
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l’enseignement supérieur et de la recherche scientifique

Université Mohamed Khider Biskra

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département d’informatique

N° d’ordre :………………………

Série : …………………………….

Thèse

Présentée en vue de l’obtention du diplôme de

docteur 3ème cycle en Informatique

Option : Techniques d’image et d’intelligence artificielle

Toward an Efficient Approach for Selecting VPLs in

Global Illumination

Par :

Djihane BABAHENINI
Soutenue le : 05 / 10/2017

Devant le jury :

Djedi Noureddine Professeur Université de Biskra Président

Babahenini Mohamed Chaouki Professeur Université de Biskra Rapporteur

Bouatouch Kadi Professeur Université de Rennes 1 Co‐rapporteur

Ait Aoudia Samy Professeur ESI. Oued Smar Alger Examinateur

Cherif Foudil Professeur Université de Biskra Examinateur

To my Mother...

To the memory of my father...

To Mohamed...

Acknowledgements

First, I want to thank almighty ALLAH for giving me the will, patience and health

to develop this work although the circumstances surrounding us I would like to

express my profound gratitude to my supervisors Prof. Babahenini Mohamed

Chaouki and Prof. Kadi Bouatouch, for their involvement in this research work

and for the support they have given me, their patience, their availability and the

relevance of their advice that have been of invaluable assistance throughout this

work. Also, I would like to thank Adrien Gruson for his help. I would especially

like to thank Kadi for having dedicated me of the time throughout those years,

as well as for his advice and encouragement, for his distinguished reception in the

IRISA laboratory and his supervision during my stay in France.

I would like to extend my warmest thanks to Adrien Gruson for his kindness and

patience, without forgetting to thank the members of the IRISA laboratory and

especially FRVSense group for their support during my research in their laboratory.

Special thank the director of the LESIA laboratory, Prof. Cherif Foudil for his

support during all my years of study.

I would like to thank Prof. Ait ouadia Sami, a professor at the ESI. Oued Smar.

Algiers, Prof. Djedi Nouredinne, Prof. Cherif Foudil for having accepted to judge

this work.

Finally, I thank my mother, my husband Mohamed and my family for encouraging

me during these many years, and to have always been available when I needed it.

ii

Résumé

En informatique graphique, le rendu nécessite le calcul de la contribution des

sources lumineuses (éclairage direct) et de tous les objets de la scène à travers des

réflexions, des réfractions et des diffusions multiples dans des milieux participants

tels que la fumée, la poussière, les nuages (éclairage indirect).

L’éclairage indirect est une tâche très coûteuse, principalement à cause de calcul

de la visibilité (entre les rayons lumineux et les objets de la scène). Pour accélérer

l’éclairage indirect, il est nécessaire d’exploiter les performances élevées du GPU

(Graphics Processing Unit).

Le but de cette thèse est d’utiliser le GPU pour calculer tous les objets visibles à

partir des sources lumineuses. À cette fin, nous mettons une caméra à 360 degrés

composée d’un DPRSM (Dual Paraboloid Reflective Shadow Map). Pour chaque

pixel de cette caméra, nous calculons le point visible, sa position 3D, sa normale et

sa couleur. Chaque point visible agit comme une source de lumière ponctuelle qui

joue le rôle de source de lumière secondaire, appelée VPL (Virtual Point Light).

Pendant le rendu, tout point de la scène reçoit un rayon en raison de l’éclairage

direct et de l’éclairage indirect. Ce dernier est la contribution des VPLs.

Le calcul des contributions de tous les VPL prend beaucoup de temps de calcul.

Une meilleure solution est de choisir un petit sous-ensemble de VPL par impor-

tance à l’aide d’une méthode de transformée inverse (appelée IT) basée sur le

calcul d’une CDF (Cumulative Distribution Function). Ensuite, nous calculons la

contribution de ce petit sous-ensemble de VPL aux points visibles de la caméra à

travers les pixels. La façon dont la CDF est calculée est cruciale pour la qualité

de l’image de rendu. Nous proposons deux méthodes pour calculer une CDF ef-

ficace ainsi qu’une méthode MIS (Multiple Importance Sampling) combinant une

méthode de transformée inverse avec une approche de tracé de chemin distribué

(gathering).

mots clés: Visibilité, éclairage indirect, Voxelisation, Méthodes de transformée

inverse, VPL.

��
	

jÊÓ

	áÓ
�
é
�
JªJ.

	
JÖÏ @ Zñ

	
�Ë@

�
éJ
Ò» H. A�k XAªK.

B@ ú

�
GC

�
K YîD

�
�Ó

�
èZA

	
�@

I. Ê¢

�
J
�
K ,

�
éJ
K. ñ�AmÌ'@

�
HAÓñ�QË@ ÈAm.

× ú

	
¯

Éªm.
Ì 	áºË .

�
èQå

�
�AJ. ÖÏ @

�
èZA

	
�B

@ iÊ¢�Ó AîD
Ê«

�
�Ê¢�

�
èZA

	
�B

@ 	áÓ ¨ñ

	
JË @ @

	
Yëð

�
é

	
®Ê

�
J

	
jÖÏ @

�
éJ

Kñ

	
�Ë@ PXA�ÖÏ @

�
éJ

Kñ

	
�Ë@ PXA�ÖÏ @ 	áÓ

�
é
�
JªJ.

	
JÖÏ @

�
èZA

	
�B

@ H. A�k ù

	
®ºK
 B é

	
KA

	
¯ ù

�
®J

�
®k é

	
K

A¿ð ðYJ. K
 XAªK.

B@ ú

�
GC

�
K YîD

�
�ÖÏ @

Zñ
	

�Ë@ 	áÓ
�
éJ
Ò» �ºª

�
K XAªK.

B@ ú

�
GC

�
JË @ YîD

�
�ÒÊË

�
é
	
KñºÖÏ @ ÐA�k.

B@

	
à

@ úÍ@

½Ë

	
X ©k. QK
ð , I. �m

	
¯ �

èQå
�
�AJ. ÖÏ @

ú

	
¯ Zñ

	
�Ë@ PA

�
�

�
�
	
K @ð PA�º

	
K@ , �A¾ª

	
K @ H. A�k

	
àA

	
¯ @

	
X @

. øQ
	

k

@ ÐA�k.

@

�
èZA

	
�@

ú

	
¯ èPðYK. ÑëA��
 ø

	
YË@

,
	
àA

	
gYË@ : ½Ë

	
X ÈA

�
JÓð @YJ

�
®ª

�
K Q�

�»

B@ Që@ñ

	
¢Ë@ 	áÓ

�
é«ñÒm.

× �
èA¿ Am×ð YJ
�j.

�
�K. iÒ��
 XAªK.

B@ ú

�
GC

�
K YîD

�
�Ó

Q�

	
«

�
èZA

	
�B

@ H. A�k

	
à@

.
�
èQå

�
�AJ. ÖÏ @

Q�

	
«

�
èZA

	
�B

AK.

�
èZA

	
�B

@ 	áÓ ¨ñ

	
JË @ @

	
Yë ùÒ��
ð . tÌ'@ . . . H. Aj�Ë@ð PAJ.

	
ªË @

�
I

�
¯ñË@ @

	
Yë Ñ

	
¢ªÓ

	
à

@

�
IJ
k , ÐAK

@ ú

�
æk ð

@

�
HA«A� úÍ@

É�

�
� 	áÓ 	QË @ 	áÓ

�
éÊK
ñ£

�
èYÓ

�
�Q

	
ª

�
J��

�
èQå

�
�AJ. ÖÏ @

. XAªK.

B@ ú

�
GC

�
JË @ YîD

�
�ÖÏ @ É

	
g@X Õæ�k. É¿ 	áÓ

	á�

�
J¢

�
®

	
K

	á�
K.
�
éK

ðQË@ YK
Ym�

�
' ú

	
¯ é» Cî

�
D�@ Õ

�
æK

�
�Q

	
ª

�
J�ÖÏ @

�
HAÓñ�QË@

�
ém.
Ì'AªÓ

�
èYgð Ð@Y

	
j

�
J�AK.

�
ém.
×Q�. Ë AK. Ðñ

�
®

	
K A

	
J
	
K A

	
¯

�
èQå

�
�AJ. ÖÏ @

Q�

	
«

�
èZA

	
�B

@ H. A�k

�
éJ
ÊÔ

« ©K
Qå�
�
JË

Ð@Y
	

j
�
J�AK.

�
èQå

�
�AJ. ÖÏ @

Q�

	
«

�
èZA

	
�B

@ H. A�k ñë

�
ékðQ£

B@ è

	
Yë 	áÓ

	
¬YêË@ . H. ñ�AmÌ'@ É

	
g@X

�
èXñk. ñÖÏ @

@Q�
ÓA¿ ©
	

�ñK. A
	
JÔ

�
¯ A

	
J
	
K A

	
¯

�
éK
A

	
ªË @ è

	
Yë

�
�J

�
®m�

�
' Ég.

@ 	áÓð .

�
éJ

KQÖÏ @ ÐA�k.

B@ ©J
Òm.

Ì �
HAÓñ�QË@

�
ém.
Ì'AªÓ

�
èYgð

	
àñº

�
K

�
éJ

	
�@Q

�
�
	
¯ @

�
éJ

Kñ

	
�

�
é¢

�
®

	
K I. �m�

	
' @Q�
ÓA¾Ë@ è

	
Yë 	áÓ É�ºJ
K. É¾Ëð .

�
ék. PX 360 Q�.« ZAJ

�
�

B@ Qå�J.

�
K

�
�Q

	
ª

�
J��
 . ø

ñ

	
KA

�
K Zñ

	
� PY�Ó PðX I. ªÊ

�
K

�
éJ

Kñ

	
�

�
é¢

�
®

	
K É¿ .

	
àñÊË @ , ú

×A

	
¢

	
JË @ , YîD

�
�ÖÏ @ ú

	
¯ Aêª

�
¯ñÖß.

�
é
	
Q̄ªÓ

PAJ

�
J

	
k@ ú

	
¯ ÈñÊmÌ'@ É

	
�

	
¯

@ Yg

@ É

�
JÒ

�
JK
ð . @Yg. CK
ñ£ A

�
J
�
¯ð

�
éJ

	
�@Q

�
�
	
¯B@

�
éJ

Kñ

	
�Ë@ ¡

�
®

	
JË @ ©J
Ô

g
.

�
èZA

	
�@

H. A�k

�
éÒëA�Ó I. �m�

	
' Õç

�
' . ù

Ò» @Q

�
�Ë @ ©K

	Pñ
�
JË @

�
éË @X úÍ@

@XA

	
J
�
��@

�
éJ

K @ñ

�
�«

�
é
�
®K
Q¢�. Ñî

	
DÓ

�
èQ�

	
ª�

�
éJ
«Q

	
¯

�
é«ñÒm.

×

Qê
	

¢
�
� . @Q�
ÓA¾Ë@ 	áÓ

�
éJ

KQÖÏ @ A

�
®

	
JË @ úÍ@

�
éJ

	
�@Q

�
�
	
¯B@

�
éJ

Kñ

	
�Ë@ ¡

�
®

	
JË @ 	áÓ

�
èQ�

	
ª�Ë@

�
éJ
«Q

	
®Ë @

�
é«ñÒj. ÖÏ @ è

	
Yë

.
�
éJ

	
�@Q

�
�
	
¯B@

�
éJ

Kñ

	
�Ë@ ¡

�
®

	
JË @

�
èZA

	
®» H. A�mÌ

	á�

�
J
�
®K
Q£ hQ�

�
�
®

	
K

�
IJ
k .

�
éÓY

�
®ÖÏ @

�
èPñ�ÊË

�
éJ
ËA«

�
éJ
«ñ

	
K l�'A

�
J
	
JË @

�
éJ

Kñ

	
�

�
é¢

�
®

	
K , ú

æ�ºªË@ ÉK
ñj

�
JË @ I. J
ËA�

@ , I. J
ªº

�
JË @,

�
èQå

�
�AJ. ÖÏ @

Q�

	
«

�
èZA

	
�B

@ ,

�
éK

ðQË@ :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

.
�
éJ

	
�@Q

�
�
	
¯ @

Abstract

In computer graphics, rendering requires computing the contribution of the light

sources (direct lighting) and that of all the objects within the scene through multi-

ple reflections, refractions and scattering within participating media such as smoke,

dust, clouds (indirect lighting).

Indirect lighting is a very time-consuming task, mainly due to visibility computa-

tion (between light rays and the scene’s objects). To speed up indirect lighting,

one way is to exploit the high performance of the GPU (Graphics Processing Unit).

The aim of this thesis is to use the GPU for computing all the objects visible

from the light sources. To this end, we place a 360-degree camera consisting of a

DPRSM (Dual Paraboloid Reflective Shadow Map). For each pixel of this cam-

era, we compute the visible point, its 3D position, normal and color. Each visible

point acts as a point light source which plays the role of secondary light source,

called VPL (Virtual Point Light). During rendering, any point in the scene is

assigned a radiance due to direct lighting and indirect lighting. This latter is the

contributions of the VPLs.

Computing the contributions of all the VPLs is very time-consuming. One bet-

ter solution is to choose by importance a small subset of VPLs using an inverse

transform method (called IT method) based on CDF (Cumulative Distribution

Function). Then we compute the contribution of this small subset of VPLs to the

points visible from the camera through the pixels. The way the CDF is computed

is crucial for the quality of the rendered image. We propose two methods for

computing an efficient CDF as well as an MIS (Multiple Importance Sampling)

method combining an IT method with a gathering approach.

keywords: Visibility, Indirect lighting, Voxelization, Inverse Transform methods,

Virtual Point Light.

Contents

Acknowledgements ii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 3

1.3 Organization of the dissertation . 4

I Background on global illumination 6

2 Mathematical fundamentals on global illumination 7

2.1 Introduction . 7

2.2 Solid Angle . 8

2.3 Radiometric quantities . 9

2.4 Bidirectional Reflectance Distribution Function 10

2.4.1 Diffuse surfaces . 12

2.5 Rendering equation . 13

2.5.1 Direction domain . 13

2.5.2 Area domain . 14

2.6 Conclusion . 15

3 Theory behind Monte Carlo integration 16

3.1 Introduction . 16

3.2 Probabilistic concepts . 16

3.2.1 Discrete random variable . 17

3.2.2 Continuous random variables 17

3.2.3 Expected value . 18

3.2.4 Variance . 18

3.3 Monte Carlo integration . 18

3.4 Inverse transform method . 19

3.4.1 Uniform sampling of triangles 21

v

vi

3.5 Importance sampling . 23

3.6 Multiple Importance Sampling . 25

3.7 Conclusion . 26

II State of the art on voxel and VPL based methods 27

4 Voxel-based models 28

4.1 Introduction . 28

4.2 Voxelization . 28

4.3 Ray marching . 29

4.4 Voxel-based methods . 30

4.4.1 Voxel path tracing . 31

4.4.2 Voxel Cone Tracing . 31

4.4.3 Layered Reflective Shadow Maps 32

4.5 Conclusion . 33

5 VPL-based rendering methods 34

5.1 Introduction . 34

5.2 Generating VPL . 34

5.3 Evaluating visibility . 36

5.3.1 Imperfect Shadow Maps (ISM) 36

5.3.2 View Adaptive Imperfect Shadow Maps 38

5.3.3 Rich VPLs . 39

5.4 Clustering . 39

5.5 Conclusion . 40

III Contributions and results 41

6 Dual Paraboloid Reflective Shadow Maps for VPL-based render-
ing 42

6.1 Introduction . 42

6.2 System overview . 43

6.2.1 Dual Paraboloid Reflective Shadow Maps (DPRSM) 45

6.2.1.1 Construction . 45

6.2.1.2 DPRSM selection 50

6.2.1.3 Visibility Computation 51

6.2.2 VPL-based indirect lighting method 54

6.3 Results and discussion . 58

6.4 Conclusion . 61

7 Efficient Inverse Transform methods for VPL Selection in Global
Illumination 64

7.1 Introduction . 64

7.2 System Overview . 65

vii

7.2.1 Gathering-based method . 65

7.2.2 Computing a global CDF 67

7.2.3 Determining the most contributive VPLs 68

7.3 VPL Sampling methods . 68

7.3.1 Computing the contribution of a VPL to a gather point . . . 68

7.3.2 Stratified CDF . 70

7.3.3 Local CDF . 71

7.3.4 Gathering-based global CDF 74

7.3.4.1 Average contribution texture 78

7.3.4.2 Implementation details 79

7.3.4.3 Filling in holes . 82

7.4 A Multiple Importance Sampling Approach 85

7.4.1 Background on MIS . 85

7.4.2 Description of our MIS method 86

7.5 Results and evaluation . 91

7.6 Conclusion . 97

8 Conclusion 99

Bibliography 102

List of Figures

1.1 Direct vs Indirect illumination. 2

2.1 The electromagnetic spectrum. 8

2.2 Illustration of the solid angle: dω is a differential angle solid pro-
jected over a differential area dA. 9

2.3 Illustration of the solid angle: dω is a differential angle solid pro-
jected over a differential area dA. 9

2.4 Illustration of the BRDF function: the relation between the incom-
ing radiance Li and the outgoing radiance Lo. 11

2.5 . 12

2.6 Illustration of the light transport geometry. 14

3.1 Example of the PDF and CDF distribution in the discrete domain. 20

3.2 Shapes of PDF and CDF functions. First row: the PDF function
in the contiuous distribution. Second row: the CDF function that
is the integration of the PDF function. 22

3.3 different Integrand and PDF plots: first row: uniform distribution
with constant PDF (in green), second row: PDF (in green) is closer
to the integrand (in blue) than in the third row. 24

