الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement supérieur et de la recherche scientifique

Université Mohamed Khider – Biskra Faculté des Sciences et de la technologie Département : Génie civil et hydraulique Ref :.....

جامعة محمد خيضر بسكرة كلية العلوم و التكنولوجيا قسم: الهندسة المدنية والري المرجع:....

Thèse présentée en vue de l'obtention Du diplôme de **Doctorat en sciences en : HYDRAULIQUE**

Spécialité (Option) : science hydraulique

Estimation des pressions de terre passive et active en présence d'écoulement dans les fouilles de largeur limitée

Présentée par : Khater Ibtissem

Soutenue publiquement le : / /2019

Devant le jury composé de :

Mr Benkhaled Abdelkader Mme Benmebarek Naima Mr Ghomri Ali Mr Demagh Raafik ProfesseurPrésideProfesseurRapporMaitre de conférencesExaminMaitre de conférencesExamin

Président Rapporteur Examinateur Examinateur Université de Biskra Université de Biskra Université d'El-oued Université de Batna 2

Remerciement

Avant tout, je remercie Dieu tout puissant, de m'avoir accordé la force, le courage et les moyens pour la réalisation de ce travail.

Je tiens tout particulièrement à témoigner ma profonde gratitude et mes vifs remerciements à Madame *Benmebarek Naima*, Professeur à l'université Mohamed Khider de Biskra, qui ma mis les pieds sur ce chemin et pour m'avoir conseillée judicieusement et m'avoir orienté et encouragée tout au long de ce travail.

Mes remerciements vont également à Monsieur *Benmebarek Sadok*, Professeur à l'université Mohamed Khider de Biskra et directeur du laboratoire Modalisation Numérique et instrumentation en interaction sol-structures (MN212S), pour son accueil bienveillant au sein de son équipe de recherche.

Je remercier particulièrement Monsieur, Professeur *Benkhaled Abdelkader* à l'université Mohamed Khider de Biskra, pour m'avoir fait l'honneur d'accepter la précédence de jury de soutenance. Mes sincères remerciements vont également à monsieur, *Ghomri Ali* Maitre de conférences à l'université d'Eloued, *Demagh Raafik*, Maitre de conférences à l'université de Batna, Pour l'intérêt qu'ils ont bien voulu manifester à l'égard de ce travail, an acceptant d'examiner cette thèse.

Table des matières

Résumé		
Résumé (en anglai	is)	
Résumé (en arabe))	
Liste des figures		V
Liste des tableaux		Х
Introduction généra	ale	1
Chapitre 1 : <i>Typo</i>	logie des ouvrages de soutènement	4
1.1. Introduction		4
1.2. Classification	n des murs de soutènement	5
1.2.1. Murs p	poids	5
1.2.1.1. N	Mur en maçonnerie de pierres sèches	6
1.2.1.2. N	Mur en maçonnerie jointoyée	6
1.2.1.3. N	Mur poids en béton	7
1.2.1.4. N	Mur poids en gabion	7
1.2.1.5. N	Mur en élément préfabriqués	8
1.2.1.6. N	Mur en béton armé encastré sur semelle	8
1.2.1.7. N	Mur en remblai renforcé par des éléments métalliques	9
1.2.1.8. N	Mur en remblai renforcé par des éléments géosynthétiques	9
1.2.2. Paroi e	et rideau	10
1.2.2.1.	Rideau de palplanches métalliques	10
1.2.2.2. I	Paroi moulées ou préfabriquées	11
1.2.2.3. H	Paroi composites	12
a) I	Paroi berlinoise	12
b) I	Paroi parisienne	12
1.2.2.4. H	Paroi clouée	13
1.2.2.5.	Voiles ou poutres ancrés	14

I

1.3. Le système d'appui des soutènements	14
1.3.1. La fiche	14
1.3.2. Description d'un buton	14
1.3.3. Description d'un tirant d'ancrage	16
1.3.3.1. Les tirants passifs	16
1.3.3.2. Les tirants actifs	17
1.3.3.3. Instabilité et rupture des tirants	17
1.4. Mécanisme de rupture des soutènements flexibles	17
1.5. Mouvement et état de contraintes autour d'un soutènement flexible	19
1.6. Action de l'eau sur un rideau de palplanches	20
1.6.1. Ecoulements permanents autour d'un rideau de palplanches	20
1.7. Effet de voûte	21
1.8. Etat du sol au repos	23
1.9. Notion de poussée et de butée	25
1.9.1. Distribution des pressions de terre sur l'écran rigide	28
1.9.2. Distribution des pressions de terre sur l'écran souple	28
1.10. Conclusion	31

Chapitre 2 : *Travaux antérieurs sur le calcul des pressions de terre passive et active* 32

2.1.	Introduction		32
2.2.	Méthodes de calcul des pressions de terre passive et active		32
2.2	2.1. Méthode de Coulomb (1776)	······	33
2.2	2.2. Méthode de Rankine (1857)		39
2.2	2.3. Méthode de Boussinesq (1882)		47
2.2	2.4. Méthode de Sokolovsky (1960)	·····	48
2.2	2.5. Prise de position de Terzaghi (1936)		48
2.2	2.6. Théorie de Brinch Hansen (1953 ; 1962)		50
2.2	2.7. Construction de Culmann (courbe de Culmann) (1875) .		52
	a) Pour la poussée active		52
	b) Pour la poussée passive		53
2.3.	Historique des méthodes de calcul des écrans de soutènement		55

2.3.1	. Mét	hod	es de calcul classiques (équilibre limite)	58
2.3.2	. Rid	eau	de palplanche non ancré encastré en pied	59
2.3.3	. Rid	eau	de palplanche avec ancrage	61
		a)	Rideau de palplanche ancré, simplement butée en pied	61
		b)	rideau ancré et encastré	65
		*	Méthode de la ligne élastique	65
		*	Méthode de Blum	66
		*	Méthode de Blum modifiée	68
2.	3.4.	Mé	thodes élasto-plastiques utilisant le module de réaction	60
	2.3.	4.1.	Principe de la méthode au module de réaction	70
	2.3.	4.2.	Critique de la méthode au module de réaction	70
2	3 5	Cal	cul par les méthodes en continuum	72
24	 Тат	rati	que actuelle des méthodes de calcul des écrans de soutènement	73 74
2. 4 . 2.5	Con	alua	ion	7-
2.3.	Con	leiue		15
Cha	pitre 3	: P	résentation du code numérique et les modèles de comportement utilisés	77
0.1	т.,	1 .		
3.1.	Intro	luct		77
3.2.	Méth	lode	des différences finies (MDF)	78
3.3.	Prése	ntati	ion du code bidimensionnel (FLAC ²²)	78
3.4.	Méth	odol	logie de simulation avec FLAC	80
3.5.	Mode	élisa	tion de l'écoulement en FLAC	81
3.6.	Mode	èles	de comportement	83
3.	6.1. I	.oi d	le comportement élasto-plastique	83
3.	6.2. N	Aod	èle élastique linéaire parfaitement plastique suivant Mohr-Coulomb	84
	3.6.	2.1.	Paramètres du modèle	85
3.	6.3. N	Aod	èle de comportement de l'interface	85
	3.6.	3.1.	Paramètres du modèle	86
3.	6.4. N	Aod	èle de comportement des structures	86
	3.6.	4.1.	Paramètres du modèle	87
3.7.	Concl	lusic	on	87

Chapitre 4 : Modélisation numérique des pressions de terre passive et active en présence	
d'écoulement	88
4.1. Introduction	88
4.2. Simulation numérique des pressions de terre passive et active	89
4.2.1. Présentation du cas étudié	89
4.2.2. Maillage et conditions aux limites	90
4.2.2.1 Maillage	90
4.2.2.2. Condition aux limites	90
a) Conditions aux limites mécaniques	90
b) Conditions aux limites hydrauliques	90
4.2.3 Modèles de comportement	91
4.2.4. Procédure de simulation	92
4.3. Validation de la procédure de simulation	94
4.4. Résultats et discussions	94
4.4.1. Etudes des pressions de terre passive et active sans écoulement	94
4.4.1.1. Distribution de la pression de terre active sur l'écran	96
a) Influence de l'espacement des écrans	96
Influence de l'angle de frottement interne du sol	96
Influence de l'angle de dilatance	96
Influence de l'angle de l'interface	97
4.4.1.2. Distribution de la pression de terre passive sur l'écran	100
a) Influence de l'espacement des écrans	100
Influence de l'angle de frottement interne du sol	100
Influence de l'angle de dilatance	100
Influence de l'interface sol/écran	101
4.4.2. Etudes des pressions de terre passives en présence d'écoulement	107
4.4.2.1. Distribution de la pression interstitielle sur l'écran	114
a) Influence de la perte de charge	114
b) Influence de l'espacement des écrans	114
4.4.2.2. Distribution de la pression passive sur l'écran	113
a) Influence de la perte de charge	116
b) Influence de l'angle de l'interface	116
4.5. Conclusion	119
Conclusion générale	121
Référence bibliographique	124

٧

Liste des figures

Chapitre 1 : Typologie des ouvrages de soutènement	4
Photo 1.1 : Mur en maçonnerie de pierrées sèches	6
Photo 1.2 : Mur en maçonnerie jointoyée	6
Photo 1.3 : Mur poids en béton	7
Photo 1.4 : Mur poids en gabion (déversoirs)	7
Photo 1.5 : Mur en élément préfabriqués	8
Photo 1.6 : Mur en béton armé encastré sur semelle	8
Photo 1.7 : Mur en terre armée	9
Photo 1.8 : Parement préfabriqué devant le massif en géotextile	10
Photo 1.9 : Rideau de palplanches métalliques	11
Photo 1.10 : Paroi ancrée par des tirants précontraints	11
Photo 1.11 : Photographie d'une paroi berlinoise avec un parement en béton projeté réalisé	
dans les schistes briovériens [tiré de Tomas le cor(2014)]	12
Photo 1.12 : Paroi parisienne ancrée par des tirants précontraints	13
Photo 1.13 : Paroi clouée	13
Photo 1.14 : Paroi ou poutres ancrés en phase de construction	14
Figure 1.15 : Description d'un butons	15
Figure 1.16 : Description d'un tirant d'ancrage	16
Figure 1.17. Mécanisme de rupture dans le massif de sol	18
Figure 1.18. Mécanisme de rupture dés élément de renforcement	18
Figure 1.19. Mécanisme de rupture dés élément de renforcement (suite)	19
Figure 1.20:Types d'écoulement permanent derrière un rideau de palplanches [d'après Houy	
(1986)]	20
Figure 1.21. Répartition de la pression sur un écran semi-rigide de 80cm de hauteur, d'après	
<i>Bros</i> (1972)	22
Figure 1.22. Schéma d'effet de voûte sur un écran flexible	22
Figure 1.23: Contrainte au repos	23
Figure 1.24: Actions sur un mur de soutènement <i>pour</i> $\beta = 0$, $\delta = 0$ état limite de poussée du sol.	25

Figure 1.25: Actions sur un mur de soutènement <i>pour</i> $\beta = 0$, $\delta = 0$ état limite de butée du sol	26
Figure 1.26 : Distribution des pressions	27
Figure 1.27 : Distribution des pressions de terre sur un écran rigide	28
Figure1.28 : Distribution de pressions trouvées à l'issue de différentes procédures de	
construction [d'après Tschebotarioff et Brown (1948)] tiré de [Delattre (2001)]	29
Figure 1.29 : Distribution des pressions mesurés sur un modèle réduit d'écran souple butonnée	
rigidement à l'avancement de l'excavation[Rowe (1961)] tiré de [Delattre (2001)]	30

Chapitre 2 : Travaux antérieurs sur le calcul des pressions de terre passive et active

Figure 2.1 : Equilibre du coin de <i>Coulomb</i> (cas de poussée)[tiré de <i>Chang-Yu Ou</i> (2006)]	34
Figure 2.2 : Equilibre du coin de <i>Coulomb</i> (cas de butée)[tiré de <i>Chang-Yu Ou</i> (2006)]	35
Figure 2.3 : Théorie de <i>Coulomb</i> , poussée active	35
Figure 2.4 : Théorie de <i>Coulomb</i> , poussée passive	36
Figure 2.5 : Formule de <i>poncelet</i>	37
Figure 2.6 : Hypothèse de <i>Rankine</i>	39
Figure 2.7 : Pressions et dimensions pour l'analyse de Rankine [tiré de Clayton et al (2014)]	40
Figure 2.8 : Les contraintes principales sur cercle de <i>Mhor</i> [<i>tiré de Clayton et al</i> (2014)]	40
Figure 2.9 : Cercle de <i>Mohr</i> pour l'état actif. Surface horizontale Condition de <i>Rankine</i> $\delta = 0$.	
[tiré de Clayton et al (2014)]	41
Figure 2.10 : Analyse de <i>Rankine</i> , rupture actif- surface inclinée $\delta = \beta$ [<i>tiré de Clayton et al</i>	
(2014)]	42
Figure 2.11 : Analyse Rankine-Bell, rupture active [tiré de Clayton et al (2014)]	43
Figure 2.12 : Mur de soutènement vertical et un remblai granulaire incliné	45
Figure 2.13 : Cas généralisé des pressions passive et active de Rankine pour un remblai	
granulaire	46
Figure 2.14: Equilibre de <i>Boussinesq</i> et <i>Rankine</i>	47
Figure 2.15: Coefficient de poussée latérale des terres contre un mur vertical et position du	
point d'application de la résultante (selon Terzaghi 1936a). Distinction du mode	
de déplacement du mur [<i>tiré de Clayton et al</i> (2014)]	49

Figure 2.16: Modes de rupture possibles pour une paroi ancrée et fichée avec ou sans	
formation de rotules plastiques dans la structure (figure tirée de Steenfelt et al.1981) [tiré de <i>Plumey</i> (2007)]	50
Figure 2.17 : La surface de rupture dans le sol en frottement avec la paroi cas de la buttée [tiré <i>Braja M.Das</i> (2010)]	53
Figure 2.18 : Construction de <i>Clumann</i> pour le calcul de la poussée active [tiré de <i>Terzaghi</i> (1996)]	51
Figure 2.19: Construction de <i>Clumann</i> pour le calcul de la poussée passive	54
Figure 2.20 : Grands axes et principaux jalons du développement des méthodes de calcul des	
écrans de soutènement	57
Figure 2.21 : Rideau non ancré encastré [Josseaume(1974)]	59
Figure 2.22 : Hypothèse admise pour le calcul d'un rideau non ancré [Schlosser(1994)]	60
Figure 2.23 : Diagramme de pression c'exerçant sur un rideau ancré simplement butée	61
Figure 2.24 : Schémas de calcul proposé par Rowe pour le calcul en butée simple (<i>Delattre</i> 2001)	63
Figure 2.25 : Réduction du moment fléchissant maximal avec la flexibilité du rideau d'après les abaques des résultats expérimentaux de Rowe (<i>Delattre</i> 2001)	63
Figure 2.26 : Schéma trapézoïdal de <i>Terzaghi</i> [figure tiré de <i>Masrouri</i> (1860)]	64
Figure 2.27 : δ_p en fonction du déplacement de l'écran [figure tiré de <i>Masrouri</i> (1860)]	64
Figure 1.28 : Hypothèse admise pour le calcul d'un rideau ancré et ancastré	65
Figure 2.29 : Méthode de la ligne élastique	65
Figure 2.30 : Influence de la longueur de la fiche sur les pressions sur l'écran, les moments fléchissant auxquels il est soumis et sa déformée [d'après <i>Blum</i> (1931)]. [Figure	
tirée de <i>Delattre</i> (2001)]	67
Figure 2.31 : Méthode de Blum de calcul des écrans ancrés	68
Figure 2.32 : Méthode de <i>Blum</i> de calcul des écrans ancrés (suite)	69
Figure 2.33: Schéma du déplacement de la paroi [tiré de Tomas le cor(2014)]	71

Chapitre 3 : Présentation du code numérique et des modèles de comportement utilisés	77
Figure 3.1 : Méthodologie de modélisation numérique avec FLAC (ITASCA Manuel)	81
Figure 3.2 : Critère de rupture de <i>Mohr-Coulomb</i>	84
Figure 3.3 : Détail des composants d'un élément d'interface (Itasca Mannuel (1994))	86
Chapitre 4 : Modélisation numérique des pressions de terre passive et active en présence	
d'écoulement	89
Figure 4.1 : Cas étudié	89
Figure 4.2. Maillage et conditions aux limites mécaniques	90
Figure 4.3. Conditions aux limites hydrauliques	91
Figure 4.4. Interface sol – écran	92
Figure 4.5 : Influence de l'angle de frottement interne du sol sur la pression effective activede terre pour différente valeur de f/B	96
Figure 4.6 : Influence de l'angle de dilatance du sol sur la pression effective active de terre pour différente valeur de f/B	96
Figure 4.7 : Influence de l'angle d'interface sur la pression effective active des terres pourdifférente valeur de f/B	97
Figure 4.8 : Influence de l'angle de frottement interne du sol sur la pression effective passive de terre pour différente valeur de f/B	100
Figure 4.9 : Influence de la dilatance du sol sur la pression effective passive selon l'espacement des écrans pour $\delta/\varphi = 1$, $\varphi = 30^{\circ}$	101
Figure 4.10 : Influence de la rugosité de l'écran sur le coefficient de butée selon l'espacement des écrans	102
Figure 4.11 : Influence de la rugosité de l'écran sur le coefficient de butée selon l'espacement des écrans (suite)	103
Figure 4.12 : Distribution de la pression effective passive de terre pour différentes largeurs du batardeau pour $\delta/\varphi = 0$, $\varphi = 30^\circ$, $\psi/\varphi = 0$	104
Figure 4.13: Distribution de la pression effective passive de terre pour différentes largeurs du batardeau pour $\delta/\varphi = 1$, $\varphi = 30^\circ$, $\psi/\varphi = 0$	104

Figure 4.14: Distribution des déformations maximales de cisaillement pour les différentes	
largeurs f/B et pour $\delta/\varphi = 0$, $\varphi = \psi = 30^{\circ}$	106
Figure 4.15 : Champs de déplacement de la zone mobilisé par les pression de terre passive et	
active sur l'écran distribution pour les différentes largeurs $f/B = (0.05, 0.25, 0.5, 0.75, 1 \text{ et } 2)$ et pour $\delta/\varphi = 0$, $\varphi = \psi = 30^{\circ}$	107
Figure 4.16 : Distribution de la pression d'eau le long de l'écran pour <i>f/B</i> =2 et pour différentes charges	114
Figure 4.17: Répartition des pressions d'eau selon l'espacement entre les deux écrans pour $H/f=1$	115
Figure4.18 : Valeurs des gradients hydrauliques de sortie selon l'espacement entre les deux écrans pour différentes charges hydrauliques	115
Figure 4.19 : Distribution de la pression effective passive de terre pour $f/B=0,25 \ \delta/\varphi =0$, $\varphi = 30^{\circ}, \ \psi/\varphi = 0$	116
Figure 4.20: Influence de la charge hydraulique sur le coefficient de butée pour $\delta/\phi = 0$, $\phi = 30^{\circ}$, $\psi/\phi = 0$	117
Figure 4.21: Influence de la charge hydraulique sur le coefficient de butée pour $\delta/\varphi = 0$, $\varphi = 30^{\circ}$, $\psi/\varphi = 0$	117
Figure 4.22 : Distribution des déformations maximales de cisaillement pour $f/B=0.1$, $\delta/\varphi = 0$ et 2/3, pour $\varphi=30^{\circ}$, $\psi/\varphi = 1/2$ avec $h/f=0$, 0.5, 1, 1.5	118

Liste des tableaux

Chapitre 4 : Modélisation numérique des pressions de terre passive et active en présence d'écoulement

Tableau 4.1 : Comparaison du présent coefficient de butée K _p avec les solutions existantes	
quand $\delta/\varphi = 1$	94
Tableau 4.2. Les coefficients de K_a pour un angle de dilatance $\psi/\varphi = 0$	95
Tableau 4.3. Les coefficients de K_a pour un angle de dilatance $\psi/\varphi = 1/2$	95
Tableau 4.4. Les coefficients de K_a pour un angle de dilatance $\psi/\varphi = 1$	95
Tableau 4.5. Les coefficients de K_p pour un angle de dilatance $\psi/\varphi = 0$	98
Tableau 4.6. Les coefficients de K_p pour un angle de dilatance $\psi/\varphi = 1/2$	98
Tableau 4.7. Les coefficients de K_p pour un angle de dilatance $\psi/\varphi = 1$	99
Tableau 4.8. Les coefficients de K_p pour un angle de frottement $\varphi = 20^0 \psi = 0$	108
Tableau 4.9. Les coefficients de K_p pour un angle de frottement $\varphi = 20^0 \psi = 1/2$	108
Tableau 4.10. Les coefficients de K_p pour un angle de frottement $\varphi = 20^0 \psi = 1$	109
Tableau 4.11. Les coefficients de K_p pour un angle de frottement $\varphi = 25^0 \psi = 0$	109
Tableau 4.12. Les coefficients de K_p pour un angle de frottement $\varphi = 25^0 \psi = 1/2$	110
Tableau 4.13. Les coefficients de K_p pour un angle de frottement $\varphi = 25^0 \psi = 1$	110
Tableau 4.14. Les coefficients de K_p pour un angle de frottement $\varphi = 30^0 \psi = 0$	111
Tableau 4.15. Les coefficients de K_p pour un angle de frottement $\varphi = 30^0 \psi = 1/2$	111
Tableau 4.16. Les coefficients de K_p pour un angle de frottement $\varphi = 30^0 \psi = 1$	112
Tableau 4.17. Les coefficients de K_p pour un angle de frottement $\varphi = 35^0 \psi = 0$	112
Tableau 4.18. Les coefficients de K_p pour un angle de frottement $\varphi = 35^0 \psi = 1/2$	113
Tableau 4.19. Les coefficients de K_p pour un angle de frottement $\varphi = 35^0 \psi = 1$	113

Estimation des pressions de terre passive et active en présence d'écoulement dans les fouilles de largeur limitée

Résumé

Des observations faites sur des essais au laboratoire mettent en évidence que l'instabilité du fond de fouille en présence d'écoulement peut être causée non seulement par le phénomène de soulèvement ou de boulance mais aussi par la réduction de la butée.

La détermination des forces agissantes entre le sol et les structures de soutènement est une étape importante dans l'ingénierie géotechnique. Une conception sécuritaire et économique d'un écran de soutènement nécessite alors une connaissance profonde des pressions de terre passive et active. En fait, les mécanismes de rupture, en présence d'écoulement, sont complexes et multiples, et dépendent de leur configuration géométrique. Ces mécanismes sont très difficiles, voire impossible à décrire en présence d'écoulement par les méthodes classiques en (poussée-butée).

Cette thèse s'intéresse à l'effet de l'espacement des écrans d'excavations profondes sur les pressions latérales passives et actives de terre agissant sur les écrans retenant l'excavation dans un sol frottant. Le calcul des coefficients de pression passive de terre pour des matériaux associés et non associés a été effectué à l'aide du code FLAC en différences finies explicites. Aussi l'étude s'intéresse à l'effet de la présence d'écoulement (charge hydraulique) sur la pression latéral passive de la terre.

Les résultats obtenus indiquent que lorsque la largeur de l'excavation est inférieure à la zone passive, les deux écrans de soutènement interagissent selon le rapport de la profondeur de pénétration de la fiche et la largeur de l'excavation. Un bon accord est observé entre les résultats de calcul et ceux utilisant l'analyse de l'équilibre limite pour des excavations à double parements à grande largeur. Les résultats montrent que la diminution de la largeur de l'excavation de plus de 0,5 fois la profondeur de la fiche d'excavation induit une augmentation de la pression passive de terre. Cette augmentation est plus prononcée pour les murs rugueux. Il est également montré que l'angle de dilatance influe sur la pression de terre passive pour les grandes valeurs de l'angle de frottement interne du sol. Ainsi l'écoulement diminuer significativement la pression passive de la terre.

Mots clés : Butée ; Modélisation numérique ; Sol frottant ; Ecran ; Interaction ; Flac.

Estimation of passive and active earth pressures in the presence of flow in excavations of limited width

Abstract

On the observations of laboratory model tests that have show that the instability of the retaining wall in presence of seepage flow is not only due to the heaving phenomenon but may also occur due to the reduction passive earth pressures in front of the wall.

The determination of forces between the ground and the structures of retaining is an important step in the geotechnical engineering. A secure and economic conception of retaining screen structure requires a deep knowledge of the passive and active earth pressures. In fact, the failure mechanisms, in the presence of flow are complex and multiple, and depend on the geometric configuration. These mechanisms are very difficult, seem Impossible to describe in the presence of flow by the classical methods on (passive pressures decrease-active pressures increase).

This thesis deals with the effect of deep excavation width on the lateral passive earth pressures acting on retained walls excavation in cohesionless soil. The computation of the passive earth pressure is performed using the explicit finite difference method implemented in FLAC code. The available passive earth pressure coefficients are given for both associative and non-associative material. Also the study deals with the effect of the presence of flow (hydraulic gradient) on passive lateral earth pressure.

The results indicate that when the width of the excavation is less than passive zone the two retaining walls interact with each other at penetration depth. Good agreement is observed between the present results and those using limit equilibrium and limit analysis for large double cofferdam. However, the results show that the decrease of double cofferdam width more than 0.5 the excavation depth induces an increase in the passive earth pressure. The increase of passive earth pressure is more pronounced for rough walls. It is also shown that the dilation angle influences the passive earth pressure for large internal friction angle values. Thus the flow significantly decrease the passive pressure of the earth.

Keywords : active pressures increase ; numerical meddelling; Rubbing soil ; screen ; Interaction ; Flac.

تقدير الضغوطات السلبية و الفعالة للتربة بوجود المياه لحواجز المياه ذات العرض المحدود

ملخص

التجارب على نماذج في المخبر بينت بوضوح أن عدم استقرار قعر الحفر بوجود جريان للماء يمكن أن يحدث ليس فقط بسبب ظاهرة الارتفاع لكتلة من التربة أو عدم التوازن بل أيضا من تناقص قوة الدفع العكسي.

تحديد القوى الفعالة بين الأرض و هياكل ألواح الإسناد هي مرحلة مهمة في الهندسة الجيوتقنية. إن التصورات الأمنية و الاقتصادية للوح الإسناد يتطلب إذن معرفة عميقة لقوى الضغط السلبية و الفعالة للتربة. فيما يخص آليات الانكسار بوجود المياه فهي جد معقدة و متعددة و تتعلق بالشكل الهندسي. هذه الآليات جد صعبة 'لا بل مستحيلة الوصف بوجود الجريان بالطرق التقليدية.

هذه الأطروحة تهتم بدراسة تأثير تباعد حواجز المياه للحفر العميقة على الضغوطات الجانبية السلبية و الفعالة للتربة على ألواح الإسناد التي تدعم جانبي الحفر في تربة رملية . حساب هذه المعاملات تم باستخدام البرامجي FLAC . أيضا الدراسة تدرس تأثير الجريان (الميل الهيدروليكي) على الضغط الجانبي السلبي للتربة.

تشير النتائج التي تم الحصول عليها إلى أنه عندما يكون عرض الحفرة أقل من المنطقة المتأثرة بالضغط السلبي، الحواجز تتفاعل وفقا لنسبة جذاذة الحاجز و عرض الحفرة. ولوحظ اتفاق جيد بين نتائج الحساب و الطرق القديمة للحساب لحاجزين للحفر العريضة. أظهرت النتائج أن إنقاص عرض الحفر بأكثر من 0.5 مرة من عمق جذاذة الحاجز يؤدي إلى زيادة الضغط الأرضي السلبي. هذه الزيادة أكثر وضوحا بالنسبة للجدران الخشنة. كما يتبين أن زاوية التمدد تؤثر على الضغط الأرضي السلبي للأرضي السلبي للأرض. للزاوية الكبيرة الكبيرة الزاوية الاحماد الحريضة. أن الخلير من 1.5 مرة من عمق جذاذة الحاجز يؤدي إلى زيادة الضغط الأرضي السلبي. هذه الزيادة أكثر وضوحا بالنسبة للجدران الخشنة. كما يتبين أن زاوية التمدد تؤثر على الضغط الأرضي السلبي للأرض.

الكلمات المفتاحية: ضغط سلبي للتربة نمذجة رقمية ,تربة رملية, تفاعل , الاستقرار, حاجز, FLAC

Thèse : *Estimation des pressions de terre passive et active en présence d'écoulement dans les fouilles de largeur limitée*

Introduction générale

Les contraintes liées à l'aménagement des grandes agglomérations et la saturation de l'espace urbain conduisent à une occupation sans cesse croissante du sous-sol. On multiplie ainsi les excavations profondes pour la réalisation des trémies routières, de parcs de stationnement souterrains, de tunnels routiers ou de métros construits suivant la technique de la tranchée couverte. Ce développement a été facilité par l'utilisation des soutènements minces classiques (palplanches métalliques) et la technique du procédé de la paroi moulée et ses dérivés permettant l'exécution à très faible distance d'ouvrages existants.

Les excavations profondes pénètrent parfois profondément dans la nappe phréatique au sein d'aquifères de forte perméabilité, nécessitant le drainage et le rabaissement provisoire ou définitif du niveau de la nappe phréatique qui sont indispensable pour la stabilité des ouvrages. Les phénomènes susceptibles de se développer sous l'effet de l'écoulement autour du rideau de soutènement : le soulèvement d'un bloc de sol devant la fiche, un phénomène de renard ou une rupture mécanique par réduction de la pression passive (butée) de terre peuvent se produire en fonction des propriétés du sol, de l'interface sol/structure, de type et conditions de la structure de soutènement, et du milieu aquifère environnent. Ces phénomènes peuvent conduire à des ruptures catastrophiques relativement soudaines des structures de soutènement, causant d'énormes dégâts matériels et parfois même de regrettables pertes humaines. D'où la nécessité de la prise en considération des effets de l'écoulement d'eau dans le calcul et dans l'analyse des comportements des ouvrages de soutènement.

Les soutènements englobent les structures massives que sont les murs de soutènement (emprise et poids de l'ouvrage importants, murs poids en maçonnerie ou en béton....), et les structures plus souples que sont les écrans de soutènement (rideaux de palplanches, parois de type berlinois...) qui sont relativement minces et peuvent être réalisés en différents matériaux tels que le béton, l'acier ou encore le bois. Aussi Les systèmes de soutènement composites (batardeaux composées de plusieurs rideaux de palplanches, murs en terre armée). Leurs fonctions, peuvent être diverses, même si les murs de soutènement sont quasi exclusivement utilisés pour retenir des terrains tandis que les écrans peuvent également servir à maintenir une fouille hors d'eau et servir de fondation à une superstructure.

Tous ces ouvrages ont en commun deux forces agissant sur les écrans, la force de poussée exercée par le massif de sol retenu, généralement reprise soit par le poids de l'ouvrage de soutènement, soit par l'encastrement de l'ouvrage de soutènement soit par des ancrages et la force de butée exercée par l'écran sur le sol.

Ces pressions de terre passive et active, agissant contre les structures de soutènements profondes jouent un rôle important dans la conception sécuritaire et économique des écrans de soutènement et sont souvent fonction de nombreux paramètres. Donc la détermination de ces forces est une étape importante dans l'ingénierie géotechnique.

Le problème des pressions de terre active et passive, agissant contre les structures de soutènement rigides, a été largement étudié dans la littérature depuis *Coulomb* (1776). La plupart des méthodes existantes reposent soit sur la méthode de l'équilibre limite, soit sur la méthode de la ligne de glissement. Récemment, vue le développement du l'outil informatique les méthodes numériques basé sur les méthodes de différences finie et la méthode des éléments finie sont de plus en plus utilisé pour leur possibilité d'étudier le comportement de la paroi et de la masse du sol retenu en tenant compte de leurs déformations et interactions.

Le problème de la poussée du sol sur un écran est très compliqué pour être résolu par les méthodes classiques, elles ne permettent pas de calculer les déplacements nécessaires pour mobiliser la poussée ou butée ainsi l'influence des paramètres du sol et les caractéristiques géométriques et mécaniques du mur. Les résultats obtenus à partir des expériences sont très intéressants, mais il n'est pratiquement pas possible d'obtenir les coefficients de conception pour les diverses combinaisons de l'angle de frottement du sol φ , de l'angle de dilatance ψ , de l'angle de frottement de la paroi δ . Pour cela il est nécessaire de faire une étude par simulation numérique des coefficients des pressions de terre passive et active en présence d'écoulement pour les différentes caractéristiques du sol et de l'écran.

Ainsi le problème des pressions de terre passive et active agissant sur des murs de soutènement rigides a été largement traité dans la littérature en utilisant différentes approches. Cependant, l'effet de la largeur d'excavation sur les pressions latérales passives n'a pas été étudié.

Dans cette thèse, à l'aide du code FLAC, une investigation numérique a été effectuée afin d'évaluer l'influence de la largeur de la fouille sur les pressions de terre. Les coefficients de pression de terre sont évalués pour des écrans rugueux et lisses et pour des matériaux associés et non-associés. Les résultats numériques sont discutés et comparés aux résultats existants publiés dans la littérature.

Cette thèse commence par une introduction générale, et elle est constituée de deux parties :

- ✓ La première partie est consacrée à la synthèse bibliographique des soutènements, elle comporte deux chapitres :
 - **Chapitre 1 :** expose les différents types de structure de soutènement, les éléments les plus importants du comportement et les mécanismes de rupture.
 - Chapitre 2 : présente une revue des travaux antérieurs dans la littérature sur les différentes méthodes de calcul des pressions de terre passive et active, et particulièrement les méthodes de calcul des soutènements flexibles.
- ✓ La deuxième partie est consacrée à la modélisation numérique des pressions de terre passive et active, et elle comporte deux chapitres :
 - Chapitre 3 : présente l'outil de simulation (le code numérique Flac) ainsi que son processus de résolution, et rappelle les modèles de comportements les plus utilisées dans la modélisation des sols, des structure et de l'interface sol-structure.
 - Chapitre 4 : s'intéresse à l'évaluation numérique des coefficients des pressions de terre passive et active à l'aide du code numérique Flac, pour le cas sans ou avec écoulement autour de la palplanche pour différentes largeurs du batardeau.

Les résultats de simulation numérique des pressions de terre passive et active sont présentés sous forme de tableaux et graphes, pour différentes largeurs en variant les caractéristiques mécaniques des sols et la perte de charge totale en présence d'écoulement.

Enfin, cette thèse se termine par une conclusion générale.

Chapitre 1

Typologie des ouvrages de soutènement

1.1. Introduction :

Les ouvrages de soutènement sont largement rencontrés en génie civil, avec des formes, dimensions et matériaux très variés. Le ouvrages de soutènement sont des écrans reposant sur une fondation, conçus pour soutenir un massif de sol et lui assurer la stabilité, ainsi que celle d'un éventuel ouvrage sus-jacent à ce sol. On distingue le mur en déblai, qui soutient un sol excavé, d'un mur en remblai, soutenant un sol artificiel construit par couches compactés.

Si les murs de soutènement de type poids sont bien adapté au soutènement de remblais, le domaine d'emploi privilégie des écrans de soutènement est le soutènement des excavations, dont ils accompagnent le développement tout au long du vingtième siècle. Le développement et la diversification de la technique des écrans de soutènement, des rideaux de palplanches ou parois moulées, des parois berlinoises ou lutéciennes et parisiennes et aux rideaux de pieux, et celle de la technique associée des appuis, des butons aux ancrages précontraints, rendront possible la construction d'ouvrages enterrés toujours plus nombreux : infrastructures de transport, réseaux divers, soubassements d'immeubles, parkings, etc [*Delattre* (2000)].

Les rideaux de palplanche sont des soutènements plans relativement souples installés par adjonction des profilés métalliques dans le sol, par battage ou vibro-fonçage. La souplesse de ces écrans leur confère une grande capacité d'adaptation aux grands déplacements dus à une éventuelle sollicitation sismique [*Bouafia*(2000)].

4

1.2. Classification des murs de soutènement :

Il existe plusieurs classifications des ouvrages de soutènement, la plus courante est basée sur la morphologie de l'ouvrage. D'où ils peuvent classer en murs de soutènement et écrans plans de soutènement.

• Les murs de soutènement : pour ce type des ouvrages le poids du mur contribue essentiellement à la stabilité et à la reprise des poussées, sans subir des déplacements pouvant rompre le sol derrière. Les murs courants, en béton ou en maçonnerie, murs en béton armé avec semelle, murs à contreforts, etc. sont considérés pratiquement comme mur poids rigide, où la surface de contact sol/mur reste plane après chargement.

Certain type, tel que les murs en élément préfabriqué ou en remblai renforcé par des éléments métalliques ou géosynthétiques, par leurs dimensions, sont considéré des murs poids, mais ils peuvent tolérée des déformations importantes sous les efforts provenant du sol. Aussi ils ont la possibilité de s'adapter à des déformations importantes résultant des tassements différentiels du sol de fondation ou du mouvement sismique.

Les écrans plans de soutènement : peuvent être considéré comme soutènement flexible.
Pour lesquels la surface de contact sol-mur est déformable. les contraintes dépendent non seulement des déplacements de l'écran de soutènement mais aussi de sont déformations propres. L'ouvrage représentatif est le rideau de palplanches, parois en béton moulé dans le sol, parois préfabriquées, parois de type berlinois, blindages de fouilles.

Pour ce type de soutènement, la poussée est reprise soit par encastrement dans le sol, soit à l'aide d'ancrages.

1.2.1. Murs poids :

Ce sont des ouvrages dont la fonction de soutènement est assurée par leur poids propre qui équilibre la poussée des terres du massif soutenu. Ces ouvrages peuvent être réalisés en place constitués de maçonnerie de pierre jointée ou de béton armé, aussi ils peuvent être constitués d'un assemblage de pierres sèches, ou d'élément préfabriqué.

1.2.1.1. Mur en maçonnerie de pierres sèches :

Soutènement très simple, il consiste à disposer des roches en général assez grosses pour former un talus, selon un angle plus ou moins fort. La stabilité est assurée par la masse des roches. Les joints entre les pierres sont laissés vides, ce qui facilite le drainage.

Photo 1.1 : Mur en maçonnerie de pierrées sèches

1.2.1.2. Mur en maçonnerie jointoyée :

Les murs en maçonnerie jointoyée sont un assemblage régulier de blocs de pierres ou de roches de grandes dimensions et de différents calibres jointoyés entre eux avec de mortier. Pour ce type d'ouvrage, le drainage s'avère nécessaire, car l'eau ne peut plus passer entre les pierres, pour éviter l'augmentation de la poussée sur l'ouvrage due à l'accumulation de l'eau. Ces ouvrages peuvent être réalisés en roches de forme naturelle ou des moellons calibrés de grande taille plus simple à empiler.

Photo 1.2 : Mur en maçonnerie jointoyée

1.2.1.3. Mur poids en béton :

Ce sont des ouvrages en béton non armé ou en béton cyclopéen (moellons noyés dans du béton) coulés en place. Pour le drainage des eaux accumulé derrière le mur de soutènement il est équipé de barbacanes.

Photo 1.3 : Mur poids en béton

1.2.1.4. Mur poids en gabion :

Le Mur poids en gabion est constitué par l'assemblage d'éléments parallélépipédiques en grillage métallique galvanisé remplis de pierres. Les gabions entrent également dans la catégorie de la maçonnerie. Ils se présentent sous l'aspect d'une grande toile métallique rectangulaire, peuvent être superposées permettant d'atteindre une hauteur importante.

Ils sont généralement utilisés dans la protection des ouvrages en rivière. Toutefois, étant perméable, ils n'interviennent pas en tant que dispositif d'étanchéité mais seulement en tant que protection ou matériau filtrant.

Photo 1.4 : Mur poids en gabion (déversoirs)

1.2.1.5. Mur en élément préfabriqués :

Ce sont les murs constitués d'un empilement ou d'un assemblage d'éléments préfabriqués en béton (armé ou non). Ces éléments peuvent se présenter sous différentes formes (caissons, poutres, etc.), peuvent être remplis de terre et permettre une végétalisation partielle du parement.

Photo 1.5 : Mur en élément préfabriqués

1.2.1.6. Mur en béton armé encastré sur semelle :

Ouvrages en béton armé constitués d'un voile encastré sur une semelle. Tels mur sont réalisés en voiles minces de béton armé et peuvent avoir des formes plus ou moins compliquées, En coupe, ces murs ont une forme de T ou de L renversé. Certaines variantes de conception existent : murs avec contreforts avant ou arrière, murs avec console, murs sur pieux, etc. Ces ouvrages peuvent être coulés en place, partiellement préfabriqués (voile ou parement du voile préfabriqué) ou totalement préfabriqués.

Photo 1.6 : Mur en béton armé encastré sur semelle

8

1.2.1.7. Mur en remblai renforcé par des éléments métalliques :

Ouvrages constitués d'un massif de remblai mis en place par couches successives compactées entre lesquelles sont disposés des éléments de renforcement métalliques (bandes, panneaux de treillis soudé, nappes de treillis soudé, etc.) reliés à un parement qui peut être constitué de panneaux ou d'éléments préfabriqués en béton armé ou non, d'éléments métalliques, etc.

Cette technique est adaptable aux murs de soutènement de toute hauteur. Elle est également capable de supporter d'importantes charges de poids propre et de service, imposées par les structures associées, véhicules ou autres équipements.

La Terre Armée est l'un des premiers types d'ouvrages inventés dans cette catégorie. Il s'agit d'un massif de remblai granulaire mis en place par couches successives horizontales entre lesquelles sont disposés des éléments de renforcement.

Photo 1.7 : Mur en terre armée

1.2.1.8. Mur en remblai renforcé par des éléments géosynthétiques :

Ouvrages constitués d'un massif de remblai mis en place par couches successives compactées entre lesquelles sont disposés des éléments de renforcement géosynthétiques (nappes géotextiles, géogrilles, bandes, etc.) reliés à un parement (parement géotextile obtenu par retournement des nappes, parement géotextile végétalisé, panneaux ou éléments préfabriqués en béton armé ou non, etc.).

Photo 1.8 : Parement préfabriqué devant le massif en géotextile

1.2.2. Paroi et rideau:

L'augmentation du taux des dégâts des structures sous l'influence de plusieurs paramètres ont poussé la recherche d'éléments de structure plus résistants, tant pour leur mise en place dans le sol, qui s'effectue généralement par battage, que pour leur résistance à la poussée du sol, tels que les palplanches, qui ont trouvé une vaste utilisation dans le domaine du bâtiment et des travaux publics.

Ce type de soutènement est d'épaisseur relativement mince et sa résistance à la flexion joue un rôle prédominant dans la stabilité. Celle-ci est assurée par l'encastrement de l'écran dans le sol et, éventuellement ; par des ancrages composés des tirants ou par des butons.

1.2.2.1. Rideau de palplanches métalliques :

Ouvrages constitués de palplanches métalliques, emboitées les unes dans les autres et enfoncés mécaniquement et verticalement selon de nombreuses techniques. Les palplanches peuvent être simplement fichées dans le sol, auquel cas le rideau est dit simplement encastré ou auto-stable. L'ouvrage peut également comprendre un ou plusieurs lits de tirants d'ancrage (passifs ou actifs), auquel cas le rideau est dit ancré.

Les palplanches sont utilisées pour de nombreuses applications pouvant être soit permanentes définitive tels que les quais portuaires, soit temporaires, tels que les batardeaux dont le rôle est de mettre à sec un chantier normalement sous l'eau, en vue de permettre l'exécution de travaux commodément, sans risque de submersion.

Photo 1.9 : Rideau de palplanches métalliques

1.2.2.2. Paroi moulées ou préfabriquées :

Ce sont des ouvrages constitués d'une juxtaposition de panneaux verticaux en béton armé. Ils peuvent être auto-stables, ou ancrés par des tirants d'ancrage précontraints.

Une paroi moulée est constituée de panneaux coulés en place dans une tranchée préalablement réalisée, alors qu'une paroi préfabriquée est constituée de panneaux préfabriqués scellés dans une tranchée.

La paroi moulée est un soutènement utilisé uniquement dans le cas d'ouvrages définitifs et pour des conditions de sol précises (dans les terrains à faible cohésion qui ne pourraient donc pas être simplement maintenus par des pieux distants ou des profilés métalliques car il y aurait un risque d'éboulement entre les éléments verticaux). La paroi moulée est également utilisée dans des conditions hydrologiques particulières, notamment si la nappe phréatique se trouve à une faible profondeur et qu'un bon niveau d'étanchéité est recherché.

Photo 1.10 : Paroi ancrée par des tirants précontraints

.11

1.2.2.3. Paroi composites :

Les parois composites sont des ouvrages constitués de poteaux (en métal ou en béton armé), espacés et fichés dans le sol et d'un parement (béton projeté sur nappes de treillis soudé, béton armé coulé en place ou préfabriqué, bastaings, etc.) réalisé entre poteaux. Ces ouvrages peuvent être ancrés par un ou plusieurs lits de tirants d'ancrage précontraints.

a) Paroi berlinoise :

Elle consiste en la mise en place dans le sol d'éléments structurels verticaux (profilés métalliques) foncés ou battus séparés les uns des autres par une distance définie et qui sont ensuite relié entre eux à l'avancement de l'excavation par des éléments de renfort, (bastaings ou panneaux en béton préfabriqués, béton projeté sur une nappe de treillis soudé, béton armé coffré), destinés à retenir les terres derrière la berlinoise.

Photo 1.11 : Photographie d'une paroi berlinoise avec un parement en béton projeté réalisé dans les schistes briovériens [tiré de *Tomas le cor*(2014)]

b) Paroi parisienne :

Dans le cas d'un sol offrant une cohésion suffisante et en l'absence de nappe d'eau derrière la paroi, la technique des pieux distants peut être utilisée, constitués de poteaux en béton armé espacé et fiché dans le sol, puis dans le mode de blindage, réalisé par paroi projetée sur une nappe de treillis soudé.

Photo 1.12 : Paroi parisienne ancrée par des tirants précontraints

1.2.2.4. Paroi clouée :

La paroi clouée représente d'autre type de renforcement du sol en place, cette technique permet de réaliser une excavation en utilisant le sol en place par l'installation au fur et à mesure de l'excavation des éléments appelés clous, des armatures métalliques passives tels que des ronds à béton scellés dans un forage ou des cornières battues, et d'un parement souvent constitué d'un voile en béton projeté sur une ou deux nappes de treillis soudé.

Photo 1.13 : Paroi clouée

1.2.2.5. Voiles ou poutres ancrés :

Ouvrages constitués d'un voile en béton armé présentant un fruit parfois assez important et ancré par deux ou plusieurs lits de tirants d'ancrage précontraints. Les poutres ancrées sont des voiles épais de faible hauteur ne comportent en principe qu'un seul lit de tirants d'ancrage précontraints.

Photo 1.14 : Paroi ou poutres ancrés en phase de construction

1.3. Le système d'appui des soutènements :

Le sol en fiche et les ancrages, tirants ou les butons disposé dans la partie libre de l'écran, constitue les appuis des écrans de soutènement

1.3.1. La fiche :

L'appui en fiche provient de la capacité du sol à ce mobiliser contre les déplacements de l'écran : mobilisation d'une butée, dans le cas d'un mouvement de translation de l'écran, mobilisation d'une butée et d'une contre butée, et donc un encastrement, dans le cas d'une rotation en fiche de l'écran. Les caractéristiques du sol de fondation, ainsi que la rigidité de l'écran et la dimension de sa fiche, déterminent le fonctionnement de cet appui en fiche.

1.3.2. Description d'un buton

Un butons ou étrésillon est un élément métallique externe permettant la reprise des forces de poussées, prenant appui sur deux structures construites, qui fournit une réaction d'appui au rideau de palplanches, le plus souvent par l'intermédiaire de liernes horizontaux (Figure 1.15).

Le butons peut être soudé aux liernes ou simplement appuyé. Les liernes sont posées sur des goussets consoles fixés aux palplanches par des soudures ou maintenus par des suspentes et sont le plus souvent continues pour plusieurs butons, situés sur une même ligne.

