh. It can also be seen from these tables that the stresses of
homogeneous ceramic (p=0) and metal (p=w«) plates are congruent, thus, they are independent
of Young’s modulus. It can be also observed that as the power-law index increases, which

means a gradual change from ceramic to metal, the dimensionless deflection W and the normal

stress &, increase, while the in-plane shear stress 7,, decreases up to p=2 and then increases

with another increase of p.

For further illustration of the present finite element accuracy the variation of deflections w
as a function of the power-law index p for side-to thickness ratio L/h = 10 under UDL and SDL
is shown in Figure 4.1. From this figure, it can be seen that the dimensionless deflection
increases with the increase of the power-law index p. This is because that increasing the power
law index, increases the metallic volume fraction which reduces the plate rigidity. It is also

observed that the present results closely match the analytical solutions given by Zenkour [142].
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Table 4.4 Dimensionless stresses and deflections of a SSSS FG square plate(L/h = 10) under

ubDL .

p Mesh ks 8x8 12x12  16x16 20x20 24x24 Singh Srividhya Zenkour

[129] [134] [142]

0 w 5/6 0.4646 0.4657 0.4661 0.4663 0.4663 0.4666 0.4493 0.4665
Eq(4.9) 0.4634 0.4646 0.4650 0.4651 0.4652

a,.(h/2) 5/6 2.7674 2.8263 2.8468 2.8563 2.8615 2.8688 2.8621 2.8932
Eq(4.9) 2.7674 2.8263 2.8468 2.8563 2.8615

Ty (-13) 5/6 11532 1.2222 1.2512 1.2662 1.2750 _ 1.2628 1.2850
Eq(4.9) 1.1532 12222 1.2511 1.2662 1.2750

1 w 5/6 0.9247 0.9270 0.9278 0.9282 0.9284 0.9290 0.8994 0.9287
Eq(4.9) 0.9228 0.9251 0.9259 0.9262 0.9264

a,.(h/2) 5/6 42772 43681 4.3999 4.4146 4.4226 4.4303 4.4236 4.4745
Eq(4.9) 4.2772 43681 4.3999 44146 4.4226

Ty (-13) 5/6 0.9957 1.0553 1.0804 1.0934 1.1010 _ 1.0905 1.1143
Eq(4.9) 0.9957 1.0553 1.0804 1.0934 1.1010

2 w 5/6 11857 1.1886 1.1897 1.1901 1.1904 1.1952 1.1528 1.1940
Eq(4.9) 1.1831 1.1861 1.1871 1.1876 1.1878

a,.(h/2) 5/6 49944 51005 5.1376 5.1548 5.1641 5.1689 5.1653 5.2296
Eq(4.9) 4.9944 51005 5.1376 5.1548 5.1641

Ty (-h13) 5/6 0.8874 0.9406 0.9629 0.9745 0.9813 _ 0.9719 0.9907
Eq(4.9) 0.8874 0.9406 0.9629 0.9745 0.9813

4 w 5/6 13710 1.3744 13755 13761 1.3764 1.3908 _ 1.3890
Eq(4.9) 1.3677 13711 1.3722 1.3728 1.3730

a,.(h/2) 5/6 5.6169 5.7362 5.7779 5.7972 5.8077 5.8035 _ 5.8915
Eq(4.9) 5.6169 57362 5.7779 5.7972 5.8077

Ty (-h/3) 5/6 0.9258 0.9811 1.0043 1.0164 1.0235 _ _ 1.0298
Eq(4.9) 0.9258 0.9811 1.0043 1.0164 1.0235

5 w 5/6 14144 1.4178 1.4190 1.4195 1.4198 _ 1.3664 1.4356
Eq(4.9) 1.4108 14142 14154 14160 1.4162

a,.(h/2) 5/6 5.8616 5.9862 6.0297 6.0499 6.0608 _ 6.0622 6.1504
Eq(4.9) 5.8616 5.9862 6.0297 6.0499 6.0608

Ty (-h/3) 5/6 0.9403 0.9965 1.0201 1.0324 1.0396 _ 1.0296 1.0451
Eq(4.9) 0.9403 0.9965 1.0201 1.0324 1.0395

10 w 5/6 15631 1.5668 1.5681 1.5686 1.5689 _ 1.5029 1.5876
Eq(4.9) 1.5586 15623 1.5636 1.5642 1.5645

a,(h/2) 5/6 7.0277 71771 7.2292 7.2534 7.2665 _ 7.2682 7.3689
Eq(4.9) 7.0277 71771 7.2292 7.2534 7.2665

Ty (-h/3) 5/6 0.9637 1.0213 1.0454 1.0580 1.0653 _ 1.0550 1.0694
Eq(4.9) 0.9637 1.0213 1.0454 1.0580 1.0653

o0 w 5/6 2.5221 25282 25303 25313 25318 _ 2.4389 2.5327
Eq(4.9) 25158 25219 25240 25250 2.5255

a,.(h/2) 5/6 2.7674 2.8263 2.8468 2.8563 2.8615 _ 2.8621 2.8932
Eq(4.9) 2.7674 2.8263 2.8468 2.8563 2.8615

Ty (-h/3) 5/6 1.1532 1.2222 1.2512 12662 1.2750 _ 1.2628 1.2850
Eq(4.9) 1.1532 1.2222 1.2511 12662 1.2750
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Table 4.5 Dimensionless stresses and deflections of a SSSS FG square plate (L/h = 10) under

SDL.
p Mesh ks 8x8 12x12  16x16 2020  24x24  Zenkour Srividhya Singh
[142] [134] [129]
0 w 5/6 0.2938 0.2951 0.2955 0.2957  0.2958 0.2960 0.2839 0.2961
Eq(4.9) 0.2930 0.2943 0.2947 0.2949  0.2950
a,.(h/2) 5/6 1.8597 19235 1.9463 1.9568 1.9626 1.9955 1.9572 1.9679
Eq(4.9) 1.8597 19235 19463 1.9568 1.9626
Tyy(-h/3) 5/6 0.6676 0.6905 0.6987 0.7025 0.7045 0.7065 0.7026 _
Eq(4.9) 0.6676 0.6905 0.6987 0.7025 0.7045
1 w 5/6 0.5844 0.5869 0.5878 0.5882  0.5885 0.5889 0.5683 0.5891
Eq(4.9) 0.5830 05856 0.5865 0.5869 0.5871
a,.(h/2) 5/6 2.8743 29729 3.0081 3.0244 3.0333 3.0870 3.0249 3.0389
Eq(4.9) 2.8743 29729 3.0081 3.0244 3.0333
T,y (-h/3) 5/6 0.5765 0.5963 0.6034 0.6066 0.6084 0.6110 0.6067 _
Eq(4.9) 0.5765 05963 0.6034 0.6066 0.6084
2 w 5/6 0.7493 0.7526 0.7538 0.7543  0.7546 0.7573 0.7284 0.7582
Eq(4.9) 0.7476 0.7509 0.7520 0.7526  0.7529
o,(h/2) 5/6 3.3562 3.4714 35124 35315 3.5419 3.6094 3.5321 3.5456
Eq(4.9) 3.3562 3.4714 35124 35315 3.5419
Ty (-h/3) 5/6 0.5138 0.5315 0.5378 0.5407 0.5423 0.5441 0.5408 _
Eq(4.9) 05138 05315 0.5378 0.5407 0.5423
4 w 5/6 0.8669 0.8707 0.8720 0.8726  0.8729 0.8819 _ 0.8831
Eq(4.9) 0.8646 0.8684 0.8697 0.8703 0.8706
a,.(h/2) 5/6 3.7745 3.9041 3.9502 39716 3.9834 4.0693 _ 3.9813
Eq4.9) 3.7745 3.9041 3.9502 3.9716 3.9834
Ty (-h/3) 5/6 0.5359 0.5543 0.5608 0.5639 0.5655 0.5667 _ _
Eq(4.9) 0.5359 05543 0.5608 0.5639 0.5655
5 w 5/6 0.8946 0.8984 0.8997 0.9004  0.9007 0.9118 0.8636 _
Eq(4.9) 0.8921 0.8959 0.8973 0.8979  0.8982
a,(h/2) 5/6 3.9390 4.0742 41223 4.1447 4.1570 4.2488 4.1454 _
Eq(4.9) 3.9390 4.0742 4.1223 41447 4.1570
Ty (-h/3) 5/6 0.5443 0.5630 0.5696 0.5727 0.5744 0.5755 0.5728 _
Eq(4.9) 05443 05630 0.5696 0.5727 0.5744
10 w 5/6 0.9892 0.9934 0.9948 0.9954 0.9958 1.0089 0.9500 _
Eq(4.9) 0.9861 0.9903 0.9917 0.9924  0.9928
a,(h/2) 5/6 47226 4.8847 49424 49692 4.9839 5.0890 4.9701 _
Eq(4.9) 4.7226 4.8847 4.9424 49692  4.9839
T,y (-h/3) 5/6 0.5578 0.5769 0.5837 0.5869 0.5886 0.5894 0.5870 _
Eq(4.9) 05578 05769 0.5837 0.5869 0.5886
0 w 5/6 15949 16018 1.6042 1.6053 1.6059 1.6070 1.5414 1.6072
Eq(4.9) 15906 15975 15999 1.6010 1.6016
a,(h/2) 5/6 1.8597 19235 1.9463 1.9568 1.9626 1.9955 1.9572 1.9679
Eq(4.9) 1.8597 19235 19463 1.9568 1.9626
T,y (-h/3) 5/6 0.6676 0.6905 0.6987 0.7025 0.7045 0.7065 0.7026 _
Eq(4.9) 0.6676 0.6905 0.6987 0.7025 0.7045
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Figure 4.1 Variation of dimensionless deflections versus the power-law index under UDL
and SDL, (L/h=10).

The variation of the dimensionless stresses through the thickness of a square FG plate under

SDL has been studied and the results are presented in Figures 4.2 and 4.3.

The distribution of the dimensionless normal stress &, for different values of p through the

thickness is shown in Figures 4.2. From this figure it can be noticed that the dimensionless
normal stress increases with the increase of the power-law index p value. It can also be
observed that the dimensionless normal stress is tensile at the top surface and compressive at
the bottom surface. The homogeneous ceramic plate (p= 0) yields the maximum compressive
stresses at the bottom surface and the minimum tensile stresses at the top surface of the plate.

Figures 4.3 shows that the dimensionless in-plane shear stress 7, is tensile at the bottom

surface and compressive at the top surface of the FG plates. The homogeneous ceramic plate
(p=0) yields the maximum tensile stresses at the bottom surface and the minimum compressive
stresses at the top surface of the FG plate. Unlike the dimensionless normal stress, the

dimensionless in-plane shear stress decreases with the increasing of the power-law index.
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Figure 4.2 Variation of the dimensionless normal stress &, of a FG square plate under
SDL for different power-law index values (L/h = 10).
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Figure 4.3 Variation of the dimensionless in-plane shear stress 7,, of a FG square plate
under SDL for different power-law index values (L/h = 10).
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The effect of side-to-thickness ratio L/h on the dimensionless deflection W and the normal
stress &, of a simply supported, FG square plates subjected to sinusoidal load are presented in
Table 4.6. The results obtained using a 20 x 20 mesh size, are compared with the quasi-3D
solutions generated by Neves et al. [171]. As it can be seen, the values of deflection and normal
stress obtained by the present finite element are in good agreement with those of the reference.
This reiterates the fact that FSDT may be well suited to simpler geometries and moderately

thick plates.

Table 4.6 Effect of side-to-thickness ratio L/h on the dimensionless deflection and normal
stress of SSSS Al/Al,O3 square plate under SDL.

P Theory a,(h/3) w

L/h=4 L/h=10  L/h=100 L/h=4 L/h=10  L/h=100

0  Neves[171] 05151 13124  13.1610  0.3786  0.2961 0.2803
Present (5/6) 05218  1.3046  13.0463 03789  0.2957 0.2800
Present (Eq(4.9)) 05218  1.3046  13.0463 03739  0.2949 0.2800

05  Neves [171] 05736 14629 146720 05699  0.4579 0.4365
Present (5/6) 05802  1.4505 145057 05677  0.4535 0.4320
Present (Eq(4.9)) 05802  1.4505 145058 05609  0.4524 0.4320

1 Neves[171] 05806  1.4874  14.944 07308  0.5913 0.5648
Present (5/6) 05930 14825  14.8258  0.7287  0.5882 0.5618
Present (Eq(4.9)) 05930  1.4825  14.8259 07203  0.5869 0.5618

4 Neves[171] 04338 11592 117370 11552  0.8770 0.8241
Present (5/6) 04723 11808  11.8087 11120  0.8726 0.8275
Present (Eq(4.9))  0.4723  1.1808  11.8087  1.0977  0.8703 0.8275

10 Neves [171] 03112  0.8468  8.6011 1.3760  0.9952 0.9228
Present (5/6) 03529 0.8822  8.8223 13173 0.9954 0.9348

Present (Eq(4.9)) 0.3529 0.8822 8.8223 1.2981 0.9924 0.9348
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From Table 4.6, one can clearly observe that the dimensionless deflection decreases as the
side-to thickness ratio (L/h) increase, while the dimensionless normal stress increases.
Additionally, it is easily observable that the influence of the shear correction factor on the

dimensionless deflection decreases as the side-to-thickness ratio L/h increases.

B. FG sandwich plates analysis

In this section, the deflections and stresses of a simply supported sandwich plate with FG skins
and homogeneous core are presented and compared with the existing solutions to verify the
accuracy of the present formulation. FG sandwich plates made of two sets of material
combinations of metal and ceramic, Al/ZrO,-1 and Al/Al,Oz are considered. Their material
properties are given in Table 4.1.

Two cases of FG sandwich plates are studied:

. Sandwich plate with ceramic core: homogeneous core with ZrO>-1 and FG skins with
top and bottom surfaces made of Al.
e Sandwich plate with Metallic core: homogeneous core with Al and FG skins with top

and bottom surfaces made of Al»Os.

At First, a convergence study was performed for the dimensionless deflection W and normal
stress o, 0f a square Al/ZrOz-1 sandwich plate under SDL considering p=2. Four
configurations of sandwich plates (1-0-1, 1-2-1, 1-1-1 and 2-1-2 ) are considered. The results
for several meshes are reported in Table 4.7. It is observed that the present results converge
rapidly to those of Zenkour’s FSDT [141].

Tables 4.8 and 4.9 contain the dimensionless deflection W and normal stress &, of square
Al/ZrO»-1 sandwich plates with homogeneous ceramic core. A 20 x 20 mesh is considered.
The results are considered for different values of p and for different types of sandwich plates.
The obtained results using the present finite element are compared with the SSDT, TSDT and
FSDT results generated by Zenkour [141]. In general, a good agreement is found.
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Table 4.7 Convergence of the dimensionless deflection and normal stress under SDL for p=2
and L/h=10.

Mesh size Sandwich plate configurations

1-0-1 2-1-2 1-1-1 1-2-1
Dimensionless deflection W
4x4 0.3627 0.3422 0.3232 0.2936
8x8 0.3722 0.3513 0.3318 0.3013
12x12 0.3738 0.3529 0.3332 0.3026
16x16 0.3744 0.3534 0.3338 0.3031
20%20 0.3747 0.3536 0.3340 0.3033
24x24 0.3748 0.3538 0.3341 0.3034
FSDT [141] 0.3751 0.3541 0.3344 0.3037
Dimensionless normal stress &,
4x4 1.3821 1.3072 1.2350 1.1206
8x8 1.6668 1.5766 1.4895 1.3515
12x12 1.7240 1.6307 1.5406 1.3978
16x16 1.7444 1.6500 1.5588 1.4144
20x20 1.7539 1.6589 1.5673 1.4221
24x24 1.7591 1.6638 1.5719 1.4262
FSDT [141] 1.7709 1.6750 1.5824 1.4358

From Table 4.8, it can be seen that the shear correction factor has an effect on the
dimensionless deflection W as previously indicated. It can be observed from the table that when
the shear correction factor is ks=5/6, the deflection results by the present formulation are close
to those obtained by FSDT. However, in the case of ks (see Eq (4.9)), the present dimensionless
deflection results are identical to those of TSDT and SSDT. The values of the dimensionless

normal stresses &, do not depend of the used shear correction factor, as shown in Table 4.9.