4.1 Transformation of a triangle mesh to a voxelized representation. . . 29

4.2 Voxel path tracing. [THGM11] . 31

4.3 Layered Refelective Shadow Maps steps. 33

5.1 Reflective Shadow Maps scheme . 35

5.2 ISM method overview. 37

5.3 Defferent steps of ISM technique: preprocess, ISM generation and
shading. 38

5.4 Bidirectional Reflective Shadow Maps [REH+11] 39

5.5 Illustration of the depth subdivision into clusters [OBS+15]. 40

6.1 Overview of our global CDF method using the DPRSM at the point
light source and a PSM at each selected VPL to evaluate visibility. . 44

6.2 Dual Paraboloid Shadow Maps [BAS02] 45

6.3 DPSM: using two paraboloids to capture the complete environment
[BAS02] . 46

6.4 uniform selection in DPRSM. 51

viii

ix

6.5 Figure (a), (c) and (e) show the color buffer of the front face cor-
responds to all the triangles of the Sibenik scene, the Conference
scene and the Sponza scene respectively. Figure (b), (d), and (f)
correspond to the back face color buffer for the four scenes respec-
tively. 54

6.6 Figure (a), (c) and (e) show the normal buffer of the front face
corresponds to all the triangles of the Sibenik scene, the Confer-
ence scene and the Sponza scene respectively. Figure (b), (d), and
(f) correspond to the back face normal buffer for the four scenes
respectively. 55

6.7 Figure (a), (c) and (e) show the position buffer of the front face
corresponds to all the triangles of the Sibenik scene, the Confer-
ence scene and the Sponza scene respectively. Figure (b), (d), and
(f) correspond to the back face position buffer for the four scenes
respectively. 56

6.8 Scene representation example. 57

6.9 The Sibenik, Crytek Sponza, and Conference room scenes have been
rendered using 800 randomly selected VPLs per gather point. Im-
age (a), (b), and (c) are the reference images for the three scenes
generated with the global CDF-based method [REH+11], the con-
tribution of each gather point is computed using a large number of
VPLs (10k VPLs). Images (d), (e), and (f) have been computed
using our global CDF method. 59

6.10 Plots representing the rendering time in milliseconds of our global
CDF method and the reference method proposed by Ritschel et al’s
[REH+11] for the Sibenik, Crytek Sponza and the Conference room
scenes respectively. 63

7.1 Overview of our inverse transform methods and MIS for computing
the indirect illumination at each gather point using different types
of CDF. 66

7.2 Overview of global CDF method: illustration of the computation of
a discrete CDF to generate mcVPLs. 69

7.3 Computation of indirect lighting due to VPLs. 70

7.4 Overview of Stratified CDF: we compute the average contribution
of each screen quarter, then we merge it to generate one CDF. . . . 71

7.5 Illustration of the discontinuity problem when we use one CDF for
each gather point. In this example, the image plane is subdivided
into 4 regions, (a) local CDF method with only one CDF for each
GP of a region, we see discontinuity at the boundaries of regions;
(b) local CDF method with 4 CDF per GP , the discontinuities have
disappeared. 72

7.6 Example of median filter . 75

7.7 Algorithm overview of the average contribution texture on GPU. . . 79

7.8 Scene representation. 80

7.9 FBO components. 81

x

7.10 Back average contribution texture. 81

7.11 Back average contribution texture (from the back texture). 82

7.12 Median filter method overview. 83

7.13 Median filter result. 83

7.14 Different passes on CPU and GPU for computing our gathering-
based global CDF. 84

7.15 Representation of MIS technique in a 3D scene. 86

7.16 Overview of our MIS technique using the two strategies. 88

7.17 a, b and c show the voxelization-based approach of the Sibenik, the
Conference scene and the SponzaBuddha scene respectively. We
use a voxel grid with a resolution equal to 1283 92

7.18 The Sibenik, Conference, Sponza Buddha and Crytek Sponza scenes
have been rendered using 800 randomly selected VPLs per gather
point and 800 directions for the MIS method. Image (a), (e), and (i)
are the reference images for the four scenes generated with the global
CDF-based method [REH+11], the contribution of each gather point
is computed using a large number of VPLs (10k VPLs). Images (b),
(f), and (j) have been computed using our local CDF. Images (c),
(g) and (k) have been generated with our GBG CDF method. Our
MIS method provides the images (d), (h), and (l). 93

7.19 RMSE results for the Conference scene as a function of the number
of VPLs used for rendering. 95

7.20 HDR-VDP-2 metric between the reference images and those ob-
tained with our methods for the four test scenes. The first column
represents the reference image for the Sibenik (A), Conference room
(B), Sponza Buddha (C) and Crytek Sponza (D); the second col-
umn shows the HDR-VDP-2 images and the third one shows our
results. Images (b),(f), (j) and (n) have been generated with our
local CDF method. Images (d), (h), (l) and (p) have been gener-
ated with our GBG CDF. Images (a), (e), (i) and (m) provide the
HDR-VDP-2 metric between the reference images (image (A),(B),
(C), (D)) and the images (b), (f), (j) and (n) respectively. Images
(c), (g) , (k) and (o) represent the HDR-VDP-2 metric between the
reference images (image (A),(B), (C), (D)) and the images (d), (h),
(l) and (p) respectively. 96

7.21 Comparison of our GBG CDF method without MIS (left column)
and our GBG CDF method with MIS (right column). 97

List of Tables

6.1 The number of triangles and the color buffer of the GBuffer which
contains the diffuse color corresponding to all the triangles of the
Sibenik, Crytek Sponza with bunny object and Conference room
respectively. 58

6.2 RMSE error between our images and the reference for the Sibenik,
Crytek Sponza and Conference room scenes. 60

6.3 Rendering time comparison for Sibenik, Crytek Sponza and Confer-
ence room with a 512× 512 resolution when using a classical RSM,
a cube map and a DPRSM. 60

6.4 Rendering time with different scene resolutions for the Sibenik, Cry-
tek Sponza and Conference room scenes. 61

7.1 Time rendering of our local CDF, GBG CDF, and MIS methods
compared to the global CDF method. This time rendering is com-
puted in milliseconds for the four scenes using the same number of
VPLs (800 VPLs for each method). 94

7.2 Time for generating GBuffer, DPRSM, Ray Marching for Sibenik,
Conference, and Sponza scenes in millisconds. The Shadow Map
resolution is 512× 512 . 94

xi

Chapter 1

Introduction

Computer graphics domain is concerned with the creation and management of

different interactions between the light and the objects of a 3D scene. Despite its

appearance in the early 1950s, its applications are very limited. Currently, com-

puter graphics invades different fields of research and it has an important goal in

research. The realistic rendering of 3D scenes, which is nowadays strongly sought

by the industries of cinema, architecture, multimedia, video games, etc.

The global illumination techniques in recent years are known a considerable im-

provement, both visually and in terms of computation time. A final realization of

images photo-realistic with the techniques of global illumination, the exact calcula-

tion of the distribution of light in the 3D scene is the most important element to be

taken into account. Indeed, the equation of rendering that has been introduced in

1886 makes it possible to model the distribution of the light in a scene. Or, an exact

solution of this equation is impossible since there is an infinity of incident lights.

Lighting simulation and the search for a solution to the problem of global illumina-

tion still is a very active research in computer graphics. Global illumination aims to

simulate different lighting effects in a 3D scene. Several approaches exist, which are

based on tracing rays or photons, such as: bidirectional path tracing[LW93], gath-

ering, Metropolis-Hasting ([MRR+53]; [Has70]), photon tracing[Jen96], and meth-

ods based on Virtual Point Light (VPL)([Kel97];[RGK+08]; [REH+11]). Many

methods have been proposed in the literature to compute indirect lighting, some

of them make use of VPLs. The use of VPLs can be an efficient way to compute

global illumination. The VPLs are computed as follows. One classical camera is

1

2

placed at each point light source. Rendering from this camera allows computing

a GBuffer containing for each pixel of this camera: the 3D position of the point

visible to the point light source through the pixel, its normal, flux and color. This

GBuffer is called RSM (Reflective Shadow Map). Note that a classical Shadow

Map contains only the z coordinate (depth) of the visible point through a pixel,

and an RSM is an extension of a Shadow Map. Each visible point stored in an

RSM is called VPL. Each VPL acts as a secondary light source that could con-

tribute to any point in the scene (indirect illumination).

Previous studies have shown that the critical step in global illumination compu-

tation is to determine visibility. This latter can be computed using algorithms

based on Shadow Maps ([RGK+08]; [REH+11]). The authors of these latter pa-

pers have reported a good approximation of visibility when using VPLs, but it is

very expensive (in terms of memory storage) to associate a Shadow Map with each

VPL. Once the VPLs have been computed, for efficiency purpose, the radiance of a

pixel of the scene camera is computed by summing the contributions (to the point

visible through the pixel of the scene camera) of a small set of VPLs (rather than

all the VPLs) selected randomly using an inverse transform method (IT) requiring

the computation of a cumulative distribution function (CDF). The way the CDF

is computed is crucial for the quality of the rendered image.

Figure 1.1: Direct vs Indirect illumination.

Our proposed methods can be used in several application domains, such as Vir-

tual Reality and Augmented Reality, to improve realism. We could also apply our

methods in Multimedia and Video games applications to minimize the rendering

time.

In this manuscript, we are interested in global illumination methods based on

3

VPLs. The VPLs are constructed by placing two PRSM (Paraboloid Reflective

Shadow Map), each having a field of view of 180 degrees around a point light

source. This way a visibility of 360 degrees is assigned to a point light source.

Note that a classical RSM has a field of view of only 90 degrees. From now on, the

set of two PRSMs is called DPRSM (Dual Paraboloid Reflective Shadow Map).

The goal of this thesis is to propose a technique that uses the inverse transform

method to select the more contributive VPLs in the scene, to do this we have to go

through the implementation of the techniques of view adaptive imperfect shadow

maps (global CDF) that is presented by [REH+11], and distributed ray tracing

(gathering approach).

1.1 Motivation

The motivations of this PhD thesis is to provide new rendering techniques for

selecting the VPLs that contribute more to the final image. We have focused on

two main research axis:

• implementation of the methods for efficiently computing a CDF (used to

select randomly a small set of VPLs contributing to the radiance of a point

visible from the viewpoint) as well as an MIS (Multiple Importance Sam-

pling) method combining an IT method (Inverse Transform) with a gathering

approach aiming at improving the quality of the rendered image.

• visibility is computed using a voxel-based approach. We consider only single

bounce indirect lighting and diffuse objects.

1.2 Contributions

Our main contributions are:

• implementation details on DPRSM and PRSM;

4

• two PRSMs (called DPRSM) are placed around each point light source to

compute VPLs, and one PRSM is assigned to each VPL for visibility purpose;

• we show that DPRSM outperforms classical RSM when rendering with VPLs.

To cover a 360degree field of view a DPRSM requires two rendering passes

while a classical RSM requires six.

• use of Dual Paraboloid Reflective Shadow Maps (DPRSM): when randomly

selecting a small set of VPLs, each of the two paraboloid reflective shadow

maps (PRSM) of this DPRSM is randomly selected at a time according to

a Russian roulette [AK90];

• novel methods for computing a CDF;

• an MIS (Multiple Importance Sampling) method combining an inverse trans-

form method (for computing CDF) with a gathering approach.

1.3 Organization of the dissertation

This thesis is divided into three main parts:

1. Part 1- Background on global illumination: we will introduce in the

chapter2 the fundamental formulation and equations to formalize the light

transport function. In the chapter 3 we will present the Monte Carlo integra-

tion and the methods that used Monte Carlo integration for approximating

a solution to the rendering equation.

2. Part 2- State of the art on voxel and VPL based methods: in this

part we will present voxel-based methods for approximating the visibility

computation during the rendering step (4). Where we will describe in the

chapter 5 the diffirent methods for VPL-based rendering.

3. Part 3- Contributions and results: we will show an overview of our

methods for computing the CDF. In chapter 6 we describe how to select one

PRSM using Russian roulette. Our inverse transform methods (local CDF

and gathering-based global CDF) aiming at selecting the more contributive

VPLs are presented in chapter 7. As well as we will detail in this chapter

5

our proposed combined technique based on the MIS principle, with some

experimental results.

Part I

Background on global

illumination

6

Chapter 2

Mathematical fundamentals on

global illumination

2.1 Introduction

In this chapter, we will present the basic radiometric quantities used in the global

illumination field, as well as all mathematical equations to approximate the calcu-

lation of the lighting. Light is a set of photons, each of them has a certain energy.

These photons are distributed in the electromagnetic spectrum. The visible part

in the electromagnetic spectrum is ranged between ultraviolet and infrared radia-

tion with λ ∈ [380, 780] nanometers (nm) where λ represents the wavelength (see

figure 2.1).

The following formula shows the energetic light power Φ (measured in Watts):

Φ =

∫ 780nm

380nm

Φ(λ)dλ (2.1)

7

8

Figure 2.1: The electromagnetic spectrum.

The techniques for computing the illumination in computer graphics are based on

the light distribution over a 3D surface.

2.2 Solid Angle

The solid angle describes the area taken by an object projected onto the unit

sphere centred at a point x. In the global illumination domain, the solid angle

represents a set of directions around a sphere. From now on, the solid angle is

denoted by ω. It can be computed by the ratio between the projected area A and

the radius square r of the sphere as in the following equation 2.2

ω =
A

r2
(2.2)

We can approximate the solid angle around a point x onto a small area by 2.3:

dω =
Acosθ

r2
(2.3)

Where cosθ is the angle between the axis r and the surface normal N .

The figure below 2.2 illustrates an example of solid angle: Moreover, the solid

angle can also be represented in spherical coordinates system as. This formula

is popularly used in the rendering domain because we integrate around a sphere

(hemisphere). The formula is described as follows 2.4:

dω = sinθdθdϕ (2.4)

The following figure illustrates the solid angle in the spherical coordinates system

2.3:

9

Figure 2.2: Illustration of the solid angle: dω is a differential angle solid
projected over a differential area dA.

Figure 2.3: Illustration of the solid angle: dω is a differential angle solid
projected over a differential area dA.

2.3 Radiometric quantities

Radiometry domain is an energetic system that allows quantifying the energy of

all types of radiations. While the photometry domain concerns only the visible

radiations which define in λ ∈ [380, 780].

10

The Radiometric quantities are physical measurements that characterised the dif-

ferent light phenomena. In computer graphics domain, we use these quantities to

define the rendering equation.

1. Radiant flux (light power): denoted as Φ and measured in Watts (W).

It expresses how much radiant energy Q is propagated from, through, or to

a surface by a unit of time t:

Φ =
dQ

dt
(2.5)

2. Irradiance: it corresponds to the radiant flux Φ received per a unit of

surface area A1. It denoted as E and measured in W.m−2:

E(x← ω) =
dΦ

dA1(x)
(2.6)

3. Radiant Exitance: is the radiant flux leaving a surface area A2. It called

also Radiosity. Notated by B and measured in W.m−2:

B(x→ ω) =
dΦ

dA2(x)
(2.7)

4. Radiance: is the radiant flux Φ per unit of solid angle ω per unit of surface

area A:

L(x→ ω) =
dΦ

dωdA(x)cosθ
(2.8)

Where θ is the angle between the normal of the surface area A and the

direction ω. The luminance is measured in W.m−2.sr−2

5. Intensity: it is the radiant flux Φ emitted by a point light source per unit

of solid angle ω. It is measured in W.sr−1:

I(x→ ω) =
dΦ

dω
(2.9)

2.4 Bidirectional Reflectance Distribution Func-

tion

When the light reaches a surface, it can be reflected, or transmitted. A part of

this energy can be absorbed. The function which defines the energy distribution

11

through a surface is called BSSRDF(Bidirectional surface scattering reflectance

distribution function). For simplification, the BSSRDF is replaced with the BRDF.

This end expresses the ratio between the reflected radiance in a given direction and

the irradiance. The BRDF considers only the light arriving at a point x of a surface

and the light reflected from this same point. It used to describe the properties of

the diffuse reflection, the rough specular or the ideal specular (glossy) materials.

When the light is coming on a surface, it reflected the energy. The amount of the

radiance reflected from the point x is given by:

dLo(x→ ωo) = fr(x, ωi, ωo)dE(x← ωi) (2.10)

For a single light wavelength, the BRDF is given by the following formula (equa-

tion2.11):

fr(x, ωi, ωo) =
radiance

irradiance
=
dLo(x→ ωo)

dE(x← ωi)
=

dLo(x→ ωo)

Li(x← ωi)cosθidωi
(2.11)

Where θi is the angle between the normal of the surface and the direction ωi with

cosθi is the dot product of the normal N and the direction ωi. (see figure 2.4 for

more details).

The figure below (2.4) illustrates the BRDF function: The BRDF has two proper-

Figure 2.4: Illustration of the BRDF function: the relation between the
incoming radiance Li and the outgoing radiance Lo.

12

ties which are: reciprocity and energy conservation. The reciprocity property also

called Helmholtz reciprocity is given by:

fr(x, ωi, ωo) = fr(x, ωo, ωi) (2.12)

This property means that the BRDF at a point x coming from the direction ωi

and reflected into direction ωo is the same as the BRDF at a point x coming from

the direction ωo and reflected into direction ωi.

The energy conservation property expresses that for all the directions ωi and ωo

over the hemisphere Ω+, the total energy quantity that is reflected can not be

higher than the incident quantity energy. The conservation energy property is

given by: ∫
Ω+

fr(x, ωi, ωo)cosθidωi 6 1 (2.13)

2.4.1 Diffuse surfaces

The diffuse surfaces (Lambertian surfaces) are the surfaces that uniformly reflect

the energy in all the directions over the hemisphere (see figure 2.5).

Figure 2.5

Let ρd is the diffuse albedo of a surface. It represents the fraction of the incident

irradiance reflected into the radiosity B:

ρd =
Bo(x→ ωo)

Eo(x← ωi)
(2.14)

13

For a perfect Lambertian surface, the BRDF can be define as:

fr(x, ωi, ωo) =
ρd
π

= kd (2.15)

2.5 Rendering equation

In this section, we present the basic rendering equation that is physically modelling

the lighting distribution problem in a 3D scene.