Un butons est une structure qui fonctionne en compression. Il est soumis à un effort normal et, selon la nature de fixation aux liernes, à un moment.

Le mécanisme de rupture d'un butons est un mécanisme par flambement. La vérification du critère de flambement détermine la section à considérer. Il est à noter que les butons en acier sont sensibles aux variations de température. Un butons est caractérisé par les données suivantes : module d'Young, coefficient de poisson, section, longueur total et éventuellement, effort de compression initial pour réduire les mouvements du sol.

Vue transversale

Vue de

Figure 1.15 : Description d'un butons

Remarque :

Un lierne est une poutre horizontal le plus souvent un profilé métallique, une simple palplanche ou encore une poutre en béton armé, sert à assurer la rigidité longitudinale de l'écran qui est nécessaire pour des raisons de comportement mécanique. Il convient d'assurer que le rideau reste plan au fur à mesure des différentes opérations de construction (avancement des remblais et déblais, mis en place des ancrages). Il est nécessaire d'assurer une bonne répartition des efforts appliqués au rideau, et en particulier des efforts d'ancrage (installés avec un certain espacement dans la direction du lierne).

1.3.3. Description d'un tirant d'ancrage :

Les tirants d'ancrage sont des éléments de structure permettant d'ancrer l'écran, au niveau de sa partie libre, dans le terrain situé en arrière du sol soutenu. C'est une armature métallique (câble ou barre), ancrée dans un massif à l'une de ses extrémités par l'intermédiaire d'un corps d'ancrage, ou par une injection de scellement, et attachée à son autre extrémité au rideau par une tête d'ancrage. Le coulis de ciment est injecté au moyen d'un tube d'injection mis en place dans le forage en même temps que l'armature. La partie supérieure de l'armature non scellée au terrain est protégée par une gaine plastique, dite gaine de protection de la longueur libre des armatures.

Il existe deux sortes de tirants (Figure 1.16) : les tirants passifs et les tirants actifs.

Figure 1.16 : Description d'un tirant d'ancrage

1.3.3.1. Les tirants passifs :

Les tirants passifs sont simplement fixés sur le rideau au moment de leur installation et mis en traction par la force de poussée du massif de sol. Selon la technique d'installation dans le sol, trois types de tirants passifs sont distingués (d'après *Houy* 1986) :

- Les tirants fixés sur un corps d'ancrage (autre rideau de palplanches, plaque en béton armé, bloc de béton, dalle drainant...etc.). ce sont généralement des barres rondes en acier ;
- Les tirants enfoncés dans le sol par battage. La résistance est obtenue par le frottement latéral, ou par l'intermédiaire d'une gaine de mortier réalisé par injection ;
- Les tirants mis en place dans un trou réalisé au préalable par battage ou forage et scellés dans le sol par un coulis de ciment.

1.3.3.2. Les tirants actifs :

Les tirants actifs ou précontraints sont mis en traction au moment de leur installation par une force de précontrainte (barres, fils, torons, torons gainés graissée). Ils sont constitués de barres, ou de câble de précontrainte, mis en place dans un forage (horizontal ou incliné) et scellés, sur une certaine longueur, dans le sol par une injection de coulis de ciment sous pression. La longueur de scellement doit être suffisante pour donner la résistance à la traction prévue.

1.3.3.3. Instabilité et rupture des tirants :

L'instabilité d'un tirant peut provenir : de la rupture du tirant lui-même, de la rupture du corps d'ancrage ou de la tête d'ancrage, ou encore de l'insuffisance de la résistance du sol aux alentours du corps d'ancrage.

Un tirant d'ancrage est caractérisé par les données suivantes : Module d'Young, coefficient de poisson, frottement limite, section, caractéristiques de la tête d'ancrage, longueur totale, longueur de scellement.

1.4. Mécanisme de rupture des soutènements flexibles :

Les mécanismes de rupture possible d'un rideau de palplanche sont les suivants :

- Rupture du massif par l'avant, provoquée par une butée limite insuffisante c'est-à-dire une fiche trop courte. Le mécanisme peut être initié par des forces hydrauliques ou par une faiblesse de la résistance au cisaillement prés du pied du rideau. Le sol s'écoule autour du rideau et entraine un soulèvement à l'amont et un affaissement à l'arrière (Figure 1.17.a).
- Dans le cas d'un ancrage trop incliné ou d'un écran trop mince ou un sol très mou, on peut avoir une ruine par poinçonnement (Figure 1.17.b).
- Renversement par entrainement du massif d'ancrage, lorsque la longueur des tirant est inférieure à une limite, la parie du massif compris entre le rideau et le corps d'ancrage (ou le scellement) peut se mettre à glisser et entrainer le renversement de l'écran vers l'aval (Figure 1.17.c).
- Instabilité par glissement d'ensemble (Figure 1.17.d).

Figure 1.17. Mécanisme de rupture dans le massif de sol

Rupture des éléments du rideau, ce type de mécanisme peut traduire par :

- une rupture en flexion du rideau et du corps d'ancrage causé par le sous dimensionnement du rideau, (Figure 1.18.a) ;
- une rupture en traction pour les barres et armatures, arrachement des tirants (Figure 1.18.b);
- rupture en compression pour les butons, flambement (Figure 1.19.c) :
- rupture de l'ancrage dans la zone de scellement à l'interface tirant coulis (Figure 1.19.d)

(a)Rupture par flexion

(b)Rupture d'un tirant

Figure 1.18. Mécanisme de rupture dés élément de renforcement

Figure 1.19. Mécanisme de rupture dés élément de renforcement (suite)

1.5. Mouvement et état de contraintes autour d'un soutènement flexible :

D'après *Mesta & Prat* (1999), l'ouverture d'une fouille devant un rideau de palplanches provoque les phénomènes suivants :

- Derrière le rideau, le sol est mis en poussée sur presque toute la hauteur de la partie excavée ;
- Devant le rideau, la contrainte verticale effective est réduite à cause de l'excavation, et la contrainte horizontale est augmentée à cause du mouvement du rideau vers l'aval. Ce mouvement peut conduire à un mécanisme de rupture en butée ;
- Un soulèvement du sol se produit devant le rideau. Ce mouvement entraîne le développement d'un frottement qui tend à déplacer le rideau vers le haut ;
- Derrière le rideau, le massif de sol et la composante verticale des forces d'ancrage générant un frottement qui s'oppose au mouvement précédent ;
- Une rotation du rideau est généralement observée ;
- L'installation d'un ancrage ou d'un butons a pour effet d'annuler en partie le déplacement latéral provoqué par l'excavation. La partie supérieure du sol est alors en butée ;
- Les autres phases d'excavation ramènent en général la poussée des terres à une valeur proche de la poussée limite.

1.6. Action de l'eau sur un rideau de palplanches :

L'action de l'eau sur un écran de soutènement se manifeste de deux façons :

- Directement par des pressions hydrauliques appliquées sur les faces de l'écran. Ces pressions sont déterminées par l'étude de l'écoulement dans le sol ou des phénomènes de consolidation.
- *Indirectement* par une modification des forces de pression de terres passive (butée) et active (poussée) .l'écoulement augmente les contraintes effectives à l'amont du rideau, donc accroit la poussée, et diminue les contraintes effectives à l'aval, donc réduit la butée. L'écoulement a donc un effet défavorable sur la stabilité du rideau.

1.6.1. Ecoulements permanents autour d'un rideau de palplanches :

La réalisation d'un écran de soutènement modifie le régime hydraulique naturel. Lorsque le régime permanent est atteint, deux types d'écoulement peuvent s'établir dans un sol homogène selon leur mode d'alimentation d'après *Houy* (1986) :

- écoulement à alimentation vertical, qui se produit généralement dans le cas des rideaux en site fluvial ou maritime (Figure 1.20.a) ;
- écoulement à alimentation horizontale, qui correspond au cas des rideaux de soutènement en site terrestre (Figure 1.20.b). la présence de l'écran risque alors de faire monter le niveau de l'eau à l'amont et de le faire baisser à l'aval.

Pour un massif de sol hétérogène, le type d'écoulement est difficile à prévoir. Toutefois, dans tous les cas, l'écoulement vers l'aval au voisinage du rideau est vertical ascendant.

Figure 1.20 : Types d'écoulement permanent derrière un rideau de palplanches : (a) alimentation verticale ; (b) alimentation horizontale [d'après Houy (1986)]

20
Note :

Lorsque le pied du rideau est encastré dans une couche de sol imperméable, il n'y a pas d'écoulement possible. Les pressions hydrauliques qui agissent de part et d'autre du rideau sont des pressions hydrostatiques.

Lorsque l'excavation est réalisée sous le niveau de la nappe phréatique, ou en site aquatique, la stabilité de la fouille peut ne pas être assurée à cause de l'écoulement de l'eau les conditions les plus défavorable sont alors rencontré dans le cas des sables lâches. Pour éviter ce type de difficultés, la nappe phréatique est rabattue par des systèmes de drainage ou de pompage situés à proximité de l'ouvrage (ce qui pose d'autres problèmes de tassement des terrains situés autour du chantier).

1.7. Effet de voûte :

Terzaghi (1943) a défini l'effet de voûte « arching » :

« Si une partie du support d'une masse de sol s'en écarte, pendant que les partie voisines restent fixes, le sol jouxtant la partie déformée du support s'écarte de sa position initial, entre deux zones de sol voisines qui ne bougent pas.

Ce mouvement relatif sera contrarié par la résistance au cisaillement se développant dans la zone de contact entre les masses de sol immobiles et le sol en déplacement. Ainsi, la résistance au cisaillement tendant à conserver le sol en mouvement dans sa position initial, la pression sera réduite sur la partie déformée du support et augmentée sur sa partie fixe. Ce transfert de pression d'une masse de sol se déformant vers le sol immobile attenant est communément appelé effet d'arc, et le sol est dit s'arc bouter de part et d'autre de la partie déformée du support. L'effet d'arc a lieu aussi lorsqu'une partie du support s'écarte d'avantage du sol que d'autre »

Bros (1972) city dans [*Masrouri* (1986)] à étudie l'influence des déplacements d'un mur semi rigide (translation, rotation par rapport au pied ou à la tête) sur la pression exercée par un sable Figure 1.21.

Bien que la déformation du mur n'ait été que de 0.26 % de la hauteur, la distribution des pressions diffère nettement du schéma triangulaire admis pour les murs rigides en translation.

La figure 1.21 présente les pressions résultantes d'une mis en butée du sol par simple translation du mur. On constate une concentration des contraintes au voisinage des deux points d'appuis où l'enfoncement de la paroi dans le sol est maximal. Ceci est expliqué par la

formation d'une voûte de décharge prenant appui prés du sommet et de la base du mur qui, en son milieu, s'écarte légèrement du massif du fait de sa flexibilité.

Figure 1.21. Répartition de la pression sur un écran semi-rigide de 80cm de hauteur, d'après *Bros* (1972)

Ce mécanisme de l'effet d'arc ou de voûte est également représenté sur la figure 1.22 qui représente la pression crée par une couche du sol sur un support plan. En l'absence de déformation, cette contrainte est uniforme et égale à la hauteur de sol multipliée par le poids volumique de celui-ci. Une très faible déformation localisée du support va modifier ce diagramme de contrainte : la partie déformée est déchargée, les efforts se répartissant de part et d'autre.

Figure 1.22. Schéma d'effet de voûte sur un écran flexible

Tschebotarioff (1973) donne les conditions suivantes pour le développement de l'effet de voûte :

- le déplacement du mur doit être négligeable ;
- les grains du sol doivent être durs et indéformables ;
- le sol ne doit pas être très lâche.

En tout état de cause, la distribution de la pression des terres diffère en fonction du degré et du mode de déplacement et de déformation du rideau. *Rowe* (1952) estime que dans un sable lâche, un déplacement de l'ordre de 1/1000 de la hauteur totale (H) de l'écran est suffisant pour détruire l'effet de voûte, à ce moment, la répartition théorique réapparait.

D'après *Masrouri* (1986), il est noter que le déplacement d'ancrage ne change que la répartition des contraintes et n'aucun effet sur la valeur théorique de la pression de la poussée des terres.

1.8. Etat du sol au repos :

Considérons le sol comme un massif de dimensions horizontales infinies, ce dernier ne se déforme pas latéralement. Si le sol est supposé un matériau pesant homogène et caractérisé par un poids volumique γ . La contrainte σ_{ν} agissant à la profondeur z est donnée par :

$$\sigma_v = \gamma z \tag{1.1}$$

Avec :

 γ : Le poids volumique du sol.

La contrainte verticale varie linéairement avec la profondeur, et est égale au poids d'une colonne du sol sus-jacent, ayant une hauteur z et une section d'aire unitaire.

Figure 1.23: Contrainte au repos

Notons que la contrainte horizontale σ_h , dite pressions des terres au repos, ne varie qu'avec la profondeur, et que le rapport σ_v / σ_h est une constante indépendante de la profondeur, notée K_0 et appelée *coefficient de pressions des terres au repos*. Ce coefficient dépend de la loi de comportement du matériau sol, c'est-à-dire la relation entre les contraintes et les déformations.

Jaky (1944) a proposé une formulation de K_0 pour les sables et argiles normalement consolidés, en fonction de l'angle de frottement interne. L'équation simplifiée de Jaky s'écrit :

$$K_0 = 1 - \sin\varphi \tag{1.2}$$

Pour les argiles molles et les vases, $K_0 = 1$

Pour les argiles normalement consolidées, $K_0 \approx 0.5$

S'il existe un talus de pente β , la valeur de K_{θ} avec la même définition sera

$$K_{0\beta} = K_0 (1 - \sin \beta) \tag{1.3}$$

Pour les sols fins surconsolidés ou pulvérulents surcomprimés, le coefficient K_0 dépend du degré de surconsolidation R_{oc} , tel que :

$$K_0 = (1 - \sin \varphi) R_{oc}^{1/2} \tag{1.4}$$

Pour les sols cohésifs normalement consolidé (Massarsch 1979):

$$K_0 = 0.44 + 0.42 \left[\frac{PI(\%)}{100} \right]$$
(1.5)

Où *PI* = indice de plasticité du sol.

Pour les sols cohésive surconsolidé:

$$K_{0c} = K_{nc} \sqrt{OCR} \tag{2.6}$$

Où K_{oc} et $K_{nc} = K_o$ pour les sols surconsolidés et normalement consolidés, respectivement.

En 1923 *Karl Terzaghi* Etabli **le Principe des contraintes effectives**, ce principe postule que dans un sol saturé, les grains étant noyés, sont soumis d'une part au poids d'une colonne de sol saturé, ce qui engendre une contrainte vertical σ_v égale à $\gamma_{sat} z$, et d'autre part à la poussée d'Archimède, causant une contrainte ascendante égale à $\gamma_w z$. la contrainte vertical résultante, supportée effectivement par les grains du sol, appelée contrainte effective, est :

$$\sigma_v' = \gamma' z \quad \text{et} \quad \sigma_h = K_0 \; \sigma_v'$$
 (1.7)

24

Thèse : *Estimation des pressions de terre passive et active en présence d'écoulement dans les fouilles de largeur limitée*

Donc la contrainte effectivement reprise par les grains du sol, est la différence entre la contrainte totale σ reprise par le sol, et la pression interstitielle *u*, tell que [*Bouafia*(2010)] :

$$\sigma' = \sigma - u \tag{1.8}$$

1.9. Notion de poussée et de butée :

Un massif de sol retenu par un mur ou un écran exerce sur celui-ci une certaine action, qui dépend essentiellement des propriétés du sol et du mouvement du mur. Suivant ce déplacement, le sol se trouvera en équilibre de poussée (état active) ou de butée (état passif) :

• Si le mur est *écarté* du sol d'une manière quelconque, celui-ci est décomprimé et la contrainte initiale σ'_{ho} du sol sur le mur décroit pour atteindre une valeur limite σ'_{a} (équilibre **actif** ou inférieur) inférieure à σ'_{ho} . Lorsque le déplacement augmente, les contraintes dans le sol finissent par atteindre le critère de rupture, le sol ne peut plus se décomprimer d'avantage sans se rompre et l'état limite de poussée est atteint, une faible déformation horizontale suffit pour atteindre cet état limite (figure 1.24). Le sol est à l'état de poussée ; la contrainte de poussée est reliée à la contrainte verticale σ'_{V} .

Figure 1.24: Actions sur un mur de soutènement pour $\beta = 0$, $\delta = 0$ Etat limite de poussée du sol

$$\sin \varphi = \frac{CD}{AC} = \frac{CD}{AO + OC} = \frac{(\sigma_v' - \sigma_a')/2}{c \, \cot \varphi + ((\sigma_v' + \sigma_a')/2)}$$
(1.9)

Ce qui peut être simplifié comme suit:

$$\sigma_{a}^{'} = \sigma_{v}^{'} \frac{1-\sin\varphi}{1+\sin\varphi} - 2c \frac{\cos\varphi}{1+\sin\varphi} = \sigma_{v}^{'} K_{a} - 2c\sqrt{K_{a}}$$
(1.10)

Avec:
$$K_a = \frac{1-\sin\varphi}{1+\sin\varphi} = \tan^2\left(45^0 - \frac{\varphi}{2}\right)$$

 K_a coefficient de pression de terre active (poussée)

Thèse : *Estimation des pressions de terre passive et active en présence d'écoulement dans les fouilles de largeur limitée*

_25

Dans le cas d'un écran vertical sans frottement sol-écran, le coefficient de poussée Ka.

$$\dot{\sigma}_a = K_a \, \dot{\sigma}_v \tag{1.11}$$

• Si le mur est *repoussée* contre le sol, celui-ci est comprimé et la contrainte initiale σ'_{ho} augmente, pour atteindre une valeur limite σ'_P (équilibre **passif** ou supérieur) supérieure à σ'_{ho} . la contrainte augmente avec le déplacement de l'écran jusqu'à ce qu'un état d'équilibre limite soit atteint dans le massif (figure 1.25). Cet état est appelé état d'équilibre limite de butée. Une déformation plus importante est nécessaire pour atteindre l'état de butée. Le sol est à l'état de butée ; la contrainte de butée est reliée à la contrainte verticale σ'_v .

Figure 1.25: Actions sur un mur de soutènement *pour* $\beta = 0$, $\delta = 0$ *Etat limite de butée du sol*

$$\sin \varphi = \frac{CD}{AC} = \frac{CD}{AO + OC} = \frac{(\sigma_p^{'} - \sigma_v^{'})/2}{c \cot \varphi + ((\sigma_v^{'} + \sigma_p^{'})/2)}$$
(1.12)

Ce qui peut être simplifié comme suit:

$$\sigma_{a}^{'} = \sigma_{v}^{'} \frac{1+\sin\varphi}{1-\sin\varphi} + 2c \frac{\cos\varphi}{1-\sin\varphi} = \sigma_{v}^{'} K_{p} + 2c\sqrt{K_{p}}$$
(1.13)

Avec :

ec:
$$K_p = \frac{1+\sin\varphi}{1-\sin\varphi} = \tan^2\left(45^0 + \frac{\varphi}{2}\right)$$

 K_p coefficient de pression de terre passive (butée)

Pour un écran vertical sans frottement sol-écran, le coefficient de butée K_p.

$$\dot{\sigma}_p = K_p \ \dot{\sigma}_v \tag{1.14}$$

Pour un mur vertical la répartition des contraintes de contact est triangulaire

Figure 1.26 : Distribution des pressions

La contrainte horizontale qui s'applique sur le mur à la profondeur H est égale à $\sigma_h = \gamma z K_0$, dans le cas de l'état actif des contraintes la résultante du diagramme triangulaire P_a qui s'applique sur le mur est donné par l'intégrale sur la hauteur du mur H:

$$P_{a} = \int_{B}^{A} \sigma_{h} dz = \int_{B}^{A} \gamma z K_{0} dz$$

$$P_{a} = \frac{1}{2} K_{a} \gamma H^{2}$$
(1.15)

De même pour l'état passif des contraintes

$$P_p = \frac{1}{2} K_p \gamma H^2$$
 (1.16)

Les études de différents auteurs (*Rowe* (1952 – 55), *Blum* (1931), *Terzaghi* (1953)) montrent que les facteurs intervenant dans la distribution de la pression des terres sur l'écran sont :

- La densité du massif, nature du sol et sa stratification ;
- L'angle de frottement interne de sol " φ ;
- La cohésion C;
- L'angle de frottement sol-écran δ ;
- La rigidité de l'écran ;
- Le mode de son déplacement et de sa déformation possible ;
- L'inclinaison de l'écran ;
- La rigidité de système d'étais ;
- L'histoire des contraintes subies par le sol
- L'intensité de la surcharge ;
- Les conditions aux limites ;
- Les conditions cinématiques.

Un ouvrage de soutènement est généralement considéré comme un ouvrage continu entre différents points d'appuis et soumis aux sollicitations suivantes :

- Pression du sol exercée par le poids du massif retenu et par les surcharges appliquées et transmises à l'ouvrage par le sol ;
- Pression de l'eau au contact des forces avant et arrière ;
- Réaction du massif de fondation ;
- Réaction du sol exercé devant le soutènement, contre la partie enterrée, et réaction de l'eau exercé au contact de la même face ;
- Réaction d'appuis ou de butons lorsque l'écran est étayé.

1.9.1. Distribution des pressions des terres sur l'écran rigide :

D'après *Taylor* (1948) cité dans [*Masrouri* (1986)] La distribution de la pression de terre derrière un mur rigide dépend essentiellement du déplacement de l'ouvrage.

- La distribution des terres est triangulaire, et la répartition de Coulomb peut être admissible pour le cas où le déplacement est une translation horizontale (figure 1.27(a)).
- La distribution des terres devient parabolique et plus grande que sa valeur théorique, si le déplacement horizontale de la base du mur est plus élevé que celui de son sommet, une rotation par rapport à la tète (figure 1.27(b)).

(a) Translation (b) rotation par rapport à la tète Figure 1.27 : Distribution des pressions de terre sur un écran rigide

1.9.2. Distribution des pressions des terres sur l'écran souple:

Stroyer (1935), cité dans [*Delattre* (2001)] procède une série d'essais sur modèles réduits à l'aide d'un dispositif conçu spécialement pour étudier la distribution des poussées sur des écrans souples. Au sein de ce dispositif, l'écran rigide pivotant par rapport à sa base était remplacé par un écran articulé en tête et à sa base et suffisamment souple pour pouvoir subir une déflexion dans sa partie médiane. Ce dispositif permit à *Stroyer* de constater que les efforts de poussée dans la partie médiane de l'écran, soumise à déflexion, étaient d'autant plus

faibles que la déflexion était importante, c'est-à-dire que l'écran était souple. Il observa, par ailleurs, que cette réduction des poussées en partie médiane de l'écran s'accompagnait d'une redistribution d'efforts vers les points fixes, en tête et en pied d'écran, et ne conduisait donc pas à une réduction de la résultante des poussées sur l'écran.

Tschebotarioff et *Brown* (1948), puis *Rowe* (1952, 1961) et *Masrouri* (1986), cité dans [*Delattre* (2001)], prolongèrent cette première étude expérimentale en procédant également à des essais sur modèles réduits d'écrans souples. Les travaux de *Tschebotarioff* permirent de mettre en évidence que les redistributions de poussée par effet de voûte n'apparaissent que pour des écrans mis en fiche sur toute leur hauteur, ancrés rigidement en tête (à une plate-forme, en l'occurrence), puis dragués (figure. 1.28) et que de telles redistributions de poussée n'ont pas lieu d'être considérées pour des écrans remblayés ou ancrés à l'aide de tirants présentant une relative souplesse.

Figure 1.28 : Distribution de pression trouvées à l'issue de différentes procédures de construction [d'après *Tschebotarioff* et *Brown* (1948)] tiré de [*Delattre* (2001)]

Les expériences de *Rowe* (1961) et de *Masrouri* [*Masrouri*, (1986) ; *Masrouri* et *Kastner*, (1991)], cité dans [*Delattre* (2001)], concernaient quant à elles des écrans mis en fiche sur toute leur hauteur, puis excavés avec installation, à l'avancement, de butons. Les expériences de Rowe (figure 1.29), menées avec un écran souple et des butons rigides, montrèrent clairement, à l'instar des expériences de *Stroyer*, une redistribution des poussées sur l'écran, consistant en une réduction d'efforts entre les appuis et une concentration d'efforts sur les appuis.

Figure 1.29: Distribution des pressions mesurés sur un modèle réduit d'écran souple butonnée rigidement à l'avancement de l'excavation[*Rowe* (1961)] tiré de [*Delattre* (2001)]

Masrouri pour sa part, s'est attachée à étudier l'influence de la rigidité du buton et de l'intensité d'une précontrainte initiale sur la distribution des pressions sur l'écran, ce dernier étant semi-flexible. Elle a montré que, pour un appui non précontraint et souple, la distribution des pressions derrière l'écran correspond à la distribution calculée avec les théories classiques de la poussée tant que le déplacement en pied d'écran reste faible, mais que cela n'est plus vrai dès lors que la précontrainte et la rigidité du buton sont plus élevées ou que le déplacement en pied de l'écran augmente. Elle a mis en effet en évidence que l'augmentation de la raideur de l'appui et l'augmentation de la précontrainte initiale ont toutes deux pour conséquence, similaire, de faire augmenter les pressions appliquée à l'écran dans la zone de l'appui, les zones situées entre appuis pouvant se trouver déchargées.

De la même façon, elle a montré que, si l'excavation est poursuivie de façon à générer de forts déplacements en pied, la concentration d'efforts augmente au droit de l'appui.

Des travaux similaires, menés cette fois sur des ouvrages ancrés par des tirants, ont permis à *Masrouri* d'obtenir des résultats analogues.

1.10. Conclusion :

Le comportement des soutènements semi flexibles et flexibles est beaucoup plus complexe que celui des murs rigides. Les tirants et les butons compliquent d'avantage l'analyse des rideaux de soutènement, ceci est lié en particulier à leur flexibilité.

La stabilité d'ensemble, l'inclinaison, la longueur des tirants ainsi que la grandeur de la précontrainte dans les tirants et les butons ne peuvent être déterminées d'une manière très rigoureuse. Les rideaux ancrés ou butonnés, malgré les différences, se calculent de la même manière.

Dans le cas des soutènements flexibles, le report des efforts de poussée se fait en profondeur par un élément vertical (la fiche) auquel on adjoint le plus souvent des dispositifs stabilisateurs complémentaires (butons, ancrages, ...). De plus, pour le calcul de ces ouvrages, il est nécessaire de tenir compte de la distorsion des diagrammes de pression active et passive du sol à la déformation des rideaux.

Pour les parois flexibles, la répartition des contraintes peut être modifiée par l'effet de voûte : les contraintes augmentent aux points les plus rigides et diminuent le long des éléments les plus souples. La répartition des contraintes est en fonction de la nature et de l'amplitude des déformations et déplacements de l'écran.

Chapitre 2

Travaux antérieurs sur le calcul des pressions de terre passive et active

2.1. Introduction :

Un ouvrage de soutènement est une construction qui permet de retenir un massif de sol en place ou de sol rapporté. Il en existe une grande variété, se caractérisant par des fonctionnements différents et conduisant à des études de stabilité interne spécifiques.

Tous ces ouvrages de soutènement ont en commun la force de poussée exercée par le massif de sol retenu. Cette force de poussée est généralement reprise soit par le poids de l'ouvrage de soutènement, soit par l'encastrement de l'ouvrage de soutènement soit par des ancrages.

Les soutènements flexibles sont des structures, dans lesquelles des moments de flexion sont développés sous l'effet des pressions latérales du sol et des pressions de l'eau, et elles doivent être conçues de sorte qu'elles puissent résister au moment maximum de flexion. Ceci conduit à des ouvrages de fonctionnements complexes qui ne peuvent être appréhendés correctement à partir des théories simples telles que les calculs classiques de poussées active « poussée » ou de poussée passive « butée » des terres.

Pour cette raison, plusieurs méthodes d'analyse, de différents niveaux de complexité, ont été développées pour ces ouvrages : études théoriques, expérimentales (tant sur modèles réduits que sue rideaux réels), et simulation numériques.

2.2. Méthodes de calcul des pressions de terre passive et active :

Les développements des fortifications et des systèmes défensifs à la fin du 18ème siècle ont produit des structures avec des excavations profondes dans le sol avec des faces presque verticales retenues par des murs (*Vauban* 1704). Le problème de la pression de la terre remonte au début du 18ème siècle, car en 1717, Gautier énumère cinq domaines nécessitant des recherches, dont l'un était les dimensions des murs de soutènement par gravité nécessaires

pour retenir le sol. Un certain nombre de chercheurs (*Bullet* 1691, *Couplet* 1726, 1727, 1728, de *Belidor* 1729, *Rondelet* 1812) semblent avoir travaillé sur le problème et publier leurs conclusions. [*Clayton et al* (2014)].

C'était *Coulomb*, dans un journal lu à l'Académie Royale des Sciences à Paris les 10 mars et 2 avril 1773, qui devait faire l'impression durable dans ce domaine.

2.2.1. Méthode de Coulomb (1776) :

Coulomb (1776) à abordé mathématiquement le cas d'un mur de soutènement. Sa théorie est basée sur l'équilibre d'un coin de sol situé entre l'écran et une surface de glissement critique. Il suppose que le sol à l'arrière du mur de soutènement est homogène et sans cohésion Les forces agissant sur le sol sont évaluées à l'état de l'équilibre limite. La théorie de *Coulomb* repose sur deux hypothèses :

- Le mécanisme de rupture est une surface plane passant par le pied de l'ouvrage de soutènement et définie par l'angle α qu'elle fait avec l'horizontale. Cette hypothèse est motivée par des observations faites sur des ouvrages réels qui se sont renversés ;
- La force agissant sur le mur a une direction connue. En d'autre terme cela signifie que l'angle de frottement δ entre l'écran et le mur est connu.

On fait l'hypothèse que la contrainte de cisaillement $\tau = \sigma' \operatorname{tg} \varphi'$ est complètement mobilisée le long de ce plan.

Le coin du sol était sous l'équilibre des forces suivantes (figure 2.1) :

- La réaction totale du sol R̄ sur lequel glisse le coin de *Coulomb* est donc incliné de l'angle φ sur la normale au plan de rupture ;
- La force F = P (poussée du sol) est inclinée de δ sur la normale a l'écran. δ est supposée connue ;
- *W* le poids du prisme de glissement, qui tend à glisser.

Le principe consiste simplement à écrire l'équilibre des forces qui s'appliquent sur le coin de sol (R, F et W).

On détermine ainsi *P* en fonction de l'angle α . La méthode de *Coulomb* consiste de prendre le maximum de *P* pour calculer la poussée P_a , ce serait le contraire pour la butée ; le minimum.

Figure 2.1 : Equilibre du coin de *Coulomb* (cas de poussée) [tiré de *Chang-Yu Ou*(2006)]

Comme le montre le polygone de force de la figure 2.1.b, nous pouvons déduire l'équation suivante [Chang-Yu Ou(2006)]:

$$\frac{W}{\sin\left(90^0 + \theta + \delta - \alpha + \varphi\right)} = \frac{P}{\sin\left(\alpha - \varphi\right)}$$
(2.1)

$$P = \frac{W\sin(\alpha - \varphi)}{\sin(90^0 + \theta + \delta - \alpha + \varphi)}$$
(2.2)

$$P = \frac{1}{2} \gamma H^2 \left[\frac{\cos(\theta - \alpha) \cos(\theta - \beta) \sin(\alpha - \varphi)}{\cos^2 \theta \sin(\alpha - \beta) \sin(90^0 + \theta + \delta - \alpha + \varphi)} \right]$$
(2.3)

Différentient par rapport à α :

$$\frac{\partial P}{\partial \alpha} = 0 \tag{2.4}$$

La valeur de α critique dérivée de (2.4) remplacé dans l'équation (2.3) donne la pression de la terre active P_a comme suit [Chang-Yu Ou(2006)] :

$$P_a = \frac{1}{2} \gamma H^2 K_a \tag{2.5}$$

$$K_{a} = \frac{\cos^{2}(\varphi - \theta)}{\cos^{2}\theta \, \cos\left(\delta + \theta\right) \left[1 + \sqrt{\frac{\sin\left(\delta + \varphi\right)\sin\left(\varphi - \beta\right)}{\cos\left(\delta + \theta\right)\cos\left(\theta - \beta\right)}}\right]^{2}}$$
(2.6)

D'où K_a est le coefficient de pression de terre active de *Coulomb*.

34

Dans la théorie de *Coulomb*, on suppose que la résultante P_a agit à deux tiers de la profondeur de l'écran.

Figure 2.2 : Equilibre du coin de *Coulomb* (cas de butée) [tiré de *Chang-Yu Ou*(2006)]

Suivant la méthode similaire utilisée pour obtenir la pression de terre active, la pression de terre passive P_p peut être calculée et exprimée par l'équation suivante (figure 2.2):

$$P_p = \frac{1}{2} \gamma H^2 K_p \tag{2.7}$$

D'où le coefficient de pression de terre passive de Coulomb s'écrit :

$$K_{p} = \frac{\cos^{2}(\varphi + \theta)}{\cos^{2}\theta \, \cos\left(\delta - \theta\right) \left[1 - \sqrt{\frac{\sin\left(\delta + \varphi\right)\sin\left(\varphi + \beta\right)}{\cos\left(\delta - \theta\right)\cos\left(\theta - \beta\right)}}\right]^{2}}$$
(2.8)

Pour un écran vertical ($\theta = 0$) (pour la figure 2.1) soutenant un massif de sol sans cohésion (c = 0) avec un terre-plein horizontal ($\beta = 0$).

Figure 2.3 : Théorie de Coulomb, poussée active

En application de la méthode de Coulomb, on calcule la poussée en supposant que $\delta = \theta$ (écran lisse) et l'angle (*W*, *R*) = $\theta - \varphi$.

$$F_a = R \, \sin(\theta - \,\varphi) \tag{2.9}$$

$$W = R \cos(\theta - \varphi) \tag{2.10}$$

$$F_a = W \, \frac{\sin\left(\theta - \varphi\right)}{\cos\left(\theta - \varphi\right)} = W \, tg(\theta - \varphi) \tag{2.11}$$

$$W = \frac{1}{2} \gamma H^2 \cot \theta \tag{2.12}$$

$$F_a = \frac{1}{2} \gamma H^2 \cot \theta \ tg \ (\theta - \varphi) \tag{2.13}$$

Différentient par rapport à θ :

$$\frac{\partial F_a}{\partial \theta} = \frac{1}{2} \gamma H^2 \left[-\frac{tg(\theta - \varphi)}{\sin^2 \theta} + \frac{\cot \theta}{\cos^2(\theta - \varphi)} \right]$$
(2.14)

$$\frac{\partial F_a}{\partial \theta} = \frac{1}{4} \gamma H^2 \left[\frac{\sin 2\theta - \sin 2(\theta - \varphi)}{\sin^2 \theta \cos^2(\theta - \varphi)} \right] = 0$$
(2.15)

 $\sin 2\theta - \sin 2(\theta - \varphi)$ s'annule pour $\theta = \frac{\pi}{4} + \frac{\varphi}{2}$ qui donne la valeur maximal de F_a qui est la force active P_a .

D'où:
$$K_a = \cot g \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) tg\left(\frac{\pi}{4} - \frac{\varphi}{2}\right)$$
(2.16)

$$K_a = tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) \tag{2.17}$$

Figure 2.4 : Théorie de Coulomb, poussée passive

En application de la méthode de *Coulomb*, on calcule la butée en supposant que $\delta = 0$ et l'angle $(W, R) = \theta + \varphi$.

$$F_p = R \, \sin(\theta + \,\varphi) \tag{2.18}$$

$$W = R \cos(\theta + \varphi) \tag{2.19}$$

$$F_p = W \frac{\sin(\theta + \varphi)}{\cos(\theta + \varphi)} = W tg(\theta + \varphi)$$
(2.20)

$$F_p = \frac{1}{2} \gamma H^2 \cot \theta \ tg \ (\theta + \varphi) \tag{2.21}$$

Différentient par rapport à θ :

$$\frac{\partial F_p}{\partial \theta} = \frac{1}{2} \gamma H^2 \left[-\frac{tg(\theta + \varphi)}{\sin^2 \theta} + \frac{\cot \theta}{\cos^2(\theta + \varphi)} \right]$$
(2.22)

$$\frac{\partial F_p}{\partial \theta} = \frac{1}{4} \gamma H^2 \left[\frac{\sin 2\theta - \sin 2(\theta + \varphi)}{\sin^2 \theta \cos^2(\theta + \varphi)} \right] = 0$$
(2.23)

 $\sin 2\theta - \sin 2(\theta + \varphi)$ s'annule pour $\theta = \frac{\pi}{4} - \frac{\varphi}{2}$ qui donne la valeur minimal de F_p qui est la force passive P_p .

D'où:
$$K_p = \cot g \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) tg\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$$
(2.24)

$$K_p = tg^2 \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \tag{2.25}$$

La théorie de *Coulomb* suppose des lignes de glissement droites. Dans le cas de poussée active, la courbure est faible, ce qui fait que l'erreur de l'approximation est négligeable. Ceci est aussi correct dans le cas d'une poussée passive lorsque $\delta < \varphi/3$, mais quand $\delta > \varphi/3$, l'erreur devient plus grande.

Poncelet a généralisé la méthode de *Coulomb* à un écran incliné de λ et à un sol surmonté d'un talus d'angle β (Figure 2.4). Par la même procédure, on détermine le coefficient de poussée K_a [*Costet, Sanglerat* (1983)].

Figure 2.5 : Formule de Poncelet

- La ligne de glissement possible *BC*, qui fait un angle ϖ avec l'horizontale ;
- Une ligne auxiliaire *BD* qui fait un angle φ avec l'horizontale :
- La direction BS qui fait avec la ligne BD l'angle ψ connu que E fait avec la verticale.

Du point A et C des parallèles à la direction BS sont tracée et coupent BD respectivement en K et g. La figure 2.5 montre que le triangle BCg est semblable au triangle des forces FEW, ce qui permet d'écrire :

$$\frac{E}{W} = \frac{Cg}{Bg} \tag{2.26}$$

Avec: $W = \frac{1}{2} \gamma h AC$, $Cg = AK \frac{Dg}{DK}$, $AC = Kg \frac{AD}{DK}$ (2.27)

Donc: $E = \frac{1}{2} \gamma h \frac{AD.AK}{DK^2} \cdot \frac{Kg.Dg}{Bg}$ (2.28)

Si :
$$BD = a$$
, $BK = b$, $Bg = x$,
 $E = \frac{1}{2} \gamma h \cdot \frac{AD \cdot AK}{DK^2} \cdot \frac{(x-b)(a-x)}{x}$
(2.29)

Où seul x est variable quant ϖ varie, c'est-à-dire quand *BC* prend les différentes positions possibles.

L'expression $\frac{(x-b)(a-x)}{x}$ passe par un maximum pour $x = \sqrt{ab}$, elle a pour valeur $(\sqrt{a} - \sqrt{b})^2$. Le calcul des différentes longueurs *h*, *AD*, *AK*,.... est fastidieux. La relation finale est : $E_{max} = P = \frac{1}{2} K_a \gamma l^2$ (2.30)

Avec:
$$K_{a} = \frac{\cos^{2}(\varphi - \lambda)}{\cos(\lambda + \delta) \left[1 + \sqrt{\frac{\sin(\varphi + \delta)\sin(\varphi - \beta)}{\cos(\lambda + \delta)\cos(\beta - \lambda)}}\right]^{2}}$$
(2.31)

De même pour la pression de terre passive :

$$K_{p} = \frac{\cos^{2}(\varphi + \lambda)}{\cos\left(\lambda + \delta\right) \left[1 - \sqrt{\frac{\sin\left(\varphi - \delta\right)\sin\left(\varphi + \beta\right)}{\cos\left(\lambda + \delta\right)\cos\left(\beta - \lambda\right)}}\right]^{2}}$$
(2.32)

Où :

λ : inclinaison du mur avec l'horizontal ;

Thèse : *Estimation des pressions de terre passive et active en présence d'écoulement dans les fouilles de largeur limitée*

38

2.2.2. Méthode de Rankine (1857) :

La méthode de Rankine consiste à calculer les forces de poussée et de butée à partir d'une hypothèse sur l'état des contraintes dans le sol au contact de l'ouvrage de soutènement : la présence de discontinuités dans le massif de sol ne modifie pas la répartition des contraintes verticales dans le sol. Sur un plan parallèle à la surface, la contrainte reste verticale et égale à yz ($yz \cos \alpha$ dans le cas d'un sol à surface inclinée).

Figure 2.6 : Hypothèse de Rankine

La solution de *Rankine* à la rupture d'une masse de sol sans cohésion pour une surface de sol horizontale peut être obtenue comme suit, en termes de contraintes σ_1 et σ_3 . [Clayton et al (2014)].

En considérant l'équilibre de force d'un élément de sol de taille dx.dy (figure 2.7).

 $\sigma = \sigma_1 \cos^2 \theta + \sigma_3 \sin^2 \theta$

$$\sigma \, ds = \, \sigma_1 dx. \cos \theta + \, \sigma_3 \, dy. \sin \theta \tag{2.33}$$

$$dx = ds.\cos\theta; \quad dy = ds.\sin\theta$$
 (2.34)

Donc

$$\tau \, ds = \sigma_1 dx. \sin \theta + \sigma_3 \, dy. \cos \theta \quad Pour \, le \, cas \, actif \tag{2.36}$$

Donc

Et

$$\tau = \sigma_1 \sin \theta . \cos \theta + \sigma_3 \sin \theta . \cos \theta$$
(2.37)

(2.35)

(2.36)

Figure 2.7 : Pressions et dimensions pour l'analyse de *Rankine* [*tiré de Clayton et al* (2014)]

Ces valeurs de σ et τ si tracé en abscisse et en ordonnée d'un point (σ , τ), donnent un cercle avec le centre à ($\sigma_1 + \sigma_3$)/2 et le rayon ($\sigma_1 - \sigma_3$)/2 avec θ varie de 0 à 180⁰. Sur la figure 2.8, il y a deux points qui se trouvent sur l'axe de contrainte normale, c'est-à-dire qu'ils représentent les contraintes sur les plans où la contrainte de cisaillement est égale à zéro et la contrainte normale au maximum ou au minimum.

Ces tensions sont connues comme les «principaux plans» majeurs et mineurs. (σ_1 et σ_3 dans l'analyse de *Rankine* agissent sur les plans principaux, puisqu'il n'y a pas de contrainte de cisaillement sur l'horizontale ou le plan vertical) [*Clayton et al* (2014)].

Figure 2.8 : Les contraintes principales sur cercle de *Mhor* [*tiré de Clayton et al* (2014)]

Les cercles de *Mohr* peuvent être utilisés avec beaucoup d'efficacité pour dériver des solutions pour l'analyse de *Rankine*. La Figures (2.9) montre le cercle de *Mohr* pour la condition de rupture active d'un sol granulaire. Pour la condition active, la contrainte verticale (σ_1) due au poids du sol au-dessus de l'élément du sol considéré reste constante, et la contrainte horizontale (σ_3) est réduite jusqu'à la rupture. Puisque, dans la solution de *Rankine* simple, il n'y a pas de contrainte de cisaillement sur les plans verticaux ou horizontaux, σ_1 et σ_3 sont des contraintes principales. La grandeur de σ_1 est connue, et le problème est de déterminer σ_3 en termes de σ_1 . [*Clayton et al* (2014)].

Figure 2. 9 : Cercle de *Mohr* pour l'état actif. Surface horizontale Condition de *Rankine* $\delta = 0$ [*tiré de Clayton et al* (2014)]

$$\sigma_a = OA - AC \tag{2.38}$$

$$\sigma_1 = OA + AD \tag{2.39}$$

$$AC = AD = AB \operatorname{et} \frac{AB}{OA} = \sin \varphi$$
 (2.40)

$$K_a = \frac{\sigma_a}{\sigma_1} = \frac{OA - AC}{OA + AD} = \frac{OA - AB}{OA + AB} = \frac{1 - (AB/OA)}{1 + (AB/OA)}$$
(2.41)

Donc

Avec

$$K_a = \frac{1-\sin\varphi}{1+\sin\varphi} = tg^2 \left[\frac{\pi}{4} - \frac{\varphi}{2}\right]$$
(2.42)

Pour un sol avec une surface inclinée à l'horizontale, l'élément représenté en haut de la figure (2.10).

$$P = \gamma z . \cos \beta \tag{2.43}$$

$$\sigma = P \cdot \cos \beta \tag{2.44}$$

Donc
$$\sigma = P \cos^2 \beta$$
 (2.45)

À la rupture, le cercle de *Mohr* doit toucher l'enveloppe de rupture. On suppose que la force sur la verticale, σ_a , agit parallèlement à la surface du sol (c'est-à-dire $\delta = \beta$). Par conséquent, sur le cercle de *Mohr*, le point X représente le cisaillement et les contraintes normales sur un plan parallèle à la surface du sol. Comme ces forces agissent sur un plan incliné de β vers l'horizontale, le pôle est en *p*. Les contraintes agissant sur un plan vertical sont donc représentées par le *point C*. [*Clayton et al* (2014)].

Figure 2.10 : Analyse de *Rankine*, rupture actif- surface inclinée $\delta = \beta$ [*tiré de Clayton et al* (2014)]

De
$$K_a = \frac{q_a}{P}$$
, et $q_a = OC = OP$, et $P = \frac{\sigma}{\cos^2 \beta} = \frac{OX}{\cos \beta}$
$$\frac{q_a}{P} \cdot \frac{1}{\cos \beta} = \frac{OB - BP}{OB + BX}$$
(2.46)

Avec : BP = PX

Le coefficient de pression de terre, K_a , est trouvé en obtenant OB et BP en termes de OA, à partir des différents triangles.

$$OB = OA \cos\beta \tag{2.47}$$

$$AF = OA \,\sin\varphi \tag{2.48}$$

$$AB = OA \,\sin\beta \tag{2.49}$$

Donc, des équations (2.48) et (2.49) :

$$BP = OA\sqrt{\sin^2 \varphi - \sin^2 \beta} \tag{2.50}$$

42

Remplaçant l'équation (2.47) et (2.50) dans l'équation (2.46), donne :

$$K_{a} = \frac{q_{a}}{p} = \cos\beta \frac{\cos\beta - \sqrt{\sin^{2}\varphi - \sin^{2}\beta}}{\cos\beta + \sqrt{\sin^{2}\varphi - \sin^{2}\beta}}$$

$$K_{a} = \cos\beta \frac{\cos\beta - \sqrt{1 - \cos^{2}\varphi - 1 + \cos^{2}\beta}}{\cos\beta + \sqrt{1 - \cos^{2}\varphi - 1 + \cos^{2}\beta}}$$

$$K_{a} = \cos\beta \frac{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\varphi}}{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\varphi}}$$
(2.51)

Pour l'état passif, le résultat obtenu est :

$$K_p = \frac{q_p}{P} = \cos\beta \frac{\cos\beta + \sqrt{\cos^2\beta - \cos^2\varphi}}{\cos\beta - \sqrt{\cos^2\beta - \cos^2\varphi}}$$
(2.52)

Il convient de noter que dans toutes les analyses de *Rankine*, on suppose que la force résultante sur le plan vertical agit parallèlement à la surface du sol. La valeur de l'angle de frottement de la paroi δ est donc égale à celle de l'inclinaison de la surface du sol β et ne peut pas être modifiée. Par conséquent, la condition de *Rankine* pour une surface de sol horizontale est applicable seulement aux murs avec des parements lisses, ou des murs incapables de prendre le cisaillement, puisque $\delta = 0$.

En 1915, *Bell* a étendu la solution de *Rankine* pour tenir compte de l'effet de la cohésion du sol. Le travail original a été réalisé analytiquement.

