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- Dr. Laid KAHLOUL Université of Biskra Examinateur
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Abstract

Mathematical morphology is one of the most powerful frameworks which provides a
set of filtering and segmenting tools that are very useful in applications to image analysis.
The first field of applications of mathematical morphology was binary image by Matheron
and Serra in 1964 [54]. The theory of mathematical morphology is based on that the
underlying image space is a complete lattice [28] allowing to consider the processing of a
very broad class of data with mathematical morphology operators. On the other hand,
considering digital objects carrying structural information, mathematical morphology has
been developed on graphs, simplicial complexes, and on hypergraphs. This thesis report
is focused on the framework of mathematical morphology on graphs spaces presented in
[14]. This framework considers operators whose input and output are both graphs (sets of
vertices as well as sets of edges). The basic operators go from one kind of sets to another
one. They can be combined in order to obtain operators acting on the subset of edges, on
the subset of vertices, and on the subgraphs of a given graph.

The main objective is to provide efficient computation and implementation of these
morphological operators on graphs. To this end, we study the (unweighted) graph-based
mathematical morphology operators. These operators depend on a size parameter that
specifies the number of iterations of elementary dilations/erosions. Thus, the associated
running times of these iterated operators increase with the size parameter, the algorithm
running in O(λ.n) time, where n is the size of the underlying graph and λ is the size
parameter. In our work, we are focused in distance maps that allow us to recover (by
thresholding) all considered dilations and erosions, hence all the operators proposed in
[14].

In the first part, we propose three new distance maps on graphs called edge-edge, edge-
vertex, and vertex-edge distance maps. Furthermore, based on new notion of path which
considers both the numbers of edges and of vertices along the path, we present our vertex-
vertex distance map. We show that these distance maps lead to original characterization of
all operators presented in [14]. Then, a linear-time sequential algorithms for distance maps
in unweighted graphs, hence the operators of dilations/erosions on graphs is proposed. In
fact, any dilation, erosion, opening and closing on graphs can be obtained with a single
iteration by thresholding these distance maps. Therefore, these operators can be computed
in linear time with respect to the size of the graph, with a single iteration and without any



dependence to this size parameter.
In the second part, we investigate a parallelization strategy on multi-core architec-

ture leading to efficiently compute our proposed distance maps, hence the morphological
operators on graphs. The proposed strategy consists of building iteratively the succes-
sive level-sets of the distance maps, each level set being traversed in parallel. Indeed, to
state the time complexity of our parallel strategy we make assumptions about the graph
and the sets under consideration. Under these assumptions, our parallel algorithms run
in O(n/p+K log2 p) where n, p, and K are the size of the graph, the number of available
processors, and the number of distinct level-sets of the distance map, respectively.

In the third part, a description of the 2D image and 3-dimensional meshes datasets
used for experimental evaluations is provided. Then, we assess the regularity of the pro-
posed assumptions on these experimental datasets. And, we perform an analysis of the
results obtained by applying the implementations of the proposed sequential and parallel
algorithms on the target architectures. This evaluation shows a significant improvement
of the processing time over the previously available implementations.

Keywords:

(unweighted) Graph-based mathematical morphology, distance maps, parallelization
strategy, multicore architecture .



Résumé

La morphologie mathématique est un cadre puissant qui fournit un ensemble d’outils de
filtrage et de segmentation trés utiles dans les applications d’analyse d’image. Initialement
le premier champ d’applications de la morphologie mathématique était sur les images bi-
naires et proposé par Matheron et Serra en 1964 [54]. En outre la théorie de la morphologie
mathématique repose sur le fait que l’espace de l’image est un treillis complet [28] ce qui
permet d’envisager le traitement d’une trés large classe de données avec les opérateurs de la
morphologie mathématique. En prenant en considération les objets numériques portant des
informations structurelles, la morphologie mathématique a été développée sur des graphes,
des complexes simpliciaux, et sur les hypergraphes. Ainsi le travail proposé dans cette thèse
se focalise sur le cadre de la morphologie mathématique basée sur les graphes présenté dans
[14]. Dans ce cadre les ensembles d’entrées et sorties des opérateurs considérés sont des
graphes (ensembles de sommets ainsi que des ensembles d’arêtes) et les opérateurs de base
peuvent aller d’un type d’ensembles vers l’autre. Ils peuvent être conbinés afin d’obtenir
des opérateurs agissant sur le sous ensemble d’arêtes, sur le sous-ensemble des sommets,
et sur les sous-graphes d’un graphe donné.

L’objectif principal dans cette thèse est de fournir un calcul et une implémentation effi-
caces pour ces opérateurs morphologiques en se basant sur les graphes non pondérés. En ef-
fet, ces opérateurs dépendent d’un paramètre de taille qui spécifie le nombre d’itérations de
dilatations et d’érosions élémentaires. Ainsi, le temps d’exécution associé à ces opérateurs
itératifs augmente avec le paramètre de taille et la complexité est de l’ordre de O(λ.n),
où n est la taille du graphe et λ le paramètre de taille. Dans notre travail, nous sommes
particulièrement intéressés par les cartes de distances qui nous ont permis (par seuillage)
de caractériser et d’effectuer toutes les dilatations/érosions considérées et par conséquent
tous les opérateurs proposés dans [14].

En premier lieu nous avons proposés trois nouvelles cartes de distance basées sur les
graphes. Il s’agit des cartes de distance arête-sommet, sommet-arête et arête-arête. En
plus, basé sur une nouvelle notion de chemin qui considère à la fois le nombre d’arêtes et
de sommets sur le chemin, nous présentons une carte de distance sommet-sommet. Nous
montrons que ces nouvelles cartes de distance mènent à des caractérisations originales de
toutes les dilatations et érosions présentées dans [14]. Ensuite, des algorithmes sèquentiels
en temps linèaire ont été proposés afin de calculer ces nouvelles cartes de distance dans



les graphes et par conséquent les opérateurs de dilatations/érosions basés sur les graphes.
Toute dilatation, érosion, ouverture et fermeture sur les graphes peuvent être obtenues avec
une seule itération par le seuillage de ces cartes de distance. Ainsi, ces opérateurs peuvent
être calculés en temps linéaire par rapport à la taille du graphe avec une seule itération et
sans aucune dépendance avec le paramètre de taille.

Afin de calculer efficacement les cartes de distance proposées et les opérateurs mor-
phologiques basés sur les graphes, nous avons développé une stratégie parallèle sur une ar-
chitecture multi-coeurs à mémoire partagée qui consiste à construire d’une manière itérative
les niveaux successifs des cartes de distance avec un parcours en parallèle de chaque niveau.
Afin d’estimer la complexité de notre stratégie parallèle, nous proposons et démontrons des
hypothèses sur le graphe et les ensembles considérés. Selon ces hypothèses, la complexité
de nos algorithmes parallèles est O(n/p + Klog2p) où n, p, et K sont respectivement la
taille du graphe, le nombre de processeurs disponibles et le nombre de niveaux distincts de
la carte de distance, respectivement.

Dans l’évaluation expérimentale, nous avons fourni une description des bases de données
utilisées ; Il s’agit de deux bases d’images 2D et une base des 3D maillages triangu-
laires texturées. Nous avons évalué la régularité des hypothèses proposées sur les bases
de données considérées pour effectuer ensuite une analyse des résultats obtenus par les
implémentations séquentiels et parallèle des algorithmes proposés sur les architectures
cibles. Cette évaluation montre une amélioration significative en termes de temps d’exécution
par rapport aux implémentations disponibles auparavant.

Mots clés:
la morphologie mathématique basée sur les (non pondérée) graphes, cartes de distance,

stratégie parallèle, architecture multicoeur.



 ملخص

 هي التي و والتجزئة التصفية أدوات من مجموعة وفرت التي اتراطالإ أقوى منة واحد هي الرياضية المورفولوجيا

 بواسطة الثنائية الصورة كان الرياضيةالمورفولوجيا   للتطبيقات الأول المجال. الصور تحليل تطبيقات في جدا مفيدة

 كاملة شعرية هو الصورة فضاء أن على يقوم ةالرياضيللمورفولوجيا  النظري الجانب[. 54] 1964 عام في وسرا ماثرون

 الكائنات في النظرالأخذ ب  أخرى، جهة من .ةالرياضيالمورفولوجيا  مع البيانات من واسعة فئة معالجةب حسميالذي  [28]

 وعلى طةيالبس والمجمعات البيانية الرسوم على طبقت لرياضيةا , المورفولوجياالهيكلية المعلومات تحمل التي الرقمية

  [14] البيانية هذه الأطروحة على سياق العوامل المورفولوجية التي نرتكز على أساس الرسوم  تقريرتركز ب .هيبيرغرافس

 الرسوم سواء هي حد على والمخرجات  حيث المدخلات أخرى إلى مجموعات من واحد نوع من التي  تسمح للانتقال

 وعلى القمم، الفرعية من المجموعة على الحواف، من فرعية مجموعة  على تعمل ى تطبيقاتعل الحصول أجل البيانية من

 معين. بياني رسم جزء من

الرسوم على  عتمد التي ت الرئيسي من هذه الرسالة هو توفير التنفيذ الفعال لهذه العوامل المورفولوجية الرئيسي  الهدف       

ندرس العوامل المورفولوجية على أساس )غير الموزونة( الرسوم البيانية. في الواقع،  وفس الغاية، هذهمن أجل   . البيانية

  تعتمد هذه العوامل المورفولوجية على معامل الحجم الذي يحدد عدد مرات التكرار من التوسعات / التقلصات الاولية. إذا

هو حجم الرسم  ن  حيث (λ .ن)الخوارزمية هو  وقت التنفيذ المرتبط بهذه العوامل المكررة متعلق بمعامل الحجم وتعقيد

نحن مهتمون بشكل خاص ببطاقات المسافة التي سمحت لنا )بالعتبة( بوصف واستعادة كل  هي معامل الحجم. λالبياني و 

 [.14] في المقترحة المورفولوجية  العوامل جميع وبالتالي, عمليات التوسعات / والتقلصات

قمة، -حافة حافة، -حافة تسمى :  البيانية الرسوم على جديدة مسافية خرائط ثلاث سوف نقترح  الأول، الجزء في

   [.14] في المقترحة المورفولوجية  العوامل لجميع الأصلي الوصف إلى المسافية تؤدي هذه الخرائط أن وبينا. حافة-قمة

تكرار واحد مع تعقيد بوامل من أن تحسب التي تمكن الع الجديدة خوارزميات بناء على هذه الخرائط المسافية اقترحناثم، 

 دون أي الاعتماد على معامل الحجم.)ن( 

ئيسية لهذه الجديدة. الفكرة الر استراتيجية موازية لحساب فعال  لهذه الخرائط المسافية اقترحناي الجزء الثاني، ف

مستويات تتم معالجتها بشكل متواز. من ال  تكراري لمستويات الخرائط المسافية، حيث كل مجموعة الإستراتيجية هي بناء

خوارزميتنا  الافتراضات المعقولة على الرسم البياني والمجموعات التي يراد توسيعها, بعض الاعتبارمع الأخذ بعين 