In the field of computer graphics, the generation of images requires an accurate

calculation of the light distribution in a 3D scene, the calculation of a point color in

a 3D model requires the integration of the whole incident illumination. Obviously.

Kajiya [Kaj86] has been introduced in 1986 the rendering equation that is used to

determine the outgoing radiance at a point x in a surface A. However, it is difficult

to solve this recursive integral analytically. For that, there are many techniques

to approximate the solution of the rendering equation.

The light transport does not depends on only to the self-emittance at a point x

but to its reflections and refractions properties. Thus, the light distribution can

be expressed in the direction domain or in the area domain. In the following, we

will illustrate how the rendering equation is represented in each domain. For more

details, please refer to the Physically Based Rendering Techniques (PBRT) book

[HP04].

2.5.1 Direction domain

Using the definition of the BRDF (2.11), we can deduce the outgoing radiance dLo

at a point x in a differential direction dω as:

dLo(x→ ωo) = fr(x, ωi, ωo)Li(x← ωi)cosθidωi (2.16)

To find the radiance in all the direction domain, we integrate the equation 2.16:

Lo(x→ ωo) =

∫
H2

fr(x, ωi, ωo)Li(x← ωi)cosθidωi (2.17)

14

To generate the formula, we add the self emittance Le at a point x 2.18:

Lo(x→ ωo)︸ ︷︷ ︸
total radiance

= Le(x→ ωo)︸ ︷︷ ︸
emitted radiance

+

∫
H2

fr(x, ωi, ωo)Li(x← ωi)cosθidωi︸ ︷︷ ︸
reflected radiance

(2.18)

Where ω ∈ H2 and H in the hemisphere around the point x

After some interactions, the outgoing radiance can be an incident radiance of

another point. Therefore, the integral that represents the expression of the light

transport will be recursively.

2.5.2 Area domain

Our goal is now to transform the light transport equation represents in the direc-

tion domain to another one represents in the area domain. We integer the light

transport over all the surfaces.

The following figure 2.6 represents the geometry of the light transport in the area

domain: To transform the rendering equation to an area domain, it is necessary

Figure 2.6: Illustration of the light transport geometry.

to reformulate the solid angle dω by a differential surfaces unit dA as follows 2.19:

dω =
cosθds

‖x− y‖2
(2.19)

Let us call V (x, y) the visibility function between x and y (visibility = 1 if the

point x is visible from point y, and 0 otherwise). G(x, y) is the geometry term

15

which defines the relation between the orientation and the distance between the

points on the different surfaces. Where:

G(x, y) =
cosθcosθ′

‖x− y‖2
(2.20)

The equation 2.18 becomes:

Lo(x→ ωo) = Le(x→ ωo) +

∫
A

fr(x, ωi, ωo)Li(x← ωi)V (x, y)G(x, y)dS (2.21)

Equation 2.21 expresses the global illumination model in the area domain. It

describes the light transport mechanism between areas. In this thesis, we use

both global illumination formulation in direction domain and in area domain.

There are several approaches to resolve the light transport equation (in direction

domain or in area domain). In this thesis, we are interested in the Monte Carlo

rendering techniques.

2.6 Conclusion

The rendering equation consists in calculating the distribution of the light at dif-

ferent points in a scene, it is difficult to solve it by the analytical methods, for this

reason, there are several methods that have been developed to simplify the resolu-

tion of the rendering equation. The approximate method consists in discretizing

the scene in small surfaces called patch, this discretization offers an advantage of

transforming the rendering integral into a system of equations, then calculating the

radiance in each patch. The main problem of this method is that it allows simulat-

ing only the diffuse effects. The most methods used today to solve the rendering

equation are Monte Carlo methods which are based on probabilistic sampling. In

the next chapter, we will describe in detail the Monte Carlo integration and the

different rendering techniques that used Monte Carlo integration to approximate

the global illumination effects.

Chapter 3

Theory behind Monte Carlo

integration

3.1 Introduction

In the previous chapter, we have introduced some basic mathematical concepts and

formulas which are used in the global illumination domain. As we have shown,

there are several approaches to solve the light transport integral. It is practically

impossible to find an analytic solution to the rendering equation, especially for the

complex geometry scenes. In this section, we will demonstrate an efficient way to

solve the rendering equation by using the Monte Carlo integration. Moreover, this

integration to the global illumination problem can be a robust solution because

it is based on random sampling. It generates realistic rendering scenes and it is

considered as the most popular solution to the global illumination problem.

3.2 Probabilistic concepts

To simulate the light distribution, it is necessary to resolve the rendering integra-

tion. In practice, it is impossible to find an analytical solution. For this reasons,

the most efficient solution is the use of Monte Carlo estimator. In this section,

we define how we can use the Monte Carlo integration to resolve the rendering

equation. We also show some algorithms and methods that used Monte Carlo

methods in computer graphics domain.

16

17

3.2.1 Discrete random variable

A discrete random variable X is a variable that takes a countable random values.

In a domain Ω, we note X(Ω) = {x1, x2, ..., xk, ...} where xk is the outcome of the

discrete random variable X. Each variable xk has a probability mass function p,

where p(xk) ∈ [0; 1]. If X(Ω) takes a finite elements then the probabilities sum of

all the variable xk is equal to 1.

p(X = xk) ≥ 1 (3.1)

and ∑
xk∈X(Ω)

p(X = xk) = 1 (3.2)

A Cumulative Distribution Function (CDF) of a discrete random variable X is the

probability gives to a variable which takes a value less than or equal to xk

CDF (X) = P (X) = p(X ≤ xk) (3.3)

for all i = 1,...,k

P (X) =
∑
xi≤xk

p(xi) (3.4)

3.2.2 Continuous random variables

A continuous random variable X is a variable which takes its values in uncountably

infinite of outcomes xk from its domain. Let us define the Probability Distribution

Function of a continuous random variable X ∈ [a; b], the probability affected to a

such variable x in the small interval [a; b]. It is noted by p(x)dx.

The Cumulative Distribution Function (CDF) of a continuous random variable, is

expressed by:

CDF (X) = P (X) = P (x ∈ [a; b]) =

∫ b

a

p(x)dx (3.5)

18

3.2.3 Expected value

We can define the expected value as the mean of a probability function. Moreover,

we have two expected value types according to the random variable.

The expected value of a discrete random variable X is defined as:

E(X) =
k∑
i=1

xip(xi) (3.6)

For a continuous random variable X ∈ Ω, its expected value is given by:

E(X) =

∫
Ω

xip(xi)dxi (3.7)

Moreover, we can express the expected value of a random variable function as:

E(f(x)) =

∫
Ω

f(x)p(x)dxi (3.8)

3.2.4 Variance

The variance is the deviation (the difference) of a random variable from its mean.

The variance of a random variable X is defined as:

V [X] = σ2 = E[(X − E[X])2] (3.9)

In other words:

V [X] = σ2 = E[X2]− E[X]2 (3.10)

3.3 Monte Carlo integration

The Monte Carlo (MC) methods are the methods that based on a stochastic sam-

pling. In computer graphics, the Monte Carlo integration is used to approximate

the rendering equation. Where it is very difficult to provide an exact analytical

solution.

We consider the integral I that defined a function f(x) over a domain Ω. The goal

19

of Monte Carlo integration is to evaluate the integral I:

I =

∫
Ω

f(x)dx (3.11)

Monte Carlo approach approximates the integral I by selecting N random samples

with a certain pdf. The Monte Carlo estimator is given by:

ÎN =
1

N

N∑
i=1

f(xi)

p(xi)
(3.12)

We have:

lim
N−→+∞

ÎN = lim
N−→+∞

1

N

N∑
i=1

f(xi) ≈ IN (3.13)

We can rewrite the equation 2.17 as:

Lo(x→ ωo) =

∫
H2

fr(x, ωi, ωo)Li(x← ωi)cosθidωi
p(x)

p(x) (3.14)

In other way:

Lo(x→ ωo) =

∫
H2

g(x)p(x) (3.15)

Where:

g(x) =
fr(x, ωi, ωo)Li(x← ωi)cosθidωi

p(x)
(3.16)

In this case, the rendering equation is approximated 2.17 by using the Monte Carlo

model as:

Lo(x→ ωo) ≈
1

N

N∑
i=1

g(xi)p(xi) (3.17)

3.4 Inverse transform method

To compute the indirect lighting using Monte Carlo integration, it is necessary to

choose some random points in a certain domain. There are existed different meth-

ods to select random points such as inverse transform, rejection, and metropolis

methods. In this section, we describe the inverse transform method that will be

used in our work to generate the VPLs.

The goal of this method is to generate random variables which correspond to a

certain pdf. For that, we should compute the Cumulative Distribution Function

20

(CDF).

Furthermore, we define the CDF function for two kinds of distributions, discrete

and continuous distributions. We define the CDF and the PDF functions in the

discrete domain as:

CDF (i) =
i∑

j=1

PDF (i) (3.18)

And:

PDF (i) = CDF (i+ 1)− CDF (i) (3.19)

As the PDF distribution, the CDF function is distributed between 0 and 1 (see

figure 3.1 for more details).

Figure 3.1: Example of the PDF and CDF distribution in the discrete domain.

21

For continuous distribution, the PDF and the CDF functions are described as

follows:

Let us call p(x) the probability distribution function of the variable x, defined over

the interval [xmin, xmax], we can sample a random variable x which is distributed

a from according to p from a set of uniform random numbers ξi ∈ [0, 1].

The inverse is produced in two phases:

1. Integrate the PDF p(x) to obtain the Cumulative Distribution Function

P (x) =
∫ x
xmin

p(x)dx.

2. inverse P (x) by using a uniform random numbers ξi. xi = P−1ξi.

Where P−1 is the inverse function of the CDF P .

See figure 3.2

In the following, we show an example for sampling variables using the inverse

transform method:

3.4.1 Uniform sampling of triangles

1. CDF computation:

First, we compute the barycentric of the triangle as: x = αA + βB + γC,

where α + β + γ = 1.

We get: α = 1 − β − γ. So the barycentric point x is expressed by two

unknown variables β and γ x = (1− β − γ)A+ βB + γC where β + γ = 1

Integrating the constant 1 across the triangle gives:∫ 1

γ=0

∫ 1−γ

β=0

dβdγ = 0.5 (3.20)

In order that the PDF becomes uniform, so our pdf is:

p(β, γ) = 2 (3.21)

Since β depends on γ (or γ depends on β), we use the marginal density for

γ, pG(γ):

pG(γ) =

∫ 1−γ

γ=0

2dβ = 2− 2γ (3.22)

22

Figure 3.2: Shapes of PDF and CDF functions. First row: the PDF func-
tion in the contiuous distribution. Second row: the CDF function that is the

integration of the PDF function.

and then, From pG(γ), we find p(β|γ)

p(β|γ) =
p(γ, β)

pG(γ)
(3.23)

p(β|γ) =
2

(2− 2γ)
=

1

(1− γ)
(3.24)

2. Transform the CDF:

To find γ we look at the cummulative pdf for γ:

23

We generate the first uniform random variable ξ1:

ξ1 = PG(γ) =

∫ γ

γ=0

pG(γ)dγ (3.25)

ξ1 = PG(γ) =

∫ γ

γ=0

2− 2γdγ = 2γ − γ2 (3.26)

Solving for γ we get:

γ = 1−
√

1− ξ1 (3.27)

Then, we generate a second random variable ξ2 to find β:

ξ2 = P (β|γ) =

∫ β

β=0

p(β|γ)dβ (3.28)

ξ2 =

∫ β

β=0

1

1− γ
dβ =

β

1− γ
(3.29)

Solving for β we get:

β = ξ2

√
1− ξ1 (3.30)

Thus given a set of random numbers ξ1 and ξ2, we warp these to a set of barycen-

tric coordinates sampling a triangle:

(β, γ) = (ξ2

√
1− ξ1, 1−

√
1− ξ1) (3.31)

3.5 Importance sampling

It is a Monte Carlo approximation method where the expected value of the light

transport equation is approximated by a mean value (see equation 3.17). When

using the importance sampling technique, the distribution will be non-uniform.

The importance sampling method (IS) allows choosing the best PDF distribution.

In other words, it is necessary to choose the distribution where its shape will be

very similar to the integrand shape in order to reduce the variance value.

The IS technique is a variance reduction technique that can efficiently approxi-

mate the light transport integral which leads to converge the solution between the

distribution and the integrand. (see figure 3.3).

Now, lets go back to the equation 2.17. To approximate this integral using im-

24

Figure 3.3: different Integrand and PDF plots: first row: uniform distribution
with constant PDF (in green), second row: PDF (in green) is closer to the

integrand (in blue) than in the third row.

25

portance sampling method, we should find the PDF that minimizes the variance.

We put:

p(ωi) =
cosθ

π
[Dut03] (3.32)

The CDF of a such distribution is:

P (ωi) =

∫
Ω

p(ωi)dωi (3.33)

Because we integrate the rendering equation over the hemisphere, we can formulate

ωi by θ and ϕ angles:

P (ωi) =

∫ 2π

0

∫ π
2

0

cosθ

π
sinθdθdϕ (3.34)

P (ωi) =
1

π

∫ 2π

0

∫ π
2

0

cosθsinθdθdϕ (3.35)

We use the inverse transform method (see section 3.4) , we obtain:

P (ωi) = ϕ
1

2π
sin2θ =

ϕ

2π
(1− cos2θ) (3.36)

We choose two uniform random variables ξ1 and ξ2, where:

ξ1 = cos2θ ⇒ θ = arccos
√
ξ1 (3.37)

And

ξ2 =
ϕ

2π
⇒ ϕ = 2πξ2 (3.38)

3.6 Multiple Importance Sampling

In some cases, we need to approximate the light transport integral by using impor-

tance sampling technique but for more than one strategy. Veach [Vea97] has been

proposed a Multiple Importance Sampling (MIS) technique that allows combining

two (or more) rendering strategies, in order to get an efficient estimator with a

low variance as much as possible.

In this section, we describe the MIS technique and we show how we apply it in

the rendering domain. Veach [Vea97] has been introduced a formulation which

26

permet to approximate the Monte Carlo integration as follows:

F =
1

n

k∑
i=1

n∑
j=1

ωi(xij)
f(xij)

pi(xij)
(3.39)

Where F is the MIS estimator, k is the number of strategies (estimators), n is the

number of samples (number of directions for example), f(xij) is the contribution

of the light path, pi(xij) is the probability associated to the estimator f(xij) and

ωi(xij) is the weight of each sample.

The weights ωi(xij) are used to determine which strategy is more robust and

efficient than the others. The balance heuristic function allows to compute the

ωi(xij) as follows:

ωi(xij) =
pi(xij)∑nbStrategy

k=1 pk(xij)
(3.40)

3.7 Conclusion

In this chapter, entitled theory behind Monte Carlo integration, we have described

the Monte Carlo algorithm. This algorithm, consisting mainly of two passes:

• first pass: consists of searching the good pdf that converges the solution of

the global illumination (in general by using importance sampling technique).

• second phase: consists of transforming the light transport problem from

the continuous domain to the discrete one.

After the detailed description of the technique chosen (Monte Carlo integration).

We describe in the next part, we will cite the different related work concerning

the computation visibility which is the main cost step in the rendering process it

is now time to implement it.

Part II

State of the art on voxel and VPL

based methods

27

Chapter 4

Voxel-based models

4.1 Introduction

In this chapter, we define the voxelization method which is used to compute the

visibility during the rendering process. We show in section 4.2 the principal idea

of the voxelization. Then we present in section 4.3 the ray marching algorithm

that is used on our work and that allows us to browse in the voxelized scene. In

addition, we see in section 4.4 some existing methods that used the voxelization

in the global illumination domain.

4.2 Voxelization

The voxelization is the process of transforming a set of triangles that represent the

scene to a set of voxels. In other words, it describes the passage from a continuous

representation to a discrete one. The voxelization is the best approximation to

the continuous geometry. It can be used to minimize the ray object intersection

when computing the global illumination.

The 3D scene is inserted into an Axis Aligned Bounding Box (AABB). Then, the

scene is subdivided into a grid of 3D cells. Each cell in the three-dimensional

regular grid contains some information about the scene. When the cells contain

the presence of the geometry information, we call this voxelization type as binary

28

29

Figure 4.1: Transformation of a triangle mesh to a voxelized representation.

voxelization. In the other case, the multi valued voxelization, when the cell con-

tains other information, such as normal, position or material. The figure below

(figure 4.1) illustrates the voxelization process:

4.3 Ray marching

After create and subdivide the bounding box that encompasses the entire scene.

The second step consists of browsing the 3D volume (bounding box) in order to

determine the next cell and verify if the object geometry is partially or totally

within this cell or not. Using the ray marching algorithm has the advantage that

it is not necessary to compute the ray object analytically as in the classical ray

tracing. We present in the algorithm 1 the most robust ray marching algorithm

(Amanatide’s algorithm) [AW+87]:

30

Algorithm 1 amanatide(3D texture image grid)

1: o = origin ray(); // return the ray origin

2: v0 = first voxel(grid); // determine the first voxel that contains the the ray

origin

3: if outside(o, grid) == true then

4: // the ray origin is outside of the grid

5: entry = search entryPoint() // search the entry point

6: end if

7: step(stepX, stepY, stepZ) = (1, 1, 1);

8: t = (tx, ty, tz); // values of t corresponding to the points resulting from the

intersection between the ray and 3 faces of the initial voxel

9: tDelta = (tDeltaX, tDeltaY, tDeltaZ); // distance travelled by the ray between

two successive faces perpendicular to the x, y and z faces respectively

10: min = minimum(tx, ty, tz);

11: switch(min)

12: case tx :

13: X += stepX ;

14: tx += tDeltax ;

15: break ;

16: case ty

17: Y += stepY ;

18: ty += tDeltay ;

19: break ;

20: case ty

21: Z += stepZ ;

22: tz += tDeltaz ;

23: break ;

4.4 Voxel-based methods

Usually directly using triangles (modelling the geometry of a scene) in real-time

rendering scenario can be not efficient. To reduce the intersection computation,

a scene can be subdivided into voxels. Several methods have been proposed

([CNLE09]; [THGM11]; [CG12]). Hu et al [HHZ+14] have presented a new ray

tracing method, programmable on the modern GPU, which uses an A-Buffer and

31

a grid voxelization to represent the scene geometry.