In general, the difference between several types of sandwich plates is insignificant for fully
ceramic plates (p = 0). The fully ceramic plates give the smallest deflections and the largest
normal stresses. As the power-law index p increases, the dimensionless deflection and normal
stress increase, excepted for the case of (p = 0). These results decrease as the core thickness,

with respect to the total thickness of the plate, increases (1-2-1).
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Table 4.8 Dimensionless deflection of SSSS FG sandwich square plate with ceramic core
under SDL (L/h=10).

p Theory W
1-0-1 2-1-2 1-1-1 1-2-1
0 SSDT [141] 0.1961 0.1961 0.1961 0.1961
TSDT [141] 0.1961 0.1961 0.1961 0.1961
FSDT [141] 0.1961 0.1961 0.1961 0.1961
Present (5/6) 0.1958 0.1958 0.1958 0.1958
Present (Eq(4.9)) 0.1953 0.1953 0.1953 0.1953
1 SSDT [141] 0.3235 0.3062 0.2919 0.2709
TSDT [141] 0.3236 0.3063 0.2920 0.2709
FSDT [141] 0.3248 0.3075 0.2930 0.2717
Present (5/6) 0.3244 0.3071 0.2926 0.2713
Present (Eq(4.9)) 0.3237 0.3065 0.2920 0.2707
5 SSDT [141] 0.4091 0.3916 0.3713 0.3347
TSDT [141] 0.4093 0.3918 0.3715 0.3348
FSDT [141] 0.4112 0.3942 0.3736 0.3363
Present (5/6) 0.4107 0.3937 0.3731 0.3359
Present (Eq(4.9)) 0.4097 0.3929 0.3724 0.3352
10 SSDT [141] 0.4175 0.4038 0.3849 0.3412
TSDT [141] 0.4177 0.4041 0.3855 0.3482
FSDT [141] 0.4192 0.4066 0.3879 0.3499
Present (5/6) 0.4187 0.4061 0.3874 0.3495
Present (Eq(4.9)) 0.4177 0.4052 0.3866 0.3488

Figure 4.4 illustrates the variation of dimensionless deflection W of square Al/ZrO»-1
sandwich plates with homogeneous ceramic core versus the power-law index p. Side-to-

thickness ratio is taken equal to L/h=10.

Figures 4.5 and 4.6 contain the plots of the dimensionless normal stress &, through the
thickness of (1-1-1) and (1-2-1) sandwich plates with homogeneous ceramic core and for p =
0,1,4. It is clear from those two figures that the stress profile for plate made of pure material
(ceramic, p=0) changes linearly through the thickness. However, the normal stress variation is
not linear for FG plate (p=1, 4). It can be seen that the normal stress is tensile at the top surface

and compressive at the bottom surface. The homogeneous ceramic plate (p=0) yields the
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maximum compressive stresses at the bottom surface and the minimum tensile stresses at the

top surface of the sandwich plate.

Tables 4.10 and 4.11 list the dimensionless deflection w and normal stress &, for p =0,0.5,1,

5, 10 and different types of square Al/Al>Oz sandwich plate with homogeneous metallic core.
The results obtained using the present formulation are compared with those based on the
Hyperbolic refined four-variable theory (HRPT) of Boucheta [262]. It can be noted that the
results are in a good agreement. Contrary to the case of ceramic core, it can be observed that
the dimensionless deflection and normal stress for FG plates decrease with increasing the
power-law index p. It is also observed from Tables 4.10 and 4.11 that as the core thickness,
with respect to the total thickness of the plate increases, both dimensionless deflection and

normal stress increase.

Table 4.9 Dimensionless normal stress of SSSS FG sandwich square plate with ceramic core
under SDL (L/h= 10).

P Theory o, (h/2)
1-0-1 2-1-2 1-1-1 1-2-1
0 SSDT [141] 2.0545 2.0545 2.0545 2.0545
TSDT [141] 2.0499 2.0499 2.0499 2.0499
FSDT [141] 1.9758 1.9758 1.9758 1.9758
Present (5/6) 1.9568 1.9568 1.9568 1.9568
Present (Eq(4.9)) 1.9568 1.9568 1.9568 1.9568
1 SSDT [141] 1.5820 1.4986 1.4289 1.3259
TSDT [141] 1.5792 1.4959 1.4262 1.3231
FSDT [141] 1.5325 1.4517 1.3830 1.2809
Present (5/6) 1.5178 1.4378 1.3698 1.2687
Present (Eq(4.9)) 1.5178 1.4378 1.3698 1.2687
5 SSDT [141] 1.9957 1.9155 1.8184 1.6411
TSDT [141] 1.9927 1.9130 1.8158 1.6381
FSDT [141] 1.9358 1.8648 1.7699 1.5931
Present (5/6) 1.9172 1.8469 1.7529 1.5778
Present (Eq(4.9)) 1.9172 1.8469 1.7529 1.5778
10 SSDT [141] 2.0336 1.9731 1.8815 1.6485
TSDT [141] 2.0304 19713 1.8838 1.7042
FSDT [141] 1.9678 1.9217 1.8375 1.6584
Present (5/6) 1.9490 1.9033 1.8199 1.6428
Present (Eq(4.9)) 1.9490 1.9032 1.8199 1.6428
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Figure 4.4 Variation of the dimensionless deflection w of Al/ZrO,-1 sandwich square plates
with ceramic core under SDL for different power-law index values (L/h = 10), ks=5/6.
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Figure 4.5 Variation of the dimensionless normal stress &, of Al/ZrO>-1 sandwich square
plate (1-1-1) with ceramic core under SDL for different power-law index values (L/h = 10).
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Figure 4.6 Variation of the dimensionless normal stress o, of Al/ZrO,-1 sandwich square
plate (1-2-1) with ceramic core under SDL for different power-law index values (L/h = 10).

Figure 4.7 shows the variation of dimensionless deflection W of square Al/Al,O3 sandwich
plates with homogeneous metallic core versus the power-law index p. Side-to-thickness ratio
is taken to equal L/h=10.

Figures 4.8 and 4.9 illustrate the variation of the dimensionless normal stress &, through

the thickness of (1-1-1) and (1-2-1) sandwich plates with homogenous metallic core for p =
0,1,4. As shown in figures, the dimensionless axial stress of purely metallic plate (p=0) varies
linearly through the thickness. However, the variation of this stress is not linear for cases of
p>0. The maximum values of the normal compressive and tensile stresses are found on the

lower and upper extreme surfaces of the plate respectively.

o Effect of side-to-thickness ratio on the dimensionless deflection of FG sandwich plate

with homogeneous core either ceramic or metallic

The variation of the dimensionless deflection W of square FG sandwich plate with
homogeneous core either ceramic or metallic versus side-to-thickness ratio L/h is shown in
Figures 4.10 and 4.11.
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Table 4.10 Dimensionless deflection of SSSS FG sandwich square plate with metallic core
under SDL (L/h= 10).

p Theory W
1-0-1 2-1-2 1-1-1 1-2-1
0 HRPT [262] 0.4229 0.4229 0.4229 0.4229
Present (5/6) 0.4224 0.4224 0.4224 0.4224
Present (Eq(4.9)) 0.4213 0.4213 0.4213 0.4213
0.5 HRPT [262] 0.1292 0.1404 0.1510 0.1700
Present (5/6) 0.1266 0.1367 0.1465 0.1651
Present (Eq(4.9)) 0.1261 0.1361 0.1460 0.1644
1 HRPT [262] 0.1015 0.1103 0.1190 0.1355
Present (5/6) 0.0996 0.1070 0.1147 0.1300
Present (Eq(4.9)) 0.0992 0.1066 0.1142 0.1295
5 HRPT [262] 0.0802 0.0843 0.0897 0.1015
Present (5/6) 0.0796 0.0826 0.0868 0.0966
Present (Eq(4.9)) 0.0793 0.0823 0.0864 0.0962
10 HRPT [262] 0.0787 0.0819 0.0864 0.0971
Present (5/6) 0.0784 0.0805 0.0839 0.0926
Present (Eq(4.9)) 0.0781 0.0802 0.0836 0.0923

Table 4.11 Dimensionless normal stress of SSSS FG sandwich square plate with metallic core
under SDL (L/h= 10).

p Theory o,(h/2)
1-0-1 2-1-2 1-1-1 1-2-1
0 HRPT [262] 1.9933 1.9933 1.9933 1.9933
Present (5/6) 1.9568 1.9568 1.9568 1.9568
Present (Eq(4.9)) 1.9568 1.9568 1.9568 1.9568
0.5 HRPT [262] 3.1927 3.4362 3.6778 4.1362
Present (5/6) 3.1206 3.3551 3.5902 4.0405
Present (Eq(4.9)) 3.1206 3.3551 3.5902 4.0405
1 HRPT [262] 2.5155 2.6915 2.8776 3.2509
Present (5/6) 2.4582 2.6250 2.8041 3.1685
Present (Eq(4.9)) 2.4582 2.6250 2.8041 3.1685
5 HRPT [262] 2.0273 2.0921 2.1887 2.4238
Present (5/6) 1.9858 2.0425 2.1317 2.3558
Present (Eq(4.9)) 1.9858 2.0425 2.1317 2.3558
10 HRPT [262] 2.0015 2.0431 2.1203 2.3270
Present (5/6) 1.9624 1.9965 2.0664 2.2617
Present (Eq(4.9)) 1.9624 1.9965 2.0664 2.2617
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Figure 4.7 Variation of the dimensionless deflection w of Al/Al,Os; sandwich square plates
with metallic core under SDL for different power-law index values (L/h = 10), ks=5/6.
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Figure 4.8 Variation of the dimensionless normal stress &, of Al/Al,Os sandwich square
plate (1-1-1) with metallic core under SDL for different power-law index values (L/h = 10).
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Figure 4.9 Variation of the dimensionless normal stress & of Al/Al>O3 sandwich square
plate (1-2-1) with metallic core under SDL for different power-law index values (L/h = 10).
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Figure 4.10 Variation of dimensionless deflection w of (2-1-2) FG sandwich square plate
with homogeneous ceramic core under SDL versus side-to-thickness ratio L/h, (ks=5/6).
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Figures 4.10 depicts the variation of dimensionless deflection of a simply supported (2-1-2)
sandwich plate with homogeneous ceramic core versus side-to-thickness ratio for different
values of power- law index p. It can be observed that the dimensionless deflection increases
with the increase of L/h. it is also noticed that the dimensionless deflection of the metallic plate
is the largest and that of the ceramic plate is the smallest. This is due to the fact that the metallic
plate is less rigid than the ceramic plate. All plates with intermediate properties (p= 1, 2, 5)

exhibit corresponding intermediate values of dimensionless deflection.

Figures 4.11 shows the variation of dimensionless deflection of a simply supported (2-1-2)
sandwich plate with homogeneous metallic core versus side-to-thickness ratio. Unlike the case
of homogeneous ceramic core, it can be observed that for FG plates with homogeneous metallic

core, dimensionless deflection decreases as power law index p is increased.
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Figure 4.11 Variation of dimensionless deflection wof (2-1-2) FG sandwich square plate
with homogeneous metallic core under SDL versus side-to-thickness ratio L/h, (ks=5/6).

99



Chapter 4. Application of R4AFSDT-Results and discussions

4.2.2 Mechanical buckling analysis

The aim of this section is to verify the accuracy of the present finite element (R4FSDT) in
predicting the critical buckling load of FG sandwich plates. Square Al/Al>O3 sandwich plates
with homogeneous core either ceramic (Alumina, Al2O3) or metallic (Aluminum, Al) are
considered. Young’s modulus and Poisson’s ratio of aluminum are En=70 GPa, vm= 0.3,
respectively, and those of alumina are Ec=380 GPa, vc= 0.3. Three different types of in-plane
loads, uniaxial compression, biaxial compression and biaxial compression and tension are

considered.
For convenience, the following dimensionless critical buckling load is used

— L2

Ncri = Ncri W, EO :1 Gpa (4.10)

The plates are assumed to be simply supported at all edges, (Eq (4.3)). The shear correction

factor is taken as 5/6.

_’!ﬁ

Ny = 44Ny / N = 4,N,

¢ » X
v 1 v v l l v

Nyl] = izﬁo

Figure 4.12 The rectangular plate subjected to in-plane loads.
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4.2.2.1 Convergence of the dimensionless critical buckling load of (2-1-2) Al/Al203

sandwich plate with homogeneous ceramic core and metallic core

Table 4.12 shows the critical buckling loads N, obtained for the square (2-1-2) Al/Al,O3

cri
sandwich plate with homogeneous ceramic core and metallic core under uniaxial (A= -1, A2 =
0), biaxial compression (A1= A2 = -1) and biaxial compression and tension (A= -1, A2 = 1),
Figure 4.12. Different mesh sizes are considered. It can be observed that the obtained results
for power-law index p=5 and side-to-thickness L/h=10 compare well with those obtained using
the analytical solutions with improved transverse shear stiffness based on the FSDT of Nguyen

et al. [263]. These results confirm the performance of the present finite element.

Table 4.12 Convergence of the dimensionless critical buckling loads Ncri of (2-1-2) Al/Al;O3

sandwich plate with homogeneous ceramic core and metallic core under different loading, p=5,
L/h=10.

Mesh 8x8 12x12  16x16  20x20  24x24  32x32 FSDT
[263]

Uniaxial compression

Ceramic core 3.0870 3.0509 3.0384 3.0327 3.0296 3.0265 3.0226

Metallic core 125021 12.3622 12.3139 122917 12.2796 12.2676 12.2523

Biaxial compression

Ceramic core 1.5435 1.5254 1.5192 1.5163 1.5148 1.5132 1.5113

Metallic core 6.2510 6.1811 6.1570 6.1458 6.1398 6.1338 6.1261

Biaxial compression and tension

Ceramic core 6.4145 6.2037 6.1350 6.1039 6.0873 6.0709 6.0501

Metallic core 24300 23.6362 23.4095 23.3070 23.2520 23.1978 23.1287
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4.2.2.2 The dimensionless critical buckling loads of square Al/Al203 sandwich plate with

homogeneous ceramic core and metallic core under different loading

A moderately thick square Al/Al>Os sandwich plate with the side-to-thickness ratio L/h =10

and the power-law index p varied from 0 to 10 is analyzed. Dimensionless critical buckling
loads Ncri of the square sandwich plates with homogeneous ceramic core and metallic core

under uniaxial compression, biaxial compression and biaxial compression and tension are
presented in Tables 4.13, 4.14 and 4.15, respectively. The obtained results using a 24x24 mesh
size are compared with those generated by Nguyen et al. [263] based on the FSDT. A good
agreement between the results is observed for all plate configurations and values of power-law

index.

Table 4.13 Dimensionless critical buckling loads N, of square Al/Al,Oz sandwich plates

subjected to uniaxial compressive load (A= -1, A2 = 0) with homogeneous ceramic core and
metallic core, L/h=10.

p Theory N .
cri
1-0-1 2-1-2 1-1-1 1-2-1
Ceramic core
0 FSDT [263] 13.0045 13.0045 13.0045 13.0045
Present (5/6) 13.0340 13.0340 13.0340 13.0340
0.5 FSDT [263] 7.3279 7.9056 8.4041 9.1905
Present (5/6) 7.3542 7.9314 8.4296 9.2162
1 FSDT [263] 5.1424 5.8138 6.4389 7.4837
Present (5/6) 5.1542 5.8272 6.4538 7.5009
5 FSDT [263] 2.6385 3.0226 3.5596 4.7147
Present (5/6) 2.6445 3.0296 3.5679 4.7257
10 FSDT [263] 2.46906 2.7262 3.1752 4.2604
Present (5/6) 2.4747 2.7326 3.1826 4.2703
Metallic core
0 FSDT [263] 2.3956 2.3956 2.3956 2.3956
Present (5/6) 2.4010 2.4010 2.4010 2.4010
0.5 FSDT [263] 8.0036 7.4133 6.9129 6.1347
Present (5/6) 8.0125 7.4226 6.9223 6.1439
1 FSDT [263] 10.1653 9.4620 8.8256 7.7859
Present (5/6) 10.1880 9.4830 8.8450 7.8030
5 FSDT [263] 12.7196 12.2523 11.6639 10.4751
Present (5/6) 12.7483 12.2796 11.6897 10.4982
10 FSDT [263] 12.9143 12.5714 12.0602 10.9258
Present (5/6) 12.9435 12.5995 12.0870 10.9499
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Tables 4.13-4.15 show that the dimensionless critical buckling loads are the highest when
(M= -1, A2 = 1) and are the lowest when (A= A, = -1) for all power-law index values. In the
case of p =0, the dimensionless critical buckling load for several kinds of sandwich plates has
the same value. From these tables, it can be observed that with the increase of the power-law
index, the dimensionless critical buckling loads decrease for sandwich plate with homogeneous
ceramic core, and increase for sandwich plate with homogeneous metallic core. This is due to
the fact that higher values of power-law index correspond to high portion of metal in
comparison with the ceramic part for homogeneous ceramic core and inversely for

homogeneous metallic core.