 خريطة من مختلفة و ك عدد مستويات , حيث ن هي حجم الرسم البياني (ك  log2 ص + )ن / ص ي:ف تعمل الموازية

 المعالجات المتوفرة ، على التوالي. و ص عدد,  المسافة

و تنفيذ استراتيجيتنا الموازية على بنية متعددة المعالجات و ذاكرة مشتركة  نظريا بعد ذلك، الجزء الثالث  يمثل تقييم

 عليها الحصول تم التي للنتائج وأجرينا تحليل مجسمات ثلاثية الأبعاد، 6و  ثنائية الأبعاد مجموعة صور 45بينهم و على 

 .التي أظهرت ربحا في المعالجةالمستهدفة و البنى على المقترحة والمتوازية المتتابعة خوارزميات وتنفيذ تطبيق خلال من

 :الافتتاحيةالكلمات 

بنية متعددة  موازية، استراتيجية, الخرائط المسافية, العوامل المورفولوجية على أساس )غير الموزونة( الرسوم البيانية

 .المعالجات
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Chapter 1

General introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context

Mathematical morphology was introduced in 1964 by Matheron and Serra [54]. It holds
a fundamental role since it offers powerful set of filtering and segmenting tools that are
very useful in applications to image analysis such as noise removing [26], biometrics [48],
image segmentation [43, 30], medical imaging [53, 2],etc. From a historical point of view,
the first field of applications of mathematical morphology was digital images, i.e., sets of
pixels aligned on a 2D or 3D grid and equipped with binary, grayscale, or vectorial values
[54]. However, the theoretical basis of mathematical morphology relies on the abstract
algebraic structure of a complete lattice [28] allowing us to consider the processing of a very
broad class of data with mathematical morphology operators. On the other hand, there
is a growing interest for considering digital objects not only composed of points but also
composed of elements lying between them and carrying structural information about how
the points are glued together (see e.g., [45], [12, 13, 18, 17], and [7] for recent mathematical
morphology operators on graphs, on cubical/simplicial complexes, and on hypergraphs
respectively). The simplest of these representations are the graphs. The domain of an image
is considered as a graph (which can be planar or not) whose vertex set is made of the pixels
and whose edge set is given by an adjacency relation on these pixels (see Figure 1.1(a)).
Note that this adjacency relation can be either spatially invariant or spatially variant (see
Figure 1.1(b)) leading to operators that are either spatially invariant or spatially variant
(see applications of spatially variant mathematical morphology [35, 57, 56] ). Graphs are
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1.1. Context

also useful to process other kinds of discrete structures defined for instance on 3-dimensional
meshes (see Figure 1.1(c)). In this context, it becomes relevant to consider morphological
transformations acting on the subsets of vertices, the subsets of edges and the subgraphs
of graphs and not only those acting on the set of all subsets of pixels.

(a) Pixel adjacency graph (b) Spatially variant graph

(c) 3-dimensional meshes

Figure 1.1: Different kinds of discrete structures.

The first work about mathematical morphology on graphs dates back to Vincent [58]
who introduced operators relying on a dilation (and its adjunct erosion) that deal with the
vertices X• of a graph G. These operators map to a set of vertices the set of all vertices
composed of neighborhoods of the elements in the initial set. More recently, [14, 42]
introduce a framework of mathematical operators where the input and output are both
graphs. They investigate four basic dilations and erosions that map a set of vertices to a
set of edges and a set of edges to a set of vertices. The four elementary operators can be
combined in order to obtain operators acting on the subsets of edges, on the subsets of
vertices and on the subgraphs of a given graph. These last operators acting on subgraphs
enriches the one acting on subsets of vertices [58] by allowing the distinction between the
connectivity and adjacency information. This distinction is very interesting to enrich and
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introduce efficient filter in Mathematical morphology [14].

1.2 Motivation and Objectives

In morphology interesting morphological filters called opening and closing are obtained
by composition of corresponding (adjunct) dilations and erosions [28, 27, 50]. Such filters
as openings, closings are useful in applications in order to filter out noise and to regularize
the contours of images. Furthermore, composing openings and closings with increasing size
parameter, alternate sequential filters (ASFs) are obtained. They generally outperform the
results of elementary openings and closings in applications to image regularization. The
openings, closings, and then the associated alternate sequential filters resulting from the
compositions of the dilations and erosions of [14] act either on sets of vertices or on sets of
edges of graph G. For this, using this alternate sequential filter based on graph, more noise
are removed and more details are preserved compared to the usual ASF (see in particular
the head of the zebra in Figure 1.2).

Our work in this thesis focuses on the graph-based mathematical morphology operators
presented in [J. Cousty et al, ” Morphological filtering on graphs ”, CVIU 2013]. The basic
operators considered in this framework can be combined (iterated) to obtain efficient filters
acting on the subsets of edges, on the subsets of vertices and on the subgraphs of a given
graph. The behavior of the iterated operators depends on the parity of a size parameter
λ. Indeed, we distinguish two cases even and odd value of λ. When λ is even value, the
input and output sets of operators are the same. In this case, the operators acting on
vertices amount to classical morphology. Whereas, when λ is odd, the input and output
sets of operators are distinct. The operators defined in this case cannot amount to classical
operators. Based on the straightforward definition, the naive computation of the iterated
operators consists of performing λ iterations of basic operators. This parameter λ related
to the number of iterations that constitutes a filtering parameter corresponding to the size
of the features to be preserved or removed. Higher numbers of iterations are considered
when larger structures are removed/preserved. Consequently, the time-complexity is very
significantly influenced by the size parameter λ. Thus, if the complexity of basic operator
is O(n) where n is the size of the underlying graph, then the time-complexity of the
associated algorithm increases with the size parameter. More precisely, for a parameter
value of λ the algorithm runs in O(λ.n) time.

Therefore, the main objective of this work is to provide efficient computation and im-
plementation of these iterated morphological operators on graphs in order to optimize the
time complexity of these operators. To this end, we need first to avoid the dependence with
the parameter λ in the time-complexity. Then, we need to exploit the parallel machines
in order to benefit from the multi-core/processor architecture. This leads to a fast im-
plementation of these morphological filtering on graphs, hence all applications using these

Parallelization of morphological operators based on graphs 3



1.3. Thesis Contributions

(a) Original binary image (b) Noisy binary image

(c) Usual ASF (d) ASF on graph

Figure 1.2: ASF Illustration.

operations also get automatically faster.

1.3 Thesis Contributions

Our work in thesis consists of developing threefold: First, we introduce three original
notions of distance maps on graphs called edge-edge, edge-vertex, and vertex-edge distance
maps to compute the results of the operators of [14]. In addition, we present our vertex-
vertex distance map based on new notion of length of path which considers both the
numbers of vertices and of edges along the path. Given a set of edges, the edge-edge (resp.
edge-vertex) distance map provides for each edge (resp. each vertex) of the graph a geodesic
distance to the closest edge in the input set. Given a set of vertices, the vertex-edge (resp.
vertex-vertex) distance map provides for each edge (resp. each vertex) a geodesic distance
to the closest vertex in the input set. Then, we prove that the introduced distance maps
lead to original characterizations of all dilations and erosions on graphs presented in [14].
In particular, we prove that the edge-vertex (resp. vertex-edge) distance maps allow us to
characterize (by thresholding) the two operators acting on subset of edges (resp. on the
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subset of vertices) defined when λ is odd. The edge-edge (resp. vertex-vertex) distance
maps allow us to characterize (by thresholding) the two operators acting on subsets of
edges (resp. on vertices), when λ is even.

Second, we propose sequential algorithms to compute vertex-vertex, edge-edge, vertex-
edge and edge-vertex distance maps in linear time with respect to the size of the graph G.
These algorithms are variations on breadth-first search [11]. The basic idea is to perform
a breadth-first exploration of the edges (resp. the vertices) of G in order to compute edge-
edge and edge-vertex (resp. vertex-vertex and vertex-edge) distance maps. The distance
map value of each edge (resp. vertex) is computed when the first edge (resp. vertex)
is encountered during exploration. The breadth-first exploration, which ensures correct
distance values, is made possible thanks to the auxiliary queue Q that is managed with a
FIFO (First-In-First-Out) property. .

These algorithms allow us for efficiently computing the results of all operators in linear
time with respect to the size of the graph, with a single iteration and without any depen-
dence to the size parameter of the operators. Then, we establish the correctness and we
analyze the complexity of these algorithms.

Third, we propose a first parallelization strategy leading to a fast computation of the
proposed distance maps, hence the morphological operators of [14]. In order to handle
the regular and non-regular structure of a graph, our new parallelization strategy is based
on dynamic partitioning which depends on the input set and which is iteratively com-
puted during the execution. In order to state the complexity of our parallel algorithms,
we propose and prove some assumptions about the graph and set under consideration.
The assumptions assert that the unbalancing factor of the graph G is lower than a small
constant and the considered set of vertices is p-regular. under these proved assumptions,
our algorithm runs in O(n/p + K log2 p) time, where n, p, and K are the size of the un-
derlying graph, the number of available processors and the number of distinct level sets of
the distance map, respectively.

1.4 Thesis Outline

The remainder of this dissertation is organized as follows. In chapter 2, we present
briefly introduction about classical mathematical morphology. Then, a survey of the state
of the art covered three part is presented. The first part aims at defining the framework
of mathematical morphology based on graphs defined in [14]. We discuss in detail the
problem of the computation of iterated morphological operators on graphs in order to
obtain interesting morphological filters. The second one is about fundamental notions
about distance map on graphs and the problem of finding the length of the shortest paths
are presented. In the last part, we present a short overview about parallel computing
followed by presentation of related work about parallel distance maps.
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Chapter 3 introduces new notion of distance maps that lead to characterizations of all
dilations and erosions presented in [14]. Then, characterization theorems lead to obtain by
thresholding the proposed distance maps all dilations and erosions on graphs are proved.
After, Linear-time algorithms for distance maps in unweighted graphs derive from breadth
first search are presented in order to efficiently compute these proposed distance maps,
hence all dilations and erosions of [14].

Chapter 4 is devoted to the description of the proposed parallelization strategy that
lead to fast compute of the proposed distance maps, hence the morphological operators
of [14]. We also present necessary auxiliary functions of the proposed parallel strategy in
this chapter. The complexity of the parallel algorithms are analyzed under some proved
assumptions about the graph and the set under consideration.

In chapter 5 , we describe the target platform used for multithreaded implementation of
our proposed parallel strategy and the datasets used for experimental evaluations. Then,
a set of experiments is reported on the used datasets that containing 2D images commonly
used in the literature as well as 3D textured meshes. The assessment confirms in practice
the regularity assumptions on the considered datasets. Furthermore, in term of execution
times, the assessment shows, in particular, that the proposed parallel implementation runs
up to 55 times faster achieved for 8 cores machine than the implementations of the operators
of [14] that were available before the present work.