In this section, we present some related work techniques that used the voxelization

in the rendering domain.

4.4.1 Voxel path tracing

It is the first method presented in voxel-based global illumination [THGM11] that

allows calculating indirect illumination using a scene voxelization.The goal of such

a representation is to accelerate the process of the ray-object intersection. The

authors proposed a simple ray marching for computing intersection between the

rays and the volume data and projecting the outgoing point of the hit voxel onto

a Reflective Shadow Maps to determine the visibility from the point light source.

Figure 4.2 illustrates the principle idea of the voxel path tracing: This method

Figure 4.2: Voxel path tracing. [THGM11]

allows multi bounces rendering with diffuse and specular materials.

4.4.2 Voxel Cone Tracing

Voxel Cone Tracing (VCT) is a method very similar to the ray tracing method.

It is used to accelerate the indirect lighting computation by tracing cones and

32

pre-filtered voxel-based representation during the approximation of the indirect

lighting. Crassin et al’s [CNS+11] have been proposed a method that simulates

both ambient occlusion [KL05] and indirect lighting (with diffuse and specular ma-

terials) by using the sparse voxel octree structure. The sparse voxel octree struc-

ture is a mipmap hierarchical structure [Wil83] that is used to store the incoming

radiance. Once the sparse voxel octree is constructed, the incoming radiance is

estimated by the use of pre-filtred representation. The incoming radiance is then

determined by performing a ray marching algorithm (to determine the visibility)

is performed along each cone and by sampling the pre-filtred data structure in the

mip level that corresponds to the selected cone diameter. The determination of

the mip level is due using this formula:

miplevel = log2(dcircle) (4.1)

Where d is the diameter of the correspondent intersection circle in the cone trac-

ing.

Crassin and Green [CG12] have been presented a new voxelization method using

the GPU hardware rasterizer. This voxelization process is done as follows: first,

each triangle in the 3D scene is projected along its dominant axis using an or-

thographic projection. The dominant axis is an x, y, or z axis which provides

the maximum projected area. Then the corresponding voxel position is written

into a 3D texture. For each mip level, the voxels are stored in a 3D texture at

the corresponding resolution. The advantage of this method compared to the one

proposed by Crassin et al [CNS+11] is that the voxels are constructed according

to the mip-map levels, and only the visible voxels will be inserted on the octree

(3D texture).

4.4.3 Layered Reflective Shadow Maps

The Layered reflective shadow maps (LRSM) method proposed by Sugihara et

al [SRS14] is inspired by voxel cone tracing [CG12]. It is an efficient method

that uses voxel cone tracing [CG12] to simulate both diffuse and specular indirect

lighting. In this paper, the authors propose to divide the RSM into n layers in

order to speed up the rendering time and they used it combined to voxel cone

tracing technique for computing the indirect lighting. The LRSM method uses

voxels only for computing the visibility, where the VCT method [CNS+11] stores

33

more information (example normal, position,... etc) at each voxel, which leads to

a large memory consumption. The LRSM algorithm is composed of three main

steps that are summarized in the following figure (figure 4.3).

Figure 4.3: Layered Refelective Shadow Maps steps.

4.5 Conclusion

In this chapter, we have shown the motivation of using the voxelization in the

rendering domain. The voxelization that consists of transforming a continuous

geometry representation to a discrete one allows accelerating the visibility com-

putation during the rendering process. When we simulate the indirect lighting

with VPL, it should place a shadow map for each VPLs to compute the visibility

term. But it is very costly. For this reason, we use the voxelization and the ray

marching algorithm to efficiently compute the visibility. In the next chapter, we

present some existing methods which simulate the indirect lighting by the use of

the VPLs and which called VPL-based rendering methods.

Chapter 5

VPL-based rendering methods

5.1 Introduction

State-of-the-art solutions [RDGK12] to algorithms, that are used for realistic image

synthesis, rely on path tracing, photon mapping, and radiosity methods. Each of

them can perform efficiently in terms of time rendering or image photo-realism.

We will focus our relative work on VPL [Kel97] and path tracing on the GPU.

For the other techniques, the reader can refer to Ritschel’s et al. state of the art

[RDGK12].

5.2 Generating VPL

In the literature, there are several methods to approximate global illumination

using Monte Carlo estimator and Importance sampling [ARBJ03] using a Proba-

bility Density Function (PDF). The main advantage of Importance Sampling is to

minimize the variance error when the PDF is closer to the integrand. In off-line

rendering, VPL generation can be performed using rejection sampling [GS10] or

more complex sampling techniques based on Monte Carlo Markov Chain (MCMC)

[Gil05]. When real-time is targeted, an approach based on Instant Radiosity and

Shadow Mapping [Wil78], so-called Reflective Shadow Maps [DS05], has been pro-

posed to approximate one bounce indirect lighting. It considers each pixel in the

shadow maps as a secondary point light source defined by its world space coordi-

nates, its normal and its flux, information that allows evaluating the contribution

34

35

of each VPL. Computing the contribution of all the VPLs, stored in a Reflective

Shadow Map, is time-consuming. This is why only a subset of VPLs is used to

compute the indirect radiance of a pixel (see figure 5.1). Dachsbacher et al [DS05]

Figure 5.1: Reflective Shadow Maps scheme

propose two solutions to avoid the contribution evaluation of all the RSM pixels;

which are:

1. first solution: for one visible point from the view camera, only a random

subset of RSM pixels are used.

2. second solution: screen space interpolation the author suggested a

strong assumption: if two points in the scene are close to each other, their

projection on the screen will be close to each other too [DS05]. This solution

has been realized in two passes

- first pass: the authors proposed to render the screen (from the camera

view) in a low resolution and to evaluate the indirect illumination for all the

RSM pixels.

- second pass: in this step, the scene is rendered in a full resolution. If the

samples normal (the three or four surrounding low resolution samples) are

similar to the pixels normal and if its world space position is close to pixel’s

position then a bilinear interpolation of the indirect lighting is performed.

The vpl contribution is calculated using equation 5.1:

contribV PL =
1

π
.gFactor.kdx.f luxV PL (5.1)

36

Where gFactor represents the attinuation factor:

gFactor =
cosθ1cosθ2

d2
(5.2)

And fluxV PL defines the color reflected by the VPL from some bounces N :

fluxV PL =
4πIkdv
N

(5.3)

Then the indirect illumination is approximated by summing the contributions of

all the VPLs as in equation 5.4

indirect =
nbV PL∑
v=0

contribv (5.4)

5.3 Evaluating visibility

The determination of the visibility term is the most expensive operation, espe-

cially in real-time rendering. Instant Radiosity [Kel97] is a popular technique that

calculates indirect lighting due to a set of Virtual Point Lights (VPLs). Unlike

the inverse transform method, Barák et al. [BBH13] exploit the performances of

Metropolis-Hastings algorithm [Seg07] to determine the VPLs and use a small

number of them to render the scene. Hedman et al [HKL16] have proposed a

temporally coherent technique that allows sampling the VPLs in large scenes and

enable frame to frame distribution for minimizing the VPL flickering.

5.3.1 Imperfect Shadow Maps (ISM)

Ritschel et al. [RGK+08], uses the observation that an approximate visibility

term for VPLs is sufficient. The authors proposed a technique, called ”Imperfect

Shadow Map”, which represents the scene surfaces by a set of points and splat

them in parallel in the different shadow maps. Figure 5.2 illustrates an overview

of the ISM technique:

The main steps of the ISM method are described in the figure 5.3. First, we have

as input, a 3D surface geometry. The ISM algorithm consists of:

37

Figure 5.2: ISM method overview.

1. scene preprocessing: in this step, we randomly select some triangles and

we calculate its barycentric points. These points are then used to compute

the visibility because it is very easier to evaluate the visibility point to point

(barycentric point to VPL) than to evaluate it triangle to point.

2. ISM creation: the scene is rendered from the point light source, then we

select a uniform random number of VPLs. We create an ISM for each VPL

that contains the depth value information of some gather points (points that

are visible from the view camera). The ISM is imperfect because we can find

that some VPLs are not reached by the gather points. For this reason, we

apply the pull-push technique to fill in holes.

3. shading: after creating ISMs, we use it to compute the indirect lighting.

We render the scene from the view camera. We perform the visibility test:

we project the gather point in ISMs, and we test if its depth is less than

the depth stored in ISM then the gather point is visible. In this case, we

compute the VPL contribution to this gather point. The final contribution

that defines the indirect lighting is computed by summing the contribution

of all the visible points.

The disadvantage of this technique is that the scene representation is not adapta-

tive and may be not optimal for a large scene. This limitation has been solved by

Ritschel et al. [REH+11].

38

Figure 5.3: Defferent steps of ISM technique: preprocess, ISM generation and
shading.

5.3.2 View Adaptive Imperfect Shadow Maps

Moreover, the authors propose a new method to choose the VPLs which con-

tribute much to the final image by creating a data structure, called Bidirectional

Reflective Shadow Maps, based on a Cumulative Distribution Function (CDF)

(see figure 5.4). The method uses the inverse transform method which requires

the computation of a CDF.

The goal of the Bidirectional Reflective Shadow Maps is to avoid the artifacts due

to the VPLs creation. The main general steps of this method are:

• render scene from view camera;

39

Figure 5.4: Bidirectional Reflective Shadow Maps [REH+11]

• render scene from light point;

• select a random gather point in the scene;

• for a potential VPL in RSM, test visibility of that VPL with all view samples;

• define non-uniform VPL sampling with Cumulative Distribution Function

(CDF), to select VPLs which have a strong influence on view samples;

5.3.3 Rich VPLs

A Rich-VPL method [SHD15] handles glossy reflections with multiple primary

light sources in the scene. Dammertz et al. [DKL10] have proposed a progressive

method to simulate indirect lighting. It combines and exploits the advantages of

three methods: Virtual Point Lights, caustics, and specular gathering, to be able

to render a large variety of global illumination effects.

5.4 Clustering

Many lights methods rely on clustering to reduce the time needed to compute the

contributions of the VPLs, such as the method proposed by Olsson et al. [OBS+15].

Dong et al. [DGR+09] use clustering to compute visibility. This clustering idea, in

global illumination, has been wildly used [Seg07, HL15]. Hašan et al [HKWB09]

have introduced a Virtual Spherical Lights (VSL) method to resolve the singular-

ity problem due to the VPLs. The lightcut methods [WFA+05, WABG06] try to

avoid the VPL flickering.

40

A real time based Instant Radiosity method has been proposed by Novák et

al[NED11] to approximate bias compensation and avoid the artifacts of the VPLs.

Nabata et al [NIDN16] have proposed a method to estimate more precisely the

error due to VPL clustering.

Figure 5.5: Illustration of the depth subdivision into clusters [OBS+15].

5.5 Conclusion

In this chapter, we have presented some VPL-based methods for the indirect il-

lumination contribution. In reality, despite the fact that the VPL-based methods

give a good approximation whether for diffuse or specular materials. But there

are limited by the artifacts (flickering) due to the VPLs sampling, especially when

we generate a small number of VPLs. So, to cover this problem, we have shown

different methods used to clamp the VPLs and resolve the singularity problem due

to the VPLs. In the next chapter, we will present our new VPL-based techniques

to allow a robust and efficient way for selecting the more contributive VPLs.

Part III

Contributions and results

41

Chapter 6

Dual Paraboloid Reflective

Shadow Maps for VPL-based

rendering

6.1 Introduction

Computer graphics is concerned with the creation and management of different

interactions between light and the objects of a 3D scene. Direct and indirect

lighting are computed using global illumination techniques. In the past decade,

these latter have known a considerable improvement, both visually and in terms

of computation time.

One popular global illumination rendering approach is based on virtual point light

(VPL), a technique which operates in two passes. First, a set of VPL is generated

by tracing light rays from a point light source. The points (called VPL) resulting

from the intersection of these light rays and the scene are stored in a data structure

called RSM (Reflective Shadow Map). They act as secondary light sources. Sec-

ond, during the rendering step each point visible from the camera (called gather

point or visible point) gathers the contribution of a small set of VPLs (selected

randomly) after evaluation of visibility between these VPLs and the gather points.

Visibility evaluation is the most costly part in VPL-based techniques. To tackle

visibility, several approaches exist on the GPU using some approximations. One

popular approach is to evaluate visibility based on Shadow Maps [RGK+08] that

contain approximate visibility information. The authors showed that this type of

42

43

approximation is good enough to compute image with perceptual differences.

Another important feature for VPL-based technique is the quality of the small

VPL set selected for each gather point in the rendering step. A good VPL set

needs to approximate indirect lighting for every scene’s point so that the resulting

rendered images are noise-free. Usually, VPLs are generated following a probabil-

ity density function (PDF) that usually is proportional to their contributions to

the camera pixels (gather points). However, for efficiency reason, an approxima-

tion of the VPLs contribution is used to compute the PDF.

For example, only a subset of gather points (corresponding to camera pixels) is

considered for evaluating the PDF, and the visibility term is not evaluated (that

means that the gather points of the subset are considered as visible to all the

VPLs). In our approach, we do compute visibility using a paraboloid RSM.

The VPL-based rendering methods provide good results compared to other ren-

dering techniques and require only a few seconds, especially for diffuse BRDF.

The main objective of this work is to provide implementation details regarding

the construction, the implementation and the use of DPRSM and PRSM within

the framework of VPL-based rendering.

The main contributions of this chapter are:

• implementation details on DPRSM and PRSM;

• two PRSMs (called DPRSM) are placed around each point light source to

compute VPLs, and one PRSM is assigned to each VPL for visibility purpose;

• we show that DPRSM outperforms classical RSM when rendering with VPLs.

To cover a 360 degree field of view a DPRSM requires two rendering passes

while a classical RSM requires six.

6.2 System overview

In this section, we describe our contributions (figure 7.1) which are: DPRSM

construction and Selection, our global CDF method which relies on paraboloid

shadow maps associated with each VPL to speed up the visibility computation.

The scene is represented by a set of triangles. First, we render the scene from the

camera viewpoint to generate the position, normal and color of all visible points

(GBuffer in Figure 7.1). We consider only point light sources. We create a DPRSM

44

(stored in a texture) for each point light source: a texel contains the position,

normal, color of the point V visible to the point light source (V represents a VPL).

Then, we render the scene by sampling a subset of VPLs from the DPRSM by

importance and computing their contributions to the points visible to the camera.

For that, we create a single PSM at each VPL to speed up visibility needed by

the rendering process (module create paraboloid VPL in figure 7.1). Recall that

a CDF is computed and used by an inverse transform-based rendering method

(for more details see [BGBB17]). We exploit the advantages of the PSM structure

associated with each VPL, to efficiently compute the visibility between a gather

point (stored in the GBuffer) and a VPL stored in the DPRSM. We detail in the

following subsection (subsection 6.2.1) the construction of a DPRSM as well as

the computation of the visibility term between the selected VPLs and each gather

point, which is the main important step in our proposal.

Figure 6.1: Overview of our global CDF method using the DPRSM at the
point light source and a PSM at each selected VPL to evaluate visibility.

45

6.2.1 Dual Paraboloid Reflective Shadow Maps (DPRSM)

The scene is represented by a set of triangles. First, we construct a DPRSM at

the point light source, each PRSM texel corresponds to a VPL. Then, we project

the triangles of the 3D scene onto the DPRSM. As described by Gascuel et al’s

[GHFP08], a PRSM uses a non linear projection. This is why, each triangle is

transformed into a single curved triangle, then projected onto the PRSM surface,

each pixel of a PRSM contains the depth, normal and color of a point of the

projected triangle.

In the following subsections, we detail the DPRSM construction, the selection of

one PRSM to evaluate visibility and the computation of the visibility between a

gather point and a VPL.

6.2.1.1 Construction

In this section, we show how to construct a DPRSM for a point light source. We

create at the point light source position (oriented toward the z-axis of the associ-

ated 3D coordinates system) two paraboloids (each corresponding to a hemisphere)

which are called front and back faces, each one represents a PRSM. One hemi-

sphere is created to cover 180 degree field of view. The two hemispheres are put

back-to-back to cover all the scene parts (360 degree field of view). We show how

to compute the projection of a point of the 3D scene onto a PRSM.

Figure 6.2: Dual Paraboloid Shadow Maps [BAS02]

46

Figure 6.3: DPSM: using two paraboloids to capture the complete environ-
ment [BAS02]

As described by Heidrich and Seidel [HS98] the image seen by an orthographic

camera facing a reflecting paraboloid

P = f(x, y) =
1

2
− 1

2
(x2 + y2), x2 + y2 6 1 (6.1)

contains all information about the hemisphere centered at (0, 0, 0) and oriented

towards the camera (0, 0, 1). This function is plotted in Figure 6.2. Since the

paraboloid acts like a lens, all reflected rays originate from the focal point (0, 0, 0)

of the paraboloid.

In order to capture the complete environment (360 degree), two paraboloids at-

tached back-to-back can be used, as shown in Figure 6.3. Each paraboloid captures

rays from one hemisphere and reflects it to one of the two main directions d0 and

d1 (see below).

To project a 3D point (of the scene) onto a paraboloid (3D-to-2D mapping), we

have to find the point P = (x, y, z) = P (x, y, f(x, y)) on the paraboloid that

reflects a given direction ~V towards the direction d0 = (0, 0, 1) (or d1 = (0, 0,−1)

for the opposite hemisphere).