Pour un sol avec cohésion et friction, avec une surface de sol horizontale et une paroi lisse et verticale sans adhérence au sol, les contraintes à la rupture peuvent être représentées par le cercle de *Mohr* sur la figure (2.11). [*Clayton et al* (2014)].

Avec
$$K_a = \frac{(1 - \sin \varphi)}{(1 + \sin \varphi)}$$
 (pour l'état de sol son cohésion).

Figure 2.11: Analyse Rankine-Bell, rupture active [tiré de Clayton et al (2014)]

$$\sigma_1 = OE = OA + AE = OA + AB = CA - CO + AB \tag{2.53}$$

$$\sigma_a = OD = OA - AD = OA - AB = CA - CO - AB \tag{2.54}$$

Avec

$$CO = \frac{c}{tg \,\varphi} = c \cot \varphi \tag{2.55}$$

$$CA = AB \ \frac{1}{\sin \varphi} = AB \ cosec \ \varphi \tag{2.56}$$

Donc

Et

$$\sigma_1 = CA - CO + AB \tag{2.57}$$

$$\sigma_1 = AB \ cosec \ \varphi - c \cot \varphi + AB \tag{2.58}$$

$$\sigma_1 = AB(cosec \ \varphi + 1) - c \cot \varphi \tag{2.59}$$

$$AB = \frac{(\sigma_1 + c \cot \varphi)}{(cosec \ \varphi + 1)} \tag{2.60}$$

Des équations (2.54), (2.59) et (2.60) :

$$\sigma_{a} = AB \ cosec \ \varphi - c \ \cot \varphi - AB$$

$$\sigma_{a} = AB \ (cosec \ \varphi - 1) - c \ \cot \varphi$$

$$\sigma_{a} = \frac{(\sigma_{1} + c \ \cot \varphi)}{(cosec \ \varphi + 1)} \ (cosec \ \varphi - 1) - c \ \cot \varphi$$

$$\sigma_{a} = (\sigma_{1} + c \ \cot \varphi) \frac{(1 - \sin \varphi)}{(1 + \sin \varphi)} - 2c \frac{\cos \varphi}{(1 + \sin \varphi)}$$

$$\sigma_{a} = K_{a} \ \sigma_{1} - 2c \sqrt{K_{a}}$$

$$(2.61)$$

Bell a pu démontrer, et **Fitzgerald** a prouvé mathématiquement, comme *Coulomb* l'avait fait en 1773, que l'introduction d'une interception de la cohésion du sol n'a aucun effet sur l'orientation des plans de rupture dans le sol. Ceci peut être vu du cercle de *Mohr* dans la figure (2.11). Puisque σ_a agit sur le plan vertical, et que σ_1 agit sur le plan horizontal, le pôle est en *D* et *OB* donne l'orientation du plan de rupture. [*Clayton et al* (2014)].

Les pressions de terre passive et active de Rankine peuvent être données pour un remblai incliné et un sol cohérant $c' \neq 0$ et $\varphi' \neq 0$, par une dérivation mathématique donnée par *Mazindrani* et *Ganjali* (1997) à n'importe quelle profondeur *z* (Figure 2.12) [*Braja M.Das*(2010)].

La pression active est exprimée par :

$$\sigma_{a}^{'} = \gamma z K_{a} = \gamma z K_{a}^{'} \cos \alpha \qquad (2.63)$$

Avec K_a : le coefficient de pression active de Rankine.

$$K_a' = \frac{K_a}{\cos a} \tag{2.64}$$

La pression passive est donnée par :

$$\sigma_{p}^{'} = \gamma z K_{p} = \gamma z K_{p}^{'} \cos \alpha \qquad (2.65)$$

Avec K_p : le coefficient de pression passive de Rankine.

$$K_{p}^{'} = \frac{K_{p}}{\cos \alpha}$$
(2.66)

Figure 2.12 : Mur de soutènement vertical et un remblai granulaire incliné

Où
$$K'_{\alpha}, K'_{p} = \frac{1}{\cos^{2} \varphi'}$$

$$\times \left\{ \frac{2\cos^{2} \alpha + 2\left(\frac{c'}{\gamma z}\right)\cos \varphi' \sin \varphi' \pm}{\sqrt{\left[4\cos^{2} \alpha(\cos^{2} \alpha - \cos^{2} \varphi') + 4\left(\frac{c'}{\gamma z}\right)^{2}\cos^{2} \varphi' + 8\left(\frac{c'}{\gamma z}\right)\cos^{2} \alpha \sin \varphi' \cos \varphi'\right]} \right\} - 1 \qquad (2.67)$$

Le signe: - pression active, + pression passive

Chu (1991) a présenté un cas plus général de la pression active et passive de *Rankine* pour un mur de soutènement sans frottement avec un parement incliné et un remblai granulaire incliné (*c* '= 0), comme le montre la figure 2.13 [*Braja M.Das*(2010)].

Pour ce cas, les pressions active et passive à n'importe quelle profondeur z peuvent être données par les expressions.

$$\sigma_{a}^{'} = \frac{\gamma z \cos \alpha \sqrt{1 + \sin^{2} \varphi^{'} - 2 \sin \varphi^{'} \cos \psi_{a}}}{\cos \alpha + \sqrt{\sin^{2} \varphi^{'} - \sin^{2} \alpha}} \quad , \quad \sigma_{p}^{'} = \frac{\gamma z \cos \alpha \sqrt{1 + \sin^{2} \varphi^{'} + 2 \sin \varphi^{'} \cos \psi_{p}}}{\cos \alpha - \sqrt{\sin^{2} \varphi^{'} - \sin^{2} \alpha}}$$
(2.68)

Avec
$$\psi_a = \sin^{-1}\left(\frac{\sin \alpha}{\sin \varphi'}\right) - \alpha + 2\theta$$
, $\psi_p = \sin^{-1}\left(\frac{\sin \alpha}{\sin \varphi'}\right) + \alpha - 2\theta$ (2.69)

La pression σ'_a sera inclinée d'un angle β sur le plan perpendiculaire à la face arrière du mur.

$$\beta = \tan^{-1} \left(\frac{\sin \varphi' \sin \psi_a}{1 - \sin \varphi' \cos \psi_a} \right) \quad , \quad \beta = \tan^{-1} \left(\frac{\sin \varphi' \sin \psi_p}{1 + \sin \varphi' \cos \psi_p} \right)$$
(2.70)

La force active P_a et la force passive P_p , par unité de longueur du mur, peut être calculée respectivement comme suit:

$$P_a = \frac{1}{2}\gamma H^2 K_a$$
 , $P_p = \frac{1}{2}\gamma H^2 K_p$ (2.71)

Avec
$$K_a = \frac{\cos(\alpha-\theta)\sqrt{1+\sin^2\varphi'-2\sin\varphi'\cos\psi_a}}{\cos^2\theta(\cos\alpha+\sqrt{\sin^2\varphi'-\sin^2\alpha})}$$
, $K_p = \frac{\cos(\alpha-\theta)\sqrt{1+\sin^2\varphi'+2\sin\varphi'\cos\psi_p}}{\cos^2\theta(\cos\alpha-\sqrt{\sin^2\varphi'-\sin^2\alpha})}$ (2.72)

Où: K_a, K_p : coefficient de pression de terre actif et passive de *Rankine* pour le cas généralisé.

Figure 2.13: Cas généralisé des pressions passive et active de *Rankine* pour un remblai granulaire

2.2.3. Méthode de Boussinesq (1882) :

L'analyse de l'équilibre régnant au niveau local, à la rupture, dans un terrain homogène soutenu par un mur de soutènement a permis à *Boussinesq* (1882), en prolongement des travaux de *Rankine* (1857), de proposer une expression de la répartition des contraintes de poussée sur un mur de soutènement. Ainsi, pour un matériau granulaire, cette répartition est triangulaire, les contraintes croissant linéairement avec la profondeur. *Boussinesq* a amélioré la théorie de *Rankine* en prenant l'interaction réelle entre le sol et l'écran, c'est-à-dire en choisissant la valeur de l'angle de frottement δ sol-écran. Ces travaux venaient compléter les travaux de *Coulomb*, qui avaient seulement permis de déterminer l'intensité de la résultante des poussées, sa répartition triangulaire n'étant alors qu'une hypothèse.

Dans cet équilibre, *Boussinesq* considère une première zone où on a l'équilibre de *Rankine* se raccordant à une seconde zone où il tient compte des conditions aux limites sur l'écran (figure 2.14).

Figure 2.14: Equilibre de Boussinesq et Rankine

Boussinesq garde les résultats de *Rankine* concernant la répartition des contraintes sur l'écran, les contraintes croissant linéairement avec la profondeur.

- L'obliquité des contraintes est constante le long de l'écran *OD*, elle est choisie et fixée à δ ;
- La répartition des contraintes sur l'écran est triangulaire :

$$P_a = K_a \cdot \gamma \cdot l \tag{2.73}$$

Boussinesq avait bien posé le problème, mais la résolution de ces équations à retardé son application, il n'a été résolu dans le cas de la butée, qu'avec les travaux de *Caquot* (1934).

Le système des équations différentielles a été intégrée par *Caquot* et *Kerisel*, 1948 étant améliorées par *Absi* au cas des massifs surchargés (poussée et butée en milieu pulvérulent non pesant, L'*Herminier* et *Absi*, 1962a, 1962b, 1965, 1969) pour donner des tables complètes de poussée et butée donnant les coefficients K_a et K_p (*Kerisel* et *Absi*, 1990)[*Delattre* (2001)].

2.2.4. Méthode de Sokolovski (1960) :

Sokolovski a mis au point une méthode générale de calcul des zones plastiques, permettant d'aborder de manière rigoureuse les problèmes en milieu pulvérulent ou cohérent. Cette méthode, consiste simplement à résoudre le système d'équations différentielles d'équilibre du milieu considéré. Mais cette méthode reste d'une utilisation limitée car elle nécessite des calculs longs et fastidieux qui ne peuvent être exécutés, que par un ordinateur pour chaque cas particulier. De plus, la distribution des contraintes n'est pas linéaire, ce qui ne facilite pas l'exploitation des résultats. Son seul intérêt semble de permettre d'apprécier les erreurs induites par l'application des autres méthodes.

2.2.5. Prise de position de Terzaghi (1936) :

Terzaghi (1936 a) cité dans *Plumey* (2007) critique la méthode de *Rankine*, Selon lui, le fait d'admettre qu'un déplacement négligeable suffise à atteindre un état de rupture actif ou passif (comportement rigide-plastique du sol) va contre toutes les observations in situ qui mettent en évidence la présence d'un état intermédiaire, appelé état au repos. D'après lui, des déformations qui dépendent des propriétés élastiques du sol sont nécessaires pour atteindre les états de rupture. En particulier, les déformations nécessaires pour atteindre un état passif ne sont pas envisageables dans les conditions réelles.

Terzaghi critique également la théorie de *Coulomb*, la généralisation de son utilisation, l'hypothèse de surface de rupture plane [*Plumey* (2007)].

Terzaghi a pris en considération l'interaction sol-structure la figure 2.15, tiré de son article, présente l'évolution de l'intensité et de la position de la résultante de la poussée des terres agissant contre un mur de soutènement, s'il est en rotation par rapport à sa base, et translation [*Plumey* (2007)].

Figure 2.15: Coefficient de poussée latérale des terres contre un mur vertical et position du point d'application de la résultante (selon Terzaghi 1936a). Distinction du mode de déplacement du mur [tiré de *Clayton et al* (2014)]

Selon lui, la poussée des terres dépend de l'intensité et du mode de déplacement du mur de soutènement. Lorsque le mur se déplace, la poussée diminue depuis la poussée au repos pour atteindre progressivement un plateau. La courbe exprimant l'intensité de la poussée en fonction du déplacement varie selon le mode de déplacement admis pour le mur mais la valeur finale est identique pour les deux modes et correspond à la poussée active de *Rankine*. La position de la résultante varie également en fonction du mode de déplacement [*Plumey* (2007)].

Terzaghi cité dans *Plumey* (2007) introduit donc deux notions nouvelles. La poussée des terres varie entre ces deux valeurs en fonction d'un déplacement du mur. Il mentionne aussi que l'état actif est obtenu pour des déplacements relativement faibles alors que l'état passif nécessite des déplacements importants. Deuxièmement, le mode de déplacement du mur a une influence sur l'intensité et la distribution des poussées. A ce sujet, il évoque aussi qu'il existe une différence entre un mur de soutènement en maçonnerie rigide et une paroi étayée souple. La rigidité du sol et la rigidité et les conditions d'appui de la structure ont une influence sur les poussées des terres contre la structure.

2.2.6. Théorie de Brinch Hansen (1953 ; 1962) :

Brinch Hansen (1953) est le premier à intégrer directement le comportement de la structure à la ruine dans le calcul des poussées des terres. Il propose en 1953 une méthode générale, systématique et innovante pour évaluer la poussée des terres contre des ouvrages de soutènement en tenant compte de la cinématique de rupture du système sol-structure [*Plumey* (2007)].

Figure 2.16: Modes de rupture possibles pour une paroi ancrée et fichée avec ou sans formation de rotules plastiques dans la structure (figure tirée de Steenfelt et al.1981) [tiré de *Plumey* (2007)].

Le mouvement descendant du sol par rapport au mur, développe des forces de frottement, Vu ce phénomène, la ligne de glissement est courbe au voisinage de la base du mur, la surface de rupture est incurvé (Figure 2.17), Plusieurs chercheurs ont proposé plusieurs solutions pour obtenir le coefficient de pression passif K_p en utilisant une surface de rupture incurvée. Certaines de ces solutions sont résumées ci-dessous.

Ohde (1938), Terzaghi et Peck(1967): ont indiqué que, du fait de la friction des parois, la surface réelle du glissement n'est pas plane, ils ont proposé une méthode où il remplaçant la surface de rupture plane par une combinaison de surface plane et d'arc de spirale logarithmique, Lorsque le mur pousse vers le remblai retenu, la partie droite de la surface de glissement s'élève à un angle de (45⁰ – φ/2) avec l'horizontale, comme le montre la figure (2.17). Cette méthode permet d'obtenir des valeurs de résistance en butée du terrain inférieur à ceux donnés par des surfaces planes. Cette méthode est devenue la méthode « globale » de référence.

Figure 2.17 : La surface de rupture dans le sol en frottement avec la paroi cas de la buttée [tiré Braja M.Das(2010)]

- Sheilds et Tolunay (1973) ont analysé le problème de la pression passive pour une paroi verticale avec un remblai de sol granulaire horizontal (c '= 0). Cette analyse a été effectuée en considérant la stabilité du coin ABC'C (Figure 2.17), en utilisant la méthode des tranches et en supposant que BC soit un arc de spirale logarithmique [Braja M.Das(2010)].
- *Zhu et Qian* (2000) ont utilisé la méthode des tranches triangulaires (comme dans la zone ABC de la figure 2.17) pour obtenir la variation de K_p Selon cette analyse [*Braja M.Das*(2010)]:

$$K_p = \frac{1}{2} P_p \gamma H^2 = K_{p(\delta'=0)} R$$
(2.74)

Avec :

 K_p : coefficient de pression de terre passif pour une valeur donnée de θ , δ ' et φ '; $K_{p(\delta'=0)}$: coefficient de pression de terre passif pour une valeur donnée de θ , φ ' avec $\delta'=0$; R: facteur de modification qui est fonction de φ ', θ , δ'/φ .'

Lorsque les conditions géométriques ne permettent pas de déterminer analytiquement la valeur et l'emplacement de la poussée active maximale ou de la pression passive minimale sur un mur de soutènement. Plusieurs constructions graphiques ont été mises au point pour résoudre ce problème. Parmi ceux-ci, les plus connus sont les constructions de *Culmann* (1875) et de *Rehbann* (1871). Les deux méthodes sont basées sur la théorie du coin de *Coulomb*.

2.2.7. Construction de Culmann (courbe de Culmann) (1875):

Cette méthode développée par Karl *Culmann*(1875) est utilisée pour la détermination des poussées et des butées dans certains cas particuliers qui ne peuvent être résolus par les méthodes habituelles, par exemple lorsque la terre-pleine a une forme quelconque ou que la surcharge qu'il doit supporter n'est pas uniforme. C'est une généralisation de la théorie de *Coulomb*, puisqu'elle est basée sur des lignes de rupture rectilignes. Son but est la détermination du plan de glissement ainsi que l'intensité de la poussée active ou passive. Le massif peut être stratifié ou homogène mais l'angle de frottement interne doit être le même pour tout le massif.

a) Pour la poussée active :

Clumann (1875) a mis au point sa méthode pratique pour effectuer les constructions graphiques en suivant les étapes suivant (C'est illustré sur la Fig.2.17.c))[*Terzaghi* (1996)]:

- 1. La première étape de la procédure de *Culmann* consiste à tracer la ligne *bS* supposé représente la surface arbitraire de glissement, qui traverse le coin inférieur *b* du mur et qui s'élève à l'angle (φ ') au-dessus de la base horizontale du remblai. cette ligne est appelée *ligne de pente* car elle représente la pente naturelle du matériau de remblayage ;
- 2. l'étape suivante consiste à tracer la *ligne de pression de terre bL*, située sous la ligne de pente et faisant un angle θ à partir de la ligne *bS* .l'angle θ est égal à l'angle entre la verticale et la direction de la pression résultante à la pression P_A , comme le montre la figure 2.18. Il dépend de l'angle de friction de la paroi δ ;
- 3. pour déterminer la pression de terre résultante P₁ exercée par le coin situé au-dessus de la surface plane de glissement arbitraire bc₁, il faut d'abord déterminer le poids W₁ de ce coin. Donc choisir une échelle de forces, et reporter les poids sur la droite bS. Par exemple la distance à partir de b à W₁ le long de linge bS est égale à W1, de même la distance de b à W2 sur la ligne de bS est égale à W2 et ainsi de suite ;
- 4. le point d_1 est obtenu. la ligne d_1e_1 est alors tracée parallèlement à *bL*. La droite d_1e_1 coupe la ligne de glissement bc_1 au point e_1 ;
- 5. Puisque le triangle e_1d_1b sur la fig.2.18.c est similaire au polygone de force (Fig.2.18.b), la distance d_1e_1 est égale à la pression de terre résultante correspondant à la surface du glissement bc_1 ;

- 6. pour trouver la pression active résultante P_A , dans le cas où bc_1 n'est pas nécessairement la surface réelle du glissement, des constructions similaires sont réalisées pour déterminer les pressions de terre résultantes P_2 , P_3 , etc., pour d'autres surfaces sélectionnées arbitrairement bc2, bc3, etc. la plus grande valeur de la pression de terre résultante obtenue de cette manière est égale à la pression de terre active résultante P_A ;
- 7. Donc la construction est répétée pour différents plans bc_2 , etc. les points e_1 , e_2 , ... etc., sont reliés par une courbe lisse *C*, appelée *ligne de Culmann*;
- 8. Tracé la droit tangente à la *ligne de Culmann*, parallèle à la ligne *bS*. le point de tangente sera noté *e*. la distance *ed* représente l'intensité de la poussée P_a selon l'échelle de forces choisie, et la surface réelle du glissement passe par ce point (*e*).

Figure 2.18 : Construction de *Culmann* pour le calcul de la poussée active) [tiré de *Terzaghi* (1996)]

b) Pour la poussée passive :

La figure (2.19) illustre la procédure pour déterminer la poussée passive P_p par la méthode de *Culmann*. L'approche est tout à fait identique à celle de la poussée active avec quelques différences :

- 3. La ligne AC fait l'angle φ au dessous de la ligne horizontale ;
- 4. le linge de référence fait un angle ψ avec la ligne *AC* comme montrée sur la figure.

Pour les prismes de sol *ABBi*, les poids propres *W1*, *W2*, *W3* ...etc sont représentés sur le linge *AC* à l'échelle. A partir de ces points des lignes parallèles à la ligne de référence sont tracées pour couper les lignes de rupture *ABi*. La ligne de *Culmann* représente une courbe joignant ces points d'intersection. Une tangente à la ligne de *Culmann* parallèle à *AC* permet

d'obtenir le point *E*. L'échelle de la ligne *EF* représente l'amplitude de la poussée passive de *Culmann*.

Figure 2.19: Construction de Clumann pour le calcul de la poussée passive

- Potts et Fourie (1986) ont réalisé une étude numérique ont utilisent la méthode des éléments finis pour examiner l'influence du mouvement des parois sur la génération de la pression de la terre. Les effets de la translation du mur, la rotation autour du sommet et la rotation autour du bas du mur ont été étudiés. Une loi de comportement élastoplastique utilisant le modèle de *Mohr-Coulomb* a été utilisée pour modéliser le comportement du sol. Ils ont conclu que La nature du mouvement de la paroi a un effet sur les valeurs de K_a et de K_p pour les murs rugueux et lisses, Les valeurs finales de K_a et K_p ne sont essentiellement pas affectées par la valeur de K_o ou la distribution du module de Young dans le sol. Les déplacements relatifs nécessaires à la mobilisation des conditions actives et passives dépendent de la paroi, de la valeur initiale de K_p et de la distribution du module de Young.
- Soubra et Kastner (1999) ont développé une méthode cinématique en analyse limite en adoptant un mécanisme de rupture rotationnel permettant de calculer le coefficient de butée en présence d'écoulement. Ils ont montré que la butée disponible devant la fiche de l'écran de soutènement étanche diminue avec l'augmentation de la perte de charge

relative. Le cas limite d'une butée nulle, insensiblement à l'angle de frottement de l'interface sol – rideau, représente la rupture par soulèvement généralisé d'un prisme de sol devant la fiche.

Benmebarek N (2003) a étudié le coefficient de la pression passive et active des terres à l'écoulement (perte de charge totale) pour différentes valeurs de l'angle de frottement φ, de l'angle de l'interface δ et de l'angle de dilatance ψ dans le cas d'un batardeau large. Elle a montré la réduction du coefficient de butée avec l'augmentation de la perte de charge totale, cette réduction qui est plus significative pour les faibles valeurs de l'angle de l'angle de frottement augmentant significativement ce coefficient qui augmente avec la diminution de l'angle de dilatance.

2.3. Historique des méthodes de calcul des écrans de soutènement :

Le dimensionnement des murs de soutènement pour résister à la poussée des terres qu'ils doivent retenir est un problème classique de l'ingénierie civile et militaire qui a intéressé de nombreux scientifiques dès le début du 18^{ième} siècle. Une discussion des premiers travaux sur ce sujet [dont *Bullet* 1691, *Gautier* 1717, *Couplet* (1726 et 1727), *Bélidor* 1729, *Gadroy* 1746, *Rondelet*, 1767] est présentée par *Heyman* 1972 cités dans [*Plumey* (2007)].

Verdeyen (1959) cités dans [*Plumey* (2007)] donne également quelques repères historiques concernant le développement de la mécanique des sols, dans lequel les murs de soutènement prennent une place importante.

Le terme « interaction sol-structure » est utilisé aujourd'hui pour caractériser les situations où le comportement d'une structure ne peut pas être évalué de façon précise sans considérer aussi le comportement du sol en contact et de leur interface. Du point de vue de la structure, le but d'une analyse tenant compte de l'interaction sol-structure est de déterminer l'effet d'action du sol sur la structure, c'est-à-dire principalement les pressions de contact, en fonction de la déformation de la structure, ceci pour pouvoir procéder aux vérifications nécessaires à son dimensionnement. Il s'agit donc d'assurer que les hypothèses faites sur le comportement du sol sont compatibles avec la réponse de la structure, principalement avec sa déformation, ceci aussi bien à l'état limite de service qu'à l'état limite ultime.

Une analyse structurale couplée sol-structure permet, si les hypothèses admises sur le comportement de chaque matériau sont représentatives, d'assurer cette compatibilité. Les outils nécessaires à de telles analyses sont néanmoins assez récents comparativement à l'intérêt porté aux structures liées au sol par les premiers mathématiciens modernes, qui remonte au 18^{ième} siècle. Les connaissances théoriques sur ces structures se sont donc développées d'abord à l'aide d'outils mathématiques plus rudimentaires, généralement en découplant le comportement du sol et de la structure. La difficulté à représenter le sol par un modèle mathématique, conséquence de sa grande hétérogénéité in situ et de la complexité de son comportement (anisotropie, non linéarité, irréversibilité), fait que les expériences pratiques préalables sur des ouvrages similaires ont également joué un rôle prépondérant dans le développement des connaissances. [*Plumey* (2007)].

L'identification successive des ces nouveaux aspect de l'interaction sol-écran se soutènement et les tentatives d'y apporter des réponses, ces dernières tenant par ailleurs compte des outils généraux alors disponibles, constituent autant d'étapes du développement des méthodes de calcul des écrans de soutènement figure 2.20 [*Delattre* 2001]. Les directions prises par ces développement sont au nombre de quatre.

- La voie empruntée semble-t-il de prime abord se situe dans la lignée des travaux menés à partir du 18^{ième} siècle dans le domaine des murs de soutènement. Les travaux réalisés font largement appel aux théories de poussée développées antérieurement, ainsi qu'à la statique et aux méthodes de la résistance des matériaux. Elles ont permis le développement des méthodes dites « classiques » ;
- 2. À cette première approche s'adjoint assez vite l'approche fondée sur la notion de module, ou coefficient, de réaction dont les bases ont été définies à la fin du 19^{ième} siècle. Cette approche reste toutefois peu développée pendant toute la première moitié du 19^{ème} siècle car elle nécessite des moyens d'intégration qui ne seront réellement mis à la disposition de l'ingénieur qu'avec l'apparition du calcul informatique, dans les années 1960 ;
- 3. Très tôt, ces approches théoriques se heurtent à des limites dans la représentation des phénomènes physiques et une branche empirique se développe ; celle-ci va rester présente tout au long du 20^{ième} siècle et va contribuer à l'élaboration d'un référentiel en termes de comportement observé des ouvrages, référentiel toujours en usage ;
4. ultérieurement, le domaine des ouvrages de soutènement va bénéficier des progrès réalisés dans les domaines de la mécanique et des méthodes numériques, pour constituer, à partir des années 1970, à l'égal des autres catégories d'ouvrages géotechniques, un champ d'application de la méthode des éléments finis.

Figure 2.20 : - Grands axes et principaux jalons du développement des méthodes de calcul des écrans de soutènement.

La partie gauche de l'arbre représente les méthodes de calcul à l'état limite de service (1) : méthodes classiques.

(2) : méthode du coefficient de réaction,

(3) : méthode des éléments finis

(4) : méthodes empiriques, de gauche à droite) tandis que la partie droite de l'arbre
(5) représente les méthodes d'état limite ultime [Delattre 2001]

Le développement de méthode de calcul selon les directions décrites précédemment est passé par trois principales étapes :

- La première étape, le passage du mur de soutènement à l'écran de soutènement, avec la modélisation de la réaction en fiche du sol. À cette première étape sont associés, d'une part, les développements en matière de méthode de calcul des équilibres limites de butée et, d'autre part, la méthode d'analyse de l'équilibre de l'écran dite de la butée simple ;
- 2. La deuxième étape est celle de la prise en compte de la flexibilité de l'écran dans sa partie en fiche. Cet aspect du comportement des ouvrages constitue l'enjeu central des recherches dans le domaine pendant trente ans, de 1930 à 1960, et donne lieu à de nombreuses propositions ;
- La troisième étape est celle de la prise en compte généralisée de la flexibilité relative de l'écran et du sol, qui est rendue possible par la méthode du coefficient de réaction [Delattre (2001)].

2.3.1. Méthodes de calcul classiques (équilibre limite):

Un mur de soutènement dépend leur stabilité de leur géométrie. Pour une paroi non ancrée, seul la butée des terres sur la fiche coté fouille qui assure sa stabilité, pour le cas d'une paroi avec ancrage, la stabilité de la paroi est assurée à la fois par la butée et par la résistance de l'ancrage à l'arrachement.

L'étude d'un rideau a donc pour objet de déterminer ses caractéristiques géométriques et mécaniques nécessaire pour assurer sa stabilité sous les sollicitations du projet : la fiche du rideau, le module des palplanches, les forces d'ancrage et la longueur des tirants.

Deux types de paroi peuvent être distingués : les parois simplement butées en pied (qui sont obligatoirement ancrées) présentant une faible valeur de fiche, et les parois encastrées en pied (ancrées ou non) et présentant une valeur de fiche élevée.

Il faut signaler que ces méthodes ne permettent pas la détermination du déplacement des rideaux alors qu'il s'agit d'un élément important pour la conception des rideaux en site urbanisé.

2.3.1.1. Rideau de palplanche non ancré encastré en pied :

Un rideau sans ancrage est nécessairement encastré en pied ou possède une longueur de fiche importante. Son fonctionnement est simple puisqu'il s'agit, d'un basculement de la paroi vers l'excavation autour d'un point fixe situé au dessus de son extrémité inférieur et entraine l'apparition au dessus de l'axe de rotation de deux zones plastiques dans le massif de sol, une zone en poussée à l'amont et une zone en butée à l'aval (figure 2.21), l'action combiné de ces deux sollicitations est équivalente à un appui encastré de la paroi (le pied de paroi est maintenu par deux forces opposées):

- Le massif situé au dessous de l'axe de rotation et à l'aval (à gauche) du rideau est refoulé. Il oppose une contre-butée ;
- Le massif à l'amont (à droite) est décomprimé.

a : Allure de la déformée du rideau

Figure 2.21 : Rideau non ancré encastré [Josseaume(1974)]

Pour le dimensionnement, les inconnues sont la fiche de l'écran et la valeur de la contrebutée, mais de point de vue pratique, ce sont la longueur totale et le module des palplanches.

A la rupture, la distribution de la pression des terres a l'allure indiquée sur la figure 2.21.b.

Pour les besoins du calcul, la distribution des pressions des terres (figure 2.21.b) est remplacée par la distribution plus simple de la figure 2.22.

Figure 2.22 : Hypothèse admise pour le calcul d'un rideau non ancré [Schlosser(1994)]

Le calcul est fait sur la base des hypothèses simplificatrices suivantes :

- Les efforts appliqués au rideau au dessus de l'axe de rotation correspond à la poussée et à la butée maximales données par la théorie classique ;
- La hauteur sur laquelle s'exerce les efforts de contre-butée est égale à 20% de la hauteur de butée f₀;
- Les efforts de contre-butée peuvent être remplacés par une force *CB* appliquée au niveau du centre de rotation *O*.

Les deux inconnues du problème sont alors f_0 et CB;

- *f*₀ la fiche minimale de la paroi aboutissant à sa stabilité, c'est-à-dire où les forces de poussée et de butée s'annulent parfaitement, est déterminé en écrivant l'équilibre des moments autour du point *O* : on obtient une équation du troisième degré en *f*₀. La fiche du rideau est alors D = f + 0.2*f*₀.
- La contre-butée s'obtient en projetant un axe horizontal : CB = B P [Josseaume(1974)].

Pour calculer le moment fléchissant maximal M_{max} , il suffit pour cela de trouver le point Q où l'effort tranchant est nul. La donnée du moment fléchissant maximal M_{max} détermine le module de résistance de palplanche à utiliser.

Pour dimensionner les ouvrages en service, on divise les contraintes de butée par un coefficient de sécurité égale à deux.

2.3.1.2. Rideau de palplanche avec ancrage :

Dans le cas de certains soutènements de grande hauteur, dans des terrains peu cohérents ou en présence d'ouvrages mitoyens limitant les déplacements admissibles, la fiche seule ne suffit pas à assurer la stabilité du soutènement. Il est alors nécessaire d'ajouter un (ou plusieurs) appui supplémentaire (prenant la forme de tirant ou de buton) mis en place à un (ou plusieurs) niveau de la paroi.

a) Rideau de palplanche ancré, simplement butée en pied :

La fiche des rideaux ancrés simplement butée en pied est en principe juste suffisante pour assurer la stabilité de l'ouvrage. Dans ces conditions, l'ensemble du rideau est susceptible de pivoter autour du point d'attache des tirants et chaque face ne supporte que des contraintes de butée ou des contraintes de poussée, il n'y'a pas de contre butée car la fiche est assez courte (Figure 2.23). La poussée s'exerce sur toute la face amont du rideau, la butée est mobilisée devant la fiche coté fouille.

Le problème est isostatique et comporte deux inconnues ; la fiche f et l'effort d'ancrage A. On ne considère que la composante horizontale des forces :

- $\sum M = 0$ permet de déterminer la fiche *f*.
- $\sum F_H = 0$ permet de déterminer la réaction d'ancrage A

La fiche calculée correspond à l'équilibre limite (rupture du rideau).

Figure 2.23 : Diagramme de pression c'exerçant sur un rideau ancré simplement butée

Josseaume (1974) cité dans [*Masrouri* (1986)] résume les procédures couramment utilisées, pour arriver au dimensionnement de l'ouvrage en service :

- Soit, on adopte une longueur de fiche égale à f[']=1.4 f (majoration 40% de f) pour un sol pulvérulent et à 2 f (majoration 100 % de f) pour un sol purement cohérent, et l'on utilise les valeurs de M et de A à l'équilibre limite pour le choix du module de résistance des palplanches et le dimensionnement du système d'ancrage ;
- Soit, les valeurs de *f* et de *A* sont déterminées en tenant compte d'une valeur minorée du coefficient de butée limite. Les calculs sont alors souvent effectués :
 - 1. Soit, en divisant par 2 les contraintes de butée limite ;
 - 2. Soit, en considérant la butée correspond à $\delta=0$ (écran lisse).
 - (Le coefficient minoratif de la butée limite est alors fonction de l'angle de frottement de sol φ).

Rowe (1952) cité dans [*Delattre* (2001)], propose une méthode de calcul tenant compte des résultats de son expérimentation sur l'influence de la flexibilité de la palplanche. Sa méthode comprend deux phases :

1^{ère} phase : calcul en simplement butée (figure 2.24) avec les hypothèses suivantes ;

- la poussée P_a calculée par la théorie de *Coulomb* avec un angle de frottement sol rideau égale à $\delta = 2/3\varphi$.
- La butée P_p pression passive, calculée par la méthode de *Coulomb* avec $\delta = 0$ et affectée du coefficient de sécurité *F*=1.5.
- Une force de cisaillement horizontal *T_s* appliquée en pied de rideau et ayant pour intensité :

$$T_s = \frac{\tan \delta}{1.5} \left[\left(P_a - P_p \right) \tan \delta + W_s H \right]$$
(2.75)

Où :

 W_s : poids propre du rideau et $\delta = 2/3\varphi$.

La résultante des forces P_p et T_s est supposée appliquée au tierce inférieur de la partie en fiche.

Figure 2.24 : Schémas de calcul proposé par *Rowe* pour le calcul en butée simple [tiré de (*Delattre* 2001)]

 2^{eme} phases : le moment fléchissant ainsi obtenu est multiplié par un coefficient minoratif qui dépend de la flexibilité du rideau et l'état de densité du sol, dont la valeur est donnée par la figure 2.25.

L'influence favorable de la flexibilité du rideau sur l'effort dans le tirant peut être compensée par l'effet des déplacements différentiels des ancrages : donc cet effort est voisin de la valeur obtenue par le calcul du rideau simplement butée.

Figure 2.25 : Réduction du moment fléchissant maximal avec la flexibilité du rideau d'après les abaques des résultats expérimentaux de *Rowe* [tiré de (*Delattre* 2001)]

63

Avec :

Mr : moment réel ;

Mc : moment calculé suivant le schéma de calcul proposé par Rowe ;

 $\rho = H^4/EI$: caractérise la flexibilité de l'écran.

Terzaghi (1953), cité dans [*Masrouri* (1986)], remplace la répartition triangulaire des contraintes de butée par un diagramme trapézoïdale qui correspond aux ouvrages peu flexibles (figure 2.26).

Figure 2.26 : Schéma trapézoïdal de Terzaghi [figure tiré de Masrouri (1986)]

Houy (1980), cité dans [*Masrouri* (1986)], démontre que l'utilisation des théories basées sur l'état plastique ou sur l'état de rupture laisse libre le choix de δ_a ou δ_p . Il propose d'adopter :

- en poussée : $0 < \delta_a < 2/3 \varphi$;
- en butée : δ_p d'après la figure 2.26, en fonction du mode du déplacement de l'écran.

Figure 2.27 : δ_p en fonction du déplacement de l'écran [figure tiré de *Masrouri* (1986)]

b) rideau ancré et encastré :

Le calcul des rideaux encastrés en pied généralement des rideaux souples, où se développe la contrainte de *contre-butée* en – dessous de point de rotation de l'écran, dans sa partie en fiche (figure 2.28.a), a quelque analogie avec celui des rideaux sans ancrages. On utilise pour le calcul des rideaux ancrés la même distribution des contraintes que les rideaux sans ancrages, et la contre-butée est généralement remplacée par une force unique appliquée au point *O*.

On se trouve maintenant en face d'un problème hyperstatique (indétermination) puisqu'il y a trois inconnues : la profondeur f_0 , l'effort d'ancrage A et contre butée CB (figure 2.28.b).

Figure 2.28 : Hypothèse admise pour le calcul d'un rideau ancré et encastré

* Méthode de la ligne élastique :

L'étude de la déformation de la palplanche permet de lever l'indétermination. On s'impose en effet que la déformée de la palplanche ou « ligne élastique » satisfasse à certaines conditions : le pied de la palplanche au niveau de la contrebutée est immobile, la tangente à la palplanche en ce point reste verticale, la ligne élastique passe par l'extrémité du tirant d'ancrage (figure 2.29).

Figure 2.29 : Méthode de la ligne élastique

En pratique, le calcul est fait par approximations successives. On se donne une valeur D de la fiche, on détermine les valeurs de T et de C correspondantes au moyen des équations d'équilibre. On en déduit le diagramme des moments fléchissant et, par une double intégration, la déformée du rideau (les deux constantes d'intégration sont déterminées en écrivant que le point d'ancrage et le point O ne subissent aucun déplacement). On calcule ensuite la rotation en O, qui n'est généralement pas nulle au premier essai [*Josseaume*(1974)].

Cette méthode de la ligne élastique est extrêmement longue, car il faut opérer par approximations successives.

***** Méthode de Blum :

Le schéma très frustre de la butée simple est mis en défaut dès que l'on met en correspondance le chargement exercé par le sol avec la déformation que prend l'écran, compte tenu de sa déformabilité réelle. C'est à cet exercice que s'est livré *Blum* (1931) cité dans [*Delattre* (2001)].

D'après *Delattre* (2001), Pour un écran de soutènement ancré en tête par une nappe de tirants, *Blum* analyse, pour différentes longueurs de fiche, les distributions des pressions sur l'ouvrage, des moments fléchissant et des déplacements horizontaux de l'ouvrage. Cette analyse est essentiellement qualitative et repose sur l'interdépendance de ces distributions (la déformée de l'écran présente un point d'inflexion pour les points de moment nul, de même que la courbe des moments pour les points de pression nulle ; la pression mobilisée est liée au déplacement latéral de l'écran). Cette analyse permet à *Blum* d'observer que les ouvrages qui présentent une fiche courte seront simplement butés par le sol et que l'augmentation de la fiche conduit à la mobilisation d'un encastrement dans le sol (figure. 2.30).

Parmi toutes les configurations possibles, *Blum* estime que le meilleur compromis du point de vue de l'encastrement de l'écran est obtenu pour une fiche telle que la tangente à la déformée en pied de l'écran passe par le point d'ancrage. Les fiches plus grandes ne conduisent pas à une augmentation significative de l'encastrement de l'écran tandis que, pour des fiches plus courtes, on assiste à une chute du moment d'encastrement.

Le problème ainsi posé peut être résolu graphiquement, dite de la ligne élastique, mais cette résolution reste néanmoins relativement longue et nécessite l'outil numérique.

Figure 2.30 : Influence de la longueur de la fiche sur les pressions sur l'écran, les moments fléchissant auxquels il est soumis et sa déformée [d'après *Blum*(1931)]. [Figure tirée de *Delattre* (2001)]

.67

* Méthode de Blum modifiée :

Cette méthode consiste à confondre le point de pression nulle et le point de moment nul. Pour simplifier le calcul, *Blum* observe que, pour les écrans encastrés, le point de moment fléchissant nul est relativement proche du point de pression résultante nulle. Il propose, en conséquence, de conduire le calcul en considérant que le moment fléchissant est nul au point de pression nulle (« chargement approché » dit de la « poutre équivalente », figure 2.31.b). Une telle approximation, compte tenu de la faible différence (b – y) observée entre la position du point de moment fléchissant nulle, est supposée ne pas introduire d'erreur significative dans l'estimation du moment fléchissant maximal et de la réaction d'appui.

Par ailleurs, dans le souci de simplifier le calcul de la fiche de l'écran, *Blum* propose de modéliser la distribution des pressions résultantes appliquées à l'écran dans la zone en contrebutée par une force unique, appliquée au centre de rotation de l'écran (figure 2.31.c). La comparaison entre la fiche obtenue pour ce cas de charge « idéalisé » et celle déduite du cas de charge « approché » montre que leur rapport ne dépend que d'un coefficient v (coefficient de flexibilité relative à l'écran dans le sol) de mobilisation de la contrebutée (figure 2.32.d) et conduit *Blum* à proposer, comme valeur de dimensionnement de la fiche, la solution du cas de charge « idéalisé » majorée de 20 %.

Figure 2.31 : Méthode de Blum de calcul des écrans ancrés. a. distribution résultante des pressions du sol sur un écran ancré et ancastré en fiche. b. chargement « approché », pour la partie en fiche. c. chargement « idéalisé »

68

- H: hauteur libre de l'écran
- T: profondeur en fiche de l'écran
- t : fiche "nette" de l'écran
- y: niveau du point de moment nul
- b: niveau du point de pression résultante nulle
- a : niveau de l'appui supérieur
- B₀: effort tranchant au point de moment nul
- A: réaction de l'appui supérieur
- C: force de contrebutée
- gwl : butée nette en pied d'écran
- gwr : contrebutée nette en pied d'écran
- f : butée nette en pied d'écran rapportée à la profondeur nette en fiche
- v : contrebutée nette en pied d'écran rapportée à la butée nette

Les méthodes de calcul aux états limites (méthode classique de dimensionnement de soutènement) sont souvent trop simplistes, destinée à des cas simple ou à un prédimensionnement rapide de l'ouvrage. Elle ne permet pas de prendre en compte d'interaction sol-structure, de plus, elles ne fournissent aucun renseignement sur les déplacements au voisinage des ouvrages, ni au sein du massif de sol, ce qui serait intéressant notamment pour les projets d'excavation en zone urbaine. Pour les parois avec plusieurs niveaux d'appuis (buton, tirant) le dimensionnement se fait, dans la majorité des cas, par la méthode au coefficient de réaction.

2.3.2. Méthodes élasto-plastiques utilisant le module de réaction :

C'est une méthode récente, suite au développement du calcul numérique sur ordinateur. Elle offre une grande souplesse de calcul et permet une modélisation plus réaliste du comportement du rideau.

D'après *Terzaghi* (1955), cité dans [*Delattre* (2001)], Les premières applications de la méthode du coefficient de réaction dans le domaine du génie civil sont dues à *Zimmermann* (1888) pour le calcul des contraintes dans les traverses de chemins de fer. Le développement de la méthode a ensuite concerné les fondations et les radiers. Elle a été introduite, très tôt, dans le domaine des soutènements par *Rifaat* (1935) et *Baumann* (1935).

Le développement de cette méthode s'est toutefois heurté au problème pratique de sa mise en œuvre. Celle-ci, nécessairement analytique avant l'apparition du calcul informatique, a fait l'objet de nombreuses propositions (*Rifaat*, 1935 ; *Blum*, 1951 ; *Richart*, 1957). Les méthodes proposées n'étaient toutefois pas suffisamment directes pour être pratiquées facilement dans l'ingénierie courante, en l'absence de moyen de calcul informatique.

En raison des difficultés d'application, l'utilisation pratique de cette méthode dans le domaine des soutènements est très récente, vers la fin des années 1960, par la mise au point des méthodes élastoplastiques dans lesquelles des limites tenant compte du domaine réel de variation de la pression des terres (poussée ou butée) sont imposé aux contraintes élastiques. Dans un premier temps, ce comportement du sol n'était utilisé que pour la partie en fiche. Le développement de la technique des tirants précontraints qui sollicitent en butée le sol en contact de la face interne de l'écran, a conduit à tenir compte d'un comportement élastoplastique du sol sur toute la hauteur intéressée par l'ouvrage.

2.3.2.1. Principe de la méthode au module de réaction :

La méthode est basée sur l'hypothèse fondamentale de *Winkler* (1867) dans le domaine des petits déplacements, selon laquelle les contraintes à l'interface sol-écran sont proportionnelles aux déplacements de celle-ci [*Bouafia*(2000)].

L'objectif de cette méthode est de vérifier que la déformée de la paroi est dans un état d'équilibre qui est compatible avec différents paramètres du problème : rigidité de la paroi, pression exercée par le sol sur la paroi, présence de butons ou de tirants, présence d'une nappe. Dans ce type de calcul, le sol est modélisé comme une succession d'appuis élastiques de raideur k_h qui correspond au coefficient de réaction horizontal du sol.

Dans le calcul, la réalisation de la paroi avant excavation est supposée ne pas modifier les contraintes initiales dans le sol et que la déformation initiale de la paroi est nulle. La contrainte horizontale initiale prise en un point s'exprime alors suivant l'équation (2.76) [*Thomas*(2014)] :

$$\sigma_0' = K_0 . \sigma_v' \tag{2.76}$$

Avec :

 K_0 : le coefficient de poussée des terres au repos.

Tant que la contrainte horizontale est supérieure à l'état limite de poussée P_a et inférieure à l'état limite de butée P_p , elle est calculée suivant la relation de *Winkler*(1867) présentée dans l'équation (2.77).

$$\sigma_{h}^{'} = \sigma_{0}^{'} + k_{h} y \tag{2.77}$$

Avec :

 σ'_0 : la pression des terres au repos au repos et y le déplacement horizontal au point considéré.

Le coefficient de réaction horizontal k_h (dimension KN/m^3) n'est pas une caractéristique intrinsèque du sol mais un paramètre calculatoire permettant de relier la pression horizontale du sol au déplacement horizontale de l'écran au même niveau par la relation (2.78) figure (2.33).

Figure 2.33 : Schéma du déplacement de la paroi [tiré de Tomas le cor(2014)]

Le terrain est assimilé à une succession d'appuis élastique de raideur k_h .

La méthode de calcul au module de réaction consiste à modéliser un rideau ou une paroi par une poutre verticale, élastique, de module d'élasticité E de moment d'inertie I et soumise à des pressions normales sur sa hauteur. L'équation d'équilibre statique de la poutre s'écrit :

$$EI(z)\frac{d^4y(z)}{dz^4} = p_e(y,z) - p_i(y,z)$$
(2.79)

Avec :

y(z): Déformée du rideau.

 $p_e(y,z)$ et $p_i(y,z)$: Pressions appliquées par le sol sur les deux faces extérieures (aval) et intérieures (amont) du rideau.

Thèse : *Estimation des pressions de terre passive et active en présence d'écoulement dans les fouilles de largeur limitée*

Cette équation est facilement intégrable numériquement. Ainsi elle permet de calculer les efforts, les déplacements et les pressions exercées par le sol aux différentes phases de construction. Elle peut aussi tenir compte de la présence de tirants passifs ou précontraints par l'intermédiaire d'un ressort supplémentaire, au niveau de la tète d'ancrage, caractérisé par sa raideur, par l'effort de précontrainte appliqué et par le déplacement de l'écran à ce niveau lors de la mise en place du tirant.

Les contraintes P_e et P_i varient suivant l'hypothèse de *Winkler*, Elles dépendent de l'état initial du sol (poussée des terres au repos) et de la réaction adoptée. La déformée de la palplanche y(x) qui constitue l'inconnue de l'équation différentielle (Eq.2.79), sera obtenue par intégration de cette équation en tenant compte des conditions initiales et des conditions aux limites suivant:

- Les valeurs de l'effort tranchant et de moment fléchissant aux extrémités du rideau sont égales à zéro en pied et peuvent être différentes de zéro en tête.
- Les valeurs du déplacement du point d'ancrages (y_A) ou la valeur de la réaction d'ancrage (A) à chaque niveau d'ancrage sont comme suit : y_A =0, ou bien A = A+k.yA.