Finally, chapter 6 concludes the manuscript. Future works and directions are pointed
as well.
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Chapter 2

State of the Art
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2.1 Introduction

Mathematical morphology, which covers both a theory and a practice, appeared in
the middle of the 1960s by Matheron and Serra for describing structures seen under the
microscope (porous media, crystals, alloys, etc.), in order to link them to their physical
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properties [46]. It is based on set theory, for this the fundamental objects are considered as
sets. Matheron and Serra [40, 54] work to develop this theory of Mathematical Morphology
for binary images (sets of points with the use of set theoretical operations) which was
extended in 1970s to numerical functions (for a full study see [54]). During the 1980s,
when morphological operations were acting on increasingly varied objects, the need for
unification led to the concept of complete lattice as a common framework [46]. This
fundamental structure of a complete lattice [28] allows to consider the processing of a very
broad class of data with mathematical morphology operators such as on graphs. This last
represents the background in which our work in this thesis has been developed.

After presenting briefly introduction about classical mathematical morphology, in this
chapter, we provide a survey of the state of the art divided into threefold. At first, the
framework of mathematical morphology based on graphs defined in [14] are reviewed in
Section 2.5.2. Efficient filters for processing images or more generally graphs can be ob-
tained by composition and iteration their elementary operators. The problem statement of
our work which concerning the computation of iterated morphological operators on graphs
is discussed in Section 2.5.3. There exist efficient algorithms based on distance maps in [58]
to compute some of these iterated operators. For this end, we present secondly fundamen-
tal notions about distance map on graphs in Section 2.6. The computation of distance map
is reduced to the computation of shortest paths. So, the problem of Finding the length of
the shortest paths is studied in Section 2.6.1. Finally, to get fast computation, we present a
short overview about parallel computing in Section 2.7, followed by presentation of related
work about parallel distance maps in Section 2.8.

2.2 Digital Images

A discrete (digital) image is produced by a process of transformation of continuous
image called digitisatdion (i.e. discretization of spatial coordinates). Discrete images I is
consider as a function f : X → Y where X is the supported space (rectangular domain of
image), X ⊂ Z2 or X ⊂ Z3 and Y is a countable set of defined values of f . Each element
x ∈ X is called an image point. If X ⊂ Z2 the image point is called a pixel, and if X ⊂ Z3

is a voxel. The value y of an image point x is defined as y = f(x). Depending to the set of
image values Y we can specify the type of image. If Y contains exactly two elements (zero
or one), the function f is considered as a binary image. The gray-scale image consider Y
as an ordered set of gray levels, or more generally Y ⊂ Z [46].

2.3 3-Dimensional Triangular Meshs

The 3D triangular meshes have become the most common representation for the surface
of a 3D object in computer vision (see examples of a triangular mesh model in Figure 2.1).
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Figure 2.1: Examples of a triangular mesh models.

In practice, a 3D Mesh can be defined as a (list) set of vertices V = (v1, . . . , vnV ) (points
in 3D space), and set of faces F = (f1, . . . , fnF ) that define the shape of an object in 3D
computer graphics. The face list consists the list of triangles, each one defined as an ordered
list of three vertices identifying the corners. A list of edges E = (e1, . . . , enE) (sides or line
segments), can be obtained implicitly from the first two sets. A mesh structure does not
contain any isolated vertices or edges. So, a triangular mesh is composed of triangles, sides
(line segments) and corners (points) glued together according to certain rules (e.g. two
triangles can have a common side or a common corner) [45].

It can be associated to a mesh a texture by giving a color to each vertex, or by mapping
each face to an 2-D image.

2.4 Mathematical Morphology

The objective of the Mathematical Morphology operators is extracting some relevant
spatial information from an image (for an extensive study see [54]). Where the image is
considered as a set, all morphological operators trait this image (set) with another set of a
known shape called the Structuring Element. This Structuring Element used to probe the
image under study for properties of interest. It allows us to define arbitrary neighborhood
structures of points. This element is simply a small binary image (i.e. matrix of pixels
with a value of one or zero) and has an origin which is usually one of its pixels. The
structuring element size is specified by the matrix dimensions, and its shape is specified
by the position of ones and zeros. The shape of this element influences significantly on the
result of morphological operators. Thus, the choice of the shape and size of this element is
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made with respect to some a priori knowledge of the image geometry. Figure 2.2 illustrates
some examples of structuring elements.

There exist two types of structuring element, the first one is the flat Structuring Element
which is used for the case of 2D image. The second one is non-flat Structuring Element
which is used for the case of 3D object. [49]

Figure 2.2: Example of simple structuring elements. Black pixels are part of the struc-
turing element, white ones are not. The pixel with the circle marks the origin.

In order to present the classical mathematical morphology operators, we need first to
define the complete lattice notion which is the fundamental structure of this theory.

2.4.1 Complete Lattices

A relation of order is a binary relation ≤ on E that have the following properties, for
all x, y, z ∈ E:

1. x ≤ x, (≤ is reflexivity)

2. if x ≤ y and y ≤ x⇒ x = y, (≤ is antisymmetry)

3. if x ≤ y and y ≤ z ⇒ x ≤ z. (≤ is transitivity)

A lattice (E,≤) is a set E equipped with a relation of order ≤ [6]. Such as, for two
elements x and y, one can define a larger element x∨

y and a smaller element x∧
y. A

lattice is complete if every subset P of E has both a least upper bound (the supremum) and
a greatest lower bound (the infimum). The supremum is denoted by ∨

P , and the infimum
by ∧

P . These two bounds of P (i.e. the supremum and the infimum) are defined dually
and play symmetrical roles in a trellis.

An illustration of a lattice known as Hasse diagram, is presented in Figure 2.3. In this
example, the set P(S) = {{x, y, z}, {x, y}, {x, z}, {y, z}, {x}, {y}, {z}} is considered as the
power set of the set S = {x, y, z}. This set is ordered by the inclusion relation in order to
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obtain a lattice bounded by S itself and the null set. The supremum of two elements of
this lattice is given by the union operator and the infimum by the intersection operator.

Figure 2.3: An example of a lattice.

2.4.2 Fundamental Operators of Mathematical Morphology

Let us now describe the fundamental operations of mathematical morphology. First, we
start by the case of binary mathematical morphology which is based on set theory. Then,
we move to the case of gray scale morphology (numerical functions).

We begin our discussion with two operators, dilation and erosion, which are fundamental
operators in the mathematical morphology, from which many others operators are derived,
such as closing (dilation followed by erosion), opening (erosion followed by dilation) etc.

2.4.2.1 Dilation and erosion

Dilation and erosion are basic morphological morphology operations. They are defined
in terms of usual set theoretic operations of union and intersection (the Minkowski addition
⊕ and subtraction 	 [8]), and are depended on the translation operation. We denote the
translation of a set X over a vector y ∈ E by Xy, i.e. Xy = {x+ y | x ∈ X}.

In practice of the mathematical morphology, we study the images (binary and gray-
scale image) by a structuring element B. Let X be a binary image (i.e. subset of E) and
B a structuring element. The dilation of X by B is defined by:

δB(X) = X ⊕B = ∪b∈BXb (2.1)

= ∪x∈XBx (2.2)

= {x+ b | x ∈ X and b ∈ B}. (2.3)

Parallelization of morphological operators based on graphs 11



2.4. Mathematical Morphology

The erosion of X by B is defined by:

εB(X) = X 	B = ∩b∈BX−b (2.4)

= {p ∈ E | Bp ⊆ XB}. (2.5)

In general, dilation has the effect of expanding objects in an image, and hence, the small
hole can be eliminated. The structuring element control the manner of this growth image.
δB(X) = p,Bp ∩X 6= φ [46]. the sets X and B play symmetric roles in the definition of
dilation. The erosion ”shrinks” objects in the image and the small peak is eliminated.

It should be noted that the dilation and the erosion are dual by complementation,
i.e. dilating a set X is equivalent to eroding its complement Xc with the symmetrical
structuring element B̌.

(X ⊕B)c = Xc 	 B̌, (X 	B)c = Xc ⊕ B̌. (2.6)

where Xc is the complement of X in E, that is Xc = E \ X, B̌ is the transpose or
symmetrical of B that is B̌ = {−b | b ∈ B}.

Therefore, the properties of erosion are derived from those of dilation by duality: dila-
tion inflates the object, deflates the background and deforms convex corners of the object;
thus erosion deflates the object, inflates the background and deforms concave corners of
the object [8]. We present an illustration [46] in Figures 2.4 and 2.5 of the dilation and the
erosion of a cross by a triangular structuring element, respectively.

Figure 2.4: The dilation of a cross by a triangle. The origin of the structuring element
is one of the vertices of triangle B and is shown as a small black disk: (a) the original X
(the light-gray cross) and B (the dark triangle); (b) the dilation taking place; and (c) the
final result with the original set X overlaid [46].

The binary mathematical morphological operators can be extended to gray scale math-
ematical morphological operators. The gray scale dilation and erosion by a flat structuring
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Figure 2.5: The erosion of a cross by the same triangle structuring element as in Figure 2.4:
(a) the original X (the light-gray cross) and B (the dark triangle); (b) the erosion taking
place; and (c) the final result, overlaid within the original set X [46].

element can be defined by two versions [5]. The first one is an extension to functions of
the Minkowski addition as follows:

[δB(f)](x) = [
∨
b∈B

fb](x). (2.7)

[εB(f)](x) = [
∧
b∈B̌

fb](x). (2.8)

where fb is the translations of f by a vector b ∈ B which is computed by f(x+ b).
The second one is an extension to function of the intersection/inclusion operations of

set as follows:

[δB(f)](x) = ∧{v ∈ Y | B̌ + v ≥ f}. (2.9)

[εB(f)](x) = ∨{v ∈ Y | B̌ + v ≤ f}. (2.10)

The implementation of the gray scale dilation consists of finding the maximum of f
within the scope of B whereas the erosion consists of finding the minimum of f such as [4]:

[δB(f)](x) = max
b∈B

[f(x+ b)]. (2.11)

[εB(f)](x) = min
b∈B̌

[f(x+ b)]. (2.12)
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Dilation and erosion are the basic building block for a large class of morphological
operators. They are considered as an adjunction pair of operators (δ, ε) i.e. δ(X) ≤ Y ⇔
X ≤ ε(Y ) [46] that allows the composition of dilation and erosion to form morphological
filters

2.4.3 Morphological filtering

In mathematical morphology, a morphological filter on a lattice L is an operator α
which is both increasing ∀X, Y ∈ L, X ≤ Y ⇒ α(X) ≤ α(Y ) and idempotent ∀X ∈
L, α(α(X)) = α(X). The two main operators derived from dilation and erosion are
opening and closing.

2.4.3.1 Opening and Closing

The opening and closing operators can be defined as a composition of operators of dila-
tion and erosion by a structuring element. Thus, the opening of X by B is a morphological
filter (increasing and idempotent) that is also anti-extensive (i.e. α(x) ≤ x). It is defined
as follows:

γB(X) = X ◦B = (X 	B)⊕B (2.13)

= ∪{Bp, p ∈ E and Bp ⊆ X}. (2.14)

and the closing of X by B is the complement of the opening and is extensive (i.e. x ≤
α(x)). It is defined as follows:

ϕB(X) = X •B = (X ⊕B)	B. (2.15)

In the other word, the opening X by B is the erosion of X by B, followed by a dilation
of the result by B. The closing X by B is the dilation of X by B, followed by an erosion of
the result by B. This two operators of opening and closing are dual by complementation.

