
 

Faculté des Sciences Exactes et Sciences de la Nature et de la Vie 

Département d’Informatique 

THESE 

Présentée pour obtenir le grade de 

DOCTORAT DE TROISIEME CYCLE EN INFORMATIQUE 

Option : Intelligence Artificielle 

Par 

Yasser Moussa BERGHOUT 

THEME 

Probabilistic Model-Based Diagnosis of 

Distributed Systems 

 

Devant le jury composé de : 

 

Mr. Okba KAZAR Professeur à l’Université de Biskra Président  

Mr. Hammadi BENNOUI Maitre de conférences A à l’Université de Biskra Rapporteur 

Mr. Allaoua CHAOUI Professeur à l’Université de Constantine Examinateur 

Mr. Djamel-Eddine SAIDOUNI Professeur à l’Université de Constantine Examinateur 

Mr. Laid KAHLOUL Maitre de conférences A à l’Université de Biskra Examinateur 

 

 

 

République Algérienne Démocratique et Populaire 

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique 

Université Mohamed  Khider – Biskra 

 

 

 

 

N° D’ordre : ……….. 

Série : ………….. 

 

 

 

 

 

 

 

 

2

2



 

Faculty of Exact Sciences and Sciences of Nature and Life 

Computer Science department  

THESIS 

Submitted in partial fulfillment of the  

requirements for the degree of 

DOCTORATE OF THE THIRD CYCLE IN COMPUTER SCIENCE 

Option: Artificial Intelligence 

By 

Yasser Moussa BERGHOUT 

TITLE 

Probabilistic Model-Based Diagnosis of 

Distributed Systems 

 

In front of the jury composed of: 

  

Mr. Okba KAZAR Professor at the University of Biskra President  

Mr. Hammadi BENNOUI Associate Professor at the University of Biskra 

Mr. Allaoua CHAOUI Professor at the University of Constantine Examiner 

Mr. Djamel-Eddine SAIDOUNI Professor at the University of Constantine Examiner 

Mr. Laid KAHLOUL Associate Professor at the University of Biskra Examiner 

 

 

 

People's Democratic Republic of Algeria 

Ministry of Higher Education and Scientific Research 

Mohamed Khider University - Biskra 

 

 

 

Order Number: ……….. 

Series : ………….. 

 

 

 

 

 

 

 

 

Supervisor

2

2



Probabilistic Model-Based Diagnosis of Distributed Systems

by

Yasser Moussa BERGHOUT

Abstract
This thesis addresses the problem of modeling uncertainty in the distributed context. It
is situated in the field of diagnosis; more precisely, model-based diagnosis of distributed
systems. A special focus is given to modeling uncertainty using probabilistic and possibilistic
reasoning. Thus, for its first contribution, this work is based on a probabilistic modeling
formalism called: “probability propagation nets" (PPNs), which is designed for centralized
systems. Hence, an extension of this model is proposed to suit the distributed context.
Distributed probability propagation nets (DPPNs), the proposed extension, were conceived
to consider the distributed systems’ particularities. So, the set we consider is a set of
interacting subsystems, each of which is modeled by a DPPN. The interaction among
the subsystems is modeled through the firing of common transitions belonging to more
than one subsystem. Moreover, the diagnostic process is done by exploiting transition-
invariants; a diagnostic technique developed for Petri nets.

Furthermore, and as a second contribution, we exploit another theory to model uncertainty;
that is the theory of possibility. In fact, another class of Petri nets called “Possibilistic Petri
nets" (PoPNs) captures the possibilistic behavior of a process. Possibility measures are
attached to each obtained diagnosis as a quantifiable basis regarding its uncertainty. It is
possible to use such measures to detect some inconsistencies within the diagnoses.

Thesis Supervisor: Hammadi Bennoui
Title: Associate Professor
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Chapter 1

Introduction

Systems, in their general definition, are prone to fail at a certain point of their existence.

When that happens, detecting the source leading to the failure could be very crucial to

get the system back to its well-functioning state. From here the importance of diagnosis

arises. It represents the procedure followed to detect the source of any failure. Model-based

diagnosis is an approach developed for a high level of abstraction diagnostic schemes. It

pre-assumes the existence of a model describing the “normal” behavior of a system with a

possibility to observe some of its outputs. Roughly speaking, it considers the inconsistency

between the observations and the normal behavior described by the system model as a sign

of a malfunction.

1.1 Pillars of the Thesis

The three big pillars on which this thesis is constructed are:

∙ Model-based diagnosis: the core of the thesis and its main purpose, the other two

pillars are just like constraints on the performed diagnosis. This approach is mostly

developed and used by computer scientists (mainly artificial intelligence and formal

methods communities). It assumes the relevance of a system model to perform the

required task.

∙ Uncertainty treatment: a more realistic modeling approach to diagnosis (or any other

15



procedure) should adopt an uncertainty quantification formalism that actually rep-

resents the flaws of a non-perfect system. As to our subject matter, diagnosis is

known to have its flaws and ambiguity, since multiple faults could share consider-

ably resembling symptoms (if not the exact same ones) which make it quite difficult

to distinguish between them. A probabilistic approach to diagnosis would offer a

ranking feature among the possible solutions.

∙ Distribution of the solution: the complexity of some systems nowadays is so im-

mense that having them under a centralized controller is so complicated (if not im-

possible). To overcome such complexity, it is better to divide them into more con-

trollable units, following the paradigm of “divide and conquer,” which inspires the

necessity to develop distributed solutions that go with them. Such complexity is even

predicted to get greater in the future.

1.2 Motivation

To highlight the use of a distributed approach, let us quote here Su and Wonham [105]: “It

is well known that centralized approaches suffer from high space complexity (i.e., model

size), which may be a problem also for those decentralized approaches which rely on an

intermediate centralized plant model. For this reason attention has turned increasingly

to distributed approaches.” In this view, distributed approaches to diagnosis offer a con-

venient solution the problem of high space complexity in centralized models, and even

decentralized ones.

“Surprisingly, very little work has been done in the area of distributed fault localiza-

tion” is another quote from a 2004 survey on fault localization techniques in computer

science [64] highlighting the lack of sufficient work treating such a field. Nevertheless,

since then numerous research papers have taken this issue into consideration, but it was not

representative of the importance of the subject. Another survey in 2015 still does not have

much to mention [40] in this regard, even though the authors have missed some important

work that shall be mentioned within the course of this thesis. One of the problems regarding

distributed approaches is the complexity of their contexts, which makes it hard to maintain
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relevant knowledge about a system’s state. One more quote from this last reference [40]

shall emphasize more the relevance of this course of research: “This kind of decentralized

or distributed structure has become the mainstream in complex industrial processes owing

to its less use of network resources, cost effectiveness, and convenience for expansion.”

The contributions of this thesis treat the mentioned three points. We use initially a prob-

abilistic model based on Petri nets called “probability propagation nets” (PPNs) to capture

the underlying uncertainty within the diagnostic model. PPNs, as they are defined, do not

well suit the system setting of distributed systems. Thus, to adapt it to the considered

setting, we suggest distinguishing the “input” and “output” components (that characterize

the distributed setting) as separated entities in the model. To do so, we extend PPNs to

what we call “distributed probability propagation nets” that make such distinction. Thus,

the system setting we are considering is composed of a set of interacting subsystems, with

common transitions to capture their interactions through firing. As a second contribution,

we exploit a different formalism to model uncertainty, that is “possibility theory.” Always

in diagnosis based on Petri net modeling, another class of Petri nets called “Possibilistic

Petri nets” (PoPN) is utilized to capture the possibilistic behavior of the system. Possibilis-

tic measures are used to check the consistency of diagnoses, so inconsistent diagnoses are

discarded. The use of possibility theory to model uncertainty offers a different perspective

on the diagnostic process.

1.3 Problem statement

On the one hand, and with the absence of a distinguished distributed diagnostic scheme

that treats uncertainty, an attempt to propose one is envisaged. On the other hand, uncertain

diagnostic models and schemes are extensively treated in the centralized context. Thus, this

proposal targets already established models for uncertain centralized diagnosis to extend

them to the distributed context. These extensions prove to be challenging as it will be

seen throughout the thesis. Hence the treated problem could be divided to the following

subproblems:

∙ extending the centralized uncertainty models;
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∙ extending the diagnostic schemes;

∙ dealing with the consequences of uncertainty in the distributed context.

1.4 Thesis Organization

∙ The current chapter is meant to introduce a reader to the context of the thesis. It

shows the bigger picture of its composing elements. Also, it states the reasons that

motivated it, alongside some obstacles encountered during its production. Finally, it

overviews the rest of the chapters.

∙ Chapter 2 outlines a variety of concepts in relation with model-based diagnosis in

a general manner. Starting from a view on diagnosis in general, then narrow it to

the model-based approach. It discusses causal models and their relation to a diag-

nostic process. It demystifies Petri nets as an adequate modeling tool with a general

reasoning scheme for diagnosis. Also, distributed systems as the subject of diagno-

sis are discussed. Furthermore, it clarifies some definitions and taxonomy regarding

diagnosis, causal models, Petri nets and distributed systems.

∙ Chapter 3 focuses on uncertainty and the ways to cope with it. Among the variety

of uncertainty models, the center of interest was two Petri-net-based models. The

first one, probability propagation nets, captures probabilistic reasoning in Bayesian

networks, while the second one captures possibilistic reasoning.

∙ Chapter 4 illustrates the first contribution, which is an extension of probability prop-

agation nets that is better suited for distributed diagnosis. Common transitions were

proposed to model interaction among subsystems, with a better focus on the modu-

larity of the system. It is also shown how to update the probabilities within the model

in the case of new evidence and how that could be problematic in a certain way.

∙ Chapter 5 illustrates our second contribution on how possibilistic Petri nets could

be utilized for distributed diagnosis, starting from adapting them to a formalized
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diagnostic problem for centralized diagnosis, then setting them in a distributed man-

ner with common bordered places as interaction channels to model the distributed

system. The diagnostic problem has been distributed to correlate to the distributed

setting. Moreover, to verify the consistency of local diagnoses with the global one,

a protocol of communication between diagnostic agents has been set. Finally, an

evaluation of the correctness of the work has been discussed.

∙ Chapter 6 provides some concluding remarks on the thesis. It highlights some diffi-

culties encountered while producing the present work alongside possible perspectives

to advance this work even further in the future.
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Chapter 2

Model-Based Diagnosis

The most profound technologies are

those that disappear. They weave

themselves into the fabric of everyday

life until they are indistinguishable

from it.

Weiser, Scientific American, 1991

2.1 Introduction

“My computer stopped working, what is wrong with it?” A situation, supposedly any com-

puter owner can relate to, is somewhat a starting point to the whole field of diagnosis and

in particular model-based diagnosis (MBD). As the chapter describing the state of the art

related to this thesis, it sets the context on which the contributions would be built. Diag-

nosis, in its general view, answers an old question that goes like “something went wrong,

why?” that affects a variety of fields ranging from medicine and biology to engineering and

computer science, it may even apply to humanities such as historical studies and sociology.

Model-based diagnosis is an approach to diagnosis that, instead of dealing with the

physical system, deals with its model that supposedly captures all its behavioral charac-

teristics required to perform a diagnosis. This kind of approaches offers a high level of

abstraction and independence from the physical constraints. Under this view, a more accu-
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rate formulation of the problem would be like “the system is not functioning as it should,

what caused this malfunction?”

It is important to keep in mind that there is more than a single research community

working on diagnosis. Notably, the two major communities working on the field are the

DX1 community (derived from the artificial intelligence discipline) and FDI (Fault Detec-

tion and Isolation) community (derived from engineering disciplines, i.e. control theory).

Moreover, it is worth noting that other communities following other fields such as net-

works [64] and formal methods [36, 116] have significantly contributed to this field. In

general, these communities have multiple intersections and could be related to each other,

with some differences in the level of abstraction, terminology, and context. In fact, some

researchers have tried to close the gap between the two major communities through com-

parative studies and joint applications [10, 42, 107].

In general, among the differences between the two approaches [22], in their modeling

paradigm, FDI approaches do not make an explicit use of the concept of components, in

contrast to DX approaches that give a special concept to the system components. Moreover,

the FDI approaches tend to be more off-line and limited regarding the number of faults

they deal with [107]. On the other hand, DX approaches are more natural in dealing with

multiple faults, and in an on-line fashion.

The remainder of this chapter is organized as follows. We take an overview of model-

based diagnosis in the next section (2.2), including some terminology and Reiter’s theory

of diagnosis. Section 2.3 discusses causal models and their relation to diagnosis. Section

2.4 focuses on Peri nets as the modeling used to model the systems to be diagnosed. Dis-

tributed systems, as the subject of application of diagnosis, are highlighted in Section 2.5.

We explicitly discuss and outline some assumptions related to model-based diagnosis in

Section 2.6. Then, Section 2.7 concludes the chapter.

1It takes its name from a series of conferences in artificial intelligence dedicated to diagnosis.
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2.2 Overview on Model-based Diagnosis

Model-based diagnosis was proposed in the early eighties to overcome some limitations

of expert systems [25] (for instance, acquiring and maintaining the expert knowledge is

not a trivial task). So, instead of seeking expert knowledge, researchers went with what

was referred to as “deep knowledge.” In this approach to diagnosis, the reasoning is done

on an objective model of the system to be diagnosed. Such a model is supposed to be

reusable [17], i.e., it is the same model used for other problem-solving tasks aside from

diagnosis (e.g., simulation, reconfiguration, . . . etc). Furthermore, it should be the same

model used in composition (i.e., integrating the system into a larger system).

Usually, the model of a system is given in terms of its components that are prone to

malfunctions. The definition of the models also contains specifications about the correct

behavior of the system and its faulty behavior. Such behavior is described as a set of

relations. Aside from the component-oriented approaches, process-oriented approaches

like [82, 90] focus more on the global behavior of the system and usually define it in a

causal manner. They are better suited for complex systems [17].

Following the DX community, MBD is based on the assumption that a model reflects

the faulty behavior of the real system to be diagnosed. It is characterized by a higher level

of abstraction and a strong theoretical background. One of the landmark references in the

field is Reiter’s work [97], where he assembled an important amount of work published in

the eighties and before in an attempt to form a general theory of diagnosis. His approach is

referred to as consistency-based diagnosis. In contrast, another approach based on logical

abduction referred to as abductive diagnosis [18] uses a description of logical formulae to

model a faulty behavior.

In contrast, experience-based diagnosis provides a different perspective on the diag-

nostic process. Table 2.1 illustrates a comparison between experience-based strategies and

model-based-strategies [81].
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Experience-based strategies Model-based strategies

Advantages

∙ A model is not required ∙ Can assist in diagnosing
unfamiliar faults

∙ A solution procedure is not ∙ Models of system components
required are plant-independent
∙ Computationally faster than ∙ Knowledge contained in the

model-based strategies model aids fault resolution

Limitations

∙ Can only diagnose faults that ∙ A model is required
have been previously observed
∙ Patterns of symptoms are ∙ A solution procedure is

plant-specific necessary to evaluate the model
∙ Fault resolution is dependent upon ∙ Computationally slower than

the extent of fault propagation experience-based strategies

Table 2.1: Model-based strategies vs experience-based strategies [81].

2.2.1 Terminology

Establishing definitions of key terms used in this thesis is mandatory to avoid any confusion

regarding further development. We inspire mainly from definitions shown in [20, 64, 97].

malfunction. It corresponds to the gap between what a system should do and what is

actually doing. If that gap exists, and a system does not provide what it is supposed to, that

is a malfunction.

Fault. The source event to cause a malfunction. It could also be perceived as the first

event leading the system to malfunction.

manifestation. symptom or observation, the observable part of the system in which a

malfunction manifests. In real life applications, it corresponds to measurements on a sys-

tem’s variable.

diagnosis. solution or explanation, determining the part of the system responsible for

causing a malfunction. It corresponds to explaining the malfunction.
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The projection of such definitions on the frame of causal models, which will be used as

a support model2 for diagnostic reasoning, will be demonstrated in the next section (2.3).

2.2.2 Diagnosis from First Principles

Reiter’s article [97] is one of the most influential literature papers there is on the theory of

diagnosis from the artificial intelligence point of view. Thus, we use some of the notions

introduced in it.

Definition 1. A system 𝑆 is a pair (𝑆𝐷, 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠) where:

∙ 𝑆𝐷 is the system description;

∙ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 is a finite set of constants representing the system components.

Definition 2. (observations) An observation on a system 𝑆 is a set of first order sentences.

A system 𝑆 with observations made on it shall be depicted as (𝑆𝐷, 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑂𝑏𝑠)

with 𝑂𝑏𝑠 as observations.

Example 1. The example illustrated in Fig. 2-1 represent a full adder containing: two 𝑎𝑛𝑑

gates (A1 and A2), one 𝑜𝑟 gate (O1) and two exclusive-or gates (X1 and X2). Hence, the

set of 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = {𝐴1, 𝐴2, 𝑂1, 𝑋1, 𝑋2} and the system description 𝐷𝑆 is given by

means of first-order logic sentences like the following:

𝐴𝑁𝐷𝐺(𝑥) ∧ ¬𝐴𝐵(𝑥)⇒ 𝑜𝑢𝑡(𝑥) = 𝑎𝑛𝑑(𝑖𝑛1(𝑥), 𝑖𝑛2(𝑥)),

𝑋𝑂𝑅𝐺(𝑥) ∧ ¬𝐴𝐵(𝑥)⇒ 𝑜𝑢𝑡(𝑥) = 𝑥𝑜𝑟(𝑖𝑛1(𝑥), 𝑖𝑛2(𝑥)),

𝑂𝑅𝐺(𝑥) ∧ ¬𝐴𝐵(𝑥)⇒ 𝑜𝑢𝑡(𝑥) = 𝑜𝑟(𝑖𝑛1(𝑥), 𝑖𝑛2(𝑥)),

𝐴𝑁𝐷𝐺(𝐴1), 𝐴𝑁𝐷𝐺(𝐴2),

𝑂𝑅𝐺(𝑂1),

𝑋𝑂𝑅𝐺(𝑋1), 𝑋𝑂𝑅𝐺(𝑋2),

𝑜𝑢𝑡(𝑋1) = 𝑖𝑛2(𝐴2)

𝑜𝑢𝑡(𝑋1) = 𝑖𝑛1(𝑋2)

𝑜𝑢𝑡(𝐴2) = 𝑖𝑛1(𝑂1)

2By support model, we are implying that it is not the main model used to represent diagnostic reasoning,
since the main model will be specific classes of Petri nets. This will become evident later.
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𝑖𝑛1(𝐴2) = 𝑖𝑛2(𝑋2)

𝑖𝑛1(𝑋1) = 𝑖𝑛1(𝐴1)

𝑖𝑛2(𝑋1) = 𝑖𝑛2(𝐴2)

𝑜𝑢𝑡(𝐴1) = 𝑖𝑛2(𝑂2)

Further axioms on the system description specifying the binary nature of the circuit in-

puts are depicted as:

𝑖𝑛1(𝑋1) = 1 ∨ 𝑖𝑛1(𝑋1) = 0

𝑖𝑛2(𝑋1) = 1 ∨ 𝑖𝑛2(𝑋1) = 0

𝑖𝑛1(𝐴1) = 1 ∨ 𝑖𝑛1(𝐴1) = 0

Let’s suppose that after observing the system, we obtained the following results:

𝑖𝑛1(𝑋1) = 1

𝑖𝑛2(𝑋1) = 0

𝑖𝑛1(𝐴1) = 1

𝑜𝑢𝑡(𝑋2) = 1

𝑜𝑢𝑡(𝑂1) = 0

Given these results, the system is clearly faulty since the observed values do not much

the expected ones, that is an inconsistency which alarms the presence of a fault. A gener-

alized formalization of this approach could be sketched as:

𝑆𝐷 ∪ {¬𝐴𝐵(𝑐1), . . . ,¬𝐴𝐵(𝑐𝑛)} ∪𝑂𝑏𝑠

is consistent, such that: 𝐴𝐵(𝑐) is a predicate meaning “abnormal” and {𝑐1, . . . , 𝑐𝑛} ∈

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠.