Table 4.14 Dimensionless critical buckling loads N, of square Al/Al,O3 sandwich plates

subjected to biaxial compressive load (A1= A2 = -1) with homogeneous ceramic core and
metallic core, L/h=10.

p Theory N .
cr
1-0-1 2-1-2 1-1-1 1-2-1
Ceramic core
0 FSDT [263] 6.5022 6.5022 6.5022 6.5022
Present (5/6) 6.5170 6.5170 6.5170 6.5170
0.5 FSDT [263] 3.6639 3.9528 4.2020 4.5952
Present (5/6) 3.6771 3.9657 4.2148 4.6081
1 FSDT [263] 2.5712 2.9069 3.2195 3.7418
Present (5/6) 2.5771 2.9136 3.2269 3.7504
5 FSDT [263] 1.3193 1.5113 1.7798 2.3574
Present (5/6) 1.3223 1.5148 1.7839 2.3629
10 FSDT [263] 1.2345 1.3631 1.5876 2.1302
Present (5/6) 1.2374 1.3663 1.5913 2.1352
Metallic core
0 FSDT [263] 1.1978 1.1978 1.1978 1.1978
Present (5/6) 1.2005 1.2005 1.2005 1.2005
0.5 FSDT [263] 4.0018 3.7066 3.4564 3.0674
Present (5/6) 4.0063 3.7113 3.4611 3.0719
1 FSDT [263] 5.0827 4.7310 4.4128 3.8929
Present (5/6) 5.0940 4.7415 4.4225 3.9015
5 FSDT [263] 6.3598 6.1261 5.8320 5.2376
Present (5/6) 6.3741 6.1398 5.8449 5.2491
10 FSDT [263] 6.4571 6.2857 6.0301 5.4629
Present (5/6) 6.4717 6.2998 6.0435 5.4749
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It is also observed from the above mentioned tables that as the core thickness, with respect
to the total thickness of the plate, increases, the dimensionless critical buckling loads increase
for sandwich plate with homogeneous ceramic core, and decrease for sandwich plate with

homogeneous metallic core.

Table 4.15 Dimensionless critical buckling loads Ncri of square Al/Al,O3 sandwich plates

subjected to biaxial compression and tension load (A1= -1, A2 = 1) with homogeneous ceramic
core and metallic core, L/h=10.

p Theory |\]Cri
1-0-1 2-1-2 1-1-1 1-2-1
Ceramic core
0 FSDT [263] 25.0840 25.0840 25.0840 25.0840
Present (5/6) 25.2251 25.2251 25.2251 25.2251
0.5 FSDT [263] 14.3784 15.5078 16.4695 17.9713
Present (5/6) 14.4773 15.6103 16.5755 18.0831
1 FSDT [263] 10.1694 11.5009 12.7216 14,7378
Present (5/6) 10.2302 11.5698 12.7975 14.8251
5 FSDT [263] 5.2314 6.0501 7.1299 9.4086
Present (5/6) 5.2627 6.0873 7.1739 9.4661
10 FSDT [263] 4.8580 5.4545 6.3687 8.5206
Present (5/6) 4.8867 5.4881 6.4081 8.5729
Metallic core
0 FSDT [263] 4.6207 4.6207 4.6207 4.6207
Present (5/6) 4.6467 4.6467 4.6467 4.6467
0.5 FSDT [263] 15.0457 13.8664 12.8978 11.4306
Present (5/6) 15.1125 13.9288 12.9564 11.4835
1 FSDT [263] 19.1529 17.6932 16.4292 14.4373
Present (5/6) 19.2545 17.7852 16.5136 14.5107
5 FSDT [263] 24.2966 23.1287 21.8390 19.4317
Present (5/6) 24.4302 23.2520 21.9529 19.5306
10 FSDT [263] 24.7766 23.8189 22.6471 20.3011
Present (5/6) 24.9142 23.9470 22.7661 20.4050
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4.2.3 Free vibration analysis

Through this section, the dynamic behavior of square FG single layer and sandwich plates are
numerically studied. In order to verify the accuracy of the present finite element, convergence
and comparison study is shown through some examples by comparing the results with the
available results in the literature. Two sets of material combinations of metal and ceramic,
Al/ZrOz-2 and Al*/Al>Oz are considered, which their material properties are listed in Table
4.1. Young’s modulus, Poisson’s ratio and mass density of (Aluminum*/Al*) are En=70 GPa,

vm=0.3 and pm= 2707 kg/m?, respectively.

For convenience, following dimensionless natural frequency parameters are used in

presenting the numerical results in tabular form.

_ 2
B =oh/p/E., E)z%./po/Eo, 0o =1Kg/m®, E,=1GPa (4.11)

The plates are simply supported (SSSS) at all four edges.

Up=Wy=¢, =0 at x=0 and x=L

(4.12)
Vo=Wy=¢, =0 at y=0 and y=I

4.2.3.1 FG single layer plates

This example is carried out for Al/ZrO>-2 square plates with different values of side-to-
thickness ratio L/h and power-law index p. The dimensionless fundamental frequencies S are
obtained using the present finite element (R4FSDT), considering different mesh sizes. The
value of shear correction factor is taken as ks=5/6. The obtained results are compared with those
of 3D exact solutions of Vel and Batra [182], 2D-HSDT solutions of Matsunaga [202] and
FSDT-based analytical solutions of Hosseini-Hashemi et al. [264] in Table 4.16.

It can be seen from Table 4.16 that the results are in good agreement, however the present
formulation results are identical to those acquired by the 2D-HSDT [202] and FSDT [264] for
both thin and thick plates with various values of power law index p. Ones again, the obtained

results show the rapidity and stability of the present finite element.
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Table 4.16 Dimensionless fundamental frequency Bof single layer Al/ZrO,-2 square plates.

Mesh p=0* p=1 L/h=5

L/h=v10 L/h=10 L/h=5 L/h=10 L/h=20 p=2 p=3 p=5

B8 04678 00587 02311 00629 00161 02298 02310 0.2325
12x12 04645 00581 02292 00623 00160 02279 02291 0.2306
16x16 04633 00579 02285 00621 00159 02272 02285 0.2299
20x20 04628 00578 02282 00620 00159 02269 02282 0.2296
24x24 04625 00578 02280 00620 00159 02267 02280 0.2295
32x32 04622 00578 02278 00619 00159 02266 02278 0.2293
3D [182] 04658 00578 02192 00596 00153 02197 02211 0.2225
2D-HSDT [202] 04658 00578 0.2285 00619 00158 02264 02270 0.2281
FSDT [264] 04618 00577 02276 00619 00158 02264 02276 0.2291
*B=whp. [E,

4.2.3.2 FG sandwich plates

In the following, the natural frequency @ of square sandwich plates with FG skins and
homogeneous ceramic or metallic core is analyzed. The plates are made of a mixture of

Aluminum (Al*) and Alumina (AlOz). Three shear correction factors, ks from Eq (4.9),

k =5/6 and Kk, =7%/12, are considered.

The convergence of the dimensionless natural frequency @ of (2-1-2) AI*/Al>Os square
sandwich plate with homogeneous ceramic (Al203) or metallic (Al*) core is presented in Table
4.17. The results are presented for power-law index p=1, 10 and side-to-thickness ratio L/h=5,
considering different meshes. The obtained results are compared with those obtained
analytically by Thai et al. [131] based on a new FSDT with four unknowns using a shear

correction factor ks =5/6 and with the exact 3D solutions reported by Li et al. [184]

It can be seen from Table 4.17, that the shear correction factor has a slight influence on the
dimensionless natural frequency @. In the case of sandwich plate with ceramic core, the
obtained results using the shear correction factor of Eq (4.9) are close to 3D solutions [184],
while the results obtained using shear correction factors k, =5/6 and K =%/12 converge to

those based on FSDT [131]. In the case of sandwich plate with metallic core, it is observed that

whatever the shear correction factor value, the obtained results using the present formulation
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are in good agreement with those of FSDT [131]. For the following calculation, a 20x20 mesh

size and shear correction factor k, =5/6 are used.

Table 4.17 Convergence of the dimensionless natural frequency @ of (2-1-2) Al*/Al203
square sandwich plate with homogeneous ceramic core and metallic core , L/h=5.

P ks 8x8 12x12 16x16  20x20  24x24 FSDT 3D
[131]  [184]

Ceramic core
1 Eq 4.9 1.2371 1.2265 1.2228 1.2211 1.2202 1.2145 1.2292

5/6 1.2334 1.2229 1.2192 1.2175 1.2166
n?/12 1.2324 1.2219 1.2183 1.2166 1.2157

10 Eq(4.9) 0.9043 0.8964 0.8937 0.8924 0.8918 0.8881 0.8923
5/6 0.9022 0.8943 0.8916 0.8904 0.8897
/12 0.9016 0.8938 0.8911 0.8898 0.8891

Metallic core

1 Eq(4.9) 1.5546 1.5423 1.5380 1.5360 1.5350 1.5237 1.4333
5/6 1.5456 1.5334 1.5291 1.5272 1.5262
/12 1.5432 1.5311 1.5269 1.5249 1.5239

10 Eq (4.9 17321 1.7321 1.7321 1.6583 1.6583 1.6827 1.6091
5/6 1.7321 1.6583 1.6583 1.6583 1.6583
/12 1.7321 1.6583 1.6583 1.6583 1.6583

Tables 4.18 and 4.19 list the dimensionless natural frequency @ of simply supported,
Al*/Al,O3 square sandwich plates with homogeneous ceramic or metallic core for side-to
thickness ratio L/h=5 and L/h= 10, respectively. The obtained results for different values of
power-law index p are compared with the 3D exact solutions given by Li et al. [184], analytical
solutions based on FSDT presented by Thai et al. [131] and Nguyen et al. [263] using shear

correction factor equal to 5/6. It can be observed that a good agreement exists between the

results, however, in the case of sandwich plates with metallic core the obtained results are in

excellent agreement with those obtained based on FSDT.

For both side-to-thickness ratios, it can be seen that for p=0 the dimensionless natural
frequencies of the several kinds of sandwich plates are the same. Furthermore, it is seen that as
the power-law index increase the dimensionless natural frequencies decrease for sandwich
plate with homogeneous ceramic core, whereas they increase for sandwich plate with

homogeneous metallic core. This is because higher values of the power-law index correspond
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to a high portion of metal in comparison with the ceramic part for homogeneous ceramic core

and inversely for the homogeneous metallic core.

Tables 4.18 and 4.19 also show that as the core thickness, with respect to the total thickness
of the plate, increases, the dimensionless natural frequencies increase for sandwich plate with
homogeneous ceramic core, while they decrease for sandwich plate with homogeneous metallic

core.

Table 4.18 Dimensionless natural frequencya of simply supported AI*/Al,Oz square
sandwich plates with homogeneous ceramic or metallic core for L/h= 5.

p Theory w
1-0-1 2-1-2 1-1-1 1-2-1
Ceramic core
0 3D[184] 1.6771 1.6771 1.6771 1.6771
FSDT [131] 1.6697 1.6697 1.6697 1.6697
Present (5/6) 1.6583 1.6583 1.6583 1.6583
0.5 3D[184] 1.3536 1.3905 1.4218 1.4694
FSDT [131] 1.3395 1.3764 1.4081 1.4571
Present (5/6) 1.3428 1.3798 1.4116 1.4607
1 3D[184] 1.1749 1.2292 1.2777 1.3534
FSDT [131] 1.1607 1.2145 1.2632 1.3403
Present (5/6) 1.1635 1.2175 1.2663 1.3435
5 3D[184] 0.8909 0.9336 0.9980 1.1190
FSDT [131] 0.8836 0.9256 0.9862 1.1056
Present (5/6) 0.8858 0.9279 0.9887 1.1084
10 3D[184] 0.8683 0.8923 0.9498 1.0729
FSDT [131] 0.8613 0.8881 0.9406 1.0596
Present (5/6) 0.8634 0.8904 0.9430 1.0622
Metallic core
0 3D[184] 0.8529 0.8529 0.8529 0.8529
FSDT [131] 0.8491 0.8491 0.8491 0.8491
Present (5/6) 0.8511 0.8511 0.8511 0.8511
0.5 3D[184] 1.3789 1.3206 1.2805 1.2258
FSDT [131] 1.4242 1.3816 1.3423 1.2766
Present (5/6) 1.4275 1.3847 1.3454 1.2795
1 3D[184] 1.5090 1.4333 1.3824 1.3213
FSDT [131] 1.5626 1.5237 1.4835 1.4101
Present (5/6) 1.5640 1.5272 1.4868 1.4133
5 3D[184] 1.6587 1.5801 1.5028 1.4267
FSDT [131] 1.6774 1.6718 1.6491 1.5876
Present (5/6) 1.6583 1.6583 1.6583 1.5811
10 3D[184] 1.6728 1.6091 1.5267 1.4410
FSDT [131] 1.6778 1.6827 1.6672 1.6130
Present (5/6) 1.6583 1.6583 1.6583 1.5811
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Table 4.19 Dimensionless natural frequency & of simply supported Al*/Al,O3 square
sandwich plates with homogeneous ceramic or metallic core for L/h=10.

p Theory @
1-0-1 2-1-2 1-1-1 1-2-1
Ceramic core
0 3D[184] 1.8268 1.8268 1.8268 1.8268
FSDT [263] 1.8244 1.8244 1.8244 1.8244
Present (5/6) 1.8292 1.8292 1.8292 1.8292
0.5 3D[184] 1.4461 1.4861 1.5213 1.5767
FSDT [263] 1.4408 1.4809 1.5164 1.5723
Present (5/6) 1.4455 1.4855 1.5210 1.5769
1 3D[184] 1.2447 1.3018 1.3552 1.4414
FSDT [263] 1.2403 1.2973 1.3507 1.4372
Present (5/6) 1.2436 1.3007 1.3543 1.4410
5 3D[184] 0.9448 0.9810 1.0453 1.1757
FSDT [263] 0.9426 0.9787 1.0418 1.1716
Present (5/6) 0.9451 0.9813 1.0446 1.1747
10 3D[184] 0.9273 0.9408 0.9952 1.1247
FSDT [263] 0.9251 0.9396 0.9926 1.1207
Present (5/6) 0.9275 0.9421 0.9952 1.1237
Metallic core
0 3D[184] 0.9290 0.9290 0.9290 0.9290
FSDT [263] 0.9278 0.9278 0.9278 0.9278
Present (5/6) 0.9302 0.9302 0.9302 0.9302
0.5 3D[184] 15735 1.5259 1.4846 1.4166
FSDT [263] 1.5916 1.5503 1.5094 1.4369
Present (5/6) 1.5949 1.5536 1.5127 1.4401
1 3D[184] 1.7223 1.6744 1.6305 1.5579
FSDT [263] 1.7427 1.7102 1.6712 1.5936
Present (5/6) 1.7472 1.7147 1.6756 1.5977
5 3D[184] 1.8420 1.8261 1.7896 1.7267
FSDT [263] 1.8488 1.8617 1.8493 1.7941
Present (5/6) 1.8536 1.8665 1.8541 1.7987
10 3D[184] 1.8402 1.8399 1.8081 1.7481
FSDT [263] 1.8421 1.8679 1.8650 1.8204
Present (5/6) 1.8469 1.8728 1.8698 1.8250
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4.3 Conclusion

In this chapter, the present finite element (R4FSDT) has been used to investigate the static,
mechanical buckling and free vibration behaviors of FG single layer and sandwich plates.
numerical results in terms of deflection, stresses, critical buckling loads and natural frequencies
are presented and compared with those available in the literature. All the comparisons show
that the results obtained with the present element and those of the references are in good
agreement, confirming the performance and accuracy of the present formulation. The effects
of some parameters like power-law index p, side-to-thickness ratio L/h, etc on the behaviors of
the FG plates, have been also investigated. The important conclusions that emerge from this

study can be summarized as follows:

e The present results show that the developed finite element R4FSDT can well predict the
static, stability and vibration responses of FG single layer and sandwich plates.

e The obtained results using the R4AFSDT element reiterate that FSDT may be well suited
to simpler geometries and moderately thick plates.

e The shear correction factor has a slight influence on the dimensionless deflections and
natural frequency while it has no effect on the dimensionless normal stresses values. The
influence of the shear correction factor on the dimensionless deflection decreases as the
side-to-thickness ratio L/h increases.

e Inthe case of FG single layer plates, the dimensionless deflection decreases by increasing
the L/h ratio whereas it increases with the increasing of power-law values.

e In the case of a sandwich plate with a ceramic core, the dimensionless deflection
increases as the power-law index increases and decreases as the core thickness increases.
The opposite has been observed for the homogeneous metallic core. For sandwich plate
with either ceramic or metallic core the dimensionless deflection increases with the
increase of side-to-thickness ratio L/h.

e The dimensionless critical buckling loads and natural frequencies decrease for sandwich
plate with homogeneous ceramic core with the increase of the power-law index, whereas
they increase for sandwich plate with homogeneous metallic core. The results increase
for sandwich plate with homogeneous ceramic core as the core thickness, with respect to
the total thickness of the plate increases, while they decrease for sandwich plate with

homogeneous metallic core.
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Chapter 5

Development of a new rectangular finite element
based on a novel trigonometric shear
deformation theory (R4SSDT) for the analysis of

FG single layer plates behavior

5.1 Introduction

This chapter aims to present a novel trigonometric shear deformation model with only five
unknowns for the analysis of FG plates behavior. The model presents a sinusoidal variation of
the transverse shear strains across the thickness and satisfies the shear stress-free boundary
conditions on the top and bottom surfaces of the plate, without the need of shear correction
factor. Based on the proposed model, a rectangular finite element has been developed for the
static, buckling and dynamic analysis of FG single layer plates. The present finite element, has
been defined by four nodes and five degree of freedom per node. The considered FG plates
have been assumed to have isotropic, two constituent material distribution through the
thickness, and the material properties have been assumed to vary according to a power-law
distribution in terms of volume fractions of the constituents. To take into account the effect of
second order, the von Karman strain tensor has been used. Total potential energy and Hamilton’
principles and Lagrangian equation have been used to formulate the stiffness, geometric and
mass matrices. The assumed natural shear strain technique has been employed to prevent any
shear locking phenomenon. Furthermore, the concept of the neutral plane has been introduced

to avoid the membrane—bending coupling.
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5.2 A novel trigonometric shear deformation theory for FG plates

In this chapter, a novel trigonometric shear deformation model has been proposed. The model

is an amelioration of the Reissner—Mindlin model by introducing the effect of stretching.