The opening smoothes the contour of an object and removes narrow parts of the object.
The closing also allows to smooth sections of contours but filling narrow breaks and long,
thin gulfs and eliminating small holes.

The gray scale opening and closing are defined as follows:

γB(f) = ∨{B + v ≤ f}. (2.16)

ϕB(f) = ∧{B̌ + v ≥ f}. (2.17)

Parallelization of morphological operators based on graphs 14



2.5. Graph-based mathematical morphology framework

and they can be implemented by:

γB(f) = δB̌[εB(f)]. (2.18)

ϕB(f) = εB̌[δB(f)]. (2.19)

Note that the opening and closing are dual operators.

2.4.3.2 Granulometries

The granulometric families were introduced by [40] in a study of porous materials.
These families are a sequence of openings and closings that are parametrized by an integer
parameter λ. A granulometry is a decreasing family of openings Ψ = (ψλ)λ that satisfied:

∀λ ≥ 0, ψλ is an opening (2.20)

∀λ ≥ 0, µ ≥ 0, λ ≥ µ⇒ ψλ ≤ ψu. (2.21)

Similarly, anti-granulometry is a family of increasing closings.

2.4.3.3 Alternative Sequential Filters

The alternative sequential filters (ASF) are, as the name indicates, a composition of
openings and closings which form granulometric families of increasing sizes such as:

ASFn = γnϕnγn−1ϕn−1 . . . γ1ϕ1 or (2.22)

ASFn = ϕnγnϕn−1γn−1 . . . ϕ1γ1 (2.23)

For instance, the ASF beginning with an opening is called the white. Whereas, the
black ASF which begins with a closing [46].

The alternative sequential filters can be used to denoise both binary and grayscale
images (see Figure 2.6).

2.5 Graph-based mathematical morphology framework

In this section, we recall background notions for mathematical morphology on graphs.
After providing basic concepts for graphs, we present four operators studied in [15, 14].
They constitute a set of basic building blocks for morphological filters on graphs.
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(b) Noisy binary image (b) ASF

Figure 2.6: ASF Illustration.

Figure 2.7: Undirected graph.

2.5.1 Basic theoretical concepts of graphs

Definition 1 (Graph). A (undirected) graph is a pair X = (X•, X×) where X• is a
finite nonempty set and X× is composed of unordered pairs of distinct elements in X•,
i.e., X× is a subset of {{x, y} ⊆ X• | x 6= y}. Each element of X• is called a vertex or a
point (of X), and each element of X× is called an edge (of X).

A (directed) graph or digraph graph is a pair X = (X•, X×) where X• is a set
and X× is a set of ordered pairs which are named directed edges.

A weighted graph is a graph with weight function which assigns a real value to each
edge. Whereas, when the weight function returns one for all edges one, the graph is called
unweighted graph.

Figure 2.7 illustrates an example of undirected graph where the vertices are represented
by black dots and the edges by black line segments.

Definition 2 (Subgraph). Given X and Y be two graphs. If Y • ⊆ X• and Y × ⊆ X×,
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then X and Y are ordered and we write Y v X. If Y v X, we say that Y is a subgraph of
X, or that Y is smaller than X and that X is greater than Y [14].

Definition 3 (Degree of vertex). Let x be a vertex of graph G, the degree of x, denoted
by d(x), is the number of edges that contain x, i.e., d(x) = |{{x, y} ∈ G×}|.

Definition 4 (Regular graph). A graph G is regular if every vertex x has the same degree.
We say that G is regular graph of degree k (or k-regular) if: ∀x ∈ G | d(x) = k.

Definition 5 (Adjacency relation). We say that an edge {x, y} connects x and y. Thus,
the vertices x and y are adjacent and x is a neighbor of y (and vice versa).

In graph G, the vertex set X• represents the image domain and the edge set X× is
given by an adjacency relation. In fact, there are several kinds of adjacency relation for
examples see Figures 2.8 and 2.9 for 2D and 3D images respectively.

Figure 2.8: Example of adjacency relation.

Figure 2.9: Example of adjacency relation for 3D images.
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Definition 6 (Neighborhood). The neighborhood of a vertex x in graph G is the set of all
vertices linked by an edge in G to this vertex x (see Figure 2.10(a)):

∀x ∈ G•,Γ(x) = {y ∈ G•|{x, y} ∈ G×} (2.24)

The neighborhood in graph G of a subset of vertices, is the union of the neighborhood of
the vertices exist in this set X (see Figure 2.10(b)):

∀X ⊆ G•,Γ(X) = {∪x∈XΓ(x)} (2.25)

x x

z

y

(a) Neighborhood of vertex x (b) Neighborhood of subset X = {x, y, z}.

Figure 2.10: Example of neighborhood relation.

Definition 7 (Path). A path π in graph G is an ordered finite sequence written: π =
(x0, . . . , x`). We say π is a path from x0 to x` such that: any two consecutive vertices
xi, xi+1 of π are linked by an edge: ∀i ∈ [1; `], {xi, xi+1} ∈ G×.

The length of the path π is denoted by L(π), in unweighted graph is often considered as
the sum of the number of edges along the path.

L(π) =
n−1∑

0
{`(xi, xi+1)|0 ≤ i ≤ n− 1} (2.26)

In a weighted graph the length of a path is the sum of weights of edges which belongs to
the path.

An example of path is illustrated in Figure 2.11.

Definition 8 (Shortest path). Let x and y be two vertices of G. A shortest path between
two vertices x and y is a path π of minimal length from x to y:

∀π′path from x to y, L(π) ≤ L(π′) (2.27)
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x0 x1

x3

x4 x5

x2

Figure 2.11: A path of length 5
.

2.5.2 Mathematical Morphology operators on graphs

The domain of an image is considered as a graph whose vertex set is made of the pixels
and whose edge set is given by an adjacency relation on these pixels. Considering digital
objects not only composed of points but also composed of elements lying between them
and carrying structural information about how the points are glued together, mathematical
morphology has been developed on graphs. In this context, it becomes relevant to consider
morphological transformations acting on the subsets of vertices, the subsets of edges and
the subgraphs of graphs and not only those acting on the set of all subsets of pixels.

Morphological operators are well studied on graphs. Originally, binary morphology on
graphs were proposed by Vincent in 1989 [58]. A dilation (and its adjunct erosion) that deal
with the vertices X• of a graph G (see Figure 2.5.2(a)). These operators map any set of
vertices the set of all vertices composed of neighborhoods of the elements in the initial set.
More recently, [14, 42, 44] consider sets of vertices as well as sets of edges. [44, 42] defined
operators capable of dealing with weighted graphs to obtain a new approach to image
segmentation and levellings, respectively. [14] introduce a framework of mathematical
operators where the input and output are both graphs. they investigate four basic dilations
and erosions that map a set of vertices to a set of edges and a set of edges to a set of vertices.
These operators can be combined in order to obtain operators acting on the subsets of edges,
on the subsets of vertices and on the subgraphs of a given graph.

In this framework of mathematical operators on graphs, the structuring element is
replaced by the choice of the edge set that indicates which data are connected [45].

Remarking in Figure 2.5.2 that using operators proposed in [58], the dilation of the
subset X• of red and blue vertices of Figure 2.5.2(a) leads to the set of red and blue vertices
of Figure 2.5.2(b) which is connected. On the other hand, using operators proposed in [14],
the dilation of the subgraph X induced by X• (depicted in red and blue in Figure 2.5.2(c))
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leads to the red and blue subgraphs shown in Figure 2.5.2(d) which are not connected
(the two connected components are adjacent to each other)[14]. Thus, these last operators
acting on subgraphs enriches the one acting on subsets of vertices by allowing the distinction
between the connectivity and adjacency information. This distinction is very interesting
to introduce efficient filter in Mathematical morphology [14].

X• (red & blue vertices) Dilation δ(X) of X• (red & blue vertices)

X (red & blue subgraph) Dilation [δ,∆(X)] of X (red & blue subgraph)

Figure 2.12: Illustration of a vertex-dilation and of a graph-dilation [14].

In the following sections, we will study in detail the framework of mathematical mor-
phology on graphs of [14] in which our work in this thesis has been developed.

2.5.2.1 Lattice of graphs

Recall that a graph G consists of a set of vertices X•, and a binary relation called
adjacency relation between two vertices. This adjacency relation is represented by a set of
edges X×.
Important notation. Hereafter, the workspace is a graph G = (G•,G×) and we consider
the sets G•, G× and G of respectively all subsets of G•, all subsets of G× and all subgraphs
of G.

As seen above in Section 2.4, the fundamental theoretical basis of mathematical mor-
phology is a complete lattice [28]. Thus, according to the Property 9 provided in [14], the
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structure of graphs can be characterized by a structure that has the same foundations of
complete lattices (see [14] for proof of this property), and so morphological operators can
be built on it.

Property 9 (from [14]). The set G of the subgraphs of G form a complete lattice. The
infimum and the supremum of any family F = {X1, . . . , X`} of elements in G are given by
respectively:

– tF = {∪i∈[1,`]Xi
•,∪i∈[1,`]Xi

×}
– uF = {∩i∈[1,`]Xi

•,∩i∈[1,`]Xi
×}.

2.5.2.2 Elementary morphological operators on graphs

The mathematical morphology filtering on graphs introduced in [15, 14], relies on four
basic operators which are used to derive a set of edges from a set of vertices and a set of
vertices from a set of edges. Then, based on these basic operators (building blocks), several
dilations and erosions acting on the lattice of all subgraphs of G are derived.