Abductive diagnosis. A more trivial and straightforward approach to model-based diag-

nosis is using abduction [23,87]. It utilizes the correlation between an effect and its possible

causes without any prior knowledge about the sound behavior of a system. A substantial
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Figure 2-1: A full adder.

difference between this approach and the consistency-based approach is that in this one the

expression

𝑆𝐷 ∪ {¬𝐴𝐵(𝑐1), . . . ,¬𝐴𝐵(𝑐𝑛)} ∪𝑂𝑏𝑠

is consistent.

2.3 Causal Models

Causality [83] is one of the key concepts associated with a diagnostic process. It describes

the cause→effect relation among a system components. The basic mathematical model

used to describe such a relation is a directed graph (digraph). Composed of a set of nodes

with arcs relating them, a digraph captures this relation in its simplest way. Console &

Torasso [19] suggest distinguishing at least among three types of nodes:

∙ Initial nodes: the first nodes on a causality chain. They correspond to the initial

perturbations leading the system to fail, in case of a faulty model. They have no

cause, so no other node leads to them.

∙ Internal nodes: they correspond to the consequences of initial nodes and they have at

least one parent and one child node. Since internal nodes can be explained by means

of initial nodes, they do not make part of diagnoses.

∙ Manifestations: they correspond to the observable part of the system in which the

symptoms of a malfunction are expected to be observed. Since they are the last
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Figure 2-2: A causal network model.

nodes on a causality chain, they lead nowhere.

Following a causal scheme to diagnosis corresponds to explaining a manifestation by

means of initial states. Moreover, in the case of Petri nets, the nodes are represented by

places and cause-effect relationships are represented by transitions between the correspond-

ing places.

Fig. 2-2 adapted from [52] shows a causal network demonstrating the causal relation

between four nodes. For instance, “Cold” causes both “Fever” and “RunnyNose”, while

“Allergy” causes “RunnyNose”. On the other hand, it shows how diagnosis works in the

other direction of causality. For instance, given that we observe “RunnyNose”, a diagnosis

shall give us either “Cold” or “Allergy”. As one can easily see, both causes are legitimately

plausible, and without additional measures it is not possible to exclude any of them. Thus,

having a quantifiable basis to distinguish between how likely each of which is the actual

cause offers a more realistic representation. That basis is probability. An example of an

additional measure is further observing “Fever” reinforce the belief that “Cold” is the actual

cause of “RunnyNose”.
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2.4 Petri Nets

2.4.1 General view

Initially started as a simple graphical way to model industrial processes [86], Petri nets es-

calated to be a very useful graphical and mathematical tool that is suited to model a variety

of processes with their capability to capture aspects like parallelism, concurrency, and syn-

chronism. Some of their more elaborated classes incorporate more delicate aspects such as

time and uncertainty. Petri nets now have their own research community and series of con-

ferences and have been extensively used as a modeling tool in engineering and computer

science. Petri nets with uncertainty traits are particularly relevant to this thesis, where two

classes of such nets will be discussed in detail in the next chapter (3).

2.4.2 Formal Definition

We adopt here the well known definition by Murata [74].

Definition 3. A petri net is a 5-tuple, 𝑃𝑁 = (𝑃, 𝑇, 𝐹,𝑊,𝑀0) where:

∙ 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑚} is a finite set of places,

∙ 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} is a finite set of transitions,

∙ 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is a set of arcs (flow relations),

∙ 𝑊 : 𝐹 → {1, 2, 3, . . . } is a weight function,

∙ 𝑀0 : 𝑃 → {0, 1, 2, . . . } is the initial marking,

∙ 𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ̸= ∅.

A 4-tuple, 𝑁 = (𝑃, 𝑇, 𝐹,𝑊 ) is a Petri net structure without any specific initial marking

𝑀0; and (𝑁,𝑀0) denotes a Petri net with a specific initial marking 𝑀0.

2.4.3 Diagnostic Scheme with Petri Nets

Fig. 2-3 describes an architecture for the diagnostic process, adapted from [91], to be fol-

lowed within this thesis. It starts from the expert knowledge about the behavior of a system
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to a Petri net model representing the system, passing by a formalism for knowledge rep-

resentation like first order logic. The architecture then depicts the desired solution of the

diagnostic process (diagnoses) as the fruit of exploiting an invariant analysis technique,

with some observations as parameters.

2.4.4 Literature Review on Centralized Diagnosis with Petri Nets

Since Petri nets are extensively used in a lot of fields, we focus here solely on its use for

diagnosis3. We start with Portinale’s work [91] due to its particular relevance to the present

work, where he exploited “invariants analysis" of Petri nets for diagnostic purposes, then

he proposed a class of Petri nets called “behavioral Petri nets" [92] for the same purposes.

Alongside fault trees, Petri nets were used to develop a controller methodology for diag-

nosis in automated manufacturing systems in [109]. The work in [2, 62, 96, 108] describes

a general diagnostic schemes using Petri nets, while [12, 16, 110] provide a more applied

schemes for particular cases. Moreover, some other classes of Petri nets are used for diag-

nosis, like the behavioral Petri nets mentioned earlier; or colored Petri nets [63]; or labeled

Petri nets [65] for examples. Also, note that the uncertainty-related Petri nets classes men-

tioned in the previous subsection are all meant for centralized diagnosis.

2.5 Distributed Systems

2.5.1 General Perception & Classification

Roughly speaking, a distributed system is composed of a set of subsystems interacting with

each other. The distribution of a system could be meant in two perspectives [102].

∙ Spatially. In such a view, the system’s components are physically distributed (e.g.,

networked systems).

∙ Semantically. In contrast to spatially distributed systems, the subsystems here may

actually be adjacent but divided in terms of perception only. The type of knowl-
3It is to be pointed out that a considerable amount of the presented related work has been done under the

specifications of “discrete event systems" (DES) [14].

30



Figure 2-3: A diagnostic process architecture.
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edge about the system is the one distributed here, e.g., separate models of a system’s

hardware and software.

Before going any further within distributed diagnosis, it is helpful to distinguish it from

other types of diagnosis in regard to the distribution of their diagnostic solutions. Hence,

three types are to be distinguished [5, 79].

∙ Centralized diagnosis. One agent has a global view over the whole system to be

diagnosed. It captures all the faults signalizations and provide a global solution.

Centralized approaches to diagnosis are known to suffer from high space complexity

for large models [105].

∙ Decentralized diagnosis. An agent is associated to each subsystem, in addition to

another coordinating agent (supervisor) that provides a global solution once the lo-

cal diagnoses, computed by each agent, are communicated to it. Such a coordinating

agent ensures the global consistency of solutions. Each agent is dedicated to a certain

subsystem is only acquainted with its subsystem’s knowledge, while a coordinating

agent is acquainted with a larger view on a set of subsystems. Decentralized ap-

proaches, relying on a centralized coordinator, may also suffer from the problem of

high space complexity.

∙ Distributed diagnosis. Differently from decentralized diagnosis, the coordination

here is done among agents with the absence of a distinct coordinating agent. When

such an agent is absent, a consistency check is usually performed by each agent.

Perceived as a solution to the problem of high complexity, distributed approaches

seem as a realistic solution towards the diagnosis of complex systems

2.5.2 Examples of Computer Architectures of Distributed Systems

Even though distributed architectures could be found in several application domains, we

believe it would be helpful to present some distributed architectures in computer science

that one can relate to.
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∙ Client-Server: a simple form of distribution, and probably the most known, with

two major entities: (1) a client in need of a resource or a service; and (2) a server that

can provide the requested resources and services. Usually a client-server architecture

contains one server and multiple clients.

∙ Remote Procedure Call (RPC): the possibility to execute a piece of code that be-

longs to another system.

∙ Remote Method Invocation (RMI): the object-oriented version of RPC.

∙ Peer-to-Peer (P2P): it is based on the concept of peers, which are equally privi-

leged entities in contrast to client-server architecture. Each peer takes a portion of

the distributed application’s workload and the application goal emerge from their

collaboration.

∙ Multi-Agent Systems (MAS): based on multiple intelligent agents interacting with

each other to achieve a common goal. This last is usually achieved by the emergence

of agents’ local achievements.

2.5.3 Literature Review on Distributed/Decentralized Diagnosis

Systems with modular structures have gained more popularity over the past two decades as

a way to overcome the high complexity of dealing with a complex system as one. Such de-

velopment was followed by diagnostic systems conceived in a distributed or a decentralized

manner to meet their requirements. Another paper of great relevance to the present one is

Bennoui’s [6], where he formulated his diagnostic distributed system as a multi-agent sys-

tem with communicating agents to check the global consistency of local diagnoses. In the

same context, Su & wonham [105] provide a study on local and global consistencies in

DES. The authors of [1, 11] used labeled Petri nets and partially stochastic Petri nets for

their approaches, respectively. As an interaction medium, the authors of [6, 41, 49] used

common bordered places as inputs/outputs, while in [7] common transitions were used.

Baldan et al. [4] provided a study on the compositional semantics on what he referred

to as “open Petri nets" using either common places or common transitions. Other work
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was more dedicated applications and case studies like [9] with a distributed model for an

automotive vehicle; [24] and [101] for robotics applications; [51] for an e-commerce sys-

tem; [44] for a power system using Bayesian networks and Dempster-Shafer evidence the-

ory. Multi-agent systems have been used as an implementation framework for distributed

diagnosis as in [102] by vivid agents and in [99] where the authors suggested a communi-

cation protocol between agents.

2.6 Assumptions in Model-based Diagnosis

Underlying assumptions about the process of MBD are inevitable. For instance, the most

common assumption is that the model reflects the actual behavior of the real system, which

is not usually the case. Real life systems are usually too complex to be tackled without some

sort of abstraction. Assumptions are particularly adherent in the context of reasoning under

uncertainty since the process of making probabilities and possibilities has its particularities

(to be seen further on4). Fensel et al. [37] discussed how underlying assumptions can

weaken or strengthen the problem-solving method competence, as they argue that there is

no such thing as assumption-free reasoning strategies. For instance, the epistemological

adequacy of probabilities has been debatable since McCarthy & Hayes’s claim of their

inadequacy [68], summarized in two points:

1. The amount of data required to assign numerical probabilities is not ordinarily avail-

able.5

2. The way probabilities are attached to statements containing quantifiers is not clear.

Even though the debate has loosened up since Pearl’s book [84], it is still there. Therefore,

an assumption is made here about the adequacy of probabilities to overcome this issue.

Assumptions are necessary for the sake of abstraction, building reasoning schemes and

overcoming computational complexity. The main assumptions made about reasoning along

this thesis are:
4For instance, Assumption 2 in chapter 4 is an unusual one in MBD.
5To calculate the right probability value, one is supposed to know all the possibilities. Whereas some of

them are lost in statistical procedures and some are not known at all to begin with.
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∙ The Petri net model corresponds to the actual system.

∙ The diagnostic agent is considered to be safe.6

∙ All symptoms are observable.

∙ The reasoning rules are all true.7

The ones needed for the formal development of the reasoning scheme will be outlined

formally once required. This kind of assumptions motivates actually more the use of rea-

soning under uncertainty. For more on the subject, an interested reader is referred to [37].

2.7 Conclusion

This chapter was meant to introduce some important concepts related to this thesis pro-

posal. Understanding such concepts is key to comprehending the contributions. It com-

bines a set of the building elements of the proposal, starting from a general view on the

concept of diagnosis to situating the work among the different communities and subfields

in relation to it. As they are the used modeling tool, Petri nets took a considerable part of

this and will take the whole next chapter to discuss their properties, features, techniques

and general relevance to capture the desired aspect; that is uncertainty. Causal models pro-

vide a scheme to relate an observation to its plausible causes, while distributed systems

represent the subject of diagnosis.

6In fact, diagnostic agents are also prone to faults, and their faulty behavior could result in wrong di-
agnoses, while the system to be diagnosed is actually safe. Dealing with such a problem would require a
diagnoser on the agent which also is prone to faults and so on. That’s why we assume that the diagnostic
agent is always safe and doesn’t bear any faults.

7For instance, in expert systems and rule-based systems in general, this kind of knowledge is obtained
from experts. However, they could be wrong, imprecise or misinforming about such knowledge.
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Chapter 3

Uncertainty & Petri Nets

Uncertainty is an uncomfortable

position, but certainty is an absurd one.

Voltaire, November 28𝑡ℎ, 1770

3.1 Introduction

Starting from a philosophical point of view, uncertainty and doubt are among the most

experienced intellectual aspects by humans. Varying from unanswered questions (e.g.,

questions related to the past of the universe and its future) to the daily life questions (e.g.,

should I take the white or the black shirt), they are always present in the human thinking.

Such an omnipresent aspect, from the daily life decision-making process to the biggest

universal questions, has gotten a lot of attention, even since centuries ago. Several for-

malisms and models have been proposed since then, and probably the most known one

among them all is the classical probability theory. Actually, a lot of uncertainty models are

based on it or intersect with it somehow. The main interests regarding this thesis are con-

ditional probabilities used in Bayesian networks and a relatively more recent theory called

the theory of possibility.

Furthermore, uncertainty is especially present in the diagnostic process, since it is an

inherent trait of this last. For instance, if an observable event 𝐶 could be caused by multiple

events, for the sake of simplicity let’s say two events 𝐴 and 𝐵. With no additional measures
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or observations, there is simply no way to eliminate one of the two possible cause events

from being a suspect in causing event 𝐶. Thus, a quantifiable measure like probability

seems appropriate to provide a more realistic representation of the system.

The remainder of this chapter is organized as follows. Section 3.2 briefly outlines some

theories and formalisms to model uncertainty. The main reason behind Section 3.4 is to

formally introduce probability propagation nets, but before that, a passage on Bayesian

networks, 𝑝/𝑡 nets and probabilistic Horn abduction is done. Section 3.5 introduces more

intrinsically the theory of possibility and then possibilistic Petri nets. Finally, Section 3.6

concludes the chapter.

3.2 Reasoning under Uncertainty

Before introducing and discussing the used uncertainty models and formalisms, an intro-

duction to probabilistic reasoning shall be envisaged. The passages on uncertainty models

in this thesis are rather superficial1. To start from the beginning, nothing is better than the

epistemological definition of abduction as a logical inference. That is, starting from a set

of facts and rules to infer premises (or causes). For instance, if 𝐴 implicates 𝐵, and we

have 𝐵 as a fact, that means 𝐴 is probable to a certain extent.

About uncertainty models, it is worth noting that there is not a standardized classifi-

cation of them. literature references are diverse on the subject. The process of preparing

knowledge in the first place is prone to uncertainty [84, 119]. Whether due to the linguis-

tic inability of accurate expression, abstracting complex ideas, our inability to comprehend

exactly what we perceive or simply for the sake of abbreviation some information would be

lost. For instance, consider the statement “Birds fly” which is true for most case, but false

for few exceptions. So, to not totally falsify the considered statement, it is possible to as-

sociate a mathematical measure to quantify the likelihood of the statement being true (e.g.,

90% of birds fly). A number of theories and reasoning formalisms have been proposed to

deal with such an issue, including the following.

1We only focus on what is convenient to the purpose of diagnosis. As a starting point, an interested reader
is referred to Pearl’s book on probabilistic reasoning in intelligent systems [84].
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Probabilistic Reasoning

Derived from the classical probability theory, probabilistic reasoning is essentially about

attributing a numerical measure (i.e., a value in the interval [0, 1]) to a certain event indi-

cating the likelihood of it happening.

Evidential Reasoning

Dempster-Shafer theory of evidence [103]: could be summarized to its two bounds on

confidence (upper and lower bounds), such that: 𝐵𝑒𝑙(𝑃 ) is a measure of the evidence for

𝑃 ; and 𝐵𝑒𝑙(¬𝑃 ) is a measure of the evidence against 𝑃 .

Fuzzy Reasoning

It relies on two major concepts [53]. The first is fuzzy sets, which responds to the ques-

tion: “how well does an object satisfy a vague property? The second is fuzzy logic, which

responds to the question: “how true is a logical statement?

Rule-based Reasoning

Certainty factors (MYCIN) [104]: deals with uncertainty as a generalized truth value,

where the certainty of a formula is defined as a function of the certainties of its subfor-

mulas. Roughly speaking, the diagnostic or causal rules undergo a propagation of belief

models.

Possibilistic Reasoning

It will be discussed in more detail along this chapter, specifically in Sect. 3.5.

3.3 Literature Review on Uncertainty in Diagnosis

The classical way to model uncertainty is through probability theory, with a function

𝑃 (𝑋) → [0, 1] to indicate the probability of an event 𝑋 to happen. In a diagnostic frame-

work, it is possible to associate a probability to a malfunction to occur. In the general
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view of diagnostic processes, Bayesian networks are extensively used due to their rele-

vance [38, 70, 71, 72, 80, 84], varying from case studies to discussing their properties and

inconveniences. In a logical framework, Poole discussed the relation between BNs and

probabilistic Horn abduction [89]; and between logic programming, abduction and proba-

bility [88]; while Portinale [93] provided a comparative study of Horn models and BNs for

diagnostic purposes. The work presented in [39] focuses on detecting inconsistencies in a

probabilistic context for model-based diagnosis. For web services, Jia et al. [48] proposed

to use probability tables for their diagnosis. Cayrac et al. [15] suggested using possibility

theory and fuzzy sets to handle the uncertainty in a satellite fault diagnosis application,

while John & Innocent [50] used fuzzy logic for clinical diagnosis.

Furthermore, a variety of Petri nets classes have been incorporated with uncertain rea-

soning within there model, among which we cite: stochastic Petri nets [43, 61, 100]; fuzzy

Petri nets [46,106,111,120]; possibilistic Petri nets [60]; Probability propagation nets [58].

Each of these classes of Petri nets captures a different formalism to model uncertainty.

3.4 Bayesian Networks and Petri Nets

Probably the most used probabilistic model in computerized applications when it comes to

modeling uncertainty, Bayesian networks offer a rather intuitive model for such applica-

tions. However, their structure proves to be a bit narrow in terms of process representation

in comparison to Petri nets. Hence, Probability propagation nets haves been introduced.