47

The normal vector at the paraboloid surface is calculated by the cross product of

the tangents for the x and y coordinates, computed as partial derivatives Vx and Vy:

Vx =
∂P

∂x
= (1, 0,−x) (6.2)

Vy =
∂P

∂y
= (1, 0,−y) (6.3)

We compute the normal vector at point P on the paraboloid as:

~Np = Vx × Vy (6.4)

~Np = (1, 0,−x)× (0, 1,−y) = (x, y, 1) (6.5)

Since the paraboloid is perfectly reflecting we simply calculate the halfway vector

~H which is equal to ~NP up to some scaling factor. Using ~H and Equation 6.5 we

can now formulate the 2D mapping of ~V :

~d0 + ~V =


X

Y

Z

 = k. ~NP = k.


X/Z

Y/Z

1

 = k.


x

y

1

 (6.6)

To sum up, given a 3D point of the scene, its projection onto the paraboloid is

P = (x, y, f(x, y)), where x and y are computed using equation 6.6.

We describe in algorithm 2 and 3 the pseudocodes for the vertex and fragment

programs that generate a DPRSM on the GPU.

48

Algorithm 2 vector3 vertexGenerateDPRSM(scene s, vector3 p, vector3 n, vec-
tor3 c)

1: // Pseudocode of the Vertex Shader

2: matrix4 MVP = M light. M model. p; // matrix for transforming a point of

the scene to the dual paraboloid coordinate system

3: for each point (vertex) in the scene do

4: p = getValue(s, position); // retrieve the position of each point in the 3D

scene

5: n = normalize(getValue(s, normal)); // retrieve the normal of each point in

the 3D scene

6: c = getValue(s, color); // retrieve the color of each point in the 3D scene

7: newPos = MVP * p; //transform the position of each point p to the dual

paraboloid coordinate system by using a model view projection (MVP) matrix

8: end for

9: return newPos;

49

Algorithm 3 GenerateDPRSM(scene s, float depth, texture2D positionDPRSM,
texture2D normalDPRSM, texture2D colorDPRSM)

1: // Pseudocode of the Fragment Shader

2: // Output: 3 textures representing the DPRSM: positionDPRSM (position of

VPL), normalDPRSM (normal of VPL), colorDPRSM (color of VPL)

3: p = GBuffer (position);

4: n = GBuffer (normal);

5: c = GBuffer (color);

6: vertex = vertexGenerateDPRSM(s, p, n, c);

7: // coords.x and coords.y are the x and y coordinates of the projected point in

the DPRSM coordinate system, computed using equation 6.6

8: for each vertex in the scene do

9: depth = position.z; // the depth of each point in the scene is equal to the

third coordinate z

10: invDepth = 1 - position.z;

11: if depth >= 0.0 then

12: //compute coordinates in front praboloid

13: coords.x = (position.x / depth) * 0.5 + 0.5;

14: coords.y = (position.y / depth) * 0.5 + 0.5;

15: else

16: //compute coordinates in back praboloid

17: coords.x = (position.x / invDepth) * 0.5 + 0.5;

18: coords.y = (position.y / invDepth) * 0.5 + 0.5;

19: end if

20: // calculate the partial derivative for x and y (see equation 6.2 and 6.3

21: dx = partialDerivative(depth);

22: dy = partialDerivative(depth);

23: normal = vectProduct(dx, dy);

24: positionDPRSM = (positionTex, coord.x, coord.y); //get the position from

DPRSM (positionTex) with the new texture coordinates (coords.x and co-

ords.y)

25: normalDPRSM = (normalTex, coord.x, coord.y); //get the normal from

DPRSM (normalTex) with the new texture coordinates (coords.x and co-

ords.y)

26: colorDPRSM = (colorTex, coord.x, coord.y); //get the color from DPRSM

(colorTex) with the new texture coordinates (coords.x and coords.y)

27: end for

50

The main difficulty of the DPRSM generation method lies in how to convert a

simple triangle to a curved one. Because when we create a DPRSM, we per-

form a non-linear projection (see equation 6.1), unlike for classical RSM. The

paraboloid center represents the light source position and its direction indicates

which paraboloid will be used. To generate a DPRSM, we have inspired by the

method proposed by Gascual et al’s [GHFP08]. To compute the contribution of

a VPL (stored in the DPRSM) we store at each texel of the DPRSM, the normal

and color of the projected points rather than the depth value only [BGBB17].

Moreover, we compute visibility by creating a PSM at each selected VPL.

6.2.1.2 DPRSM selection

Once the DPRSM has been created, for each visible point (from the view camera)

a PRSM (front or back face) is selected. Then a VPL is randomly sampled from

the selected face using a CDF. Next, the contribution of the sampled VPL is

computed. We repeat this process (iteration) until a subset of VPLs have been

sampled. The contributions of all the sampled VPLs are summed to give the

indirect radiance of the visible point. We could uniformly select one of the two

faces of the DPRSM as shown in algorithm 4.

Algorithm 4 face selectUniformParaboloid(FACE face, random psi)

1: if psi < 0.5 then

2: return front face;

3: else

4: return back face;

5: end if

Figure 6.4 depicts the uniform selection at the DPRSM. Two paraboloids, front

and back, are created at the point light source. According to the value of the

uniform random variable ψ, a number of VPLs are selected from the front texture

(red circles in figure 6.4) or from the back texture (green circles in figure 6.4).

In fact, this uniform selection (of a face of the DPRSM) is not efficient, because

the importance of the two paraboloids is not always the same and depends on

the scene and the position of the light source. We propose to resort to a Russian

roulette [AK90]. We compute the probability bF (respectively bB) of choosing a

51

Figure 6.4: uniform selection in DPRSM.

front PRSM (respectively a back PRSM) of the DPRSM by computing the sum

of the average contributions vF and vB of all the VPLs stored in a PRSM (front

or back) [BGBB17]. The PRSM selection probabilities are the normalized average

contributions of all the VPLs: bF = vF/(vF+vB) and bB = vB/(vF+vB). Our

selection paraboloid method is given by algorithm 5:

Algorithm 5 face selectParaboloid(FACE face, random psi)

1: vF = sumContrib(front); // average contribution sum for front face

2: vB = sumContrib(back); //average contribution sum for back face

3: bF = vF/(vF+vB);

4: bB = vB/(vF+vB);

5: if psi < bF then

6: return front face;

7: else

8: return back face;

9: end if

6.2.1.3 Visibility Computation

After generating a DPRSM at a point light source and placing a camera into the

3D scene, we create a PSM (at each selected VPL) containing the depth value of

the scene’s points visible from the VPL. Each VPL is considered as a secondary

light source. The VPLs are select using the method presented in [BGBB17] (see

52

subsection 6.2.2).

To compute the indirect lighting, we determine the visibility of each gather point

(point visible from the view camera) from the selected VPL. For that, we project

each visible gather point GP onto the PSM assigned to the VPL and we test if

GP is visible or not from the VPL (line 19 in algorithm 6). If that is the case, we

compute the contribution of the selected VPL to GP . Algorithm 6 describes the

rendering process as well as the visibility computation from a selected VPL. Note

that a PSM (Paraboloid Shadow Map) is constructed in a similar way to that of

a PRSM, the difference lies in the data stored: only a depth (or z coordinate) for

PSM, while depth, normal, color, position for a PRSM.

53

Algorithm 6 2D texture image VPL Rendering(scene s, float depth)

1: gBuffer = GenerateGBuffer(); // a buffer containing the position, normal,

color of the visible points from the camera view

2: dprsm = GenerateDPRSM(s, depth); // front and back buffers containing

position, normal, color of the visible points from the light source

3: for each gather point (i, k) from the gBuffer do

4: for j = 1 to #NBVPL do

5: // NBVPL: small number of VPLs

6: psi = sample uniform random variable(); // psi ranging from 0 to 1

7: if selectParaboloid(face, psi) == front face then

8: //see algorithm 5

9: VPL = sampleFromFront(); // select the VPL of coordinates from the

front face

10: else

11: if selectParaboloid(face, psi) == back face then

12: //see algorithm 5

13: VPL = sampleFromBack(); // select the VPL coordinates from the

back face

14: end if

15: end if

16: prsm = GeneratePRSMatVPL(); // front buffer at the selected VPL con-

taining position, normal, color of the visible points from the selected VPL

17: p = projectToPRSM(GP, prsm); // project each gather point to the PRSM

of the VPL

18: // function visible allows to test if the projected gather point p is visible

from the selected VPL or not

19: if visible(p, prsm) == true then

20: //point p is visible from the PRSM of the selected VPL

21: image[i][k] += computeContribution(VPL) / bF //bF: probability of

selecting the front face

22: end if

23: end for

24: end for

25: return image; // rendered image

54

Figure 6.5: Figure (a), (c) and (e) show the color buffer of the front face
corresponds to all the triangles of the Sibenik scene, the Conference scene and
the Sponza scene respectively. Figure (b), (d), and (f) correspond to the back

face color buffer for the four scenes respectively.

6.2.2 VPL-based indirect lighting method

In this section, we summarize the global CDF method (for more details see [BGBB17])

that is used to determine the VPLs which contribute more to the final image.

1. As input, we have a 3D scene. To render it, we place a camera and a point

light source;

2. we associate a DPRSM with the point light source;

3. we compute the average contribution of all the VPLs to a small subset of

gather points selected randomly (a gather point is a visible point from the

view camera);

55

Figure 6.6: Figure (a), (c) and (e) show the normal buffer of the front face
corresponds to all the triangles of the Sibenik scene, the Conference scene and
the Sponza scene respectively. Figure (b), (d), and (f) correspond to the back

face normal buffer for the four scenes respectively.

4. we store these average contributions in a linear array (also stored in 1D

texture) that is used to compute discrete probabilities assigned to the VPLs;

5. from these discrete probabilities, we compute discrete CDF values stored in

a linear array;

6. to determine the more contributive VPLs (mcVPL), we use the inverse trans-

form method in the discrete domain. In other words, we generate a uniform

random variable (ranging from 0 to 1), then we perform a binary search in

the CDF array, to determine the CDF index k that represents the column

and the row. This pair (row, column) represents the mcVPL coordinates.

As mentioned in figure 6.8, our goal is to compute the indirect lighting Lr in

direction ωr and at a point x. Equation 6.7 represents the rendering equation

56

Figure 6.7: Figure (a), (c) and (e) show the position buffer of the front face
corresponds to all the triangles of the Sibenik scene, the Conference scene and
the Sponza scene respectively. Figure (b), (d), and (f) correspond to the back

face position buffer for the four scenes respectively.

proposed by Kajiya [Kaj86]:

Lr(x, ωr) =

∫
Ω

fr(x, ωi, ωr)Li(x, ωi)cosθidωi (6.7)

Where fr(x, ωi, ωr) is the BRDF of the point x, ωi in the incident direction, and

cosθi is the angle between the normal at the point x and the incoming direction

ωi.

We approximate this equation using Monte Carlo approach as:

Lr(x, ωr) =
1

N

N∑
i=1

fr(x, ωi, ωr)Li(x, ωi)cosθi
p(ωi)

(6.8)

Where N corresponds to the number of samples (in our method the samples are

the VPLs) and p is the probability density function.

57

We propose to use the VPLs for approximating the indirect lighting. Our goal is

to select the VPLs that contribute more to the final image. So we need to find the

VPL as well as its PDF.

Figure 6.8: Scene representation example.

To speed up the rendering process, we propose to generate the mcVPL by the

global CDF method with a DPRSM placed at the point light source, but unlike in

[BGBB17], we associate a PSM at each VPL. At the rendering step, we determine

the visibility term (gather point - mcVPL) by projecting each gather point onto the

shadow map of the selected VPL, without using voxelization. If the gather point

is visible then we compute the contribution of such a VPL. We assign a PRSM to

each VPL to speed up visibility from each VPL. We also assign a classical RSM to

each VPL and we show that parabolic RSM is more efficient than classical RSM

in terms of image quality and resolution.

58

6.3 Results and discussion

The results shown in this section have been obtained with a computer equipped

with Intel i7 930 @ 2.80 GHZ, 8GO RAM running 64 bits. For the GPU, we have

used NVIDIA Geforce GTX 780 OC 6GB. We used three test scenes: Sibenik,

Crytek Sponza and Conference room (see table 6.1). The three scenes, used in

this chapter, are available in [McG11], they contain only diffuse objects.

We present some results obtained with our global CDF-based rendering method

to validate the quality and the efficiency of using a DPRSM at each point light

source and a PSM at each VPL. To speed up the rendering process, we used only

one bounce indirect lighting. We compare our images, generated by our method,

to the reference image calculated with the method described in [REH+11].

Table 6.1 shows the color buffer corresponding to all the triangles of the Sibenik,

Crytek sponza and Conference room scenes. The scenes contain thousands of

triangles. All the scenes’ objects have diffuse BRDF because our proposed global

CDF-based rendering method runs only for diffuse objects.

Sibenik 75,284 triangles Crytek Sponza 262,267 tri-
angles

Conference 331,179 trian-
gles

Table 6.1: The number of triangles and the color buffer of the GBuffer which
contains the diffuse color corresponding to all the triangles of the Sibenik, Crytek

Sponza with bunny object and Conference room respectively.

Figure 6.9 shows a comparison between our global CDF method and the refer-

ence one proposed by Ritschel et al’s [REH+11]. To generate a reference image,

for all the scenes, we used a large number of gather points (1k gather points)

for computing the average contribution of all the VPLs (used to compute a PDF

then a CDF) that will be used to compute the most contributive VPL with all

59

its parameters (its position, normal, color and PDF). Furthermore, for the ref-

erence images we used a large number of VPLs (10 k VPLs). To compute the

visibility term of a reference image, we applied the voxelization method proposed

by Crassin et al’s [CG12], with a grid resolution of 1283. On the other hand,

our images generated with our global CDF-based rendering method have been

obtained with only 800 VPLs rather than 10 k. We created a Paraboloid Shadow

Map with a resolution of 512×512 at each selected VPL to compute visibility.

As we mentioned in figure 6.9, each image obtained with our method look simi-

lar to the corresponding reference image. But our images look more illuminated

than the reference ones because our method makes uses a DPRSM which covers a

360fieldofviewwhilein[REH+11]aRSMcoversonlyamaximumof90 .

Figure 6.9: The Sibenik, Crytek Sponza, and Conference room scenes have
been rendered using 800 randomly selected VPLs per gather point. Image (a),
(b), and (c) are the reference images for the three scenes generated with the
global CDF-based method [REH+11], the contribution of each gather point is
computed using a large number of VPLs (10k VPLs). Images (d), (e), and (f)

have been computed using our global CDF method.

After comparing our images with the reference ones visually, we validate our ap-

proach by computing the mathematical RMSE metric. Table 6.2 gives the RMSE

value between our images generated by our global CDF method and the reference

images computed using the method proposed by Ritschel et al’s [REH+11]. The

obtained results of table 6.2 prove that our images are very similar to the reference

with a small error of 0.0163 for the Sibenik scene, 0.0319 for the Crytek Sponza

scene and 0.011 for the Conference room scene.

60

Scene RMSE

Sibenik 0.0163

Crytek
Sponza

0.0319

Conference 0.011

Table 6.2: RMSE error between our images and the reference for the Sibenik,
Crytek Sponza and Conference room scenes.

Scene Sibenik Crytek Sponza Conference
RSM 0.011 0.02 0.018

Cube maps 0.26 0.28 0.21
DPRSM 0.15 0.16 0.11

Table 6.3: Rendering time comparison for Sibenik, Crytek Sponza and Con-
ference room with a 512 × 512 resolution when using a classical RSM, a cube

map and a DPRSM.

Table 6.3 shows the rendering time for the Sibenik, Crytek Sponza and Confer-

ence room scenes when using a classical RSM (with a 70-degree field of view),

a DPRSM, and a cube map at the point light source. The resolution of all the

scenes is 512×512. We observe that the cube maps projection is the slowest tech-

nique because it generates the results with 6 rendering passes. Furthermore, the

classical RSM is faster than the DPRSM but it is not efficient because the view

space is limited by the field of view (70-degree). On the other hand, the DPRSM

projection allows us to cover all the 3D space.

In figure 6.10 we show the rendering time measured in milliseconds as a function

of the number of gather points for both our global CDF method and the reference

method [REH+11]. Figure 6.10 demonstrates that the rendering time increases

with the number of the gather points. Moreover, we observe that for different

numbers of gather points (2k, 5k, 10k, 20k, 30k), the rendering time of our global

CDF method is lower than the one of the reference method. To obtain good qual-

ity images, it is necessary to randomly select a large number of gather points. In

addition, we show that when we choose a small number of gather points (for 2k

and 5k gather points), we obtain approximately the same rendering time.

Table 6.4 summarizes the rendering time of our global CDF-based method (with

61

Scene Resolution Time (ms)

Sibenik
512×512 0.15
1024×1024 0.63
2048×2048 1.79

Crytek Sponza
512×512 0.16
1024×1024 0.5
2048×2048 1.85

Conference room
512×512 0.11
1024×1024 0.46
2048×2048 1.69

Table 6.4: Rendering time with different scene resolutions for the Sibenik,
Crytek Sponza and Conference room scenes.

DPRSM and PSM) when only 800 VPLs for each gather point. We changed the

resolution of the paraboloid shadow map associated with each selected VPL, then

we computed the rendering time. We observe that the paraboloid shadow map

resolution influences to the rendering time. The higher the resolution, the higher

the image quality, but the performance decreases and the rendering time gets

higher.

6.4 Conclusion

We present in this chapter, the goal of using a DPRSM at the point light source

during the rendering pass. we have provided implementation details of DPRSM

and PSM used in VPL-based rendering methods as an approximation of the solu-

tion to the global illumination problem. We have presented a VPL-based rendering

method that allows improving the selection of the most contributive VPLs stored

in a Dual Paraboloid RSM (that we called DPRSM). To speed up the rendering

time, we have created a paraboloid shadow map at each selected VPL, and we have

projected each gather point to this paraboloid shadow map to evaluate visibility

from a VPL. We have shown that our method is more efficient in terms of render-

ing time than when using voxelization when computing visibility from a VPL. But

it consumes much memory space. This projection type allows us to provide a large

field of view to cover the total space. It generates results in two rendering passes.