Pour un rideau de palplanches, c'est le module de réaction horizontale k_h du sol qui détermine le déplacement du rideau. On admet le plus souvent que kh est indépendant de *y* [*Bensmaine* 2013].

Le module de réaction dépend en théorie de plusieurs paramètres : des caractéristiques intrinsèques du sol mais également des caractéristiques de la paroi (longueur de la paroi, produit d'inertie EI), de la profondeur et de la présence de tirants ou de butons à la phase de calcul considérée. Les principales méthodes de calcul utilisées sont de: Ménard et Bourdon (1964) ; Balay (1984) ; Schmitt (1995) ; Chadeisson (1970) [*Thomas*(2014)].

2.3.2.2. Critique de la méthode au module de réaction :

Les avantages des méthodes utilisant le module de réaction consistent à tenir compte de :

- La flexibilité de l'écran ;
- La raideur et la précharge des étais ;
- L'influence du déroulement des travaux ;
- Le comportement non réversible du sol.

Cependant, elles sont loin de pouvoir représenter exactement le comportement du sol, et doivent être utilisées avec beaucoup de précaution.

Leurs principaux inconvénients sont :

- le coefficient de réaction, qui n'a pas d'existence physique, et est évalué soit à posteriori, soit de manière empirique. Pour un même type de sol, il dépend de la hauteur, de la flexibilité et du type de soutènement, il ne peut donc pas être mesuré. De plus, par sa définition même, il ne peut pas décrire les différentielles du sol (effet de voûte).
- Les courbes de déplacement obtenues par cette méthode, sont liées à la valeur de coefficient de réaction horizontal, qui ne peut pas être défini précisément, ceci influe leur interprétation.
- Ces méthodes ne prédisent pas les déplacements et les déformations du sol encaissant ce qui limite leur domaine d'utilisation.
- On doit préciser cependant qu'une grande variation de ce coefficient affecte peu le diagramme des moments. En prenant en compte toutes ces limites. Ces méthodes restent tout de même plus complètes et réalistes que les méthodes classiques.

2.3.3. Calcul par les méthodes en continuum :

Le comportement des ouvrages de soutènement flexibles est le résultat d'une succession de plusieurs étapes depuis la mise en place dans le sol jusqu'à la mise en service (fonçage ou battage de palplanche, mise en place des parois, excavation par étape, installation des butons ou des tirants, rabattement de nappe).

Avec les méthodes en continuum représentées par la méthode des éléments finis ou la méthode des différences finies, l'évolution des contraintes et des déformations dans l'ensemble du modèle (massif et structures) peuvent être analysées au cours des différentes phases de construction à la différence des méthodes précédentes en tenant compte des particularités de ce type d'ouvrages notamment :

- Un comportement plus réaliste du sol en utilisant des modèles de comportement généralement élastoplastiques avec ou sans écrouissage ;
- Prise en compte des différentes étapes d'excavation et de construction par désactivation et activation des éléments de massif et de structures ;
- Description par des éléments d'interfaces les interactions multiples entre le sol et l'écran, et le sol et les tirants.
- L'interaction hydraulique et mécanique en particulier pour les gradients importants causés par le rabattement de nappe au fond de fouille.

Des analyses complexes des rideaux, particulièrement lorsque les déplacements et les déformations au voisinage de l'excavation sont critique, sont devenues possibles sur microordinateur grâce à l'apparition des codes en éléments finis (ABAQUS, PLAXIS, CESAR,...) ou en différences finies (FLAC^{2D} et FLAC^{3D}) spécialisés et commercialisés à l'échelle internationale.

2.4. La pratique actuelle des méthodes de calcul des écrans soutènement :

La pratique actuelle pour le dimensionnement des ouvrages de soutènement est résumée dans de nombreux ouvrages de référence dont [*Terzaghi* et *al.* (1996), *Lambe*, *Whitman* (1969), *Recordon* (1985), *Clayton* et *al.* (1993)].

Lors du calcul des pressions de contact agissant contre la structure, les principes suivants liés à la prise en compte de l'interaction sol-structure sont généralement évoqués :

- La méthode de calcul doit permettre d'assurer autant que possible la compatibilité cinématique entre la structure et le sol en contact ;
- Des états plastiques peuvent être admis dans le sol pour autant que les déplacements de la structure soient suffisants pour atteindre de tels états ;
- La méthode doit permettre d'assurer la compatibilité statique entre la structure et le sol en contact. La rugosité de la structure doit être considérée dans les calculs.

Cela conduit les auteurs à catégoriser les structures selon leur rigidité et leurs conditions d'appui et à proposer différentes approches pour les différents cas.

Recordon (1985) distingue par exemple les écrans rigides libres de se déplacer, pour lesquels il propose des approches théoriques qui négligent la déformabilité de la structure (dont *Rankine, Coulomb-Poncelet* et *Caquot-Kérisel*), et les écrans non libres de se déplacer librement ou souples, pour lesquels il propose des méthodes semi-empiriques (*Terzaghi* et *Peck*) ou des calculs par éléments finis. Il distingue donc les cas où l'interaction sol-structure peut être simplifiée sans erreurs importantes et les cas où celle-ci doit faire l'objet d'une attention particulière.

Une présentation pertinente de la problématique propre aux ouvrages de soutènement est donnée par *Clayton* et *al.* (1993). La présentation de la théorie classique est suivie par une discussion critique de son application dans les cas pratiques, construite notamment sur la base des travaux de *Terzaghi* (1936). Le thème du dimensionnement des ouvrages de soutènement, organisé aussi par catégories, est précédé par une introduction sur les différents états limites à considérer pour ce type de structures.

Si la problématique posée par l'interaction sol-structure est bien présente dans l'esprit de ces auteurs, les méthodes proposées ne respectent pas toujours rigoureusement les principes cidessus, en particulier pour les structures hyperstatiques.

2.5. Conclusion :

Les méthodes de calcul classique de dimensionnement de soutènement du fait de leur simplicité sont adaptées pour les cas simple et pour le prédimensionnement de la grande majorité des rideaux de palplanches. La déformation de l'écran n'intervient pas dans le calcul, facteur qui doit être considéré lors du calcul des pressions de contact pour les fouilles exécutées à proximité d'ouvrages existants.

Les méthodes au module de réaction horizontal permettent d'optimiser le dimensionnement. Elles prennent en considération les déplacements d'appui tels que ceux causées par la mise en précontrainte des butons ou des tirants. Les différentes phases d'exécution sont bien suivies dans le calcul, et elles sont applicables aux écrans avec plusieurs niveaux de tirants ou butons. La mesure du paramètre géotechnique (coefficient de réaction) est impossible, alors que la valeur des déplacements dépend de ce coefficient qui ne peut pas décrire les déformations différentielles du sol (effet de voûte).

Les méthodes en continuum sont des outils extrêmement puissants. L'interaction sol-écranbuton est analysée d'une manière précise. D'un emploi encore peu courant à cause de sa complexité de mise en œuvre par les rideaux de soutènement, elles sont cependant entrain de se généraliser

Le développement de l'outil informatique et des méthodes de calcul numérique permet de résoudre ces problèmes en faisant appel aux codes numériques. Notre choix s'est porté sur le

code aux différences finies Flac2D dont la description et la présentation feront l'objet du chapitre qui suit.

La théorie de *Coulomb* en dehors de cas simple, la détermination des forces de poussée ou de butée doit se faire par un calcul sur ordinateur. Des logiciels spécialisés ont été développés à cet effet et des tables numériques existent pour faciliter l'utilisation de cette méthode. Toutefois, cette méthode de calcul ne permet pas de déterminer le point d'application de la force. L'exactitude des valeurs des poussées passives calculées suivant cette méthode des coins solides se diminue avec l'augmentation des valeurs de frottement d'interface parce que la frontière du bloc de rupture devient de plus en plus incurvée.

Pour la méthode de *Rankine* l'inconvénient est qu'on impose la direction de la contrainte qui s'exerce sur le mur en tout point du mur et qu'on ne tient compte de la valeur du frottement entre le mur et le sol. Ce dernier facteur qui est pris en considération par *Boussinesq* pour donnée des équations différentielles puis *Caquot* et *Absi* ont donné des tables complètes de poussée et butée donnant les coefficients K_a et K_p .

Pour des cas particuliers, on trouve la méthode de Construction de *Culmann* qui donne les pressions de terre passive et active pour le cas d'une terre pleine d'une forme quelconque ou surcharge qui ne peuvent être résolus par les méthodes habituelles.

Donc Le problème de la poussée du sol sur un écran est très compliqué pour être résolu par les méthodes classiques, elles ne permettant pas de calculer les déplacements permettant de mobilisée la poussée, active ou passive ainsi l'influence des paramètre du sol tels que la densité, l'angle de frottement interne, l'angle de dilatance et les caractéristiques géométrique et mécanique du mur. Les résultats obtenus à partir des expériences sont très intéressents, mais il n'est pratiquement pas possible d'obtenir les coefficients de conception pour les diverses combinaisons de l'angle de frottement du sol, de l'angle de dilatance, de l'angle de frottement de la paroi. Pour cela il est nécessaire de faire une étude par simulation numérique des coefficients des pressions des terres passive et active en présence d'écoulement pour les différentes caractéristiques du sol et de l'écran.

Chapitre 3

Présentation du code numérique et des modèles de comportement utilisés

3.1. Introduction :

La modélisation numérique des géomatériaux est une étape indispensable pour le dimensionnement des ouvrages. Ces méthodes numériques fournissent les champs de déformations et des contraintes ainsi que les mécanismes de rupture.

Le code de calcul FLAC^{2D} utilisé dans nos modélisations est basé sur la méthode des différences finies. Les créateurs de ce code ont utilisé un concept appelé « méthode des éléments Lagrangiens ». Il consiste en une application non traditionnelle de la méthode des différences finies explicites. Une description de cette méthode et du logiciel FLAC^{2D} est représentée au début de ce chapitre.

La loi élastoplastique nommée Mohr – Coulomb, développée au cours de ce travail à été implantée dans le code de calcul FLAC^{2D}.

Starfield et *Cundel* (1988), fondateurs du Code Flac, ont insisté que la méthodologie des modélisations numériques en géomécanique doit être différentes de celle de l'ingénierie de structure. Ils ont signalé qu'il est impossible d'obtenir des données complètes sur les sols ou les roches du site ; par exemple : l'état des contraintes initiales, les propriétés et les discontinuités ne peuvent être que partiellement bien connues. Cette situation est incompatible avec la conception suivie dans les logiciels populaires utilisés pour la conception (boite noire qui accepte uniquement d'un coté l'introduction des données et de l'autre coté donne les résultats de prédiction du comportement).

Au contraire, les logiciels en géomécanique doivent être conçus et utilisés pour découvrir les mécanismes en absence des données nécessaires pour la prédiction. Quand le comportement du système est défini, il est approprié d'utiliser des calculs simples de la conception du processus.

D'une autre manière, les logiciels en géomécanique ne doivent être utilisés uniquement dans la conception, mais aussi comme un outil d'expérimentation numérique qui aide et donne au concepteur un aperçu sur les mécanismes possibles.

Avant de discuter les particularités du code FLAC, il est nécessaire de donner un aperçu rapide sur la méthode de différences finies adoptée dans le code FLAC.

3.2. Méthode des différences finies (MDF) :

Billaux (1993) rappelle que la méthode de différences finies est l'une des plus anciennes méthodes de résolution numérique d'un système d'équation différentielles avec conditions initiales et, conditions aux limites (*Desai et Christian* (1977), la solution est unique.

La plupart des méthodes utilisant cette technique adoptent une discrétisation du milieu en mailles rectangulaires exclusivement.

L'approche en différences finis utilisée dans FLAC est basée sur la méthode de *Wilkins* (1964), qui permet de formuler les équations des différences finies pour des éléments quelconques. On peut leur donner n'importe quelle forme aux limites et, faire varier les propriétés d'un élément à l'autre. De ce point de vue, elle est donc aussi performante que la méthode des éléments finis.

Dans cette méthode, chaque dérivée présente dans le système d'équation est remplacée directement par une expression algébrique écrite en fonction des variables de champs (c'est-àdire les contraintes ou les déplacements) uniquement définis au niveau de points dans l'espace.

De plus, le code Flac se distingue essentiellement par son schéma de résolution explicite, qui permet de ne combiner les matrices élémentaires, ainsi un gain substantiel de place mémoire. En effet, seules les variables à la fin de chaque pas de temps sont stockées et non la matrice de rigidité, comme cela est le cas pour la méthode des éléments finis.

3.3. Présentation du code bidimensionnel (FLAC^{2D}) :

FLAC (Fast Lagrangien Analysis of Continua), c'est un code en différences finies développé par la société américaine ITASCA Consulting Group. Il simule le comportement des structures en sols, en roches ou autres matériaux qui se plastifient quand leur surface de charge est atteinte. Les matériaux sont représentés par des éléments ou des mailles qui forment le maillage ajusté par l'utilisateur pour avoir la forme de l'objet à modéliser. Chaque élément se comporte selon sa description par une loi contrainte/déformation linéaire ou non linéaire aux chargements appliqués ou aux conditions aux limites imposées. Le matériau peut se plastifier et s'écouler, et le maillage peut se déformer (en mode grande déformation) et se déplacer avec le matériau qu'il représente.

Une des spécificités de Flac (et de tous les logiciels ITASCA) est le macro-language *FISH*, qui permet à l'utilisateur de définir de nouvelles variables, procédures, sorties graphiques, et même d'écrire sa propre loi de comportement. La formulation de Flac est parfaitement adaptée à la modélisation des problèmes de géomécanique en plusieurs phases, comme une séquence excavation-construction-chargement.

FLAC^{2D} a été conçu pour opérer dans un espace *bidimensionnel*. Bien souvent, il est possible de tirer parti des symétries du système étudié, afin de réduire la complexité du modèle, et donc les temps de calcul. Ainsi, un maillage d'éléments finis de massif n'est pas systématiquement à trois dimensions. En effet, si l'une des dimensions de l'ouvrage est prépondérante (remblai de grande largeur, section courante d'un tunnel, etc.) et toutes les autres caractéristiques du modèle (chargement, conditions aux limites, interfaces) le permettent, il est possible d'analyser l'ouvrage dans un *plan*. Cette analyse, dite en déformations *planes*, suppose que la composante du déplacement perpendiculaire au plan considéré est uniformément nulle.

L'utilisateur construit alors son maillage dans un plan, mais admet implicitement qu'il bénéficie d'une profondeur égale à l'unité. Les forces appliquées sur ce type de modèle ne s'expriment pas en Newton, mais en Newton par mètre (force par unité de longueur).

L'utilisation de modèles *bidimensionnels* permet bien sûr de réduire considérablement les temps de calcul, mais rend surtout possible le raffinement géométrique des systèmes étudiés. En effet, pour de nombreux problèmes *tridimensionnels*, les maillages raffinés sont difficiles, voire impossibles à réaliser car la taille des systèmes matriciels peut très vite dépasser la capacité des ordinateurs utilisés. Par conséquent, les maillages sont fréquemment plus grossiers dans le cas *tridimensionnel* que dans le cas *bidimensionnel* et la modélisation est plus approximative.

Le code Flac2D intègre de nombreux modèles constitutifs, adaptables à un grand nombre de matériaux, géologiques ou non. Chacun d'entre eux nécessite l'apport de paramètres mécaniques spécifiques, descriptifs de la rhéologie du matériau.

Les modèles disponibles dans Flac2D sont : modèle nul (pour les sols retirés ou excavés), élasticité isotrope ou anisotrope, élasto-plasticité (Cam-Clay modifié, Druker-Prager, Mohr-coulomb standard ou avec écrouissage positif (ou négatif) et écrouissage et changement de volume, élasto-plasticité (Mohr-Coulomb) avec plan de discontinuité localisé (faille, etc.))

3.4. Méthodologie de simulation avec FLAC :

Afin d'installer un modèle pour réaliser une simulation avec Flac, trois composants fondamentaux d'un problème doivent être indiqués :

- 1. Générer le maillage ;
- 2. Définir les paramètres constitutifs ; et
- 3. Appliquer les conditions initiales et aux limites.

La Figure (3.1) (adoptée du manuel Flac) présente les grandes lignes de la stratégie utilisée pour modéliser un problème en Flac. La simulation se fait par phase et la réponse du système est systématiquement examinée après chacune des phases de calcul pour s'assurer de la validité des résultats

Figure 3.1 : Méthodologie de modélisation numérique avec FLAC (ITASCA Manuel)

3.5. Modélisation de l'écoulement en FLAC :

Dans le cas général, les terrains sont en partie baignés par des nappes d'eau en équilibre hydrostatique ou en écoulement. La présence de cette eau dans les espaces interstitiels entre les grains induit des effets mécaniques sur le sol : forces d'écoulement appliquées aux grains, poids déjaugé et consolidation.

Si la perméabilité du sol est élevée, le mouvement de l'eau est instantané et la pression interstitielle n'est pas modifiée. Ainsi, dans le cas d'un remblai construit sur un sol perméable, la pression interstitielle est constamment égale à la pression interstitielle initiale.

En revanche, si la perméabilité du sol est faible par rapport à la vitesse de variation des contraintes, l'eau interstitielle ne peut s'écouler de manière instantanée et se met en surpression qui se dissipe dans le temps (*le sol se consolide*).

Le comportement d'un sol perméable est toujours un comportement à long terme *(condition drainée)*. Alors que le comportement d'un sol peu perméable évolue entre deux comportements extrêmes :

- Un comportement à court terme lorsque le sol vient d'être chargé ou déchargé. Aucune variation de volume n'a encore pu se produire et les variations des contraintes normales sont reportées totalement ou en partie sur l'eau interstitielle (*condition non drainée*);
- Un comportement à long terme lorsque la surpression interstitielle due au chargement du sol s'est dissipée et que le régime d'écoulement de l'eau est devenu permanent (condition drainée).

Duncan (1996) a indiqué que, pour les problèmes faisant intervenir des chargements non exceptionnels, les sols dont le coefficient de perméabilité est supérieur à 10^{-6} m/s peuvent être analysés en conditions drainées et les sols de coefficient de perméabilité inférieur à 10^{-9} m/s en condition non drainée.

Flac modélise l'écoulement de l'eau dans le milieu poreux tel que le sol, soit indépendamment de l'effet mécanique (calcul hydromécanique découplé), soit en tenant compte de l'interaction sol-fluide (hydromécanique couplé). Ce dernier type de comportement induit deux effets mécaniques.

Dans le premier, le changement de la pression interstitielle génère un changement en contraintes effectives qui peuvent affecter la réponse du solide. A titre d'exemple, une réduction des contraintes effectives peut induire un écoulement plastique. Dans le deuxième, le fluide réagit par un changement de pressions interstitielles à la variation mécanique du volume.

La formulation de l'écoulement de Flac est basée sur des relations simples, en utilisant la loi de Darcy pour un milieu poreux anisotrope. L'effet de gravité est incorporé dans la formulation afin de permettre à l'eau de migrer en toute zone non totalement saturée.

Avec cette formulation, une surface libre apparaît naturellement dans un calcul d'écoulement.

Dans le cas des problèmes couplés drainés, la convergence au régime statique peut être très lente (plusieurs pas de calcul mécanique sont nécessaire pour garder l'équilibre quasi statique) quand le module volumique de l'eau est très grand par rapport au module de confinement du sol K+ (4/3) G.

Plusieurs stratégies de modélisation sont disponibles en Flac pour approcher les différents processus couplés. L'une consiste à supposer que les pressions interstitielles nodales soient fixes. Cette approche ne nécessite pas de mémoire supplémentaire dans le calcul. Elle peut être représentative dans le cas des sols grossiers baignés par une nappe statique sans écoulement. Les pressions interstitielles se dissipent au fur et à mesure, que le changement est appliqué et que l'on peut considérer que le champ de pressions d'eau est invariant. Ce champ de pression d'eau se traduit par des actions simples sur le sol et les éléments de structure. Ainsi, le sol se trouve simplement déjaugé tandis que les éléments de structure se trouvent soumis à des champs de pressions simples.

Les autres stratégies de Flac utilisent la configuration Ground water (Config GW) pour l'analyse de l'interaction sol - fluide. Les plus élaborées nécessitent plus de temps et de mémoire.

3.6. Modèles de comportement :

Après avoir présenté le code de calcul, nous allons maintenant décrire les modèles de comportement de sol, et les éléments d'interface permettant d'introduire des non-linéarités géométriques qui peuvent êtres rencontrées au cours de la résolution des problèmes.

3.6.1. Loi de comportement élasto-plastique :

Les déformations totales peuvent se décomposer en déformations élastiques réversibles et en déformations plastiques irréversibles. D'un point de vue microstructural, les déformations élastiques correspondent à une simple variation de distances inter – atomique alors que les déformations plastiques induisent une modification du milieu continu.

L'hypothèse, qui consiste à partager les déformations totales en une part élastique et une part plastique, simplifie considérablement l'identification expérimentale du comportement du matériau ainsi que la modélisation numérique qui s'en suit. Elle se traduit par l'équation suivante :

$$\varepsilon = \varepsilon^e + \varepsilon^p \tag{3.1}$$

Avec

- ε les déformations totales ;
- ε^{e} les déformations élastiques ;
- ε^{p} les déformations plastiques.

3.6.2. Modèle élastique linéaire parfaitement plastique suivant Mohr-Coulomb :

Le modèle de *Mohr-Coulomb* est un modèle souvent utilisé pour représenter la rupture par cisaillement dans les sols et les roches tendres.

Figure 3.2 : Critère de rupture de Mohr-Coulomb

La surface de charge pour ce modèle correspond à un critère *Mohr-Coulomb* (rupture en cisaillement) avec critère supplémentaire de rupture par traction.. Tout champs de contraintes peut être exprimé en termes de contraintes principales σ_1 , σ_2 , σ_3 et déformations principales ε_1 , ε_2 et ε_3 .

Le critère de rupture dans le modèle FLAC^{2D} est Mohr-Coulomb composée avec critère de rupture en traction. Les contraintes principales sont ordonnées de la manière suivante :

$$\sigma_1 \le \sigma_2 \le \sigma_3 \tag{3.3}$$

84

3.6.2.1. Paramètres du modèle :

Ce modèle est appelé par la commande *Mod M*, les paramètres sont donnés par la commande *prop* comme suit :

- 1. density : densité du sol ;
- 2. **bulk** : module du volume, *K* ;
- 3. **shear** : module de cisaillement, *G* ;
- 4. cohesion : cohésion du sol ;
- 5. **friction** : angle de frottement interne ;
- 6. **dilation** : angle de dilatance, ψ ;
- 7. **tension** : contrainte limite de traction.

3.6.3. Modèle de comportement de l'interface :

Les éléments d'interface sont utilisés pour représenter de manière simplifiée le comportement des zones de localisation des déformations soit en cisaillement (surface de glissement) soit en traction (fissures).

Pour les caractéristiques de frottement, cohésion, dilatance et traction limite, on prend généralement celles du matériau le moins résistant, éventuellement réduites en cas d'interface « lisse » (frottement sol/acier par exemple). Les raideurs k_n et k_s sont plus difficiles à estimer.

La relation fondamentale de contact est définie entre le nœud d'interface et une face de surface de zone, également connus sous le nom de *face de cible*. La direction normale de la force d'interface est déterminée par l'orientation de la face de cible.

Le modèle constitutif est défini par un critère de résistance au cisaillement de *Coulomb* qui limite la force de cisaillement agissante à un nœud d'interface, des rigidités normales et de cisaillement, contraintes de traction et cisaillement, et un angle de dilatance qui cause une augmentation de la force normale effective sur la facette cible après que la limite de résistance de cisaillement soit atteinte. La Figure (3.4) illustre les composantes du modèle constitutif agissant au nœud d'interface (**P**).

Figure 3.3 : Détail des composants d'un élément d'interface (Itasca Mannuel (1994))

Les contacts d'interface sont détectés seulement aux nœuds d'interface et les forces de contact sont transférées seulement aux nœuds d'interface. L'état de contraintes associé à un nœud est assumé pour être uniformément distribué au secteur entier représentatif du nœud. Les propriétés d'interface sont associées à chaque nœud ; les propriétés peuvent varier du nœud au nœud.

Par défaut, l'effet de *pression interstitielle* est inclus dans le calcul d'interface en employant la contrainte effective comme la base pour la condition de glissement.

3.6.3.1. Paramètres du modèle :

Les paramètres à définir sont :

- 1. cohesion : cohésion de l'interface ;
- 2. dilation : angle de dilatance de l'interface ;
- 3. friction : angle de frottement de l'interface ;
- 4. Kn : rigidité normale ;
- 5. Ks : rigidité de cisaillement;
- 6. tension : contrainte limite de traction.

3.6.4. Modèle de comportement des structures :

L'écran peut être discrétisé par des éléments massifs ou des éléments poutres. Le premier respecte bien la géométrie de l'ouvrage et offre uniquement les déplacements nœudaux et les contraintes au centre de l'élément. Les sollicitations de la structure ne sont pas explicites. Ils

peuvent être déterminés par la programmation des relations contraintes – sollicitation. Alors que l'élément poutre viole la géométrie de la structure mais fournit les sollicitations de manière explicite.

Les butons, éléments de structure conçus pour limiter la convergence des parois et de leurs transmettre uniquement l'effort de compression, peuvent être discrétisés par des éléments poutre avec des rotules aux points d'assemblage aux parois.

3.6.4.1. Paramètres du modèle :

Les paramètres à définir sont :

- 1. e : module d'élasticité ;
- 2. **a** : section transversale ;
- 3. I : moment d'inertie de la section ;
- 4. **d** : densité ;
- 5. **pmom :** moment plastique optionnel (par défaut, la capacité du moment est supposée infinie).

3.7. Conclusion :

La modélisation numérique de l'écoulement autour d'un écran étanche à l'aide d'un code de calcul par différences finies ou, par éléments finis nécessite une modélisation nécessairement approchée d'une réalité complexe. Cela conduit à faire un certain nombre de choix qui concernent aussi bien les paramètres de l'outil numérique que le modèle de comportement utilisé.

Pour simuler l'écoulement autour d'un écran étanche, nous avons retenu le code de calcul Flac. La discrétisation en différences finies suivant l'approche de Wilkins [1964] et, la résolution explicite en éléments lagrangiens lui permettent de simuler des problèmes fortement non linéaires (modules de sols, interfaces), de géométrie complexe (tunnels non circulaires, éléments de soutènement représentés par des coques) avec une bonne stabilité numérique.

E raison de la non linéarité, le modèle de sol élastique linéaire avec critère de plasticité de Mohr-Coulomb a été retenu.

Les non linéarités géométriques quant à elles ont été simulés par l'intermédiaire d'interfaces dont le comportement mécanique est présenté.

Chapitre 4

Modélisation numérique des pressions de terres passive et active en présence d'écoulement

4.1. Introduction :

Le problème de la poussée et de la butée des terres est un sujet courant dans l'ingénierie géotechnique, il se manifeste dans la conception de plusieurs ouvrages géotechniques tels que les murs de soutènement, les palplanches et autres structure géotechnique qui nécessitent la détermination des pressions de terre passive et active. Aussi une conception sécuritaire et économique d'un écran de soutènement nécessite une connaissance profonde de ces pressions de terre passive et active.

Les approches fondamentales pour l'analyse des pressions de terre passive et active sont proposées premièrement par *Coulomb* (1776) et *Rankine* (1857), ces deux approches reposant sur la méthode de calcul à la rupture qui admettent que le sol est en état d'équilibre limite; la méthode de *Coulomb* consiste à étudier l'équilibre statique global d'un coin de sol contiguë à l'écran et limité à sa base par une surface de rupture plane ou courbe, alors que la méthode de *Rankine* consiste à étudier l'équilibre de rupture de chaque volume élémentaire, mais aussi, il a considéré que le coin de glissement était en entier à l'état d'équilibre limite.

Boussinesq (1882) a proposé une méthode basée sur la théorie d'élasticité en proposant un schéma général permettant de prendre en compte le frottement sol-écran, négligé auparavant par *Rankine, Sokolovski* (1960) a mis au point une méthode générale de calcul des zones plastiques en milieu pulvérulent ou cohérent permettant de traiter les problèmes dont la solution peut être présentée sous forme d'une zone plastique. Il donne des équations générales de l'équilibre sous forme différentielle.

En outre, les méthodes numériques ont permis d'étudier simultanément le comportement des murs et des massifs de sol soutenus, en tenant compte de leurs déformations, et dans différentes situations d'interactions sol-structure *Potts* et *Fourie* (1988), *Hazarika* et *Matsuzawa* (1996) ont employé la méthode des éléments finis pour examiner l'effet des modes de mouvement du mur.

Ce chapitre est consacré à l'estimation numérique des coefficients des pressions de terre passive et active derrière un écran de soutènement rigide à l'aide du logiciel *Flac 2D*.

Dans la première partie, on va étudie l'influence des paramètres mécaniques des sols (l'angle de frottement interne du sol φ et l'angle de dilatance ψ), les propriétés de l'écran et l'angle d'interface sol-structure δ sur les pressions de terre passive et active. Ainsi que l'influence de la largeur de la fouille.

La deuxième partie est consacrée, vue la sensibilisation des pressions de terre passive et active aux écoulements (pertes de charges totales), à étudier l'effet de ce paramètre sur les pressions de terre passive et active pour différentes largeurs des batardeaux.

Après la description du modèle de simulation numérique utilisé, les conditions aux limites et la procédure de calcul des pressions de terre passive et active sur l'écran en présence d'écoulement, on présente les résultats sous forme de tableaux et de diagrammes suivis d'une interprétation et d'une discussion.

4.2. Simulation numérique des pressions de terre passive et active :

La simulation numérique de l'effet de la largeur du batardeau sur les pressions de terre passive et active, sans écoulement et en présence d'écoulement sur un écran étanche est réalisée à l'aide du code numérique $FLAC^{2D}$ en différences finies explicites.

4.2.1. Présentation du cas étudié :

Dans la présente étude, on considère un écran étanche en palplanche ayant une profondeur d'encastrement f où f est la fiche du l'écran dans un milieu de sol homogène isotrope sans cohésion. Cet écran est soumis à une charge hydraulique H comme indiqué sur la figue 4.1.

Figure 4.1 : Cas étudié

4.2.2. Maillage et conditions aux limites :

4.2.2.1 Maillage :

La figure 4.2 montre le maillage retenue pour la simulation du cas de la poussée et de la butée. Puisque on a douze (12) largeurs de batardeaux, on adopte pour chaque largeur son propre maillage afin d'obtenir des résultats plus précis.

Ce maillage est raffiné au voisinage de la paroi où les déformations et les pressions de terre sont appliquées. A cause de la symétrie hydraulique et mécanique, uniquement la moitie du massif de sol est considérée dans le calcul.

4.2.2.2. Conditions aux limites :

a) Conditions aux limites mécaniques :

La figure 4.2 montre les conditions aux limites mécaniques utilisées dans la présente analyse numérique. Ces conditions aux limites sont la nullité des déplacements verticaux et horizontaux à la base du maillage et le blocage du déplacement horizontal sur les frontières verticales.

b) Conditions aux limites hydrauliques:

La figure 4.3, où ϕ est le potentiel, indique les conditions aux limites hydrauliques considérées dans le calcul où :

- AD : ligne de courant (limite imperméable) ;
- DE : ligne de courant (limite imperméable) ;
- EC : ligne de courant (limite imperméable) ;
- AB : ligne équipotentielle de charge H ;
- BC : ligne équipotentielle de charge 0 ;
- BF : ligne de courant (écran imperméable).

Figure 4.3. Conditions aux limites hydrauliques

Dans le code Flac, les limites non déclarées sont considérées comme des limites imperméables (ligne de courant). Par contre, on fixe la pression à l'amont à $P = \rho g H_1$, avec H_1 la charge appliquée en amont (figure 4.1), et puis on fixe la pression à P = 0 (où $H_2 = 0$, avec H_2 la charge appliquée dans la coté aval). On note que la surface du sol est fixée à z = 0.

4.2.3. Modèles de comportement :

Le comportement du sol est modélisé par le modèle, intégré dans Flac, de *Mohr-coulomb* élastique parfaitement plastique avec une règle non associée. Ce modèle est caractérisé par un poids volumique $\gamma_{sat} = 20 \ Kn/m^3$, un module volumique $K = 60 \ MPa$, un module de cisaillement $G = 25 \ MPa$, une cohésion nulle, un angle de frottement φ et un angle de dilatance ψ . On note que les coefficients de butée et de poussée sont indépendants de γ ; G et K.

L'écran est modélisé par des éléments poutre. Il est connecté au sol via des éléments d'interface de type *Mohr-coulomb*. L'interface est caractérisée par un angle de frottement δ , une cohésion nulle, une rigidité normale $K_n = 10^9 Pa/m$ et une rigidité de cisaillement $K_s = 10^9 Pa/m$. les valeurs de rigidité de l'interface sont choisies de manière à simuler un contacte rigide entre le sol et le rideau.

Figure 4.4. Interface sol – écran

Pour étudier l'influence de la largeur du batardeau, des paramètres du sol, de la structure l'interface sol – structure, et la perte de charge hydraulique, on à choisi une série de douze largeurs, allant d'un batardeau large à un batardeau étroit (f/B = 0.05, 0.1, 0.15, 0.20, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 et 2), pour chaque largeur une série de quatre valeurs de l'angle de l'interface sol – écran ($\delta/\varphi = 0, 1/3, 2/3$ et 1), pour chaque valeur de l'angle de l'interface quatre valeurs de l'angle de frottement interne de sol ($\varphi = 20^{\circ}$ à 35° avec un incrément de 5°), et pour chaque valeur de φ , trois valeurs de l'angle de dilatance ($\psi/\varphi = 0, 1/2$ et 1), avec une perte de charge hydraulique de six valeurs (H/f = 0, 0.5, 1, 1.5, 2 et 2.5).

4.2.4. Procédure de simulation :

La procédure de simulation des pressions de terre passive et active, adoptée dans la présente analyse numérique, est basée sur les trois étapes suivantes :

- 1- Dans la première étape, les pressions interstitielles initiales et les contraintes effectives initiales sont établies en supposant que :
 - Le niveau de la nappe phréatique est située à la surface du sol sur les deux cotés de l'écran en palplanches (c.à.d. il n'y a pas d'écoulement d'eau lors de cette étape);
 - Le coefficient du sol au repos K_0 (rapport de la contrainte effective horizontale et de la contrainte effective verticale) est pris égal à 0.5.

A ce stade, un certain nombre de pas de calcul mécanique est nécessaire pour ramener le modèle à l'équilibre, c.à.d. rétablir l'état de contraintes initiales parce que les raideurs supplémentaires provenant des éléments poutres représentant la paroi et l'interface produisent un déséquilibre qui nécessite un certain nombre de pas pour équilibrer le modèle.
- 2- Dans la deuxième étape, une perte de charge hydraulique (H) est appliquée derrière l'écran en palplanches. Le champ correspondant décrivant la distribution des pressions interstitielles est calculé en utilisant l'option d'écoulement des eaux souterraines « groundwater flow » incorporée dans FLAC.
- 3- Dans la troisième étape, la réponse mécanique est examinée pour la distribution de la pression interstitielle établie dans l'étape précédente. Dans cette étape, l'écran se trouve soumis, comme dans les conditions réelles, aux pressions latérales actives et passives exercées par le sol et par l'écoulement de l'eau. Dans cette étape, on impose à l'écran une vitesse de déplacement très faible vers le sol dans le cas de la butée et vers la fouille dans le cas de la poussée, la résistance maximal à la butée ou à la poussée du terrain est générée en imposant une vitesse de déplacement des nœuds des éléments qui discrétisent l'écran. Le déplacement des nœuds du sol en contact avec l'écran obéit à la loi de comportement de l'interface sol écran. au cours du déplacement de l'écran, on enregistre la butée ou la poussée à travers la résultante des contraintes normales sur l'écran.

Les coefficients de butée et de poussée sont exprimés respectivement par :

$$K_{p} = 2P_{p}/\gamma' f^{2} = 2P_{x}/\gamma' f^{2}$$
(4.1)

$$K_a = 2P_a / \gamma' f^2 = 2P_x / \gamma' f^2$$
(4.2)

Avec :

 P_p : résultante de la butée du terrain ;

P_a : résultante de la poussée du terrain ;

 P_x : résultante des contraintes normales sur l'écran ;

 γ' : poids déjaugé du sol ;

f: la fiche de l'écran ;

 δ : angle de frottement de l'interface.

4.3. Validation de la procédure de simulation :

Cette procédure de modélisation numérique a d'abord été validée pour le problème de butée dans le cas d'un seul écran. Le tableau 1 montre une comparaison des présents résultats pour $\psi = \varphi$ avec ceux de *Caquot & Kérisel* (1948), *Soubra* (2000) et *Soubra & Macuh* (2002) quand $\delta/\varphi = 1$.

		quand ∂⁄φ=1		
$\varphi(^{\circ})$	Présente solution	CAQUOT et	SOUBRA (2000)	SOUBRA et
	$\psi = \varphi$	KERISEL (1948)		MACUH (2002)
20	3.01	3.10	3.12	3.13
30	6.33	6.5	6.86	6.93
35	10.10	10.5	11.13	11.3
40	17.95*	18	19.62	20.01

Tableau 4.1 : Comparaison du présent coefficient de butée K_p avec les solutions existat	ntes
quand $\delta/\varphi=1$	

* $\psi = 0.9\varphi$

Les résultats de la présente simulation sont très proches à ceux de *Caquot* et *Kerisel* ainsi qu'à ceux de la borne supérieure obtenus par *Soubra* (2000) utilisant un mécanisme transationnel de rupture et *Soubra* et *Macuh* (2002) utilisant un mécanisme rotationnel.

On note que des instabilités numériques sont observées pour les sables très dense et totalement dilatant $\varphi = \psi = 40^{\circ}, 45^{\circ}$. L'utilisation d'une valeur de ψ légèrement inferieur à φ (ex. $\psi = 0.9\varphi$) permet d'éviter ces instabilités.

4.4. Résultats et discussions :

Kastner (1982) a effectué des expériences sur des modèles au laboratoire et a conclu que l'instabilité du fond de fouille en présence découlement peut être causée non seulement par le phénomène de soulèvement ou de la boulance mais aussi par la réduction de la pression passive de terre devant le mur de palplanche.

4.4.1. Etude des pressions de terre passive et active sans écoulement :

Dans un premier pas, l'étude se fait pour le cas d'un batardeau sans écoulement de l'eau autour de la palplanche afin de pouvoir visualiser bien l'effet de la largeur de la fouille sur les pressions de terre passive et active.

L'étude va aussi déterminer l'influence de l'angle de frottement interne du sol φ , l'angle de dilatance ψ et l'angle de l'interface sol-écran δ sur les pressions de terre passive et active.

Les tableaux (4.2) à (4.4) représentent les résultats de simulation numérique.

φ		2	0°			2	5°	0		3	0°	
δ/φ	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3	2/3	1
f/B		ŀ	K _a			1	K _a			1	K _a	
0.05	0.48	0.46	0.44	0.44	0.40	0.37	0.37	0.37	0.33	0.31	0.31	0.31
0.10	0.48	0.45	0.44	0.44	0.40	0.37	0.37	0.37	0.33	0.31	0.31	0.31
0.15	0.48	0.45	0.44	0.44	0.40	0.37	0.37	0.37	0.33	0.31	0.31	0.31
0.20	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.31	0.31
0.25	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.31	0.31
0.50	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.31	0.31
0.75	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.31	0.31
1.00	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.31	0.31
1.25	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.31	0.31
1.50	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.31	0.31
1.75	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.31	0.31
2.00	0.48	0.45	0.44	0.44	0.40	0.37	0.36	0.36	0.33	0.31	0.30	0.31
]	Fableau	4.3. Le	s coeffic	ients de	K_a pou	r un an	gle de di	ilatance	$\psi/\varphi = 1$	1/2	
φ		2	0°			2	5°			3	0°	
δ/φ	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3	2/3	1
<i>f/B</i>		ŀ	Ka			1	K_a			1	K_a	
0.05	0.48	0.46	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
0.10	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
0.15	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
0.20	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
0.25	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
0.50	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
0.75	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
1.00	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
1.25	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
1.50	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
1.75	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
2.00	0.48	0.45	0.43	0.43	0.39	0.37	0.36	0.36	0.32	0.30	0.30	0.30
	1	Tablea	<u>u 4.4. L</u>	es coeffi	icients d	le K _a po	ur un al	ngle de (dilatano	$e \psi/\varphi =$	1	
φ		2	0°			2	5°			3	0°	
δ/φ	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3	2/3	1
f/B	0.45	<u> </u>	$\frac{X_a}{2}$	0.40	0.00		K_a	0.05	0.00		K_a	0.00
0.05	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
0.10	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
0.15	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
0.20	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
0.25	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
0.50	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
0.75	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
1.00	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
1.25	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
1.50	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
1.75	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.29	0.29
2.00	0.47	0.44	0.43	0.43	0.39	0.36	0.35	0.35	0.32	0.29	0.28	0.29
												95

Tableau 4.2. Les coefficients de K_a pour un angle de dilatance $\psi/\varphi = 0$

4.4.1.1. Distribution de la pression active sur l'écran :

a) Influence de l'espacement des écrans :

> Influence de l'angle de frottement interne du sol :

La figure 4.5 montre que l'augmentation de l'angle de frottement interne du sol diminue significativement la pression de terre active.

La diminution de la pression active atteint 38.30 % quand φ augmente de 20⁰ à 30⁰ pour la largeur de la fouille *B* =60 m, $\delta/\varphi = 0$, H/f = 0 et $\psi/\varphi = 1$ (Tableau 4.4).

Figure 4.5 : Influence de l'angle de frottement interne du sol sur la pression effective active de terre pour différente valeur de f/B

> Influence de l'angle de dilatance du sol :

La comparaison des résultats de simulation montre que l'augmentation de l'angle de dilatance ψ diminue légèrement la pression de terre active, cette diminution est pratiquement négligeable et ne dépasse pas 3.33%.

> Influence de l'angle de l'interface :

Le coefficient de pression active de terre diminue légèrement avec l'augmentation de l'angle de l'interface. Cette augmentation est clairement marquée lorsque la valeur de δ croît de 0 à 1/3. Au delà de 1/3 l'augmentation semble insignifiante (figure 4.7).

Figure 4.7 : Influence de l'angle d'interface sur la pression effective active de terre pour différente valeur de f/B

D'après les figures (4.5), (4.6) et (4.7), on remarque que pour les différentes valeurs de la largeur de la fouille f/B = 0.05 à f/B = 2, les valeurs de la pression de terre active reste constante pour la même valeur de l'angle de frottement interne de sol φ , pour la même valeur de l'angle de dilatance du sol ψ , aussi pour le même angle de l'interface sol-écran δ/φ . Donc l'influence de l'espacement entre les deux écrans est presque nulle, pour cela la suite de simulation numérique de l'influence de l'espacement entre les deux écrans pour le cas sans écoulement et avec écoulement concerne uniquement la pression de terre passive.