Definition 10. The operators δ• and ε• from G× to G• and the operators ε×, and δ×

from G• to G× are defined as follows:

δ•(X×) = {x ∈ G• | ∃{x, y} ∈ X×}, for any X× ⊆ G×; (2.28)

ε•(X×) = {x ∈ G• | ∀{x, y} ∈ G×, {x, y} ∈ X×}, for any X× ⊆ G×; (2.29)

ε×(X•) = {{x, y} ∈ G× | x ∈ X• and y ∈ X•}, for any X• ⊆ G•; and (2.30)

δ×(X•) = {{x, y} ∈ G× | x ∈ X• or y ∈ X•}, for any X• ⊆ G•. (2.31)

In other words, the operator δ• maps to any edge set X× the set of all vertices that
belong to an edge in X×. The operator ε• maps to any edge set X× the set of vertices that
are “completely covered” by edges in X×, i.e. the vertices that do not belong to any edge
of the complement G× \ X× of X×. The operator ε× maps to any vertex set X• the set
of all edges whose two extremities are in X•. The operator δ× maps to any vertex set X•

the set of all edges that have at least one extremity in X•.
The operators ε×, δ×, ε• and δ• are illustrated in Figure 2.13 where the workspace

G = (G•,G×) is illustrated in Figure 2.14 (first column).
Many mathematical morphology operators rely on the algebraic structure of a lattice

[28, 27, 50]. In particular, any operator that commutes with the union (resp. intersection)
is called a dilation (resp. an erosion). It is established in [14] that the operators δ• and
δ× are indeed morphological dilations and that the operators ε• and ε× are erosions since

Parallelization of morphological operators based on graphs 21



2.5. Graph-based mathematical morphology framework

X• ε×(X•) Y • δ×(Y •)

Z× ε•(Z×) W× δ•(W×)

Figure 2.13: Illustration of the operators ε×, δ×, ε• and δ•. The considered sets are
depicted by black dots or line segments.

they commute with union and intersection respectively, this means that we have:

δ•(X× ∪ Y ×) = δ•(X×) ∪ δ•(Y ×), for any X×, Y × ⊆ G×; (2.32)

ε•(X× ∩ Y ×) = ε•(X×) ∩ ε•(Y ×), for any X×, Y × ⊆ G×; (2.33)

δ×(X• ∪ Y •) = δ×(X•) ∪ δ×(Y •), for any X•, Y • ⊆ G•; and (2.34)

ε×(X• ∩ Y •) = ε×(X•) ∩ ε×(Y •), for any X•, Y • ⊆ G•. (2.35)

Therefore, in the following, the operators δ× and δ• (resp. ε× and ε•) are referred to as
the vertex-edge dilation and the edge-vertex dilation (resp. the vertex-edge erosion and the
edge-vertex erosion).

In particular, by composition of the four basic operators presented above. The elemen-
tary vertex dilation δ(X•)(resp. edge dilation ∆(X×)) is obtained by the composition of
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the vertex-edge (resp. edge-vertex) dilation and the edge-vertex (resp. vertex-edge) dila-
tion, whereas the associated vertex erosion ε(X•) (resp. edge erosion ε(X×)) is obtained by
the composition of the vertex-edge (resp. edge-vertex) erosion and the edge-vertex (resp.
vertex-edge) erosion.

Definition 11. For any X• ⊆ G×, and X× ⊆ G×, the following statements hold true.

δ(X•) = {x ∈ G• | ∃{x, y} ∈ X×, {x, y} ∩X• 6= φ}, (2.36)

ε(X•) = {x ∈ G• | ∀{x, y} ∈ G×, {x, y} ⊆ X•} (2.37)

∆(X×) = {{x, y} ∈ G× | either ∃{x, z} ∈ X×orc∃{y, w} ∈ X×} (2.38)

ε(X×) = {{x, y} ∈ G× | ∀{x, z}, {y, w} ∈ G×, {x, z} ∈ X×, {y, w} ∈ X×}. (2.39)

Informally, the set δ(X•) is the set of vertices which contains in at least on edge of G
and all vertices adjacent to a vertex in X• (i.e. which share a common vertex with an
edge), while the set ε(X•) contains all vertices of X• whose neighborhood is in X•. The
set ∆(X×) is the set of edges in G that have at least on vertex with an edge in X×, while
the set ε(X×) contains each edge in X× whose neighborhood is in X×.

Observe that the operators introduced in Definition 10 are given for arbitrary (un-
weighted, undirected) graphs and are all increasing. Therefore, they are considered as
elementary building blocks that induce stack operators acting on functions weighting the
vertices and/or edges of a graph (see Definition 12). This leads to define morphological
operators for weighted graphs, hence for grayscale images. from the ones on non-weighted
graphs proposed in [14].

Definition 12. Let F • ∈ I(G•), and F× ∈ I(G×), the following statements hold true.

δ•(F×)(x) = max{F×{x, y} | {x, y} ∈ G×}, ∀x ∈ G• (2.40)

ε×(F •){x, y} = min{F •(x), F •(y)} ∀{x, y} ∈ G× (2.41)

ε•(F×)(x) = {F×{x, y} | {x, y} ∈ G×} ∀x ∈ G• (2.42)

δ×(F •){x, y} = max{F •(x), F •(y)}, ∀{x, y} ∈ G×. (2.43)

Furthermore, the operators presented in this section allow for defining filters such as
opening, closing and alternate sequential filters that are useful in applications [14, 41].

2.5.2.3 Morphological filters on graphs

Interesting morphological filters on graphs can be obtained by composition and it-
eration of the basic operators of [14] (Iterated versions of basic dilations and erosions
see next section). These morphological filters are useful in applications in order to filter
out noise and to regularize the contours of images. The size of the structures which are
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preserved/suppressed with openings and closings depends on the number of iterations of
the basic dilations and erosions. Larger structures are removed/preserved when higher
numbers of iterations are considered. Therefore, the number of iterations involved in a
morphological operator is often referred to as its size parameter λ. The openings and clos-
ings resulting from the composing of two operators of an adjunction (iterated dilations and
erosions on graphs of next section Definition 13) act either on sets of vertices or on sets
of edges according to the parity of λ as recalled in Table 2.1. (see [14] for an extensive
study). Furthermore, the simultaneous application of these filters (for a same size param-
eter) on the vertices and on the edges of a subgraph of G leads to a subgraph of G, hence
morphological filtering on subgraphs.

Domain Parity of λ Opennings
[γ,Γ]λ/2(X)

Closings
[φ,Φ]λ/2(X)

Vertex sets
X•

even γλ/2 = δλ/2 ◦ ελ/2 φλ/2 = ελ/2 ◦ δλ/2

- odd γλ/2 = ∆λ/2 ◦ ελ/2 φλ/2 = ελ/2 ◦ δλ/2
Edge sets X× even Γλ/2 = ∆λ/2 ◦ ελ/2 Φλ/2 = ελ/2 ◦∆λ/2
- odd Γλ/2 = δλ/2 ◦ ελ/2 Φλ/2 = ελ/2 ◦∆λ/2

Table 2.1: Summary of the openings and closings resulting from the dilations and erosions
of Definition 13.

Given a graph X(X•, X×) in G, the operator γλ/2 (resp. Γλ/2) is opening on X• (resp.
X×), and φλ/2 (resp. Φλ/2) is closing on X• (resp. X×). Furthermore, the simultaneous
application of these operators for a same size parameter on the vertices and on the edges
of a subgraph of G leads to a subgraph of G, hence morphological filtering on subgraphs
(opening [γ,Γ]λ/2(X) and closing [φ,Φ]λ/2(X)).

From a morphological point of view, when G• is a subset of the grid point Zd and the
set of edges G× is derived from a symmetrical structuring element, then the vertex parts
in the result of [γ,Γ]λ/2 and [φ,Φ]λ/2 correspond to the classical opening and closing of size
λ/2 [14].

By further composing of openings and closings with increasing size parameter (these
series of openings and closings, called granulometries), alternate sequential filters (ASF )
are obtained. Let λ ∈ N, the operators ASFλ/2 is defined as follows:

ASFλ/2 = [γ,Γ]λ/2 ◦ [φ,Φ]λ/2 ◦ ASF(λ−1)/2 otherwise. (2.44)

A second family of the alternate sequential filter can be defined by replacing the sequence
[γ,Γ]λ/2 ◦ [φ,Φ]λ/2 by the sequence [φ,Φ]λ/2 ◦ [γ,Γ]λ/2 (anti-granulometries). These families
of filters generally outperform the results of elementary openings and closings in applica-
tions to image regularization.

As seen in this section to obtain efficient morphological filters on graphs, one needs
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to consider iterated versions of elementary operators of dilations and erosions of size λ

(Table 2.1). In following, we will provide definition of these iterated operators and we will
study their behavior and computation.

2.5.3 Problem statement of iterated dilations and erosions on
graphs

Let α be an operator acting on G• or on G× and let i be a non negative integer. The
operator αi is defined by the identity when i = 0 and by α ◦ αi−1 otherwise.

In other words, when i is greater than 1, the result of the operator αi applied to a set
X can be obtained by applying i iterations of α from X.

The elementary operators presented in Definition 10 map the elements of G• (i.e.,
subsets of vertices) to those of G× (i.e., subsets of edges) or the elements of G× to those
of G•. Thus, since the input and output sets of these operators are distinct, they cannot
be directly iterated. However, any composition of an operator acting from G• to G× (resp.
from G× to G•) with an operator from G× to G• (resp.from G• to G×) leads to an operator
on G• (resp. on G×). Then, such composition can be iterated and eventually followed
again by an operator from G• to G× (resp. from G× to G•). Therefore, to define iterated
operators on graphs, we can distinguish two cases depending whether a final composition
with an operator from G• to G× (resp. from G× to G•) is considered or not.

Definition 13 (Iterated dilations/erosions). Let λ be a nonnegative integer.
Case 1 (even values of λ). If λ is even, we define the operators δλ/2 and ελ/2 on G•

and the operators ∆λ/2 and ελ/2 on G× by:

δλ/2(X•) = (δ• ◦ δ×)λ/2(X•), for any X• ⊆ G•; (2.45)

ελ/2(X•) = (ε• ◦ ε×)λ/2(X•), for any X• ⊆ G•; (2.46)

∆λ/2(X×) = (δ× ◦ δ•)λ/2(X×), for any X× ⊆ G×; and (2.47)

ελ/2(X×) = (ε× ◦ ε•)λ/2(X×), for any X× ⊆ G×. (2.48)

Case 2 (odd values of λ). If λ is odd, we define the operators δλ/2 and ελ/2 from G•

to G× and the operators ∆λ/2 and ελ/2 from G× to G• by:

δλ/2(X•) = δ× ◦ δ(λ−1)/2(X•), for any X• ⊆ G•; (2.49)

ελ/2(X•) = ε× ◦ ε(λ−1)/2(X•), for any X• ⊆ G•; (2.50)

∆λ/2(X×) = δ• ◦∆(λ−1)/2(X×), for any X× ⊆ G×; and (2.51)

ελ/2(X×) = ε• ◦ ε(λ−1)/2(X×), for any X× ⊆ G×. (2.52)

The operators ελ/2, δλ/2, ελ/2, and ∆λ/2 are illustrated for various (even and odd) values
of λ in Figures 2.14, 2.15, 2.16, and 2.17, respectively. In particular, it can be observed
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that, when λ is even, the operators ελ/2 and δλ/2 map a set vertices to a set of vertices and
that the operators ελ/2 and ∆λ/2 map a set of edges to a set of edges. On the other hand,
when λ is odd, the operators ελ/2 and δλ/2 map a set of edges to a set of vertices and the
operators ελ/2 and ∆λ/2 map a set of vertices to a set of edges.

G = (G•,G×) X• ε1/2(X•) = ε×(X•) ε2/2(X•) ε3/2(X•)

Figure 2.14: Illustration of the operator ελ/2 with λ ∈ {1, 2, 3}. The considered sets are
depicted by black dots or line segments.

Y • δ1/2(Y •) = δ×(Y •) δ2/2(Y •) δ3/2(Y •) δ4/2(Y •)

Figure 2.15: Illustration of the operator δλ/2 with λ ∈ {1, 2, 3, 4}, the workspace being
the graph G depicted in Figure 2.14. The considered sets are depicted by black dots or
line segments.