3.4.1 Bayesian Networks

Also known as Belief networks [47, 84], a Bayesian network (BN) is a directed acyclic

graph where the nodes represent variables of the system. Mostly, the first formalism to think

of when it comes probability propagation. Being a graphical model to represent causal

dependencies, BNs attribute probabilities to each of their nodes. Hence, they quantify how

likely an event related to a node is to happen. Yet, the change of state is not as clearly

visible as in Petri nets, which were specially designed and developed to model this change,

alongside with the flows of information. The amount of influence a node has over another
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Figure 3-1: Bayesian network.

node is measured by conditional probabilities as a parent-child relationship.

Fig. 3-3 represents a simple Bayesian network with three nodes (representing events)

and two dependencies. Both of the events A and B have a probability of happening (true)

and not happening (false), and depending on that, the conditional probability of the event C

happening is set. The tables associated to the graph nodes represent each event’s probabil-

ity. Bayesian networks are not the main focus of the paper; they are put as an introductory

formalism for probability propagation that could be related to. In fact, BNs are translatable

to PPNs, which was treated in [57]. Moreover, it is worth noting that it has been demon-

strated by Cooper [21] that the process of updating belief in the probabilistic inference of

Bayesian networks is NP-Hard.

3.4.2 Probability Propagation Nets

A formalism introduced by Lautenbach and Pinl [58] where they combined the character-

istics and features of Bayesian networks with Petri nets. They exploited some techniques

based on transition invariants in Petri nets [91] to calculate diagnoses. By adding proba-

bilistic reasoning in Bayesian networks, PPNs can model uncertainty and quantify it, which

gives us a ranking feature among the obtained diagnoses. In addition to probabilistic infer-

ence, PPNs also exploit belief update presented by Pearl [84], which deals with any new

evidence obtained from observing the system.
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One of the questions that should be treated is why not sticking to Bayesian networks?

To answer that, we have to point out each one’s advantages and disadvantages; Bayesian

networks lack the capacity to model behaviors and the change of states. Their main feature

is modeling causal dependencies and conditional probabilities associated to them. On the

other hand, Petri nets are better suited to manage flows, which is mainly what the propaga-

tion is about. Hence, PPNs exploit both formalisms’ features.

Formal background on p/t nets

The following formal definitions seem a bit dense, so a beforehand explanation of them

sounds appropriate. The formal definition of a PPN is built gradually starting from a basic

definition a Petri net (Def. 4), passing by the definitions of some of their properties and

extensions, to the definition of a PPN. Def. 7 is of a particular relevance defining transition

invariants since the diagnostic technique is based on them. Also, since PPNs are strongly

tied to probabilistic Horn abduction and build upon them, it is also relevant to state how

they are related. Finally, based on all of that, Def. 11 outlines a probability propagation net.

For convenience reasons, we re-adapt the definition of a PN to the one presented in [56].

Definition 4. (Place/transition nets) A 𝑝/𝑡 net is a quadruple 𝑁 = (𝑆, 𝑇, 𝐹,𝑊 ) where:

(a) 𝑆 is a non empty finite set of places.

(b) 𝑇 is a non empty finite set of transitions.

(c) 𝐹 ⊆ (𝑆 × 𝑇 ) ∪ (𝑇 × 𝑆) is the set of directed arcs.

(d) 𝑊 : 𝐹 → N∖{0} is a weight function, assigning a weight to every arc.

(e) 𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ̸= ∅.

(f) We use the notation: ∙𝑥 = {𝑦 : 𝑦𝐹𝑥} and 𝑥∙ = {𝑦 : 𝑥𝐹𝑦}.

(g) A node 𝑥 ∈ 𝑆 ∪ 𝑇 is an input (output) node iff ∙𝑥 = ∅(𝑥∙ = ∅).

Definition 5. Let 𝑁 = (𝑆, 𝑇, 𝐹,𝑊 ) be a 𝑝/𝑡 net.

1. A marking of 𝑁 is a mapping 𝑀 : 𝑆 → N.
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𝑀(𝑝) indicates the number of tokens 𝑝 under 𝑀 .

𝑝 ∈ 𝑆 is marked by 𝑀 iff 𝑀(𝑝) ≥ 1

𝐻 ⊆ 𝑆 is marked by 𝑀 iff ∃𝑝 ∈ 𝐻 , s.t. 𝑝 is marked by 𝑀 .

2. A transition 𝑡 ∈ 𝑇 is enabled by 𝑀(𝑀 [𝑡⟩) iff ∀𝑝 ∈ ∙𝑡 : 𝑀(𝑝) ≥ 𝑊 ((𝑝, 𝑡)).

3. The new marking 𝑀 ′ resulted by the firing of transition 𝑡(𝑀 [𝑡⟩𝑀 ′) is:

𝑀 ′(𝑝) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀(𝑝)−𝑊 ((𝑝, 𝑡)) if 𝑝 ∈ ∙𝑡∖𝑡∙

𝑀(𝑝) +𝑊 ((𝑡, 𝑝)) if 𝑝 ∈ 𝑡∙∖∙𝑡

𝑀(𝑝)−𝑊 ((𝑝, 𝑡)) +𝑊 ((𝑡, 𝑝)) if 𝑝 ∈ ∙𝑡 ∩ 𝑡∙

𝑀(𝑝) otherwise

for all 𝑝 ∈ 𝑆.

4. 𝜎 = 𝑡1, . . . , 𝑡𝑛 is a firing sequence for transitions (𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 ) iff markings 𝑀0, . . . ,𝑀𝑛

exist, such that: 𝑀0[𝑡1⟩𝑀1[𝑡2⟩ . . . [𝑡𝑛⟩𝑀𝑛 holds; this is equivalent to 𝑀0[𝜎⟩𝑀𝑛.

Definition 6. (Place vectors and Transition vectors) Let 𝑁 = (𝑆, 𝑇, 𝐹,𝑊 ) be a 𝑝/𝑡 net.

1. 𝑁 is pure iff @(𝑥, 𝑦) ∈ (𝑆 × 𝑇 ) ∪ (𝑇 × 𝑆) : (𝑥, 𝑦) ∈ 𝐹 ∧ (𝑦, 𝑥) ∈ 𝐹 .

2. A place vector (|𝑆|-vector) is a column vector 𝑣 : 𝑆 → Z indexed by 𝑆.

3. A transition vector (|𝑇 |-vector) is a column vector 𝑤 : 𝑇 → Z indexed by 𝑇 .

4. The incidence matrix of 𝑁 is a matrix [𝑁 ] : 𝑆 × 𝑇 → Z indexed by 𝑆 and 𝑇 , such that:

[𝑁 ](𝑝, 𝑡) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝑊 ((𝑝, 𝑡)) if 𝑝 ∈ ∙𝑡∖𝑡∙

𝑊 ((𝑡, 𝑝)) if 𝑝 ∈ 𝑡∙∖∙𝑡

−𝑊 ((𝑝, 𝑡)) +𝑊 ((𝑡, 𝑝)) if 𝑝 ∈ ∙𝑡 ∩ 𝑡∙

0 otherwise

Remark 1. In order to get a one-to-one correspondence between 𝑝/𝑡-nets and incidence

matrices, we assume that all 𝑝/𝑡-nets are pure.

Definition 7. (Transition invariant) Let 𝑖 be a transition vector of 𝑁 .

1. 𝑖 is a transition invariant (t-invariant) iff 𝑖 ̸= 0 and [𝑁 ] · 𝑖 = 0
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2. ||𝑖|| = {𝑡 ∈ 𝑇 |𝑖(𝑡) ̸= 0} are the supports of 𝑖.

3. A t-invariant 𝑖 is minimal iff:

∙ 𝑖 is non negative (∀𝑡 ∈ 𝑇 : 𝑖(𝑡) ≥ 0)

∙ @ t-invariant 𝑖′ : ||𝑖′|| $ ||𝑖||.

∙ the greatest common divisor of all entries of 𝑖 is 1

4. The net representation 𝑁𝑖 = (𝑆𝑖, 𝑇𝑖, 𝐹𝑖,𝑊𝑖) of a t-invariant 𝑖 is defined by:

∙ 𝑇𝑖 := ||𝑖||

∙ 𝑆𝑖 :=
∙𝑇𝑖 ∪ 𝑇 ∙

𝑖

∙ 𝐹𝑖 := 𝐹 ∩ ((𝑆𝑖 × 𝑇𝑖) ∪ (𝑇𝑖 × 𝑆𝑖))

∙ 𝑊𝑖 is the restriction of 𝑊 to 𝐹𝑖.

The first work, to our knowledge, that used transition invariant (T-invariant) analysis

for diagnostic purposes has been introduced by Murata & Yim [73]. However, it was con-

ceived for single fault diagnosis. A more general and relevant work on the subject matter

has been done by Portinale [91] where he attempted to partially transform a diagnostic

problem solved by symbolic techniques into a problem solved by linear algebraic ones

(i.e., t-invariant analysis). The faulty behavior was used to be modeled by means of defi-

nite clauses (e.g., Horn clauses — to be seen next) to form what is called a definite logic

program, which is translatable to a Petri net model.

Propositional logic and probabilistic Horn abduction

Basic definitions to construct the reasoning background of the paper. It is actually built

upon the work of [58, 88, 89, 93]. We start off with logical definitions of PHA then its

canonical net representation followed by defining the PPN.
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Definition 8. Consider propositional logic set of atoms a, b, c, . . . and operators ¬,∧,∨

and the brackets ), (. Let 𝜏 = ¬𝑎1 ∨ · · · ∨ ¬𝑎𝑛 ∨ 𝑏1 ∨ · · · ∨ 𝑏𝑚 be a clause (disjunction

of literals | a literal is an atom or its negation); in set notation: 𝜏 = ¬𝐴 ∨ 𝐵 for ¬𝐴 =

{¬𝑎1 ∨ · · · ∨ ¬𝑎𝑛} and 𝐵 = {𝑏1 ∨ · · · ∨ 𝑏𝑚};

∙ 𝜏 is a fact clause iff ¬𝐴 = ∅,

∙ 𝜏 is a goal clause iff 𝐵 = ∅,

∙ 𝜏 is a rule clause iff ¬𝐴 ̸= ∅ ∧𝐵 ̸= ∅,

∙ 𝜏 is a Horn clause iff |𝐵| ≤ 1.

Definition 9. Let 𝛼 be a conjunctive normal form (CNF) Horn formula and let 𝑁𝛼 =

(𝑆𝛼, 𝑇𝛼, 𝐹𝛼) be a place/transition-net; 𝑁𝛼 is the canonical p/t-net representation of 𝛼 iff:

𝑆𝛼 = A(𝛼) (set of atoms) and 𝑇𝛼 = C(𝛼) (set of clauses); and ∀𝜏 = ¬𝐴 ∧ 𝐵,𝐹𝛼is deter-

mined by:∙𝜏 = {𝑎1, . . . , 𝑎𝑛}, 𝜏 ∙ = 𝑏.

Definition 10. For 𝛼 is a Horn formula, let be the following: 𝐻 ⊆ F(𝛼) a set of assumable

hypothesis and 𝐸 ⊆ 𝐻 be a set of explanations; 𝑅 ⊆ R(𝛼) ∪ F(𝛼) , 𝛾 ⊆ G(𝛼), and let

𝜀 = ∧𝑐|𝑐 ∈ 𝐸, 𝜚 = ∧𝑐|𝑐 ∈ 𝑅, let 𝑃𝛼 : C(𝛼) → [0, 1] be the probability function of 𝛼 such

that 𝑃𝛼(𝜀∧ 𝜚) is the probability of 𝜀. let I be a t-invariant of 𝑁𝛼 of 𝛼, then the probabilities

of 𝜀 and of ¬𝛾 equals
∏︀

𝑡∈‖𝐼‖∖{𝛾} 𝑃𝛼(𝑡).

Remark 2. The law to calculate the probabilities of explanations provided in Def. 10 is

applicable under the assumption that the net is loop-free2.

Probability propagation nets

Definition 11. (Probability propagation net) Let 𝛼 be a Horn formula; 𝑃𝑁𝛼 = (𝑆𝛼, 𝑇𝛼, 𝐹𝛼, 𝑃𝛼, 𝐿𝛼)

is a probability propagation net (PPN) for 𝛼 iff

2In case of a loopy net, some nodes have a double influence on others, which gives eventually the wrong
probability value. To overcome this problem, it possible to use pearl’s conditioning approach [84] to cope
with loops.
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Figure 3-2: Probability propagation net.

∙ 𝑁𝛼 = (𝑆𝛼, 𝑇𝛼, 𝐹𝛼) is the canonical net representation of 𝛼,

∙ 𝑃𝛼 is a probability function for 𝛼,

∙ 𝐿𝛼 is an arc label function for 𝛼 where:

if 𝑓 = (𝜏, 𝑏) ∈ 𝐹𝛼 ∩ (𝑇𝛼 × 𝑆𝛼) and 𝜏 ∈ F(𝛼) then 𝐿𝛼(𝑓) :=< 𝑃𝛼(𝜏) >,

if 𝑓 = (𝑎, 𝜏) ∈ 𝐹𝛼 ∩ (𝑆𝛼 × 𝑇𝛼) and 𝜏 ∈ R(𝛼) ∪ G(𝛼) and 𝜆 ranges over [0, 1] then

𝐿𝛼(𝑓) :=< 𝜆 >,

if 𝑓 = (𝜏, 𝑏) ∈ 𝐹𝛼 ∪ (𝑇𝛼 × 𝑆𝛼) and 𝜏 ∈ R(𝛼) then 𝐿𝛼(𝑓) :=< 𝑃𝛼(𝜏) > ·
∏︀

𝑎∈∙𝜏 𝐿𝛼(𝑎, 𝜏).

Fig. 3-2 shows a simple PPN composed of three places and and four transitions. It

represents the Horn formula 𝛼 = 𝐴∧𝐵∧(¬𝐴∨¬𝐵∨𝐶)∧¬𝐶, and it is also representative

of the Bayesian network example shown in Fig. 3-3. The probability function 𝑃𝛼 is given

as: 𝑃𝛼(𝑡1) = 0.9, 𝑃𝛼(𝑡2) = 0.4, 𝑃𝛼(𝑡3) = 0.7, 𝑃𝛼(𝑡4) = 1. The only t-invariant here is

𝐼 =
(︁ 𝑡1 𝑡2 𝑡3 𝑡4

1 1 1 1
)︁

, and the probability of 𝜀 and ¬𝛾 is
∏︀

𝑡∈‖𝐼‖∖{𝛾} 𝑃𝛼(𝑡) = 0.252.
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3.5 Possibility Theory and Petri Nets

3.5.1 Possibility Theory

Introductory Example

Let’s take the following well known example [77]. In a statement like “Hans ate 𝑋

eggs for breakfast”, where 𝑋 takes values in 𝑈 = {1, 2, 3, . . . }, a possibility distribu-

tion {𝜋𝑋(𝑢)}∞𝑢=1 is associated with 𝑋 , such that 𝜋𝑋(𝑢) is interpreted as the degree of ease

with which Hans can eat 𝑢 eggs for breakfast. Another way to interpret 𝑋 is by using a

probability distribution {𝑃𝑋(𝑢)}∞𝑢=1, with 𝑃𝑋(𝑢) as the probability of Hans eating 𝑢 eggs

for breakfast. The assessment of the distributions is shown in table 3.1. This example was

meant to set a general idea about possibility.

𝑢 1 2 3 4 5 6 7 8 9 10
𝜋𝑋(𝑢) 1 1 1 1 0.8 0.6 0.4 0.2 0.1 0
𝑃𝑋(𝑢) 0.1 0.8 0.1 0 0 0 0 0 0 0

Table 3.1: Possibility and probability distributions associated with 𝑋 .

History

There is actually some history [26,35] to the theory of possibility before its foundations got

established by L. A. Zadeh in 1978, or at least to the concepts used in it. The economist

Shackle introduced the concept of degree of potential surprise to describe the impossibility

of an event to happen. Philosopher D. Lewis introduced the notion of comparative possi-

bility in a graded way to relate between the possible worlds. Formally speaking, for events

𝐴,𝐵,𝐶:

𝐴 >𝜋 𝐵 =⇒ 𝐶 ∪ 𝐴 >𝜋 𝐶 ∪𝐵, (3.1)

where >𝜋 is a comparative possibility relation. In the context of legal reasoning, philoso-

pher L. J. Cohen introduced a degree of provability, which he referred to as Baconian

probability to highlight the idea that it is difficult to prove someone’s guilt based only on

statistical arguments. Such concept coincides with necessity measures in the theory of
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possibility. Henceforth, after his theory of fuzzy sets to capture the uncertainty related to

linguistics, L. A. Zadeh came to generalize it to introduce the basics of the theory of pos-

sibility, which was used extensively in a variety of fields, but of course not as much as the

classical probability theory.

Possibility versus probability

After some reading in this regard, the relation between possibility and probability is not quit

definite. For instance, some perceive possibility as a special type of probability [45, 76],

while others as relate it logical frameworks (i.e. modal logic) [54]. Thus, unlike probabil-

ity that has a quantitative definition (through the frequency of occurrence), Possibility is

usually tied to a logical definition [94] (i.e. modal logic3) with an indeterminate degree of

possibility. Then it comes Zadeh’s perception on the theory where he tied it to his former

theory of fuzzy sets as mentioned earlier. The relationship between uncertainty formalisms

has been fairly discussed in the literature [31, 33, 54], but it still needs a lot of emphasis.

Formal background (theoretical setting)

Given a set of possible worlds4, a proposition 𝑟 is true in some of them and false in the

rest. To model the uncertainty associated with the actual world, we define a possibility

distribution over all possible worlds. Such description is used to determine the degree

of possibility of the actual world being in a possible world. Formally, Dubois et al. [30]

defined the possibility and necessity measures as:

Π(𝑟) = 𝑆𝑢𝑝{𝜋(𝜔)|𝜔 |= 𝑟}, (3.2)

𝑁(𝑟) = 𝐼𝑛𝑓{1− 𝜋(𝜔)|𝜔 |= ¬𝑟}, (3.3)

where:

3The theory of possibility has strong ties to modal logic, for which reason it is recommended to have a
look on this type of formal logic [94].

4Could be referred to as states in certain taxonomies [28]. In a probabilistic logic framework [78], they
could be represented as a probability distribution or belief network.
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∙ Π is the possibility measure;

∙ 𝑟 is a proposition;

∙ 𝜔 is a possible world;

∙ 𝑁 is the necessity measure;

∙ 𝜔 |= 𝑟 means that 𝑟 is true in 𝜔 (𝜔 ∈ Ω);

∙ Ω is the set of possible worlds.

3.5.2 Possibilistic Petri Nets

Formal Definition

The idea was firstly introduced by Cardoso et al. [13] then elaborated to suit diagnostic

purposes in rule-based reasoning by Lee et al. [60]. However, before formally defining a

Possibilistic Petri net (PoPN5), a slight difference in from Def. 3 about the nature of tokens

should demystified. Fig. 3-3 illustrates a simple example of a PoPN.