5.1.1 The proposed displacement field

The in-plane displacements u, v and the transverse displacement w for the plate are assumed

as,

u (X, y, z,t) =ug(X, y,t) + ze, (X, y,1)
V(X Y, z,t) =vy(X, y,t)+2¢y(x, y,t) (5.1)

2 2
w (X, Y, z,t) =Wy (X, y,t)+h—2(sin%zj w, (X Y1)
T

Where u, v and w denote the displacements of a point M (x, y, z) within the FG plate. up and vo
are the in-plane displacement vector components at any point of the midplane in x and y
directions, respectively. wo (X, y) is the transverse displacement of the midplane points of the
plate and v, is the stretching contributions of the displacement in the transverse direction. The

variable y, will be eliminated on the assumption of zero shear stress at the top and the bottom

surfaces of the plate and that the transverse shear strains are sinusoidally distributed through
the thickness.

5.1.2 Kinematics

According to the Von Karman deformation tensor, the vector strains components are expressed
as follows

2

X_@_U:6UO+28¢)X +1(8W0j
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a 2
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To eliminate the variable w,(x,y,t), the condition of zero shear stress at the free top and

bottom surfaces of the plate is imposed.

VoM =7, [0 ]=0 (5.3)
[#5)=(#3)

The variable v, (x,y), can be expressed in term of y?, and 7y, as follows

al//z(xvy)z 7[2 0 al//z(xvy)_ T

2
X h2 Vxz o oy —_FVSz (5.4)

Using Eq (5.4), the transverse shear strain components of Eq (5.2) can be expressed by

Ve = 7)92 (1—5”’12 %Zj

(5.5)
Ve =750 (1—sin2 ”—Zj
h
Eq (5.5) can be rewritten as
=0 1.(z
Vx2 7);2 1(2) (5.6)
7/yz :7/yz fl(z)
With f,(z) is a shear function defined by
f,(2) =(1—sin2 %Z] (5.7

e Enhancement of the shear function

In the case of the Reissner—Mindlin theory, correction factors are introduced to take into
account the supposition of constant shear deformation through the thickness of the plate. These
factors are obtained by comparing the energy of shear deformation according to tridimensional
elasticity theory and that of Reissner—Mindlin theory. Therefore, the shear stress for assumed

isotropic material is given by

5

Ty = €Q447/)((JZ
5

Ty = €Q557/82

(5.8)
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Where Q,, and Qsare the stiffness coefficients of the elasticity matrix of the material.

The shear strain energy per unit area can be expressed by

h/2 h/2

UsFiiM :% J- (TXZ)/SZ +Ty2732)d22% j
e “hj2

(§Q44(7/)(()Z )2 +%Q55 (731 )Zjdz (5.9)

By integrating over the thickness, Eq (5.9) can be written as
UZ =5 o4 +(4)) (510
The shear strain varying through the thickness according to the following expressions
Va=t@ra  7.=f@ry (5.11)
Where
f(2) =B, (2) (5.12)
S denotes the enhancement factor.

The shear stresses are given by
Ty, =Quu f (2)7/)(()2’ Ty, = Qss f (2)732 (513)

The shear strain energy per unit area can be written as follows

1 h/2 1 h/2
ug" -3 I (rﬂmﬂyzm)dz:E j (QMf(z)Z(ygz)z+Q55f(z)2(ygz)2)dz (5.14)
/2 -h/2

The integration through the thickness of Eq (5.14) leads to

Ug" =%Q44((y32 )+ (% )z)gﬂzh (5.15)

The equalization of the two expressions of energy in Eqgs (5.10) and (5.15) allows to have

3 2. 5
—ph==h 5.16
~pn== (5.16)
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Then

p=32 (5.17)

Finally, the enhanced shear function can be written as

()= 25 [1—(sin%zﬂ (5.18)

3

After the elimination of the variable w, (x,y,t), The displacement field of the new model is

given as follows [256]

Uy, 2,8 =Uo(x, y,t) + 29, (X, y.1)
V(X Y, Z,t) =V (X, Y, 1) + 20, (X, Y, 1) (5.19)
w (X Y, 2,t) = F(2)Wo (X, ¥, 1) +( f(2) -1)G(x, y.1)

Where G(x,y,t) is a function defined by

oG(x, y,t)
ox

_ oG(x,y,t)

> (5.20)

P (X, y,t) = @, (X, Y,1)

It can be seen that the displacement field in Eq (5.19) contains only five unknowns as in
Reissner—Mindlin model.

The strain field can be rewritten in matrix form as

& «91
{e}=1¢e,t=1¢ +i&) (5.21)

&l | e )
{g'}z gy 1=1 6 r+29K, (5.22)
7>I<y 7>(<)y kXy
y Ve
{yz}:{ XZ}: f(z){ f} (5.23)
7YZ 7/yz
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Where
auy
&’ OX
oV,
ol) ol Yo (5.24)
{ } 3’ oy
Pl o
oy OX
99«
K, a6x
=1k = 2 (5.25)
K oy
Xy 8&+5§0y
oy  oX
3(%)
o 2\ oOx
gx 6W 2
1
gMl=lgMt= —[—OJ (5.26)
N IREE
Y| Wy Wy
OX oy
a\NO
AN A
0 Xz
Y, (= = (5.27)
by

5.2.3 Constitutive equations

The same rectangular FG single layer plate studied in chapter 3 is considered here. As shown
in Figure (3.1), the plate is assumed to be composed of metal and ceramic. The Young’s
modulus E and mass density p of the plate are assumed to vary depending on the thickness
according to the power-law distribution and are defined in the same way as in Chapter 3

E(2)=E, +(E, - Em)(%%jp (5.28)
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z 1Y
P(2) = pn +(pc _pm)(ﬁ"i_ij (5.29)

Subscripts m, ¢ and the index p retains the same definitions. The Poisson’s ratio v is assumed

to be constant through the thickness of the plate.

For an elastic FG plate, the constitutive relations can be given by

v 0 0 0
-, v 1 0 0 0 |[&
_ |
Oy E(2) 00 v 0 0 &y
Ty t= 2 y (5.30)
1— VZ 1—y Xz
Tyz 0 0 0 T 0 7/yz
Ty _,n
00 0 O 1TV Y

5.2.4 Force and moment resultants

As indicated in chapter 3, to avoid the membrane-bending coupling caused by plate asymmetry,
the force and the moment resultants are calculated with respect to the physical neutral plane,

which does not coincide with the midplane of the plate.

The definition of the position of the neutral surface remains the same and is given as follows

h/2
j E(z)zdz
o L — (5.31)

h/2

j E(z)dz

—h/2

Using the constitutive equations, the force and moment results can be expressed as follows

h/2
(N;,M,)= I (L(z-C))(o;)dz, (i=xy,xy) (5.32)

~h/2
h/2

S, = J. f(2)(7)dz,  (i=xz,yz) (5.33)

“h/2
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The stress resultants-strains relationship can be written in matrix form as below

N] [[A] 0 0 |[&°
Mi=| 0 [D] 0 [{k (5.34)
S 0 0 [AS] 7?
Where
Ay A, O
[A]: A, Ay 0
0 0 A
Dll D12 O
[D]= D, Dp O (5-35)
0 0 D
|:As:|:|:AAS4 0 il
0 A

And the reduced elastic matrices coefficients Ajj, Dijand AS;j are defined by

h/2

(A.Dy)= j (L(z-CeR;(dz  (i,j=126)
y “hy2

(A)= | u@f@*dz  (.j=45)

—h/2

(5.36)

5.2 Finite element formulation

Based on the proposed trigonometric (sinusoidal) shear deformation model, a four-node
rectangular finite element, named (R4SSDT) has five degrees of freedom per node is
formulated for the analysis of the static, free vibration and mechanical buckling responses of

FG single layer plates.
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5.3.1 Kinematic relationships

The displacements within the element are interpolated using the bilinear Lagrange shape
functions that were expressed before in Eq (3.30) in Chapter 3.

The strains can be expressed in terms of nodal displacements using the matrices given in
Eqgs (3.36)-(3.39).

To prevent any potential shear locking phenomenon, the assumed natural shear strain

technique is employed. Therefore, the [B, ] matrix from Eq (3.38) is replaced by the assumed

natural deformation displacement relationship matrix | B, ] given in Eq (3.45).

5.3.2 Derivation of the elementary matrices

The total potential energy principle has been used to derive the elementary stiffness and
geometrical matrices of the element.
7=U+W (5.37)

For static analysis, the equilibrium equation can be obtained by the cancellation of the first

variation of the total potential energy sz =0 , with respect to the nodal values {q} .

[K.[{a} ={F.} (5.38)

Where [K.] and {F,

e

} are the elementary stiffness matrix and the nodal load vector,

respectively.

(5.39)

- ][l 1A BT 1015) (8] [~ 8 ] oy

membrane bending shear

b a
:ij(x, Y)[N(x,y)]' dxdy (5.40)

-b-a

For the mechanical buckling analysis, the cancellation of the second variation of the total

potential energy leads to the following eigenvalue problem
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([keJ+[ke ]){a}=0 (5.41)

The elementry geometric stiffness matrix is given by

(ke = [ [IeT [Niclxdy (5.42)

-b-a

Using the loading factor A, the stress resultant matrix can be expressed as[N]= /I[NO] :

then the geometrical matrix can be rewritten as

(k=] [ 16" [N, Jickxdy (5.43)

-b-a

To evaluate the critical buckling load The following eigenvalue problem is used

det [k, ]+ A[k¢®)=0 (5.44)
The critical buckling load is finally given as follows
Neri = Aeri I\_IO (545)

For free vibration problem we set the external forces and the damping to zero . by applying

Lagrangian equations (see, Eq (3.68) and (3.70)), the equations of motion can be expressed by

[k.]{a} +[M]{d} =0 (5.46)

([k.]-@*[M1){a} =0 (5.47)
Where o is the natural frequency; [m]is the element mass matrix given by

IMI= [ [ ([N y) T ImI[N(x, y)])jdxcy (5.48)

Le—v
—_—

@

Where [m] And [N(x,y)] are respectively the inertia matrix and the shape function matrix,

given as in Eqgs (3.74) and (3.75), respectively.
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5.3 Conclusion

In this chapter, a novel trigonometric shear deformation model with five unknowns, has been
proposed for the analysis of FG plates behavior. The model accounts for the sinusoidal
variation of the transverse shear strains across the thickness and satisfies the shear stress-free
boundary conditions on the top and bottom surfaces of the plate. A shear correction factor,
therefore, is not required. On the basis of the proposed model, a four-node rectangular finite
element, with five degrees of freedom per node, has been formulated for the static, free
vibration and buckling analysis of FG single layer plates. The material properties have been
assumed to vary through the plate thickness according to a power-law distribution of the
volume fraction of the constituents. To avoid the membrane-bending coupling caused by the
asymmetry of the plate according to the thickness, the force and the moment resultants have
been calculated with respect to the physical neutral plane which does not coincide with the
midplane of the plate. Total potential energy and Hamilton” principles and Lagrangian equation
have been used for the derivation of the stiffness, geometric and mass matrices. Furthermore,
the assumed natural shear strain technique has been introduced to prevent any shear locking

phenomenon.
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Chapter 6

Application of R4SSDT- Results and

discussions

6.1 Introduction

Through this chapter, a number of numerical examples are conducted to show the performance
and the accuracy of the proposed finite element model in predicting the static, mechanical
buckling and free vibration responses of rectangular FG single layer plates. Numerical results
in terms of deflection, stresses, critical buckling loads and frequencies are obtained and
compared with the existing results in the literature. Effects of various parameters such as
boundary conditions, aspect ratio, plate thickness, and material distribution across the thickness

of the plate are investigated.
6.2 Numerical results and discussions

In this section, one presents the static response, the critical buckling loads and the natural
frequencies of rectangular FG single layer plates using the developed finite element based on
the new proposed model (R4SSDT). Two types of FG plates, one made up of Al/Al;O3, and
the other made up of Al/ZrO; are considered. The material properties of these constituents are
listed in Table 6.1.

Table 6.1 Material properties used in the functionally graded plates.

Properties Metal Ceramic

Aluminium (Al) Alumina (Al;Oz3) Zirconia (ZrOy)
E (GPa) 70 380 200
p(kg/m3) 2702 3800 5700
v 0.3 0.3 0.3
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6.2.1 Static analysis

The static behavior of a rectangular FG plate comprised of Aluminum/Alumina under
distributed transverse load is taken up for investigation. The top surface of the FG plate is
ceramic (Alumina) rich and the bottom surface is pure metal (Aluminum). Material properties

of the aluminum and alumina are shown in Table 6.1. Transverse load q(x, y) is applied on the

top surface (z = h/2) of the plate, in the form of uniformly distributed load (UDL), q(x,y) =0,

, or sinusoidal loads (SSL), q(x, y)=qosin”TXsin”Ty .

For all the following examples, only simply supported boundary conditions are considered

and are as follows

Wo=¢,=0 at x=0 and x=L

(6.1)
W, =@, =0 at y=0 and y=I

For convenience, the following relations for the non-dimensional deflection and stresses are

. (L IJ_ _ h (L | h)_
T W o o= =i |
QoL 2'2 gl “\2'2'2

Llhj- P L (oo-ﬁj-
2'2'3) Y gL o\ 3) (6.2)

W=

6.2.1.1 FG square plate with L/h=10 subjected to uniform and sinusoidal loading

Firstly, a simply supported, moderately thick Al/Al,Os square plate under UDL has been
examined (L/h = 10). The plate has been subdivided into 8 x 8, 12 x 12, 16 x 16, and 20 x 20
mesh size. Table 6.2 contains the dimensionless deflection and stresses for different values of
power-law index p. The obtained results using the present finite element (R4SSDT) are
compared with those obtained using the present FSDT- based finite element (R4FSDT) with
20 x 20 mesh size, the SSDT developed by Zenkour [142], the finite element model based on
the HSDT of Tati [256] and the finite element model based on the TSDT of Reddy [136].
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Table 6.2 Dimensionless deflection and stresses of a SSSS Al/Al,O3 square plate under UDL
for different power-law index values (L/h=10).

p R4SSDT R4FSDT  SSDT  HSDT  TSDT
8x8 12x12  16x16  20x20 20 x 20 [142] [256] [136]

Ceramic w 0.4646 0.4657  0.4661  0.4663  0.4663 0.4665  0.4663  0.4665
G, 2.7674 2.8263  2.8468  2.8563  2.8563 2.8932 2856  2.8920

G, 1.8450 1.8842  1.8979  1.9042 - 1.9103  1.904  1.9106

Ty 11532 1.2222  1.2512  1.2662  1.2662 1.2850  1.266  1.2855

Toy 0.4963 05314 05492  0.5600 - 05114 04696  0.4963

Ty, 0.3722 0.3986  0.4119  0.4200 - 0.4429  0.4174  0.4411

1 w 0.9247 09270 09278  0.9282  0.9282 0.9287 09282  0.9421
A 42772 43681 43999 44146  4.4146 44745 4415  4.2598

a, 2.0066 2.1412  2.1567  2.1639 - 2.1692  2.164  2.2569

T,, 09957 10553  1.0804 10934  1.0934 1.1143  1.093  1.1573

Toy 0.4963 05314 05492  0.5600 - 05114 04696  0.4963

Ty 0.4577 0.4901 05065  0.5165 - 0.5446 05133  0.5425

2 w 1.1922 1.1951  1.1961  1.1966  1.1901 1.1940  1.1948  1.2228
G, 49944 51005 51376 51548  5.1548 52296 5155  4.8881

a, 1.9689 2.0107  2.0253  2.0321 - 2.0338  2.032  2.1663

T,  0.8876 0.9407  0.9630 09746  0.9745 0.9907  0.9745  1.0449

., 0.4763 05100 05271  0.5374 - 0.4700  0.4368  0.4538

Ty 0.5032 05388 05568  0.5678 - 05734 05469  0.5686

4 w 1.3934 1.3966  1.3976  1.3982  1.3761 1.3890  1.3916 -
&, 56169 57362 57779 57972 57972 5.8915  5.797 -