The naive computation of iterated operators presented here consists of performing λ

iteration of elementary operators. When the complexity of elementary operator is O(n)
where n is the size of the underlying graph. Thus, the time-complexity of the associated
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Z× ε1/2(Z×) = ε•(Z×) ε2/2(Z×) ε3/2(Z×) ε4/2(Z×)

Figure 2.16: Illustration of the operator ελ/2 with λ ∈ {1, 2, 3, 4}, the workspace being
the graph G depicted in Figure 2.14. The considered sets are depicted by black dots or
line segments.

W× ∆1/2(W×) =
δ•(W×)

∆2/2(W×) ∆3/2(W×) ∆4/2(W×)

Figure 2.17: Illustration of the operator ∆λ/2 with λ ∈ {1, 2, 3, 4}, the workspace being the
graph G depicted in Figure 2.14. The considered sets are depicted by black dots or line
segments.

algorithm increases with the size parameter. More precisely, for a parameter value of λ
the algorithm runs in O(λ.n) time, where n is the size of the underlying graph. Therefore,
there is a dependence between the size parameter λ and the time-complexity.

Eight iterated morphological operators on graphs are presented in Definition 13. When
dealing with even λ value, the inputs and outputs sets of the two first operators δλ/2 and
ελ/2 are subsets of vertices of graph G. From a mathematical morphology point of view,
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these operators (i.e. {δλ/2, ελ/2 | λ is even }) amount exactly to the classical operators of
dilation and erosion defined with symmetric structuring elements that were first studied
in [58] for which efficient algorithms exist. These algorithms were introduced by L.Vincent
in [58] where a link is established between these two operators and notion of distance
map. Such as, the result of these operators can be obtained using interesting property
of thresholding of distance map. This link leads to efficiently compute the results of the
corresponding dilation and erosion. Contrary, there exist no efficient algorithms for the six
remaining iterated operators defined above.

A big challenge in this framework is to obtain efficient and fast computation of the
morphological filtering on graphs [14]. For this aim, as a starting point, we need to intro-
duce in our work new distance maps on graphs that allow to obtain linear-time algorithms
for the all operators defined in Definition 13. Then, we need also to propose a parallel
strategy in order to obtain fast implementation of these distance maps, hence all these
morphological operators.

2.6 Distance Map on graphs

The distance map (also called distance transformation) plays an important role with
a wide range of applications in image processing, computer vision, graphics and compu-
tational geometry, pattern recognition [16]. It is an interesting tool in image analysis and
mathematical morphology. Distance map is used for computing the medial axis of digital
shapes, and for comparing binary images [20]. Consider a digital binary image, a distance
transformation is an operation that converts this binary image to a grey-level image where
all pixels have a value corresponding to the distance to the nearest feature pixel [9]. An
example of distance map is shown in Figure 2.18.

Figure 2.18: Example of a distance map. To the left is a binary image. To the right is
the resulting image using Euclidean distance.

The aim of distance map is to provide the distance from each point to the nearest
point. Several distance functions (metrics) have been used for digital image processing
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such as euclidean distance, Manhattan distance, Tchebychev distance, city block distance,
chessboard distance, chamfer distance and octagonal distance etc.

When the workspace is a graph G, an elementary use of paths is the computation of
a distance map: from any vertex of a graph, one can compute the distance (length of the
shortest path) to the nearest obstacle vertex. The distance between these vertices can be
defined as follows:

Definition 14 (Graph distance). Let x and y be two vertices in undirected graph G. The
graph distance D between x and y is defined by the length of the shortest paths connecting
x to y in G [29]:

∀x, y ∈ G, D(x, y) = min{L(π) | π is a path from x to y in G and from y to x} (2.53)

In the case of undirected graph, the distance D is called geodesic [29] which have the
same proprieties of the usual distance [51].

Property 15. The map D is a geodesic distance on G that satisfy:

1. ∀x ∈ G, D(x, x) = 0 (identity),

2. ∀x, y ∈ G, x 6= y ⇒ D(x, y) > 0 (Positive),

3. D(x, y) = D(y, x) (symmetry),

4. D(x, y) = 0⇔ x = y (defined) and

5. ∀x, y, and z ∈ G, D(x, z) ≤ D(x, y) +D(y, z) (triangle inequality).

Definition 16 (Distance map on graph). Given a subset X ⊆ G and D a distance on X.
The distance map to X is the map DX from X into R is defined as follows:

∀y ∈ X,DX(y) = min{D(x, y) | x ∈ X}. (2.54)

In other words, for any element of X, one can compute the geodesic distance (i.e., the
length of a shortest path) to the closest element in X (see example in Figure 2.6).

As seen above, the computation of distance map in unweighted graph can be reduced
to the computation of shortest paths. To this end, we study the shortest-path problem in
the following section.

2.6.1 Shortest Paths Problem

The shortest-path problem is one of classical well-studied problems in graph theory that
has many applications include general traveling problems, path finding in social networks,
roads networks optimization, computer games, maze problems, etc. In fact, this problem
deals with finding the optimal paths from a source to a destination with respect to a
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(b) Original object X in black (b) DX in the graph induced by the 4-adjacency

Figure 2.19: Illustration of distance map on graph.

distance function. In the following, we review algorithms that are able to solve the shortest
path problem.

Dijkstra’s algorithm [19] has many variants but the most common one is to compute
all shortest paths between a source vertex and all other vertices of a weighted graph with
positive real numbers. For a given single source vertex in the graph, the algorithm finds
the paths with smallest lengths between the source vertex and every other vertex. the
Dijkstra’s algorithm visits first the neighbors of the source vertex, and inserts them in an
ordered priority queue depending on their distances. Then, in each iteration neighbors of
the vertices in queue are analyzed, classified and inserted in the queue. The calculation
stops when all vertices of the graph are visited. The complexity of this algorithm is O(|V |2).

Fredman and Tarjan [23] improve Dijkstra’s algorithm using Fibonacci heap in order to
implement the priority queue, the complexity can be easily reduced to O(|E|.|V |log(|V |))
where |E| is the number of vertices and |V | is the number of edges in the graph .

The breadth-first search(BFS) algorithm [34] can be simply employed to solve the
single-source shortest path problem for both directed and undirected graphs. Given an
unweighted graph and a source vertex, BFS explores a graph level by level in order to
find every vertex reachable to the source vertex. This algorithm explores all non-visited
vertices (the neighboring vertices) at level (distance) K from the source vertex x, and,
then discovers the next level of vertices at distance k + 1. In fact, all nodes at level k are
expanded before any nodes at level k + 1. An auxiliary queue data structure managed
with a FIFO (First-In-First-Out) property is used to store vertices. In this search, a BFS
tree is built with the source vertex x as a root of the tree where for any vertices in this
BFS tree, the shortest path from the source vertex x to any vertex is found in a BFS tree.
The algorithm stops when there are no vertices in the queue. The complexity of the BFS
search is O(|V |+ |E|).

Bellman Ford’s algorithm [22] is used to find the shortest paths from the single-source
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vertex to all other vertices in a weighted graph. The idea of this algorithm is similar to
Dijkstra’s, it is slower than Dijkstra’s algorithm but able to process weighted graph in
which edges can have negative weights. It deals by overestimating the length of the path
from the source vertex to all other vertices in graph. Then, it iteratively checks if there is
an edge which can shorten the calculated shortest path to vertices. After n−1 iterations at
most, the algorithm returns an array of distances to the reachable vertices. The complexity
of Ford-Bellman algorithm is of order of O(n.m) where n and m are the number of vertices
and m the number of edges in graph respectively.

Floyd-Warshall’s Algorithm [21] is used to find the shortest paths between all pairs
of vertices in weighted graph with positive or negative weighted edges. The idea of this
algorithm consists of the comparison of all possible paths in graph between each pair of
vertices. Thus, the algorithm can calculate all the shortest paths between all pairs vertices
in O(V 3), where V is the number of vertices in a graph.

The shortest-path algorithms presented above are divided into two categories [59, 37].
The first one is single source shortest-path, where the idea is to find the shortest-paths
from a given single-source vertex to all other vertices in graph. Whereas, the second one
is all-pairs shortest-path that find the shortest-paths between all pairs of vertices in a
graph. Furthermore, these algorithms processed either weighted or unweighted graphs. It
seems that the breadth-first search(BFS) algorithm [34] present a classical approach in
graph-based problems that we are interested for our work in particular for (unweighted,
undirected) graphs. In fact, it is one of the simplest algorithms for exploring a graph.
This exploration strategy is achieved using a suitable data structure. Then, the BFS is
considered as queue-based algorithm in linear-time.

2.7 Introduction to Parallel Computing

The aim of the parallel computers is to speed up computations by using multiple pro-
cessors ”CPUs”, or to perform larger computations which are not possible on a single
processor machines. Multicore and multithreaded CPUs architectures have become an in-
creasingly popular way to implement dynamic, highly asynchronous, concurrent programs.
They both exploit concurrency by executing multiple threads at the more fine-grained in-
struction level. Generally, we can divide parallel computing architectures in two dominant
classes with respect to memory layout. The first one is the class of distributed memory
machines. The second one is that of shared memory machines.

2.7.1 Distributed Memory Machines

In distributed memory architecture, each processor has its own local memory. All vari-
ables of a program are private i.e. they locate in the local memory (or cache) of a processor
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Figure 2.20. The distributed memory paradigms assume that the computing infrastructure
is composed of multiple nodes with distinct memory address spaces. Each compute node
can only directly reference its own memory. The communication of data occurs through
discrete messages sent from process to process. For communication between processors a
message passing library is used. Two commonly used libraries are MPI (Message Passing
Interface, or PVM (Parallel Virtual Machine).

The Message Passing Interface (MPI) is the standard language for parallel programs on
distributed memory systems. It is a specification for message passing operations which is
provided as a library for C, C++ and Fortran [31]. It is based on explicit message passing
and collective communications that have non-trivial consequences for performance.

The PVM message-passing interface is designed to allow a network of heterogeneous
UNIX machines to be used as a single, large parallel computer. The interface is imple-
mented by the PVM system, which consists of a daemon process (pvmd) that runs on each
workstation, and a run-time library (pvmlib) that contains the PVM interface routines
[32].

Figure 2.20: Left: Distributed memory architecture.

2.7.2 Shared Memory Architectures

In shared memory architecture every processor has an access to all of the memory
i.e. there is a shared address space Figure 2.21. The shared memory programming
model is often achieved with some form of multithreading, where multiple threads on the
same node share the same address space. Threads can easily communicate because they
operate in the same address space, so explicit synchronization must be used to synchronize
the simultaneously access on shared variables. OpenMP (Open Multi-Processing) and
POSIX Threads (Pthreads) are two of the most widely used solutions for shared memory
programming.