We created two paraboloid front and back at the point light source according to its

z-axis orientation, we transformed each triangle to a single curved triangle and we

projected it in the paraboloid space. To select one paraboloid between the front

62

or back faces, we have proposed to use the Russian roulette algorithm. In the next

chapter, we will show how we use the DPRSM structure to select the VPLs which

contribute more to the final image.

63

Figure 6.10: Plots representing the rendering time in milliseconds of our global
CDF method and the reference method proposed by Ritschel et al’s [REH+11]
for the Sibenik, Crytek Sponza and the Conference room scenes respectively.

Chapter 7

Efficient Inverse Transform

methods for VPL Selection in

Global Illumination

7.1 Introduction

One popular approach used to approximate the indirect lighting is called virtual

point light (VPL) [Kel97] technique which is a two-pass approach. First, a set of

VPL is generated by tracing some light path from the light source and store their

vertex as a secondary light source. Second, each visible point from the camera

gathers the VPL contribution by evaluating the visibility.

Visibility evaluation is the most costly part in VPL techniques. Several approaches

exist on the GPU using some scenes approximation. Imperfect Shadow Maps ap-

proach [RGK+08] evaluate it using Shadow Maps that contains approximate vis-

ibility information. The authors showed that this type of approximation is good

enough to compute image with perceptual differences.

Another Shadow Maps type called Dual Paraboloid Shadow Maps (DPSM) first

introduced by Heidrich and Seidel [HS98] is used to approximate the visibility

term. The main advantage of this projection type consists in giving a large field

of view to cover all the scene parts.

The quality of the VPL set is very important. Thus, a good VPL set needs to ap-

proximate the light transport for every pixel to produce low noise images. Usually,

VPLs are generated following a probability density function (PDF) that usually

64

65

is proportional to their contributions to the camera pixels. However, for efficiency

reasons, the approximation of the VPL contribution is used to compute the PDF.

For example, only a subset of camera pixel is considered or visibility term is not

evaluated. In our approach, we show how to compute this information using the

advantages of a DPRSM to approximate the visibility information.

Our VPL-based method gives good results compared to other rendering techniques

in only a few seconds, especially for diffuse BRDF.

In this chapter, we summarize our contributions (figure 7.1): the CDF compu-

tation, use of MIS combining inverse transform-based rendering and a gathering-

based rendering.

7.2 System Overview

First, to reduce the cost of the ray-object intersection, the scene is spatially subdi-

vided into voxels according to the method proposed in [CG12]. Visibility compu-

tation is sped up using this voxelization. The scene is rendered from the camera

viewpoint. We create a GBuffer that contains the position, normal and color of

all the visible points (so-called gather points). Then, we build a Dual Paraboloid

RSM (DPRSM) at each point light source. We propose two methods for comput-

ing the CDF: local CDF, and gathering-based global CDF. Recall that a CDF is

used by an inverse transform method to randomly select a subset of VPLs (stored

in the DPRSM) to compute the radiance of a gather point as the sum of the con-

tributions of the selected VPLs. To improve the resulting rendered images we use

an MIS approach combining an inverse transform method (based on local CDF or

gathering-based global CDF) and a gathering-based rendering method.

Below, we summarize the state of the art method for computing a global CDF

[REH+11], while the main parts of our method (figure 7.1) are detailed in the

following sections.

7.2.1 Gathering-based method

In the following subsection, we will see the based gathering approach in the scene

voxelization.

In the first time from the camera view, we generate a GBuffer which contains all

the visible points (gather points). Then we create a dual paraboloid RSM (front

66

Figure 7.1: Overview of our inverse transform methods and MIS for computing
the indirect illumination at each gather point using different types of CDF.

and back) at the light source to store the VPLs. our goal is to compute the VPLs

contributions, for that, we shoot n rays from each gather point and for each direc-

tion, we search for the first intersection point using the Ray Marching algorithm.

We project the outgoing point into the two paraboloid RSM if the point is visible

in one of them we calculate its contribution to the gather point. The detail of the

method in the algorithm below (algorithm 1):

67

Algorithm 7 gathering()

1: gBuffer = GenerateGBuffer(position, normal, color); // position, normal, color

of the visible point

2: rsm = GenerateDualParaboloidRSM(positionRSM, normalRSM, colorRSM);

// front and back hemisphere at point light source

3: for i = 1 to GP do

4: // GP: number of gather point

5: for i = 1 to NBDIR do

6: // NBDIR: number of random directions in the hemisphere

7: dir = randomDirection(GP);

8: its = rayMarching(GP, dir);

9: if its != -1 then

10: // intersection found

11: outgoing = computeOutgoing();

12: uvVPL = projectPraboloid(outgoing, rsm);

13: // project the outgoing point into the RSM and return its UV coordi-

nates

14: if visible(GP, vpl) then

15: contrib = computeContribution();

16: end if

17: end if

18: end for

19: end for

The main disadvantage of this algorithm is that we should compute the contribu-

tion of all the VPLs which are visible by the gather points (there is no Importance

Sampling selection), and in this case, the Monte Carlo estimator will not be effi-

cient.

7.2.2 Computing a global CDF

The global CDF method refers to the method of [REH+11] which consists in

computing a CDF from just a small number of a selected gather points, say points

visible to the viewpoint through pixels (Figure 7.2). To compute a CDF, the

68

method computes the average contributions (Vi) of all the VPLs to a small subset

of gather points selected randomly. Then these average contributions are stored

in a linear array (also stored in 1D texture) and then used to compute discrete

probabilities (Ai) assigned to the VPLs. From these discrete probabilities, discrete

CDF values (Bi) are computed and stored in a linear array.

7.2.3 Determining the most contributive VPLs

To determine the more contributive VPL (mcVPL), the inverse transform method

is used in the discrete domain. In other words, a uniform random variable (ranging

from 0 to 1) is generated, then a binary search is performed in the CDF array,

to determine the CDF index k that represents the column c = [k
N

] and the row

r = modulo(k, c). The (r, c) pair represents the mcVPL coordinates in a PRSM.

In the rendering step, the contribution of each mcVPL is divided by its probability.

7.3 VPL Sampling methods

In this section we propose two methods for computing a CDF used in an inverse

transform approach to sample VPLs from a DPRSM. From now on, they will be

called local and gathering-based. Note that the objective is to sample the most

contributive VPLs based on an importance function which is the CDF. Before

detailing these two methods we show in the following subsection how to compute

the radiance L(x) at a point x due to a certain number of randomly selected VPLs.

7.3.1 Computing the contribution of a VPL to a gather

point

Let us see now how to compute the radiance L(x) at a point x resulting from the

contributions of a certain number of randomly selected VPLs. Let us assume that

a VPL is a very small surface with normal N and flux φv (emittance in this case,

say flux emitted per unit surface). We can consider this VPL as a point light

source which has an emittance φv and an intensity Iv (flux emitted per unit solid

69

Figure 7.2: Overview of global CDF method: illustration of the computation
of a discrete CDF to generate mcVPLs.

angle). The VPL intensity Iv is expressed as [DS05]:

Iv = φv
cosθ1

π
(7.1)

where θ1 is the angle between the normal N at the VPL v and the lighting direction

from the VPL. All the used notations are given in figure 7.3.

For a diffuse surface (here a VPL v) there is a relation between its emittance φv

and its radiance L′ [Dut03]:

φv = L
′
π (7.2)

The radiance L
′

of the VPL v due to a point light source is given by:

L
′
(v) = Is

cosα

d2
1

fdr (v) (7.3)

70

Figure 7.3: Computation of indirect lighting due to VPLs.

where Is is the intensity (flux emitted per unit solid angle) of the point light source

and fdr (v) the diffuse BRDF of the surface containing the VPL v. Finally, given

a VPL v, we compute its radiance L′ using equation 7.3, then its emittance φv

(equation 7.2) and its intensity Iv (equation 7.1). Using the Monte Carlo integra-

tion, we perform these computations for all the VPLs to calculate the radiance

L(x) at a gather point x due N randomly selected VPLs as follows [GS10]:

L(x) =
N∑
v=1

Ivf
d
r (x)

cosθ2

d2
2

1

pv
(7.4)

where pv is the pdf (probability density function, corresponding to the used CDF)

of the accepted VPL v, Iv the intensity of VPL v, and fdr (x) the BRDF at the

visible point x (see figure 7.3 for the other notations).

Note that the radiance of the gather point x due to a VPL (not randomly selected)

is given by:

L(x) = Ivf
d
r (x)

cosθ2

d2
2

(7.5)

7.3.2 Stratified CDF

In this section we will investigate how to improve the VPL selection with global

CDF method and by stratification, we propose to divide the screen into four

71

regions, then we compute the average contribution of a gather points subset in each

region. Moreover, we stratified the image plane to ensure that all gather points

are tested, but we compute only one CDF, so in one rendering pass we generate

one VPL for each paraboloid (front or back). The following figure illustrates the

algorithm of this proposed method:

Figure 7.4: Overview of Stratified CDF: we compute the average contribution
of each screen quarter, then we merge it to generate one CDF.

7.3.3 Local CDF

In this section, we describe our first method (that we call local CDF) which uses N

CDFs unlike a method which uses a single CDF also called global CDF. As detailed

in subsection 7.2.2 let us summarize how a global CDF is computed using the

method presented in [REH+11]. Once an RSM (in our methods we use a DPRSM)

is computed, a subset SGP of gather pointsGP is randomly selected (corresponding

to a subset of pixels). Then, for each VPL within the DPRSM, its contribution to

each GP of SGP is computed using equation 7.5. Then each VPL v is assigned an

average contribution which is equal to the sum of its contributions to the GP of the

subset SGP divided by the cardinal of SGP . These VPL average contributions help

build a CDF which will be used to sample VPLs from the constructed DPRSM (see

subsection 7.2.2 for more details). The way the GPs ∈ SGP are distributed over

the image plane is crucial for an efficient calculation of a CDF (efficient importance

sampling). To better distribute these GP , we propose to subdivide the image plane

into N regions. For each region i, we perform a uniform sampling to get a subset of

GPs, called SiGP , used to compute a local CDF (called CDFi). Once all the local

72

Figure 7.5: Illustration of the discontinuity problem when we use one CDF
for each gather point. In this example, the image plane is subdivided into 4
regions, (a) local CDF method with only one CDF for each GP of a region, we
see discontinuity at the boundaries of regions; (b) local CDF method with 4

CDF per GP , the discontinuities have disappeared.

CDFi are computed, to render an image we compute the radiance of all the GPs

within a region i using only CDFi. Even though this approach seems interesting, it

is source of artifacts consisting of discontinuity at the region boundaries as shown

in figure 7.5. To overcome this problem we proceed as follows. In the rendering

step, to compute the radiance of each GP of the image plane, all the N CDFi

are sampled at the same time, then the contributions of the N selected VPLs are

computed and assigned to the GP . This process is repeated NNG times. Thus,

the radiance of each GP requires the sampling of NNG ×N VPLs.

The algorithm 8 summarizes the rendering step when we divide the screen to 4

regions and using one CDF for each gather point:

73

Algorithm 8 2D texture image renderingWithDivide(contribution contrib1, con-
tribution contrib2, contribution contrib3, contribution contrib4)

1: gBuffer = GenerateGBuffer(); // a buffer containing the position, normal,
color of the visible points from the camera view

2: dprsm = GenerateDualParaboloidRSM(); // front and back buffers containing
position, normal, color of the visible points from the light source

3: for each gather point (i, k) from the gBuffer do
4: for j = 1 to #NBVPL do
5: // NBVPL: small number of VPLs
6: psi = sample uniform random variable(); // psi ranging from 0 to 1
7: find region = determine screen part(); // function returns the local region

of the screen
8: if find region == region1 then
9: pdf1 = pdf region(region1); // pdf of the VPL in the first region

10: contrib1 = computeContribution(uvVPL) / pdf1; // the contribution
of the first region

11: else
12: if find region == region2 then
13: pdf2 = pdf region(region2); // pdf of the VPL in the second region
14: contrib2 = computeContribution(uvVPL) / pdf2; // the contribution

of the selected VPL in the second region
15: else
16: if find region == region3 then
17: pdf3 = pdf region(region3); // pdf of the VPL in the third region
18: contrib3 = computeContribution(uvVPL) / pdf3; // the contribu-

tion of of the selected VPL in the third region
19: else
20: if find region == region4 then
21: pdf4 = pdf region(region4); // pdf of the VPL in the last region

22: contrib4 = computeContribution(uvVPL) / pdf4; // the contri-
bution of the selected VPL in the third region

23: end if
24: end if
25: end if
26: end if
27: end for
28: end for
29: finalContrib = contrib1 + contrib2 + contrib3 + contrib4;
30: return finalContrib;

Recall that, the VPLs are sampled from the front or the back DPRSM using the

Russian roulette technique [AK90] (see algorithm 9).

74

Algorithm 9 face selectParaboloid(FACE face, random psi)

1: vF = sumContrib(front); // average contribution sum for front face

2: vB = sumContrib(back); //average contribution sum for back face

3: bF = vF/(vF+vB);

4: bB = vB/(vF+vB);

5: if psi < bF then

6: return front face;

7: else

8: return back face;

9: end if

The final contribution is then divided by the probability of choosing a front PRSM

(bF) or by the probability of choosing a back PRSM (bB) according to the Russian

roulette algorithm (see algorithm 10).

Algorithm 10 2D texture image final rendering(contribution finalContrib)

1: finalContrib = renderingWithDivide(contrib1, contrib2, contrib3, contrib4)
2: if selectParaboloid(face, psi) == front face then
3: //see algorithm 9
4: uvVPL = sampleFromFront(); // select the VPL of coordinates uvVPL from

the front face
5: image[i][k] += finalContrib / bF //bF: probability of selecting the front face
6: else
7: if selectParaboloid(face, psi) == back face then
8: //see algorithm 9
9: uvVPL = sampleFromBack(); // select the VPL of coordinates uvVPL

from the back face
10: image[i][k] += finalContrib / bB //bB: probability of selecting the back

face
11: end if
12: end if
13: return image; // rendered image

7.3.4 Gathering-based global CDF

We describe in this section our second method for computing a global CDF used

in an inverse transform approach. We call this method: Gathering-Based Global

CDF (called GBG from now on). This method is global because it does not need

a subdivision of the image plane into regions. Our objective is to compute a more

75

efficient global CDF than the one proposed by Ritschel et al. [REH+11]. Our

approach differs from this method in the way the VPL average contributions (see

subsection 7.2.2 for more details) are computed. Indeed, rather than computing

these contributions for a small subset of GPs, our approach computes them for

all the GPs. Our GBG method works as follows (Algorithm 11). At each GP , a

hemisphere is placed above it, then a set of rays are randomly (according to a pdf)

traced from the GP . For each ray, the first intersection point P is computed using

Ray Marching through the voxel-based subdivision of the scene [CG12] (line 7).

Then we project P onto the shadow map DPRSM (line 11). If P is visible from the

DPRSM then it corresponds to a VPL. In this case we compute its contribution (see

equation 7.5) to the current GP which is stored in a GBuffer. This contribution

is updated when considering the rest of the GPs. This process is repeated for

all the GPs. The result is the total average contributions of all the VPLs stored

in the DPRSM. The computed average contributions (line 24) are stored in a

texture. As the method is based on ray sampling through a GP hemisphere, it

may happen that some VPLs are not reached by the sampled rays, consequently

there contribution is null, which corresponds to holes in the associated texture.

To fill the holes, we propose to use a 3× 3 median filter as a reconstruction filter.

Figure 7.6 illustrates an example of 3× 3 median filter.

Figure 7.6: Example of median filter

The computation of an average contribution of all the VPLs is described by algo-

rithm 11.

Note that the average contributions is a luminance that is determined by convert-

ing an RGB color into a scalar value called luminance using the following formula:

76

Luminance = 0.299 ∗R + 0.587 ∗G+ 0.114 ∗B (7.6)

Algorithm 11 2D texture image compute average contribution()

1: gBuffer = GenerateGBuffer(); // a buffer containing the position, normal,

color of the visible points from the camera view

2: dprsm = GenerateDualParaboloidRSM(); // front and back buffers containing

position, normal, color of the visible points from the light source

3: for each gather point (i, k) from the gBuffer do

4: for j = 1 to #NBDIR do

5: // NBDIR: number of random directions in the hemisphere

6: dir = randomDirection();

7: its = rayMarching(dir);

8: if its == 1 then

9: // 1 if intersection point found by Ray Marching

10: P = computeOutgoing(); // intersection point P

11: uvVPL = projectPraboloid(P, dprsm);

12: // project the outgoing point P into the DPRSM and return its UV

coordinates in the variable uvV PL

13: if visible(uvVPL, front) then

14: // if the VPL belongs to the front PRSM

15: nbVPLFront = nbVPLFront + 1; // nbVPLFront number of the vis-

ible VPLs in the front face

16: else

17: if visible(uvVPL, back) then

18: // if the VPL belongs to the back PRSM

19: nbVPLBack = nbVPLBack + 1; // nbVPLBack number of the

visible VPLs in the back face

20: end if

21: end if

22: end if

23: end for

24: average contrib[i]k] += computeContribution(uvVPL) / (nbVPLFront +

nbVPLBack); // computeContribution() uses equation 7.5

25: end for

26: return average contrib; // image of average contributions

77

Given the VPL average contributions, we compute a CDF (called GBG) according

to Ritschel et al’s method (see subsection 7.2.2). We render the scene using this

CDF as follows (algorithm 12). First from each gather point visible from the

view camera, we randomly sample a small number of VPLs that are selected from

the DPRSM. In using a Russian roulette, we sample the VPL from the front

PRSM (line 9) or from the back PRSM (line 14). As we use the Russian roulette

technique, the final contribution is divided by the propability of selecting the front

or the back face (line 10 and line 15).