G, 1.6699 1.7054  1.7178  1.7236 - 1.7197 1724 -

T,,  0.9261 09814 10045 1.0165  1.0164 1.0298  1.016 -

Toy 0.4480 0.4797  0.4958  0.5055 - 0.4204  0.3926 -

Ty 0.4934 05283 05460  0.5567 - 0.5346  0.5124 -

5 w 14419 14452 14463 14468  1.4195 1.4356 14389  1.4647
&y 5.8616 59862  6.0297  6.0499  6.0499 6.1504  6.050  5.7065

a, 15654 15987  1.6103  1.6157 - 1.6104 1616  1.7144

T,, 09407 09969  1.0204 10326  1.0324 1.0451  1.032  1.1016

Toy 0.4481 0.4798  0.4959  0.5057 - 0.4177  0.3905  0.4004

Ty 0.4674 05005 05172  0.5274 - 0.5031  0.4827  0.4950

10 w 15945 15979 15992 15997  1.5686 15876 15934  1.6054
A 7.0277 71771 7.2292  7.2534  7.2534 73689  7.253  6.9540

a, 1.2476 1.2741  1.2834  1.2877 - 1.2820  1.288  1.3350

T,,  0.9641 1.0216 10457  1.0581  1.0580 1.0694  1.058  1.1119

Ty 0.4791 05130 05302  0.5407 - 0.4552  0.4298  0.4392

Ty 0.3853 0.4125  0.4264  0.4348 - 0.4227 04096  0.4180

Metal w 25221 25282 25303 25313 25313 2.5327 - -
&y 2.7674 2.8263  2.8468  2.8563  2.8563 2.8932 - -

a, 1.8450 1.8842  1.8979  1.9042 - 1.9103 - -

Tyy 1.1532 1.2222  1.2512  1.2662  1.2662 1.2850 - -

Toy 0.4963 05314 05492  0.5600 - 0.5114 - -

Ty 0.3722 0.3986  0.4119  0.4200 - 0.4429 - -
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The bending behavior of the previous plate has also been analyzed for a SDL. The
dimensionless deflection and stresses using different mesh sizes for different values of power
law-index p are presented in Table 6.3. The obtained results are compared with those obtained
using the present R4FSDT with 20 x 20 mesh size, the results reported by Zenkour [142]
obtained analytically using an SSDT and those obtained using a finite element model based on
HSDT of Tati [256].

As shown in Tables 6.2 and 6.3, it is clear, for all the power-law values, that the obtained
results using the element R4SSDT are generally in good agreement with those reported in the
before mentioned references. However, the values of the shear stress 7,, is quite greater. Also,
It can be observed, that the deflection results obtained using the R4SSDT are more accurate
than those of R4FSDT, while the stresses are the same. These results confirm the performance

of the present finite element R4SSDT in terms of both accuracy and rate of convergence.

Tables 6.2 and 6.3 show that the stresses for a fully ceramic plate are the same as that for a
fully metal plate. This is because the plate for these two cases is fully homogeneous, and the
stresses do not depend on the young’s modulus. It is important to observe that the

dimensionless deflection W and normal stress &, increase as the power law index increases.
The in-plane shear stress 7,y decreases in range of p from 0 to 2, then increases with increasing
power-law index. The transverse stress 7y, and 7y, remain mostly unchanged in range of p

from 0 to 1, decreases in range of p from 1 to 5, and then increases with the increasing of the

power-law index.

Figures 6.1, 6.2 and 6.3, exhibit respectively the variation of the dimensionless normal

stress O, , in-plane shear stress 7,y , and transverse shear stress 7y, across the thickness for

different power-law index values p, of a simply supported FG square plate subjected to UDL.
The side-to-thickness ratio L/h is taken to be 4. It can be observed that all the stresses of the
fully ceramic and metal plates (homogeneous) are matched with each other because they are

not depending on Young’s modulus.
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Table 6.3 Dimensionless deflection and stresses of a SSSS Al/Al,O3 square plate under SDL
for different power-law index values (L/h=10).

p R4SSDT R4FSDT  Zenkour Tati
8x8 12x12  16x16  20x20 20x20 [142] [256]
0.2938  0.2951 0.2955  0.2957  0.2957 0.2960  0.2957

Ceramic w
Oy 1.8597 1.9235 1.9463 1.9568 1.9568 1.9955 1.9570
gy 1.2398 1.2824 1.2975 1.3046 - 1.3121 1.3050
Tyy 0.6940 0.7025 0.7054  0.7068 0.7025 0.7065 0.7025
Tyz 0.2703 0.2783 0.2811  0.2824 - 0.2462 0.2368
Ty, 0.2027  0.2087 0.2108  0.2118 - 0.2132 0.2105
1 w 0.5844 0.5869 0.5878  0.5882 0.5882 0.5889 0.5882
Oy 2.8743  2.9729 3.0081  3.0244 3.0244 3.0870 3.0240
gy 1.4089 1.4573 1.4745 1.4825 - 1.4894 1.4820
Tyy 0.5993 0.6067 0.6092 0.6104 0.6066 0.6110 0.6066
Taz 0.2703 0.2783 0.2811  0.2824 - 0.2462 0.2368
Ty, 0.2493  0.2566 0.2592 0.2604 - 0.2622 0.2588
2 w 0.7538 0.7571 0.7582 0.7587 0.7543 0.7573 0.7575
Oy 3.3562 3.4714 35124 35315 3.5315 3.6094 3.5320
gy 1.3231 1.3685 1.3847 1.3922 - 1.3954 1.3920
Tyy 0.5342  0.5407 0.5430  0.5440 0.5407 0.5441 0.5406
Tz 0.2594  0.2670 0.2697 0.2710 - 0.2265 0.2202
Tyz 0.2741 0.2821 0.2850  0.2863 - 0.2763 0.2758
4 w 0.8823  0.8859 0.8872 0.8878 0.8726 0.8819 0.8832
Oy 3.7745  3.9040 3.9502 3.9716 3.9716 4.0693 3.9720
gy 1.1222 1.1607 1.1744 1.1808 - 1.1783 1.1810
Tyy 0.5571 0.5639 0.5663  0.5674 0.5639 0.5667 0.5639
Tz 0.2440 0.2512 0.2537 0.2549 - 0.2029 0.1979
Tyz 0.2688 0.2766 0.2794  0.2807 - 0.2580 0.2584
5 w 0.9135 0.9172 0.9185  0.9191 0.9004 0.9118 0.9136
Oy 3.9390 4.0742 4.1223 41447 4.1447 4.2488 4.1450
gy 1.0519 1.0880 1.1009 1.1069 - 1.1029 1.1070
Tyy 0.5658 0.5727 0.5752 0.5763 0.5727 0.5755 0.5727
Tz 0.2441 0.2512 0.2538  0.2550 - 0.2017 0.1969
Ty, 0.2546  0.2621 0.2647 0.2659 - 0.2429 0.2434
10 w 1.0108 1.0148 1.0162 1.0168 0.9954 1.0089 1.0125
Oy 47226  4.8847 49424  4.9692 4.9692 5.0890 4.9690
gy 0.8384 0.8672 0.8774  0.8822 - 0.8775 0.8822
Tyy 0.5798 0.5869 0.5894  0.5905 0.5869 0.5894 0.5868
Tz 0.2610 0.2686 0.2714  0.2726 - 0.2198 0.2167
Ty, 0.2099 0.2160 0.2182 0.2192 - 0.2041 0.2065
Metal w 15949 16018 1.6042 1.6053 1.6053 1.6070 -
Oy 1.8597 1.9235 1.9463 1.9568 1.9568 1.9955 -
gy 1.2398 1.2824 1.2975 1.3046 - 1.3121 -
Tyy 0.6940 0.7025 0.7054  0.7068 0.7025 0.7065 -
Tz 0.2703  0.2783 0.2811  0.2824 - 0.2462 -
Ty, 0.2027 0.2087 0.2108  0.2118 - 0.2132 -
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Figure 6.1 Variation of the dimensionless normal stress &, of a SSSS FG square plate under
UDL for different power-law index values (L/h =4).
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Figure 6.2 Variation of the dimensionless in-plane shear stress 7,, of a SSSS FG square plate

under UDL for different power-law index values (L/h = 4).

128



Chapter 6. Application of R4SSDT- Results and discussions

Figure 6.1 shows that the in-plane stress &, is tensile at the upper surface while becoming
compressive at the lower surface of the FG square plate and the homogeneous plate gives the
maximum compressive stresses at the lower surface and the minimum tensile stresses at the

upper surface of the FG square plate.

Unlike the in-plane stress, the in-plane shear stress becomes tensile at the lower surface and
compress at the upper surface and the homogeneous plate gives the maximum tensile stress at
the lower surface and the minimum compressive stress at the upper surface of the FG

rectangular plate as shown in Figure 6.2.

As depicted in Figure 6.3, the shear stress 7,, of homogenous plates is sinusoidally

distributed through the thickness. However, it is not perfectly sinusoidal in the case of FG

plates.

0,6

0,5
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all

xz 0,3 —— Ceramic

p=1
0,2

— p:4

P=10
0,1

- % - Metal

0
-05 04 -03 -02 01 O 01 02 03 04 05

z/h

Figure 6.3 Variation of the dimensionless transverse shear stress 7, of a SSSS FG square
plate under UDL for different power-law index values (L/h = 4).
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6.2.1.2 FG rectangular plate subjected to uniform loading with different side-to-thickness
and aspect ratios

To investigate the effects of side-to-thickness and aspect ratios, two examples have been

considered using the element R4SSDT with a 20 x 20 mesh size.

The first example is about a SSSS plate with (L/I = 1). The power-law index is taken as p =
0. The second is performed for a SSSS plate with (I = 3L) and p = 2. Tables 6.4 and 6.5 present
the deflection and stresses corresponding to various side-to-thickness ratio (L/h= 4, 10, 20 and
100). Several results obtained using the present element are compared with those given by
Zenkour [142], Reddy [136] and Tati [256] and a good agreement is observed.

It is seen from Tables 6.4 and 6.5, that the dimensionless deflection W decreases with the

increasing of the side-to-thickness ratio L/h, while the in-plane stresses &, , &, and 7,

y
increase. It can be also noted that although the side-to-thickness changes, the dimensionless

transverse shear stresses 7,, and 7, remain unchanged.

Figure 6.4 shows the variation of the dimensionless deflection W of a square SSSS FG plate
with the L/h ratio considering different values of p. The plate is subjected to UDL. As can be
seen, the dimensionless deflection decreases by increasing the L/h ratio whereas it increases
with the increasing of power-law values.

Figure 6.5 illustrates the variation of dimensionless deflection W of a moderately thick FG
plate versus the aspect ratio L/I. The results are presented for p values and L/h=10. It can be
seen that the dimensionless deflection decreases as the aspect ratio increase.

Table 6.4 Deflections and stresses of a FG square plate (L/I = 1) under UDL, p =0.

L/h Theory w o, g, Ty, Tyz Tay

4 SSDT [142] 0.5865 1.1988 0.7534 0.4307 0.4973 0.4906
TSDT [136] 0.5868 1.1959 0.7541 0.4304 0.4842 0.4913
HSDT [256] 0.5872 1.1425 0.7617 0.4173 0.4695 0.5070
Present 0.5872 1.1425 0.7617 0.4199 0.5599 0.5071

10 SSDT [142] 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850
TSDT [136] 0.4666 2.8920 1.9106 0.4411 0.4963 1.2855
HSDT [256] 0.4663 2.8560 1.9040 0.4174 0.4700 1.2660
Present 0.4663 2.8563 1.9042 0.4200 0.5600 1.2662

100 SSDT [142] 0.4438 28.7342 19.1543 0.4472 0.5164 13.0125
TSDT [136] 0.4438 28.7341 19.1543 0.4448 0.5004 12.9885
HSDT [256] 0.4435 28.5600 19.0400 0.4174 0.4696 12.6500
Present 0.4435 28.5646 19.0431 0.4200 0.5600 12.6505
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Figures 6.6-6.10 represent the dimensionless in-plane normal stresses &, , &, in plane
shear stress 7, , and 7,,,7,, shear stresses distribution across the thickness for different values

of the aspect ratio of a SSSS FG plate under UDL, respectively. In these figures, the power-
law index is assumed to be p=2 and side-to-thickness ratio is equal as L/h=10.

As exhibited in Figures 6.6 and 6.7, the in-plane normal stresses &, and &, are compressive

throughout the plate up to z = 0.15 and then they become tensile. The maximum compressive
stresses occur at a point on the bottom surface and the maximum tensile stresses occur, of
course, at a point on the top surface of the FG plate. However, the tensile and compressive

values of the in-plane shear stress 7, , as shown in Figure 6.8, are maximum at a point on the

bottom and top surfaces of the FGM plate, respectively. It is clear that the minimum value of

zero for all in-plane stresses occurs at z =0.14904 and this is irrespective of the aspect ratio.

Table 6.5 Deflections and stresses of a FG square plate (I = 3L) under UDL, p = 2.

L/h  Theory w o, g, Ty, T,y Tyy

4 SSDT [142] 3.9900 5.3144 0.6810 0.6096 0.6796 0.5646
TSDT [136] 4.0529 5.2759 0.6652 0.6058 0.6545 0.5898
HSDT [256] 3.9908 5.1100 0.6878 0.5843 0.6441 0.5653
Present 4.0148 5.1244 0.6899 0.6277 0.8031 0.5728

10 SSDT [142] 3.56235 12.9374 1.7292 0.6211 0.6910 1.4500
TSDT [136] 3.5537 12.9234 1.6941 0.6155 0.6672 1.4898
HSDT [256] 3.5090 12.7800 1.7200 0.5843 0.6441 1.4110
Present 3.5178 12.8111 1.7246 0.6278 0.8031 1.4307

20 SSDT [142] 3.4567 25.7748 3.4662 0.6232 0.6947 2.9126
TSDT [136] 3.4823 25.7703 3.3972 0.6171 0.6704 2.9844
Present 3.4468 25.6224 3.4491 0.6278 0.8031 2.8602

100  SSDT [142] 3.4353 128.7130 17.3437 0.6238 0.6963 14.5840
TSDT [136] 3.4594 128.7283 17.0009 0.6177 0.6718 14.9303
HSDT [256] 3.4185 127.8000 17.1900 0.5844 0.6442 14.1000
Present 3.4245 128.1251 17.2475 0.6138 0.8032 14.2983

As depicted in Figures 6.9 and 6.10, the transverse shear stress 7y,,7,, distributions are not

perfectly sinusoidal through the thickness, and the stresses increase as the aspect ratio
decreases. It is to be noted that the maximum value occurs at z = 0.1, not at the plate center as

in the homogeneous case.
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Figure 6.4 Variation of the dimensionless deflection w of a square SSSS FG plate subjected
to UDL with the L/h ratio considering different values of p.
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Figure 6.5 Variation of dimensionless deflection w of a SSSS moderately thick FG plate
subjected to UDL versus the aspect ratio L/I.
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Figure 6.6 Variation of in-plane normal stress &, through-the thickness of a SSSS FG plate
(L/h=10) subjected to UDL for different values of the aspect ratio, p=2.
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Figure 6.7 Variation of in-plane normal stress &, through-the thickness of a SSSS FG plate
(L/h=10) subjected to UDL for different values of the aspect ratio, p=2.
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Figure 6.8 Variation of in-plane shear stress 7., through-the thickness of a SSSS FG plate
(L/h=10) subjected to UDL for different values of the aspect ratio, p=2.
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Figure 6.9 Variation of transverse shear stress z,.through-the thickness of a SSSS FG plate
(L/h=10) subjected to UDL for different values of the aspect ratio, p=2.
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Figure 6.10 Variation of transverse shear stress z,, through-the thickness of a SSSS FG plate
(L/h=10) subjected to UDL for different values of the aspect ratio, p=2.

6.2.2 Mechanical buckling analysis

In the next examples the present element R4SSDT is used for the mechanical buckling analysis
of Al/Al>Os rectangular plates. Three different types of in-plane loadings, uniaxial compression
(A= -1, A2 = 0), biaxial compression (A= A2 = -1), and biaxial compression and tension (A1= -
1, A2 = 1) are considered, Figure 4.12. The effects of power-law index, side-to-thickness, aspect

ratio and boundary conditions on the critical buckling load have been presented.