Definition 12. A petri net is a 5-tuple, 𝑃𝑁 = (𝑃, 𝑇, 𝐹,𝑊,𝑀0) where:

∙ 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑚} is a finite set of places,

∙ 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} is a finite set of transitions,

∙ 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is a set of arcs (flow relations),

∙ 𝑊 : 𝐹 → {1, 2, 3, . . . } is a weight function,

∙ 𝑀0 : 𝑃 → {0, 1, 2, . . . } is the initial marking,

∙ 𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ̸= ∅.

∙ each token is associated with a pair of possibility measures (𝑁𝑖,Π𝑖),

∙ we use the notation: ∙𝑥 = {𝑦 : 𝑦𝐹𝑥} and 𝑥∙ = {𝑦 : 𝑥𝐹𝑦}
5The original abbreviation of these nets was PPN, but to avoid confusing them with probability propaga-

tion nets in this thesis frame, it has been changed to PoPN.
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Figure 3-3: A simple example of a PoPN.

Definition 13. A possibilistic Petri net (PoPN) is 5-tuple, 𝑃𝑃𝑁 = (𝑃, 𝑃𝑇,𝐴,𝑊,𝑀0)

where:

∙ 𝑃 = {𝑝1(𝑟1), 𝑝2(𝑟2), . . . , 𝑝𝑚(𝑟𝑚)} is a finite set of places (𝑝𝑖 represents a classical propo-

sition 𝑟𝑖),

∙ 𝑃𝑇 = {𝑡1(𝑁1,Π1), 𝑡2(𝑁2,Π2), . . . , 𝑡𝑛(𝑁𝑛,Π𝑛)} is a finite set of possibilistic transitions,

with 𝑡𝑖 representing the connectivity between places, 𝑁𝑗 denoting the lower bounds of

necessity measures and Π𝑗 denoting the upper bounds of possibility measures.

∙ 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is a set of arcs,

∙ 𝑊 : 𝐹 → {1, 2, 3, . . . } is a weight function,

∙ 𝑀0 : 𝑃 → {𝑀(𝑃1),𝑀(𝑃2), . . . ,𝑀(𝑃𝑚)} is the initial marking, with 𝑀(𝑃𝑖) standing for

the number of tokens in 𝑃𝑖.

Possibilistic Entailment

Inspired by Nilson’s work on probabilistic logic [78], more specifically probabilistic entail-

ment, the notion of possibilistic entailment has been outlined in [59] as:

𝑟 → 𝑞, (𝑁𝑟→𝑞,Π𝑟→𝑞)

𝑟 , (𝑁𝑟,Π𝑟)

𝑞, (𝑁𝑞,Π𝑞)
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Figure 3-4: Possible worlds for possible information.

The goal of this entailment is to infer a new proposition with its associated necessity and

possibility. The possible worlds, in which the actual world might be (see Fig. 3-4), are de-

termined using a semantic tree. Hence, a consistent path in the semantic tree is considered

to represent a possible world. Moreover, Table 3.2 shows the truth values of these possible

worlds.

𝜔1 𝜔2 𝜔3 𝜔4

𝑟 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒
𝑟 → 𝑞 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒

𝑞 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒

Table 3.2: Truth values of possible worlds.

So, given the set of propositions 𝑆 = {𝑟, 𝑟 → 𝑞, 𝑞}, its possible worlds could be

deduced using a semantic tree (see Fig. 3-5).

Firing Rules

According to the four distinguishable types of transitions: inference; aggregation; duplica-

tion; and aggregation-duplication transitions, the firing rule changes correspondingly. The

components of PPNs represent three types of knowledge needed to make an uncertainty rea-

soning scheme: propositions; uncertain rules; and uncertain facts, represented respectively

by: places; possibilistic transitions; and possibilistic tokens. Hence, given the propositions

𝑟 and 𝑞, the firing rules of each type of transitions is formulated as follows:
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Figure 3-5: A semantic tree.

∙ inference transition (𝑡𝑖): represented as a proposition having multiple antecedents:

(𝑟1 ∧ 𝑟2 ∧ · · · ∧ 𝑟𝑛)→ 𝑞, (𝑁1,Π1), (3.4)

the necessity and possibility measures are calculated using possibilistic entailment

[60] with the general formula

𝑁𝑞 = 𝑚𝑖𝑛
{︁
𝑚𝑎𝑥[𝑁(𝑟1∧𝑟2∧···∧𝑟𝑛)→𝑞, 1− Π𝑟],

𝑚𝑎𝑥[1− Π(𝑟1∧𝑟2∧···∧𝑟𝑛)→𝑞, 𝑁𝑟]
}︁

Π𝑞 = 𝑚𝑎𝑥
{︁
𝑚𝑖𝑛[Π(𝑟1∧𝑟2∧···∧𝑟𝑛)→𝑞,Π𝑟],

𝑚𝑖𝑛[Π(𝑟1∧𝑟2∧···∧𝑟𝑛)→𝑞, 1−𝑁𝑟]
}︁
,

(3.5)

that would become
𝑁𝑞 = 𝑚𝑖𝑛{𝑁(𝑟1∧𝑟2∧···∧𝑟𝑛)→𝑞, 𝑁𝑟}

Π𝑞 = Π(𝑟1∧𝑟2∧···∧𝑟𝑛)→𝑞

(3.6)

if the possibility distribution �̂� is normalized6.

6By a normalized possibility distribution we refer to the fact that Π𝑟 < 1 and Π𝑟→𝑞 < 1 do not exist
simultaneously, if not then it is partially inconsistent [30].
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∙ aggregation transition (𝑡𝑎): represented as a proposition having multiple antecedents:

(𝑟1 → 𝑞, (𝑁1,Π1)), (𝑟2 → 𝑞, (𝑁2,Π2)), . . . ,

(𝑟𝑚 → 𝑞, (𝑁𝑚,Π𝑚)),
(3.7)

to be used for aggregating conclusions in the case where several uncertain rules hav-

ing the same classical proposition, and to link an antecedent having the same classical

proposition. For a proposition of the form:

(𝑞, (𝑁1
𝑞 ,Π

1
𝑞)), . . . , (𝑞, (𝑁

𝑛
𝑞 ,Π

𝑛
𝑞 ),

it should be aggregated as (𝑞, (𝑁𝑛+1
𝑞 ,Π𝑛+1

𝑞 ) with

𝑁𝑛+1
𝑞 = 𝑚𝑎𝑥[𝑁1

𝑞 , . . . , 𝑁
𝑛
𝑞 ] and

Π𝑛+1
𝑞 = 𝑚𝑎𝑥[Π1

𝑞, . . . ,Π
𝑛
𝑞 ],

(3.8)

also for a normalized distribution.

∙ duplication transition (𝑡𝑑): represented as a proposition having one antecedent:

(𝑟 → 𝑞1, (𝑁1,Π1)), (𝑟 → 𝑞2, (𝑁2,Π2)), . . . ,

(𝑟 → 𝑞𝑙, (𝑁𝑙,Π𝑙)),
(3.9)

having one antecedent, it duplicates the token with its same previous values.

∙ aggregation-duplication transition (𝑡𝑎𝑑): represented as a proposition having multi-

ple antecedents:

(𝑟1 → 𝑞, (𝑁1,Π1)), (𝑟2 → 𝑞, (𝑁2,Π2)), . . . ,

(𝑟𝑚 → 𝑞, (𝑁𝑚,Π𝑚)), (𝑞 → 𝑠1, (𝑁𝑚+1,Π𝑚+1)),

(𝑞 → 𝑠2, (𝑁𝑚+2,Π𝑚+2)), . . . ,

(𝑞 → 𝑠𝑙, (𝑁𝑚+𝑙,Π𝑚+𝑙)),

(3.10)

as a combination of the two previous types.
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3.6 Conclusion

This chapter was dedicated to introducing key concepts and formalisms on which the con-

tributions are built. It discusses the concept of uncertainty as the main theme distinguish-

ing this particular work on distributed diagnosis from others. It outlines formally the two

classes of Petri net used to capture deferent formalism regarding uncertainty. Probability

propagation nets capture a form of classical probability used in graphical models, that is

conditional probability, which is mostly known in Bayesian networks. A less known uncer-

tainty formalism is the theory of possibility. It offers a different perception on the uncertain

information with its two measures: possibility and necessity. Possibilistic Petri nets extend

normal Petri nets to capture uncertainty according to this theory. Some basic properties and

characteristics of both classes are demonstrated within this chapter as they will be helpful

for further development.
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Chapter 4

Distributed Probability Propagation

Nets & Diagnosis

The most important questions of life

are indeed, for the most part, really

only problems of probability.

Laplace, Théorie analytique des

probabilités , 1812

4.1 Introduction

Real life systems such as the Internet, industrial manufacturers, and telecommunication

networks tend to be more and more distributed. They are headed towards ubiquity and

omnipresence, in the pursuit of Weiser’s vision [112] (quoted in Chapter 2). This trend

comes with a lot of challenges such as: management, security and reliability of complex

systems. A special interest is taken into complex systems as they seem to be the future

of computer science, more precisely, diagnosing them. The importance of the diagnosis

of distributed systems (as a passage to complex systems) arises from the fact that these

systems are not perfect, they are expected to fall down at some point. Thus, locating the

sources of malfunctions could be critical to the reliability and omnipresence of a system. It

is the first step to deal with a malfunction and keep its state at its best. Even in terms of cost,
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the diagnostic results could be the line between a cheap fix and an expensive replacement

of the whole faulty system.

One of the problems related to the field of diagnosis is the uncertainty of diagnoses.

Whereas the result of a diagnostic process is a set of multiple explanations, and if there

is no basis to distinguish between them, the only assumption that is taken is that all ex-

planations are equally probable [66]. Therefore, providing a quantifiable basis, to make

this distinction, seems an appropriate solution. From here, the importance of probabilis-

tic reasoning comes up to measure and quantify the amount of uncertainty. As concepts,

uncertainty and doubt represent a set of the concepts most experienced in human life, espe-

cially in the decision-making process. The capacity to operate under uncertainty is argued

to be one of the most remarkable human abilities [60]. Dealing with such uncertainty ne-

cessitates associating probabilities to events defining how likely they are to happen. Thus,

probabilistic reasoning could be used as a ranking and a recommendation tool [85, 115].

The system setting for this contribution is divided into subsystems interacting with each

other, pursuing the paradigm of “divide & conquer.” Our work is essentially constructed for

model-based diagnosis of distributed systems. Consequently, modeling takes the biggest

part of it. We want initially to model each of these subsystems by a probability propagation

net (PPN) [58] as a probabilistic model. However, the current form of a PPN, as it is

defined by Lautenbach and Pinl, is oriented to centralized systems and do not suit the

distributed context with its particularities, such as: modularity and encapsulation. Hence,

an extension of PPNs is proposed; distributed probability propagation nets (DPPNs) are

defined as a PPN in addition to common transitions to model the interaction among the

subsystems. Thus we model each subsystem by means of a DPPN, where the interaction

is represented by the firing of common transitions. Since PPNs are based on Petri nets, the

diagnostic technique to be used is based on transition-invariants. The implications of this

extension are shown, along with both logical and graphical representation of the model.

We try to build a formal background to the model first, and then we explain its applications

graphically on an example.

The rest of the chapter is organized as follows: Section 4.2 outlines a description of sys-

tems on which the diagnostic reasoning could be applied. Section 4.3 discusses the formal
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building of distributed probability propagation nets starting from defining the concept of

common transitions, alongside an important theorem to relate them to a diagnostic solution.

Section 4.4 discusses what we refer to as “new evidence effect” and it relation to consis-

tency checking. Furthermore, how to perform a local then global diagnoses is explained in

the same section. Finally, the chapter is concluded in section 4.6.

4.2 System Setting

4.2.1 System Description

There is a debate actually about which is better in modeling; going for high abstraction or

low abstraction. The first tendency does not consider a lot of details about the system to be

modeled and keeps it as general as possible. On the other hand, the second tendency entails

more details of a real system, and thus it is more applicable to a specific type of systems.

Compared to the fault detection and isolation community, the DX community usually goes

for a higher abstraction, and following their path, we adopt a general definition of a dis-

tributed system composed of 𝑛 subsystem as

𝐷𝑆 =
𝑛⋃︁

𝑖=1

𝑆𝑆𝑖, (4.1)

∙ 𝐷𝑆 : Distributed System;

∙ 𝑆𝑆 : SubSystem.

Each of the components of a distributed system 𝐷𝑆 interacts with other components. A

more detailed definition of a subsystem is required since we work directly on models. In

fact, we work under the supposition that the system model is provided at the beginning.

This section actually discusses what to expect as a model.

At a certain level of abstraction, a distributed system could be perceived as shown in

Fig. 4-1, where the whole system is composed of a set of subsystems. Each of which has

its own internal components that may cause a malfunction, while they interact with each

other through mediums, represented here by means of arrows. Fig. 4-6 focuses on the
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Figure 4-1: An abstract architecture of a distributed system.

Figure 4-2: Common component capturing interaction between two subsystems.

interaction medium as a common component between two subsystems. It is represented

by the circle with the dashed line, where the two circles stand for the same component;

their role is to model the interaction between them. In a distributed system, we have the

subsystems and the links between them. In real life systems, the interaction medium repre-

sents the interconnection tools, such as wires and waves. In the case of distributed systems,

considering the concept of modularity can be very helpful to simplify managing the whole

system, especially if it is considerably large. Thus, the system is seen as a set of subsystems

interacting with each other. Each of those subsystems could be modeled by a PPN.

We seek, in this chapter, to establish a logical basis for a distributed model-based di-

agnostic approach based on PPNs. Such a basis allows a safe building of the model and

a high level of abstraction. Aside from the logical definitions, a graphical representation

based on Petri nets is shown. Since probability propagation nets are Petri nets based, every
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Figure 4-3: Hierarchy of the system’s abstraction.

system modeled by Petri nets could be upgraded to a PPN.

It is actually possible to model a distributed system by PPNs as they are, and Petri nets

(transitively PPNs) are known for their capability in this matter. However, a condition to be

made on that is the total knowledge about its structure and behavior, which is not the case

we treat. We consider encapsulation and modularity.

4.2.2 Hierarchical Perception

In order to explain better our perception of the diagnostic system, we suggest the multi-

layer model shown in figure 4-3. It describes the process’ layers as we see them. The

passage from the physical system to its model is a mere abstraction, where we consider

only representing the important parts of the system. The diagnostic model focuses on the

relation between the susceptible parts (nodes) of being down or to fail and their symptoms.

In this case, we associate probabilities to each susceptible node to calculate or to rank their

probability of failure. The diagnosis process determines its results based on the rank of

failure’s possibility of the node.

To defend our choice to model the system with such layers, we state the following facts;

a system’s raison d’etre is not usually diagnosis, however, a diagnostic subsystem is usually

implemented with it. The Diagnostic subsystem is meant to determine the part(s) responsi-
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ble for the failure and to find a solution to the quest of diagnosis (it is called a subsystem

as a part of the physical system and not as a subsystem in the distributed system). Further-

more, for the second layer, it represents an abstraction to the previous layer. For the third

layer, probabilities propagation is used to model the uncertainty in the diagnostic process,

and the fourth layer is where the diagnoser gives its results based on the information gotten

from the previous layers.

4.3 Distributed Probability Propagation Nets

At a lesser level of abstraction, it is possible to model each subsystem by means of a

Petri net, then transitively, a PPN which captures their probabilistic behavior. However,

the current definition of a PPN requires some refinement to suit the distributed context,

basically to represent interaction aspects.In Petri nets, there are two ways of modeling the

interaction among subsystems. Whether using common places or common transitions, and

each one of them has its significance. The common places indicate the existence of an

entity belonging to both subsystems, like a shared memory for example. The common

transitions indicate that there is a synchronization and order among the components and

operations of the subsystems. In a lot of works in the literature, such as [6,41,49], the Petri

net modeling of the interaction is done through common places. In our case, we choose

to model it by the common transitions approach [4] as it is more suited for PPNs because

the canonical p/t-net representation requires starting and ending up with transitions. The

interaction among subsystems is captured through the firing of common transitions.

Formally speaking, we add to every subsystem model some common transitions 𝐶𝑇𝑠

that relate the subsystem to its neighbors. A common transition belonging to more than one

subsystem at a time is seen differently from each subsystem’s perspective. For a subsystem

where the common transition is the last one to be fired in a sequence, it is considered as

an "out common transition" and in the other case where the common transition is the first

to be fired, it is considered as an "in common transition". Of course, the concept of "in"

and "out" common transition is seen from the subsystems’ local perspective, but for the

whole distributed system they are seen as one common transition belonging to more than
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one subsystem. “Distributed Probability Propagation Nets” have been introduced in [7]

and extended in [8] like the following.

Definition 14. (Common transitions) For a subsystem 𝑆𝑖, let 𝛼𝑖 be a Horn formula; 𝐶𝑇𝛼𝑖
∈

C(𝛼𝑖) is the set of common transitions such that: for 𝑐𝑡𝑘 ∈ 𝐶𝑇𝛼𝑖
⇒ 𝑐𝑡𝑘 ∈ 𝐶𝑇𝛼𝑗

|𝛼𝑗 is the

Horn formula of 𝑆𝑗 (a neighboring subsystem of 𝑆𝑖).

For a subsystem 𝑆𝑖

∙ if 𝑐𝑡𝑘 ∈ 𝐶𝑇𝛼𝑖
and 𝑐𝑡∙𝑘 = 𝜑 then 𝑐𝑡𝑘 ∈ 𝐶𝑇 𝑜𝑢𝑡

𝛼𝑖
(the subset of “out common transitions”),

referred to as: 𝑐𝑡𝑜𝑢𝑡𝑘 ,

∙ if 𝑐𝑡𝑘 ∈ 𝐶𝑇𝛼𝑖
and ∙𝑐𝑡𝑘 = 𝜑 then 𝑐𝑡𝑘 ∈ 𝐶𝑇 𝑖𝑛

𝛼𝑖
(the subset of “in common transitions”),

referred to as: 𝑐𝑡𝑖𝑛𝑘 ,

such that 𝑐𝑡𝑜𝑢𝑡𝑘 ∈ 𝑆𝑖 and 𝑐𝑡𝑖𝑛𝑘 ∈ 𝑆𝑗 , with 𝑖 ̸= 𝑗.

The reason to distinguish between the two types of common transitions that a same

common transition 𝑐𝑡𝑘 may hold two different values: one associated with a subsystem 𝑆𝑖

and the other associated with a subsystems 𝑆𝑗 (i.e. 𝑃 (𝑐𝑡𝑖𝑛𝑘 ) ̸= 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑘 )). Additionally, this

distinction provides a clearer perception on the connection elements as they are for entering

(i.e. 𝑐𝑡𝑖𝑛𝑘 ) or exiting (i.e. 𝑐𝑡𝑜𝑢𝑡𝑘 ) the model.