Les tableaux (4.5), (4.6) et (4.7) donne les valeurs de la pression de la terre passive pour les différentes largeurs f/B de 0.05 à 2, pour trois angles de dilatance ($\psi/\varphi = 0$, 1/2 et 1) et cinq valeurs de l'angle de frottement interne du sol ($\varphi = 20^{\circ}$ à 40° avec un incrément de 5°), et, quatre valeurs de l'angle de l'interface sol – écran ($\delta/\varphi = 0$, 1/3, 2/3 et 1)

φ		20)°			2	5°			3	30°			3	5°			4	0°	
δ/φ	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3 2	2/3	1
f/B		K	p			1	K_p				K_p			I	K_p			ŀ	K_p	
0.05	2.05	2.38	2.72	3.01	2.44	3.03	3.66	4.06	2.98	3.98	4.92	5.61	3.57	5.13	6.91	8.22	4.40	7.09	9.32	12.67
0.10	2.05	2.38	2.72	3.01	2.44	3.03	3.66	4.06	2.98	3.98	4.92	5.62	3.57	5.16	6.91	8.26	4.40	7.18	9.32	12.67
0.15	2.05	2.38	2.72	3.01	2.44	3.03	3.66	4.06	2.98	3.98	4.92	5.62	3.57	5.20	6.92	8.30	4.40	7.28	9.51	12.80
0.20	2.05	2.38	2.72	3.02	2.44	3.03	3.66	4.06	2.98	3.98	4.92	5.62	3.57	5.24	6.92	8.34	4.40	7.32	9.73	13.24
0.25	2.05	2.38	2.72	3.02	2.44	3.03	3.66	4.07	2.98	3.98	4.92	5.63	3.57	5.25	6.94	8.36	4.40	7.35	9.81	13.24
0.50	2.05	2.39	2.73	3.03	2.45	3.05	3.70	4.14	2.98	3.98	5.15	5.83	3.57	5.30	7.08	8.69	4.40	7.48	10.80	14.23
0.75	2.05	2.41	2.79	3.09	2.45	3.12	3.91	4.52	2.98	4.17	5.82	7.12	3.61	5.86	9.45	12.39	4.46	8.88	16.93	21.41
1.00	2.05	2.48	2.97	3.37	2.45	3.30	4.37	5.25	2.98	4.57	6.98	9.08	3.63	6.76	12.94	18.42	4.47	11.04	28.15	37.63
1.25	2.05	2.58	3.20	3.75	2.46	3.50	4.96	6.26	2.99	5.02	8.67	12.18	3.65	7.84	18.13	29.75	4.51	14.11	53.06	80.4
1.50	2.05	2.68	3.48	4.23	2.46	3.73	5.68	7.68	2.99	5.56	10.89	17.13	3.65	9.27	26.81	47.97	4.53	18.39	60.03	121.1
1.75	2.05	2.79	3.79	4.84	2.47	3.99	6.49	9.66	2.99	6.21	14.01	20.99	3.67	11.05	37.12	66.99	4.55	22.23	100.3	227.1
2.00	2.05	2.91	4.16	5.57	2.47	4.28	7.73	11.94	3.00	6.96	18.19	29.69	3.67	13.27	56.47	77.07	4.56	33.40	158.3	338.2
					,	Tablea	n 4.6. I	es coeff	icients	de K. n	our un	angle de	dilatar	nce <i>w/</i> // =	- 1/2					
-	1				1	Labica				uc np p	our un	ingie ue	unutui	$\psi = \psi \psi = \psi$	- 1/ 4		1			
φ		2	0°			2	2.5°			ue n _p p	30°	angre de		<u>3</u>	85°			4	0°	
$\varphi \delta/\varphi$	0	20 1/3	0° 2/3	1	0	2 1/3	25° 2/3	1	0	<u>1/3</u>	30° 2/3	1	0	$\frac{1}{3}$	35° 2/3	1	0	4	0° 2/3	1
$\begin{array}{c} \varphi \\ \delta/\varphi \\ f/B \end{array}$	0	20 1/3 K	$\frac{0^{\circ}}{2/3}$	1	0	2 1/3	$\frac{25^{\circ}}{2/3}$ K_{p}	1	0	1/3	$\frac{30^{\circ}}{2/3}$ K_p	1	0	$\frac{1}{1/3}$	$\frac{1/2}{35^{\circ}}$ $\frac{2/3}{K_p}$	1	0	4 1/3	$\frac{0^{\circ}}{2/3}$ K_{p}	1
φ δ/φ f/B 0.05	0	20 1/3 K 2.39	$\frac{0^{\circ}}{2/3}$ $\frac{2.73}{2.73}$	1	0	2 1/3 3.08	$\frac{25^{\circ}}{2/3}$ K_{p} 3.71	1 4.25	0 3.04	1/3	$\frac{30^{\circ}}{2/3}$ K_p 5.17	1 6.33	0	3 1/3 5.41	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{2}{3}$ K_p $\frac{7.58}{50}$	1	0	4 1/3 7.48	$ \begin{array}{c} 0^{\circ} \\ 2/3 \\ K_{p} \\ 11.55 \\ 11.55 \end{array} $	1
$ \begin{array}{c} \varphi \\ \delta/\varphi \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \end{array} $	0 2.07 2.07	2/ 1/3 8 2.39 2.39	0° $2/3$ x_p 2.73 2.74 2.74	1 3.01 3.01	0 2.48 2.48	2 1/3 3.08 3.08	$\frac{1}{25^{\circ}}$ $\frac{2/3}{K_{p}}$ $\frac{3.71}{3.72}$	1 4.25 4.26	0 3.04 3.04	1/3 4.03 4.03	$\frac{30^{\circ}}{2/3}$ $\frac{K_p}{5.17}$ 5.20	1 6.33 6.33	0 3.75 3.75	3 1/3 5.41 5.42	$ \begin{array}{r} 2/3 \\ \overline{K_p} \\ 7.58 \\ 7.59 \\ \overline{7.59} \end{array} $	1 10.02 10.04	0 4.68 4.69	4 1/3 7.48 7.54	0° $2/3$ K_p 11.55 11.64 11.64	1 16.47 16.48
φ δ/φ f/B 0.05 0.10 0.15 0.20	0 2.07 2.07 2.07	2/ 1/3 8 2.39 2.39 2.39	0° $2/3$ K_p 2.73 2.74 2.74 2.74	1 3.01 3.01 3.01	0 2.48 2.48 2.48 2.48	2 1/3 3.08 3.08 3.08	$ \begin{array}{c} $	1 4.25 4.26 4.26	0 3.04 3.04 3.04	1/3 4.03 4.03 4.03	$ \begin{array}{r} \hline 30^{\circ} \\ 2/3 \\ \\ 5.17 \\ 5.20 \\ 5.22 \\ \\ 5.22 \\ \\ 5.22 \\ \\ 5.22 \\ \\ 5.22 \\ \\ 5.22 \\ \\ $	1 6.33 6.33 6.35	0 3.75 3.75 3.75	3 1/3 5.41 5.42 5.42 5.42	$ \begin{array}{c} 172 \\ \overline{35^{\circ}} \\ 2/3 \\ \overline{K_p} \\ 7.58 \\ 7.59 \\ 7.60 \\ \overline{7.60} \\ \end{array} $	1 10.02 10.04 10.06	0 4.68 4.69 4.69	4 1/3 7.48 7.54 7.54	$ \begin{array}{r} 0^{\circ} \\ \frac{2/3}{K_p} \\ 11.55 \\ 11.64 \\ 11.64 \\ 11.64$	1 16.47 16.48 16.48
φ δ/φ f/B 0.05 0.10 0.15 0.20	0 2.07 2.07 2.07 2.07	20 1/3 K 2.39 2.39 2.39 2.39 2.39	$ \begin{array}{r} 0^{\circ} \\ \hline 2/3 \\ \hline 2.73 \\ 2.74 \\ $	1 3.01 3.01 3.01 3.02	0 2.48 2.48 2.48 2.48 2.48	2 1/3 3.08 3.08 3.08 3.08 3.08	$ \begin{array}{c} $	1 4.25 4.26 4.26 4.27	0 3.04 3.04 3.04 3.04 3.03	1/3 4.03 4.03 4.03 4.03	$ \begin{array}{r} $	1 6.33 6.33 6.35 6.36	0 3.75 3.75 3.75 3.75 3.75	$ \begin{array}{r} $	$ \begin{array}{c c} \hline 2/3 \\ \hline 2/3 \\ \hline K_p \\ \hline 7.58 \\ \hline 7.59 \\ \hline 7.60 \\ \hline 7.63 \\ \hline \end{array} $	1 10.02 10.04 10.06 10.08	0 4.68 4.69 4.69 4.69	4 1/3 7.48 7.54 7.54 7.55	0° 2/3 K_p 11.55 11.64 11.64 11.64 11.64	1 16.47 16.48 16.48 16.55
$ \begin{array}{c} \varphi \\ \delta/\varphi \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.55 \\ 0.56 \\$	0 2.07 2.07 2.07 2.07 2.07	20 1/3 2.39 2.39 2.39 2.39 2.39 2.39	0° 2/3 2.73 2.74 2.74 2.74 2.74 2.74	1 3.01 3.01 3.02 3.02 3.02	0 2.48 2.48 2.48 2.48 2.48 2.48 2.48	2 1/3 3.08 3.08 3.08 3.08 3.08 3.08	$ \begin{array}{c} 2.5^{\circ} \\ 2/3 \\ K_{p} \\ 3.71 \\ 3.72 \\ 3.72 \\ 3.73 \\ 3.73 \\ 3.73 \\ 3.73 \\ \end{array} $	1 4.25 4.26 4.26 4.27 4.28	0 3.04 3.04 3.04 3.03 3.03 3.03	4.03 4.03 4.03 4.03 4.03 4.03	$ \begin{array}{r} $	1 6.33 6.33 6.35 6.36 6.36	0 3.75 3.75 3.75 3.75 3.75 3.75	$ \begin{array}{r} 3 \\ \hline $	$ \begin{array}{r} 7.58 \\ 7.59 \\ 7.60 \\ 7.63 \\ 7.68 \\ 7.68 \\ \end{array} $	1 10.02 10.04 10.06 10.08 10.11	0 4.68 4.69 4.69 4.69 4.69	4 1/3 7.48 7.54 7.54 7.55 7.55	0° 2/3 K_p 11.55 11.64 11.64 11.64 11.64 11.64	1 16.47 16.48 16.48 16.55 16.60
$\begin{array}{c} \varphi \\ \delta/\varphi \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.50 \end{array}$	0 2.07 2.07 2.07 2.07 2.07 2.07	21/3 1/3 2.39 2.39 2.39 2.39 2.39 2.39 2.39	0° 2/3 2.73 2.74 2.74 2.74 2.74 2.74 2.75	1 3.01 3.01 3.02 3.02 3.03	0 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.49	2 1/3 3.08 3.08 3.08 3.08 3.08 3.08 3.08	$ \begin{array}{c} 2.5^{\circ} \\ \hline 2/3 \\ \hline K_p \\ \hline 3.71 \\ 3.72 \\ 3.72 \\ 3.73 \\ 3.73 \\ 3.74 \\ \end{array} $	1 4.25 4.26 4.26 4.27 4.28 4.30	0 3.04 3.04 3.04 3.03 3.03 3.03 3.04	1/3 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03	$ \begin{array}{r} 30^{\circ} \\ 2/3 \\ K_p \\ 5.17 \\ 5.20 \\ 5.22 \\ 5.23 \\ 5.23 \\ 5.23 \\ 5.31 \\ $	1 6.33 6.33 6.35 6.36 6.36 6.36 6.53	0 3.75 3.75 3.75 3.75 3.75 3.75 3.75	$ \begin{array}{c} \hline $	$ \begin{array}{c} 2/3 \\ \overline{K_p} \\ 7.58 \\ 7.59 \\ 7.60 \\ 7.63 \\ 7.68 \\ 8.08 \\ \end{array} $	1 10.02 10.04 10.06 10.08 10.11 10.84	0 4.68 4.69 4.69 4.69 4.69 4.70	4 1/3 7.48 7.54 7.55 7.55 7.55 7.83	0° 2/3 X_p 11.55 11.64 11.64 11.64 11.64 13.36 20.22	1 16.47 16.48 16.48 16.55 16.60 20.56
$\begin{array}{c} \varphi \\ \delta/\varphi \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.06 \end{array}$	0 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.0	21/3 1/3 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.42	0° 2/3 2.73 2.74 2.74 2.74 2.74 2.74 2.75 2.81	1 3.01 3.01 3.02 3.02 3.03 3.16	0 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.49 2.49 2.49	2 1/3 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.0	$ \begin{array}{c} 1.01 \\ 2.5^{\circ} \\ \hline 2/3 \\ K_p \\ \hline 3.71 \\ 3.72 \\ 3.72 \\ 3.73 \\ 3.73 \\ 3.73 \\ 3.74 \\ 3.97 \\ 1.11 \\ \end{array} $	1 4.25 4.26 4.26 4.27 4.28 4.30 4.71	0 3.04 3.04 3.04 3.03 3.03 3.03 3.04 3.04	4.03 4.03 4.03 4.03 4.03 4.03 4.04 4.27	$ \begin{array}{r} \text{out un} \\ 30^{\circ} \\ 2/3 \\ K_p \\ 5.17 \\ 5.20 \\ 5.22 \\ 5.23 \\ 5.23 \\ 5.23 \\ 5.31 \\ 6.01 \\ 6.01 \\ 5.2 \\ 5.2 \\ 5.31 \\ 6.01 \\ 5.2 \\ 5.2 \\ 5.31 \\ 6.01 \\ 5.2 \\ 5.2 \\ 5.31 \\ 6.01 \\ 5.2 \\ 5.2 \\ 5.31 \\ 6.01 \\ 5.2 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.31 \\ 5.2 \\ 5.2 \\ 5.31 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 $	1 6.33 6.33 6.35 6.36 6.36 6.36 6.53 7.77	0 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75	$ \begin{array}{c} \hline 3 \\ \hline 3 \\ \hline 1/3 \\ \hline 5.41 \\ 5.42 \\ 5.42 \\ 5.42 \\ 5.42 \\ 5.43 \\ 4.49 \\ 6.11 \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ $	$ \begin{array}{r} 7.58 \\ 7.59 \\ 7.60 \\ 7.63 \\ 7.68 \\ 8.08 \\ 10.14 \\ 12.76 \end{array} $	1 10.02 10.04 10.06 10.08 10.11 10.84 14.90	0 4.68 4.69 4.69 4.69 4.69 4.70 4.71	4 1/3 7.48 7.54 7.54 7.55 7.55 7.83 9.46	0° 2/3 X_p 11.55 11.64 11.64 11.64 11.64 13.36 20.29 22.56	1 16.47 16.48 16.48 16.55 16.60 20.56 35.55
$\begin{array}{c} \varphi \\ \delta/\varphi \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \end{array}$	0 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.0	21 1/3 F 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.42 2.50	0° 2/3 2.73 2.74 2.74 2.74 2.74 2.74 2.75 2.81 3.00 2.22	1 3.01 3.01 3.02 3.02 3.03 3.16 3.45	0 2.48 2.48 2.48 2.48 2.48 2.48 2.49 2.49 2.49 2.49	2 1/3 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.0	$ \begin{array}{c} 1.01 \\ 2.5^{\circ} \\ 2/3 \\ K_p \\ 3.71 \\ 3.72 \\ 3.72 \\ 3.72 \\ 3.73 \\ 3.73 \\ 3.73 \\ 3.74 \\ 3.97 \\ 4.44 \\ 5.92 \\ \end{array} $	1 4.25 4.26 4.26 4.27 4.28 4.30 4.71 5.52	0 3.04 3.04 3.04 3.03 3.03 3.03 3.04 3.04	4.03 4.03 4.03 4.03 4.03 4.03 4.04 4.27 4.67	$\begin{array}{c} 0.01 \\ \hline 0.01 \\ \hline 30^{\circ} \\ \hline 2/3 \\ \hline K_p \\ \hline 5.17 \\ \hline 5.20 \\ \hline 5.22 \\ \hline 5.23 \\ \hline 5.23 \\ \hline 5.23 \\ \hline 5.23 \\ \hline 5.31 \\ \hline 6.01 \\ \hline 7.24 \\ \hline 2.25 \end{array}$	1 6.33 6.33 6.35 6.36 6.36 6.36 6.53 7.77 10.12	0 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75	$ \begin{array}{c} 1/3 \\ 5.41 \\ 5.42 \\ 5.42 \\ 5.42 \\ 5.42 \\ 5.43 \\ 4.49 \\ 6.11 \\ 7.02 \\ 1.1 \\ 7.02 \\ 1.1 \\ $	$ \begin{array}{r} 1/2 \\ 35^{\circ} \\ \hline 2/3 \\ \overline{K_p} \\ 7.58 \\ 7.59 \\ 7.60 \\ 7.63 \\ 7.63 \\ 7.68 \\ 8.08 \\ 10.14 \\ 13.79 \\ 10.44 \\ \end{array} $	1 10.02 10.04 10.06 10.08 10.11 10.84 14.90 23.08	0 4.68 4.69 4.69 4.69 4.69 4.70 4.71 4.71	4 1/3 7.48 7.54 7.54 7.55 7.55 7.55 7.83 9.46 11.71	0° 2/3 K_p 11.55 11.64 11.64 11.64 11.64 11.64 13.36 20.29 33.59 (20.26)	1 16.47 16.48 16.48 16.55 16.60 20.56 35.55 71.60
$\begin{array}{c} \varphi \\ \delta/\varphi \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.56 \end{array}$	0 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.0	21/3 1/3 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.42 2.50 2.59 2.59	0° 2/3 2.73 2.74 2.74 2.74 2.74 2.74 2.75 2.81 3.00 3.23	1 3.01 3.01 3.02 3.02 3.03 3.16 3.45 3.85	0 2.48 2.48 2.48 2.48 2.48 2.48 2.49 2.49 2.49 2.49 2.49 2.49	2 1/3 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.0	$\begin{array}{c} 2.5^{\circ} \\ \hline 2/3 \\ \hline K_p \\ \hline 3.71 \\ \hline 3.72 \\ \hline 3.72 \\ \hline 3.73 \\ \hline 3.73 \\ \hline 3.73 \\ \hline 3.74 \\ \hline 3.97 \\ \hline 4.44 \\ \hline 5.03 \\ \hline 5.03 \\ \hline 5.75 \\ \hline \end{array}$	1 4.25 4.26 4.26 4.27 4.28 4.30 4.71 5.52 6.64	0 3.04 3.04 3.04 3.03 3.03 3.04 3.04 3.0	4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.04 4.27 4.67 5.13	$ \begin{array}{r} \hline 30^{\circ} \\ 2/3 \\ K_p \\ 5.17 \\ 5.20 \\ 5.22 \\ 5.23 \\ 5.23 \\ 5.23 \\ 5.31 \\ 6.01 \\ 7.24 \\ 8.92 \\ 11.22 \\ \end{array} $	1 6.33 6.33 6.35 6.36 6.36 6.36 6.53 7.77 10.12 13.85	0 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75	$ \begin{array}{c} \hline 1/3 \\ \hline 3 \\ \hline 1/3 \\ \hline 5.41 \\ \hline 5.42 \\ \hline 5.43 \\ \hline 4.49 \\ \hline 6.11 \\ \hline 7.02 \\ \hline 8.14 \\ \hline 2.5 \\ \end{array} $	$ \begin{array}{r} 172 \\ \hline 273 \\ \hline 7.58 \\ 7.59 \\ 7.60 \\ 7.63 \\ 7.68 \\ 8.08 \\ 10.14 \\ 13.79 \\ 19.41 \\ 22.45 \\ \end{array} $	1 10.02 10.04 10.06 10.08 10.11 10.84 14.90 23.08 38.30	0 4.68 4.69 4.69 4.69 4.69 4.70 4.71 4.71 4.71	4 1/3 7.48 7.54 7.54 7.55 7.55 7.55 7.83 9.46 11.71 14.92	0° 2/3 11.55 11.64 11.64 11.64 11.64 11.64 13.36 20.29 33.59 60.06	1 16.47 16.48 16.48 16.55 16.60 20.56 35.55 71.60 156.2
$\begin{array}{c} \varphi \\ \delta/\varphi \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.50 \\ \end{array}$	0 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.0	21/3 1/3 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.42 2.50 2.50 2.59 2.69	0° 2/3 2.73 2.74 2.74 2.74 2.74 2.74 2.75 2.81 3.00 3.23 3.50	1 3.01 3.01 3.02 3.02 3.03 3.16 3.45 3.85 4.34	0 2.48 2.48 2.48 2.48 2.48 2.48 2.49 2.49 2.49 2.49 2.49 2.49 2.49	2 1/3 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.0	$\begin{array}{c} 1.01 \\ 1.01 \\ 1.02 \\ 1.$	1 4.25 4.26 4.26 4.27 4.28 4.30 4.71 5.52 6.64 8.22	0 3.04 3.04 3.04 3.03 3.03 3.03 3.03 3.0	4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.04 4.27 4.67 5.13 5.57	$\begin{array}{c} 0.01 \\ 0.$	1 6.33 6.33 6.35 6.36 6.36 6.36 6.36 6.53 7.77 10.12 13.85 19.66	0 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75	$ \begin{array}{c} \hline 1 \\ \hline 3 \\ \hline 3 \\ \hline 1 \\ \hline 5.42 \\ \hline 5.43 \\ \hline 4.49 \\ \hline 6.11 \\ \hline 7.02 \\ \hline 8.14 \\ \hline 9.58 \\ \hline 1 \\ \hline 9.58 \\ \end{array} $	$ \begin{array}{r} 172 \\ \hline 2/3 \\ \hline K_p \\ \hline 7.58 \\ 7.59 \\ 7.60 \\ 7.63 \\ 7.63 \\ 7.68 \\ 8.08 \\ 10.14 \\ 13.79 \\ 19.41 \\ 28.45 \\ \end{array} $	1 10.02 10.04 10.06 10.08 10.11 10.84 14.90 23.08 38.30 67.30	0 4.68 4.69 4.69 4.69 4.69 4.70 4.71 4.71 4.71 4.71	4 1/3 7.48 7.54 7.54 7.55 7.55 7.55 7.83 9.46 11.71 14.92 19.38	0° 2/3 X_p 11.55 11.64 11.64 11.64 11.64 13.36 20.29 33.59 60.06 112.9	1 16.47 16.48 16.48 16.55 16.60 20.56 35.55 71.60 156.2 246.0
$\begin{array}{c} \varphi \\ \overline{\delta/\varphi} \\ \overline{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \\ 0.50 \\ 0.75 \\ 0$	0 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.0	21 1/3 F 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.42 2.50 2.50 2.59 2.69 2.69	0° 2/3 2.73 2.74 2.74 2.74 2.74 2.74 2.75 2.81 3.00 3.23 3.50 3.82	1 3.01 3.01 3.02 3.02 3.03 3.16 3.45 3.85 4.34 4.97	0 2.48 2.48 2.48 2.48 2.48 2.48 2.49 2.49 2.49 2.49 2.49 2.49 2.49	2 1/3 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.0	$\begin{array}{c} 1.01 \\ 1.02 \\ 1.$	1 4.25 4.26 4.26 4.27 4.28 4.30 4.71 5.52 6.64 8.22 10.35	0 3.04 3.04 3.04 3.03 3.03 3.03 3.03 3.0	4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 5.13 5.57 6.32	$\begin{array}{c} 0.01 \\ \hline 0.01 \\ \hline 30^{\circ} \\ \hline 2/3 \\ \hline K_p \\ \hline 5.17 \\ \hline 5.20 \\ \hline 5.22 \\ \hline 5.23 $	1 6.33 6.35 6.36 6.36 6.36 6.53 7.77 10.12 13.85 19.66 28.77	0 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75	$\begin{array}{c} 1/3 \\ \hline 3 \\$	$\begin{array}{c} 1/2 \\ \hline & & \\ \hline \hline & & \\ \hline \\ \hline$	1 10.02 10.04 10.06 10.08 10.11 10.84 14.90 23.08 38.30 67.30 99.07	0 4.68 4.69 4.69 4.69 4.69 4.70 4.71 4.71 4.71 4.71 4.71	4 1/3 7.48 7.54 7.54 7.55 7.55 7.55 7.83 9.46 11.71 14.92 19.38 25.67	0° 2/3 K_p 11.55 11.64 11.64 11.64 11.64 13.36 20.29 33.59 60.06 112.9 195.6	1 16.47 16.48 16.48 16.55 16.60 20.56 35.55 71.60 156.2 246.0 373.9

Tableau 4.5. Les coefficients de K_p pour un angle de dilatance $\psi/\varphi = 0$

	-				-					, and 1-1	pour un			μπου φ/ φ	-		·			
φ		20)°			2	5°				30°			3	5°			4	0°	
δ/φ	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3	2/3	1	0	1/3	2/3	1
f/B		K	р р			1	K_p				K_p				K_p			1	K_p	
0.05	2.07	2.40	2.73	3.01	2.51	3.07	3.72	4.26	3.06	4.03	5.20	6.33	3.79	5.42	7.69	10.10	4.71	7.62	11.96	17.17
0.10	2.07	2.40	2.74	3.02	2.51	3.08	3.73	4.28	3.06	4.04	5.20	6.35	3.79	5.42	7.70	10.10	4.71	7.62	12.10	17.39
0.15	2.07	2.40	2.74	3.02	2.51	3.08	3.73	4.29	3.06	4.04	5.21	6.38	3.79	5.42	7.71	10.12	4.71	7.62	12.11	17.44
0.20	2.07	2.40	2.74	3.03	2.51	3.08	3.73	4.30	3.06	4.05	5.23	6.40	3.79	5.42	7.72	10.18	4.71	7.62	12.11	17.48
0.25	2.07	2.40	2.74	3.03	2.51	3.08	3.73	4.30	3.06	4.07	5.24	6.43	3.79	5.43	7.74	10.26	4.71	7.62	12.11	17.48
0.50	2.07	2.40	2.75	3.04	2.51	3.09	3.74	4.35	3.06	4.07	5.31	6.61	3.79	5.53	8.00	11.08	4.71	7.94	13.80	21.74
0.75	2.06	2.42	2.81	3.17	2.51	3.16	3.97	4.74	3.06	4.29	6.01	7.86	3.79	6.14	10.16	15.27	4.71	9.49	20.53	37.95
1.00	2.06	2.50	3.00	3.46	2.51	3.34	4.44	5.56	3.06	4.68	7.24	10.27	3.79	7.03	13.79	23.68	4.71	11.74	33.72	77.65
1.25	2.06	2.59	3.23	3.86	2.50	3.54	5.03	6.71	3.06	5.14	8.92	14.03	3.79	8.14	19.43	39.26	4.71	14.93	60.04	169.0
1.50	2.06	2.69	3.50	4.37	2.50	3.77	5.78	8.25	3.06	5.58	11.22	19.81	3.79	9.58	28.45	68.41	4.71	19.39	112.4	273.8
1.75	2.06	2.90	3.83	4.98	2.50	4.03	6.71	10.40	3.06	6.33	14.42	29.00	3.79	11.39	42.98	102.9	4.71	25.70	198.3	434.7
2.00	2.06	2.92	4.20	5.74	2.50	4.32	7.86	13.30	3.06	7.07	18.80	41.27	3.79	13.65	66.43	143.8	4.71	34.68	288.0	735.6

Tableau 4.7. Les coefficients de K_p pour un angle de dilatance $\psi/\varphi = 1$

4.4.1.2. Distribution de la pression de terre passive sur l'écran :

a) Influence de l'espacement des écrans :

> Influence de l'angle de frottement interne du sol :

La figure 4.8 montre que L'augmentation de l'angle de frottement interne du sol augmente significativement la pression des terres passive.

Pour les faibles valeurs de l'angle de frottement $\varphi < 20^0$ la réduction de l'espacement entre les écrans est insignifiant, pour $\varphi > 20^0$ et au de la de f/B > 0.5, les valeurs de la pression passive de terre augmente.

Figure 4.8 : Influence de l'angle de frottement interne du sol sur la pression effective passive de terre pour différente valeur de f/B

Influence de l'angle de dilatance :

La comparaison des résultats de simulation montre que l'angle de dilatance ψ a un effet remarquable sur le coefficient de butée uniquement pour les sols présentant un fort angle de frottement ($\varphi = 35^\circ$, 40°), alors que son influence est pratiquement négligeable (moins de 3%) pour les angles $\varphi=20$, 25 et 30°.

L'augmentation du coefficient de butée est clairement marquée lorsque la valeur de ψ/φ croît de 0 à 1/2. Au delà de 1/2 l'augmentation semble insignifiante (figure 4.9). De plus, la comparaison des résultats obtenus, montre que l'effet de la dilatance est accentué avec le rapprochement des écrans et l'augmentation de δ/φ au-delà de 1/3.

Figure 4.9: Influence de la dilatance du sol sur la pression effective passive selon l'espacement des écrans pour $\delta/\varphi = 1$, $\varphi = 30^{\circ}$

Influence de l'interface sol/écran :

Dans la présente étude, l'effet de réduction de l'espacement des écrans de f/B= 0.05 à f/B= 2pour $\delta/\phi = 0$ ne dépasse pas 2%. On peut conclure que pour les écrans parfaitement lisses l'effet de la largeur est insignifiant sur le coefficient de butée. Cependant, son effet est fortement prononcé avec l'augmentation de la rugosité de l'écran.

La figure (4.10) (4.11) visualise l'influence de la réduction de l'espacement entre les écrans sur le coefficient de butée en fonction de différentes valeurs de l'angle de frottement de l'interface sol/écran.

La figure (4.10. (a)) correspondant aux écrans parfaitement lisses ($\delta/\varphi = 0$) montre que la réduction de l'espacement entre les écrans n'influe pas pratiquement sur le coefficient de butée. Pour les écrans rugueux, les figures (4.10. (b)) et (4.10. (c)) (4.11. (d)) correspondant respectivement à $\delta/\varphi = 1/3$, 2/3 et 1 montrent que le coefficient de butée est indépendant de l'espacement des écrans quand f/B est inférieur à 0.5. Au-delà de cette valeur, on note un accroissement du coefficient de la butée avec la réduction de l'espacement des écrans. Cet accroissement s'accentue avec l'augmentation de l'angle de frottement au-delà de 20°.

1,5

f/В

2

2,5

100

50

0

0

0,5

1

_102

φ=30°

φ=35°

φ=40°

Figure 4.11 : Influence de la rugosité de l'écran sur le coefficient de butée selon l'espacement des écrans (suite)

Les figures (4.12) et (4.13) présentent la distribution de la pression normale passive de terre le long de l'écran selon l'espacement des écrans pour $\varphi=30^\circ$, $\psi=0^\circ$ et respectivement pour un écran parfaitement lisse $\delta/\varphi=0$ et pour un écran parfaitement rugueux $\delta/\varphi=1$.

Pour un écran parfaitement lisse, les diagrammes de la pression passive sont linéaires à part quelques fluctuations sur la partie inférieure de l'écran. Cette distribution est en accord avec les résultats théoriques d'un écran en mouvement de translation.

Pour un écran parfaitement rugueux, les diagrammes de la pression passive sont linéaires quand f/B < 0.5. Cependant, au-delà de cette valeur, on note une accentuation parabolique de la pression passive des terres à la moitié inférieure de l'écran avec le rétrécissement de l'espacement entre les écrans (f/B).

Figure 4.12: Distribution de la pression effective passive de terre pour différentes largeurs du batardeau pour $\delta/\varphi = 0$, $\varphi = 30^\circ$, $\psi/\varphi = 0$

_104

Afin de visualiser les zones mobilisées par la pression de terre passive, la figure (4.14) présente la distribution de déformation de cisaillement et les zones plastifiées pour les différentes largeurs (f/B = 0.05, 0.1, 0.15, 0.20, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 et 2) pour un écran lisse $\delta/\varphi = 0$ et un sol associer $\varphi = \psi = 30^{0}$.

Et la figure (4.15) représente le champ de déplacement de la zone mobilisé par la pression de terre passive.

Les figures précédentes confirment que la pression de terre active n'est pas influencée par l'espacement entre les écrans et la zone mobilisée par la poussée reste presque constante.

Ces figures montrent clairement l'augmentation de la zone plastifiée mobilisée par la butée avec rapprochement des écrans, cette augmentation est plus significative à partir de f/B < 0.5 où cette zone occupe le long de l'écran toute la distance entre les deux écrans à cause de la pression d'interaction entre les écrans

Figure 4.14 : Distribution des déformations maximales de cisaillement pour les différentes largeurs f/B et pour $\delta/\varphi = 0$, $\varphi=\psi=30^{\circ}$

_106

Figure 4.15 : Champs de déplacement de la zone mobilisée par les pressions de terre passive et active sur l'écran pour les différentes largeurs f/B = (0.05, 0.25, 0.5, 0.75, 1 et 2)et pour $\delta/\varphi = 0$, $\varphi=\psi=30^{\circ}$

4.4.2. Etudes des pressions de terre passives en présence d'écoulement :

Afin de pouvoir connaître la variation du coefficient de la pression passive et sa sensibilisation à l'écoulement (perte de charge totale), on fait la simulation pour cinq valeurs de perte de charge totale, H/f = 0.5, 1, 1.5, 2, 2.5 et pour les mêmes valeurs des paramètres utilisés précédemment.

Les tableaux (4.8) à (4.19) représentent les résultats de simulation numérique.

					Tab	leau 4.8	8. Les co	oefficier	nts de <i>K</i>	pour	un angl	e de fro	ottemen	t $\varphi = 20^\circ$) ψ=0					
δ/φ			0					1/3					2/3					1		
H/f	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5
f/B		-	K_p					K_p	-				K_p					K_p		
0.05	1.69	1.33	0.98	0.62	-	1.98	1.57	1.17	0.75	-	2.29	1.83	1.38	0.92	_	2.50	2.03	1.56	1.06	0.54
0.10	1.67	1.30	0.95	0.58	—	1.96	1.55	1.14	0.73	—	2.27	1.81	1.34	0.88	-	2.49	2.03	1.53	1.02	—
0.15	1.65	1.27	0.89	0.51	-	1.95	1.51	1.08	0.64	-	2.25	1.75	1.27	0.77	-	2.46	1.95	1.43	0.90	—
0.20	1.63	1.23	0.83	0.42	-	1.92	1.46	1.01	0.54	_	2.22	1.70	1.19	0.66	-	2.43	1.89	1.33	0.77	-
0.25	1.62	1.19	0.78	0.34	_	1.90	1.41	0.94	0.44	_	2.19	1.64	1.10	0.54	_	2.40	1.82	1.32	0.63	—
0.50	1.52	1.00	0.50	_	_	1.78	1.19	0.60	_	_	2.06	1.37	0.71	-	_	2.23	1.50	0.80	_	—
0.75	1.45	0.86	0.28	_	_	1.70	1.03	0.34	_	_	2.00	1.20	0.41	-	_	2.23	1.34	0.47	_	—
1.00	1.39	0.75	_	_	_	1.70	0.92	_	_	-	2.03	1.11	_	_	-	2.35	1.28	0.23	_	—
1.25	1.35	0.67	-	_	_	1.71	0.85	_	_	_	2.14	1.07	-	-	_	2.55	1.28	_	_	—
1.50	1.32	0.60	_	_	_	1.74	0.80	_	_	_	2.28	1.05	-	-	_	2.81	1.31	_	_	—
1.75	1.29	0.55	_	_	_	1.77	0.76	_	_	-	2.43	0.94	_	-	_	3.13	1.37	_	_	—
2.00	1 27	0.51	_	_	_	1.81	0.73	_	_	_	2 5 5	1.06	_	_	_	3 54	1 46	_	_	_
2.00	1.27	0.51				1.01	0.75				2.55	1.00				5.5 1	1.10			•
2.00	1.27	0.51			Table	eau 4.9.	Les co	efficien	ts de K_p	pour u	n angle	de frot	ttement	$\phi = 20^{\circ}$	ψ=1/2	5.51	1.10			
δ/φ	1.27	0.51	0		Table	eau 4.9.	Les co	efficien 1/3	ts de K_p	pour u	n angle	e de frot	ttement 2/3	$\phi = 20^{\circ}$	ψ=1/2		1.10	1		
<u>δ/φ</u> <u>H/f</u>	0.5	1	0 1.5	2	Table 2.5	eau 4.9.	Les coo	efficient 1/3 1.5	ts de <i>K</i> _p	pour u 2.5	n angle 0.5	de fro t	ttement 2/3 1.5	$\phi = 20^{\circ}$	ψ=1/2 2.5	0.5	1	1 1.5	2	2.5
δ/φ H/f f/B	0.5	1	0 1.5 K_p	2	Table	eau 4.9.	Les co	efficient $1/3$ 1.5 K_p	ts de K _p	pour u 2.5	n angle 0.5	e de frot	ttement 2/3 1.5 K_p	$\phi = 20^{\circ}$	ψ=1/2 2.5	0.5	1	$\frac{1}{1.5}$ K_p	2	2.5
$\frac{\delta/\varphi}{H/f}$ $\frac{f/B}{0.05}$	0.5	1 1.34	$\begin{array}{c} 0\\ 1.5\\ K_p\\ 0.98 \end{array}$	2	Table 2.5	au 4.9.	Les coo 1 1.59	efficient 1/3 1.5 K_p 1.18	2 0.77	pour u 2.5	0.5 2.29	1.83	$ trement 2/3 1.5 K_p 1.38$	$\phi = 20^{\circ}$ 2 0.92	ψ=1/2 2.5 -	0.5	1 2.54	$ 1 1.5 K_p 1.57$	2	2.5
$\frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10$	0.5 1.70 1.69	1 1.34 1.32	$ \begin{array}{c} 0 \\ 1.5 \\ K_p \\ 0.98 \\ 0.95 \end{array} $	2 0.62 0.58	Table 2.5 - -	1.01 eau 4.9. 0.5 1.99 1.98	1 1.59 1.56		2 0.77 0.73	pour u 2.5 –	0.5 2.29 2.28	1 1.83 0.81		$\varphi = 20^{\circ}$ 2 0.92 0.88	ψ=1/2 2.5 - -	0.5 3.00 3.00	1 2.54 2.52		2 1.07 1.02	2.5
$\frac{\delta/\varphi}{H/f} = \frac{\delta}{f/B} = \frac{\delta}{0.05} = 0.10 = 0.15$	0.5 1.70 1.69 1.67	1 1.34 1.32 1.28	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 0.98\\ 0.95\\ 0.90\\ \end{array} $	2 0.62 0.58 0.51	Table 2.5 – –	0.5 1.99 1.98 1.96	1 1.59 1.56 1.52	K_p 1.18 1.15 1.18 1.108	2 0.77 0.73 0.64	2.5 – –	0.5 2.29 2.28 2.25	1 1.83 0.81 1.76	$ trement 2/3 1.5 K_p 1.38 1.34 1.27 $	φ =20 [°] 2 0.92 0.88 0.77	ψ=1/2 2.5 - - -	0.5 3.00 3.00 3.01	1 2.54 2.52 2.50	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ \end{array} $	2 1.07 1.02 0.90	2.5
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 $	0.5 1.70 1.69 1.67 1.65	1 1.34 1.32 1.28 1.24	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 0.98\\ 0.95\\ 0.90\\ 0.84 \end{array} $	2 0.62 0.58 0.51 0.42	Table 2.5 - - - - - - - - - -	1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93	1 1.59 1.56 1.52 1.47	K_p 1.18 1.15 1.18 1.15 1.08 1.01	2 0.77 0.73 0.64 0.54	2.5 - - - -	Display 0.5 2.29 2.28 2.25 2.22	1 1.83 0.81 1.76 0.70	$ trement 2/3 1.5 K_p 1.38 1.34 1.27 1.18 $	φ =20° 2 0.92 0.88 0.77 0.66	ψ=1/2 2.5 - - - -	0.5 3.00 3.00 3.01 3.02	1 2.54 2.52 2.50 2.47	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ 1.33 \\ \end{array} $	2 1.07 1.02 0.90 0.77	2.5
$\frac{\delta/\varphi}{H/f} = \frac{\delta/\varphi}{0.05} = \frac{0.05}{0.10} = \frac{0.15}{0.20} = 0.25$	0.5 1.70 1.69 1.67 1.65 1.63	1 1.34 1.32 1.28 1.24 1.20	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 0.98\\ 0.95\\ 0.90\\ 0.84\\ 0.78\\ \end{array} $	2 0.62 0.58 0.51 0.42 0.34	Table 2.5 - - - - - - - - - - - - -	1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91	1 1.59 1.56 1.52 1.47		2 0.77 0.73 0.64 0.54 0.44	2.5 - - - - -	2.33 n angle 0.5 2.29 2.28 2.25 2.22 2.20	1 1.83 0.81 1.76 0.70 1.64	$ trement 2/3 1.5 K_p 1.38 1.34 1.27 1.18 1.10 $	$ \begin{array}{c} \varphi = 20^{\circ} \\ \hline 2 \\ 0.92 \\ 0.88 \\ 0.77 \\ 0.66 \\ 0.54 \end{array} $	ψ=1/2 2.5 - - - - - -	0.5 3.00 3.00 3.01 3.02 3.02	1 2.54 2.52 2.50 2.47 2.44	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ 1.33 \\ 1.23 \\ \end{array} $	2 1.07 1.02 0.90 0.77 0.64	2.5
$\frac{\delta/\varphi}{H/f} = \frac{\delta/\varphi}{0.05} = \frac{100}{0.10} = \frac{100}{0.25} = \frac{100}{0.25} = \frac{100}{0.25} = \frac{100}{0.50} = 100$	0.5 1.70 1.69 1.67 1.65 1.63 1.53	1 1.34 1.32 1.28 1.24 1.20 1.01	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 0.98 \\ 0.95 \\ 0.90 \\ 0.84 \\ 0.78 \\ 0.50 \end{array}$	2 0.62 0.58 0.51 0.42 0.34 -	Table 2.5 - - - - - - - - - - - - - - - - -	1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.79	1 1.59 1.56 1.52 1.47 1.42 1.19	K_p 1.18 1.15 1.18 1.15 1.08 1.01 0.94 0.60	2 0.77 0.73 0.64 0.54 0.44 -	2.5 - - - - - - -	2.33 n angle 0.5 2.29 2.28 2.25 2.22 2.20 2.06	1 1.83 0.81 1.76 0.70 1.64 1.37		$ \begin{array}{c} \varphi = 20^{\circ} \\ \hline 2 \\ 0.92 \\ 0.88 \\ 0.77 \\ 0.66 \\ 0.54 \\ \hline - \\ \end{array} $	ψ=1/2 2.5 - - - - - - - - - -	0.5 3.00 3.00 3.01 3.02 3.02 3.03	1 2.54 2.52 2.50 2.47 2.44 2.29	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ 1.33 \\ 1.23 \\ 0.8 \\ \end{array} $	2 1.07 1.02 0.90 0.77 0.64 -	2.5
$ \frac{\delta/\varphi}{H/f} \\ \frac{\delta/\varphi}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 $	0.5 1.70 1.69 1.67 1.65 1.63 1.53 1.46	1 1.34 1.32 1.28 1.24 1.20 1.01 0.87	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 0.98 \\ 0.95 \\ 0.90 \\ 0.84 \\ 0.78 \\ 0.50 \\ 0.28 \end{array}$	2 0.62 0.58 0.51 0.42 0.34 - -	Table 2.5 -	1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.79 1.72	1 1.59 1.56 1.52 1.47 1.42 1.19 1.03		2 0.77 0.73 0.64 0.54 0.44 -	2.5 - - - - - - - - - - - - -	2.00 n angle 0.5 2.29 2.28 2.25 2.20 2.06 2.00	1 1.83 0.81 1.76 0.70 1.64 1.37 1.20	$\begin{array}{c} \textbf{ttement}\\\hline 2/3\\\hline 1.5\\\hline K_p\\\hline 1.38\\\hline 1.34\\\hline 1.27\\\hline 1.18\\\hline 1.10\\\hline 0.77\\\hline 0.41\\\hline \end{array}$	$ \begin{array}{c} \varphi = 20^{\circ} \\ \hline 2 \\ 0.92 \\ 0.88 \\ 0.77 \\ 0.66 \\ 0.54 \\ \hline - \\ - \\ \end{array} $	ψ=1/2 2.5 - - - - - - - - - - -	0.5 3.00 3.00 3.01 3.02 3.02 3.03 3.16	1 2.54 2.52 2.50 2.47 2.44 2.29 2.26	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ 1.33 \\ 1.23 \\ 0.8 \\ 0.47 \\ \end{array} $	2 1.07 1.02 0.90 0.77 0.64 -	2.5 - - - - - - -
$\frac{\delta/\varphi}{H/f}$ $\frac{J}{f/B}$ $\frac{0.05}{0.10}$ $\frac{0.15}{0.20}$ $\frac{0.25}{0.50}$ $\frac{0.75}{1.00}$	$ \begin{array}{c} 0.5\\ \hline 1.70\\ 1.69\\ \hline 1.67\\ \hline 1.65\\ \hline 1.63\\ \hline 1.46\\ \hline 1.40\\ \end{array} $	1 1.34 1.32 1.28 1.24 1.20 1.01 0.87 0.75	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 0.98 \\ 0.95 \\ 0.90 \\ 0.84 \\ 0.78 \\ 0.50 \\ 0.28 \\ - \end{array}$	2 0.62 0.58 0.51 0.42 0.34 - -	Table 2.5 - </td <td>1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.72 1.71</td> <td>1 1.59 1.56 1.52 1.47 1.42 1.03 0.92</td> <td></td> <td>2 0.77 0.73 0.64 0.54 0.44 - - -</td> <td>2.5 - - - - - - - - - - - - -</td> <td>2.33 n angle 0.5 2.29 2.28 2.25 2.22 2.20 2.06 2.00 2.05</td> <td>1 1.83 0.81 1.76 0.70 1.64 1.37 1.20 1.11</td> <td><math display="block"> trement 2/3 1.5 K_p 1.38 1.34 1.27 1.18 1.10 0.77 0.41 -</math></td> <td>φ =20° 2 0.92 0.88 0.77 0.66 0.54 - - - - -</td> <td>ψ=1/2 2.5 - - - - - - - - - - - - -</td> <td>0.5 3.00 3.00 3.01 3.02 3.02 3.03 3.16 3.45</td> <td>1 2.54 2.52 2.50 2.47 2.44 2.29 2.26 2.37</td> <td><math display="block"> \begin{array}{r} 1 \\ 1.5 \\ $K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ 1.33 \\ 1.23 \\ 0.8 \\ 0.47 \\ 0.23 \\ \end{array}$</math></td> <td>2 1.07 1.02 0.90 0.77 0.64 - - -</td> <td>2.5 - - - - - - - - - - -</td>	1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.72 1.71	1 1.59 1.56 1.52 1.47 1.42 1.03 0.92		2 0.77 0.73 0.64 0.54 0.44 - - -	2.5 - - - - - - - - - - - - -	2.33 n angle 0.5 2.29 2.28 2.25 2.22 2.20 2.06 2.00 2.05	1 1.83 0.81 1.76 0.70 1.64 1.37 1.20 1.11	$ trement 2/3 1.5 K_p 1.38 1.34 1.27 1.18 1.10 0.77 0.41 -$	φ =20° 2 0.92 0.88 0.77 0.66 0.54 - - - - -	ψ=1/2 2.5 - - - - - - - - - - - - -	0.5 3.00 3.00 3.01 3.02 3.02 3.03 3.16 3.45	1 2.54 2.52 2.50 2.47 2.44 2.29 2.26 2.37	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ 1.33 \\ 1.23 \\ 0.8 \\ 0.47 \\ 0.23 \\ \end{array} $	2 1.07 1.02 0.90 0.77 0.64 - - -	2.5 - - - - - - - - - - -
$\begin{array}{c} \frac{\delta/\varphi}{H/f} \\ \frac{\delta}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \end{array}$	$\begin{array}{c} 0.5 \\ \hline 1.70 \\ 1.69 \\ 1.67 \\ 1.65 \\ 1.63 \\ 1.53 \\ 1.46 \\ 1.40 \\ 1.36 \end{array}$	1 1.34 1.32 1.28 1.24 1.20 1.01 0.87 0.75 0.67	$\begin{array}{c c} 0 \\ \hline 1.5 \\ K_p \\ 0.98 \\ 0.95 \\ 0.90 \\ 0.84 \\ 0.78 \\ 0.50 \\ 0.28 \\ - \\ - \\ - \end{array}$	2 0.62 0.58 0.51 0.42 0.34 - - - - -	Table 2.5 - </td <td>1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.72 1.71</td> <td>1 1.59 1.56 1.52 1.47 1.42 1.19 1.03 0.92 0.85</td> <td>$\begin{array}{c} \text{efficient} \\ 1/3 \\ 1.5 \\ K_p \\ 1.18 \\ 1.15 \\ 1.08 \\ 1.01 \\ 0.94 \\ 0.60 \\ 0.34 \\ - \\ - \end{array}$</td> <td>2 0.77 0.73 0.64 0.54 0.44 - - - -</td> <td>pour u 2.5</td> <td>2.00 n angle 0.5 2.29 2.28 2.25 2.22 2.20 2.06 2.00 2.05 2.15</td> <td>1 1.83 0.81 1.76 0.70 1.64 1.37 1.20 1.11 1.07</td> <td>$\begin{array}{c} \text{ttement} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 1.38 \\ \hline 1.34 \\ \hline 1.27 \\ \hline 1.18 \\ \hline 1.10 \\ \hline 0.77 \\ \hline 0.41 \\ \hline - \\ \hline - \\ \hline - \end{array}$</td> <td>φ = 20° 2 0.92 0.88 0.77 0.66 0.54 - - - - - - - - - -</td> <td>ψ=1/2 2.5 - - - - - - - - - - - - -</td> <td>0.5 3.00 3.00 3.01 3.02 3.02 3.03 3.16 3.45 3.85</td> <td>1 2.54 2.52 2.50 2.47 2.44 2.29 2.26 2.37 2.57</td> <td>$\begin{array}{r} 1 \\ 1.5 \\ K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ 1.33 \\ 1.23 \\ 0.8 \\ 0.47 \\ 0.23 \\ - \end{array}$</td> <td>2 1.07 1.02 0.90 0.77 0.64 - - - -</td> <td>2.5 - - - - - - - - - - - - -</td>	1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.72 1.71	1 1.59 1.56 1.52 1.47 1.42 1.19 1.03 0.92 0.85	$\begin{array}{c} \text{efficient} \\ 1/3 \\ 1.5 \\ K_p \\ 1.18 \\ 1.15 \\ 1.08 \\ 1.01 \\ 0.94 \\ 0.60 \\ 0.34 \\ - \\ - \end{array}$	2 0.77 0.73 0.64 0.54 0.44 - - - -	pour u 2.5	2.00 n angle 0.5 2.29 2.28 2.25 2.22 2.20 2.06 2.00 2.05 2.15	1 1.83 0.81 1.76 0.70 1.64 1.37 1.20 1.11 1.07	$\begin{array}{c} \text{ttement} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 1.38 \\ \hline 1.34 \\ \hline 1.27 \\ \hline 1.18 \\ \hline 1.10 \\ \hline 0.77 \\ \hline 0.41 \\ \hline - \\ \hline - \\ \hline - \end{array}$	φ = 20° 2 0.92 0.88 0.77 0.66 0.54 - - - - - - - - - -	ψ=1/2 2.5 - - - - - - - - - - - - -	0.5 3.00 3.00 3.01 3.02 3.02 3.03 3.16 3.45 3.85	1 2.54 2.52 2.50 2.47 2.44 2.29 2.26 2.37 2.57	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 1.57 \\ 1.53 \\ 1.44 \\ 1.33 \\ 1.23 \\ 0.8 \\ 0.47 \\ 0.23 \\ - \end{array} $	2 1.07 1.02 0.90 0.77 0.64 - - - -	2.5 - - - - - - - - - - - - -
$\begin{array}{c} \overline{\delta/\varphi} \\ \overline{H/f} \\ \overline{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \end{array}$	$ \begin{array}{c} 0.5\\ \hline 1.70\\ \hline 1.69\\ \hline 1.65\\ \hline 1.63\\ \hline 1.53\\ \hline 1.46\\ \hline 1.36\\ \hline 1.33\\ \end{array} $	1 1.34 1.32 1.28 1.24 1.20 1.01 0.87 0.75 0.67 0.61	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 0.98 \\ 0.95 \\ 0.90 \\ 0.84 \\ 0.78 \\ 0.50 \\ 0.28 \\ - \\ - \\ - \\ - \\ - \end{array}$	2 0.62 0.58 0.51 0.42 0.34 - - - - - -	Table 2.5 - </td <td>1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.72 1.71 1.72 1.75</td> <td>1 1.59 1.56 1.52 1.47 1.42 1.19 1.03 0.92 0.85 0.80</td> <td>$\begin{array}{c} \text{efficient} \\ 1/3 \\ 1.5 \\ K_p \\ 1.18 \\ 1.15 \\ 1.08 \\ 1.01 \\ 0.94 \\ 0.60 \\ 0.34 \\ - \\ - \\ - \\ - \end{array}$</td> <td>2 0.77 0.73 0.64 0.54 0.44 - - - - -</td> <td>2.5 - - - - - - - - - - - - -</td> <td>n angle 0.5 2.29 2.28 2.25 2.20 2.06 2.00 2.05 2.15 2.28</td> <td>1.83 0.81 1.76 0.70 1.64 1.37 1.20 1.11 1.07</td> <td>$\begin{array}{c} \text{ttement} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 1.38 \\ \hline 1.34 \\ \hline 1.27 \\ \hline 1.18 \\ \hline 1.10 \\ \hline 0.77 \\ \hline 0.41 \\ \hline - \\ \hline \end{array}$</td> <td>φ = 20° 2 0.92 0.88 0.77 0.66 0.54 -</td> <td>ψ=1/2 2.5 - - - - - - - - - - - - -</td> <td>0.5 3.00 3.00 3.01 3.02 3.03 3.16 3.45 3.85 4.43</td> <td>1 2.54 2.52 2.50 2.47 2.44 2.29 2.26 2.37 2.57 2.85</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 1.57\\ 1.53\\ 1.44\\ 1.33\\ 1.23\\ 0.8\\ 0.47\\ 0.23\\ -\\ -\\ -\\ \end{array}$</td> <td>2 1.07 1.02 0.90 0.77 0.64 - - - - -</td> <td>2.5 - - - - - - - - - - - - - - -</td>	1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.72 1.71 1.72 1.75	1 1.59 1.56 1.52 1.47 1.42 1.19 1.03 0.92 0.85 0.80	$\begin{array}{c} \text{efficient} \\ 1/3 \\ 1.5 \\ K_p \\ 1.18 \\ 1.15 \\ 1.08 \\ 1.01 \\ 0.94 \\ 0.60 \\ 0.34 \\ - \\ - \\ - \\ - \end{array}$	2 0.77 0.73 0.64 0.54 0.44 - - - - -	2.5 - - - - - - - - - - - - -	n angle 0.5 2.29 2.28 2.25 2.20 2.06 2.00 2.05 2.15 2.28	1.83 0.81 1.76 0.70 1.64 1.37 1.20 1.11 1.07	$\begin{array}{c} \text{ttement} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 1.38 \\ \hline 1.34 \\ \hline 1.27 \\ \hline 1.18 \\ \hline 1.10 \\ \hline 0.77 \\ \hline 0.41 \\ \hline - \\ \hline \end{array}$	φ = 20° 2 0.92 0.88 0.77 0.66 0.54 -	ψ=1/2 2.5 - - - - - - - - - - - - -	0.5 3.00 3.00 3.01 3.02 3.03 3.16 3.45 3.85 4.43	1 2.54 2.52 2.50 2.47 2.44 2.29 2.26 2.37 2.57 2.85	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 1.57\\ 1.53\\ 1.44\\ 1.33\\ 1.23\\ 0.8\\ 0.47\\ 0.23\\ -\\ -\\ -\\ \end{array} $	2 1.07 1.02 0.90 0.77 0.64 - - - - -	2.5 - - - - - - - - - - - - - - -
$\begin{array}{c} \overline{\delta/\varphi} \\ \overline{H/f} \\ \overline{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \end{array}$	$\begin{array}{c} 0.5 \\ \hline 0.5 \\ \hline 1.70 \\ 1.69 \\ 1.67 \\ 1.65 \\ 1.63 \\ 1.53 \\ 1.46 \\ 1.40 \\ 1.36 \\ 1.33 \\ 1.30 \end{array}$	1 1.34 1.32 1.28 1.24 1.20 1.01 0.87 0.75 0.67 0.61 0.55	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 0.98 \\ 0.95 \\ 0.90 \\ 0.84 \\ 0.78 \\ 0.50 \\ 0.28 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	2 0.62 0.58 0.51 0.42 0.34 - - - - - - - - -	Table 2.5 - </td <td>1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.72 1.71 1.72 1.75 1.78</td> <td>Image: 1 1.59 1.56 1.52 1.47 1.42 1.19 1.03 0.92 0.85 0.80 0.76</td> <td>$\begin{array}{c} \text{efficient} \\ 1/3 \\ 1.5 \\ K_p \\ 1.18 \\ 1.15 \\ 1.08 \\ 1.01 \\ 0.94 \\ 0.60 \\ 0.34 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$</td> <td>2 0.77 0.73 0.64 0.54 0.44 - - - - - -</td> <td>2.5 - - - - - - - - - - - - -</td> <td>n angle 0.5 2.29 2.28 2.25 2.20 2.06 2.00 2.05 2.15 2.28 2.44</td> <td>1 1 1.83 0.81 1.76 0.70 1.64 1.37 1.20 1.11 1.05 1.05</td> <td>$\begin{array}{c} \text{ttement} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 1.38 \\ \hline 1.34 \\ \hline 1.27 \\ \hline 1.18 \\ \hline 1.10 \\ \hline 0.77 \\ \hline 0.41 \\ \hline - \\ \hline$</td> <td>φ =20° 2 0.92 0.88 0.77 0.66 0.54 -</td> <td>ψ=1/2 2.5 - - - - - - - - - - - - -</td> <td>0.5 3.00 3.00 3.01 3.02 3.02 3.03 3.16 3.45 3.85 4.43 4.97</td> <td>1 2.54 2.52 2.50 2.47 2.44 2.29 2.26 2.37 2.57 2.85 3.20</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 1.57\\ 1.53\\ 1.44\\ 1.33\\ 1.23\\ 0.8\\ 0.47\\ 0.23\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$</td> <td>2 1.07 1.02 0.90 0.77 0.64 - - - - - - - -</td> <td>2.5 - - - - - - - - - - - - -</td>	1.01 eau 4.9. 0.5 1.99 1.98 1.96 1.93 1.91 1.72 1.71 1.72 1.75 1.78	Image: 1 1.59 1.56 1.52 1.47 1.42 1.19 1.03 0.92 0.85 0.80 0.76	$\begin{array}{c} \text{efficient} \\ 1/3 \\ 1.5 \\ K_p \\ 1.18 \\ 1.15 \\ 1.08 \\ 1.01 \\ 0.94 \\ 0.60 \\ 0.34 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	2 0.77 0.73 0.64 0.54 0.44 - - - - - -	2.5 - - - - - - - - - - - - -	n angle 0.5 2.29 2.28 2.25 2.20 2.06 2.00 2.05 2.15 2.28 2.44	1 1 1.83 0.81 1.76 0.70 1.64 1.37 1.20 1.11 1.05 1.05	$\begin{array}{c} \text{ttement} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 1.38 \\ \hline 1.34 \\ \hline 1.27 \\ \hline 1.18 \\ \hline 1.10 \\ \hline 0.77 \\ \hline 0.41 \\ \hline - \\ \hline$	φ =20° 2 0.92 0.88 0.77 0.66 0.54 -	ψ=1/2 2.5 - - - - - - - - - - - - -	0.5 3.00 3.00 3.01 3.02 3.02 3.03 3.16 3.45 3.85 4.43 4.97	1 2.54 2.52 2.50 2.47 2.44 2.29 2.26 2.37 2.57 2.85 3.20	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 1.57\\ 1.53\\ 1.44\\ 1.33\\ 1.23\\ 0.8\\ 0.47\\ 0.23\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 1.07 1.02 0.90 0.77 0.64 - - - - - - - -	2.5 - - - - - - - - - - - - -