OpenMP consists of a set of compiler directives. It is a directive-based extension to C,
C++ and Fortran languages commonly used in high performance computing. Moreover,
OpenMP is becoming more important when the number of cores per system increases. Due
to the higher level specification of parallelism with OpenMP, the gain in productivity is
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that OpenMP programmers do not have to concern themselves with such details as when
or how to create new threads, how to distribute their data between these threads and how
to synchronize the computation itself between the threads [31, 25].

The POSIX Threads is a set of C programming language types and procedure calls.
Various benefits exist to using Pthreads such as the simplicity, the flexibility, and the
portability. Pthreads library provides various primitives for synchronizing concurrent com-
putations and memory accesses of threads. In particular, it provides implementations of
mutexes and semaphores [10] for Linux. A mutex is a variable which is either locked or
unlocked and can be handled with atomic (non-interruptible) instructions, ensuring that,
at a given time, a single thread is accessing to the variable with the atomic instruction. It is
mainly used to ensure exclusive access to data shared between threads, whereas semaphores
generalize mutexes by allowing a limited number, but possibly greater than one, to access
concurrently to critical data [31, 25].

Figure 2.21: Shared memory architecture.

2.7.3 Performance Models of Parallel Computing Systems

It is important to study the performance of an algorithm parallel in order to assess
the gain of parallel implementation determine the best algorithm, evaluate hardware plat-
forms, and examine the benefits obtained from parallelism. A number of metrics have
been considered for evaluating performance in parallel computing such as execution time,
speedup and efficiency.

2.7.3.1 Execution Time

The sequential running time of a program is the time elapsed between the beginning and
the end of its execution on a single processor, using the fastest known sequential algorithm.
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Whereas, the parallel running time is the execution time of parallel parts of algorithms
using a parallel processor. We denote the sequential running time by T (1) and the parallel
running time by T (p).

2.7.3.2 Speedup and efficiency

Speedup is an important measure of the quality of a parallel program. This measure
expresses how many times a parallel program works faster than a sequential one, where
both programs are solving the same problem. For a given number p of processors, the
speedup S(p) is the ratio of the execution time T (1) of a program on a single processor over
the execution time T (p) obtained with p processors: S(p) = T (1)/T (p). For p processors,
the speedup is bounded by the the number of processors: S(p) ≤ p. The maximum value
of speedup that can be obtained is equal to the number of processors S(p) = p. This
maximum speedup value could be achieved in an ideal multiprocessor system where there
are no communication costs and the workload of processors is balanced (although in practice
this is rarely achieved). In such a system, every processor needs T (1)/p time units in order
to complete its job [3].

One can consider speedup to analyze algorithms either theoretically using asymptotic
time complexity or in practice by measuring the execution times of a program.

Another frequently used measure of performance is the efficiency of a parallel program.
The efficiency of a program yields the same information as the speedup of a program, since
it is computed as: E(p) = S(p)/p ∗ 100.

2.8 Overview of parallel implementation for distance
map

Literary, several algorithms for fast computing of distance maps on images have been
proposed. For instance, Shyu et al.[55] proposed an efficient parallel algorithm to compute
the Chamfer distance transformation of a binary image. Shyu et al.’s parallel implementa-
tion requires the decomposition of the input image into bands, each band is distributed to a
processor. In each processor, the distance transformation can be computed by preforming
two passes over the image : a forward pass to propagate the distance transform from the
causal neighbors, followed by a backward pass to propagate the distance transform from
anti-causal neighbors. This method computes the distance transformation on a distributed
system. Therefore, the intermediate results across several processors must be synchronized
using Message Passing Interface (MPI). Pham et al.[47] presented a parallel implementation
of geodesic distance transformation using OpenMP. In fact, this implementation is based on
the parallel execution of the sequential Chamfer distance transformation proposed in [55]
using the shared memory model on multicore CPUs. The parallel implementation of this
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distance transformation requires more than one iterations of forward and backward passes
unlike the Chamfer distance transformation. As a result, the geodesic distance transfor-
mation can be propagated from one band to the next in following iteration contrary to
[55]. Man et al.[38] [39] presented a parallel algorithm for computing Euclidean distance
map on both multicore processors and GPU system. The idea of this algorithm consists
of performing two steps, in each step both a forward and backward scan is performed. In
fact, The input image is partitioned into rows, columns where in the first step columns
are scanned and in the second rows are scanned. The scanning of a particular column
(resp. row) is independent to the scanning of the others columns (resp. rows). The work
of [52] described a separable algorithm to efficiently compute the distance transformation,
the separability means that the computations are performed dimension by dimension.

These works are all based on the regular structure of the space. Such parallel com-
putation of distance map uses a static partitioning of space into rows, columns, or blocks
processed in parallel. This means that this computation is based on a number of data
predefined a prior.

In this work, we aim to develop a new parallel strategy adapted for the new distance
map on graphs proposed in the next chapter. In order to generalize our strategy, and its
implementations, we have to consider both regular and irregular space.

2.9 Conclusion

After reading the description of the framework of mathematical morphology on graphs
[14] presented in this chapter, we can claim that this framework considers four elementary
morphological operators to go from one kind of sets to another one. More preciously, these
operators map a set of vertices to a set of edges and a set of edges to a set of vertices.
Interesting morphological filters on graphs can be obtained by iterated version of these
elementary operators (composition). These filters are parameterized by an integer value
related to a notion of size of the features to be preserved or removed. Larger structures are
removed/preserved when higher numbers of iterations of basic operators are considered. To
this end, we discussed in this chapter the problem of computation of iterated morphological
operators on graphs. The naive computation of iterated operators consists of performing
λ iteration of elementary operators. So, there is a dependence between the size parameter
λ and the time-complexity.

However, the behavior of iterated operators depends on the parity of a size parameter
called λ. Thus, we distinguished two cases even and odd values of λ. When λ is even, the
inputs and outputs sets of the operators is the same which are subsets of vertices or subsets
of edges of graph. In this case there exist efficient algorithms for the two operators acting
on subsets of vertice which amount to classical morphological operators. These algorithms
were introduced by L.Vincent in [58] where a link is established between distance map
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and these two operators. When λ is odd, the inputs and the outputs of the operators are
distinct: one of them is subset of edges whereas the other one is a subset of vertices. In
this case there exist no efficient algorithms for the six remaining iterated operators.

For this, we provide a reminder about notions of distance map on graphs. Because
of the computation of distance map is reduced to the computation of shortest paths, we
discuss in this chapter the algorithms related to the problem of shortest path. We are
interested in our work with the breadth-first search(BFS) algorithm which is one of the
simplest algorithms for exploring a (unweighted, undirected)graphs and runs in linear-time.

Finally, to obtain fast computation of distance map, we presented an overview on
parallel computing. In especial, we surveyed the multicore and multithreaded CPUs archi-
tectures and the performance models of this system, since they are the target architecture
and the performance models used in the parallel strategy proposed in this work. we also
presented some related work about parallelization of distance map on the regular structure
of the space, where, the parallel computation uses a static partitioning of space into rows,
columns, or blocks processed in parallel.

In the following of this manuscript, we present how new distance maps are established
links with all operators of Definition 13, and are used to propose efficient sequential and
parallel algorithms for computing the results of the morphological operators of [14].
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Distance maps for Iterated
morphological operators on graphs
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3.1 Introduction

In this chapter, we propose three original distance maps on graphs that called edge-
edge, edge-vertex, and vertex-edge distance maps. Given a set of edges, the edge-edge
(resp. edge-vertex) distance map provides for each edge (resp. each vertex) of the graph a
geodesic distance to the closest edge in the input set. Given a set of vertices, the vertex-
edge distance map provides for each edge a geodesic distance to the closest vertex in the
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input set. In addition, we present our vertex-vertex distance map based on new notion of
length of path which considers both the numbers of vertices and of edges along the path.
The vertex-vertex distance map provides for each vertex a geodesic distance to the closest
vertex in the input (a set of vertices).

Then, we prove by theorems that all dilations and erosions on graphs presented in Def-
inition 13 in chapter 2 can be characterized with the proposed distance maps. Indeed,
the edge-vertex and the vertex-edge distance maps allow us to characterize (by threshod-
ing) the four operators defined when λ is odd. The vertex-vertex distance map allows us
to characterize (by thresholding) the two first operators acting on vertices which amount
to classical morphology, and the edge-edge distance map allows us to characterize (by
thresholding) the two remaining operators acting on edges, when λ is even.

After establishing the links between the proposed distance maps and the operators of
Definition 13, in order to efficiently compute these proposed distance maps, we present in
a later part variations of linear-time algorithms for distance maps in unweighted graphs
which derive from breadth first search. Thus, the dilations and erosions of [14] can be also
obtained by linear-time algorithms.

3.2 Proposed distance maps

In this section we define the proposed distance maps on graphs in order to characterize
the iterated morphological operators on graphs. In each kind of these distance maps, we
start by presenting notions of paths and shortest paths that are necessary to define the
proposed distance maps.

Important remark. As seen in the previous chapter, in standard graph textbooks,
the length of a path is often considered as the number of edges along the path, whereas,
our contributions in this thesis consider both the numbers of vertices and of edges along
the path are considered. It can be remarked that the two notions of length are equivalent
up to a factor 2. The choice of multiplying by 2 the usual length of paths directly links
the length of paths to the operators defined in chapter 2 in Section 2.5.3.

3.2.1 Edge-edge distance maps on graphs

– An edge-edge path: let u and v be two edges in G×. A (edge-edge) path from u to v
is a sequence (u0, x0, . . . , u`−1, x`−1, u`) such that u0 = u, u` = v, x0 ∈ u0, x`−1 ∈ u`,
and (x0, u1, . . . , u`−1, x`−1) is a vertex-vertex path from x0 to x`−1.

– The length of an edge-edge path (u0, x1, . . . , u`−1, x`−1, u`) is the number of its
elements minus one. Hence, it is equal to the integer value 2`.
Figure 3.1 illustrates in red an example of an edge-edge path {{a,b}, b, {b,d}, d,
{d,e}} of length equal to 4.
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Figure 3.1: An edge-edge path.

– An Edge-edge shortest path: let e1 and e2 be two edges in G×. A shortest path
from an edge e1 to another edge e2 is a path of minimal length from e1 to e2. We
denoted by L(e1, e2) the length of a shortest path from e1 to e2.

Let us now define the edge-edge distance map.

Definition 17 (Edge-edge distance map). Let X× be a subset of G. The (edge-edge)
distance map to X× is the map D(×,×)

X× from G× to the set of integers such that:

D
(×,×)
X× (u) = min{L(v, u) | v ∈ X×}, for any u ∈ X×. (3.1)

In other words, given a subset X× of edges, the edge-edge distance map to X× provides
for each edge u of G the minimal length of a path from u to an edge of X×. An illustration
of edge-edge distance map D

(×,×)
X× is provided in Figure 3.2.

3.2.2 Vertex-edge distance maps on graphs

– A vertex-edge path: let x be a vertex in G• and u be an edge in G×. A (vertex-edge)
path from x to u is a sequence (x0, u0, . . . , x`, u`) such that x0 = x, u` = u, x` ∈ u`,
and (x0, u0, . . . , x`) is a vertex-vertex path from x0 to x`.