Definition 15. (Distributed probability propagation nets) Let 𝛼𝑖 be a Horn formula for

a subsystem 𝑆𝑖; 𝐷𝑃𝑁𝛼𝑖
= (𝑆𝛼𝑖

, 𝑇𝛼𝑖
, 𝐹𝛼𝑖

, 𝑃𝛼𝑖
, 𝐿𝛼𝑖

, 𝐶𝑇𝛼𝑖
) is the distributed probability

propagation net (DPPN) for 𝛼𝑖 where:

𝑃𝑁𝛼𝑖
= (𝑆𝛼𝑖

, 𝑇𝛼𝑖
, 𝐹𝛼𝑖

, 𝑃𝛼𝑖
, 𝐿𝛼𝑖

) is a probability propagation net (PPN) for 𝛼𝑖, and 𝐶𝑇𝛼𝑖

is the set of common transitions such that 𝐶𝑇𝛼𝑖
∈ C(𝛼𝑖) . A distributed system 𝐷𝑆,

constructed of 𝑛 subsystems, is defined as follows: 𝐷𝑆 =
⋃︀𝑛

𝑖=1 𝐷𝑃𝑁𝛼𝑖.

Moreover, the projection of this extension of the general definition of a distributed

system presented in Eq. 4.1 would relult the following definition.

Definition 16. A distributed system 𝐷𝑆, constructed of 𝑛 subsystems, is defined as follows:

𝐷𝑆 =
⋃︀𝑛

𝑖=1𝐷𝑃𝑁𝛼𝑖, where:

𝐷𝑃𝑁𝛼𝑖 is a distributed probability propagation net for each subsystem 𝑆𝑖.
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Theorem 1. For a common transition 𝑐𝑡𝑘 ∈ 𝐶𝑇𝛼𝑖

∙ if it is a 𝑐𝑡𝑜𝑢𝑡𝑘 then 𝑐𝑡𝑘 is a goal transition,

∙ if it is a 𝑐𝑡𝑖𝑛𝑘 then 𝑐𝑡𝑘 is a fact transition.

Proof. By definition (if 𝑐𝑡+𝑘 = ∅; then 𝑐𝑡𝑘 ∈ 𝐶𝑇 𝑜𝑢𝑡
𝛼𝑖

), in a subsystem: 𝑐𝑡𝑜𝑢𝑡𝑘 is a last transition

on the edge of the subsystem that, in the same subsystem leads nowhere. A transition

leading nowhere is logically defined by a conjunctive normal form where all its literals are

negative, which is the definition of a goal clause with 𝐵 = ∅ representing a goal transition.

In the same way we prove the second statement.

In case PHA representation is not needed, it is possible to not consider 𝛼. Thus, the

definition of the model becomes like:

Definition 17. a 𝐷𝑃𝑁𝑖 = (𝑆𝑖, 𝑇𝑖, 𝐹𝑖, 𝑃𝑖, 𝐿𝑖, 𝐶𝑇𝑖) is composed of:

∙ (𝑆𝑖, 𝑇𝑖, 𝐹𝑖) is a place/transition net;

∙ 𝑃𝑖 is a probability function;

∙ 𝐿𝑖 is an arc label function;

∙ 𝐶𝑇𝑖 ∈ 𝑇𝑖 is the set of common transitions.

The interaction among subsystems is captured through the firing of common transitions.

In fact, the usually used components, in the literature, to capture this interaction are com-

mon places. However, for the case of PPNs, it is more suitable to model it using transitions.

About the common transitions, we distinguish two types of them: “in common transition”

and “out common transition”, where the first ones correspond to initial nodes in terms of a

causal model, while the second ones correspond to end nodes of the same model.

Assumption 1. The graph 𝐺 representing interactions between the local models of subsys-

tems is acyclic.

As discussed in Sect.2.6, there is no such thing as assumption-free reasoning strategies,

whether due to high complexity issues or to relate the diagnostic system to its environment

or on the availability of some priorly necessary data . . . etc, thus some assumptions need
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to be presumed. Here, Assumption 1 is relaxed to avoid an infinite cycle of blames [98].

Given that 𝐴𝑖 the diagnostic agent of 𝑆𝑖 blames the neighboring subsystems 𝑆𝑗 for observed

malfunction, if 𝐴𝑗 (the diagnostic agent of 𝑆𝑗) blames 𝑆𝑖 for its observed malfunction by its

turn, we may obtain a cycle of blames that supports itself. This also implicates not having

a cycle of updating probabilities. Furthermore, in the context of logical frameworks, the

diagnostic problem becomes NP-hard [98].

Example 2. When we say “distributed system” or even “system” in general, the first idea

to come to mind is a computer system or an electrical system; mostly, engineering-related

systems. However, the definition of a system is more general than that, it even applies

to humans. So, as an example, let’s consider the human social system; it is composed

of subsystems (humans) interacting with each other. Each of which has its own states,

e.g.: happy, angry, sick, fat . . . etc. There is an influence among states over each other,

whether on the same subsystem or not. To facilitate understanding, we consider only two

subsystems: a father and his daughter. Fig. 4-4 shows a graphical representation of the

system model; including its behavior and its associated probabilities. It models a defined

scenario of interaction. So, when the father comes back home, there is a probability that

he buys a gift for his daughter. She may like it or not, and based on that the probability

of her using it is set. The daughter’s happiness influences the father’s happiness. Also,

getting good grades and behaving in a good manner make the father proud. Nevertheless,

we considered only positive states such as “buy” and not “buy not” for simplicity reasons.

Table 4.1 illustrates the meaning of each state shown in Fig. 4-4. Moreover, Tables 4.2 and

4.3 show associated probabilities to transitions of the two subsystems, while Tables 4.4 and

4.5 show their corresponding t-invariants.

4.4 Diagnostic Reasoning Scheme

Let’s first note that the difference between probabilities held by the same common transition

could be interpreted in two ways:

1. Consider it an inconsistency, which would lead to discarding some solutions based
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Figure 4-4: Two interacting subsystems.

on it.

2. Consider it as a new evidence and adjust the other model’s nodes probabilities.

The first interpretation could set the basis for an inconsistency check in order to discard

some inconsistent solutions, while the second one offers an interesting feature to update the

model’s probabilities according to the development of the system and the new observations

made on it. Since dealing with new evidence is one of the key features of PPNs, and due to

the influence of McCarthy and Hayes’s [68] thoughts on the epistemological inadequacy of

probability, we went with keeping the feature of adjusting model’s probabilities according

to new evidence and not leaning on probability as a basis to claim an inconsistency.

Furthermore, we need to establish two levels of diagnosis: the first one is the result of

a local diagnosis that each diagnoser computes independently; the second one is the result

of a collaboration between diagnosers. But before that, we need to discuss what we refer

to as the “new evidence effect.” But before that, it is relevant to demystify the t-invariant

diagnostic technique on a centralized example first.
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state description
buy father buys a gift for his daughter
like daughter likes father’s gift
use daughter uses the gift
happy daughter is happy
g_grd daughter gets good grades
g_bhv daughter behaves in a good way
proud father is proud
happy father is happy

Table 4.1: States and their description.

transition 𝑡1 𝑡2 𝑡10 𝑡11 𝑡12 𝑡13
probability 0.8 0.8 0.7 0.8 1.0 1.0

Table 4.2: Probabilities associated to transitions for the first subsystem.

4.4.1 Centralized diagnosis

Since local diagnosis is basically a special case of centralized diagnosis, we suggest the

following example adapted from [91].

Example 3. Fig. 4-5 shows a PPN model for the faulty behavior of a car adapted from [91]

with Table 4.7 for the model t-invariants. We load the transitions of the model with the

probabilities illustrated in Table 4.6.

To illustrate the ranking feature offered by PPNs, let’s take an observation with mul-

tiple possible explanations. For instance, the observation that the acceleration response is

irregular (𝑎𝑐𝑐_𝑟𝑒𝑠𝑝(𝑖𝑟𝑟𝑒𝑔)) corresponds to firing 𝑡𝑎𝑟𝑖, which belongs to three t-invariants:

𝐼9; 𝐼10 and 𝐼11. In terms of the diagnostic problem, it gives us: Ψ+ = {𝑎𝑐𝑐_𝑟𝑒𝑠𝑝(𝑖𝑟𝑟𝑒𝑔)};

and Ψ− = {∅}. This implicates three possible explanations depending on the firing of fact

(initial) transitions:

transition 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7
probability 0.8 0.7 1.0 1.0 1.0 0.6
transition 𝑡8 𝑡9 𝑡10 𝑡11

probability 1.0 0.5 0.7 0.8

Table 4.3: Probabilities associated to transitions for the second subsystem.
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𝑡1 𝑡2 𝑡10 𝑡11 𝑡12 𝑡13
𝐼1 1 1
𝐼2 1 1
𝐼3 1 1

Table 4.4: T-invariants of the first subsystem.

𝐼1 𝐼2 𝐼3 𝐼4 𝐼5
𝑡2 1 1 1 1 1
𝑡3 1
𝑡4 1
𝑡5 1 1
𝑡6 1
𝑡7 1 1
𝑡8 1
𝑡9 1
𝑡10 1
𝑡11 1

Table 4.5: T-invariants of the second subsystem.

∙ the firing started from 𝑡𝑝𝑠𝑤 and 𝑡𝑐𝑡𝑖, that is the worn piston state and the irregular carbur

tuning, thus Δ1 = (𝑡𝑝𝑠𝑤, 𝑡𝑐𝑡𝑖);

∙ the firing started from 𝑡𝑜𝑠𝑠𝑤, 𝑡𝑔𝑐𝑙 and 𝑡𝑐𝑡𝑖, that is the worn oil sump state, the low ground

clearance and the irregular carbur tuning, thus Δ2 = (𝑡𝑜𝑠𝑠𝑤, 𝑡𝑔𝑐𝑙, 𝑡𝑐𝑡𝑖);

∙ the firing started from 𝑡𝑠𝑝𝑚ℎ, that is the high spark plug mileage, thus Δ3 = (𝑡𝑠𝑝𝑚ℎ).

More importantly, the probability of each diagnosis is calculated as shown in Def. 10

like:

𝑃 (Δ1) = 𝑃 (𝑡𝑝𝑠𝑤) · 𝑃 (𝑡𝑐𝑡𝑖) · 𝑃 (𝑡1) · 𝑃 (𝑡6) · 𝑃 (𝑡10) · 𝑃 (𝑡15) · 𝑃 (𝑡16) · 𝑃 (𝑡17), by going back

to Table 4.6, that is:

𝑃 (Δ1) = 0.6 · 0.5 · 0.9 · 1.0 · 1.0 · 0.9 · 1.0 · 0.8 = 0.1944.

In the same manner we obtain: 𝑃 (Δ2) = 0.127 and 𝑃 (Δ3) = 0.336. Now the ranking

feature among diagnoses is more obvious, where Δ3 is the most probable explanation then

Δ1 then Δ2 w.r.t. this example.

Remark 3. Note that the calculated probabilities in Example 1 are not normalized, i.e.
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they do not add up to one. Since the goal here is to compare explanations’ probabilities, a

normalization will not be necessary.

Remark 4. The example in Fig. 4-5 does not show any arc labels (discussed in Def. 11)

because, once again, they are not needed for our purposes.

transition 𝑡𝑝𝑠𝑤 𝑡𝑜𝑠𝑠𝑤 𝑡𝑔𝑐𝑙 𝑡𝑠𝑝𝑚ℎ 𝑡𝑐𝑡𝑖 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9
probability 0.6 0.7 0.7 0.6 0.5 0.9 0.8 0.7 0.8 0.7 1.0 0.9 0.9 1.0
transition 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15 𝑡16 𝑡17

probability 1.0 0.8 0.7 0.9 0.8 0.9 1.0 0.8

Table 4.6: Probabilities associated to transitions of the PPN model.

𝐼1 𝑡𝑝𝑠𝑤, 𝑡1, 𝑡5, 𝑡𝑒𝑠𝑏
𝐼2 𝑡𝑝𝑠𝑤, 𝑡1, 𝑡6, 𝑡9, 𝑡𝑜𝑙𝑜
𝐼3 𝑡𝑜𝑠𝑠𝑤, 𝑡𝑔𝑐𝑙, 𝑡2, 𝑡7, 𝑡9, 𝑡𝑜𝑙𝑜
𝐼4 𝑡𝑝𝑠𝑤, 𝑡1, 𝑡6, 𝑡10, 𝑡11, 𝑡13, 𝑡14, 𝑡𝑠𝑓𝑒𝑦
𝐼5 𝑡𝑜𝑠𝑠𝑤, 𝑡𝑔𝑐𝑙, 𝑡2, 𝑡7, 𝑡10, 𝑡11, 𝑡13, 𝑡14, 𝑡𝑠𝑓𝑒𝑦
𝐼6 𝑡𝑝𝑠𝑤, 𝑡1, 𝑡6, 𝑡10, 𝑡11, 𝑡12, 𝑡𝑡𝑖𝑟
𝐼7 𝑡𝑜𝑠𝑠𝑤, 𝑡𝑔𝑐𝑙, 𝑡2, 𝑡7, 𝑡10, 𝑡11, 𝑡12, 𝑡𝑡𝑖𝑟
𝐼8 𝑡𝑜𝑠𝑠𝑤, 𝑡𝑔𝑐𝑙, 𝑡2, 𝑡8, 𝑡ℎ𝑜𝑠𝑦
𝐼9 𝑡𝑝𝑠𝑤, 𝑡𝑐𝑡𝑖, 𝑡1, 𝑡6, 𝑡10, 𝑡15, 𝑡16, 𝑡17, 𝑡𝑎𝑟𝑖
𝐼10 𝑡𝑜𝑠𝑠𝑤, 𝑡𝑔𝑐𝑙, 𝑡𝑐𝑡𝑖, 𝑡2, 𝑡7, 𝑡10, 𝑡15, 𝑡16, 𝑡17, 𝑡𝑎𝑟𝑖
𝐼11 𝑡𝑠𝑝𝑚ℎ, 𝑡3, 𝑡4, 𝑡𝑎𝑟𝑖

Table 4.7: T-invariants of the of the PPN model.

4.4.2 New evidence & inconsistency

The capacity to deal with new observations on the system and changing the probabilities

associated to the model accordingly is an interesting feature of PPNs. It gives it a certain

dynamicity to cope with a changing system. However, it would take away the capacity to

measure inconsistency1, since if the observed value is different from the expected one; then

the new one is just considered as a new evidence. To better explain this, let’s say that in a

1By measuring inconsistency we are referring to the contradiction between “what we observe” and “what
we should observe”, and based on that contradiction, some diagnoses may be discarded. For more details,
see [97].
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Figure 4-5: A probability propagation net model of a faulty behavior of a car.
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distributed system composed of two subsystems to which a diagnosing agent is associated

to each one, agent 𝐴1 calculates some diagnoses among which Δ𝑛 = (𝑡2, 𝑡12, 𝑐𝑡
𝑖𝑛
3 ) with

𝑃 (𝑐𝑡𝑖𝑛3 ) = 0.5, in such case 𝐴1 requests from its neighboring agent to check this value; if

𝑐𝑡𝑜𝑢𝑡3 ̸= 0.5 that is supposed to be taken as an inconsistency because it does not fit to the

diagnosis obtained locally, but in this case the value of 𝑃 (𝑐𝑡𝑜𝑢𝑡3 ) is just considered as a new

evidence that 𝐴1 was not aware of and it is used to update 𝑃 (𝑐𝑡𝑖𝑛3 ). Furthermore, additional

constraints about the termination of new evidence stabilizing the net should be discussed.

It is possible though to give up on this feature (updating the systems probabilities) for

the sake of having a basis to measure inconsistency, which is the difference between 𝑃 (𝑐𝑡𝑖𝑛𝑘 )

and 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑘 ) of a same common transition 𝑐𝑡𝑘.

4.4.3 Local diagnosis

In distributed systems, it is preferable to construct elementary-oriented solutions, where

each of the system’s components contributes a local solution based on its knowledge. The

emergence of local solutions would provide a global one. Following this philosophy, we

would first show how a local diagnosis is computed (with a total absence of interaction

aspects, externally), then how to use it in the distributed context.

The first step to take in local diagnosis is to compute the t-invariants within the subsys-

tem’s model2. On each calculated t-invariant, there must be at least one fact transition and

one goal transition. Usually, a t-invariant contains: (1) more than one fact transition, (2)

several rule transitions and (3) one goal transition.

Definition 18. (Local diagnosis) Let 𝐷𝑃𝑁𝑖 be the model of a subsystem 𝑆𝑖; a diagnosis

Δ𝑘 for a t-invariant 𝐼𝑘 is given as:

Δ𝑘 = ‖𝐼𝑘‖ ∩ F𝑘(𝑡),

where F𝑘(𝑡) is the set of fact transitions of the t-invariant 𝐼𝑘. Hence, a diagnosis Δ𝑘 is

2A well-known algorithm by Martinez & Silva [67] could be used to compute the t-invariants of a Petri
net model.
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given as:

Δ𝑘 = 𝑓𝑡1 ∧ 𝑓𝑡2 ∧ · · · ∧ 𝑓𝑡𝑛,

with 𝑛 is the number of fact transition.

Starting from the probabilities associated to each transition, the probability of a diag-

nosis is given as discussed in Sect. 3.4.2. Let’s consider the example shown in Fig. 4-4.

For the subsystem “daughter”, we want to calculate the probability of her using a gift: by

looking at Table 4.5, we note that 𝑡4 (corresponding to “use”) belongs only to 𝐼1. A first

deduction to be made is that we have only one diagnosis (one t-invariant). Next, we calcu-

late its probability as: 𝑃 (Δ) = 𝑃 (𝑡3) · 𝑃 (𝑡2) = 0.8 · 0.7 = 0.56 . Informally speaking, this

means that: if the daughter uses the gift, there is a 0.56 probability that she likes it. Notes:

∙ In the example in Fig. 4-4, we totally ignore the “father” subsystem and consider

the “daughter” subsystem alone. Such that: 𝑡2 is a fact transition and not a common

transition.

∙ We have used a very simple example, where the goal transition has only one t-

invariant. In case of more than one t-invariant, we would have more than one di-

agnosis. Consequently, the ranking feature would appear clearly among diagnoses.

4.4.4 Distributed diagnosis

Based on the model definition provided in Sect. 4.3, another aspect would be taken into ac-

count in diagnosis, which is interaction. Diagnosers should be distributed according to the

distribution of the subsystems. Hence, each of which is assigned to a subsystem. Differ-

ently from local diagnosis shown above, common transitions (which represent interaction)

can hold information that is unknown to the diagnoser. This information may change its

perception about the gotten diagnoses. In general, a diagnosis must ensure a global consis-

tency of the system. The following implies implicitly a protocol of collaboration between

diagnosers.

An agent 𝐴𝑖 (diagnoser) computes the t-invariants in its corresponding subsystem 𝑆𝑖. If

a t-invariant doesn’t contain any common transitions, then its related diagnosis cannot be
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rectified. Otherwise, a probability rectification is possible. Before we proceed any further,

here are some remarks to keep in mind about the model:

∙ The calculation of diagnoses is done through t-invariants.

∙ All the probabilities in a t-invariant must be known prior to the calculation of diag-

noses.

∙ Diagnoses cannot be discarded due to the “new evidence effect”, which consists of

the possibility to a transition’s firing probability from 0 (insignificant) to a significant

value.

∙ A neighboring diagnoser calculates 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑖 ) by considering it as a goal transition,

then calculating its probability.

∙ Diagnoses are ranked based on their corresponding probabilities.