Chapitre 4 : Modélisation numérique des pressions des terres passive et active en présence d'écoulement

108

					Tabl	eau 4.1	0. Les c	oefficie	nts de <i>l</i>	K _p pour	un ang	le de fr	ottemer	nt φ =20	$)^{0} \psi = 1$					
δ/φ			0					1/3					2/3					1		
H/f	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5
f/B			K_p					K_p	-	-		-	K_p					K_p		-
0.05	1.71	1.35	0.98	0.62	—	1.99	1.59	1.19	0.77	—	2.29	1.83	1.38	0.92	—	2.53	2.05	1.57	1.07	0.54
0.10	1.70	1.33	0.95	0.58	—	1.99	1.56	1.15	0.73	—	2.28	1.81	1.34	0.88	—	2.52	2.03	1.53	1.02	—
0.15	1.68	1.29	0.90	0.51	-	1.96	1.52	1.08	0.62	-	2.25	1.76	1.27	0.77	—	2.49	1.97	1.44	0.90	-
0.20	1.66	1.25	0.84	0.42	-	1.94	1.47	1.01	0.54	-	2.22	1.70	1.18	0.66	-	2.47	1.90	1.33	0.77	-
0.25	1.64	1.21	0.78	0.34	_	1.91	1.42	0.94	0.44	_	2.20	1.64	1.10	0.54	_	2.44	1.83	1.32	0.63	-
0.50	1.54	1.01	0.50	_	_	1.80	1.18	0.60	_	_	2.06	1.37	0.77	_	_	2.29	1.52	0.8	_	-
0.75	1.47	0.87	0.28	_	_	1.72	1.03	0.34	_	_	2.00	1.20	0.41	_	_	2.26	1.34	0.47	_	-
1.00	1.41	0.75	-	_	_	1.71	0.92	_	_	_	2.05	1.11	_	_	_	2.37	1.28	0.23	_	-
1.25	1.37	0.67	_	_	_	1.72	0.85	_	_	_	2.15	1.07	_	_	_	2.57	1.27	_	_	_
1.50	1.33	0.61	-	_	_	1.74	0.80	_	_	_	2.28	1.05	_	_	_	2.86	1.31	_	_	—
1.75	1.31	0.55	-	_	_	1.78	0.76	_	_	_	2.44	1.05	_	_	_	3.19	1.37	_	_	—
2.00	1 28	0.51	_	_	_	1.83	0.73	_	_	_	2 64	1.06	_	_	_	3 64	1 4 9	_	_	_
2.00	1.20	0.51				1.05	0.75				2.01	1.00				5.01	1.12			
2.00	1.20	0.51			Tabl	eau 4.1	1. Les c	oefficie	nts de <i>l</i>	K _p pour	un ang	le de fr	ottemei	nt φ =25	$5^{0} \psi = 0$	5.01	1117			<u> </u>
δ/φ	1.20	0.51	0		Table	eau 4.1	1. Les c	oefficie 1/3	nts de <i>I</i>	K _p pour	un ang	le de fr	ottemen 2/3	nt φ =25	5° ψ=0	5101	1.17	1		
<u>δ/φ</u> H/f	0.5	1	0 1.5	2	Tabl	eau 4.12	1. Les c	oefficie 1/3 1.5	nts de <i>l</i>	2.5	un ang 0.5	1.00 le de fr 1	ottemen 2/3 1.5	nt φ =25	5⁰ ψ=0 2.5	0.5	1	1 1.5	2	2.5
δ/φ H/f f/B	0.5	1	0 1.5 K_p	2	Table	eau 4.12	1. Les c	0efficie 1/3 1.5 <i>K</i> _p	nts de <i>I</i> 2	X_p pour 2.5	un ang 0.5	1.00 le de fr 1	ottemer 2/3 1.5 <i>K</i> _p	$\frac{1}{2}$	$5^{\circ} \psi = 0$ 2.5	0.5	1	$\frac{1}{1.5}$ K_p	2	2.5
$\frac{\delta/\varphi}{H/f}$ $\frac{f/B}{0.05}$	0.5	1 1.62	0 1.5 K_p 1.21	2	Table 2.5	eau 4.12 0.5 2.55	1. Les c	$ oefficie 1/3 1.5 K_p 1.56 $	nts de <i>I</i> 2 1.05	2.5	un ang 0.5 3.11	1.00 le de fr 1 2.54	ottemen 2/3 1.5 <i>K_p</i> 1.95	$\frac{1}{2}$	5⁰ ψ=0 2.5 0.74	0.5	1 2.90	$ 1 1.5 K_p 2.28 $	2	2.5
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 $	0.5	1 1.62 1.59	$ \begin{array}{r} 0 \\ 1.5 \\ K_p \\ 1.21 \\ 1.17 \\ 1.17 \\ \end{array} $	2 0.78 0.73	Table 2.5 - - -	1.03 eau 4.12 0.5 2.55 2.53	1. Les c 1 2.06 2.02	oefficie $1/3$ 1.5 K_p 1.56 1.51	1.05 1.00	2.5 0.53 0.45	0.5 3.11 3.09	1 1 2.54 2.51	ottemen 2/3 1.5 K _p 1.95 1.90	p = 25 2 1.35 1.28	5[°] ψ=0 2.5 0.74 0.65	0.5 3.49 3.48	1 2.90 2.87	$1 \\ 1.5 \\ K_p \\ 2.28 \\ 2.22$	2 1.63 1.55	2.5 0.94 0.83
$\frac{\delta/\varphi}{H/f} = \frac{\delta}{f/B} = \frac{\delta}{0.05} = 0.10 = 0.15$	0.5 2.04 2.02 2.00	1 1.62 1.59 1.55	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 1.21\\ 1.17\\ 1.10\\ \end{array} $	2 0.78 0.73 0.65	Table 2.5 – –	0.5 2.55 2.53 2.50	1. Les c 1 2.06 2.02 1.97	oefficie 1/3 1.5 K _p 1.56 1.51 1.43	2 1.05 1.00 0.89	2.5 0.53 0.45	0.5 3.11 3.09 3.05	1 2.54 2.51 2.43	ottemer 2/3 1.5 <i>K_p</i> 1.95 1.90 1.79	1.35 1.28 1.15	 5° ψ=0 2.5 0.74 0.65 - 	0.5 3.49 3.48 3.43	1 2.90 2.87 2.78	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.28 \\ 2.22 \\ 2.10 \\ \end{array} $	2 1.63 1.55 1.38	2.5 0.94 0.83
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 $	0.5 2.04 2.02 2.00 1.97	1 1.62 1.59 1.55 1.50	$ \begin{array}{r} 0\\ 1.5\\ K_p\\ 1.21\\ 1.17\\ 1.10\\ 1.03\\ \end{array} $	2 0.78 0.73 0.65 0.56	Table 2.5 - - - - - - - - -	1.03 eau 4.11 0.5 2.55 2.53 2.50 2.47	1. Les c 1. Les c 2.06 2.02 1.97 1.90	oefficie 1/3 1.5 K _p 1.56 1.51 1.43 1.34	2 1.05 1.00 0.89 0.76	2.5 0.53 0.45 –	0.5 0.5 3.11 3.09 3.05 3.01	1 2.54 2.51 2.43 2.35	otteme 2/3 1.5 K _p 1.95 1.90 1.79 1.67	$\frac{1}{2}$ $\frac{1.35}{1.28}$ $\frac{1.15}{0.99}$	5 ⁰ ψ=0 2.5 0.74 0.65 - -	0.5 3.49 3.48 3.43 3.39	1 2.90 2.87 2.78 2.67	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.28 \\ 2.22 \\ 2.10 \\ 1.95 \\ \end{array} $	2 1.63 1.55 1.38 1.19	2.5 0.94 0.83 -
$ \frac{\delta/\varphi}{H/f} \frac{\delta/\varphi}{f/B} 0.05 0.10 0.15 0.20 0.25 $	0.5 2.04 2.02 2.00 1.97 1.97	1 1.62 1.59 1.55 1.50 1.45	$ \begin{array}{r} 0\\ 1.5\\ K_p\\ 1.21\\ 1.17\\ 1.10\\ 1.03\\ 0.96\\ \end{array} $	2 0.78 0.73 0.65 0.56 0.50	Table 2.5 - - - - -	1.03 eau 4.11 0.5 2.55 2.53 2.50 2.47 2.44	1. Les c 1. Les c 2.06 2.02 1.97 1.90 1.84	K_p 1.5 K_p 1.56 1.51 1.43 1.34 1.25	1.05 1.00 0.89 0.76 0.63	2.5 0.53 0.45 - -	2.01 un ang 0.5 3.11 3.09 3.05 3.01 2.97	1 2.54 2.51 2.43 2.35 2.27	ottemen $2/3$ 1.5 K_p 1.95 1.90 1.79 1.67 1.55	$\frac{1}{2}$ $\frac{1.35}{1.28}$ $\frac{1.15}{0.99}$ 0.82	2.5 0.74 0.65 - - -	0.5 0.5 3.49 3.48 3.43 3.39 3.34	1 2.90 2.87 2.78 2.67 2.59	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.28 \\ 2.22 \\ 2.10 \\ 1.95 \\ 1.80 \\ \end{array} $	2 1.63 1.55 1.38 1.19 1.00	2.5 0.94 0.83 - -
$ \frac{\delta/\varphi}{H/f} \\ \frac{\delta/\varphi}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 $	0.5 2.04 2.02 2.00 1.97 1.97 1.83	1 1.62 1.59 1.55 1.50 1.45 1.22	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.21 \\ 1.17 \\ 1.10 \\ 1.03 \\ 0.96 \\ 0.62 \end{array}$	2 0.78 0.73 0.65 0.56 0.50 -	Table 2.5 -	1.03 eau 4.11 0.5 2.55 2.53 2.50 2.47 2.44 2.30	1. Les c 1 2.06 2.02 1.97 1.90 1.84 1.55	K_p 1.5 K_p 1.56 1.51 1.43 1.34 1.25 0.80	1.05 1.00 0.89 0.76 0.63	2.5 0.53 0.45 - - - -	2.01 un ang 0.5 3.11 3.09 3.05 3.01 2.97 2.80	1 2.54 2.51 2.43 2.35 2.27 1.88	ottemen $2/3$ 1.5 K_p 1.95 1.90 1.79 1.67 1.55 0.98	$\frac{1.35}{1.28}$ $\frac{1.15}{0.99}$ 0.82	5° ψ=0 2.5 0.74 0.65 - - - -	0.5 0.5 3.49 3.48 3.43 3.39 3.34 3.16	1 2.90 2.87 2.78 2.67 2.59 2.13	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.28 \\ 2.22 \\ 2.10 \\ 1.95 \\ 1.80 \\ 1.15 \\ \end{array} $	2 1.63 1.55 1.38 1.19 1.00 -	2.5 0.94 0.83 - - - -
$\begin{array}{c} \delta/\varphi \\ H/f \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \end{array}$	0.5 2.04 2.02 2.00 1.97 1.83 1.74	1 1.62 1.59 1.55 1.50 1.45 1.22 1.04	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.21 \\ 1.17 \\ 1.10 \\ 1.03 \\ 0.96 \\ 0.62 \\ 0.35 \end{array}$	2 0.78 0.73 0.65 0.56 0.50 -	Table 2.5 - - - - - - - - - -	au 4.13 0.5 2.55 2.53 2.50 2.47 2.44 2.30 2.23	1. Les c 1. Les c 1. 2.06 2.02 1.97 1.90 1.84 1.55 1.35	oefficie $1/3$ 1.5 K_p 1.56 1.51 1.43 1.34 1.25 0.80 0.46	2 1.05 1.00 0.89 0.76 0.63 -	2.5 0.53 0.45 - - - -	2.81 un ang 0.5 3.11 3.09 3.05 3.01 2.97 2.80 2.81	1 2.54 2.51 2.43 2.35 2.27 1.88 1.70	ottemer $2/3$ 1.5 K_p 1.95 1.90 1.79 1.67 1.55 0.98 0.60	$\frac{1}{2}$ $\frac{1.35}{1.28}$ $\frac{1.15}{0.99}$ 0.82 $-$	5 ⁰ ψ=0 2.5 0.74 0.65 - - - - - -	0.5 3.49 3.48 3.43 3.39 3.34 3.16 3.28	1 2.90 2.87 2.78 2.67 2.59 2.13 1.99	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.28 \\ 2.22 \\ 2.10 \\ 1.95 \\ 1.80 \\ 1.15 \\ 0.72 \\ \end{array} $	2 1.63 1.55 1.38 1.19 1.00 -	2.5 0.94 0.83 - - - - -
$\begin{array}{c} \overline{\delta/\varphi} \\ \overline{H/f} \\ \overline{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \end{array}$	$\begin{array}{c} 0.5 \\ \hline \\ 2.04 \\ 2.02 \\ 2.00 \\ 1.97 \\ 1.97 \\ 1.83 \\ 1.74 \\ 1.68 \end{array}$	1 1.62 1.59 1.55 1.50 1.45 1.22 1.04 0.91	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.21 \\ 1.17 \\ 1.10 \\ 1.03 \\ 0.96 \\ 0.62 \\ 0.35 \\ - \end{array}$	2 0.78 0.73 0.65 0.56 0.50 - - -	Table 2.5 - - - - - - - - - - - - -	1.03 eau 4.11 0.5 2.55 2.53 2.50 2.47 2.44 2.30 2.23 2.26	1. Les c 1. Les c 2.06 2.02 1.97 1.90 1.84 1.55 1.35 1.24	K_p 1.5 K_p 1.56 1.51 1.43 1.34 1.25 0.80 0.46 0.22	1.05 1.00 0.89 0.76 0.63 - - -	2.5 0.53 0.45 - - - - - -	2.81 un ang 0.5 3.11 3.09 3.05 3.01 2.97 2.80 2.81 3.03	1 2.54 2.51 2.43 2.35 2.27 1.88 1.70 1.66	ottemen $2/3$ 1.5 K_p 1.95 1.90 1.79 1.67 1.55 0.98 0.60 0.30	$\begin{array}{c} \text{nt } \varphi = 25 \\ \hline 2 \\ \hline 1.35 \\ \hline 1.28 \\ \hline 1.15 \\ 0.99 \\ \hline 0.82 \\ \hline - \\ \hline - \\ \hline - \\ \hline \end{array}$	5° ψ=0 2.5 0.74 0.65 - - - - - - - - -	0.5 0.5 3.49 3.48 3.43 3.39 3.34 3.16 3.28 3.70	1 2.90 2.87 2.78 2.67 2.59 2.13 1.99 2.04	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.28 \\ 2.22 \\ 2.10 \\ 1.95 \\ 1.80 \\ 1.15 \\ 0.72 \\ 0.39 \\ \end{array} $	2 1.63 1.55 1.38 1.19 1.00 - - -	2.5 0.94 0.83 - - - - - - -
$\begin{array}{c} \frac{\delta/\varphi}{H/f} \\ \frac{\delta/\varphi}{1} \\ \frac{\delta/\varphi}{1} \\ \frac{\delta/\varphi}{1} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \end{array}$	0.5 2.04 2.02 2.00 1.97 1.97 1.83 1.74 1.68 1.63	1 1.62 1.59 1.55 1.50 1.45 1.22 1.04 0.91 0.82	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.21 \\ 1.17 \\ 1.10 \\ 1.03 \\ 0.96 \\ 0.62 \\ 0.35 \\ - \\ - \\ - \end{array}$	2 0.78 0.73 0.65 0.56 0.50 - - - - -	Table 2.5 - - - - - - - - - - - - - -	1.03 eau 4.11 0.5 2.55 2.53 2.50 2.47 2.44 2.30 2.23 2.26 2.33	1. Les c 1. Les c 1. Les c 2.06 2.02 1.97 1.90 1.84 1.55 1.35 1.24 1.18	K_p 1.5 K_p 1.56 1.51 1.43 1.34 1.25 0.80 0.46 0.22	1.05 1.00 0.89 0.76 0.63 - - -	2.5 0.53 0.45 - - - - - - - - - -	un ang 0.5 3.11 3.09 3.05 3.01 2.97 2.80 2.81 3.03 3.34	1 2.54 2.51 2.43 2.35 2.27 1.88 1.70 1.66 1.69	ottemer 2/3 1.5 K _p 1.95 1.90 1.79 1.67 1.55 0.98 0.60 0.30	$\begin{array}{c} \text{nt } \varphi = 25 \\ \hline 2 \\ \hline 1.35 \\ \hline 1.28 \\ \hline 1.15 \\ \hline 0.99 \\ \hline 0.82 \\ \hline - \\ \hline \end{array}$	5° ψ=0 2.5 0.74 0.65 - - - - - - - - - - - - -	0.5 3.49 3.48 3.43 3.39 3.34 3.16 3.28 3.70 4.30	1 2.90 2.87 2.78 2.67 2.59 2.13 1.99 2.04 2.20	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 2.28\\ 2.22\\ 2.10\\ 1.95\\ 1.80\\ 1.15\\ 0.72\\ 0.39\\ - \end{array} $	2 1.63 1.55 1.38 1.19 1.00 - - - - -	2.5 0.94 0.83 - - - - - - - - -
$\begin{array}{c} \overline{\delta/\varphi} \\ \overline{H/f} \\ \overline{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \end{array}$	$\begin{array}{c} 0.5 \\ \hline \\ 2.04 \\ 2.02 \\ 2.00 \\ \hline \\ 1.97 \\ \hline \\ 1.83 \\ 1.74 \\ \hline \\ 1.68 \\ \hline \\ 1.63 \\ \hline \\ 1.59 \end{array}$	1 1.62 1.59 1.55 1.50 1.45 1.22 1.04 0.91 0.82 0.74	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.21 \\ 1.17 \\ 1.10 \\ 1.03 \\ 0.96 \\ 0.62 \\ 0.35 \\ - \\ - \\ - \\ - \\ - \end{array}$	2 0.78 0.73 0.65 0.56 0.50 - - - - - - -	Table 2.5 - - - - - - - - - - - - - - - - - - -	1.03 eau 4.11 0.5 2.55 2.53 2.50 2.47 2.44 2.30 2.23 2.26 2.33 2.43	1. Les c 1 2.06 2.02 1.97 1.90 1.84 1.55 1.35 1.24 1.13	oefficie $1/3$ 1.5 K_p 1.56 1.51 1.43 1.34 1.25 0.80 0.46 0.22 $-$	1.05 1.00 0.89 0.76 0.63 -	2.5 0.53 0.45 - - - - - - - - - - - -	un ang 0.5 3.11 3.09 3.05 3.01 2.97 2.80 2.81 3.03 3.34	1 2.54 2.51 2.43 2.35 2.27 1.88 1.70 1.66 1.69 1.76	ottemen $2/3$ 1.5 K_p 1.95 1.90 1.79 1.67 1.55 0.98 0.60 0.30 $-$	$\begin{array}{c} \text{nt } \varphi = 25 \\ \hline 2 \\ \hline 1.35 \\ \hline 1.28 \\ \hline 1.15 \\ \hline 0.99 \\ \hline 0.82 \\ \hline - \\ \hline \hline - \\ \hline - \\ \hline \hline - \\ \hline \hline - \\ \hline - \\ \hline \hline - \\ \hline \hline \hline - \\ \hline \hline - \\ \hline \hline \hline - \\ \hline \hline \hline \hline$	5° ψ=0 2.5 0.74 0.65 - - - - - - - - - - - - -	0.5 0.5 3.49 3.48 3.43 3.39 3.34 3.16 3.28 3.70 4.30 5.12	1 2.90 2.87 2.78 2.67 2.59 2.13 1.99 2.04 2.20 2.43	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 2.28\\ 2.22\\ 2.10\\ 1.95\\ 1.80\\ 1.15\\ 0.72\\ 0.39\\ -\\ -\\ -\\ \end{array} $	2 1.63 1.55 1.38 1.19 1.00 - - - - - -	2.5 0.94 0.83 - - - - - - - - - - - - -
$\begin{array}{c} \overline{\delta/\varphi} \\ \overline{H/f} \\ \overline{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \end{array}$	1.20 0.5 2.04 2.02 2.00 1.97 1.83 1.74 1.68 1.59 1.56	1 1.62 1.59 1.55 1.50 1.45 1.22 1.04 0.91 0.82 0.74 0.67	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.21 \\ 1.17 \\ 1.10 \\ 1.03 \\ 0.96 \\ 0.62 \\ 0.35 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	2 0.78 0.73 0.65 0.56 0.50 - - - - - - - - - -	Table 2.5 - </td <td>au 4.13 0.5 2.55 2.53 2.50 2.47 2.44 2.30 2.23 2.26 2.33 2.43 2.55</td> <td>1. Les c 1 2.06 2.02 1.97 1.90 1.84 1.55 1.24 1.18 1.13</td> <td>oefficie $1/3$ 1.5 K_p 1.56 1.51 1.43 1.34 1.25 0.80 0.46 0.22 $-$</td> <td>1.05 1.00 0.89 0.76 0.63 - - - - - - -</td> <td>Z.5 0.53 0.45 -</td> <td>un ang 0.5 3.11 3.09 3.05 3.01 2.97 2.80 2.81 3.03 3.34 3.75 4.23</td> <td>1 2.54 2.51 2.43 2.35 2.27 1.88 1.70 1.66 1.69 1.76 1.87</td> <td>ottemen $2/3$ 1.5 K_p 1.95 1.90 1.79 1.67 1.55 0.98 0.60 0.30 $-$</td> <td>p = 25 $p = 25$ p</td> <td>$5^{\circ} \psi = 0$ 2.5 0.74 0.65 - - - - - - - - - - - - -</td> <td>0.5 3.49 3.48 3.43 3.39 3.34 3.16 3.28 3.70 4.30 5.12 6.22</td> <td>1 2.90 2.87 2.78 2.67 2.59 2.13 1.99 2.04 2.20 2.43 2.78</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 2.28\\ 2.22\\ 2.10\\ 1.95\\ 1.80\\ 1.15\\ 0.72\\ 0.39\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$</td> <td>2 1.63 1.55 1.38 1.19 1.00 - - - - - - - - -</td> <td>2.5 0.94 0.83 - - - - - - - - - - - - -</td>	au 4.13 0.5 2.55 2.53 2.50 2.47 2.44 2.30 2.23 2.26 2.33 2.43 2.55	1. Les c 1 2.06 2.02 1.97 1.90 1.84 1.55 1.24 1.18 1.13	oefficie $1/3$ 1.5 K_p 1.56 1.51 1.43 1.34 1.25 0.80 0.46 0.22 $ -$	1.05 1.00 0.89 0.76 0.63 - - - - - - -	Z.5 0.53 0.45 -	un ang 0.5 3.11 3.09 3.05 3.01 2.97 2.80 2.81 3.03 3.34 3.75 4.23	1 2.54 2.51 2.43 2.35 2.27 1.88 1.70 1.66 1.69 1.76 1.87	ottemen $2/3$ 1.5 K_p 1.95 1.90 1.79 1.67 1.55 0.98 0.60 0.30 $ -$	p = 25 $p = 25$ p	$5^{\circ} \psi = 0$ 2.5 0.74 0.65 - - - - - - - - - - - - -	0.5 3.49 3.48 3.43 3.39 3.34 3.16 3.28 3.70 4.30 5.12 6.22	1 2.90 2.87 2.78 2.67 2.59 2.13 1.99 2.04 2.20 2.43 2.78	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 2.28\\ 2.22\\ 2.10\\ 1.95\\ 1.80\\ 1.15\\ 0.72\\ 0.39\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 1.63 1.55 1.38 1.19 1.00 - - - - - - - - -	2.5 0.94 0.83 - - - - - - - - - - - - -

					Table	au 4.12	. Les co	efficien	ts de K	, pour u	ın angl	e de fro	ottemen	t φ =20	'ψ=1/2					
δ/φ			0					1/3					2/3					1		
H/f	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5
f/B			K_p					K_p					K_p					K_p		
0.05	2.07	1.65	1.21	0.80	—	2.58	2.08	1.57	1.06	0.53	3.14	2.56	1.96	1.35	0.74	3.62	2.98	2.33	1.66	0.95
0.10	2.06	1.62	1.77	0.75	—	2.57	2.05	1.53	1.01	0.45	3.14	5.53	1.91	1.30	0.65	3.62	2.96	2.28	1.95	0.58
0.15	2.04	1.58	1.10	0.66	—	2.54	1.99	1.45	0.89	—	3.10	2.46	1.81	1.31	—	3.58	2.87	2.15	1.42	-
0.20	2.01	1.53	1.04	0.56	—	2.51	1.93	1.35	0.77	—	3.06	2.38	1.68	0.99	_	3.53	2.78	2.00	1.23	-
0.25	1.99	1.47	0.96	0.50	—	2.48	1.86	1.25	0.63	—	3.02	2.29	1.55	0.82	—	3.49	2.68	1.85	1.03	—
0.50	1.87	1.24	0.62	-	—	2.31	1.55	0.80	—	—	2.83	1.89	0.98	—	—	3.28	2.22	1.16		—
0.75	1.78	1.06	0.35	-	_	2.26	1.35	0.46	-	_	2.84	1.70	0.60	_	—	3.40	2.05	0.73	I	-
1.00	1.71	0.92	-	-	_	2.29	1.24	0.22	-	_	3.05	1.66	0.30	_	_	3.82	2.10	0.39		_
1.25	1.65	0.82	-	-	-	2.36	1.18	-	-	-	3.36	1.69	-	-	-	4.48	2.26	-	-	-
1.50	1.61	0.74	-	-	-	2.45	1.13	-	-	-	3.77	1.76	-	-	_	5.39	2.52	-	-	-
1.75	1.58	0.67	-	-	_	2.57	1.11	-	_	_	4.31	1.78	-	_	—	6.65	2.88	_	-	_
2.00	1.55	0.62	_	_	-	2.71	1 09	-	-	-	4.97	2.03	_	-	-	8.40	3.39	_	_	_
2.00	1.00	0.02					1.07					2.05					0.07			
2.00	1.00	0.02			Tabl	eau 4.1	3. Les c	oefficie	nts de <i>k</i>	K _p pour	un ang	le de fr	ottemei	nt φ =25	$5^{0} \psi = 1$		0.07			
δ/φ	1.00	0.02	0		Tabl	eau 4.1.	3. Les c	oefficie 1/3	nts de <i>R</i>	K _p pour	un ang	le de fr	ottemen 2/3	nt φ =25	5° ψ=1		0.07	1		
<u>δ/φ</u> <u>H/f</u>	0.5	1	0 1.5	2	Table	eau 4.1.	3. Les c	oefficie 1/3 1.5	nts de A	2.5	un ang 0.5	le de fr 1	ottemer 2/3 1.5	nt φ =2 5	$5^{\circ} \psi = 1$ 2.5	0.5	1	1 1.5	2	2.5
δ/φ H/f f/B	0.5	1	0 1.5 K_p	2	Table	eau 4.13	3. Les c	$ oefficie 1/3 1.5 K_p $	nts de <i>k</i>	2.5	un ang 0.5	le de fr 1		$\frac{1}{2}$	$5^{\circ} \psi = 1$ 2.5	0.5	1	$\frac{1}{1.5}$ K_p	2	2.5
$\frac{\delta/\varphi}{H/f}$ $\frac{f/B}{0.05}$	0.5	1	$\begin{array}{c} 0\\ 1.5\\ K_p\\ 1.23 \end{array}$	2	Table 2.5 -	eau 4.13 0.5 2.59	1 2.09	$ \begin{array}{r} \mathbf{oefficie} \\ 1/3 \\ 1.5 \\ K_p \\ 1.57 \end{array} $	nts de <i>E</i> 2 1.06	2.5 0.53	un ang 0.5 3.14	1 2.56	ottemer 2/3 1.5 <i>K_p</i> 1.96	$\frac{1}{2}$	$5^{\circ} \psi = 1$ 2.5 0.74	0.5	1 2.99	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 2.33 \end{array} $	2	2.5 0.93
$\frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10$	0.5 2.09 2.08	1 1.66 1.64	$ \begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.23 \\ 1.20 \end{array} $	2 0.80 0.75	Table 2.5 - -	eau 4.13 0.5 2.59 2.58	1 2.09 2.06	oefficie 1/3 1.5 K _p 1.57 1.53	nts de <i>F</i> 2 1.06 1.01	2.5 0.53 0.45	un ang 0.5 3.14 3.14	1 2.56 2.53	ottemer 2/3 1.5 <i>K_p</i> 1.96 1.91	p = 25 2 1.35 1.30	5 ⁰ ψ=1 2.5 0.74 0.65	0.5 3.62 3.63	1 2.99 2.96	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.33 \\ 2.28 \\ \end{array} $	2 1.67 1.59	2.5 0.93 0.83
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 $	0.5 2.09 2.08 2.05	1 1.66 1.64 1.59	$ \begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.23 \\ 1.20 \\ 1.13 \end{array} $	2 0.80 0.75 0.66	Table 2.5 - - - - -	eau 4.13 0.5 2.59 2.58 2.55	1 2.09 2.06 2.00	oefficie 1/3 1.5 K _p 1.57 1.53 1.45	2 1.06 1.01 0.89	2.5 0.53 0.45 –	0.5 0.5 3.14 3.14 3.10	1 2.56 2.53 2.46	ottemer 2/3 1.5 K _p 1.96 1.91 1.81	$\frac{1.35}{1.30}$	5 ⁰ ψ=1 2.5 0.74 0.65 -	0.5 3.62 3.63 3.59	1 2.99 2.96 2.88	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.33 \\ 2.28 \\ 2.15 \\ \end{array} $	2 1.67 1.59 1.42	2.5 0.93 0.83 -
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 $	0.5 2.09 2.08 2.05 2.03	1 1.66 1.64 1.59 1.54	$ \begin{array}{r} 0\\ 1.5\\ K_p\\ 1.23\\ 1.20\\ 1.13\\ 1.05\\ \end{array} $	2 0.80 0.75 0.66 0.56	Table 2.5 - - - - - - -	eau 4.13 0.5 2.59 2.58 2.55 2.51 2.51	1 2.09 2.06 2.00 1.93	K_p 1.5 K_p 1.57 1.53 1.45 1.34	2 1.06 1.01 0.89 0.77	2.5 0.53 0.45 –	un ang 0.5 3.14 3.14 3.10 3.06	1 2.56 2.53 2.46 2.38	ottemen 2/3 1.5 K _p 1.96 1.91 1.81 1.68	$\frac{1.35}{1.30}$ 1.15 0.99	5° ψ=1 2.5 0.74 0.65 -	0.5 3.62 3.63 3.59 3.54	1 2.99 2.96 2.88 2.78	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.33 \\ 2.28 \\ 2.15 \\ 2.00 \\ \end{array} $	2 1.67 1.59 1.42 1.22	2.5 0.93 0.83 –
$ \frac{\delta/\varphi}{H/f} \\ \frac{\delta/\varphi}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 $	0.5 2.09 2.08 2.05 2.03 2.00	1 1.66 1.64 1.59 1.54 1.49	$ \begin{array}{r} 0\\ 1.5\\ K_p\\ 1.23\\ 1.20\\ 1.13\\ 1.05\\ 0.97\\ \end{array} $	2 0.80 0.75 0.66 0.56 0.50	Table 2.5 - - - - - - - - - - - - -	eau 4.13 0.5 2.59 2.58 2.55 2.51 2.48	1 2.09 2.06 2.00 1.93 1.86	K_p 1.5 K_p 1.57 1.53 1.45 1.34 1.25	1.06 1.01 0.89 0.77 0.63	2.5 0.53 0.45 - -	un ang 0.5 3.14 3.14 3.10 3.06 3.02	1 2.56 2.53 2.46 2.38 2.29	otteme $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55	$\frac{1}{2}$ $\frac{1.35}{1.30}$ $\frac{1.15}{0.99}$ 0.82	5 ⁰ ψ=1 2.5 0.74 0.65 - - -	0.5 3.62 3.63 3.59 3.54 3.50	1 2.99 2.96 2.88 2.78 2.67	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.33 \\ 2.28 \\ 2.15 \\ 2.00 \\ 1.85 \\ \end{array} $	2 1.67 1.59 1.42 1.22 1.02	2.5 0.93 0.83 - - -
$ \begin{array}{r} \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \end{array} $	0.5 2.09 2.08 2.05 2.03 2.00 1.88	1 1.66 1.64 1.59 1.54 1.49 1.24	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.23 \\ 1.20 \\ 1.13 \\ 1.05 \\ 0.97 \\ 0.62 \end{array}$	2 0.80 0.75 0.66 0.56 0.50 -	Table 2.5 - - - - - - - - - - - - - - - - - - -	eau 4.13 0.5 2.59 2.58 2.55 2.51 2.48 2.32 2.32	1 2.09 2.06 2.00 1.93 1.86 1.55	K_p 1.5 K_p 1.57 1.53 1.45 1.34 1.25 0.80	1.06 1.01 0.89 0.77 0.63 -	2.5 0.53 0.45 - - - -	un ang 0.5 3.14 3.14 3.10 3.06 3.02 2.83	1 2.56 2.53 2.46 2.38 2.29 1.89	otteme $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55 0.98	$\frac{1.35}{1.30}$ $\frac{1.15}{0.99}$ 0.82 -	5° ψ=1 2.5 0.74 0.65 - - - - -	0.5 3.62 3.63 3.59 3.54 3.50 3.29	1 2.99 2.96 2.88 2.78 2.67 2.22	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.33 \\ 2.28 \\ 2.15 \\ 2.00 \\ 1.85 \\ 1.16 \\ \end{array} $	2 1.67 1.59 1.42 1.22 1.02 -	2.5 0.93 0.83 - - - -
$\begin{array}{c} \delta/\varphi \\ H/f \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \end{array}$	0.5 2.09 2.08 2.05 2.03 2.00 1.88 1.78	1 1.66 1.64 1.59 1.54 1.49 1.24 1.06	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.23 \\ 1.20 \\ 1.13 \\ 1.05 \\ 0.97 \\ 0.62 \\ 0.35 \end{array}$	2 0.80 0.75 0.66 0.56 0.50 -	Table 2.5 -	eau 4.13 0.5 2.59 2.58 2.55 2.51 2.48 2.32 2.26	1 2.09 2.06 2.00 1.93 1.86 1.55 1.35	K_p 1.5 K_p 1.57 1.53 1.45 1.34 1.25 0.80 0.46	2 1.06 1.01 0.89 0.77 0.63 -	2.5 0.53 0.45 - - - -	un ang 0.5 3.14 3.14 3.10 3.06 3.02 2.83 2.84	1 2.56 2.53 2.46 2.38 2.29 1.89 1.70	ottemen $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55 0.98 0.60	$\frac{1.35}{1.30}$ $\frac{1.15}{0.99}$ 0.82 $-$	5 ⁰ ψ=1 2.5 0.74 0.65 - - - - - -	0.5 3.62 3.63 3.59 3.54 3.50 3.29 3.41	1 2.99 2.96 2.88 2.78 2.67 2.22 2.05	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.33 \\ 2.28 \\ 2.15 \\ 2.00 \\ 1.85 \\ 1.16 \\ 0.73 \\ \end{array} $	2 1.67 1.59 1.42 1.22 1.02 -	2.5 0.93 0.83 - - - - -
$\frac{\delta/\varphi}{H/f}$ $\frac{f/B}{0.05}$ 0.10 0.15 0.20 0.25 0.50 0.75 1.00	0.5 2.09 2.08 2.05 2.03 2.00 1.88 1.78 1.71	1 1.66 1.64 1.59 1.54 1.49 1.24 1.06 0.92	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.23 \\ 1.20 \\ 1.13 \\ 1.05 \\ 0.97 \\ 0.62 \\ 0.35 \\ - \end{array}$	2 0.80 0.75 0.66 0.56 0.50 - - - -	Table 2.5 - </td <td>eau 4.13 0.5 2.59 2.58 2.55 2.51 2.48 2.32 2.26 2.29 2.29</td> <td>1 2.09 2.06 2.00 1.93 1.86 1.55 1.35 1.24</td> <td>K_p 1.5 K_p 1.57 1.53 1.45 1.34 1.25 0.80 0.46 0.22</td> <td>1.06 1.01 0.89 0.77 0.63 - -</td> <td>2.5 0.53 0.45 - - - - - - -</td> <td>un ang 0.5 3.14 3.14 3.10 3.06 3.02 2.83 2.84 3.05</td> <td>1 2.56 2.53 2.46 2.38 2.29 1.89 1.70 1.66</td> <td>otteme $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55 0.98 0.60 0.30</td> <td>$\frac{1.35}{1.30}$ $\frac{1.35}{0.99}$ $\frac{0.82}{-}$ $-$</td> <td>5⁰ ψ=1 2.5 0.74 0.65 - - - - - - - - -</td> <td>0.5 3.62 3.63 3.59 3.54 3.50 3.29 3.41 3.84</td> <td>1 2.99 2.96 2.88 2.78 2.67 2.22 2.05 2.09</td> <td>$\begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.33 \\ 2.28 \\ 2.15 \\ 2.00 \\ 1.85 \\ 1.16 \\ 0.73 \\ 0.40 \\ \end{array}$</td> <td>2 1.67 1.59 1.42 1.22 1.02 - - -</td> <td>2.5 0.93 0.83 - - - - - - - -</td>	eau 4.13 0.5 2.59 2.58 2.55 2.51 2.48 2.32 2.26 2.29 2.29	1 2.09 2.06 2.00 1.93 1.86 1.55 1.35 1.24	K_p 1.5 K_p 1.57 1.53 1.45 1.34 1.25 0.80 0.46 0.22	1.06 1.01 0.89 0.77 0.63 - -	2.5 0.53 0.45 - - - - - - -	un ang 0.5 3.14 3.14 3.10 3.06 3.02 2.83 2.84 3.05	1 2.56 2.53 2.46 2.38 2.29 1.89 1.70 1.66	otteme $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55 0.98 0.60 0.30	$\frac{1.35}{1.30}$ $\frac{1.35}{0.99}$ $\frac{0.82}{-}$ $-$	5 ⁰ ψ=1 2.5 0.74 0.65 - - - - - - - - -	0.5 3.62 3.63 3.59 3.54 3.50 3.29 3.41 3.84	1 2.99 2.96 2.88 2.78 2.67 2.22 2.05 2.09	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 2.33 \\ 2.28 \\ 2.15 \\ 2.00 \\ 1.85 \\ 1.16 \\ 0.73 \\ 0.40 \\ \end{array} $	2 1.67 1.59 1.42 1.22 1.02 - - -	2.5 0.93 0.83 - - - - - - - -
$\begin{array}{c} \delta/\varphi \\ H/f \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \end{array}$	0.5 2.09 2.08 2.05 2.03 2.00 1.88 1.78 1.71 1.66	1 1.66 1.64 1.59 1.54 1.49 1.24 1.06 0.92 0.82	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 1.23\\ 1.20\\ 1.13\\ 1.05\\ 0.97\\ 0.62\\ 0.35\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 0.80 0.75 0.66 0.56 0.50 - - - - -	Table 2.5 - </td <td>eau 4.13 0.5 2.59 2.58 2.55 2.51 2.48 2.32 2.26 2.29 2.36</td> <td>1.09 3. Les c 1 2.09 2.06 2.00 1.93 1.86 1.55 1.35 1.24 1.18</td> <td>K_p 1.5 K_p 1.57 1.53 1.45 1.34 1.25 0.80 0.46 0.22</td> <td>1.06 1.01 0.89 0.77 0.63 - - - - - - - - -</td> <td>2.5 0.53 0.45 - - - - - - - -</td> <td>un ang 0.5 3.14 3.14 3.10 3.06 3.02 2.83 2.84 3.05 3.36</td> <td>1 2.56 2.53 2.46 2.38 2.29 1.89 1.70 1.66 1.69</td> <td>ottemen $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55 0.98 0.60 0.30</td> <td>$\frac{1.35}{1.30}$ $\frac{1.35}{0.99}$ 0.82 $-$ $-$ $-$ $-$</td> <td>$5^{\circ} \psi = 1$ 2.5 0.74 0.65 - - - - - - - - -</td> <td>0.5 3.62 3.63 3.59 3.54 3.50 3.29 3.41 3.84 4.51</td> <td>1 2.99 2.96 2.88 2.78 2.67 2.22 2.05 2.09 2.28</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 2.33\\ 2.28\\ 2.15\\ 2.00\\ 1.85\\ 1.16\\ 0.73\\ 0.40\\ - \end{array}$</td> <td>2 1.67 1.59 1.42 1.22 1.02 - - - -</td> <td>2.5 0.93 0.83 - - - - - - - - - -</td>	eau 4.13 0.5 2.59 2.58 2.55 2.51 2.48 2.32 2.26 2.29 2.36	1.09 3. Les c 1 2.09 2.06 2.00 1.93 1.86 1.55 1.35 1.24 1.18	K_p 1.5 K_p 1.57 1.53 1.45 1.34 1.25 0.80 0.46 0.22	1.06 1.01 0.89 0.77 0.63 - - - - - - - - -	2.5 0.53 0.45 - - - - - - - -	un ang 0.5 3.14 3.14 3.10 3.06 3.02 2.83 2.84 3.05 3.36	1 2.56 2.53 2.46 2.38 2.29 1.89 1.70 1.66 1.69	ottemen $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55 0.98 0.60 0.30	$\frac{1.35}{1.30}$ $\frac{1.35}{0.99}$ 0.82 $-$ $-$ $-$ $-$	$5^{\circ} \psi = 1$ 2.5 0.74 0.65 - - - - - - - - -	0.5 3.62 3.63 3.59 3.54 3.50 3.29 3.41 3.84 4.51	1 2.99 2.96 2.88 2.78 2.67 2.22 2.05 2.09 2.28	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 2.33\\ 2.28\\ 2.15\\ 2.00\\ 1.85\\ 1.16\\ 0.73\\ 0.40\\ - \end{array} $	2 1.67 1.59 1.42 1.22 1.02 - - - -	2.5 0.93 0.83 - - - - - - - - - -
$\begin{array}{c} \overline{\delta/\varphi} \\ \overline{H/f} \\ \overline{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \end{array}$	0.5 2.09 2.08 2.05 2.03 2.00 1.88 1.78 1.71 1.66 1.61	1 1.66 1.64 1.59 1.54 1.49 1.24 1.06 0.92 0.82 0.74	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.23 \\ 1.20 \\ 1.13 \\ 1.05 \\ 0.97 \\ 0.62 \\ 0.35 \\ - \\ - \\ - \\ - \end{array}$	2 0.80 0.75 0.66 0.56 0.50 - - - - - - -	Table 2.5 -	au 4.13 0.5 2.59 2.58 2.55 2.51 2.48 2.32 2.26 2.29 2.36 2.45 2.45	1 2.09 2.06 2.00 1.93 1.86 1.55 1.35 1.24 1.18 1.13	oefficie $1/3$ 1.5 K_p 1.57 1.53 1.45 1.34 1.25 0.80 0.46 0.22 $-$	1.06 1.01 0.89 0.77 0.63 - - - - -	2.5 0.53 0.45 - - - - - - - - - - - -	un ang 0.5 3.14 3.14 3.10 3.06 3.02 2.83 2.84 3.05 3.36 3.77	1 2.56 2.53 2.46 2.38 2.29 1.89 1.70 1.66 1.69 1.76	ottemen $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55 0.98 0.60 0.30 $-$	p = 25 $p = 25$ p	$5^{\circ} \psi = 1$ 2.5 0.74 0.65 - - - - - - - - - - - -	0.5 3.62 3.63 3.59 3.54 3.50 3.29 3.41 3.84 4.51 5.41	1 2.99 2.96 2.88 2.78 2.67 2.22 2.05 2.09 2.28 2.52	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 2.33\\ 2.28\\ 2.15\\ 2.00\\ 1.85\\ 1.16\\ 0.73\\ 0.40\\ -\\ -\\ -\\ -\\ -\\ \end{array} $	2 1.67 1.59 1.42 1.22 1.02 - - - - - - -	2.5 0.93 0.83 - - - - - - - - - - -
$\begin{array}{c} \overline{\delta/\varphi} \\ \overline{H/f} \\ \overline{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \end{array}$	0.5 2.09 2.08 2.05 2.03 2.00 1.88 1.78 1.71 1.66 1.61 1.58	1 1.66 1.64 1.59 1.54 1.49 1.24 1.06 0.92 0.82 0.74 0.67	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.23 \\ 1.20 \\ 1.13 \\ 1.05 \\ 0.97 \\ 0.62 \\ 0.35 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	2 0.80 0.75 0.66 0.56 0.50 - - - - - - - - - -	Table 2.5 -	eau 4.13 0.5 2.59 2.58 2.55 2.51 2.48 2.32 2.26 2.29 2.36 2.45 2.57	1 2.09 2.06 2.00 1.93 1.86 1.55 1.35 1.24 1.18 1.13	oefficie $1/3$ 1.5 K_p 1.57 1.53 1.45 1.34 1.25 0.80 0.46 0.22 $ -$	1.06 1.01 0.89 0.77 0.63 - - - - - -	2.5 0.53 0.45 - - - - - - - - - - - - -	un ang 0.5 3.14 3.14 3.10 3.06 3.02 2.83 2.84 3.05 3.36 3.77 4.31	1 2.56 2.53 2.46 2.38 2.29 1.89 1.70 1.66 1.69 1.76 1.87	otteme $2/3$ 1.5 K_p 1.96 1.91 1.81 1.68 1.55 0.98 0.60 0.30 $ -$	p = 2! $p = 2!$ $p = 2!$ $p = 2!$ $p = 1.35$ $p = 1.$	$5^{\circ} \psi = 1$ 2.5 0.74 0.65 - - - - - - - - - - - - -	0.5 3.62 3.63 3.59 3.54 3.50 3.29 3.41 3.84 4.51 5.41 6.76	1 2.99 2.96 2.88 2.78 2.67 2.22 2.05 2.09 2.28 2.52 3.00	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 2.33\\ 2.28\\ 2.15\\ 2.00\\ 1.85\\ 1.16\\ 0.73\\ 0.40\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 1.67 1.59 1.42 1.22 1.02 - - - - - - - - - -	2.5 0.93 0.83 - - - - - - - - - - - - - - - -