The dimensionless critical buckling load is presented using the following expression

—~ L2
N =N_._——_ 6.3
cri cri Emh3 ( )
The used boundary conditions are as follows
Simply supported (SSSS)
w,=¢, =0 at x=0, x=L
0= (6.4)

w,=¢p, =0 at y=0, y=I
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Clamped (CCCC)

W, =¢,=¢,=0 at x=0,Land y=0,l (6.5)

Simply-Clamped (SCSC)

W, =¢, =0 at x=0, x=L
0 (Dy (66)
W=p=¢,=0 at y=0 y=I

Simply and Clamped (SSSC)
W, =¢, =0 at x=0, x=L
w,=¢, =0 at y=0 (6.7)
W, =¢,=p,=0 at y=I

Clamped-Simply-Clamped (CSCC)

W, =¢,=¢,=0 at x=0
w,=¢, =0 at y=0 (6.8)
W, =¢p,=p,=0 at y=I

Simply and Free (SSSF)

Wo=¢,=0 at x=0, x=L
w,=¢, =0 at y=0 (6.9)
Free at y=I

Clamped and Free (CFCC)

W, =¢,=¢,=0 at x=0, x=L
Free at y=0 (6.10)
W, =¢,=p,=0 at y=I

Simply-Clamped-Simply-Free (SCSF)

W, =¢, =0 at x=0, x=L
W, =¢,=¢,=0 at y=0 (6.11)
Free at y=I
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6.2.2.1 FG square plate with different side-to-thickness ratio and power-law index values

under different loading

In this section, the buckling behavior of a simply supported Al/Al>Oz square plate subjected to
three different in-plane loads is analyzed. Six mesh sizes ranging from 8x8 to 32x32 elements
have been used. Different side-to-thickness ratios and power-law index values have been
considered. The dimensionless critical buckling loads of the FG square plate under uniaxial
compression, biaxial compression and biaxial compression and tension are reported in Tables
6.6-6.8, respectively. The obtained results show the convergence and the stability of the present
element. The comparison of the present results with those obtained by the HSDT-based finite
element model of Tati [248], the RPT of Thai and Choi [252], the quasi-3D refined theory of
Zenkour and Aljadani [246] and the HSDT of Reddy et al. [243] show the accuracy of the

results obtained using the present finite element R4SSDT.

From Tables 6.6-6.8 and Figure 6.11, it can be observed that the dimensionless critical
buckling load of plate subjected to uniaxial compression loading is greater than that subjected
to biaxial compression and less than those subjected to biaxial compression and tension loads.
This is due the fact that the application of a tension load to the plates increases their bending
stiffness. It can also be seen that the dimensionless critical buckling load decreases with the
increase of power-law index value while it increases with the increase of side-to-thickness

ratio.

6.2.2.2 FG rectangular plate with different side-to-thickness ratio and power-law index

values subjected to different loading

For this example, the dimensionless critical buckling loads N_, for simply supported, Al/Al203

rectangular plates subjected to uniaxial, biaxial compression and biaxial compression and
tension are investigated. The obtained results are listed in Tables 6.9-6.11, respectively.
Different values of the power-law index p with aspect ratio L/I (L/l = 0.5, 1, 1.5, 2) and side-
to-thickness ratio L/h (L/h= 5, 10 and 20) are considered. The results of the proposed
formulation are compared with those given by RPT of Thai and Choi [252] and the solutions
of the CUF-based finite strip method (FSM) [247] and they are in good agreement. However,
the obtained results are closer to those given by the RPT. As observed in the previous example,
the dimensionless critical buckling load decreases with the increase of power-law index value
whereas it increases with the increase of side-to-thickness ratio. Also, increasing of aspect ratio

increases the critical buckling load values.
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Table 6.6 Dimensionless critical buckling load N_, of SSSS Al/AlO3 square plate under
uniaxial compression (A= -1, A2 = 0).

L/h  Mesh size p=0 p=1 p=2 p=5 p=10 p=20
5 8x8 16.2986 8.3720 6.3852 49731 4.4167 3.9914
12x12 16.1390 8.2875 6.3222 4.9279 4.3776 3.9552
16x16 16.0837 8.2583 6.3004 4.9122 4.3640 3.9427
20x20 16.0583 8.2448 6.2903 4.9050 4.3578 3.9369
24x24 16.0445 8.2375 6.2849 4.9011 4.3544 3.9337
32x32 16.0308 8.2303 6.2795 4.8972 4.3510 3.9306
HSDT [248] 16.0582 8.2448 6.3250 5.0010 44178 3.9509
RPT [252] 16.0211 8.2245 6.3432 5.0531 4.4807 4.0070
Quazi-3D [246]  16.0210 8.2244 6.3431 5.0530 4.4806 4.0069
HSDT [243] 16.0000 8.1460 6.2300 4.9700 4.4400 3.9800
10 8x8 18.9631 9.5342 7.3910 6.0990 5.5120 4.9033
12x12 18.7474 9.4248 7.3068 6.0311 5.4512 4.8488
16x16 18.6729 9.3870 7.2777 6.0077 5.4301 4.8299
20%20 18.6386 9.3696 7.2643 5.9969 5.4205 4.8212
24x24 18.6200 9.3602 7.2570 5.9910 5.4152 4.8165
32x32 18.6015 9.3508 7.2498 5.9852 5.4100 4.8119
HSDT [248] 18.6385 9.3696 - 6.0323 5.4435 4.8265
RPT [252] 18.5785 9.3391 7.2630 6.0353 5.4528 4.8346
Quazi-3D [246] 18.5785 9.3391 7.2630 6.0353 5.4528 4.8346
HSDT [243] 18.5400 9.2990 7.2100 5.990 5.4200 4.8200
50 8x8 20.0097 9.9772 7.7833 6.5753 5.9871 5.2900
12x12 19.7696 9.8575 7.6899 6.4965 5.9154 5.2266
16x16 19.6868 9.8162 7.6577 6.4693 5.8906 5.2047
20%20 19.6486 9.7972 7.6428 6.4567 5.8792 5.1946
24x24 19.6280 9.7868 7.6348 6.4500 5.8730 5.1892
32x32 19.6075 9.7766 7.6268 6.4432 5.8669 5.1837
HSDT [248] 19.6486 9.7971 7.6433 6.4584 5.8803 5.1948
RPT [252] 19.5814 9.7636 7.6177 6.4373 5.8614 5.1782
Quazi-3D [246]  19.5814 9.7636 7.6176 6.4372 5.8613 5.1781
HSDT [243] 19.5400 9.7430 7.6010 6.4200 5.8400 5.1600
100 8x8 20.0435 9.9913 7.7959 6.5912 6.0031 5.3029
12x12 19.8026 9.8712 7.7022 6.5120 5.9310 5.2392
16x16 19.7195 9.8298 7.6699 6.4847 5.9061 5.2172
20%20 19.6812 9.8107 7.6550 6.4721 5.8947 5.2071
24x24 19.6605 9.8004 7.6469 6.4653 5.8884 5.2016
32x32 19.6399 9.7901 7.6389 6.4585 5.8823 5.1961
HSDT [248] 19.6812 9.8107 7.6551 6.4724 5.8949 5.2071
RPT [252] 19.6145 9.7775 7.6293 6.4507 5.8752 5.1897
Quazi-3D [246]  19.6145 9.7775 7.6293 6.4507 5.8752 5.1896
HSDT [243] 19.5700 9.7500 7.6100 6.4300 5.8600 5.1700
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Table 6.7 Dimensionless critical buckling load N_, of SSSS Al/AlO3 square plate under

biaxial compression (A1=A2 =-1).

L/h p=0 p=1 p=2 p=5 p=10 p=20
5 8x8 8.1493 4.1860 3.1926 2.4865 2.2084 1.9957
12x12 8.0695 4.1438 3.1611 2.4639 2.1888 1.9776
16x16 8.0419 4.1292 3.1502 2.4561 2.1820 1.9713
20%20 8.0291 4.1224 3.1452 2.4525 2.1789 1.9684
24x24 8.0222 4.1188 3.1424 2.4505 2.1772 1.9669
32x32 8.0154 4.1151 3.1397 2.4486 2.1755 1.9653
HSDT [248] 8.0291 4.1224 3.1625 2.5005 2.2089 1.9754
RPT [252] 8.0110 4.1120 3.1720 2.5270 2.2400 2.0040
Quazi-3D [246] 8.0105 41122 3.1715 2.5265 2.2403 2.0034
HSDT [243] 8.0010 4.0730 3.1200 2.4870 2.2210 1.9940
10 8x8 9.4815 47671 3.6955 3.0495 2.7560 2.4516
12x12 9.3737 47124 3.6534 3.0156 2.7256 2.4244
16x16 9.3364 4.6935 3.6388 3.0038 2.7151 2.4150
20x20 9.3193 4.6848 3.6321 2.9984 2.7102 2.4106
24x24 9.3100 4.6801 3.6285 2.9955 2.7076 2.4083
32x32 9.3008 4.6754 3.6249 2.9926 2.7050 2.4059
HSDT [248] 9.3193 4.6848 3.6379 3.01613 2.7217 2.4132
RPT [252] 9.2890 4.6700 3.6320 3.0180 2.7346 2.4170
Quazi-3D [246] 9.2892 4.6695 3.6315 3.0176 2.7264 2.4173
HSDT [243] 9.2730 4.6500 3.6080 2.9980 2.7150 2.4100
50 8x8 10.0048 4.9886 3.8916 3.2876 2.9935 2.6450
12x12 9.8848 4.9287 3.8450 3.2482 2.9577 2.6133
16x16 9.8434 4.9081 3.8288 3.2346 2.9453 2.6023
20x20 9.8243 4.8986 3.8214 3.2284 2.9396 2.5973
24x24 9.8140 4.8934 3.8174 3.2250 2.9365 2.5946
32x32 9.8037 4.8883 3.8134 3.2216 2.9335 2.5919
HSDT [248] 9.8243 4.8986 3.8217 3.2292 2.9401 2.5974
RPT [252] 9.7910 4.8820 3.8090 3.2190 2.9310 2.5890
Quazi-3D [246] 9.7907 4.8818 3.8088 3.2186 2.9306 2.5890
HSDT [243] 9.7720 4.8720 3.8010 3.2120 2.9250 2.5840
100 8x8 10.0217 4.9956 3.8980 3.2956 3.0016 2.6514
12x12 9.9013 4.9356 3.8511 3.2560 2.9655 2.6196
16x16 9.8597 4.9149 3.8349 3.2423 2.9531 2.6086
20%20 9.8406 4.9053 3.8275 3.2360 2.9473 2.6035
24x24 9.8302 4.9002 3.8235 3.2326 2.9442 2.6008
32x32 9.8199 4.8950 3.8195 3.2292 2.9411 2.5981
HSDT [248] 9.8406 4.9053 3.8275 3.2362 2.9474 2.6035
RPT [252] 9.8070 4.8890 3.8150 3.2250 2.9380 2.5950
Quazi-3D [246] 9.8072 4.8887 3.8146 3.2253 2.9375 2.5948
HSDT [243] 9.7880 4.8790 3.8070 3.2190 2.9320 2.5900
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Table 6.8 Dimensionless critical buckling load N_, of SSSS Al/AlO3 square plate under

biaxial compression and tension (A= -1, A2 = 1).

L/h p=0 p=1 p=2 p=5 p=10 p=20
5 8x8 27.0191 14.3294 10.6646 7.6726 6.6664 6.1448
12x12 26.5159 14.0361 10.4615 7.5601 6.5764 6.0554
16x16 26.3495 13.9392 10.3943 7.5228 6.5466 6.0258
20%x20 26.2742 13.8954 10.3639 7.5060 6.5331 6.0124
24%24 26.2337 13.8718 10.3475 7.4969 6.5259 6.0052
32x32 26.1937 13.8485 10.3314 7.4880 6.5187 5.9981
RPT [252] 26.2058 13.8486 10.5589 7.9590 6.8970 6.2320
Quazi-3D [246] 26.2057 13.8486 10.5589 7.9589 6.8970 6.2320
HSDT [243] 26.1600 13.6200 10.2600 7.7600 6.8100 6.1800
10 8x8 37.8002 19.2461 14.7776 11,7809 10.5352 9.4617
12x12 36.6652 18.6519 14.3309 11.4516 10.2480 9.1978
16x16 36.2936 18.4575 14.1847 11.3436 10.1537 9.1113
20x20 36.1259 18.3698 14.1187 11.2948 10.1111 9.0722
24x24 36.0359 18.3228 14.0833 11.2686 10.0882 9.0512
32x32 35.9472 18.2764 14.0484 11.2428 10.0657 9.0305
RPT [252] 35.8416 18.2206 14.1073 11.4583 10.2468 9.1281
Quazi-3D [246]  35.8416 18.2205 14.1072 11.4582 10.2468 9.1281
HSDT [243] 35.7100 18.0400 13.9000 11.3000 10.1500 9.0700
50 8x8 43.3334 21.6200 16.8581 14.2171 12.9381 11.4374
12x12 41.7827 20.8454 16.2547 13.7099 12.4771 11.0294
16x16 41.2785 20.5935 16.0585 13.5450 12.3272 10.8968
20x20 41.0514 20.4801 15.9701 13.4707 12.2596 10.8370
24x24 40.9296 20.4192 15.9227 13.4309 12.2234 10.8050
32x32 40.8097 20.3593 15.8761 13.3916 12.1878 10.7734
RPT [252] 40.6574 20.2833 15.8219 13.3554 12.1543 10.7401
Quazi-3D [246]  40.6573 20.2832 15.8218 13.3553 12.1542 10.7400
HSDT [243] 40.4600 20.1790 15.7300 13.280 12.0900 10.6800
100 8x8 43.5319 21.7033 16.9324 14.3094 13.0309 11.5124
12x12 41.9652 20.9219 16.3229 13.7948 12.5624 11.0984
16x16 41.4558 20.6679 16.1248 13.6275 12.4101 10.9638
20x20 41.2264 20.5535 16.0356 13.5521 12.3415 10.9032
24x24 41.1034 20.4921 15.9877 13.5118 12.3047 10.8707
32x32 40.9823 20.4317 15.9406 13.4720 12.2684 10.8387
RPT [252] 40.8291 20.3554 15.8823 13.4250 12.2256 10.7998
Quazi-3D [246]  40.8290 20.3553 15.8822 13.4249 12.2255 10.7998
HSDT [243] 40.6200 20.2500 15.8000 13.3500 12.1600 10.7400
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Figure 6.11 The effect of power-law index p on dimensionless critical buckling load N,
of SSSS square plate (L/h=10) with different types of loading.

6.2.2.3 FG square plate subjected to uniaxial compression with different L/h values

In this example, simply supported, Al/Al>Oz square plates under uniaxial compression (11=—1,
A2=0) have been considered for different values of side-to-thickness ratio L/h and power-law
index p = 1 and 10. The dimensionless critical buckling loads N_, have been obtained using a
24 x 24 mesh size. Table 6.12 compares the results predicted by the proposed formulation with
the results of research studies in which the CPT [220], FSDT [265], HSDT [243] and high-
order plate theory considering Carrera’s unified formulation (CUF) [249] have been used. As
it can be seen, the results obtained using the FSDT, HSDT, CUF and the present formulation
diverge from those obtained using CPT for L/h =10 and converge for higher values of L/h.
Good agreement between the present results and those obtained by HSDT and CUF can be

observed. However, for L/h > 40 the present study and CUF results are identical.
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Table 6.9 Dimensionless critical buckling load N, of SSSS Al/Al;Osz rectangular plate

subjected to uniaxial compression along the x-axis (A= -1, A2 = 0).