Once a common transition is found, 𝐴𝑖 must contact 𝐴𝑗 , the corresponding agent to 𝑆𝑗 ,

such that: 𝑐𝑡𝑙 ∈ 𝑆𝑖 ∩ 𝑆𝑗 . The reason to contact 𝐴𝑗 is to verify the relevance of the common

transition’s probability. Algorithm 1 illustrate a general reasoning scheme by an agent.

Assumption 2. The graph 𝐺 representing interactions between the local models of subsys-

tems is inter-loops3 free.

Assumption 2 is relaxed to overcome the problem of loopy nets that cannot be detected

on a distributed scheme. If a part of the loop belongs to 𝑆𝑖 and another part of it belongs to

𝑆𝑗 , only a diagnoser having knowledge about both subsystems models can detect and re-

solve the loop. Otherwise, which is our case, such an assumption holds. Fig. 4-6 represent

the previous example with a small change in the father’s submodel where an arc is added

from transition 𝑡12 to state ℎ𝑎𝑝𝑝𝑦. Such change incorporates an inter-loop that starts from

the fork on the 𝑙𝑖𝑘𝑒 state in the daughter’s submodel and ends with a join state ℎ𝑎𝑝𝑝𝑦 on the

father’s submodel. On the level probability propagation, it implicates a double influence

from the fork node on the join node. Hence, our solution is not applicable to this example.

Theorem 2 suggests the absence of an infinite cycle of invocations between agents.
3By inter-loop we refer to a loop where its fork node belongs to one subsystem and its join node belongs

to another.
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Figure 4-6: Two interacting subsystems with an inter-loop.

Theorem 2. Let 𝐷𝑆 =
⋃︀𝑛

𝑖=1𝐷𝑃𝑁𝑖 be a distributed system; for each subsystem 𝐷𝑃𝑁𝑖,

the updating process terminates after a finite number of invocations.

Proof. This follows as a consequence of the acyclicity property assumed in Assumption

1.

Given a common transition 𝑐𝑡𝑙, its two perceptions: 𝑐𝑡𝑜𝑢𝑡𝑙 and 𝑐𝑡𝑖𝑛𝑙 may hold different

probabilities. This different values may be caused due to the mismatch in setting the values

on the model the first time. Another reason for difference in the “in” and “out” probabil-

ities is the “new evidence effect”, where an observation is made about a subsystem 𝑆𝑗 to

which 𝑐𝑡𝑜𝑢𝑡𝑙 belongs. This observation changes the probability of a goal transition 𝑔𝑡 to a

certainty, such that 𝑃 (𝑔𝑡) = 1 (𝑔𝑡 stands for a goal transition), which leads to a change in

all the set probabilities on t-invariants related to 𝑔𝑡, including 𝑐𝑡𝑜𝑢𝑡𝑙 . While 𝐴𝑖 is unaware

of the change, 𝑃 (𝑐𝑡𝑖𝑛𝑙 ) remains as it is. Thus, 𝐴𝑗 is asked to provide 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑙 ) in order

to update 𝑃 (𝑐𝑡𝑖𝑛𝑙 ). To accomplish this task (providing 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑙 )), 𝐴𝑗 considers 𝑐𝑡𝑜𝑢𝑡𝑙 as a

goal transition and calculates its probability of firing. In case 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑙 ) ̸= 𝑃 (𝑐𝑡𝑖𝑛𝑙 ), then
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Algorithm 1 Diagnoser (subsystem: 𝑆𝑖)
1: input: subsystem model
2: output: local diagnosis
3: Compute T-invariants
4: for each T-invariant 𝐼𝑘 do
5: if the net is loopy then eliminate the loops
6: end if
7: for each initial transition do
8: if 𝑡𝑙 ∈ 𝐶𝑇 then Invoke Neighbor (𝑆𝑗, 𝑡𝑙) such that 𝑆𝑗 shares the common

transition 𝑡𝑙 with 𝑆𝑖

9: end if
10: if 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑙 ) ̸= 𝑃 (𝑐𝑡𝑖𝑛𝑙 ) then 𝑃 (𝑐𝑡𝑖𝑛𝑙 )← 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑙 )
11: end if
12: end for
13: 𝑃 (Δ𝑘) :=

∏︀
𝑡∈‖𝐼𝑘‖∖{𝛾} 𝑃 (𝑡)

14: end for

𝑃 (𝑐𝑡𝑖𝑛𝑙 )← 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑙 ), which is done by 𝐴𝑖. This update of value will change the probability

of diagnosis 𝑃 (Δ) and it is possible to change its rank as well. In the same manners, if the

t-invariant containing 𝑐𝑡𝑜𝑢𝑡𝑙 contains also another common transition 𝑐𝑡𝑚, the diagnoser has

to address a request to the neighboring diagnoser in order to verify its probability . . . etc.

Algorithm 1 gives an insight on how an agent operates to calculate diagnoses and their

respective probabilities. At some point, it invokes another algorithm called Neighbor from

the neighboring agent that returns the value of 𝑃 (𝑐𝑡𝑜𝑢𝑡𝑙 ).

By going back again to Example 2, let’s calculate the probability of the same diagnosis,

just this time we consider the interaction. So, 𝑡2 is a common transition with: 𝑡𝑜𝑢𝑡2 ∈ 𝑆1

(father) and 𝑡𝑖𝑛2 ∈ 𝑆2 (daughter). Two agents 𝐴1 and 𝐴2 are assigned as diagnosers to 𝑆1

and 𝑆2 respectively. Hence, 𝐴2 calculates the probability of firing 𝑡4, as calculated in the

previous subsection; 𝑃 (𝑡4) = 0.56 . To verify if the gotten result is up to date, 𝐴2 "asks"

𝐴1 to provide 𝑃 (𝑡𝑜𝑢𝑡2 ) . 𝐴1 calculates immediately 𝑃 (𝑡𝑜𝑢𝑡2 ) = 0.8 and replies to 𝐴2. By its

turn, 𝐴2 compares 𝑃 (𝑡𝑜𝑢𝑡2 ) with 𝑃 (𝑡𝑖𝑛2 ), which are alike; 𝑃 (𝑡𝑜𝑢𝑡2 ) = 𝑃 (𝑡𝑖𝑛2 ) = 0.8, so 𝑃 (Δ)

stays as it is. One little change about the semantic of the diagnosis is that this one implies

an outer cause of the gotten diagnosis. To show a case where 𝑃 (Δ) changes, let’s calculate

𝑃 (𝑡12) that the father is proud. Instantly, we calculate 𝑃 (𝑡12) = 0.8 the probability of firing
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𝑡11 which leads directly to 𝑡12. Since 𝑡11 is a common transition, 𝐴1 asks 𝐴2 for 𝑃 (𝑡𝑜𝑢𝑡11 ),

which belongs to 𝐼5; 𝑃 (𝑡𝑜𝑢𝑡11 ) = 0.8 · 0.6 · 0.5 = 0.24 . So, the probability of firing 𝑡𝑖𝑛11 is

updated to 𝑃 (𝑡𝑖𝑛11) = 0.24.

Example 4. On a more engineering-related note, let’s consider the example depicted in Fig.

4-7, which is a modified version of and example provided in [6], with a bit of restructuring

to suit our purposes. The modification consists mainly in using common bordered transition

as an interaction medium instead of places. Now, suppose that we have the observation

𝑡𝑒𝑚𝑝_𝑖𝑛𝑑(𝑟𝑒𝑑), it belongs to two t-invariants: 𝐼24 and 𝐼25 . Hence, Δ1 = (𝑡𝑠𝑝𝑚ℎ) and Δ2 =

(𝑡𝑦). The probability of each diagnosis is calculated in the same manner as in the first

example, thus 𝑃 (Δ1) = 0.2592 and 𝑃 (Δ2) = 0.504.

Since 𝑡𝑦 is a common transition, such that 𝑡𝑖𝑛𝑦 ∈ 𝑆2 and 𝑡𝑜𝑢𝑡𝑦 ∈ 𝑆1, a consistency check

is performed. Meaning that 𝑡𝑖𝑛𝑦 and 𝑡𝑜𝑢𝑡𝑦 may hold different probabilities, which needs to

be verified. To do so, 𝑡𝑜𝑢𝑡𝑦 is considered to be a goal transition, and on the light of that its

probability of firing given that 𝑡𝑜𝑢𝑡𝑦 ∈ 𝐼12 ∪ 𝐼13 is calculated as the following:

𝑃 (𝑡𝑜𝑢𝑡𝑦 ) = [𝑃 (𝑡5) · 𝑃 (𝑡4) · 𝑃 (𝑡2) · 𝑃 (𝑡1) · 𝑃 (𝑡𝑝𝑟𝑠𝑤) · 𝑃 (𝑡𝑝𝑠𝑤)] + [𝑃 (𝑡5) · 𝑃 (𝑡𝑥)].

All these probabilities are known, but since 𝑡𝑥 is a common transition, its probability also

needs to be checked. Hence, the diagnoser of 𝑆2 is invoked again to provide 𝑃 (𝑡𝑜𝑢𝑡𝑥 ). In the

same manner, the probability of firing 𝑡𝑜𝑢𝑡𝑥 is calculated to be 𝑃 (𝑡𝑜𝑢𝑡𝑥 ) = 0.8. Thus,

𝑃 (𝑡𝑜𝑢𝑡𝑦 ) = (0.7 · 0.8 · 0.8 · 0.9 · 0.7 · 0.7) + (0.7 · 0.8) = 0.1975 + 0.56 = 0.7575.

Then 𝑃 (𝑡𝑖𝑛𝑦 ) should be updated to 0.7575, and thus 𝑃 (Δ2) becomes 0.5454 instead of

0.504. That is not enough to change the order of diagnoses, but it offers more accurate

results, and hence Δ2 is still the most probable and Δ1 is the second probable.

transition 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡𝑝𝑟𝑠𝑤 𝑡𝑝𝑠𝑤 𝑡𝑜𝑠𝑠𝑖 𝑡𝑥
probability 0.9 0.8 0.7 0.8 0.7 1.0 0.9 0.9 1.0 0.7 0.7 0.6 0.5

Table 4.8: Probabilities associated to transitions for the first subsystem 𝑆1.
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Figure 4-7: Two interacting subsystems.
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transition 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15 𝑡16 𝑡17 𝑡18 𝑡𝑟𝑐𝑝 𝑡𝑔𝑐𝑙 𝑡𝑠𝑝𝑚ℎ 𝑡𝑦
probability 1.0 0.8 0.7 0.9 0.8 0.9 1.0 0.8 0.9 0.8 0.7 0.4 0.7

Table 4.9: Probabilities associated to transitions for the second subsystem 𝑆2.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡𝑝𝑟𝑠𝑤 𝑡𝑝𝑠𝑤 𝑡𝑜𝑠𝑠𝑖 𝑡𝑥 𝑡𝑒𝑠𝑏 𝑡𝑜𝑙𝑟 𝑡𝑎𝑟𝑑 𝑡𝑦
𝐼11 1 1 1 1 1 1
𝐼12 1 1 1 1 1 1 1
𝐼13 1 1 1
𝐼14 1 1 1 1 1 1 1 1 1 1 1
𝐼15 1 1 1 1 1 1 1
𝐼16 1 1 1 1 1 1 1 1 1
𝐼17 1 1 1 1 1

Table 4.10: T-invariants of the first subsystem 𝑆1.

4.5 Discussion

It is commonly known withing the distributed and complex systems community, that the

passage from centralized approaches to distributed ones comes with the benefit of breaking

complexity but with the cost of a nonuniversal solution. That is, in our case, the possibility

of losing some explanations that do not belong to the subsystem. For instance, if a mal-

function seen in a subsystem 𝑆𝑖 is tracked to a common transition, the explanation is said to

belong to another subsystem 𝑆𝑗 without identifying the exact node responsible for the mal-

function because it is unknown to the diagnoser of 𝑆𝑖. Still, breaking the complexity in the

system model and the diagnostic process is enough reason to pursue the path of distributed

approaches. Furthermore, The formal development of our proposal should be sufficient

for validation, since a computerized implementation should give us the same results of a

𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15 𝑡16 𝑡17 𝑡18 𝑡𝑟𝑐𝑝 𝑡𝑔𝑐𝑙 𝑡𝑠𝑝𝑚ℎ 𝑡𝑦 𝑡ℎ𝑜𝑠𝑦 𝑡𝑡𝑖𝑟 𝑡𝑥
𝐼21 1 1 1
𝐼22 1 1 1 1 1
𝐼23 1 1 1 1
𝐼24 1 1 1 1 1 1
𝐼25 1 1 1 1

Table 4.11: T-invariants of the second subsystem 𝑆2.
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manually developed computed diagnosis. That includes the calculation of t-invariants, the

explanations of a given observation, their probabilities and their ranks.

Admittedly, the assumptions made on the distributed system model are fairly restrictive.

In particular, assuming the freedom of the model from inter-loops (Assumption 2) is a new

one that comes with probabilistic modeling, but it is what it takes to keep the probability

propagation sound. Actually, as in the case of regular loops, a solution could be found to

such a problem,4 but with an unknown cost for the moment, which could involve sacrificing

some aspects like modularity. On the other hand, acyclicity (Assumption 1) and other

assumptions not explicitly stated within the article, e.g., the soundness of diagnosers and

the correctness of the model, are generally known and accepted in model-based diagnosis.

4.6 Conclusion

This chapter was conceived to treat the problem of model-based diagnosis while quanti-

fying uncertainty using probabilistic reasoning. It has distributed and complex systems as

a subject, considered as a set of interacting subsystems. Each of which is modeled by a

distributed probability propagation net, with bordered common transitions to capture in-

teraction. Thus, based on initial probabilities provided with the system model, along with

the ones calculated with the propagation, some transitions (including common transitions)

are able to update their probabilities, and thus change the probabilities of diagnoses. In

general, the model’s probabilities could be changed throughout the lifetime of the system

to be diagnosed whether due to new observations or new statistical measures5. Therefore, a

diagnoser shall expect an inconsistency between a common transition’s 𝑖𝑛 and 𝑜𝑢𝑡 proba-

bilities at every diagnostic process it executes. The used diagnostic method is an algebraic

technique called transition invariants analysis, which has been empirically shown to pro-

vide better results in terms of execution time [6] over the more known reachability analysis

technique in Petri nets frameworks.

4There has been some research about dealing with loopy nets in graph theory that made a considerable
advancement, notably [75, 113, 114].

5Note that how the probabilities change does not make part of the scope of this work. It could be imple-
mented nonetheless through a different process that should make an idea for a further paper.
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Probabilistic reasoning belongs to a larger research field, that is uncertainty modeling.

This last offers and exploits other formalisms such as fuzzy sets and systems, possibility

theory, probabilistic logic and Markov models. As to future work, such formalisms should

offer a different perspective on the uncertainty associated with the diagnostic process in the

distributed context, and they are waiting for exploitation.
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Chapter 5

Distributed Diagnosis with Possibilistic

Petri Nets

The imprecision that is intrinsic in

natural languages is, in the main,

possibilistic rather than probabilistic in

nature.

Zadeh, Fuzzy Sets and Systems, 1978

5.1 Introduction

As a second contribution, we exploit another formalism to model uncertainty; that is possi-

bility theory. Integrated in a PN framework, a class of PNs called “possibilistic Petri nets"

(PoPNs) is used to capture the possibilistic behavior of a system. Since that the work by

Lee et al. [60] did not provide a formalization of the diagnostic problem, the following

formalization is suggested.

Reasoning under uncertain circumstances is considered as one of the human intelli-

gence characteristics. One of the goals of artificial intelligence is to deal with such un-

certainty; this includes understanding, modeling and simulating such aspect. The most

known way to do so is using the classical probability theory, namely some formalisms like

Bayesian networks (BNs) [47, 84] and Markov models [95, 118]. Another way to capture
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uncertainty reasoning that has been exploited a lot in computer science is the fuzzy sets

theory [119]. It is basically used to capture the fuzziness related to linguistic expressions.

There are actually some other theories and formalisms that treat this subject but got less

attention in terms of application, notably possibility theory [34, 77], the Dempster-Shafer

theory of evidence [103], probabilistic logic [78], possibilistic logic [30] . . . etc. The focus

of this chapter will be on possibility theory and its application to distributed diagnosis.

Following the approaches of artificial intelligence to diagnosis, which includes model-

based diagnosis (MDB), expert systems, rule-based diagnosis . . . etc, we are more inter-

ested in model-based diagnosis. Whereas the diagnostic scheme is built upon a predefined

model (usually mathematical) that supposedly captures the needed characteristics of the

real system. By its turn, MDB is divided into two main approaches [39]: consistency-based

diagnosis [27,97] and abductive diagnosis [18]. The most known work to frame a diagnos-

tic problem in MDB is Reiter’s formalization [97], where he describes it as a set of logical

clauses with some observations on the system’s status. A diagnostic process consists of

inferring explanations of an abnormal behavior given some observable manifestations.

As a modeling formalism, Petri nets have been extensively used to model all sorts

of processes, including diagnostic ones. Their capability to capture parallelism, synchro-

nization, concurrency . . . etc, makes them an adequate modeling tool. For instance, their

mathematical representation allows a formal building of its techniques and makes it them

easily translatable to computerized languages. A particular class of Petri nets is used in this

work, called “possibilistic Petri nets" (PoPNs) [13,60], to capture the possibilistic behavior

of a diagnostic process. It uses possibilistic tokens loaded with its two measures (“possi-

bility" and “necessity") with certain firing rules for transitions to compute any change in

those measures. Influenced by Bennoui’s work [6], we particularly investigate its extension

to distributed systems, after showing how it could be used for centralized diagnosis using

Portinale’s framework [91].

The setting we take as subject to the diagnostic process is a distributed system com-

posed of a set of interacting subsystems. Each of which is modeled by means of a PoPN

with common bordered places to capture the interaction between them. Such interaction

is captured through the passage of tokens through these bordered places. Each subsystem
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has its own diagnostic system that could be referred to as a diagnoser following the ter-

minology of [41] or simply an agent as in multi-agent systems due to their relevance to

such settings, following the methodology of [6]. In fact, each agent can communicate with

its neighboring agents to check the consistency of its local explanations with the others’

knowledge. Hence, the inconsistent explanations shall be discarded.

The use of possibility theory instead of the well known probability theory is because,

in real life applications when not enough data is collected to set accurate probabilities1,

possibility offers a better alternative [117]. Moreover, possibility is less sensitive to uncer-

tainty measurement errors [32]. In fact, it has already been used in diagnostic approaches

as an uncertainty model in both single [29] and multiple [117] fault diagnosis in centralized

contexts.

The remainder of this chapter is organized as the following. The application of PoPNs

for centralized diagnosis is illustrated in section 5.2. Section 5.3 demonstrates the exten-

sion of both diagnostic problem definition and PoPNs for distributed diagnosis. Moreover,

a protocol of communication has been defined for diagnostic agents to share their local

knowledge with the neighborhood if requested for solutions’ consistency check, alongside

a discussion about the correctness of the proposal in the same section. Finally, section 5.4

concludes the chapter.