					Tab	leau 4.1	4. Les	coefficie	ents de	K_p pour	r un ang	gle de fr	otteme	nt <i>q</i> =3	0° ψ=0					
δ/φ			0					1/3					2/3					1		
H/f	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5
f/B			K_p					K_p		-			K_p					K_p		
0.05	2.46	1.99	1.50	1.00	-	3.34	2.73	2.10	1.47	0.81	4.31	3.57	2.84	2.05	1.22	4.89	4.21	3.40	2.51	1.59
0.10	2.46	1.95	1.45	0.94	-	3.31	2.69	2.05	1.39	0.70	4.29	3.53	2.76	1.95	1.09	4.92	4.15	3.32	2.41	1.42
0.15	2.41	1.89	1.37	0.82	-	3.28	2.61	1.92	1.24	0.50	4.19	3.42	2.58	1.74	0.82	4.84	3.99	3.13	2.16	1.09
0.20	2.38	1.83	1.27	0.70	-	3.24	2.53	1.81	1.08	-	4.14	3.30	2.39	1.51	_	4.76	3.82	2.92	1.87	—
0.25	2.35	1.76	1.19	0.70	-	3.20	2.44	1.68	0.91	-	4.07	3.17	2.19	1.28	_	4.68	3.74	2.69	1.57	—
0.50	2.20	1.48	0.76	_	-	3.02	2.05	1.08	—	-	3.92	2.65	1.42	_	—	4.52	3.16	1.71	_	—
0.75	2.10	1.27	0.44	-	-	3.00	1.82	0.64	-	-	4.20	2.56	0.92	-	—	5.20	3.18	1.18	—	—
1.00	2.04	1.11	-	-	-	3.17	1.74	0.32	-	-	4.89	2.71	0.52	-	_	6.49	3.63	0.72	_	-
1.25	1.99	0.99	-	-	-	3.37	1.71	-	-	-	5.87	3.00	-	-	-	8.33	4.37			
1.50	1.94	0.90	-	-	-	3.63	1.71	-	-	-	7.19	3.41	-	-	-	11.23	5.47		_	
1.75	1.91	0.82	-	-	-	3.98	1.74	-	-	-	9.05	4.02	_	-	_	16.06	7.07			—
2.00	1.88	0.76	-	_	-	3.39	1.80	_	_	_	10.81	4.83	_	_	_	21.42	9.59	_	_	_
						0.07					10.01					-		• •		
					Table	eau 4.15	5. Les c	oefficie	nts de <i>l</i>	K _p pour	un angl	e de fro	ttemen	t φ =30	$^{0}\psi = 1/2$	2		·		
δ/φ			0		Table	eau 4.15	5. Les c	oefficie 1/3	nts de <i>l</i>	K _p pour	un angl	e de fro	ttemen 2/3	t φ =30	⁰ ψ=1/2	2	I	1		
δ/φ H/f	0.5	1	0 1.5	2	Table	eau 4.15	5. Les co	0efficie 1/3 1.5	nts de <i>l</i> 2	K _p pour 2.5	un angl 0.5	e de fro	ttemen 2/3 1.5	t φ =30 2	⁰ ψ=1/2 2.5	0.5	1	1 1.5	2	2.5
δ/φ H/f f/B	0.5	1	0 1.5 K_p	2	Table	eau 4.15	5. Les co	$ \begin{array}{r} \mathbf{0efficier} \\ 1/3 \\ 1.5 \\ K_p \end{array} $	nts de <i>I</i>	K _p pour 2.5	un angl 0.5	e de fro	$\frac{2/3}{1.5}$	t φ =30	⁰ ψ=1/2 2.5	0.5	1	$\frac{1}{1.5}$ K_p	2	2.5
δ/φ H/f f/B 0.05	0.5	1 2.05	0 1.5 K_p 1.50	2	Table 2.5	eau 4.15	1 2.78	0efficie 1/3 1.5 <i>K_p</i> 2.15	2 1.50	2.5 0.82	0.5 4.47	e de fro	ttemen 2/3 1.5 K _p 2.91	t φ =30 2 2.09	⁰ ψ=1/2 2.5 1.24	0.5	1 4.18	$ \frac{1}{1.5} $ $ \frac{K_p}{3.65} $	2	2.5 1.71
δ/φ H/f f/B 0.05 0.10	0.5 2.54 2.53	1 2.05 2.01	$ \begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.50 \\ 1.45 \end{array} $	2 1.03 0.97	Table 2.5 - -	0.5 3.42 3.40	1 2.78 2.75	K_p 2.15 2.10	1.50	 <i>k_p</i> pour 2.5 0.82 0.72 	un angl 0.5 4.47 4.46	e de fro 1 3.70 3.66		t φ =30 2 2.09 1.99	⁰ ψ=1/2 2.5 1.24 1.11	0.5 5.45 5.43	1 4.18 4.52	$ \begin{array}{c} 1 \\ 1.5 \\ K_p \\ 3.65 \\ 3.57 \\ \end{array} $	2 2.71 2.60	2.5 1.71 1.55
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 $	0.5 2.54 2.53 2.50	1 2.05 2.01 1.96	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 1.50\\ 1.45\\ 1.37\\ \end{array} $	2 1.03 0.97 0.86	Table 2.5 - - - -	0.5 0.5 3.42 3.40 3.36	1 2.78 2.75 2.66	<i>interpretation</i> 1/3 1.5 <i>K</i> _p 2.15 2.10 1.98	2 1.50 1.42 1.27	2.5 0.82 0.72 0.52	un angl 0.5 4.47 4.46 4.41	e de fro 1 3.70 3.66 3.56	ttemen 2/3 1.5 K _p 2.91 2.84 2.68	t φ =30 2 2.09 1.99 1.79	⁰ ψ=1/2 2.5 1.24 1.11 0.84	0.5 5.45 5.43 5.37	1 4.18 4.52 4.39	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 3.65 \\ 3.57 \\ 3.38 \\ \end{array} $	2 2.71 2.60 2.33	2.5 1.71 1.55 1.20
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 $	0.5 2.54 2.53 2.50 2.47	1 2.05 2.01 1.96 1.89	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 1.50\\ 1.45\\ 1.37\\ 1.27\\ \end{array} $	2 1.03 0.97 0.86 0.74	Table 2.5 - - - - - - -	au 4.15 0.5 3.42 3.40 3.36 3.33 3.33	1 2.78 2.75 2.66 2.58	K_p 2.15 2.10 1.98 1.85	2 1.50 1.42 1.27 1.10	2.5 0.82 0.72 0.52 -	un angl 0.5 4.47 4.46 4.41 4.35	e de fro 1 3.70 3.66 3.56 3.44	ttemen 2/3 1.5 K _p 2.91 2.84 2.68 2.49	2 2.09 1.99 1.79 1.55	⁰ ψ=1/2 2.5 1.24 1.11 0.84 -	0.5 5.45 5.43 5.37 5.30	1 4.18 4.52 4.39 4.23	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 3.65 \\ 3.57 \\ 3.38 \\ 3.15 \\ \end{array} $	2 2.71 2.60 2.33 2.03	2.5 1.71 1.55 1.20 -
$\frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\$	0.5 2.54 2.53 2.50 2.47 2.44	1 2.05 2.01 1.96 1.89 1.83	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 1.50\\ 1.45\\ 1.37\\ 1.27\\ 1.19\\ \end{array} $	2 1.03 0.97 0.86 0.74 0.70	Table 2.5 - - - - - - - - - - - - - - - -	au 4.15 0.5 3.42 3.40 3.36 3.33 3.27	1 2.78 2.75 2.66 2.58 2.50	K_p 2.15 2.10 1.98 1.85 1.71	1.50 1.42 1.27 1.10 0.92	2.5 0.82 0.72 0.52 - -	un angl 0.5 4.47 4.46 4.41 4.35 4.28	e de fro 3.70 3.66 3.56 3.44 3.30		2 2.09 1.99 1.79 1.55 1.29	⁰ ψ=1/2 2.5 1.24 1.11 0.84 - -	0.5 5.45 5.43 5.37 5.30 5.24	1 4.18 4.52 4.39 4.23 4.09	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 3.65 \\ 3.57 \\ 3.38 \\ 3.15 \\ 2.92 \\ \end{array} $	2 2.71 2.60 2.33 2.03 1.72	2.5 1.71 1.55 1.20 - -
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 $	0.5 2.54 2.53 2.50 2.47 2.44 2.29	1 2.05 2.01 1.96 1.89 1.83 1.53	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.50 \\ 1.45 \\ 1.37 \\ 1.27 \\ 1.19 \\ 0.76 \end{array}$	2 1.03 0.97 0.86 0.74 0.70 -	Table 2.5 - - - - - - - - - - - - - - - - -	3.42 3.40 3.36 3.27 3.07	1 2.78 2.75 2.66 2.58 2.50 2.07	K_p 2.15 2.10 1.98 1.85 1.71	1.50 1.42 1.27 1.10 0.92 -	2.5 0.82 0.72 0.52 - - -	un angl 0.5 4.47 4.46 4.41 4.35 4.28 4.03	a de from 1 3.70 3.66 3.56 3.56 3.44 3.30 2.73		2 2.09 1.99 1.79 1.55 1.29 -	⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - -	0.5 5.45 5.43 5.37 5.30 5.24 4.99	1 4.18 4.52 4.39 4.23 4.09 3.42	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 3.65 \\ 3.57 \\ 3.38 \\ 3.15 \\ 2.92 \\ 1.84 \\ \end{array} $	2 2.71 2.60 2.33 2.03 1.72 -	2.5 1.71 1.55 1.20 - -
$\frac{\delta/\varphi}{H/f} \\ \frac{H/f}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ $	0.5 2.54 2.53 2.50 2.47 2.44 2.29 2.17	1 2.05 2.01 1.96 1.89 1.83 1.53 1.27	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.50 \\ 1.45 \\ 1.37 \\ 1.27 \\ 1.19 \\ 0.76 \\ 0.44 \end{array}$	2 1.03 0.97 0.86 0.74 0.70 -	Table 2.5 -	au 4.15 0.5 3.42 3.40 3.36 3.33 3.27 3.07 3.06	1 2.78 2.75 2.66 2.58 2.50 2.07 1.85	K_p 2.15 2.10 1.98 1.85 1.71 1.08 0.64	1.50 1.42 1.27 1.10 0.92 -	2.5 0.82 0.72 0.52 - - - -	un angl 0.5 4.47 4.46 4.41 4.35 4.28 4.03 4.32	a de from 1 3.70 3.66 3.66 3.56 3.44 3.30 2.73 2.60 2.60 3.60 3.60	$\begin{array}{c} \textbf{ttemen} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 2.91 \\ \hline 2.84 \\ \hline 2.68 \\ \hline 2.49 \\ \hline 2.31 \\ \hline 1.43 \\ \hline 0.92 \end{array}$	2 2.09 1.99 1.79 1.55 1.29 - -	⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - -	0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63	1 4.18 4.52 4.39 4.23 4.09 3.42 3.44	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 3.65 \\ 3.57 \\ 3.38 \\ 3.15 \\ 2.92 \\ 1.84 \\ 1.24 \\ \end{array} $	2 2.71 2.60 2.33 2.03 1.72 -	2.5 1.71 1.55 1.20 - - - -
$\frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 0.00 \\$	0.5 2.54 2.53 2.50 2.47 2.44 2.29 2.17 2.09	1 2.05 2.01 1.96 1.89 1.83 1.53 1.27 1.13	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.50 \\ 1.45 \\ 1.37 \\ 1.27 \\ 1.19 \\ 0.76 \\ 0.44 \\ - \end{array}$	2 1.03 0.97 0.86 0.74 0.70 - - -	Table 2.5 - </td <td>3.42 3.40 3.36 3.37 3.07 3.06 3.22</td> <td>1 2.78 2.75 2.66 2.58 2.50 2.07 1.85 1.76</td> <td>K_p 2.15 2.10 1.98 1.85 1.71 0.64 0.32</td> <td>1.50 1.42 1.27 1.10 0.92 - - -</td> <td>2.5 0.82 0.72 0.52 - - - - -</td> <td>un angl 0.5 4.47 4.46 4.41 4.35 4.28 4.03 4.32 5.00</td> <td>e de fro 1 3.70 3.66 3.56 3.44 3.30 2.73 2.60 2.74</td> <td>ttemen $2/3$ 1.5 K_p 2.91 2.84 2.68 2.49 2.31 1.43 0.92 0.52</td> <td>2 2.09 1.99 1.79 1.55 1.29 - - -</td> <td>⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - - -</td> <td>0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63 7.05</td> <td>1 4.18 4.52 4.39 4.23 4.09 3.42 3.44 3.94</td> <td><math display="block"> \begin{array}{r} 1 \\ 1.5 \\ $K_p \\ 3.65 \\ 3.57 \\ 3.38 \\ 3.15 \\ 2.92 \\ 1.84 \\ 1.24 \\ 0.76 \\ \end{array}$</math></td> <td>2 2.71 2.60 2.33 2.03 1.72 - - -</td> <td>2.5 1.71 1.55 1.20 - - - - - -</td>	3.42 3.40 3.36 3.37 3.07 3.06 3.22	1 2.78 2.75 2.66 2.58 2.50 2.07 1.85 1.76	K_p 2.15 2.10 1.98 1.85 1.71 0.64 0.32	1.50 1.42 1.27 1.10 0.92 - - -	2.5 0.82 0.72 0.52 - - - - -	un angl 0.5 4.47 4.46 4.41 4.35 4.28 4.03 4.32 5.00	e de fro 1 3.70 3.66 3.56 3.44 3.30 2.73 2.60 2.74	ttemen $2/3$ 1.5 K_p 2.91 2.84 2.68 2.49 2.31 1.43 0.92 0.52	2 2.09 1.99 1.79 1.55 1.29 - - -	⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - - -	0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63 7.05	1 4.18 4.52 4.39 4.23 4.09 3.42 3.44 3.94	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 3.65 \\ 3.57 \\ 3.38 \\ 3.15 \\ 2.92 \\ 1.84 \\ 1.24 \\ 0.76 \\ \end{array} $	2 2.71 2.60 2.33 2.03 1.72 - - -	2.5 1.71 1.55 1.20 - - - - - -
$\frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 0.51 \\ 0.00 \\$	0.5 2.54 2.53 2.50 2.47 2.44 2.29 2.17 2.09 2.02	1 2.05 2.01 1.96 1.89 1.83 1.53 1.27 1.13 1.01	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.50 \\ 1.45 \\ 1.37 \\ 1.27 \\ 1.19 \\ 0.76 \\ 0.44 \\ - \\ - \\ - \end{array}$	2 1.03 0.97 0.86 0.74 0.70 - - - - -	Table 2.5 - </td <td>au 4.15 0.5 3.42 3.40 3.36 3.33 3.27 3.07 3.06 3.22 3.42</td> <td>1 2.78 2.75 2.66 2.58 2.50 2.07 1.85 1.76 1.71</td> <td>K_p 2.15 2.10 1.98 1.85 1.71 1.08 0.64 0.32</td> <td>1.50 1.42 1.27 1.10 0.92 - - - -</td> <td>2.5 0.82 0.72 0.52 - - - - - - -</td> <td>un angl 0.5 4.47 4.46 4.41 4.35 4.03 4.32 5.00 5.98</td> <td>e de fro 1 3.70 3.66 3.56 3.44 3.30 2.73 2.60 2.74 3.02</td> <td>$\begin{array}{c} \text{ttemen} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 2.91 \\ \hline 2.84 \\ \hline 2.68 \\ \hline 2.49 \\ \hline 2.31 \\ \hline 1.43 \\ \hline 0.92 \\ \hline 0.52 \\ \hline - \end{array}$</td> <td>2 2.09 1.99 1.79 1.55 1.29 - - - -</td> <td>⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - - - -</td> <td>0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63 7.05 9.29</td> <td>1 4.18 4.52 4.39 4.23 4.09 3.42 3.44 3.94 4.76</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 3.65\\ 3.57\\ 3.38\\ 3.15\\ 2.92\\ 1.84\\ 1.24\\ 0.76\\ - \end{array}$</td> <td>2 2.71 2.60 2.33 2.03 1.72 - - - -</td> <td>2.5 1.71 1.55 1.20 - - - - - - - -</td>	au 4.15 0.5 3.42 3.40 3.36 3.33 3.27 3.07 3.06 3.22 3.42	1 2.78 2.75 2.66 2.58 2.50 2.07 1.85 1.76 1.71	K_p 2.15 2.10 1.98 1.85 1.71 1.08 0.64 0.32	1.50 1.42 1.27 1.10 0.92 - - - -	2.5 0.82 0.72 0.52 - - - - - - -	un angl 0.5 4.47 4.46 4.41 4.35 4.03 4.32 5.00 5.98	e de fro 1 3.70 3.66 3.56 3.44 3.30 2.73 2.60 2.74 3.02	$\begin{array}{c} \text{ttemen} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 2.91 \\ \hline 2.84 \\ \hline 2.68 \\ \hline 2.49 \\ \hline 2.31 \\ \hline 1.43 \\ \hline 0.92 \\ \hline 0.52 \\ \hline - \end{array}$	2 2.09 1.99 1.79 1.55 1.29 - - - -	⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - - - -	0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63 7.05 9.29	1 4.18 4.52 4.39 4.23 4.09 3.42 3.44 3.94 4.76	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 3.65\\ 3.57\\ 3.38\\ 3.15\\ 2.92\\ 1.84\\ 1.24\\ 0.76\\ - \end{array} $	2 2.71 2.60 2.33 2.03 1.72 - - - -	2.5 1.71 1.55 1.20 - - - - - - - -
$\frac{\delta/\varphi}{H/f} \\ \frac{H/f}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ \end{array}$	0.5 2.54 2.53 2.50 2.47 2.44 2.29 2.17 2.09 2.02 1.97	1 2.05 2.01 1.96 1.89 1.83 1.53 1.27 1.13 1.01 0.90	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.50 \\ 1.45 \\ 1.37 \\ 1.27 \\ 1.19 \\ 0.76 \\ 0.44 \\ - \\ - \\ - \\ - \\ - \end{array}$	2 1.03 0.97 0.86 0.74 0.70 - - - - - -	Table 2.5 - </td <td>3.42 3.40 3.36 3.33 3.27 3.06 3.22 3.42</td> <td>1 2.78 2.75 2.66 2.58 2.50 2.07 1.85 1.76 1.71</td> <td>$1/3$ $1/3$ 1.5 K_p 2.15 2.10 1.98 1.85 1.71 1.08 0.64 0.32 $-$</td> <td>1.50 1.42 1.27 1.10 0.92 - - - - -</td> <td>2.5 0.82 0.72 0.52 - - - - - - - -</td> <td>un angl 0.5 4.47 4.46 4.41 4.35 4.28 4.03 4.32 5.00 5.98 7.36</td> <td>a a</td> <td>ttemen $2/3$ 1.5 K_p 2.91 2.84 2.68 2.49 2.31 1.43 0.92 0.52 $-$</td> <td>t φ =30 2 2.09 1.99 1.79 1.55 1.29 - - - - - - - -</td> <td>⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - - - - - -</td> <td>0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63 7.05 9.29 12.91</td> <td>1 4.18 4.52 4.39 4.23 4.09 3.42 3.44 3.94 4.76 6.05</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 3.65\\ 3.57\\ 3.38\\ 3.15\\ 2.92\\ 1.84\\ 1.24\\ 0.76\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$</td> <td>2 2.71 2.60 2.33 2.03 1.72 - - - - -</td> <td>2.5 1.71 1.55 1.20 - - - - - - - - -</td>	3.42 3.40 3.36 3.33 3.27 3.06 3.22 3.42	1 2.78 2.75 2.66 2.58 2.50 2.07 1.85 1.76 1.71	$1/3$ $1/3$ 1.5 K_p 2.15 2.10 1.98 1.85 1.71 1.08 0.64 0.32 $-$	1.50 1.42 1.27 1.10 0.92 - - - - -	2.5 0.82 0.72 0.52 - - - - - - - -	un angl 0.5 4.47 4.46 4.41 4.35 4.28 4.03 4.32 5.00 5.98 7.36	a a	ttemen $2/3$ 1.5 K_p 2.91 2.84 2.68 2.49 2.31 1.43 0.92 0.52 $-$	t φ =30 2 2.09 1.99 1.79 1.55 1.29 - - - - - - - -	⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - - - - - -	0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63 7.05 9.29 12.91	1 4.18 4.52 4.39 4.23 4.09 3.42 3.44 3.94 4.76 6.05	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 3.65\\ 3.57\\ 3.38\\ 3.15\\ 2.92\\ 1.84\\ 1.24\\ 0.76\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 2.71 2.60 2.33 2.03 1.72 - - - - -	2.5 1.71 1.55 1.20 - - - - - - - - -
$\frac{\delta/\varphi}{H/f} \\ \frac{H/f}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \\ 1.75 \\ 0.00 \\ 0.00 \\ 0.00 \\ $	0.5 2.54 2.53 2.50 2.47 2.44 2.29 2.17 2.09 2.02 1.97 1.93	1 2.05 2.01 1.96 1.89 1.83 1.53 1.27 1.13 1.01 0.90 0.83	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.50 \\ 1.45 \\ 1.37 \\ 1.27 \\ 1.19 \\ 0.76 \\ 0.44 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	2 1.03 0.97 0.86 0.74 0.70 - - - - - - - - - -	Table 2.5 - </td <td>3.42 3.40 3.36 3.33 3.27 3.07 3.06 3.22 3.42</td> <td>1 2.78 2.75 2.66 2.50 2.07 1.85 1.76 1.71 1.74</td> <td>K_p 2.15 2.10 1.98 1.85 1.71 1.08 0.64 0.32 - - -</td> <td>1.50 1.42 1.27 1.10 0.92 - - - - - - - -</td> <td>2.5 0.82 0.72 0.52 - - - - - - - - - - - - -</td> <td>un angl 0.5 4.47 4.46 4.41 4.35 4.03 4.32 5.00 5.98 7.36 9.26</td> <td>a de from 1 3.70 3.66 3.56 3.44 3.30 2.73 2.60 2.74 3.02 3.45 4.07</td> <td>ttemen $2/3$ 1.5 K_p 2.91 2.84 2.68 2.49 2.31 1.43 0.92 0.52 $-$</td> <td>2 2.09 1.99 1.79 1.55 1.29 - - - - - - - -</td> <td>⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - - - - - - - -</td> <td>0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63 7.05 9.29 12.91 18.65</td> <td>1 4.18 4.52 4.39 4.23 4.09 3.42 3.44 3.94 4.76 6.05 8.25</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 3.65\\ 3.57\\ 3.38\\ 3.15\\ 2.92\\ 1.84\\ 1.24\\ 0.76\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$</td> <td>2 2.71 2.60 2.33 2.03 1.72 - - - - - - - - -</td> <td>2.5 1.71 1.55 1.20 - - - - - - - - - - - - -</td>	3.42 3.40 3.36 3.33 3.27 3.07 3.06 3.22 3.42	1 2.78 2.75 2.66 2.50 2.07 1.85 1.76 1.71 1.74	K_p 2.15 2.10 1.98 1.85 1.71 1.08 0.64 0.32 - - -	1.50 1.42 1.27 1.10 0.92 - - - - - - - -	2.5 0.82 0.72 0.52 - - - - - - - - - - - - -	un angl 0.5 4.47 4.46 4.41 4.35 4.03 4.32 5.00 5.98 7.36 9.26	a de from 1 3.70 3.66 3.56 3.44 3.30 2.73 2.60 2.74 3.02 3.45 4.07	ttemen $2/3$ 1.5 K_p 2.91 2.84 2.68 2.49 2.31 1.43 0.92 0.52 $ -$	2 2.09 1.99 1.79 1.55 1.29 - - - - - - - -	⁰ ψ=1/2 2.5 1.24 1.11 0.84 - - - - - - - - - -	0.5 5.45 5.43 5.37 5.30 5.24 4.99 5.63 7.05 9.29 12.91 18.65	1 4.18 4.52 4.39 4.23 4.09 3.42 3.44 3.94 4.76 6.05 8.25	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 3.65\\ 3.57\\ 3.38\\ 3.15\\ 2.92\\ 1.84\\ 1.24\\ 0.76\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 2.71 2.60 2.33 2.03 1.72 - - - - - - - - -	2.5 1.71 1.55 1.20 - - - - - - - - - - - - -

					Tab	leau 4.1	16. Les	coeffici	ents de	K_p pou	r un ang	gle de fr	otteme	nt <i>ø</i> =3	0° <i>ψ</i> =1					
δ/φ			0					1/3					2/3					1		
H/f	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5
f/B			K_p					K_p					K_p					K_p		
0.05	2.57	2.07	1.56	1.04	-	3.43	2.80	2.16	1.50	0.82	4.47	3.70	2.91	2.09	1.24	5.45	4.57	3.66	2.72	1.72
0.10	2.56	2.04	1.51	0.98	-	3.42	2.77	2.10	1.42	0.72	4.47	3.67	2.84	1.99	1.11	5.47	4.53	3.59	2.61	1.56
0.15	2.53	1.98	1.43	0.87	-	3.38	2.69	1.98	1.27	0.52	4.42	3.56	2.68	1.79	0.84	5.40	4.41	3.39	2.34	1.21
0.20	2.50	1.91	1.33	0.74	-	3.34	2.60	1.85	1.10	-	4.36	3.44	2.49	1.55	-	5.34	4.25	3.16	2.03	-
0.25	2.46	1.85	1.32	0.70	-	3.29	2.50	1.71	0.92	-	4.29	3.30	2.31	1.29	-	5.27	4.10	2.93	1.72	-
0.50	2.31	1.54	0.77	_	-	3.07	2.07	1.08	_	_	4.03	2.73	1.43	_	_	5.04	3.44	1.86	-	_
0.75	2.19	1.30	0.44	_	-	3.07	1.85	0.64	_	_	4.32	2.60	0.92	_	_	5.68	3.46	1.26	-	-
1.00	2.10	1.13	_	_	-	3.22	1.76	0.32	_	_	5.00	2.74	0.52	_	_	7.17	3.97	0.83	-	-
1.25	2.03	1.01	_	_	_	3.42	1.71	_	_	_	5.98	3.02	-	_	_	9.55	4.95	_	_	-
1.50	1.98	0.91	_	_	-	3.70	1.71	_	—	—	7.36	3.45	_	_	-	13.26	6.38	-	_	_
1.75	1.94	0.83	_	_	-	4.04	1.74	_	—	—	9.29	4.07	_	_	-	19.13	8.84	-	_	_
2.00	1.90	0.76	_	_	_	4.44	1.80	_	_	_	11 93	4 94	_	_	-	28.85	11.64	-	_	_
							1.00				11.75									
					Tab	leau 4.1	17. Les	coeffici	ents de	K_p pou	r un ang	gle de fr	otteme	nt φ =3	$5^0 \psi = 0$					
δ/φ		1	0	1	Tab	leau 4.1	17. Les	coeffici	ents de	K _p pou	r un ang	gle de fr	otteme 2/3	nt φ =3	5 ⁰ ψ=0			1		
δ/φ H/f	0.5	1	0 1.5	2	Tab 2.5	0.5	17. Les	coeffici 1/3 1.5	ents de	<i>К_р</i> рои 2.5	r un anş	gle de fr	otteme 2/3 1.5	nt φ =3 2	5[°] ψ=0 2.5	0.5	1	1 1.5	2	2.5
δ/φ H/f f/B	0.5	1	0 1.5 K_p	2	Tab 2.5	0.5	17. Les	$ coeffici \frac{1/3}{1.5} K_p $	ents de	<i>K_p</i> pou	r un ang	gle de fr	$\frac{2/3}{1.5}$	nt φ =3 2	$5^{\circ} \psi = 0$	0.5	1	$\frac{1}{1.5}$ K_p	2	2.5
δ/φ H/f f/B 0.05	0.5	1 2.47	$0 \\ 1.5 \\ K_p \\ 1.88$	2	Tab 2.5	0.5	1 1 3.74	$ coeffici 1/3 1.5 K_p 2.93 $	ents de 2 2.11	<i>K_p</i> pou 2.5 1.26	0.5	gle de fr 1 5.04	$ \begin{array}{c} \text{otteme} \\ \hline 2/3 \\ \hline 1.5 \\ \hline K_p \\ \hline 4.14 \\ \end{array} $	nt φ =3 2 3.21	$5^{\circ} \psi = 0$ 2.5 2.05	0.5	1 6.41	$ \begin{array}{c} 1 \\ 1.5 \\ K_p \\ 5.35 \end{array} $	2	2.5 2.64
δ/φ H/f f/B 0.05 0.10	0.5 2.92 2.92	1 2.47 2.41	$ \begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.88 \\ 1.82 \end{array} $	2 1.29 1.21	Tab 2.5 - -	0.5 4.47 4.47	1 1 3.74 3.67	coeffici 1/3 1.5 K _p 2.93 2.86	ents de 2 2.11 2.01	<i>K_p</i> pou 2.5 1.26 1.13	0.5 5.92 5.85	gle de fr 1 5.04 5.03	otteme $2/3$ 1.5 K_p 4.14 4.08	$ \begin{array}{r} nt \ \varphi = 3 \\ 2 \\ 3.21 \\ 3.04 \end{array} $	5 ⁰ ψ=0 2.5 2.05 1.87	0.5 7.32 7.42	1 6.41 6.42	$ \begin{array}{c} 1 \\ 1.5 \\ K_p \\ 5.35 \\ 5.24 \end{array} $	2 4.02 3.94	2.5 2.64 2.45
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 $	0.5 2.92 2.92 2.92	1 2.47 2.41 2.33	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 1.88\\ 1.82\\ 1.71 \end{array} $	2 1.29 1.21 1.09	Tab 2.5 - -	0.5 4.47 4.47 4.42	1 3.74 3.67 3.57	coeffici 1/3 1.5 K _p 2.93 2.86 2.69	2 2.11 2.01 1.79	<i>K_p</i> pou 2.5 1.26 1.13 0.84	r un ang 0.5 5.92 5.85 5.82	1 5.04 5.03 4.87	otteme 2/3 1.5 K _p 4.14 4.08 3.81	nt φ =3 2 3.21 3.04 2.72	5 ⁰ ψ=0 2.5 2.05 1.87 1.47	0.5 7.32 7.42 7.24	1 6.41 6.42 6.11	$ \begin{array}{c} 1 \\ 1.5 \\ K_p \\ 5.35 \\ 5.24 \\ 4.83 \end{array} $	2 4.02 3.94 3.48	2.5 2.64 2.45 1.88
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 $	0.5 2.92 2.92 2.92 2.92 2.90	1 2.47 2.41 2.33 2.25	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 1.88\\ 1.82\\ 1.71\\ 1.57\\ \end{array} $	2 1.29 1.21 1.09 0.90	Tab 2.5 - - -	0.5 0.5 4.47 4.47 4.42 4.39	1 1 1 3.74 3.67 3.57 3.48	$ \begin{array}{r} \text{coeffici} \\ 1/3 \\ 1.5 \\ K_p \\ 2.93 \\ 2.86 \\ 2.69 \\ 2.51 \\ \end{array} $	2 2.11 2.01 1.79 1.61	<i>K_p</i> pou 2.5 1.26 1.13 0.84 -	0.5 5.92 5.85 5.82 5.72	gle de fr 1 5.04 5.03 4.87 4.63	otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54	nt φ =3 2 3.21 3.04 2.72 2.52	5 ⁰ ψ=0 2.5 2.05 1.87 1.47 -	0.5 7.32 7.42 7.24 7.18	1 6.41 6.42 6.11 5.84	$ \begin{array}{c} 1 \\ 1.5 \\ K_p \\ 5.35 \\ 5.24 \\ 4.83 \\ 4.48 \\ \end{array} $	2 4.02 3.94 3.48 3.13	2.5 2.64 2.45 1.88 -
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 $	0.5 2.92 2.92 2.92 2.90 2.86	1 2.47 2.41 2.33 2.25 2.15	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 1.88\\ 1.82\\ 1.71\\ 1.57\\ 1.46\\ \end{array} $	2 1.29 1.21 1.09 0.90 0.90	Tab 2.5 - - - - -	Ieau 4.1 0.5 4.47 4.47 4.42 4.39 4.34	1 3.74 3.67 3.57 3.48 3.36	$ \begin{array}{r} \text{coeffici} \\ 1/3 \\ 1.5 \\ K_p \\ 2.93 \\ 2.86 \\ 2.69 \\ 2.51 \\ 2.33 \\ $	2 2.11 2.01 1.79 1.61 1.32	<i>K_p</i> pou 2.5 1.26 1.13 0.84 -	ning 0.5 5.92 5.85 5.82 5.72 5.64	1 5.04 5.03 4.87 4.63 4.43	otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27	$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \end{array}$	5 ⁰ ψ=0 2.5 2.05 1.87 1.47 -	0.5 7.32 7.42 7.24 7.18 7.06	1 6.41 6.42 6.11 5.84 5.60	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 5.35 \\ 5.24 \\ 4.83 \\ 4.48 \\ 4.08 \\ \end{array} $	2 3.94 3.48 3.13 2.57	2.5 2.64 2.45 1.88 - -
$\frac{\delta/\varphi}{H/f} \\ \frac{H/f}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.00 \\ $	0.5 2.92 2.92 2.92 2.90 2.86 2.66	1 2.47 2.41 2.33 2.25 2.15 1.81	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.88 \\ 1.82 \\ 1.71 \\ 1.57 \\ 1.46 \\ 0.94 \end{array}$	2 1.29 1.21 1.09 0.90 0.90 -	Tab 2.5 -	Ieau 4.1 0.5 4.47 4.47 4.47 4.42 4.39 4.34 4.06	1 3.74 3.67 3.57 3.48 3.36 2.76	coeffici $1/3$ 1.5 K_p 2.93 2.86 2.69 2.51 2.33 1.47	2 2.11 2.01 1.79 1.61 1.32 -	<i>K_p</i> pou 2.5 1.26 1.13 0.84 - - -	r un ang 0.5 5.92 5.85 5.82 5.72 5.64 5.53	1 5.04 5.03 4.87 4.63 4.43 3.88	otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11	$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \end{array}$	5 ⁰ ψ=0 2.5 2.05 1.87 1.47 - - -	0.5 7.32 7.42 7.24 7.18 7.06 6.98	1 6.41 6.42 6.11 5.84 5.60 4.85	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 5.35 \\ 5.24 \\ 4.83 \\ 4.48 \\ 4.08 \\ 2.69 \\ \end{array} $	2 4.02 3.94 3.48 3.13 2.57 -	2.5 2.64 2.45 1.88 - - -
$\frac{\delta/\varphi}{H/f} \\ \frac{H/f}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ $	0.5 2.92 2.92 2.92 2.90 2.86 2.66 2.57	1 2.47 2.41 2.33 2.25 2.15 1.81 1.56	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.88 \\ 1.82 \\ 1.71 \\ 1.57 \\ 1.46 \\ 0.94 \\ 0.54 \end{array}$	2 1.29 1.21 1.09 0.90 0.90 - -	Tab 2.5 - - - - - - - - - -	Ieau 4.1 0.5 4.47 4.47 4.42 4.39 4.34 4.06 4.23	1 3.74 3.67 3.57 3.48 3.36 2.76 2.58	K_p 2.93 2.86 2.69 2.51 2.33 1.47 0.93	2 2.11 2.01 1.79 1.61 1.32 - -	<i>K_p</i> pou 2.5 1.26 1.13 0.84 - - - -	nibit 0.5 5.92 5.85 5.82 5.72 5.64 5.53 6.90	1 5.04 5.03 4.87 4.63 4.43 3.88 2.23	otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11 1.5	$\begin{array}{c} \mathbf{nt} \ \mathbf{\phi} = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \\ \hline - \end{array}$	5 [°] ψ=0 2.5 2.05 1.87 1.47 - - - -	0.5 7.32 7.42 7.24 7.18 7.06 6.98 9.00	1 6.41 6.42 6.11 5.84 5.60 4.85 5.56	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 5.35 \\ 5.24 \\ 4.83 \\ 4.48 \\ 4.08 \\ 2.69 \\ 2.11 \\ \end{array} $	2 4.02 3.94 3.48 3.13 2.57 -	2.5 2.64 2.45 1.88 - - - -
$\frac{\delta/\varphi}{H/f} \frac{H/f}{f/B} 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.00$	0.5 2.92 2.92 2.92 2.90 2.86 2.66 2.57 2.50	1 2.47 2.41 2.33 2.25 2.15 1.81 1.56 1.37	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.88 \\ 1.82 \\ 1.71 \\ 1.57 \\ 1.46 \\ 0.94 \\ 0.54 \\ - \end{array}$	2 1.29 1.21 1.09 0.90 0.90 - - - -	Tab 2.5 - - - - - - - - - - - - - -	Ieau 4.1 0.5 4.47 4.47 4.47 4.42 4.39 4.34 4.06 4.23 4.70	1 3.74 3.67 3.57 3.48 3.36 2.76 2.58 2.60	coeffici $1/3$ 1.5 K_p 2.93 2.86 2.69 2.51 2.33 1.47 0.93 0.50	2 2.11 2.01 1.79 1.61 1.32 - - -	<i>K_p</i> pou 2.5 1.26 1.13 0.84 - - - - -	r un ang 0.5 5.92 5.85 5.82 5.72 5.64 5.53 6.90 9.11	1 5.04 5.03 4.87 4.63 4.43 3.88 2.23 5.10	otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11 1.56 1.02	$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \\ \hline - \\ \hline - \\ \hline - \\ \hline \end{array}$	5 [°] ψ=0 2.5 2.05 1.87 1.47 - - - - -	0.5 7.32 7.42 7.24 7.18 7.06 6.98 9.00 12.72	1 6.41 6.42 6.11 5.84 5.60 4.85 5.56 7.33	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 5.35 \\ 5.24 \\ 4.83 \\ 4.48 \\ 4.08 \\ 2.69 \\ 2.11 \\ 1.55 \\ \end{array} $	2 3.94 3.48 3.13 2.57 - -	2.5 2.64 2.45 1.88 - - - - -
$\frac{\delta/\varphi}{H/f} \frac{f/B}{f/B} 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.00 1.25$	0.5 2.92 2.92 2.92 2.90 2.86 2.66 2.57 2.50 2.44	1 2.47 2.41 2.33 2.25 2.15 1.81 1.56 1.37 1.22	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.88 \\ 1.82 \\ 1.71 \\ 1.57 \\ 1.46 \\ 0.94 \\ 0.54 \\ - \\ - \\ - \end{array}$	2 1.29 1.21 1.09 0.90 0.90 - - - - - - -	Tab 2.5 - <td>Ieau 4.1 0.5 4.47 4.47 4.42 4.39 4.34 4.06 4.23 4.70 5.29</td> <td>1 3.74 3.67 3.57 3.48 3.36 2.76 2.58 2.60 2.69</td> <td>coeffici $1/3$ 1.5 K_p 2.93 2.86 2.69 2.51 2.33 1.47 0.93 0.50 $-$</td> <td>2 2.11 2.01 1.79 1.61 1.32 - - - -</td> <td><i>K_p</i> pou 2.5 1.26 1.13 0.84 - - - - - - -</td> <td>r un ang 0.5 5.92 5.85 5.82 5.72 5.64 5.53 6.90 9.11 12.38</td> <td>1 5.04 5.03 4.87 4.63 4.43 3.88 2.23 5.10 6.44</td> <td>otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11 1.56 1.02</td> <td>$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \\ \hline \end{array}$</td> <td>5[°] ψ=0 2.5 2.05 1.87 1.47 - - - - - - -</td> <td>0.5 7.32 7.42 7.24 7.18 7.06 6.98 9.00 12.72 20.12</td> <td>1 6.41 6.42 6.11 5.84 5.60 4.85 5.56 7.33 10.54</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 5.35\\ 5.24\\ 4.83\\ 4.48\\ 4.08\\ 2.69\\ 2.11\\ 1.55\\ - \end{array}$</td> <td>2 4.02 3.94 3.48 3.13 2.57 - - - - -</td> <td>2.5 2.64 2.45 1.88 - - - - - - -</td>	Ieau 4.1 0.5 4.47 4.47 4.42 4.39 4.34 4.06 4.23 4.70 5.29	1 3.74 3.67 3.57 3.48 3.36 2.76 2.58 2.60 2.69	coeffici $1/3$ 1.5 K_p 2.93 2.86 2.69 2.51 2.33 1.47 0.93 0.50 $-$	2 2.11 2.01 1.79 1.61 1.32 - - - -	<i>K_p</i> pou 2.5 1.26 1.13 0.84 - - - - - - -	r un ang 0.5 5.92 5.85 5.82 5.72 5.64 5.53 6.90 9.11 12.38	1 5.04 5.03 4.87 4.63 4.43 3.88 2.23 5.10 6.44	otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11 1.56 1.02	$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \\ \hline \end{array}$	5 [°] ψ=0 2.5 2.05 1.87 1.47 - - - - - - -	0.5 7.32 7.42 7.24 7.18 7.06 6.98 9.00 12.72 20.12	1 6.41 6.42 6.11 5.84 5.60 4.85 5.56 7.33 10.54	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 5.35\\ 5.24\\ 4.83\\ 4.48\\ 4.08\\ 2.69\\ 2.11\\ 1.55\\ - \end{array} $	2 4.02 3.94 3.48 3.13 2.57 - - - - -	2.5 2.64 2.45 1.88 - - - - - - -
$\frac{\delta/\varphi}{H/f} \\ \frac{H/f}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.50 \\ 0.75 \\ $	0.5 2.92 2.92 2.92 2.90 2.86 2.66 2.57 2.50 2.44 2.38	1 2.47 2.41 2.33 2.25 2.15 1.81 1.56 1.37 1.22 1.10	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.88 \\ 1.82 \\ 1.71 \\ 1.57 \\ 1.46 \\ 0.94 \\ 0.54 \\ - \\ - \\ - \\ - \\ - \end{array}$	2 1.29 1.21 1.09 0.90 0.90 - - - - - - - - -	Tab 2.5 - <td>Ieau 4.1 0.5 4.47 4.47 4.42 4.39 4.34 4.06 4.23 4.70 5.29 6.05</td> <td>1 3.74 3.67 3.57 3.48 3.36 2.76 2.58 2.60 2.69 2.86</td> <td>coeffici $1/3$ 1.5 K_p 2.93 2.86 2.69 2.51 2.33 1.47 0.93 0.50 -</td> <td>2 2.11 2.01 1.79 1.61 1.32 - - - - - -</td> <td><i>K_p</i> pou 2.5 1.26 1.13 0.84 - - - - - - - - -</td> <td>r un ang 0.5 5.92 5.85 5.82 5.72 5.64 5.53 6.90 9.11 12.38 17.64</td> <td>1 5.04 5.03 4.87 4.63 4.43 3.88 2.23 5.10 6.44 8.51</td> <td>otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11 1.56 1.02 $-$</td> <td>$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \\ \hline \hline \hline \hline$</td> <td>5[°] ψ=0 2.5 2.05 1.87 1.47 - - - - - - - -</td> <td>0.5 7.32 7.42 7.24 7.18 7.06 6.98 9.00 12.72 20.12 33.12</td> <td>1 6.41 6.42 6.11 5.84 5.60 4.85 5.56 7.33 10.54 15.96</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 5.35\\ 5.24\\ 4.83\\ 4.48\\ 4.08\\ 2.69\\ 2.11\\ 1.55\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$</td> <td>2 4.02 3.94 3.48 3.13 2.57 - - - - - - -</td> <td>2.5 2.64 2.45 1.88 - - - - - - - - - -</td>	Ieau 4.1 0.5 4.47 4.47 4.42 4.39 4.34 4.06 4.23 4.70 5.29 6.05	1 3.74 3.67 3.57 3.48 3.36 2.76 2.58 2.60 2.69 2.86	coeffici $1/3$ 1.5 K_p 2.93 2.86 2.69 2.51 2.33 1.47 0.93 0.50 -	2 2.11 2.01 1.79 1.61 1.32 - - - - - -	<i>K_p</i> pou 2.5 1.26 1.13 0.84 - - - - - - - - -	r un ang 0.5 5.92 5.85 5.82 5.72 5.64 5.53 6.90 9.11 12.38 17.64	1 5.04 5.03 4.87 4.63 4.43 3.88 2.23 5.10 6.44 8.51	otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11 1.56 1.02 $-$	$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \\ \hline \hline \hline \hline$	5 [°] ψ=0 2.5 2.05 1.87 1.47 - - - - - - - -	0.5 7.32 7.42 7.24 7.18 7.06 6.98 9.00 12.72 20.12 33.12	1 6.41 6.42 6.11 5.84 5.60 4.85 5.56 7.33 10.54 15.96	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 5.35\\ 5.24\\ 4.83\\ 4.48\\ 4.08\\ 2.69\\ 2.11\\ 1.55\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 4.02 3.94 3.48 3.13 2.57 - - - - - - -	2.5 2.64 2.45 1.88 - - - - - - - - - -
$\frac{\delta/\varphi}{H/f} \\ \frac{H/f}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \\ 0.75 \\ $	0.5 2.92 2.92 2.92 2.90 2.86 2.66 2.57 2.50 2.44 2.38 2.34	1 2.47 2.41 2.33 2.25 2.15 1.81 1.56 1.37 1.22 1.10 1.01	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 1.88 \\ 1.82 \\ 1.71 \\ 1.57 \\ 1.46 \\ 0.94 \\ 0.54 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	2 1.29 1.21 1.09 0.90 - - - - - - - - - - - -	Tab 2.5 - <td>Ieau 4.1 0.5 4.47 4.47 4.47 4.42 4.39 4.34 4.06 4.23 4.70 5.29 6.05 7.10</td> <td>1 3.74 3.67 3.57 3.48 3.36 2.76 2.58 2.60 2.69 2.86 3.12</td> <td>coeffici $1/3$ 1.5 K_p 2.93 2.86 2.69 2.51 2.33 1.47 0.93 0.50 $-$</td> <td>2 2.11 2.01 1.79 1.61 1.32 - - - - - - - -</td> <td><i>K_p</i> pou 2.5 1.26 1.13 0.84 - - - - - - - - - - - - -</td> <td>r un ang 0.5 5.92 5.85 5.82 5.72 5.64 5.53 6.90 9.11 12.38 17.64 26.48</td> <td>1 5.04 5.03 4.87 4.63 4.43 3.88 2.23 5.10 6.44 8.51 11.88</td> <td>otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11 1.56 1.02 $-$</td> <td>$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \\ \hline \hline \hline \hline$</td> <td>5⁰ ψ=0 2.5 2.05 1.87 1.47 - - - - - - - - - - - -</td> <td>0.5 7.32 7.42 7.24 7.18 7.06 6.98 9.00 12.72 20.12 33.12 50.56</td> <td>1 6.41 6.42 6.11 5.84 5.60 4.85 5.56 7.33 10.54 15.96 25.43</td> <td>$\begin{array}{c} 1\\ 1.5\\ K_p\\ 5.35\\ 5.24\\ 4.83\\ 4.48\\ 4.08\\ 2.69\\ 2.11\\ 1.55\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$</td> <td>2 4.02 3.94 3.48 3.13 2.57 - - - - - - - - - - -</td> <td>2.5 2.64 2.45 1.88 - - - - - - - - - - - - -</td>	Ieau 4.1 0.5 4.47 4.47 4.47 4.42 4.39 4.34 4.06 4.23 4.70 5.29 6.05 7.10	1 3.74 3.67 3.57 3.48 3.36 2.76 2.58 2.60 2.69 2.86 3.12	coeffici $1/3$ 1.5 K_p 2.93 2.86 2.69 2.51 2.33 1.47 0.93 0.50 $ -$	2 2.11 2.01 1.79 1.61 1.32 - - - - - - - -	<i>K_p</i> pou 2.5 1.26 1.13 0.84 - - - - - - - - - - - - -	r un ang 0.5 5.92 5.85 5.82 5.72 5.64 5.53 6.90 9.11 12.38 17.64 26.48	1 5.04 5.03 4.87 4.63 4.43 3.88 2.23 5.10 6.44 8.51 11.88	otteme $2/3$ 1.5 K_p 4.14 4.08 3.81 3.54 3.27 2.11 1.56 1.02 $ -$	$\begin{array}{c} \text{nt } \varphi = 3 \\ \hline 2 \\ \hline 3.21 \\ \hline 3.04 \\ \hline 2.72 \\ \hline 2.52 \\ \hline 1.92 \\ \hline - \\ \hline \hline \hline \hline$	5 ⁰ ψ=0 2.5 2.05 1.87 1.47 - - - - - - - - - - - -	0.5 7.32 7.42 7.24 7.18 7.06 6.98 9.00 12.72 20.12 33.12 50.56	1 6.41 6.42 6.11 5.84 5.60 4.85 5.56 7.33 10.54 15.96 25.43	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 5.35\\ 5.24\\ 4.83\\ 4.48\\ 4.08\\ 2.69\\ 2.11\\ 1.55\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 4.02 3.94 3.48 3.13 2.57 - - - - - - - - - - -	2.5 2.64 2.45 1.88 - - - - - - - - - - - - -