78

Algorithm 12 2D texture image renderingWithCDF()

1: gBuffer = GenerateGBuffer(); // a buffer containing the position, normal,

color of the visible points from the camera view

2: dprsm = GenerateDualParaboloidRSM(); // front and back buffers containing

position, normal, color of the visible points from the light source

3: for each gather point (i, k) from the gBuffer do

4: for j = 1 to #NBVPL do

5: // NBVPL: small number of VPLs

6: psi = sample uniform random variable(); // psi ranging from 0 to 1

7: if selectParaboloid(face, psi) == front face then

8: //see algorithm 9

9: uvVPL = sampleFromFront(); // select the VPL of coordinates uvVPL

from the front face

10: image[i][k] += computeContribution(uvVPL) / bF //bF: probability of

selecting the front face

11: else

12: if selectParaboloid(face, psi) == back face then

13: //see algorithm 9

14: uvVPL = sampleFromBack(); // select the VPL of coordinates

uvVPL from the back face

15: image[i][k] += computeContribution(uvVPL) / bB //bB: probability

of selecting the back face

16: // computeContribution() uses equation 7.4

17: end if

18: end if

19: end for

20: end for

21: return image; // rendered image

7.3.4.1 Average contribution texture

To generate mcVPLs, we compute a discrete CDF, so we need to know the average

contribution of all the VPLs in the dual paraboloid RSM.

From each gather point, we compute the contribution of the visible VPL as in

(algorithm 1), but we can find that the same VPL contributes to two (or more)

gather points. In this case, we do the sum of contributions.

79

The final result can contain some holes because not all the VPLs have a contribu-

tion, for that we must fill in the holes before computing CDF. The figure below

depicts the overview of the average contribution texture:

Figure 7.7: Algorithm overview of the average contribution texture on GPU.

7.3.4.2 Implementation details

As mentioned earlier, our goal is to compute the average contribution texture.

The idea is based on the gathering approach where the directions shoot from each

gather points are randomly chosen.When a given VPL contributes to two or more

gather points, it is necessary to update the average contribution texture. In this

section, we describe how we can update a texture using the GLSL. The following

figure shows an example of scene:

For each gather point, we have a fragment shader and in GLSL we have two types

of textures:

80

Figure 7.8: Scene representation.

1. sampler2D : access to a texture and get back its value;

uniform sampler2D tex;

value = texture(tex, UV);

where UV is the texel coordinates of the current gather point

We can use this texture for just reading the information stored in the UV

coordinates.

2. out: this texture type corresponds to an input in the Frame Buffer Object

(FBO) which can contain three kinds of textures: color, depth, and stencil.

Figure 3 illustrates the FBO components: With this texture, we can write a

value and we address it with GL COLOR ATTACHMENT

On the fragment shader, we write:

layout(location = 0) out float contribMoy;

Which design the first input in the FBO

We put in this texture a value that has the same data type (float in this

case) to define the average contribution of the current gather point:

contribMoy = computeContribution();

81

Figure 7.9: FBO components.

So we store the average contribution in the UV coordinates of the gather point.

For the second gather point, we create another fragment shader and we execute

the same operations. We do it for all the gather points

We obtain the following result But we should display the contributions from the

Figure 7.10: Back average contribution texture.

light of view according to the position of the VPLs (front or back). To overcome

this problem we transform the gather points in either front or back texture.

In the fragment shader and in the case of the back texture we have:

82

vec2 UV: the interpolated coordinates of such gather

point

vec3 coordUV = (depthMVPBiasFront * vec4(UV, 1.0,

1.0)).xyz;

We multiply all the gather points coordinates by the transform matrix associated

with the front texture. We obtain the result below:

Figure 7.11: Back average contribution texture (from the back texture).

7.3.4.3 Filling in holes

When we look to the last result (in figure 5) we can find some little holes, so

before computing the CDF, we must fill in holes. For that, we propose to use a

reconstruction filter (median filter). The following scheme shows how to give a

value to each black pixel.

The following figure shows the comparison between the two back texture before

and after filtering:

83

Figure 7.12: Median filter method overview.

Figure 7.13: Median filter result.

Figure 7.14 illustrates the CPU and GPU pass of the Gathering-based global CDF.

Pass 1 (on GPU) consists of generating the two maps the average contribution map

and the VPL cumulation map. The average contribution map which contains the

average contribution of the VPL to the gather points. During the generation of

the average contribution texture, we can find that some VPLs reached several

times, thus, in the second map (VPL cumulation), we update the occurrences of

the reached VPLs.

84

In the second pass (on CPU) we retrieve the average contribution and the accu-

mulation VPLs maps to the CPU in order to compute our gathering-based global

CDF. Then, we find that the VPL contribution texture contains holes because

some VPLs are not reached, we fill in holes using the median filter (see subsection

7.3.4.3 for more details) and we compute the CDF by using the inverse transform

method as proposed by Ritschel et al’s [REH+11] (third pass on CPU). After com-

puting our GBG CDF, we send the selected VPLs according to this GBG CDF

to the GPU (fourth pass), and we compute the contributions of these VPLs (see

algorithm 12).

Figure 7.14: Different passes on CPU and GPU for computing our gathering-
based global CDF.

85

7.4 A Multiple Importance Sampling Approach

In this section, our objective is to improve a CDF-based rendering method (in-

verse transform) by combining it with a gathering-based rendering method. We

propose Multiple Importance Sampling (MIS) to carry out this combination of two

estimators.

7.4.1 Background on MIS

Let us compute two Monte Carlo estimators of the integral of f(x), one with a

sampling distribution (PDF) p1(x) and the other with PDF p2(x).

In our case we have two rendering strategies:

1. Gathering approach: Monte Carlo method sampling a hemisphere placed

above a GP and using a cosine PDF;

2. Inverse transform method: using a CDF computed with any approach local

or global.

The MIS strategy consists in combining the two Monte Carlo estimators as de-

scribed by veach [Vea97]:

F =
1

n1

∑
ω1(X1,j)

f(X1,j)

p1(X1,j)
+

1

n2

∑
ω2(X2,j)

f(X2,j)

p2(X2,j)
(7.7)

We use a weighting function defined by Veach [Vea97] to combine the two estima-

tors. The set of weights given by this function allows to generate samples X1,j or

X2,j to reduce the variance.

Veach proposes two balance heuristic weights associated with each strategy:

ω1(X1,j) =
p1(X1,j)

p1(X1,j) + p2(X1,j)
(7.8)

ω2(X2,j) =
p2(X2,j)

p1(X2,j) + p2(X2,j)
, (7.9)

X1,j and X2,j are the samples of the random variable x generated with the PDF

p1 and p2 respectively. In our case these samples are pairs (θ, φ) (elevation angle,

86

Figure 7.15: Representation of MIS technique in a 3D scene.

azimuthal angle) representing a direction of a ray. Note that, when using p2 a VPL

is associated with each sample direction. The first distribution (PDF) p1(X1,j) is

used to sample a hemisphere above a GP used by the gathering-based rendering

method

p1(X1,j) =
cosθsinθ

π
, (7.10)

where θ is the polar angle formed by the sample ray and the normal at the GP ,

while the second distribution p2(X2,j) is used to sample VPLs according to one

inverse transform method (local or GBG).

p2(X2,j) = αij (7.11)

where αij is the PDF values associated with the chosen CDF (see section 7.3.4)

Figure 7.15 shows how we can run the MIS technique in a 3D voxelized scene:

7.4.2 Description of our MIS method

We describe in this section our general algorithm that uses the MIS principle for

rendering. We show how to combine the two estimators (gathering estimator and

gathering-based global CDF estimator). To weight the contributions, we use the

balance heuristic method as described in section section 7.4.1. Our main goal is

to compute the PDF of each strategy when we generate samples from the other

strategy (p1(X2,j) and p2(X1,j)).

Our algorithm consists of four Parts:

87

1. Run a gathering method to generate the average contribution texture that

will be used to compute the CDF: result = gathering-based global CDF

(GBG CDF). See section 7.3.4.

2. Run a classical gathering-based rendering: for each gather point and for

each incident direction, we compute the incident radiance due to a VPL

(VPL corresponding to the projection into the the DPRSM of the first ray-

scene intersection point). The result is a contribution (contrib gathering) to

all the gather points weighted by ω1 (see algorithm 14).

3. For each gather point of the previous step, selectN VPLs using the gathering-

based global CDF: the result is a contribution (contrib CDF) for all the

gather points weighted by ω2 brought by the N selected VPLs (see algo-

rithm 15).

4. Sum the two contributions contrib CDF and contrib gathering (using equa-

tion 7.7).

We give in figure 7.16 an overview of the two methods combined by the MIS

technique. We start by sampling the camera view for the gathering approach,

when we sample the light source for our proposed inverse transform method.

Algorithm 13 summarizes our proposed method.

To apply the MIS technique, we have to find the VPL PDF values of the j samples

Algorithm 13 2D texture image MIS()

1: gBuffer = GenerateGBuffer(position, normal, color); // position, normal, color
of the visible point

2: dprsm = GenerateDualParaboloidRSM(); // front and back buffers containing
position, normal, color of the visible points from the light source

3: // pdf1 = p1(X1,(i,k)), pdf2 = p2(X1,(i,k))
4: contrib gathering = MISdensityGathering(pdf1, pdf2);
5: // pdf3 = p2(X2,(i,k)), pdf4 = p1(X2,(i,k))
6: contrib CDF = MISdensityVPL(pdf3, pdf4);
7: // Final contribution
8: for each gather point (i, k) from the gBuffer do
9: image[i][k] = (contrib gathering[i][k] + contrib CDF[i][k]) / NBDIR; //

NBDIR: number of incident directions shooted from each gather point j
10: end for
11: return image; // rendered image with MIS and stored in a 2D texture

from the gathering strategy (noted p2(X1,(i,k))) and the gathering distribution of

88

Figure 7.16: Overview of our MIS technique using the two strategies.

j samples from the gathering-based global CDF strategy when we compute the

VPL contribution (noted p1(X2,(i,k)))

The method of computing p2(X1,(i,k)) is described in detail by Algorithm 14. To

find the VPLs of the j samples from the gathering strategy, we start by shooting N

random rays. According to [Dut03], the direction is generated from the hemisphere

proportionally to cosine-weighted solid angle as follows: The spherical coordinates

in the hemisphere are:

ϕ = 2πr1 (7.12)

θ = acos(
√
r2) (7.13)

Where r1 and r2 are a uniform random variables ranged between [0, 1]

The x, y and z coordinates of the random direction are:

x = cos(2πr1)
√

1− r2 (7.14)

y = sin(2πr1)
√

1− r2 (7.15)

z =
√
r2 (7.16)

89

And the PDF of selecting a such random direction is given by

PDF (dir) =
cos(θ)

π
(7.17)

Then, for each random direction, we forward the rays (generated randomly) in

the uniform 3D grid that contains all the scene geometry until we find the first

intersection. In this case, we project the outgoing point (outgoing in the algorithm

14) to the DPRSM. After that, we test if outgoing is visible in one face of the

DPRSM (front or back) and we compute its contribution.

Algorithm 14 2D texture image MISdensityGathering(PDF pdf1, PDF pdf2)

gBuffer = GenerateGBuffer(position, normal, color); // generate the position,
normal, color of the visible point from the view camera
dprsm = GenerateDualParaboloidRSM(); // front and back buffers containing
position, normal, color of the visible points from the light source
for each gather point (i, k) from the gBuffer do

for j = 1 to #NBDIR do
// NBDIR: number of random directions in the hemisphere
dir = randomDirectionPropToCosine(x, y, z);
pdf1 = dir.z / pi;
its = rayMarching(dir);
if its == 1 then

// intersection found
outgoing = computeOutgoing();
uvVPL = projectPraboloid(outgoing, dprsm);
// project the outgoing point into the DPRSM and return the UV co-
ordinates of the associated VPL
if visible(uvVPL) then

pdf2 = getPDF(uvVPL); // retrieve the pdf value associated with the
VPL
w1 = balanceHeuristic(pdf1, pdf2); // see equation 7.8
contrib gathering[i][k] += (w1 × computeContribution(uvV PL)) /
pdf1; // computeContribution() uses equation 7.4

end if
end if

end for
end for
return contrib gathering; // image generated with a gathering-based render-
ing method

The gathering PDF p1(X2,(i,k)) of the (i, k) sample, generated from the gathering-

based global CDF, is computed as:

p1(X2,(i,k)) = p2(X2,(i,k))× ppv (7.18)

90

Where p2(X2,(i,k)) is the probability of selecting a VPL according to the gathering-

based global CDF method, ppv is the probability of connecting the gather point p

to the selected VPL v. As this connection is deterministic its distribution (pdf) is

equal to 1.

Algorithm 15 illustrates the method of computing p1(X2,(i,k)).

To compute p1(X2,(i,k)) we search for the angle θ between the normal ~N of the

gather point and the direction ~pv formed by the gather point and the selected

VPL.

We have:

cosθ = 〈 ~N, ~pv〉 (7.19)

θ = acos(〈 ~N, ~pv〉) (7.20)

Algorithm 15 2D texture image MISdensityVPL(PDF pdf3, PDF pdf4)

1: gBuffer = GenerateGBuffer(position, normal, color); // generate the position,
normal, color of the visible point from the view camera

2: rsm = GenerateDualParaboloidRSM(); // front and back buffers containing
position, normal, color of the visible points from the light source

3: for each gather point (i, k) from the gBuffer do
4: for j = 1 to #NBVPL do
5: vpl = getVPL(); // selected VPL according to a global CDF
6: pdf3 = getPDF(vpl); // pdf p2(X2,(i,k)) of the selected VPL determined

by VPL method
7: gp = pointFromGBuffer(gBuffer); // gp = gather point
8: distance = length(vpl - gp);
9: dir = normalize(distance);

10: outgoing = rayMarching(gp, dir);
11: if (outgoing - distance) ¡ psi then
12: // visible gather point
13: contrib = computeContribution(); // computeContribution() uses equa-

tion 7.4
14: theta = computeAngle(normal, dir);
15: pdf4 = (cos(theta)× sin(theta))/pi;
16: w2 = balanceHeuristic(pdf4, pdf3); // see equation 7.9
17: contrib CDF[i][k] += (w2× computeContribution(vpl))/pdf3; // com-

puteContribution() uses 7.4
18: end if
19: end for
20: end for
21: return contrib CDF; // image generated with a GBG CDF-based method

91

So we can compute p1(X2,(i,k)) as:

p1(X2,(i,k)) =
cosθsinθ

π
(7.21)

7.5 Results and evaluation

In this section, we show some results obtained with our two CDF-based methods

(local CDF and gathering-based global CDF) as well as our MIS method. We

validate our results in terms of computation speed, and objective and perceptual

qualities. Our test scenes contain only static diffuse objects. We have used four

scenes: Sibenik , Conference room , Sponza Buddha and Crytek Sponza scenes.

We have placed one point light source in these scenes and considered single bounce

indirect illumination. Our methods run on the GPU (NVIDIA Geforce GTX 780

OC 6GB) and on the CPU (Intel i7 930 @ 2.80 GHZ, 8GO RAM running 64 bits)

using OpenGL 4.3.

In the following, we describe the specifications of each scene. The four scenes used

in this chapter are available in [McG11]. Their common characteristic is that they

contain only diffuse BRDF because our proposed methods run for diffuse objects

only. The Conference room scene contains 331, 179 triangles without textures.

While the Sibenik scene is a closed scene containing 75, 284 triangles with tex-

tured objects. On the other hand, the Sponza Buddha and the Crytek Sponza

scene is an open scene.

We illustrate in figure 7.17 the voxelization-based method (to speed up visibility

calculation) by Crassin and Green [CG12] for Sibenik, Conference, Sponza Bud-

dha and Crytek Sponza scenes. To capture the scene details, we choose a voxel

grid with a resolution 1283.

The images, generated with our method, have been compared to reference images

computed with Ritschel et al’s global CDF method (see section 7.2.2). These

reference images have been generated using a global CDF computed with a large

number (4k) of gather points (used to compute the average contributions of the

VPLs) and a large number of VPLs (10k VPLs) used to compute the radiance

of each gather point during rendering. The resolution of the computed images is

512× 512.

When rendering using a local CDF or gathering-based global CDF (GBG CDF),

92

Figure 7.17: a, b and c show the voxelization-based approach of the Sibenik,
the Conference scene and the SponzaBuddha scene respectively. We use a voxel

grid with a resolution equal to 1283

800 VPLs are selected randomly according to the used CDF. One DPRSM is

computed for the point light source placed in the scene. Recall that a DPRSM

consists of two PRSMs: front and back. Each PRSM is assigned three buffers:

position buffer, normal buffer and color buffer.

Figure 7.18 provides results obtained with our local CDF, our GBG CDF and our

MIS methods together with the reference image of the four test scenes. Regarding

the local CDF approach, we have subdivided an image into four regions (say

N = 4, see section 7.3.3). Images (b), (f) and (j) provide better results than those

obtained with the global CDF-based method [REH+11] (images (a), (e) and (i))

since some regions of the image are better shaded while they look dark when using

the global CDF-based method. This can be explained by the fact that with a local

CDF the gahtering points (used to build a CDF) are uniformly distributed over

the image (similar to stratification).

For the same reasons, our GBG CDF method gives better results (images (c) (g)

and (k)) compared to the global CDF method [REH+11] (images (a), (e) and (i)).

This is due to the fact the global CDF-based method assumes that a gather point

is visible from all the VPLs when computing the CDF, which is a strong assump-

tion. Rather, our GBG CDF computes visibility through Ray Marching in a voxel

grid.