5.2 Centralized Diagnosis (Formalization)

Before passing to distributed diagnosis, it is important to show a diagnostic process in the

formalized framework to be used later.2 When following a causal scheme to diagnosis

using a Petri net model, it is important to make the projection of a causal model on a PoPN

framework, which would be as following:

∙ a place corresponds to state of a causal model, hence three types of places could be

1Actually, this argument has been outlined by McCarthy and Hayes [68] to claim the inadequacy of prob-
ability from an epistemological point of view, here we quote “The information necessary to assign numerical
probabilities is not ordinarily available.” In contrast, Pearl offers another perspective on the subject matter,
hence an interested reader is referred to his book [84].

2This section was considered as a part of the contribution because the only known work to use possibilistic
Petri nets for diagnosis [60] did not formally define the diagnostic problem and just went with it intuitively.
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distinguished accordingly;

∙ a transition represents the cause-effect relationship;

∙ a source place corresponds to an initial state;

∙ a sink place corresponds to either an internal state or a manifestation.

We follow the diagnostic problem definition presented in [20] as 𝐷𝑃 = (𝐵𝑀,𝐶𝑡𝑥, ⟨Ψ+,Ψ−⟩)

where 𝐷𝑃 stands for the diagnostic problem, 𝐵𝑀 represent the behavioral model of the

system to be diagnosed, 𝐶𝑡𝑥 is the set of possible fault hypotheses (the observations have

to be explained by means of elements of 𝐶𝑡𝑥), ⟨Ψ+,Ψ−⟩ represent the made observation

such that Ψ+ is for manifestations to be entailed by a diagnosis and Ψ− is for manifesta-

tions not to be entailed (they are in conflict with the first ones). Such a problem has been

reformulated to the context of Petri nets where, following the causal model scheme, a di-

agnostic solution is given in terms of source places (corresponding to initial nodes) that

should have an initial marking 𝜇𝑖𝑛𝑖 that is consistent with the made observations.

The illustrated definition of a diagnostic problem is considered to be an “abduction

problem with consistency constraints,” in which a diagnosis could be seen logically as a set

of assumptions (Δ ⊆ 𝐶𝑡𝑥) about the presence of a fault such that:

∀𝑚 ∈ Ψ+ : 𝐵𝑀 ∪Δ ⊢ 𝑚;

∀𝑛 ∈ Ψ− : 𝐵𝑀 ∪Δ 0 𝑛.
(5.1)

Assumption 3. The PoPN model we use is safe and irreflexive.

Definition 19. A marking 𝜇 of a PoPN is said to be final if there is no transitions to be fired

at 𝜇.

Theorem 3. In a marked PoPN there is exactly one final marking.

Proof. This theorem can be proven in the same manner as theorem IV-B of [92], where the

author used the properties: safeness, irreflexitivity and the absence of source transitions to

sketch the final marking uniqueness from determinism.
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The assumption that the net model is safe and irreflexive is a common one for diag-

nostic models. Furthermore, the projection of the diagnostic problem definition on a PoPN

framework would result the following definition. A possibilistic Petri net diagnostic prob-

lem is defined as 𝑃𝑜𝑃𝑁𝐷𝑃 = (𝑁,𝑃 𝑖𝑛𝑖, ⟨𝑃+, 𝑃−⟩), such that: an initial marking 𝜇𝑖𝑛𝑖 is a

solution to 𝑃𝑜𝑃𝑁𝐷𝑃 if and only if the final marking 𝜇 of 𝑁 covers 𝑃+ and zero-covers

𝑃− according to the following definition.

Definition 20. Let 𝑄 ⊆ 𝑃 and let 𝑁 = ⟨𝑃, 𝑇, 𝐹 ⟩ be a Petri net, a marking 𝜇 of a 𝑁 is said

to cover 𝑄 if and only if ∀𝑝 ∈ 𝑄 → 𝜇(𝑝) = 1; while it is said to zero-cover 𝑄 if and only

if ∀𝑝 ∈ 𝑄→ 𝜇(𝑝) = 0.

To explain the modeling methodology, we suggest the following example of a faulty

PoPN model.

state Faulty value

Initial states

piston_state worn
ground_clearance low
oil_sump_state worn
spark_plague_mileage high
carbur_tuning severe

Internal states

oil_consumption high
oil_sump holed
oil_lack intense
engine_temp high
incr_cool_temp high
cool_leakage high
spark_ign irreg
mixt irreg
mixt_ign irreg

Manifestations

exhaust_smoke black
hole_in_oil_sump yes
oil_light on
temp_indic red
smoke_from_ing yes
acc_resp irreg

Table 5.1: States and their faulty values.

Example 5. As a centralized example, let’s re-use the one presented in [91]. We illustrate

first how a diagnosis is performed in a general manner, then we demystify how PoPNs
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Figure 5-1: A simple example of a faulty behavior of a car.
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t 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6
p (0.9, 1.0) (0.5, 1.0) (0.4, 1.0) (0.5, 1.0) (0.8, 1.0) (0.6, 1.0)
t 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12
p (0.8, 1.0) (0.9, 1.0) (0.9, 1.0) (0.8, 1.0) (0.9, 1.0) (0.9, 1.0)
t 𝑡13 𝑡14 𝑡15 𝑡16 𝑡17
p (0.9, 1.0) (0.9, 1.0) (0.8, 1.0) (0.7, 1.0) (0.7, 1.0)

Table 5.2: Possibilities associated to transitions of Example 5.

could be used in this context to model the uncertainty related to the diagnostic process.

The three types of places are distinguishable as in Table 5.1 and the possibility measures

associated to each transition are illustrated in Table 5.2. A diagnosis could be performed

using a reachability graph [3] or invariant analysis [55, 69], albeit the invariant analysis

approach has been empirically shown to provide better results in terms of time needed to

accomplish a diagnostic process in both centralized and distributed contexts [6, 91]. It is

to be noted that the shown example is originally represented logically in terms of definite

clauses without recursion3 of the form

𝑝𝑖𝑠𝑡𝑜𝑛_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛)→ 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(ℎ𝑖𝑔ℎ).

In the example, graphically illustrated in Fig.5-1, let’s suppose that we have the observation

ℎ𝑜𝑙𝑒_𝑖𝑛_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠). Such an observation implicates the presence of a token in the

place ℎ𝑜𝑙𝑒_𝑖𝑛_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠) that holds a certain possibility measures, supposedly

𝑁ℎ𝑜𝑙𝑒_𝑖𝑛_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠) = 0.5 and Πℎ𝑜𝑙𝑒_𝑖𝑛_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠) = 1.0. Just intuitively4 it is possible to

track it back to the initial states5 to obtain

𝛿1 =< 𝑔𝑟𝑜𝑢𝑛𝑑_𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝑙𝑜𝑤), 𝑜𝑖𝑙_𝑠𝑢𝑚𝑝_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛) >,

3This sort of representation could be used in logic-based programming languages.
4Even though the construction of a reachability graph or calculating the invariants that hold the

ℎ𝑜𝑙𝑒_𝑖𝑛_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠) state is not that much of a task for a simple subnet like this, however the pur-
pose here is just to demonstrate the use of possibilistic reasoning in diagnosis, so a formal building to it is
not necessary. In this case, we suppose that the only made observation is ℎ𝑜𝑙𝑒_𝑖𝑛_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠), with an
undetermined state of other observations. That means: Ψ+ = {ℎ𝑜𝑙𝑒_𝑖𝑛_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠)} and Ψ− = ∅.

5A little confusion could be due to general use of the word “state” for the net markings in Petri nets
frameworks. however, following Portinale’s framing [91], a state here represent a partial state, i.e. conditions
concerning a part of the model.
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whereas its possibility measures are given as (𝛿1, (0.5, 1.0)). It is possible to confirm the

obtained measures by the application of Eq. (3.6) on 𝛿1 using the possibility measures il-

lustrated in Table 5.2 corresponding to transitions 𝑡2 and 𝑡8 onto the firing sequence leading

to the state ℎ𝑜𝑙𝑒_𝑖𝑛_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠).

5.3 Distributed Diagnosis

5.3.1 Motivation

There are a lot of reasons that motivate the tendency towards distribution rather than keep-

ing up with centralization. The first of them all is the distributed nature of the systems to

be diagnosed themselves. For instance, all modular and networked systems like the Inter-

net or industrial plants make good examples for such a nature. Furthermore, to break the

complexity of a system following the paradigm of “divide & conquer." For some systems

characterized with complexity and considerable dynamicity, it is hard to maintain and accu-

rate view on the system model over time. Another reason is encapsulation; where a global

knowledge on the system model is just not desired to keep the privacy of some of its parts.

5.3.2 System Model

Starting from the system description, the distributed diagnostic problem could be formal-

ized as the conjunction of 𝑛 local diagnostic problem, hence

𝐷𝑃 =
𝑛⋃︁

𝑖=1

𝐷𝑃𝑖,

with each 𝐷𝑃𝑖 corresponds to a subsystem. Nonetheless, a local diagnostic problem couldn’t

be solved exactly as a centralized problem without considering the interaction mediums,

which could be categorized into two subclasses: “In” mediums and “Out” mediums. Fol-

lowing this perception, the definition of a local diagnostic problem becomes as Def.21.

Definition 21. For a subsystem 𝑆𝑖, a local diagnostic problem is defined as

𝐷𝑃𝑖 = (𝐵𝑀𝑖, 𝐶𝑡𝑥𝑖, 𝐼𝑛𝑖, 𝑂𝑢𝑡𝑖, ⟨Ψ+
𝑖 ,Ψ

−
𝑖 ⟩), where:
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∙ 𝐵𝑀𝑖 is the behavioral model of 𝑆𝑖;

∙ 𝐶𝑡𝑥𝑖 is the set of local possible fault causes;

∙ 𝐼𝑛𝑖 and 𝑂𝑢𝑡𝑖 correspond to interaction mediums as inputs and outputs respectively;

∙ ⟨Ψ+
𝑖 ,Ψ

−
𝑖 ⟩ correspond to the local observations that should (respectively shouldn’t) be en-

tailed.

In such a view, a local solution (diagnosis) of a local diagnostic problem 𝐷𝑃𝑖 could be

seen logically as a set of assumptions Δ𝑖 ⊆ 𝐶𝑡𝑥𝑖 about the presence of a local fault such

that:

∀𝑚 ∈ Ψ+
𝑖 : 𝐵𝑀𝑖 ∪ 𝐼𝑛𝑖 ∪Δ𝑖 ⊢ 𝑚;

∀𝑛 ∈ Ψ−
𝑖 : 𝐵𝑀𝑖 ∪ 𝐼𝑛𝑖 ∪Δ𝑖 0 𝑛.

(5.2)

As it could be observed in Def. 21, the diagnostic problem definition changed to hold 𝑖

as the index of subsystems, alongside 𝐼𝑛𝑖 and 𝑂𝑢𝑡𝑖 as the sets of interaction elements. As

it is deducible from their terminology: 𝐼𝑛𝑖 corresponds to the set of input elements to 𝑆𝑖;

while 𝑂𝑢𝑡𝑖 corresponds to outputs from 𝑆𝑖. Following the causal view, the elements of 𝑂𝑢𝑡𝑖

fit into the description of a manifestation from an agent 𝐴𝑖 perception, as the last element

of a causality chain in a subsystem 𝑆𝑖. Hence, it is possible to distinguish accordingly two

subsets of 𝑂𝑢𝑡𝑖: that is 𝑂𝑢𝑡+𝑖 and 𝑂𝑢𝑡−𝑖 . Naturally, 𝑂𝑢𝑡+𝑖 to the deducible values of 𝐵𝑀𝑖

and 𝑂𝑢𝑡−𝑖 to those contradicting the previous ones. Logically, this could be formalized as:

∀𝑎 ∈ 𝑂𝑢𝑡+𝑖 : 𝐵𝑀𝑖 ∪ 𝐼𝑛𝑖 ∪Δ𝑖 ⊢ 𝑎;

∀𝑏 ∈ 𝑂𝑢𝑡−𝑖 : 𝐵𝑀𝑖 ∪ 𝐼𝑛𝑖 ∪Δ𝑖 0 𝑏.
(5.3)

By combining Eq. (5.2) and Eq. (5.3), we would obtain a general logical definition of

a consistent local diagnosis as:

∀𝑚 ∈ Ψ+
𝑖 ∪𝑂𝑢𝑡+𝑖 : 𝐵𝑀𝑖 ∪ 𝐼𝑛𝑖 ∪Δ𝑖 ⊢ 𝑚;

∀𝑛 ∈ Ψ−
𝑖 ∪𝑂𝑢𝑡−𝑖 : 𝐵𝑀𝑖 ∪ 𝐼𝑛𝑖 ∪Δ𝑖 0 𝑛.

(5.4)
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5.3.3 The DP Projection on PoPNs

In terms of a PoPN model, the PoPN diagnostic problem could be induced from the dis-

tributed diagnostic problem as

𝑃𝑜𝑃𝑁𝐷𝑃 =
𝑛⋃︁

𝑖=1

𝑃𝑜𝑃𝑁𝐷𝑃𝑖.

Furthermore, a projection of Def. 21 on a PoPN framework would result the next definition.

Definition 22. For a subsystem 𝑆𝑖 modeled by a PoPN, a local diagnostic problem is de-

fined as 𝑃𝑜𝑃𝑁𝐷𝑃𝑖 = (𝑁𝑖, 𝑃
𝐼𝑛
𝑖 , 𝑃𝑂𝑢𝑡

𝑖 , ⟨𝑃+
𝑖 , 𝑃−

𝑖 ⟩), where:

𝑁𝑖 = (𝑃𝑖, 𝑃𝑇𝑖, 𝐴𝑖) is a PoPN model of 𝑆𝑖;

𝑃 𝐼𝑛
𝑖 and 𝑃𝑂𝑢𝑡

𝑖 are two sets of places denoting elements of 𝐼𝑛𝑖 and 𝑂𝑢𝑡𝑖 respectively;

𝐼𝑛𝑖 and 𝑂𝑢𝑡𝑖 correspond to interaction mediums as inputs and outputs respectively;

⟨𝑃+
𝑖 , 𝑃−

𝑖 ⟩ correspond to places representing local observations that should (respectively

shouldn’t) be entailed.

Some properties of a global net model composed of a conjunction of local models as

𝑁 =
⋃︀𝑛

𝑖=1𝑁𝑖 (s.t. 𝑁 = (𝑃, 𝑃𝑇,𝐴)) can be depicted as follows:

∙ Given that 𝑃 =
⋃︀𝑛

𝑖=1 𝑃𝑖; and ∀𝑖→ ∃𝑗 s.t. 𝑃𝑖 ∩ 𝑃𝑗 , 𝑃𝑖𝑗 ̸= ∅, 𝑃𝑖𝑗 ⊆ 𝑃 𝐼𝑛
𝑖 ∪ 𝑃𝑂𝑢𝑡

𝑖 ;

∙ 𝑃𝑇 =
⋃︀𝑛

𝑖=1 𝑃𝑇𝑖; and ∀𝑖 ̸= 𝑗 → 𝑃𝑇𝑖 ∩ 𝑃𝑇𝑗 = ∅;

∙ 𝑃 𝐼𝑛 = {𝑝|(𝑝∙ ∈ 𝑃𝑇𝑖) ∧ (∙𝑝 /∈ 𝑃𝑇𝑖)}; and 𝑃𝑂𝑢𝑡 = {𝑝|(𝑝∙ /∈ 𝑃𝑇𝑖) ∧ (∙𝑝 ∈ 𝑃𝑇𝑖)}.

Assumption 4. The net model representing the interaction between subsystems is acyclic6.

5.3.4 Cooperation Protocol

It is possible for a diagnostic process to generate multiple diagnoses for a same given

observation, some of which may simply be wrong or inconsistent with the global model

knowledge. Thus, to rectify the obtained diagnoses, establishing a communication protocol

6Such an assumption is relaxed to avoid an infinite loop of blames among agents [98].
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is necessary for acquiring such knowledge to provide a basis for discarding some of them.

The protocol we are proposing is not supervised, meaning that it is agent-oriented without

the need of a global supervision. An important part of it was inspired from [6], which

seems appropriate for this case due to the resemblance of the systems models.

Since diagnoses are given in terms if initial markings, including the marked places

belonging to 𝑃 𝐼𝑛
𝑖 , agent 𝐴𝑖 requests from its neighboring agent 𝐴𝑗 its predicted values of

places in 𝑃 𝐼𝑛
𝑖 . For 𝐴𝑗 , those are values belonging to 𝑃𝑂𝑢𝑡

𝑗 . Fig. 5-2 sketches a general

perception on the communication protocol between two agents. Henceforth, it is illustrated

in the following steps:

1. at some point, the net model will reach its final marking;

2. each agent starts from its local final marking as local observations;

3. they track back the sources of resulting these observations; that is computing initial

markings 𝜇𝑖𝑛𝑖
𝑖 of each net model 𝑖;

4. for an agent 𝐴𝑖 obtaining 𝜇(𝑃 𝐼𝑛
𝑖 ) ̸= ∅ (s.t. 𝜇(𝑃 𝐼𝑛

𝑖 ) ∈ 𝜇𝑖𝑛𝑖
𝑖 ), it sends a message

𝑚𝑠𝑔𝑖→𝑗 to its neighboring agent 𝐴𝑗 (corresponding to the subsystem 𝑆𝑗 that shares

bordered places with it) requesting its predicted marking of output places (𝜇(𝑃𝑂𝑢𝑡
𝑖 )

corresponding to 𝑃 𝐼𝑛
𝑖 ;

5. then a comparison is made between 𝜇(𝑃 𝐼𝑛
𝑖 ) and 𝜇(𝑃𝑂𝑢𝑡

𝑗 );

6. if some of (or all) the local diagnoses made by 𝐴𝑖 are not supported by 𝜇(𝑃𝑂𝑢𝑡
𝑗 ), then

a refinement of diagnoses should be done by discarding inconsistent ones;

7. in case neither of the obtained diagnoses by 𝐴𝑖 is supported by 𝜇(𝑃𝑂𝑢𝑡
𝑗 ), a negative

response is sent to 𝐴𝑗;

8. otherwise, a positive response should be sent to 𝐴𝑗;

9. the protocol keeps going until it reaches a stable point where all the obtained diag-

noses are consistent with each other.
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Figure 5-2: Two agents communicating.

Remark 5. The explained protocol above is from one agent’s point of view, so each agent

is meant to execute this protocol once they find input places marked alongside an initial

marking. Furthermore, the communication between the two agents illustrated in Fig. 5-2

seems synchronized, which is not the case actually (e.g., agents do not necessarily request

the markings of 𝑂𝑢𝑡 places of other subsystems simultaneously).