L/ L/h  Theory p
0 1 2 5 10 20 100
05 5 RPT [252] 6.7203  3.4164 2.6451 2.1484 1.9213 1.7115 1.3737
Present 6.7664  3.4404 2.6444 2.1159 1.8942 1.6995 1.3767
10 RPT [252] 7.4053  3.7111 2.8897 2.4165 2.1896 1.9387 1.5251
CUF [247] 7.3760  3.6940 2.8720 - 2.1760 - -
Present 7.4635  3.7405 2.9067 2.4203 2.1936 1.9463 1.5351
20 RPT[252] 7.5993  3.7930 2.9582 2.4944 2.2690 2.0054 1.5683
CUF [247] 75910  3.7890 2.9530 - 2.2650 - -
Present 7.6609  3.8238 2.9806 2.5106 2.2838 2.0197 1.5805

1b 5 RPT [252] 16.0211  8.2245 6.3432 5.0531 4.4807 4.0070 3.2586

Present 16.0445  8.2375 6.2849 4.9011 4.3544 3.9337 3.2413
10 RPT[252] 18.5785  9.3391 7.2631 6.0353 5.4528 4.8346 3.8198
CUF [247] 18.3650  9.2170 7.1520 - 5.3780 - -
Present 18.6200  9.3602 7.2570 5.9910 5.4152 4.8165 3.8208
20 RPT[252] 19.3528  9.6675 7.5371 6.3448 5.7668 5.0988 3.9923
CUF [247] 19.2940  9.6350 7.5070 - 5.7450 - -
Present 19.3984  9.6903 7.5489 6.3437 5.7664 5.1028 3.9996

15¢ 5 RPT [252] 28.1996 15.0344 114234  8.4727 7.2952 6.6106 5.6325

Present 28.2144 15.0526  11.1518  7.9118 6.8494 6.3341 5.5479
10 RPT [252] 40.7476  20.8024  16.0793 12,9501 11.5379  10.2958 8.3112
Present 40.9869 20.9291 16.0345 12.6846 11.3173  10.1852 8.3131
20 RPT [252] 45.8930 23.0286 17.9221 14.9472 135273  11.9843 9.4447
Present 46.2175 23.1927 18.0054 149373 13.5225 12.0108 9.4964

2d 5 RPT [252] 37.7404 20.7491 155819  10.9554 9.1505 8.3988 7.4403

Present 37.5590 20.6808 14.9524  9.7017 8.1340 7.7421 7.2321
10 RPT [252] 64.0842 32.8980 253727 20.2123 17.9227 16.0280  13.0345
Present 64.5559 33.1501 25.2887 19.7115 17.5104 15.8208  13.0397
20 RPT [252] 743140 37.3564 29.0523 24.1413 218114 19.3385  15.2794
Present 749896 37.6991 29.2271 241244 218047 19.3950  15.3873

2288 elements P 576 elements

¢ 384 elements 9288 elements
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Table 6.10 Dimensionless critical buckling load N_,of SSSS Al/Al;Os rectangular plate
subjected to biaxial compression (A1=-1, A2 = -1).

L/ L/h  Theory p

0 1 2 5 10 20 100

0.5 5 RPT [252] 5.3762 2.7331 2.1161 1.7187 15370  1.3692 1.0990
CUF [247] 5.2440 2.6530 2.0450 1.6630 14950 13330 -

Present 5.4177 2.7545 2.1173 1.6942 15167  1.3608 1.1023

10 RPT [252] 5.9243 2.9689 2.3117 19332 17517 15510  1.2200
CUF [247] 5.9020 2.9560 2.2980 19200 1.7410 15420 -

Present 5.9759 2.9949 2.3274 19379  1.7564 15584  1.2291

20 RPT [252] 6.0794 3.0344 2.3665 1.9955  1.8152  1.6044  1.2547
CUF [247] 6.0730 3.0310 2.3620 19910 18120 1.6020 -

Present 6.1339 3.0617 2.3866 2.0102 18286  1.6171 1.2655

1b 5 RPT [252] 8.0105 4.1122 3.1716 2.5265  2.2403  2.0035 1.6293
CUF [247] 7.7350 3.9420 3.0240 24180  2.1590 1.9320 -

Present 8.0222 4.1188 3.1425 24505  2.1772  1.9669 1.6206

10 RPT [252] 9.2893 4.6696 3.6315 3.0177  2.7264  2.4173 1.9099
CUF [247] 9.1930 4.6140 3.5800 29740 2.6920 2.3880 -

Present 9.3100 4.6801 3.6285 29955 27076  2.4083 1.9104

20 RPT [252] 9.6764 4.8337 3.7686 3.1724  2.8834  2.5494 1.9961
CUF [247] 9.6480 4.8180 3.7540 3.1590 2.8730 25410 -

Present 9.6992 4.8452 3.7745 3.1719  2.8832  2.5514 1.9998

15¢ 5 RPT [252] 11.6820 6.0799 4.6637 3.6176  3.1718 28510  2.3600
CUF [247] 11.1630 5.7490 4.3840 34270  3.0340 2.7250 -

Present 11.7085 6.0955 4.6015 34631  3.0459  2.7769 2.3418

10 RPT [252] 14.6084 7.3793 5.7279 47124 42384  3.7657 2.9959
CUF [247] 14.3530 7.2300 5.5950 46040  4.1550  3.6930 -

Present 14.6700 7.4110 5.7243 46616  4.1958  3.7463 2.9992

20 RPT [252] 15.5887 7.7977 6.0761 5.1006  4.6300  4.0961 3.2135
CUF [247] 15.5090 7.7530 6.0350 5.0650 4.6020 4.0720 -

Present 15.6603 7.8336 6.0962 51032 4.6330  4.1045 3.2256

2d 5 RPT [252] 15.7235 8.3092 6.3353 47754 41382  3.7392 3.1534
CUF [247] 14.9130 7.7730 5.8940 45000 3.9440 35560 -

Present 15.7761 8.3425 6.2227 45084 39245  3.6113 3.1211

10 RPT [252] 21.5050 10.9323 8.4644 6.8750 6.1481 54769  4.3958
CUF [247] 21.3690 10.615 8.186 6.657 5.982 5.331 -

Present 21.6709 11.0187 8.4692 6.7766  6.0668  5.4431  4.4092

20 RPT [252] 23.6970 11.8755 9.2469 7.7327  7.0067  6.2040  4.8802
CUF [247] 23.5120 11.7700 9.1520 7.6520  6.9430 6.1500 @ -

Present 23.9038 11.9797 9.3095 7.7516  7.0255  6.2336  4.9164
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Table 6.11 Dimensionless critical buckling load N_,of SSSS Al/Al;O3 rectangular plate

subjected to biaxial compression and tension (M= -1, X2 = 1).

L/l L/h Theory p

0 1 2 5 10 20 100

05° 5  RPT[252] 8.9604 45551  3.5268 2.8646 25617  2.2820 1.8316
CUF[247] 86840  4.3890  3.3820 2.7510 24730  2.2040 -

Present 9.0090 45807  3.5208 2.8172 25221  2.2628 1.8330

10 RPT[252] 9.8738  4.9481  3.8529 3.2219 29195  2.5850 2.0334
CUF[247] 9.8300  4.9230  3.8270 3.1970 2.9000  2.5690 -

Present 9.9372 49802  3.8701 3.2225 29206 25914 2.0439

20 RPT[252] 10.1324 50574  3.9442 3.3259 3.0253  2.6739 2.0911
CUF[247] 10.1200 5.0410  3.9360 3.3190 3.0200  2.6700 -

Present 102000 50912  3.9685 3.3427 3.0408  2.6890 2.1044

1 5 RPT [252] 26.2058 13.8486  10.5589 7.9590 6.8970 6.2320 5.2556
CUF [247] 25.7960 13.3200 9.8780 7.4320 6.6750 5.9810 -

Present 26.2337 13.8718  10.3475 7.4969 6.5259 6.0052 5,1900

10 RPT[252] 35.8416 18.2206 14.1073 11.4583 10.2468  9.1281 7.3263
CUF [247] 35.4130 17.9560 13.8350 11.2180 10.0690  8.9760 -

Present 36.0359  18.3228  14.0833 11.2686 10.0882  9.0512 7.3319

20 RPT[252] 39.4951 19.7925 15.4115 12.8878 11.6779  10.3400 8.1336
CUF [247] 39.2880 19.6750  15.2960 12.7800 11.6050  10.2800 -

Present 39.7470  19.9207  15.4805 12.8899 11.6826  10.3657 8.1754

15¢ 5 RPT [252] 29.0249 15.7823  11.9009 8.5250 7.2422 6.6008 5.7477
CUF [247] 28.3740 15.1430 11.1580 8.2260 7.1430 6.5220 -

Present 29.0555 158171 11.5384 7.8142 6.6865 6.2487 5.6351

10 RPT[252] 37.9819 19.1863 14.8925 12.2523 11.0199  9.7909 7.7894
CUF [247] 37.1410 18.7180 14.4760 11.8970 10.7290  9.5380 -

Present 38.0669 19.2306  14.8540 12.0964 10.8875 9.7211 7.7825

20 RPT[252] 40.5307 20.2740 15.7980 13.2616 12.0379  10.6500 8.3551
CUF [247] 40.2960 20.1450  15.6810 13.1580 11.9530 10.5780 -

Present 40.6366  20.3273  15.8190 13.2421 12.0222  10.6506 8.3699

24 5 RPT [252] 26.2058 13.8486  10.5589 7.9590 6.8970 6.2320 5.2556
CUF [247] 255270 13.4040 9.9970 7.5810 6.7590 6.1010 -

Present 26.2337 13.8718  10.3475 7.4969 6.5259 6.0052 5.1900

10 RPT[252] 35.8416 18.2206 14.1073 11.4583 10.2468  9.1281 7.3263
CUF [247] 34.8690 17.6560 13.6110 11.0610 9.9370 8.8570 -

Present 36.0359 18.3228  14.0833 11.2686 10.0882  9.0512 7.3319

20 RPT[252] 39.4951 19.7925 15.4115 12.8878 11.6779  10.3400 8.1336
CUF [247] 39.1740 19.6110  15.2490 12.7470 11.5660  10.2440 -

Present 39.7470  19.9207  15.4805 12.8899 11.6826  10.3657 8.1754

2288 elements ° 576 elements
¢ 384 elements 9288 elements
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Table 6.12 Comparison of dimensionless critical buckling load N_,of simply supported
Al/AlyO3 plate subjected to uniaxial compression (A= -1, X2 = 0).

L/h p=1 p =10
CPT FSDT HSDT CUF Present CPT FSDT HSDT CUF Present
[220] [265] @ [243] [249] [220] [265] [243] [249]

10 978 933 9.29 9.21 9.36 587 5.66 5.42 5.38 5.42
20 978  9.66 9.64 9.64 9.69 587 5.78 5.75 5.75 5.77
40 978  9.75 9.73 9.77 9.78 5.87 5.85 5.83 5.86 5.86
50 978 9.76 9.74 9.79 9.79 5.87  5.86 5.84 5.87 5.87
100 9.78  9.77 9.75 9.82 9.80 5.87  5.87 5.86 5.90 5.89

6.2.2.4 The effects of different parameters on the critical buckling load

The main objective of this example is to investigate the effects of some parameters including
power-law index p, aspect ratio L/I, side-to-thickness ratio L/h and boundary conditions on the

dimensionless critical buckling load N_, of FG plates.

Figures (6.12)-(6.14) show the variation of the dimensionless critical buckling load N, of

square plates (L/h=10) with different boundary conditions under uniaxial compression, biaxial
compression, and biaxial compression and tension with respect to the power-law index p. It
can be observed that the dimensionless critical buckling load decreases by increasing the
power-law index p. This is because that the increase of the power-law index decreases the
volume fraction of the ceramic and, consequently, the plate bending stiffness. It can be also
seen from those figures that as the boundary constraints increase, the dimensionless critical

buckling load increases.

Figure 6.15 depicts the variation of the dimensionless critical buckling loads N_, versus the
side-to-thickness ratio L/h for square FG plate with different values of power-law index p
subjected to uniaxial compression. It can be seen that the dimensionless critical buckling load
increases by the increase of side-to-thickness ratio up to L/h=10 and then becomes almost
constant for L/h>10.
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Figure 6.12 The variation of the dimensionless critical buckling load »_, of square plate
(L/h=10) with different boundary conditions under uniaxial compression.
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Figure 6.13 The variation of the dimensionless critical buckling load N, of square
plate (L/h=10) with different boundary conditions under biaxial compression.
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Figure 6.14 The variation of the dimensionless critical buckling load N, of square

plate (L/h=10) with different boundary conditions under biaxial compression and
tension.
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Figure 6.15 The variation of the dimensionless critical buckling loads N, vs. the

side-to-thickness ratio L/h for SSSS square plate (L/h=10) with different values of
power-law index p under uniaxial compression.
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The variation of the dimensionless critical buckling loads with respect to the aspect ratio I/L
for simply supported rectangular plates with different values of the power-law index p
subjected to uniaxial and biaxial loading is illustrated in Figures 6.16 and 6.17 respectively. As
depicted in the two figures, the dimensionless critical buckling load decreases by increasing
the aspect ratio. In the case of uniaxial compression loading it can be seen that the critical
buckling modes change by the increase of the aspect ratio I/L as indicated by [252] and [247].
While, in the case of biaxial compression loading, the graph appears smooth, meaning that,
whatever the aspect ratio, the plate buckles with only one mode.
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Figure 6.16 The variation of the dimensionless critical buckling loads N, vs. the aspect

ratio I/L for SSSS rectangular plate with different values of power-law index p under
uniaxial compression.
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Figure 6.17 The variation of the dimensionless critical buckling loads N, vs. the

aspect ratio I/L for SSSS rectangular plate with different values of power-law index p
under biaxial compression.

6.2.3 Free vibration analysis

In this section, the accuracy and the performance of the present finite element formulation is
evaluated. Numerical examples for free vibration analysis of FG plates with various indexes
that specify the material variation profile through the thickness and several values of the side-
to-thickness ratio L/h and aspect ratio L/l are also presented. Typical mechanical properties for

metal and ceramics used in the numerical examples are listed in Table 6.1.

For this study the following relations for presentations of dimensionless frequencies are

utilized

2

B=owhp, /E.; @=wh/p,/E.; a_):a)LF,/pC/EC; (6.12)
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The used boundary conditions are as follows

Simply supported (SSSS)

U=Wo=¢,=0 at x=0, x=L

(6.13)
Vo=W,=¢, =0 at y=0, y=I
Clamped (CCCC)
Uu,=wW,=¢, =@, =0 at x=0, L
0 0 =Px =@y (6.14)
Vo=W,=¢,=¢,=0 at y=0, |
Simply-Clamped (SCSC)
0= = Py (6.15)
Vo=W,=¢,=p,=0 at y=0, 1|
Simply and Clamped (SSSC)
Uy =W, =9, = at x=0, x=L
Vo =W, =@, = at y=0 (6.16)

Simply-Free-Simply (SFSS)

U=w,=¢,=0 at x=0, x=L
Free at y=0 (6.17)
Vo=W,=¢,=0 at y=I

Simply-Free (SFSF)

U=w,=¢,=0 at x=0, x=L

(6.18)
Free at y=0, y=I
Simply-Free-Simply-Clamped (SFSC)
Uy =W, =¢, =0 at x=0, x=L
Free at y=0 (6.19)

Vo=W,=¢,=¢,=0 at y=I
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6.2.3.1 Fundamental frequency B for simply supported Al/ ZrOz square plate

The aim of this example is to show the performance of the present finite element in predicting
the free vibration response of a simply supported Al/ ZrO, square plate. The dimensionless
fundamental frequencies £ obtained using the present formulation with different meshes are

presented in Table 6.13 for different values of power-law index p and side-to-thickness ratio
L/h. The present results are compared with the exact 3D solutions of Vel and Batra [182],
simplified FSDT solutions of Thai and Choi [130], HSDT solutions of Matsunaga [202] and
Mantari et al [207], quasi-3D solutions of Neves et al [169] and the results obtained using the
present RAFSDT. It can be noticed that the present results are in good agreement with those
of the mentioned references. However, it is clear from the results presented in the table that the

convergence of the present finite element results to HSDT solutions is very good.

It is also observed from Table 6.13 that for p equal to 0 and 1, the present results are the
same as those obtained using the R4FSDT element, while for other values of p, a slight

difference is observed.

Table 6.13 Dimensionless fundamental frequency g of Al/ZrO2 square plates.

Theory p=0* p=1 L/h=5
L/h=v10 L/h=10 L/h=5 L/h=10 L/h=20 p=2 p=3 p=5
3D [182] 0.4658  0.0578 0.2192 0.0596  0.0153 0.2197 0.2211 0.2225

S-FSDT [130] 0.4618 0.0577 0.2173 0.0592  0.0152 0.2189 0.2207 0.2222
2D-HSDT [202] 0.4658 0.0578 0.2285 0.0619 0.0158 0.2264 0.2270 0.2281

HSDT [207] 0.4624 0.0577 0.2277 0.0619 0.0158 0.2257 0.2263 0.2271
Quasi-3D [169] - - 0.2193 0.0596  0.0153 0.2198 0.2212 0.2225
R4FSDT 32x32 0.4622 0.0578 0.2278 0.0619 0.0159 0.2266 0.2278 0.2293
Present 8x8 0.4678 0.0587 0.2311 0.0629  0.0161 0.2283 0.2283 0.2288

Present 16x16 0.4633 0.0579 0.2285 0.0621  0.0159 0.2258 0.2258 0.2263
Present 24x24 0.4625 0.0578 0.2280 0.0620  0.0159 0.2253 0.2254 0.2258
Present 32x32 0.4622 0.0578 0.2278 0.0619  0.0159 0.2251 0.2252 0.2257

*B = ohp./E,
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6.2.3.2 Fundamental frequency @ for simply supported Al/Al.Os square plate

This example is performed for thin and thick SSSS, Al/Al,Oz3 square plates. The first two
dimensionless frequencies @ for various values of side-to-thickness ratio L/h and power-law
index p are presented in Table 6.14. The obtained results using the element R4SSDT with a 24
x 24 mesh size are compared with solutions based on HSDT presented by Matsunaga [202]
and solutions reported by Thai and Choi [130] using a simple FSDT. In general, a good
agreement between the results is found. It can be observed that the solutions from this
formulation are very close to those reported by Matsunaga [202] for all FG plates with various

values of power-law index p.