					Tabl	eau 4.1	8. Les (coefficie	ents de l	K _p pour	r un ang	le de fro	ttemen	t φ =35	° ψ=1 /2					
δ/φ			0					1/3					2/3					1		
H/f	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5	0.5	1	1.5	2	2.5
f/B			K_p					K_p					K_p					K_p		
0.05	3.16	2.47	1.88	1.35	-	4.63	3.85	3.03	2.18	1.30	6.58	5.56	4.50	3.37	2.18	8.67	7.39	6.06	4.68	3.21
0.10	3.14	2.42	1.91	1.28	-	4.61	3.80	2.95	2.08	1.16	6.58	5.51	4.39	3.23	1.99	8.67	7.32	5.99	4.51	2.96
0.15	3.10	2.33	1.71	1.13	-	4.55	3.68	2.79	1.86	0.88	6.50	5.34	4.15	2.90	1.57	8.56	7.08	5.63	4.08	2.39
0.20	3.06	2.25	1.68	0.97	-	4.51	3.57	2.60	1.61	-	6.40	5.14	3.87	2.52	—	8.45	6.85	5.24	3.58	-
0.25	3.00	2.17	1.47	0.90	-	4.44	3.43	2.42	1.36	-	6.31	4.96	3.57	2.13	-	8.32	6.60	4.86	3.05	-
0.50	2.82	1.81	0.98	_	-	4.17	2.85	1.50	-	_	6.12	4.21	2.27	—	-	8.32	5.77	3.20	-	-
0.75	2.68	1.56	0.55	-	-	4.38	2.66	0.93	-	-	7.31	2.47	1.62	-	-	10.79	6.68	2.50	-	-
1.00	2.58	1.37	-	_	-	4.85	2.66	0.51	-	_	9.57	5.30	1.04	—	-	16.08	8.99	1.82	-	-
1.25	2.49	1.22	_	_	-	5.44	2.74	_	_	_	13.10	6.67	_	_	_	25.80	10.57	_	_	_
1.50	2.43	1.11	_	_	-	6.25	2.91	_	_	-	18.68	8.86	_	_	_	44.40	21.05	_	-	-
1.75	2.38	1.01	_	_	-	7.26	3.15	_	_	_	27.76	12.31	_	_	_	77.44	36.29	_	_	_
2.00	2.34	0.93	_	_	-	8.58	3.50	_	_	-	42.59	17.78	_	_	_	107.0	63.79	_	-	-
						0.00	0.00				12.07	1/./0								
2.00					Tab	leau 4.	19. Les	coeffici	ients de	K _p pou	ır un anş	gle de fr	ottemei	nt φ =3:	$5^{\circ} \psi = 1$					
δ/φ		1	0	1	Tab	leau 4.	19. Les	coeffici 1/3	ients de	K _p pou	ir un anș	gle de fr	ottemen 2/3	nt φ =3	5° ψ=1		I	1		
<u>δ/φ</u> H/f	0.5	1	0 1.5	2	Tab 2.5	0.5	19. Les	coeffic 1/3 1.5	ients de	K _p pou	0.5	gle de fro	ottemer 2/3 1.5	nt φ =3 2	$5^{\circ} \psi = 1$ 2.5	0.5	1	1 1.5	2	2.5
δ/φ H/f f/B	0.5	1	0 1.5 K_p	2	Tab 2.5	0.5	19. Les	coeffici 1/3 1.5 <i>K</i> _p	ients de	<i>K_p</i> pou	0.5	gle de fro	0ttemer 2/3 1.5 <i>K</i> _p	nt φ =3	$5^{\circ} \psi = 1$	0.5	1	$\frac{1}{1.5}$ K_p	2	2.5
$\frac{\delta/\varphi}{H/f}$ $\frac{f/B}{0.05}$	0.5	1 2.61	$\begin{array}{c} 0\\ 1.5\\ K_p\\ 2.00 \end{array}$	2	Tab 2.5	0.5 4.68	19. Les	coeffici 1/3 1.5 K _p 3.05	2 2 2.20	<i>K_p</i> pou 2.5 1.32	0.5 6.66	1 5.61	0ttemer 2/3 1.5 <i>K_p</i> 4.53	nt φ =3 2 3.39	5⁰ ψ=1 2.5 2.20	0.5	1 7.42	$ \begin{array}{c} 1 \\ 1.5 \\ K_p \\ 6.12 \end{array} $	2 4.73	2.5 3.24
$\frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10$	0.5 3.21 3.20	1 2.61 2.56	$ \begin{array}{c} 0 \\ 1.5 \\ K_p \\ 2.00 \\ 1.94 \end{array} $	2 1.37 1.30	Tab 2.5 - -	0.5 4.68 4.67	19. Les	coeffici $1/3$ 1.5 K_p 3.05 2.98	2 2.20 2.09	<i>K_p</i> pou 2.5 1.32 1.17	0.5 6.66 6.67	1 1 5.61 5.56	$ \begin{array}{r} \text{ottemer} \\ 2/3 \\ 1.5 \\ K_p \\ 4.53 \\ 4.40 \\ \hline $	1 φ =3 2 3.39 3.25	5⁰ ψ=1 2.5 2.20 2.01	0.5 8.69 8.73	1 7.42 7.39	$ \begin{array}{c} 1 \\ 1.5 \\ K_p \\ 6.12 \\ 6.01 \end{array} $	2 4.73 4.56	2.5 3.24 3.00
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 $	0.5 3.21 3.20 3.16	1 2.61 2.56 2.49	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 2.00\\ 1.94\\ 1.83\\ \end{array} $	2 1.37 1.30 1.15	Tab 2.5 - -	Ieau 4.1 0.5 4.68 4.67 4.61	19. Les 1 3.88 3.83 3.72	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81	2 2.20 2.09 1.87	<i>K_p</i> pou 2.5 1.32 1.17 0.88	0.5 6.66 6.58	1 5.61 5.56 5.34	ottemen 2/3 1.5 K _p 4.53 4.40 4.18	2 3.39 3.25 2.92	5 ⁰ ψ=1 2.5 2.20 2.01 1.58	0.5 8.69 8.73 8.66	1 7.42 7.39 7.19	$ 1 1.5 K_p 6.12 6.01 5.68 $	2 4.73 4.56 4.12	2.5 3.24 3.00 2.43
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 $	0.5 3.21 3.20 3.16 3.12	1 2.61 2.56 2.49 2.41	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 2.00\\ 1.94\\ 1.83\\ 1.70\\ \end{array} $	2 1.37 1.30 1.15 0.99	Tab 2.5 - - -	Ieau 4.2 0.5 4.68 4.67 4.61 4.54	19. Les 1 3.88 3.83 3.72 3.59	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81 2.62	2 2.20 2.09 1.87 1.61	<i>K_p</i> pou 2.5 1.32 1.17 0.88 –	0.5 6.66 6.67 6.58 6.49	1 5.61 5.56 5.34 5.20	ottemen 2/3 1.5 K _p 4.53 4.40 4.18 3.89	2 3.39 3.25 2.92 2.53	5 ⁰ ψ=1 2.5 2.20 2.01 1.58 -	0.5 8.69 8.73 8.66 8.49	1 7.42 7.39 7.19 6.95	$ 1 1.5 K_p 6.12 6.01 5.68 5.31 $	2 4.73 4.56 4.12 3.60	2.5 3.24 3.00 2.43 -
$\frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\$	0.5 3.21 3.20 3.16 3.12 3.07	1 2.61 2.56 2.49 2.41 2.32	$ \begin{array}{c} 0\\ 1.5\\ K_p\\ 2.00\\ 1.94\\ 1.83\\ 1.70\\ 1.57\\ \end{array} $	2 1.37 1.30 1.15 0.99 0.90	Tab 2.5 - - - -	Ieau 4.7 0.5 4.68 4.67 4.61 4.54 4.47	1 3.88 3.83 3.72 3.59 3.45	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81 2.62 2.42	2 2.20 2.09 1.87 1.61 1.36	<i>K_p</i> pou 2.5 1.32 1.17 0.88 –	0.5 6.66 6.67 6.58 6.49 6.37	1 5.61 5.56 5.34 5.20 4.99	otteme $2/3$ 1.5 K_p 4.53 4.40 4.18 3.89 3.58	at φ =3 2 3.39 3.25 2.92 2.53 2.13	5 [°] ψ=1 2.5 2.20 2.01 1.58 - -	0.5 8.69 8.73 8.66 8.49 8.42	1 7.42 7.39 7.19 6.95 6.65	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 6.12 \\ 6.01 \\ 5.68 \\ 5.31 \\ 4.90 \\ \end{array} $	2 4.73 4.56 4.12 3.60 3.07	2.5 3.24 3.00 2.43 - -
$\frac{\delta/\varphi}{H/f} \frac{H/f}{f/B} 0.05 0.10 0.15 0.20 0.25 0.50$	0.5 3.21 3.20 3.16 3.12 3.07 2.86	1 2.61 2.56 2.49 2.41 2.32 1.92	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 2.00 \\ 1.94 \\ 1.83 \\ 1.70 \\ 1.57 \\ 0.99 \end{array}$	2 1.37 1.30 1.15 0.99 0.90 -	Tab 2.5 - - - - - - - - - - - - - - - - -	Ieau 4. 0.5 4.68 4.67 4.61 4.54 4.47 4.19	1 3.88 3.83 3.72 3.59 3.45 2.85	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81 2.62 2.42 1.50	2 2.20 2.09 1.87 1.61 1.36 -	K _p pou 2.5 1.32 1.17 0.88 - - - - - -	0.5 6.66 6.67 6.58 6.49 6.37 6.15	1 5.61 5.56 5.34 5.20 4.99 4.21	ottemen $2/3$ 1.5 K_p 4.53 4.40 4.18 3.89 3.58 2.27	at φ =3 2 3.39 3.25 2.92 2.53 2.13	5 ⁰ ψ=1 2.5 2.20 2.01 1.58 - - -	0.5 8.69 8.73 8.66 8.49 8.42 8.48	1 7.42 7.39 7.19 6.95 6.65 5.87	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 6.12 \\ 6.01 \\ 5.68 \\ 5.31 \\ 4.90 \\ 3.25 \\ \end{array} $	2 4.73 4.56 4.12 3.60 3.07 -	2.5 3.24 3.00 2.43 - - -
$ \frac{\delta/\varphi}{H/f} \\ \frac{f/B}{0.05} \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 $	0.5 3.21 3.20 3.16 3.12 3.07 2.86 2.71	1 2.61 2.56 2.49 2.41 2.32 1.92 1.62	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 2.00 \\ 1.94 \\ 1.83 \\ 1.70 \\ 1.57 \\ 0.99 \\ 0.55 \end{array}$	2 1.37 1.30 1.15 0.99 0.90 -	Tab 2.5 - - - - - - - - -	Ieau 4.1 0.5 4.68 4.67 4.61 4.54 4.47 4.19 4.41	1 3.88 3.83 3.72 3.59 3.45 2.85 2.66	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81 2.62 2.42 1.50 0.93	2 2.20 2.09 1.87 1.61 1.36 -	<i>K_p</i> pou 2.5 1.32 1.17 0.88 – – –	0.5 6.66 6.67 6.58 6.49 6.37 6.15 7.32	1 5.61 5.56 5.34 5.20 4.99 4.21 2.47	otteme $2/3$ 1.5 K_p 4.53 4.40 4.18 3.89 3.58 2.27 1.62	$\frac{2}{3.39}$ $\frac{3.25}{2.92}$ $\frac{2.53}{2.13}$ $-$	5 [°] ψ=1 2.5 2.20 2.01 1.58 - - - -	0.5 8.69 8.73 8.66 8.49 8.42 8.48 11.13	1 7.42 7.39 7.19 6.95 6.65 5.87 6.88	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 6.12 \\ 6.01 \\ 5.68 \\ 5.31 \\ 4.90 \\ 3.25 \\ 2.64 \\ \end{array} $	2 4.73 4.56 4.12 3.60 3.07 -	2.5 3.24 3.00 2.43 - - - -
$\frac{\delta/\varphi}{H/f} \\ \frac{H/f}{f/B} \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 0.75 \\ 0.00 \\ 0.75 \\ 0.00 \\ $	0.5 3.21 3.20 3.16 3.12 3.07 2.86 2.71 2.70	1 2.61 2.56 2.49 2.41 2.32 1.92 1.62 1.41	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 2.00 \\ 1.94 \\ 1.83 \\ 1.70 \\ 1.57 \\ 0.99 \\ 0.55 \\ - \end{array}$	2 1.37 1.30 1.15 0.99 0.90 - - -	Tab 2.5 - - - - - - - - - - - - - -	Ieau 4. 0.5 4.68 4.67 4.61 4.54 4.47 4.49 4.41 4.85	1 3.88 3.83 3.72 3.59 3.45 2.85 2.66 2.66	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81 2.62 2.42 1.50 0.93 0.51	2 2.20 2.09 1.87 1.61 1.36 - - -	K _p pou 2.5 1.32 1.17 0.88 - - - - - - - - - - - - - -	nun ang 0.5 6.66 6.67 6.58 6.49 6.37 6.15 7.32 9.57	1 5.61 5.56 5.34 5.20 4.99 4.21 2.47 5.30	otteme $2/3$ 1.5 K_p 4.53 4.40 4.18 3.89 3.58 2.27 1.62 1.04	at φ =3 2 3.39 3.25 2.92 2.53 2.13 - - - -	$5^{\circ} \psi = 1$ 2.5 2.20 2.01 1.58 - - - - - -	0.5 8.69 8.73 8.66 8.49 8.42 8.48 11.13 16.67	1 7.42 7.39 7.19 6.95 6.65 5.87 6.88 9.46	$ \begin{array}{r} 1 \\ 1.5 \\ K_p \\ 6.12 \\ 6.01 \\ 5.68 \\ 5.31 \\ 4.90 \\ 3.25 \\ 2.64 \\ 2.20 \\ \end{array} $	2 4.73 4.56 4.12 3.60 3.07 - - -	2.5 3.24 3.00 2.43 - - - - -
$\begin{array}{c} \delta/\varphi \\ H/f \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \end{array}$	0.5 3.21 3.20 3.16 3.12 3.07 2.86 2.71 2.70 2.51	1 2.61 2.56 2.49 2.41 2.32 1.92 1.62 1.41 1.25	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 2.00 \\ 1.94 \\ 1.83 \\ 1.70 \\ 1.57 \\ 0.99 \\ 0.55 \\ - \\ - \\ - \end{array}$	2 1.37 1.30 1.15 0.99 0.90 - - - - -	Tab 2.5 - - - - - - - - - - - - - - - - - - -	Ieau 4. 0.5 4.68 4.67 4.61 4.54 4.47 4.19 4.41 4.85 5.45	1 3.88 3.83 3.72 3.59 3.45 2.85 2.66 2.66 2.74	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81 2.62 2.42 1.50 0.93 0.51	2 2.20 2.09 1.87 1.61 1.36 - - - -	<i>K_p</i> pou 2.5 1.32 1.17 0.88 - - - - - - - -	nun ang 0.5 6.66 6.67 6.58 6.49 6.37 6.15 7.32 9.57 13.10	1 5.61 5.56 5.34 5.20 4.99 4.21 2.47 5.30 6.67	ottemer $2/3$ 1.5 K_p 4.53 4.40 4.18 3.89 3.58 2.27 1.62 1.04	$\frac{2}{3.39}$ $\frac{3.25}{2.92}$ $\frac{2.53}{2.13}$ $-$ $-$ $-$	$5^{\circ} \psi = 1$ 2.5 2.20 2.01 1.58 - - - - - - -	0.5 8.69 8.73 8.66 8.49 8.42 8.48 11.13 16.67 27.32	1 7.42 7.39 7.19 6.95 6.65 5.87 6.88 9.46 14.69	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 6.12\\ 6.01\\ 5.68\\ 5.31\\ 4.90\\ 3.25\\ 2.64\\ 2.20\\ - \end{array} $	2 4.73 4.56 4.12 3.60 3.07 - - - -	2.5 3.24 3.00 2.43 - - - - - - -
$\frac{\delta/\varphi}{H/f}$ $\frac{H/f}{f/B}$ 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.00 1.25 1.50	0.5 3.21 3.20 3.16 3.12 3.07 2.86 2.71 2.70 2.51 2.44	1 2.61 2.56 2.49 2.41 2.32 1.92 1.62 1.41 1.25 1.12	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 2.00 \\ 1.94 \\ 1.83 \\ 1.70 \\ 1.57 \\ 0.99 \\ 0.55 \\ - \\ - \\ - \\ - \\ - \end{array}$	2 1.37 1.30 1.15 0.99 0.90 - - - - - - -	Tab 2.5 -	Ieau 4. 0.5 4.68 4.67 4.61 4.54 4.47 4.19 4.41 4.85 5.45 6.25	1 3.88 3.83 3.72 3.59 3.45 2.85 2.66 2.74 2.90	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81 2.62 2.42 1.50 0.93 0.51 $-$	2 2.20 2.09 1.87 1.61 1.36 - - - - -	<i>K_p</i> pou 2.5 1.32 1.17 0.88 - - - - - - - - - - -	nun ang 0.5 6.66 6.67 6.58 6.49 6.37 6.15 7.32 9.57 13.10 18.76	1 5.61 5.56 5.34 5.20 4.99 4.21 2.47 5.30 6.67 8.87	ottemer $2/3$ 1.5 K_p 4.53 4.40 4.18 3.89 3.58 2.27 1.62 1.04 $-$	p = 3 $p = 3$ $p =$	$5^{\circ} \psi = 1$ 2.5 2.20 2.01 1.58 - - - - - - - -	0.5 8.69 8.73 8.66 8.49 8.42 8.48 11.13 16.67 27.32 48.49	1 7.42 7.39 7.19 6.95 6.65 5.87 6.88 9.46 14.69 25.24	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 6.12\\ 6.01\\ 5.68\\ 5.31\\ 4.90\\ 3.25\\ 2.64\\ 2.20\\ -\\ -\\ -\\ -\\ -\\ \end{array} $	2 4.73 4.56 4.12 3.60 3.07 - - - - - -	2.5 3.24 3.00 2.43 - - - - - - - - -
$\begin{array}{c} \delta/\varphi \\ H/f \\ f/B \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \end{array}$	0.5 3.21 3.20 3.16 3.12 3.07 2.86 2.71 2.70 2.51 2.44 2.39	1 2.61 2.56 2.49 2.41 2.32 1.92 1.62 1.41 1.25 1.12 1.02	$\begin{array}{c} 0 \\ 1.5 \\ K_p \\ 2.00 \\ 1.94 \\ 1.83 \\ 1.70 \\ 1.57 \\ 0.99 \\ 0.55 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	2 1.37 1.30 1.15 0.99 0.90 - - - - - - - -	Tab 2.5 -	Ieau 4. 0.5 4.68 4.67 4.61 4.54 4.47 4.19 4.41 4.85 5.45 6.25 7.26	1 3.88 3.83 3.72 3.59 3.45 2.85 2.66 2.74 2.90 3.15	coeffici $1/3$ 1.5 K_p 3.05 2.98 2.81 2.62 2.42 1.50 0.93 0.51 $ -$	2 2.20 2.09 1.87 1.61 1.36 - - - - - - - -	K _p pou 2.5 1.32 1.17 0.88 -	nun ang 0.5 6.66 6.67 6.58 6.49 6.37 6.15 7.32 9.57 13.10 18.76 27.84	1 5.61 5.56 5.34 5.20 4.99 4.21 2.47 5.30 6.67 8.87 12.36	ottemer $2/3$ 1.5 K_p 4.53 4.40 4.18 3.89 3.58 2.27 1.62 1.04 $ -$	p = 3 $p = 3$ $p =$	$5^{\circ} \psi = 1$ 2.5 2.20 2.01 1.58 - - - - - - - - - - - -	0.5 8.69 8.73 8.66 8.49 8.42 8.48 11.13 16.67 27.32 48.49 84.17	1 7.42 7.39 7.19 6.95 6.65 5.87 6.88 9.46 14.69 25.24 50.34	$ \begin{array}{c} 1\\ 1.5\\ K_p\\ 6.12\\ 6.01\\ 5.68\\ 5.31\\ 4.90\\ 3.25\\ 2.64\\ 2.20\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2 4.73 4.56 4.12 3.60 3.07 - - - - - - - - - -	2.5 3.24 3.00 2.43 - - - - - - - - - - -

4.4.2.1. Distribution de la pression interstitielle sur l'écran :

a) Influence de la perte de charge :

La pression interstitielle le long de l'écran coté aval, pour un batardeau étroit f/B = 2 et différentes charges hydrauliques H/f = 0.5, 1, 1.5, 2, 2.5 est représentée sur la figure 4.16.

Les valeurs de la pression interstitielle de l'eau sont plus élevées que celles de la pression hydrostatique en particulier à la base de l'écran où les gradients hydrauliques sont significatifs .Cette augmentation de pressions interstitielles est due à l'écoulement ascendant.

Figure 4.16 : Distribution de la pression d'eau le long de l'écran pour f/B=2 et pour différentes charges

b) Influence de l'espacement des écrans :

La figure 4.17 représente la distribution de la pression interstitielle le long de l'écran pour six valeurs de largeur f/B = 0.05, 0.2, 0.5, 1, 1.5, 2 pour la valeur de H/f = 1

On remarque que, l'effet de réduction de l'espacement des écrans de f/B= 0.05 à f/B= 2 pour H/f = 1 augmente la pression interstitielle.

Figure 4.17: Répartition des pressions d'eau selon l'espacement entre les deux écrans pour *H/f*=1

On se réfère au gradient hydraulique à la sortie i = 1, on remarque sur la figure 4.18 que la charge d'eau admissible pour les fouilles large f/B<0.5 peut aller à H/f = 2.5 mais cette valeur diminue avec la réduction de l'espacement des écrans jusqu'à la valeur de H/f = 1.25 (la moitie) pour une fouille étroite f/B=2

Figure4.18 : Valeurs des gradients hydrauliques de sortie selon l'espacement entre les deux écrans pour différentes charges hydrauliques

_115

4.4.2.2. Distribution de la pression passive sur l'écran :

a) Influence de la perte de charge :

La figure 4.16 présente la distribution de la pression de terre passive le long de l'écran parfaitement lisse $\delta/\varphi = 0$ et $\varphi=30^\circ$, $\psi=0^\circ$ et une fouille de moyenne largeur f/B=0.25, avec une charge hydraulique H/f=0.5, 1.5 et 2

La figure montre que la pression de terre passive sous l'effet d'une charge d'eau relative variant de 0.5 à 2 diminue. La réduction est plus accentuée pour les faibles valeurs de l'angle de frottement interne φ . La diminution atteint 79% pour $\varphi = 20^{\circ}$ et 68 % pour $\varphi = 35^{\circ}$ quand *H/f* augmente de 0.5 à 2.

Figure 4.19 : Distribution de la pression effective passive de terre pour f/B=0,25 $\delta/\varphi=0$, $\varphi=30^{\circ}$, $\psi/\varphi=0$

b) Influence de l'angle de l'interface :

Les résultats de simulation numérique d'un écran parfaitement lisse et un écran rugueux $\delta/\varphi = 2/3$, pour un angle de frottement interne $\varphi = 30^\circ$, une charge d'eau H/f = 0, 0.5, 1, 2, 2.5 et un angle de dilatance $\psi/\varphi = 0$ montrent que :

Pour les écrans parfaitement lisses $\delta/\varphi = 0$, la pression de terre passive diminue avec la diminution de l'espacement des écrans, cette diminution est plus significative avec

l'augmentation de la charge hydraulique. Pour f/B= 0.05 à f/B= 2 la diminution est de 23.57 pour H/f = 0.5 et 61.80 pour H/f = 1.

Pour les écrans rugueux $\delta/\varphi = 2/3$, le rapprochement des écrans diminue la pression de terre passive pour f/B= 0.05 à f/B= 0.5. Au-delà de cette valeur, on remarque un accroissement du coefficient de la butée. Cet accroissement est annulé sous l'effet de l'augmentation de la charge hydraulique relative H/f au-delà de 1.

Figure 4.20: Influence de la charge hydraulique sur le coefficient de butée pour δ/φ =0 , φ = 30°, ψ/φ = 0

Figure 4.21 : Influence de la charge hydraulique sur le coefficient de butée pour $\delta/\varphi = 2/3$, $\varphi = 30^\circ$, $\psi/\varphi = 0$

La figure 4.22 visualise les zones mobilisées par la poussée et la butée, la distribution des déformations de cisaillement maximales et les zones plastifiées pour une fouille large f/B=0.1, $\varphi = 30^{\circ}$, $\psi/\varphi = 1/2$, $\delta/\varphi = 0$, 2/3 et quatre valeurs de H/f = 0, 0.5, 1, 1.5.

Pour $\delta/\varphi = 0$, la surface de rupture est similaire à la surface plane proposé par *Rankine* délimitée par un prisme triangulaire.

Cependant, pour un écran rugueux $\delta/\phi = 2/3$, on constate non seulement la courbure de la surface de glissement au voisinage de la paroi mais aussi le partage de la zone mobilisée par la butée en deux parties (équilibre de *Rankine* et équilibre de *Prandtl*).

Ces figures montrent aussi que les pressions interstitielles de l'eau générées par l'écoulement tendent à rendre la zone mobilisée par la butée de plus en plus étroite avec l'augmentation de la perte de charge hydraulique.

 $\delta/\phi = 0$ et 2/3, $\phi = 30^{\circ}$ et $\psi/\phi = 1/2$ avec H/f=0, 0.5, 1, 1.5

4.5. Conclusion :

Des investigations numériques ont été effectuées à l'aide du code Flac en différence finies explicites sur l'influence de l'espacement des écrans d'excavation profonde sur la poussée et la butée des terres pour des sols associés et non associés. L'analyse des résultats numériques a permis de conclure les points suivants:

- ✓ l'augmentation de l'angle de frottement interne du sol diminue significativement la pression de terre active. La diminution peut atteindre.30 % quand φ augmente de 20⁰ à 30⁰ pour la largeur de la fouille *B* =60 m, $\delta/\varphi = 0$, H/f = 0 et $\psi/\varphi = 1$;
- ✓ l'augmentation de l'angle de dilatance ψ diminue légèrement la pression de terre active ;
- l'augmentation de l'angle de l'interface diminue légèrement Le coefficient de pression de terre active ;
- ✓ La réduction de l'espacement des écrans n'a pratiquement aucun effet sur la distribution des pressions de terre actives ;
- ✓ Si *f/B* est inférieure à 0,5, les écrans d'une excavation se comportent indépendamment.
 Ainsi le coefficient de butée peut être estimé par les approches d'un écran seul ;
- ✓ Pour les écrans lisses, l'effet de l'espacement des écrans peut être négligé sans incidence;
- ✓ La rugosité de l'interface sol/écran influe énormément sur le coefficient de butée pour les fouilles étroites dont *f/B* >0.5. Cette influence est fortement prononcée pour les forts angles de frottement interne du sol. Ainsi, en pratique, il est fortement recommandé d'opter à des écrans fortement frottant;
- ✓ l'effet positif de la dilatance est accentué par le rapprochement des écrans fortement frottant ($\delta/\phi > 1/3$) dans les sols moyens et denses ($\phi \ge 30^\circ$);
- ✓ La pression interstitielle augmente avec la réduction de l'espacement des écrans ;
- ✓ la charge d'eau admissible pour les fouilles large f/B < 0.5 peut aller à H/f = 2.5 mais cette valeur diminuer avec la réduction de l'espacement des écrans jusqu'à la valeur de H/f = 1.25 (la moitié) pour une fouille étroite f/B = 2;

- ✓ les forces d'écoulement diminuent significativement le coefficient de la pression de terre passive. La réduction est plus significative pour les faibles valeurs de l'angle de frottement interne φ ;
- ✓ Le rapprochement des écrans pour les écrans parfaitement lisse $\delta/\varphi = 0$ diminue la pression de terre passive, cette diminution est plus significative avec l'augmentation de la charge hydraulique ;
- ✓ Pour les écrans rugueux $\delta/\phi \ge 2/3$ la réduction de l'espacement des écrans diminue la pression de terre passive pour f/B= 0.05 à f/B= 0.5. Au-delà de cette valeur, on remarque un accroissement du coefficient de la butée. Cet accroissement est annulé sous l'effet de la charge hydraulique relative avec l'augmentation de H/f -delà de 1.

Conclusion générale

Les observations effectuées sur les différents chantiers et modèles réduits ont mis en évidence l'incidence des forces d'écoulement sur la stabilité du fond de fouille, lors de la mise hors d'eau des excavations. Avec le développement d'excavations pénétrant profondément sous le niveau de la nappe, ces forces, souvent ignorées ou mal prises en compte, peuvent avoir des conséquences importantes sur le déroulement du chantier.

Couramment, la distribution des pressions est souvent supposée hydrostatique de chaque coté du rideau, tant que de faibles gradients hydrauliques sont mis en jeu. Dans le cas contraire, l'étude de l'écoulement devient un problème important.

Ce travail a visé la prévision numérique, à l'aide du logiciel FLAC^{2D} en différences finies explicites, des pressions de terre passive et active en présence d'écoulement sous l'influence de la largeur du batardeau.

Les expérimentations numériques ont permis de tirer les conclusions suivantes :

En absence d'écoulement

- ✓ Les résultats de simulation du coefficient de pression passive de terre (butée) dans le cas sans écoulement sont très proches de ceux donnés par les tables de *Caquot* et *Kerisel* ainsi qu'à ceux de la borne supérieure obtenus par *Soubra* (2000) utilisant un mécanisme transationnel de rupture et *Soubra* et *Macuh* (2002) utilisant un mécanisme rotationnel. Cela confirme le bon choix de la procédure de simulation et le type de l'élément de l'interface sol-écran ;
- Les résultats de simulation du coefficient de pression active de terre (poussée) dans le cas sans écoulement ont montré que l'espacement entre les deux écrans du batardeau n'a pratiquement aucune influence sur ce coefficient ;
- ✓ L'augmentation de l'angle de frottement interne du sol diminue la pression de terre active ;

- ✓ Les résultats affirment que Le coefficient de pression de terre active diminue légèrement avec l'augmentation de l'angle de l'interface ;
- ✓ Lés résultats pour la simulation de la pression de terre passive sans écoulement montre que, pour les écrans parfaitement lisses ($\delta/\varphi = 0$), l'effet de la largeur est insignifiant, l'effet de la réduction de l'espacement des écrans de f/B= 0.05 à f/B= 2 pour $\delta/\varphi = 0$ ne dépasse pas 2%;
- ✓ Cependant, son effet est fortement prononcé avec l'augmentation de la rugosité de l'écran, pour les écrans rugueux où $\delta/\varphi = 1/3$ et 2/3, le coefficient de butée est indépendant de l'espacement des écrans quand *f/B* est inférieur à 0.5. Au-delà de cette valeur, on note un accroissement du coefficient de la butée avec la réduction de l'espacement des écrans. Cet accroissement s'accentue avec l'augmentation de l'angle de frottement au-delà de 20°;
- ✓ Les diagrammes de la pression passive pour un écran parfaitement lisse sont linéaires à part quelques fluctuations sur la partie inférieure de l'écran. Cette distribution est en accord avec les résultats théoriques d'un écran en mouvement de translation.
- ✓ Pour un écran parfaitement rugueux, les diagrammes sont linéaires quand f/B <0.5. Cependant, au-delà de cette valeur, sur la moitié inférieure de l'écran, on note une accentuation parabolique de la pression de terre passive avec le rapprochement des écrans (f/B);
- ✓ l'angle de dilatance ψ a peu d'effet sur la pression de terre passive pour les angles de frottement interne de 20⁰ à 30⁰ (moins de 3%), cet effet devient remarquable pour les forts angles de frottement $\varphi = 35^{\circ}$, 40°, L'augmentation du coefficient de butée est clairement marquée lorsque la valeur de ψ/φ croît de 0 à 1/2. Au delà de 1/2 l'augmentation semble insignifiante ;
- ✓ la réduction de l'espacement entre les écrans accentue l'influence de l'angle de dilatance sur la pression de terre passive. Cette influence apparait pour les écrans rugueux avec l'augmentation de δ/ϕ au-delà de 1/3 ;
- ✓ Le rapprochement des écrans montre clairement l'augmentation de la zone plastifiée mobilisée par la butée, cette augmentation est plus significative à partir de f/B<0.5 ;

En présence d'écoulement

- ✓ La simulation de la pression de terre passive (butée) en présence d'écoulement montre que la réduction de l'espacement des écrans de f/B= 0.05 à f/B= 2 augmente la pression interstitielle, cette augmentation de la perte de charge totale induit la rupture de l'écran pour les batardeaux étroits ;
- ✓ Les batardeaux très larges où f/B < 0.5 peuvent supporter une charge d'eau relative de H/f = 2.5 mais cette valeur peut diminuer avec la réduction de l'espacement des écrans jusqu'à la valeur de H/f = 1.25 (la moitie) pour une fouille étroite f/B = 2;
- La présence de l'écoulement autour de l'écran diminue la pression de terre passive.
 Cette réduction s'accentue pour les faibles valeurs de l'angle de frottement interne φ;
- ✓ Pour les écrans lisses, la pression de terre passive est inversement proportionnelle à la charge hydraulique. La diminution de la butée s'accentue avec l'augmentation de la charge hydraulique ;
- ✓ Pour les écrans rugueux et pour les faibles charges hydrauliques H/f =0.5 et 1, la pression de terre passive augmente significativement au-delà *de f/B*= 0.5. cette influence est annulée sous l'effet de grandes charges hydrauliques H/f>1. L'effet des charges hydrauliques dépassent l'effet de la rugosité de l'écran pour les batardeaux très étroits ;
- ✓ Les résultats de simulation visualisent bien, pour les écrans parfaitement lisse δ/φ=0, la surface de rupture qui est similaire au prisme triangulaire de Rankine et pour δ/φ≥ 1/3, la surface de rupture est similaire au mécanisme traditionnel de (Prandtl Rankine)

Références bibliographiques

- Benmebarek, N. (2002), contribution à la modélisation numérique de l'effet de l'écoulement sur la stabilité des écrans; Thèse de Doctorat, Université de Biskra, 210p.
- Benmebarek, N., Benmebarek, S., Kastner, R. (2005), *Numerical studies of seepage failure of sand within a cofferdam*. Elsevier, Computers and Geotechnics.32(4), 264-273.
- Benmebarek, N., Benmebarek, S., Kastner, R. and Soubra A-H (2006)" Passive earth pressures in the presence of groundwater flow, Discussion" Geotechnique, 56 (7), 521-522.
- Bensmaine, A.,(2016) Analyse numérique de la stabilité des fouilles en présence d'écoulement ; Thèse de Doctorat, Université de Biskra , 258p.
- Bouafia, A. (2000), *Mécanique des sols appliquée: Problèmes résolus*. Office des puplication universitaires.
- **Bouafia**, **A.** (2003), *Conception et calcul des ouvrages géotechniques*. Office des puplication universitaires.
- Braja, M.Das (1941), geotechnical engineering handbook. Ross publiching.
- Braja, M.Das , Nagaratnam Sivakugan (2015), *Fundamentals of geotechnical engineering*. Fifth edition, united states of america.767p.
- Braja, M.Das, Khaled Sobhan (2016), *Principles of geotehnical engineering*. Ninth edition. united states of america.819p.
- Caquot, A., & Kérisel, J. (1966), *Traité de mécanique de sol*. Gautier Villars, Paris.
- Caquot, A., & Kérisel, J. (1948), table de poussée et de Butée.Gauthier-Villars, Paris.
- Carlier, M. (1980), Hydraulique Générale et Appliquée. Edition Luis Jean.

- Costet, J., & Sanglerat G. Cours pratique de mécanique des sols. Tome 2 : Calcul des ouvrages. 3ème Edition, Dunod, Paris 1983.
- Coulomb, C. A. Essais sur une application des règles des maximum et minimum à quelques problèmes de statique relatifs à l'architecture. Mémoires de Mathématiques et de Physiques présentés à l'académie Royale des Sciences par divers savants, Vol. 7, Paris 1773. pp.343 382.
- Chang-Yu, Ou. (2006), *Deep excavation theory and practice* Taylor & Français Group London, UK.
- Clayton, Chris R.I. Milititsky J,(1993), Earth-Pressure-and-Earth-Retaining-Structures (second-Edition).
- Clayton Chris R.I., Rick I.Woods, Andrew J.Bond, Jarbas Milititsky J(2014), *Earth-Pressure-and-Earth-Retaining-Structures* (Third-Edition) CRC Press.
- Davidenkoff, R.N., & Franke, O.L. (1965). Untersuchung der räumlichen Sickerstromung in eine umspundete Baugrube in offenen Gewässern. Die Bautechnik, 9, 1965, pp 298-307.
- Degoutte, G., & Royet, P.(1999), Aide-mémoire de mécanique des sols. ENGEF.
- Delattre, L. (1999), Comportement des écrans de soutènement expérimentations et calculs.
- Delattre, L. (2000), un siècle de methods de calcul d'écran de soutènement. I.
 L'approche par le calcul- les methods classique et la method au coefficient de reaction.
 Bulletin des laboratories des ponts et chausses, (234).
- Delattre, L.Josseaume, H, Mespoulhe, L, & Delmer, T (2001), *Flexibilité et dimensionnement des écrans de soutènement ancrés*. Bulletin des laboratories des Ponts et chausses. 39-56.

- Delattre, L. Luc et Marten, Sonja. (2003), Un siècle de méthodes de calcul d'écran de soutènement : II les approches ampirique et semi empiriques. Bulletin des Laboratoires des Ponts et Chaussées, no 244-45, p.31-51.
- Delattre, L. Luc. (2004), Un siècle de méthodes de calcul d'écrans de soutènement III.
 La modélisation des écrans de soutènement par la méthode des éléments finis, Bulletin des
 Laboratoires des Ponts et Chaussées, no 252-53, p.95-117.
- Duncun, J. M. (1996), start of the art: Limit equilibrium and finite-element analysis of slopes. Journal. of Geotechnical engineering, Vol. 122, pp 577 596.
- D.-Y. ZHU, Q.-H. QIAN and C. F. LEE, (2001), Active and passive critical slip elds for cohesionless soils and calculation of lateral earth pressures, Geotechnique 51, No. 5, pp 407,423.
- FLAC, (2007), Fast Lagrangian Analysis of Continua, ITASCA Consultiong Group, Inc., Minneapolis.
- Harr, M.E(1962), *Groundwater and seepage. 315pp*.McGraw-Hill publishing Co. Inc, New York.
- Houy, A. (1980), Elément de calcul des rideaux de palplanches. Metz: Imp. Gueblez.
- H. Mokhbi, S Messaset (2014), Etude numérique de la poussée et de la butée des terres.
 Courrier du Savoir N°18, pp.31-40.
- Jaky, J. (1944), *The coefficient of earth pressure at rest*. Journal for Society of Hungarian Architects and Engineers, 78 (22), , pp 355 358.
- Josseaume, H. Méthode de calcul des rideaux de palplanche Etude bibliographique.
 Bull de liaison des lab. Des ponts et chaussées, N° 72, Juillet Août 1974, pp 107 124.
- Kastner, R, Ouvrages de soutènement flexible comportement et dimensionnement, Institut National Des Science Appliquées (INSA) DE Lyon, Laboratoires Géotechnique.

- Karl Terzaghi, Ralph B.Peck, Gholamreza Mesri, (1996), Soil mechanics in engineering practice, third edition. A wiley-interscience puplication .529 p.
- Masrouri, F. (1986), Comportement des rideaux de soutènement semi-flexibles : Etude théorique et expérimentale (Doctoral, INSA Lyon).
- Philipponnat, G., &Hubert, B. (2000), «Fondations et ouvrages en terre » édition Eyrolles (Deuxième tirage), Paris, 548p.
- Plumey,S. (2007), Interaction sol-structure dans le domaine des tranchées couvertes, (Doctoral dissertation, école polytechnique f édérale de Lausanne).
- Rowe, P. W. (1952), *Anchored sheet pile Walls*. Institution of Civil Engineers, Proc. Vol. 1, London, Jan., pp 27 70.
- Soubra, A.-H. et Kastner, R., (1992), *Influence of the seepage forces on the passive earth pressures*, Proc. Int. Conf. On Retaining structures, ICE, Cambridge, pp. 67-76, 1992.
- Soubra, A.-H., Kastner, R. et Benmansour, A. (1998), *Etude de la butée des terres en présence d'écoulement*, Revue Française de génie civil, Vol. 2, n°6, pp. 691-707, 1998.
- Soubra, A.-H., Kastner, R. et Benmansour, A. (1999), *Passive earth pressures in the presence of hydraulic gradients*, Géotechnique 49, n° 3, pp. 319-330, 1999.
- Terzaghi, Karl. (1943), Theory of Consolidation. John Wiley & Sons, Inc.,
- Thomas Le Cor, (2014), Etude du comportement mécanique des terrains anisotropes lors de travaux de génie civil, thèse de Doctorat, Insa Lyon ,326p.