5.3.5 Diagnoses Computation

Proposition 1. Let Δ = {𝛿1, . . . , 𝛿𝑛} be a set of possible diagnoses; and let 𝜎 be the firing

sequence leading from the explanation 𝛿𝑖 to its corresponding manifestation.
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Figure 5-3: An example of an open PoPN.
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state Acronym Faulty value
piston ring state pist_ring_state worn
piston state pist_state worn
oil consumption oil_cons increased
exhaustive smoke ex_smoke black
lack of oil lack_oil severe
oil sumption state oil_sump_state worn
oil light oil_light red
acceleration response accel_resp delayed
road conditions road_cond poor
ground clearance ground_clear low
spark plug mileage spark_plug_mileage high
spark plugs spark_plugs used_up
hole in oil sumption hole_oil_sump yes
spark ignition spark_ign irregular
temperature indicator temp_ind red

Table 5.3: States and their description.

t 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6
p (0.4, 1.0) (0.9, 1.0) (0.7, 1.0) (0.6, 1.0) (0.7, 1.0) (0.6, 1.0)
t 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12
p (0.7, 1.0) (0.8, 1.0) (0.9, 1.0) (0.8, 1.0) (0.8, 1.0) (0.7, 1.0)
t 𝑡13 𝑡14 𝑡15 𝑡16 𝑡17 𝑡18
p (0.6, 1.0) (0.7, 1.0) (0.8, 1.0) (0.9, 1.0) (0.8, 1.0) (0.7, 1.0)
t 𝑡19 𝑡20 𝑡21 𝑡22
p (0.8, 1.0) (0.9, 1.0) (0.8, 1.0) (0.9, 1.0)

Table 5.4: Possibilities associated to transitions of Example 6.

If ∃𝑡 ∈ 𝜎 ∩ 𝑇 𝑖 (𝑇 𝑖 is the set if inference transitions), such that: 𝑁𝑡 < 𝑁𝛿𝑖 or Π𝑡 > Π𝛿𝑖;

then the diagnosis 𝛿𝑖 is inconsistent.

Proof. The proof follows from the definition of the possibility measures where a necessity

𝑁 is supposed to be the lower bound and a possibility Π is supposed to be the upper

bound, and using the PoPNs firing rules (discussed in the preliminaries section), mainly

Eq. (3.5).

After obtaining the first results of the diagnostic process, it is possible to discard some

of them that are inconsistent with the neighbors’ local knowledge, since they don’t belong
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𝜍11 = {𝑝𝑖𝑠𝑡_𝑟𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(𝑖𝑛𝑐𝑟), 𝑝1, 𝑒𝑥_𝑠𝑚𝑜𝑘𝑒(𝑏𝑙𝑎𝑐𝑘)};
𝜍21 = {𝑝𝑖𝑠𝑡_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(𝑖𝑛𝑐𝑟), 𝑝1, 𝑒𝑥_𝑠𝑚𝑜𝑘𝑒(𝑏𝑙𝑎𝑐𝑘)};
𝜍31 = {𝑝𝑖𝑠𝑡_𝑟𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(𝑖𝑛𝑐𝑟), 𝑝2, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣),

𝑝4, 𝑦};
𝜍41 = {𝑝𝑖𝑠𝑡_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(𝑖𝑛𝑐𝑟), 𝑝2, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣), 𝑝4, 𝑦};
𝜍51 = {𝑝𝑖𝑠𝑡_𝑟𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(𝑖𝑛𝑐𝑟), 𝑝2, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣),

𝑝3, 𝑝6, 𝑎𝑐𝑐𝑒𝑙_𝑟𝑒𝑠𝑝(𝑑𝑒𝑙)};
𝜍61 = {𝑝𝑖𝑠𝑡_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(𝑖𝑛𝑐𝑟), 𝑝2, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣), 𝑝3,

𝑝6, 𝑎𝑐𝑐𝑒𝑙_𝑟𝑒𝑠𝑝(𝑑𝑒𝑙)};
𝜍71 = {𝑝𝑖𝑠𝑡_𝑟𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(𝑖𝑛𝑐𝑟), 𝑝2, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣),

𝑝3, 𝑝7, 𝑜𝑖𝑙_𝑠𝑢𝑚𝑝_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑝5, 𝑜𝑖𝑙_𝑙𝑖𝑔ℎ𝑡(𝑟𝑒𝑑)};
𝜍81 = {𝑝𝑖𝑠𝑡_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑜𝑖𝑙_𝑐𝑜𝑛𝑠(𝑖𝑛𝑐𝑟), 𝑝2, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣), 𝑝3,

𝑜𝑖𝑙_𝑠𝑢𝑚𝑝_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑝5, 𝑝7, 𝑜𝑖𝑙_𝑙𝑖𝑔ℎ𝑡(𝑟𝑒𝑑)};
𝜍91 = {𝑥, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣), 𝑝4, 𝑦};
𝜍101 = {𝑥, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣), 𝑝3, 𝑝6, 𝑎𝑐𝑐𝑒𝑙_𝑟𝑒𝑠𝑝(𝑑𝑒𝑙)};
𝜍111 = {𝑥, 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑜𝑖𝑙(𝑠𝑒𝑣), 𝑝3, 𝑜𝑖𝑙_𝑠𝑢𝑚𝑝_𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑛), 𝑝5, 𝑝7,

𝑜𝑖𝑙_𝑙𝑖𝑔ℎ𝑡(𝑟𝑒𝑑)};
𝜍121 = {𝑧, 𝑎𝑐𝑐𝑒𝑙_𝑟𝑒𝑠𝑝(𝑑𝑒𝑙)}.

Table 5.5: Minimal supports P-invariants of 𝑆1.

to the set of global diagnoses. The following example illustrates this.

Example 6. Let’s consider the distributed system shown in Fig. 5-3 which was adapted

from [6] with a little restructuring to suit the specifications of a PoPN, whereas Table 5.3

and Table 5.4 present the system’s states and the possibility measures of its transitions,

respectively. Moreover, Table 5.5 and Table 5.6 present the computed minimal supports

of P-invariants of subsystems 𝑆1 and 𝑆2, respectively. Suppose that the observed system

reached its final marking with the following:

𝜍12 = {𝑟𝑜𝑎𝑑_𝑐𝑜𝑛𝑑(𝑝𝑜𝑜𝑟), 𝑝8, 𝑥};
𝜍22 = {𝑟𝑜𝑎𝑑_𝑐𝑜𝑛𝑑(𝑝𝑜𝑜𝑟), 𝑝8, 𝑝9, ℎ𝑜𝑙𝑒_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠)};
𝜍32 = {𝑔𝑟𝑜𝑢𝑛𝑑_𝑐𝑙𝑒𝑎𝑟(𝑙𝑜𝑤), 𝑝10, ℎ𝑜𝑙𝑒_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠)};
𝜍42 = {𝑠𝑝𝑎𝑟𝑘_𝑝𝑙𝑢𝑔_𝑚𝑖𝑙𝑒𝑎𝑔𝑒(ℎ𝑖𝑔ℎ), 𝑠𝑝𝑎𝑟𝑘_𝑝𝑙𝑢𝑔𝑠(𝑢𝑠𝑒𝑑_𝑢𝑝), 𝑝11,

𝑠𝑝𝑎𝑟𝑘_𝑖𝑔𝑛(𝑖𝑟𝑟), 𝑡𝑒𝑚𝑝_𝑖𝑛𝑑(𝑟𝑒𝑑)};
𝜍52 = {𝑠𝑝𝑎𝑟𝑘_𝑝𝑙𝑢𝑔_𝑚𝑖𝑙𝑒𝑎𝑔𝑒(ℎ𝑖𝑔ℎ), 𝑠𝑝𝑎𝑟𝑘_𝑝𝑙𝑢𝑔𝑠(𝑢𝑠𝑒𝑑_𝑢𝑝), 𝑝11, 𝑧};
𝜍62 = {𝑦, 𝑝11, 𝑠𝑝𝑎𝑟𝑘_𝑖𝑔𝑛(𝑖𝑟𝑟), 𝑡𝑒𝑚𝑝_𝑖𝑛𝑑(𝑟𝑒𝑑)};
𝜍72 = {𝑦, 𝑝11, 𝑧}.

Table 5.6: Minimal supports P-invariants of 𝑆2.
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∙ for the subsystem 𝑆1:

1. place 𝑒𝑥_𝑠𝑚𝑜𝑘𝑒(𝑏𝑙𝑎𝑐𝑘) is empty;

2. place 𝑜𝑖𝑙_𝑙𝑖𝑔ℎ𝑡(𝑟𝑒𝑑) is empty;

3. the marking of place 𝑎𝑐𝑐𝑒𝑙_𝑟𝑒𝑠𝑝(𝑟𝑒𝑙) is unknown (it is possible for an agent to not

recover all the markings of manifestations);

∙ for the subsystem 𝑆2:

1. place ℎ𝑜𝑙𝑒_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠) is empty;

2. place 𝑡𝑒𝑚𝑝_𝑖𝑛𝑑(𝑟𝑒𝑑) is marked with a token holding the measures (0.8, 1.0);

Performing a diagnostic process based on P-invariants would proceed as:

∙ the only known marked place observed by 𝐴2 is 𝑡𝑒𝑚𝑝_𝑖𝑛𝑑(𝑟𝑒𝑑);

∙ according to Table 5.6, this place belongs to two P-invariants (𝑡𝑒𝑚𝑝_𝑖𝑛𝑑(𝑟𝑒𝑑) ∈ 𝜍42 and

𝑡𝑒𝑚𝑝_𝑖𝑛𝑑(𝑟𝑒𝑑) ∈ 𝜍62 );

∙ tracking back this manifestation to its source places in both invariants would result two

possible diagnoses:

1. 𝛿1 =< 𝑠𝑝𝑎𝑟𝑘_𝑝𝑙𝑢𝑔_𝑚𝑖𝑙𝑒𝑎𝑔𝑒(ℎ𝑖𝑔ℎ) > (s.t. (𝛿1, (0.8, 1.0)));

2. 𝛿2 =< 𝑦 > (s.t. (𝛿2, (0.8, 1.0)));

∙ among the obtained diagnoses, one is not explained locally which would initiate the com-

munication protocol to get the 𝑂𝑢𝑡 marking of 𝑦 (𝜇(𝑦𝑂𝑢𝑡) belonging to 𝑆1;

∙ according to Table 5.5, 𝑦 belongs to 𝜍31 and 𝜍91

∙ since no manifestation was observed, all source places of 𝑆1 are assumed to be empty, in-

cluding those belonging to 𝜍31 , while 𝜍91 lead to another bordered place which would invocate

its neighboring agent 𝐴2 to provide 𝜇(𝑥𝑂𝑢𝑡) belonging to 𝑆2;

∙ place 𝑥 belongs to one invariant 𝜍12 that possesses one source place 𝑟𝑜𝑎𝑑_𝑐𝑜𝑛𝑑(𝑝𝑜𝑜𝑟) which

is assumed to be empty since the other invariant leading to it has an empty manifestation

(ℎ𝑜𝑙𝑒_𝑜𝑖𝑙_𝑠𝑢𝑚𝑝(𝑦𝑒𝑠));

94



∙ 𝐴2 responds to 𝐴1 with a message indicating that 𝜇(𝑥𝑂𝑢𝑡) = ∅, then 𝐴1 responds to 𝐴2

with a message indicating that 𝜇(𝑦𝑂𝑢𝑡) = ∅;

∙ hence, 𝐴2 discards 𝛿2 since it is inconsistent, and the protocol would terminate.

Remark 6. In the illustrated example, even in case 𝑦 could be found marked, its token

would hold at least a necessity of 0.7 from the firing of the inference transition 𝑡7 = ∙𝑦

which is less than the observed 0.8 (that is an inconsistency).

5.3.6 Proof of Correctness

Proposition 2. Let Δ𝑔𝑙𝑜𝑏𝑎𝑙 be the set of global diagnoses of the whole distributed system,

with 𝐷𝑃 = (𝑁, ⟨𝑃+, 𝑃−⟩) as its diagnostic problem; given that Δ𝑖 is the set of local diag-

noses of a subsystem 𝑖, with 𝐷𝑃𝑖 = (𝑁𝑖, 𝑃
𝐼𝑛
𝑖 , 𝑃𝑂𝑢𝑡

𝑖 , ⟨𝑃+
𝑖 , 𝑃−

𝑖 ⟩) as its diagnostic problem,

such that 𝐷𝑃 =
⋃︀𝑛

𝑖=1𝐷𝑃𝑖; then the projection of global diagnoses on the subnet 𝑁𝑖 should

result the local diagnoses (i.e., Π𝑁𝑖
(Δ𝑔𝑙𝑜𝑏𝑎𝑙) = Δ𝑖), when the protocol of communication

terminates, ∀𝑖 ∈ {1 . . . 𝑛}.

Proof. Since both global and local diagnoses are obtained using the same computation

technique from the same given observations on the same model; the projection of a global

diagnosis on a local model should be seen as a local one.

The above proposition indicates that, given one centralized diagnostic system (a global

diagnostic agent) in charge of the distributed system as a whole, its obtained diagnoses

for the subnet 𝑁𝑖 corresponding to a subsystem 𝑆𝑖 should be also obtained by the local

diagnostic agent corresponding to 𝑆𝑖. Consequently, all obtained diagnoses by the global

agent should also be derived by local ones. In the view of P-invariants, if 𝐿 is the set of P-

invariants of the global PoPN model with 𝐿𝑖 a set of local P-invariants of 𝑁𝑖, then 𝐿 could

be derived as the composed union over common bordered places of all sets 𝐿𝑖. Moreover,

the proof of the termination of the communication protocol after a finite number of rounds

could be derived from the model’s properties of safeness (assumed in Assumption 3) and

its acyclicity over composed sub-model (assumed in Assumption 4).
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5.4 Conclusion

The main issue treated in this chapter was also the quantification of the uncertainty asso-

ciated with diagnosis, particularly in the distributed context. To do so, this time, a class

of high-level Petri nets called Possibilistic Petri nets has been used to capture uncertainty

on the ground of possibility theory. In a setting composed of interacting subsystems, the

possibility measures observed on tokens could be used to check the consistency of local

explanations with exterior knowledge, provided through the communication of agents with

each other. Thus, a communication protocol was set to ensure knowledge sharing. Mean-

while, the interaction between subsystems is captured through the passage of possibilistic

tokens through common bordered places. The diagnostic problem definition of a central-

ized system was extended to suit the distributed case and projected on PoPNs to build a

correspondence with the distributed model. Furthermore, a discussion about the correct-

ness of the proposal is provided.
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Chapter 6

Conclusion

The tendency of systems’ design and implementation towards complex systems is in-

evitable. It is a natural consequence a more and more interconnected world and detailed

systems to fulfill certain objectives desired by developers. Keeping up with such tendency

requires confronting the difficulties that come with a system’s complexity, which pushed for

distributed approaches to break it. Diagnostic approaches are no exception to that, whereas

the suggested approaches rely on distributing tasks on a set of agents to break complexity.

The context of this thesis is the diagnosis of distributed systems. following artificial

intelligence approaches, more specifically model-based ones, the work proceeds on a high

level of abstraction. It utilizes models’ properties to perform a diagnostic reasoning. The

considered system is divided into a set of subsystems interacting with each other. Each

of which is modeled substantially by a Petri net. For the first contribution, probability

propagation nets were the used net model; and for the second contribution, possibilistic

Petri nets were used.

In this thesis, a particular focus was given to modeling uncertainty within a distributed

diagnosis framework. Since the chosen basic model for a system here is Petri nets, two

extended classes of them were used to capture uncertainty. The first class, probability prop-

agation nets, underwent a process of distribution itself to introduce the class of distributed

probability propagation nets, a class in which interaction components are explicitly dis-

tinguished and separated into two types according to the diagnostic agent’s perception on

them. The other class, possibilistic Petri nets, needed to be put under a formal specifica-
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tion of a diagnostic problem first in order to set the context. Then, to set the modeling

formalism for distributed diagnosis purposes, the definition of a diagnostic problem had to

adjusted to consider interaction aspects, which also included the PoPN model by projec-

tion. In order check the consistency of obtained local diagnoses, diagnostic agents would

need to communicate with each other, which requires setting a protocol for communication

to ensure such communication. Finally, an evaluation of the correctness of the approach

and the termination of the communication protocol was discussed.

Providing a quantifiable basis of uncertainty related to obtained diagnoses would cer-

tainly help distinguish between them, especially in decision-making processes. Whereas

the more known probability theory (captured by PPNs) provides a ranking feature to clas-

sify diagnoses. On the other hand, the ranking feature would appear less in possibility

theory1 (captured by PoPNs), but the values of its measures could be used in consistency

checking.

For those who are interested in building upon, completing or simply working on a sim-

ilar synthesis to this thesis, pointing out some of the obstacles encountered while realizing

it may be quite helpful. Hence, the following points take place.

∙ The main obstacle in realizing this thesis was dealing with the uncertainty context,

such that it takes away a lot of valid properties in the certain context, e.g., the possi-

bility to claim an inconsistency, which is an essential property to reduce the number

of possible diagnoses.

∙ The high level of abstraction of the field (that is supposed to be oriented towards ap-

plicative approaches) made it difficult to keep track of real life systems requirements.

∙ Having multiple research communities working on the field made the state of the art

too large, and one can easily get lost in the literature of the “wrong” community.

∙ Another difficulty found while producing this thesis was the largeness and diversity

of the uncertainty field. From merely philosophical points of view about it to its

1Comparison between firm numbers is clear and straightforward, unlike comparison between intervals
which is not always firm, that is the case of possibility theory.
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intuitively simple models in terms of abstraction level, passing by the variety of ways

to perceive it and cope with it, having an overall look is not evident.

As to future work and perspectives, a lot is still to be done. For instance, in Petri nets

alone, there is a considerable amount of classes manipulating uncertainty that were not

exploited in distributed diagnosis (e.g., fuzzy Petri nets). Aside from Petri net models,

formalisms dealing with uncertainty keep getting advanced by mathematicians that need to

be put into application such as the Dempster-Shafer theory of evidence and probabilistic

logic. On a different track for perspectives, such work needs to be more oriented towards

real life applications.

Reasoning under uncertainty turned out to be a larger field than expected!
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Résumé

Cette thèse traite le problème de la modélisation de l’incertitude dans le contexte dis-

tribué. Elle est située dans le domaine de diagnostique; plus précisément, le diagnostique

basé modèle des systèmes distribués. On focalise spécialement sur la modélisation de

l’incertitude par le raisonnement probabiliste et possibiliste. Ainsi, pour la première con-

tribution, on se base sur un formalisme de modélisation probabiliste appelé : "probability

propagation nets" (PPNs), qui est destiné aux systèmes centralisés. Par conséquent, on a

proposé une extension à ce formalisme pour l’adapter au contexte distribué. "Distributed

probability propagation nets" (DPPNs), l’extension proposée, est conçue pour considérer

les particularités des systèmes distribués. Ce dernier est considéré comme un ensemble de

sous-systèmes, chaqu’un est modélisé par un DPPN. L’interaction entre les sous-systèmes

est capturée par l’affranchissement des transitions communes qui appartiennent à plus

d’un sous-système. En plus, le processus de diagnostique est fait par l’exploitation des

transitions-invariants; une technique de diagnostique développée pour les réseaux de Petri.

Comme une deuxième contribution, on exploite une autre théorie qui modélise l’incertitude;

la théorie des possibilités. En fait, une autre classe des réseaux de Petri appelée "Possibilis-

tic Petri nets" (PoPNs) qui capture le comportement possibiliste est exploitée. Les mesures

de possibilité sont attachées à chaque diagnostique obtenu comme une base pour mesurer

le degré de son incertitude. Il est possible d’utiliser telles mesures pour détecter les inco-

hérences des diagnostiques.
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