Table 6.14 The first two dimensionless frequencies @ of Al/Al>Os square plates.

Mode L/h Theory Power-law index p
0 1 4 10
1 5 FSDT [130] 0.2112 0.1631 0.1397 0.1324
HSDT [202] 0.2121 0.1640 0.1383 0.1306
Present 0.2116 0.1634 0.1363 0.1285
10  FSDT [130] 0.0577 0.0442 0.0382 0.0366
HSDT [202] 0.0578 0.0443 0.0381 0.0364
Present 0.0578 0.0443 0.0380 0.0363
2 5 FSDT [130] 0.4618 0.3604 0.3049 0.2856
HSDT [202] 0.4658 0.3644 0.3000 0.2790
Present 0.4642 0.3624 0.2923 0.2713
10  FSDT [130] 0.1376 0.1059 0.0911 0.0867
HSDT [202] 0.1381 0.1063 0.0905 0.0859
Present 0.1385 0.1066 0.0900 0.0853

6.2.3.3 Fundamental frequency g for simply supported Al/Al2Os rectangular plates

In this example, an Al/Al>O3 FG plates with simply supported edges are analyzed. In Table
6.15, dimensionless fundamental frequencies g for different values of aspect ratio | / L, side-
to-thickness L / h and power-law index p are calculated and compared with the 3D exact
solution proposed by Jin et al. [186], HSDT results of Mantari et al. [207] and Quasi-3D
solutions reported by Zaoui et al. [210]. For all cases, a good agreement is found.
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Table 6.15 The dimensionless fundamental frequencies £ of Al/Al;Os plates.

/L L/h p Theory
3D HSDT Quazi-3D Present
[186] [207] [210]
12 10 0 0.1135 0.1134 0.1137 0.1136
1 0.0870 0.0868 0.0883 0.0870
2 0.0789 0.0788 0.0807 0.0788
5 0.0741 0.0740 0.0756 0.0738
5 0 0.4169 0.4151 0.4178 0.4156
1 0.3222 0.3205 0.3267 0.3210
2 0.2905 0.2892 0.2968 0.2883
5 0.2676 0.2666 0.2725 0.2632
2 0 1.8470 1.8277 1.8583 1.8224
1 1.4687 1.4460 1.4830 1.4435
2 1.3095 1.2896 1.3269 1.2675
5 1.1450 1.1312 1.1576 1.0829
2b 10 0 0.0719 0.0717 0.0719 0.0722
1 0.0550 0.0549 0.0558 0.0553
2 0.0499 0.0498 0.0511 0.0501
5 0.0471 0.0470 0.0480 0.0472
5 0 0.2713 0.2705 0.2718 0.2721
1 0.2088 0.2081 0.2119 0.2094
2 0.1888 0.1882 0.1930 0.1888
5 0.1754 0.1750 0.1788 0.1743
2 0 0.9570 1.2910 1.3086 1.2943
1 0.7937 1.0137 1.0378 1.0172
2 0.7149 0.9067 0.9322 0.8988
5 0.6168 0.8064 0.8250 0.7824

a576 elements P 288 elements

6.2.3.4 The effects of different parameters on the fundamental frequency @ of an Al/Al2O3

square plate

In this section, the dimensionless fundamental frequencies @ of an Al/Al>Os plates are
determined to show the effect of some parameters like side-to-thickness ratio, power-law index,
aspect ratio and boundary conditions on the vibrational behavior of FG plates. The obtained
results using the present finite element with a 24 x 24 mesh size are listed in Table 6.16 and
plotted in Figures 6.18 and 6.19.

Table 6.16 presents the dimensionless fundamental frequency @ for square FG plate with

different boundary conditions for various values of power-law index p and side-to-thickness

153



Chapter 6. Application of R4SSDT- Results and discussions

ratio. Figure 6.18 depicts the variation of the dimensionless frequency @ versus side-to-

thickness ratio L/h for square FG plate with different boundary conditions and p=2.

The variation of the dimensionless frequency versus power-law index p is sown in Figure
6.19 for square FG plate (L/h=5) with different boundary conditions. It can be seen from Table
6.16 and Figure 6.18 that the increase of the side-to-thickness ratio results in an increase in the
dimensionless frequency, this is probably due to the effects of shear deformation as indicated
by [163]. It is also observed from Table 6.16 and Figure 6.19 that increasing the power-law
index leads to a reduction of the dimensionless frequency. This is due to the fact that increasing
the power-law index increases the volume fraction of metal which reduce the FG plate bending
stiffness.

Table 6.16 Dimensionless fundamental frequency @ of Al/AlO3 square plates.

L/h p Boundary conditions

CCcCcC SCSC SSSC SSSS SFSC SFSS SFSF

5 0 8.0511 6.7836 5.9747 5.2889 3.4447 3.2437 2.7242
1 6.3451 5.3189 4.6459 4.0845 2.6558 2.4952 2.0931
2 5.6174 4.7243 4.1514 3.6683 2.3897 2.2493 1.8896
5 4.8888 4.1616 3.7281 3.3496 2.1957 2.0785 1.7532
10 4.6219 3.9498 3.5572 3.2111 2.1089 1.9995 1.6881
10 0 9.8818 8.0981 6.7919 5.7799 3.7152 3.4494 2.8636
1 7.6376 6.2442 5.2170 4.4273 2.8456 2.6396 2.1901
2 6.8712 5.6277 4.7155 4.0103 2.5785 2.3936 1.9872
) 6.2861 5.1801 4.3848 3.7576 2.4185 2.2510 1.8721
10 6.0243 4.9735 4.2230 3.6273 2.3353 2.1752 1.8099
20 0 10.6329 8.6000 7.0711 5.9311 3.8061 3.5147 2.9050
1 8.1466 6.5836 5.4068 45313 2.9084 2.6849 2.2186
2 7.3840 5.9712 4.9082 4.1162 2.6418 2.4394 2.0162
5 6.9241 5.6123 4.6287 3.8908 2.4966 2.3074 1.9084
10 6.6830 5.4208 4.4754 3.7648 2.4154 2.2330 1.8473
50 0 10.8873 8.7628 7.1577 5.9760 3.8382 3.5371 2.9181
1 8.3155 6.6919 5.4650 4.5621 2.9304 2.7003 2.2276
2 7.5573 6.0824 4.9680 4.1477 2.6641 2.4550 2.0254
5 7.1527 5.7693 4.7069 3.9313 2.5246 2.3269 1.9201
10 6.9229 5.5751 4.5572 3.8068 2.4444 2.2532 1.8593
100 0 10.9257 8.7870 7.1703 5.9824 3.8436 3.5408 2.9201
1 8.3408 6.7078 5.4734 4.5665 2.9339 2.7027 2.2289
2 7.5834 6.0989 4.9767 4.1522 2.6677 2.4576 2.0268
5 7.1880 5.7815 4.7185 3.9372 2.5294 2.3303 1.9219
10 6.9602 5.5985 4.5693 3.8128 2.4495 2.2567 1.8612
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Figure 6.18 The effect of side-to-thickness ratio L/h on the dimensionless
frequency @ for FG square plate with different boundary conditions and p=2.
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Figure 6.19 The effect of power-law index p on the dimensionless frequency @ for
square FG plate (L/h=5) with different boundary conditions.
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It can be also noticed from the above mentioned table and figures that the dimensionless
frequency increases with the increasing constraints at the edges of plates. This behavior is due
to the fact that higher constraints at the edges increase the bending stiffness of the plate,

resulting in higher vibrational responses.

Figure 6.20 shows the variation of the dimensionless fundamental frequency @ for SSSS
rectangular FG plate (L/h=5) with different values of the power-law index p with respect to the
aspect ratio I/L. From this figure, it can be seen that with a particular power-law index p, the
dimensionless fundamental frequency decreases as aspect ratio I/L increases.

16
14 —o—p:()
=1
12 P
+p:2
10
P=5
3
8 p=10
6
4
2
0
0 0,5 1 15 2 2,5 3

I/L

Figure 6.20 The effect of aspect ratio I/L on the dimensionless frequency @ for
SSSS FG rectangular plate (L/h=5).
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6.3 Conclusion

By using the present finite element (R4SSDT), numerical results of the static, mechanical
buckling and free vibration analysis of FG single layer plates have been presented in this
chapter. The obtained results in terms of deflection, stresses, critical loads and frequencies were
in good agreement with those available in the literature which confirms the performance of the
present element. The effects of some parameters like as power-law index, boundary conditions,
aspect and side-to-thickness ratios on the behaviors of the FG plates, have been also
investigated and discussed in detail. Some of the important observations can be concluded from
this work in the following points

e The present results show that the developed finite element R4SSDT can well predict
the static, stability and vibration responses of FG single layer plates.

e The dimensionless deflection decreases by increasing the side-to-thickness ratio
whereas it increases with the increasing of power-law values.

e The dimensionless critical buckling loads and frequencies increase as the side-to
thickness ratio and the boundary constraints increase and they decrease as the power-
law index and aspect ratio increase.

e The dimensionless critical buckling load of plate subjected to uniaxial compression
loading is greater than that subjected to bi-axial compression and less than those
subjected to bi-axial compression and tension loads.

e The critical buckling modes change by the increase of the aspect ratio I/L in the case of
uniaxial compression loading. While, in the case of biaxial compression loading the

plate buckles with only one mode whatever the aspect ratio.
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Despite their advantages, conventional composite materials suffer from discontinuity of
material properties at the interfaces of the layers and constituents of the composite. As a result,
the stress fields in these regions create interface problems and stress concentrations, especially
in a high temperature environment. As well, large plastic deformation of the interface may
trigger the initiation and propagation of cracks that lead to ultimate failure of the composite.
These problems can be decreased by gradually changing the volume fraction of constituent
materials and tailoring the material for the desired application, as in Functionally Graded
Materials (FGMs).

FGMs are advanced composites with varying composition, microstructure and properties,
usually in the thickness direction. They represent a rapidly evolving field in science and
engineering with many practical applications. Research needs in this area are particularly
numerous and varied, FGMs promise significant potential benefits that justify the need for
significant efforts. The design and development of these materials requires the development of

analysis tools adapted to their geometric and material specificities.

Application of 3D analysis, in general, is quite cumbersome while dealing with complex
loading and boundary conditions. Hence, the analysis of FG plates are carried out numerically
as well as analytically using 2D plate theories. Classical Plate Theory (CPT) is the simplest
model which is suitable for thin plates where the transverse shear effects are neglected. For
improving the limitations of CPT, the first-order shear deformation theory (FSDT) was
proposed. FSDT is suitable for moderately thick to thin plates. Herein, the FSDT shear stresses
need to be justified by shear correction factors (SCFs) to tune for the shear energy. As known,
the choice of SCFs is a problem dependent. To avoid this difficulty, higher- order shear

deformation theories were developed. In the HSDT, the transverse shear stresses are more
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correctly approximated throughout the thickness and consequently no shear correction factors

are needed.

The principal objective of this work is to contribute to the modeling of the static, stability
and dynamic behaviors of plates made of functionally graded materials, by developing finite
elements capable of accurately describing such behaviors. First, an FSDT-based finite element
has been adapted to the analysis of FG single layer and sandwich plates. The element is
geometrically simple and has only four nodes and five degrees of freedom per node. Secondly,
a new trigonometric model has been proposed for the analysis of FG plates behaviors. On the
basis of this new model, a four-node rectangular finite element with five degrees of freedom
per node, has been developed, providing a better compromise between accuracy and low cost.
Furthermore, the effects of different parameters on the static, buckling and free vibration
responses of FG plates, including the power-law index, side-to-thickness ratio, etc have been

investigated.

In the first part of the thesis, an overview on FGMs have been presented. The most
commonly used plate theories for the analysis and modeling of FG plates have been briefly
described in chapter two. A review of various research in the existing literature on static,
vibration, and buckling analysis of FG plates has been also presented. It has been seen that the
studies carried out by finite elements on the topic are even less numerous compared to those

carried out analytically.

In the second part, a four-node rectangular finite element (R4FSDT) with five degrees of
freedom per node, based on FSDT, previously developed for the analysis of angle-ply laminated
composite, has been adapted for the analysis of various behaviors of FG plates. The von Karman
strain tensor has been used to account for the second order effect (Buckling). The concept of
the neutral surface position has been introduced to simplify the problem and to avoid the
membrane—bending coupling. The total potential energy and Hamilton’s principles and
Lagrangian equation have been used for the derivation of stiffness, geometrical and mass
matrices. The assumed natural shear strain technique has been introduced to ensure the
effectiveness of the element against the shear locking phenomenon. The performance and
reliability of the developed element (R4FSDT) have been evaluated through a series of
applications in static, buckling and free vibration of FG single layer and sandwich plates with

different loading cases, geometry, etc.
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In the third part, a new trigonometric model with five unknowns has been proposed for the
analysis of FG plates behaviors. The model accounts for a sinusoidal variation of the transverse
shear strains across the thickness and satisfies the shear stress-free boundary conditions on the
top and bottom surfaces of the plate with no requirement for a shear correction factor. Based
on this model a new finite element R4SSDT has been formulated in the same manner as the
first element R4FSDT. The developed finite element has been used to analyze the static,
buckling and dynamic behaviors of FG single layer plates. For the purpose of validation of the
element, the obtained results in terms of deflection, normal and shear stresses, critical loads and
natural frequencies have been compared with those existing in the available literature. All the
comparisons show that the results obtained with the present element and those of the references
are in good agreement, confirming the performance and accuracy of the present formulation.
Furthermore, for the sake of comparison, the present results obtained using the R4SSDT have
been also compared with those obtained using the R4FSDT.It has been seen, that the R4SSDT
results are more accurate than those of R4FSDT.

In addition, the effects of some parameters such as power-law index, side-to-thickness ratio,

etc on the static, buckling and free vibration responses of FG plates has been also shown.

In the following, some of the important observations can be concluded from this work:

e The present results show that the developed finite elements R4FSDT and R4SSDT can
well predict the static, stability and vibration responses of FG single layer and sandwich
plates.

e The obtained results using the R4FSDT reiterate that FSDT may be well suited to
simpler geometries and moderately thick plates.

e The shear correction factor has a slight influence on the dimensionless deflections and
natural frequency while it has no effect on the dimensionless normal stresses values.
The shear correction factor has almost no effect on the dimensionless deflection in case
of thin plates.

e In the case of FG single layer plates, the dimensionless deflection decreases by
increasing the side-to-thickness ratio whereas it increases with the increasing of power-
law values.

e In the case of a sandwich plate with a ceramic core, the dimensionless deflection
increases as the power-law index increases and decreases as the core thickness increases.

The opposite has been observed for the homogeneous metallic core.
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e For sandwich plate with either ceramic or metallic core the dimensionless deflection
increases with the increase of side-to-thickness ratio L/h.

e Thedimensionless critical buckling loads and natural frequencies decrease for sandwich
plate with homogeneous ceramic core with the increase of the power-law index, whereas
they increase for sandwich plate with homogeneous metallic core.

e Thedimensionless critical buckling loads and natural frequencies increase for sandwich
plate with homogeneous ceramic core as the core thickness, with respect to the total
thickness of the plate increases, while they decrease for sandwich plate with
homogeneous metallic core.

e The dimensionless critical buckling loads and frequencies of FG single layer plate
increase as the side-to thickness ratio and the boundary constraints increase and they
decrease as the power-law index and aspect ratio increase.

e The dimensionless critical buckling load of plate subjected to uniaxial compression
loading is greater than that subjected to bi-axial compression and less than those
subjected to bi-axial compression and tension loads.

e The critical buckling modes change by the increase of the aspect ratio I/L in the case of
uniaxial compression loading. While, in the case of biaxial compression loading the

plate buckles with only one mode whatever the aspect ratio.

Perspectives

In perspective, it is planned to apply the R4SSDT element for the analysis of thermal buckling
response of FG plates and to analyze the static, dynamic and stability behaviors of FG sandwich

plates.

It is also planned to use the trigonometric model for the analysis of various forms of thin and

thick FG structures behaviors.

Finally, this doctoral research work is part of the contribution of LGEM and MN212S
laboratories in the development of new theories, finite elements for the analysis of FG structures

behaviors.
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