Table 7.1 gives some rendering times in milliseconds for four methods: global CDF,

Local CDF, gathering-based CDF and MIS. Our GBG CDF and MIS methods are

faster than the global CDF-based method. While generating better results, our

local CDF-based method is slower than the global CDF-based method because it

repeats four times (one for each region) the process of computing a CDF using a

93

Figure 7.18: The Sibenik, Conference, Sponza Buddha and Crytek Sponza
scenes have been rendered using 800 randomly selected VPLs per gather point
and 800 directions for the MIS method. Image (a), (e), and (i) are the refer-
ence images for the four scenes generated with the global CDF-based method
[REH+11], the contribution of each gather point is computed using a large num-
ber of VPLs (10k VPLs). Images (b), (f), and (j) have been computed using
our local CDF. Images (c), (g) and (k) have been generated with our GBG CDF

method. Our MIS method provides the images (d), (h), and (l).

94

method similar to that of the global CDF-based method.

Scene Sibenik Conference Sponza Buddha

Global CDF 600 ms 560 ms 270 ms

Local CDF 630 ms 640 ms 410 ms

GBG CDF 350 ms 340 ms 190 ms

MIS method 460 ms 460 ms 230 ms

Table 7.1: Time rendering of our local CDF, GBG CDF, and MIS methods
compared to the global CDF method. This time rendering is computed in
milliseconds for the four scenes using the same number of VPLs (800 VPLs for

each method).

Table7.2 summarizes the time for generating the GBuffer containing all the in-

formation (position, normal, color) of each visible point (gather point). It also

provides the time for generating the DPRSM and the visibility time that is com-

puted using a Ray Marching algorithm. Note that the shadow maps resolution

is 512 × 512. The time is computed in milliseconds. We observe that the Ray

Marching algorithm (visibility computation) is the most expensive step for each

scene (Sibenik 79.86ms, Conference 78.71ms, and Sponza Buddha 80.27ms). Fur-

thermore, the DPRSM generation step takes a few milliseconds for the Conference

(4.54ms) and the Sponza Buddha (5.64ms) scenes but it takes 33.85ms for the

Sibenik scene because the Sibenik scene contains a large number of points stored

in the DPRSM. For the same reasons, we found that the GBuffer time genera-

tion is higher for the Sibenik scene (15.23ms) compared to the Conference scene

(0.82ms) and the Sponza Buddha scene (1.06ms).

Scene Sibenik Conference Sponza Buddha

GBuffer 15.23 ms 0.82 ms 1.06 ms

DPRSM 33.85 ms 4.54 ms 5.64 ms

Ray Marching 79.86 ms 78.71 ms 80.27 ms

Table 7.2: Time for generating GBuffer, DPRSM, Ray Marching for Sibenik,
Conference, and Sponza scenes in millisconds. The Shadow Map resolution is

512× 512

95

Figure 7.19: RMSE results for the Conference scene as a function of the
number of VPLs used for rendering.

Now we evaluate our local-based CDF and gatheirng-based global CDF methods

by using the RMSE metric and the HDR-VDP-2 [MKRH11] metric which is a

perceptual metric applied to HDR images (High Dynamic Range). Note that all

the images generated by our method are HDR images and the reference images

are generated with the global CDF-based method as explained above. Figure 7.19

gives the RMSE for the local CDF-based and gathering-based CDF methods as

a function of the number of VPLs selected during the rendering step. We can

notice that the RMSE is small for the two methods and decreases when the num-

ber of VPLs increases. An interesting result is that, for the gathering-based CDF

method, the RMSE reaches its smaller value for a number of 800 VPLs, which

means that this number is sufficient for getting good quality results.

Figure 7.20 shows the perceptual difference between the images, generated with

our local CDF-based and gathering-based CDF methods, and the reference im-

ages. The perceptual differences are evaluated using the HDR-VDP-2 [MKRH11]

perceptual metric applied to HDR images. We observe that most of the image of

the test scenes is assigned a low error given by the HDR-VDP-2 metric (blue and

green parts in figures a, c, e, g, i, k). Therefore, our local CDF and our GBG CDF

images closely resemble the reference image. However, there exist small regions

with an non negligible error (a, c, e, g, i, k). To reduce these high values (red

parts), we can increase the number of VPLs during rendering.

Figure 7.21 shows results obtained with the gathering-based CDF and MIS meth-

ods for the Sibenik , Conference, Sponza Buddha and Crytek Sponza scenes. We

96

Figure 7.20: HDR-VDP-2 metric between the reference images and those
obtained with our methods for the four test scenes. The first column represents
the reference image for the Sibenik (A), Conference room (B), Sponza Buddha
(C) and Crytek Sponza (D); the second column shows the HDR-VDP-2 images
and the third one shows our results. Images (b),(f), (j) and (n) have been
generated with our local CDF method. Images (d), (h), (l) and (p) have been
generated with our GBG CDF. Images (a), (e), (i) and (m) provide the HDR-
VDP-2 metric between the reference images (image (A),(B), (C), (D)) and the
images (b), (f), (j) and (n) respectively. Images (c), (g) , (k) and (o) represent
the HDR-VDP-2 metric between the reference images (image (A),(B), (C), (D))

and the images (d), (h), (l) and (p) respectively.

97

Figure 7.21: Comparison of our GBG CDF method without MIS (left column)
and our GBG CDF method with MIS (right column).

have used the same number of samples (a sample is: a VPL for the gathering-based

CDF approach, and a direction for the MIS) to generate the images of figure 7.21.

7.6 Conclusion

In this chapter, we have demonstrated in detail our inverse transform method

for selecting the more contributive VPLs (local CDF and gathering-based global

CDF) as well as our MIS method that combined our gathering-based global CDF

with the gathering approach. Our methods improve the selection of the more

98

contributive VPLs which used the Dual Paraboloid RSM to store the VPLs. We

prove that our algorithms are efficient and that we can automatically evaluate the

contribution of the selected VPL with its PDF value. To approximate the visibility

term, we used the voxelization which allows accelerating the visibility. We have

focused on the diffuse surfaces only.

Chapter 8

Conclusion

In this thesis, we focus on the VPL-based methods to approximate a solution to

the global illumination problem. We have presented three VPL-based rendering

methods: local CDF, GBG CDF, and MIS. These methods allow improving the

selection of the most contributive VPLs stored in a Dual Paraboloid RSM (that

we called DPRSM).

To achieve our goal, we have proposed several new algorithms such as:

• DPRSM: the VPLs are stored in both PRSMs and a set of VPLs is selected

from each PRSM (front or back). In the selection process of VPLs, a PRSM

is randomly selected according to the Russian roulette technique.

• local CDF: this method consists of subdividing the image plane into 4

parts, choosing gather point GP (points visible from the camera) in each

part (stratum) and calculation of associated CDF. Thus computing 4 local

CDFs, each associated with its stratum. With this technique, given a GP

p belonging to the stratum S, if a VPL is generated from the CDF associ-

ated with S to calculate the indirect illumination in p, then a discontinuity

is obtained between the images associated with the strata. To avoid this

discontinuity, for each GP p, we generate 4 VPLs from the 4 local CDFs and

their contributions to p are calculated. To avoid creating a shadow map for

each VPL, we proposed to calculate visibility using voxelization.

• gathering-based global CDF: in this method, path tracing PT (gather-

ing) is done (it is used to send several rays in each GP), and during the

PT we save the contributions sum of the selected VPLs and the number of

99

100

GPs to which they contribute, in order to calculate the average contribu-

tions. At the end of this PT, some VPLs contributed well to the GPs and

others not (which we have called NcVPL for Non-contributive VPL). In this

case, it would be necessary to interpolate the contributions of these NcV-

PLs with a simple average filter. Then calculate a CDF from these average

contributions.

• MIS: a robust and efficient MIS method that combines our ”Gathering-

based global CDF” method with the gathering approach, in order to obtain

more realistic images.

Our proposed techniques have several advantages by taking into account:

• Visibility: we accelerate the visibility step by representing the scene with

set of voxels;

• Locality: we divide the screen into N regions and we compute the CDF

[REH+11] for each region (our local CDF method);

• Camera importance: when we compute the CDF, we evaluate the im-

portance of each direction shooted from a gather point (our gathering-based

global CDF).

Our methods consider only one bounce indirect illumination because we use a

DPRSM placed at the point light source. We use the Russian roulette technique

to select one face between the front and the back faces of the DPRSM. All the re-

sults are concerned with only indirect illumination. For visualizing our results on

LDR displays, our HDR images have been tone-mapped using Reinhard’s operator

[RSSF02]. Our results show that our local CDF-based method, that divides the

screen into N regions, generates good images in term of quality but requires more

computing time compared to our other methods. This is why we have proposed

our gather-based global CDF to lower the time rendering.

Furthermore, we have applied the HDR-VDP-2 metric to show the perceptual

differences between our HDR images and the reference images obtained with the

global CDF method [REH+11] with a high number of sample VPLs.

We have focused on the diffuse surfaces only. So, as future work, it would be

worth to adapt our algorithms to handle glossy surfaces and caustics. The shown

101

results have been generated from the static scenes. How to extend our methods

to dynamic scenes. This is left for future work.

Bibliography

[AK90] James Arvo and David Kirk. Particle transport and image synthesis.

ACM SIGGRAPH Computer Graphics, 24(4):63–66, 1990.

[ARBJ03] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie, and Hen-

rik Wann Jensen. Structured importance sampling of environment

maps. ACM Transactions on Graphics (TOG), 22(3):605–612, 2003.

[AW+87] John Amanatides, Andrew Woo, et al. A fast voxel traversal algorithm

for ray tracing. In Eurographics, volume 87, pages 3–10, 1987.

[BAS02] Stefan Brabec, Thomas Annen, and Hans-Peter Seidel. Shadow map-

ping for hemispherical and omnidirectional light sources. In Advances

in Modelling, Animation and Rendering, pages 397–407. Springer,

2002.

[BBH13] Tomá Barák, Jiŕı Bittner, and Vlastimil Havran. Temporally coherent

adaptive sampling for imperfect shadow maps. In Computer Graphics

Forum, volume 32, pages 87–96. Wiley Online Library, 2013.

[BGBB17] Djihane Babahenini, Adrien Gruson, Mohamed Chaouki Babahenini,

and Kadi Bouatouch. Efficient inverse transform methods for vpl selec-

tion in global illumination. Multimedia Tools and Applications, pages

1–25, 2017.

[CG12] Cyril Crassin and Simon Green. Octree-based sparse voxelization using

the gpu hardware rasterizer. OpenGL Insights, pages 303–318, 2012.

[CNLE09] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann.

Gigavoxels: Ray-guided streaming for efficient and detailed voxel ren-

dering. In Proceedings of the 2009 symposium on Interactive 3D graph-

ics and games, pages 15–22. ACM, 2009.

102

Bibliography 103

[CNS+11] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar

Eisemann. Interactive indirect illumination using voxel cone tracing.

In Computer Graphics Forum, volume 30, pages 1921–1930. Wiley

Online Library, 2011.

[DGR+09] Zhao Dong, Thorsten Grosch, Tobias Ritschel, Jan Kautz, and Hans-

Peter Seidel. Real-time indirect illumination with clustered visibility.

In VMV, pages 187–196, 2009.

[DKL10] Holger Dammertz, Alexander Keller, and Hendrik PA Lensch. Pro-

gressive point-light-based global illumination. In Computer Graphics

Forum, volume 29, pages 2504–2515. Wiley Online Library, 2010.

[DS05] Carsten Dachsbacher and Marc Stamminger. Reflective shadow maps.

In Proceedings of the 2005 symposium on Interactive 3D graphics and

games, pages 203–231. ACM, 2005.

[Dut03] Philip Dutré. Global illumination compendium. Computer Graphics,

Department of Computer Science Katholieke Universiteit Leuven, 6,

2003.

[GHFP08] Jean-Dominique Gascuel, Nicolas Holzschuch, Gabriel Fournier, and

Bernard Peroche. Fast non-linear projections using graphics hardware.

In Proceedings of the 2008 symposium on Interactive 3D graphics and

games, pages 107–114. ACM, 2008.

[Gil05] Walter R Gilks. Markov chain monte carlo. Encyclopedia of Biostatis-

tics, 2005.

[GS10] Iliyan Georgiev and Philipp Slusallek. Simple and robust iterative im-

portance sampling of virtual point lights. Proceedings of Eurographics

(short papers), 4, 2010.

[Has70] W Keith Hastings. Monte carlo sampling methods using markov chains

and their applications. Biometrika, 57(1):97–109, 1970.

[HHZ+14] Wei Hu, Yangyu Huang, Fan Zhang, Guodong Yuan, and Wei Li. Ray

tracing via gpu rasterization. The Visual Computer, 30(6-8):697–706,

2014.

Bibliography 104

[HKL16] Peter Hedman, Tero Karras, and Jaakko Lehtinen. Sequential Monte

Carlo Instant Radiosity. In Proceedings of the ACM SIGGRAPH Sym-

posium on Interactive 3D Graphics and Games. ACM, 2016.

[HKWB09] Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. Vir-

tual spherical lights for many-light rendering of glossy scenes. In ACM

Transactions on Graphics (TOG), volume 28, page 143. ACM, 2009.

[HL15] Binh-Son Hua and Kok-Lim Low. Guided path tracing using clustered

virtual point lights. In SIGGRAPH Asia 2015 Posters, page 43. ACM,

2015.

[HP04] Greg Humphreys and Matt Pharr. Physically Based Rendering. Mor-

gan Kaufmann, 2004.

[HS98] Wolfgang Heidrich and Hans-Peter Seidel. View-independent environ-

ment maps. In Proceedings of the ACM SIGGRAPH/EUROGRAPH-

ICS workshop on Graphics hardware, pages 39–ff. ACM, 1998.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In

Rendering Techniques 96, pages 21–30. Springer, 1996.

[Kaj86] James T Kajiya. The rendering equation. In ACM Siggraph Computer

Graphics, volume 20, pages 143–150. ACM, 1986.

[Kel97] Alexander Keller. Instant radiosity. In Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pages 49–

56. ACM Press/Addison-Wesley Publishing Co., 1997.

[KL05] Janne Kontkanen and Samuli Laine. Ambient occlusion fields. In

Proceedings of the 2005 symposium on Interactive 3D graphics and

games, pages 41–48. ACM, 2005.

[LW93] Eric P Lafortune and Yves D Willems. Bi-directional path tracing.

1993.

[McG11] Morgan McGuire. Computer graphics archive, August 2011.

[MKRH11] Rafat Mantiuk, Kil Joong Kim, Allan G Rempel, and Wolfgang Hei-

drich. Hdr-vdp-2: a calibrated visual metric for visibility and qual-

ity predictions in all luminance conditions. In ACM Transactions on

Graphics (TOG), volume 30, page 40. ACM, 2011.

Bibliography 105

[MRR+53] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth,

Augusta H Teller, and Edward Teller. Equation of state calculations by

fast computing machines. The journal of chemical physics, 21(6):1087–

1092, 1953.

[NED11] Jan Novák, Thomas Engelhardt, and Carsten Dachsbacher. Screen-

space bias compensation for interactive high-quality global illumina-

tion with virtual point lights. In Symposium on Interactive 3D Graph-

ics and Games, pages 119–124. ACM, 2011.

[NIDN16] Kosuke Nabata, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki

Nishita. An error estimation framework for many-light rendering. In

Computer Graphics Forum, volume 35, pages 431–439. Wiley Online

Library, 2016.

[OBS+15] Ola Olsson, Markus Billeter, Erik Sintorn, Viktor Kämpe, and Ulf

Assarsson. More efficient virtual shadow maps for many lights. IEEE

transactions on visualization and computer graphics, 21(6):701–713,

2015.

[RDGK12] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan

Kautz. The state of the art in interactive global illumination. In

Computer Graphics Forum, volume 31, pages 160–188. Wiley Online

Library, 2012.

[REH+11] Tobias Ritschel, Elmar Eisemann, Inwoo Ha, James DK Kim, and

Hans-Peter Seidel. Making imperfect shadow maps view-adaptive:

High-quality global illumination in large dynamic scenes. In Computer

Graphics Forum, volume 30, pages 2258–2269. Wiley Online Library,

2011.

[RGK+08] Tobias Ritschel, Thorsten Grosch, Min H Kim, H-P Seidel, Carsten

Dachsbacher, and Jan Kautz. Imperfect shadow maps for efficient

computation of indirect illumination. ACM Transactions on Graphics

(TOG), 27(5):129, 2008.

[RSSF02] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda.

Photographic tone reproduction for digital images. ACM Transactions

on Graphics (TOG), 21(3):267–276, 2002.

Bibliography 106

[Seg07] Benjamin Segovia. Interactive light transport with virtual point lights.

These de doctorat en informatique, Université Lyon, 1, 2007.

[SHD15] Florian Simon, Johannes Hanika, and Carsten Dachsbacher. Rich-vpls

for improving the versatility of many-light methods. In Computer

Graphics Forum, volume 34, pages 575–584. Wiley Online Library,

2015.

[SRS14] Masamichi Sugihara, Randall Rauwendaal, and Marco Salvi. Layered

reflective shadow maps for voxel-based indirect illumination. In High

Performance Graphics, pages 117–125, 2014.

[THGM11] Sinje Thiedemann, Niklas Henrich, Thorsten Grosch, and Stefan

Müller. Voxel-based global illumination. In Symposium on Interac-

tive 3D Graphics and Games, pages 103–110. ACM, 2011.

[Vea97] Eric Veach. Robust monte carlo methods for light transport simulation.

PhD thesis, Stanford University, 1997.

[WABG06] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P Green-

berg. Multidimensional lightcuts. In ACM Transactions on Graphics

(TOG), volume 25, pages 1081–1088. ACM, 2006.

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala,

Michael Donikian, and Donald P Greenberg. Lightcuts: a scalable

approach to illumination. In ACM Transactions on Graphics (TOG),

volume 24, pages 1098–1107. ACM, 2005.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. In ACM

Siggraph Computer Graphics, volume 12, pages 270–274. ACM, 1978.

[Wil83] Lance Williams. Pyramidal parametrics. In Acm siggraph computer

graphics, volume 17, pages 1–11. ACM, 1983.