– As we said in the previous section, the length of a path is the number of its elements
minus one. So, the length of a vertex-edge path (x0, u0, . . . , x`, u`) is equal to the
integer value 2`+ 1.
We illustrate in red in Figure 3.3 an example of a vertex-edge path {a, {a,b}, b,
{b,d}, d, {d,e}} of length equal to 5.

– A Vertex-edge shortest path: let e1 be a vertex in G• and e2 be an edge in G×.
A shortest path from a vertex e1 to an edge e2 is a path of minimal length from e1 to
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Figure 3.2: Illustration of Edge-edge distance map on graphs. The first subfigure shows
the set of edges X× in the graph G. The second subfigure shows the edge-edge distance
maps to the set X×.
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Figure 3.3: A vertex-edge path.

e2. We denoted by L(e1, e2) the length of a shortest path from e1 to e2.
Let us now define the Vertex-edge distance maps.

Definition 18 (Vertex-edge distance map). Let X× and X• be two subsets of G. The
(vertex-edge) distance map to X• is the map D

(•,×)
X• from G× to the set of integers such
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that:

D
(•,×)
X• (u) = min{L(x, u) | x ∈ X•}, for any u ∈ X×. (3.2)

In other words, given a subset X• of vertices, the vertex-edge distance map to X•

provides for each edge u of G the minimal length of a path from u to a vertex in X•.
An illustration of vertex-edge distance map D

(•,×)
X• is provided in Figure 3.4.
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Figure 3.4: Illustration of Vertex-edge distance map on graphs. The first subfigure shows
the set of vertices X• in the graph G. The second subfigure shows the vertex-edge distance
maps to the set X•.

3.2.3 Edge-vertex distance maps on graphs

– An edge-vertex path: let u be an edge in G× and let x be a vertex in G•. A (edge-
vertex) path from u to x is a sequence (u0, x0, . . . , u`, x`) such that (x`, u`, . . . , x0, u0)
is a vertex-edge path from x to u.

– The length of an edge-vertex path (u0, x0, . . . , u`, x`) is the number of its elements
minus one which is equal to the integer value 2`+ 1.
We illustrate in red in Figure 3.5 an example of an edge-vertex path { {a,f}, f, {f,d},
d, {d,e}, e} of length equal to 5.

– An Edge-vertex shortest path: let e1 be an edge in G× and e2 be a vertex in G•. A
shortest path from a vertex e1 to an edge e2 is a path of minimal length from e1 to
e2. We denoted by L(e1, e2) the length of a shortest path from e1 to e2.
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Figure 3.5: An edge-vertex path.

Let us now present the vertex-edge distance maps.

Definition 19 (Edge-vertex distance map). Let X× and X• be two subsets of G. The
(edge-vertex) distance map to X× is the map D

(×,•)
X× from G• to the set of integers such

that:

D
(×,•)
X× (x) = min{L(u, x) | u ∈ X×}, for any x ∈ X•. (3.3)

In other words, given a subset X× of edges, the edge-vertex distance map to X×

provides for each vertex x of G the minimal length of a path from x to an edge of X×. An
illustration of edge-vertex distance map D

(×,•)
X× is provided in Figure 3.6.

3.2.4 Vertex-Vertex Distance map on graphs

– A vertex-vertex path: let x and y be two vertices in G•. A (vertex-vertex) path
from x to y is a sequence (x0, u0, . . . , x`−1, u`−1, x`) such that x0 = x, x` = y, and,
for any i in {0, . . . , `− 1}, and we have ui = {xi, xi+1} where ui is an edge of G.

– The length of a vertex-vertex path (x0, u0, . . . , x`−1, u`−1, x`) in our proposition is
considered as the number of its elements minus one, i.e., the integer value 2`. Observe
that the length of any vertex-vertex path is even, which is not usual standard graph
textbooks.
Figure 3.7 illustrates in red an example of a vertex-vertex path { a, {a,f}, f, {f,d}, d,
{d,e}, e} of length equal to 6.

– A Vertex-vertex shortest path: let e1 and e2 be two vertices in G•. A shortest
path from a vertex e1 to another vertex e2 is a path of minimal length from e1 to e2.
We denote by L(e1, e2) the length of a shortest path from e1 to e2.
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Figure 3.6: Illustration of edge-vertex distance map on graphs. The first subfigure shows
the set of edges X× in the graph G. The second subfigure shows the edge-vertex distance
maps to the set X×.

Figure 3.7: A vertex-vertex path.

Definition 20 (vertex-vertex distance map). Let X• be a subset of G. The (vertex-
vertex) distance map to X• is the map D(•,•)

X• from G• to the set of integers such that:

D
(•,•)
X• (x) = min{L(x, y) | y ∈ X•}, for any x ∈ X•. (3.4)
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In other words, given a subset X• of edges, the vertex-vertex distance map to X•

provides for each vertex x of G the minimal length of a path from x to a vertex of X•. An
illustration of vertex-vertex distance map D

(•,•)
X• is provided in Figure 3.8.
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Figure 3.8: Illustration of Vertex-vertex distance map on graphs. The first subfigure
shows the set of vertices X• in the graph G. The second subfigure shows the vertex-vertex
distance maps to the set X•.

As we presented in chapter 2 a link is introduced by L.Vincen in [58] in order to compute
the classical dilation and erosion using distance map on graph. In the following section,
we will prove that all operators of erosions and dilations defined in Definition 13 can be
characterized thanks to these proposed distance maps.

3.3 Iterated Morphological operators based on dis-
tance maps

In this section, we demonstrate using characterization theorems that the result of the
operators defined in Definition 13 can be obtained from our proposed distance maps. More
precisely, any dilation or erosion of a set, for any given size parameter λ, can be obtained
by thresholding a distance map at value λ according to the relations established by the
following theorems.
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3.3.1 Edge-edge Dilation and Erosion

When the value of the parameter λ is even, the operators of dilation ∆λ/2 and of
erosion ελ/2 map a set of edges to a set of edges in the graph G. In order to characterize
these operators, we establish in this part a link between the proposed edge-edge distance
map D

(×,×)
X× and these two operators.

The following Theorem 21 states that to obtain the edge-edge dilation and erosion, one
needs to compute an edge-edge distance map and to deduce the result of these operators
by considering thresholds of distance map at value λ.

Theorem 21. Let λ be any even positive integer. The two following relations hold true.

∆λ/2(X×) = {u ∈ G× | D(×,×)
X× (u) ≤ λ}, for any X× ∈ G×; and (3.5)

ελ/2(X×) = {u ∈ G× | D(×,×)
X× (u) > λ}, for any X× ∈ G×. (3.6)

where X× is the complement of X× in G×, that is X× = G× \X×.

Proof. Let us now prove that the relation (3.5) holds true. Let λ be even and let X× ⊆
G×. The following statements are equivalent.

∆λ/2(X×) = (δ× ◦ δ•)λ/2(X×), (by Equation 2.47)

∆λ/2(X×) = δ× ◦ (δ• ◦ δ×)(λ−2)/2 ◦ δ•(X×)

∆λ/2(X×) = δ× ◦ δ(λ−2)/2 ◦ δ•(X×), (by Equation 2.45)

∆λ/2(X×) = δ(λ−1)/2 ◦ δ•(X×), (by Equation 2.49)

∆λ/2(X×) = {u ∈ G× | D(•,×)
δ•(X×)(u) ≤ λ− 1}, (by Equation 3.7)

∆λ/2(X×) = {u ∈ G× | ∃ x ∈ δ•(X×),∃ a path from x to u of length not greater than λ− 1},
(by Equation 3.2)

∆λ/2(X×) = {u ∈ G× | ∃v ∈ X×,∃ a path from v to u of length not greater than λ},
(by Equation 2.28)

∆λ/2(X×) = {u ∈ G× | D(×,×)
X× (u) ≤ λ}, (by Equation 3.1)

The relation (3.6) will be deduced by duality from the relation (3.5). Using the prop-
erty of duality provided in [14], we have ∆λ/2(X×) = ελ/2(X×). Therefore, by rela-
tion (3.5), we have the equality ∆λ/2(X×) = {u ∈ G× | D(×,×)

X× (u) ≤ λ} which is equivalent
to ελ/2(X×) = {u ∈ G× | D(×,×)

X× (u) > λ}.

In other words, Theorem 21 states that, when λ is even, the set ∆λ/2(X×) contains any
edge with a value not greater than λ for the distance map D

(×,×)
X× . In addition, it states

that the set ελ/2(X×)) contains any edge with a value greater than λ for the distance map
D

(×,×)
X× .
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For example, the dilations {∆λ/2(X×)} (resp. the erosions {ελ/2(X×)}) with even
value of λ in {2, 4}, which are shown in Figure 3.9 (resp. Figure 3.10), can be obtained
by thresholding the edge-edge distance map D

(×,×)
X× (resp. D(×,×)

X× ) presented in the second
column Figure 3.9 (resp. Figure 3.10) at the values 2 and 4 (see the third and the fourth
column of the Figure 3.9, respectively (resp. Figure 3.10)).
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Figure 3.9: Illustration of the operator ∆λ/2(X×) with λ ∈ 2, 4. The considered sets are
depicted by black line segments.

3.3.2 Vertex-edge Dilation and erosion

When dealing with odd value of the parameter λ, the operators of dilation δλ/2 and
of erosion ελ/2 map a set of vertices to a set of edges. In order to characterize these
operators, relations are established between the proposed vertex-edge distance map D

(•,×)
X•

and these two operators. Indeed, the following theorem (Theorem 22) states that, one
needs to compute an vertex-edge distance map and to deduce the result of these operators
by considering thresholds of distance map at value λ.

Theorem 22. Let λ be any positive odd integer. The two following relations hold true.

δλ/2(X•) = {u ∈ G× | D(•,×)
X• (u) ≤ λ}, for any X• ∈ G•; (3.7)

ελ/2(X•) = {u ∈ G× | D(•,×)
X• (u) > λ}, for any X• ∈ G•; (3.8)

where X× is the complement of X× in G×, that is X× = G×\X× and X• is the complement
of X• in G•, that is X• = G• \X•.
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Figure 3.10: Illustration of the operator ελ/2(X×) with λ ∈ 2, 4. The considered sets are
depicted by black line segments.

Proof. We move now to prove that the relation (3.7) holds true. Let λ be odd and
let X• ⊆ G•. The following statements are equivalent.

δλ/2(X•) = δ× ◦ δ(λ−1)/2(X•), (by Equation 2.49)

δλ/2(X•) = δ×({x ∈ G• | D(•,•)
X• (x) ≤ λ− 1}), (by Equation 3.11, since λ− 1 is even)

δλ/2(X•) = δ×({x ∈ G• | ∃y ∈ X•,∃ a path from y to x of length not greater than λ− 1}),
(by Definition 20)

δλ/2(X•) = {{x, z} ∈ G× | ∃y ∈ X•, ∃ a path from y to x of length not greater than λ− 1}),
(by Equation 2.31)

δλ/2(X•) = {u ∈ G× | ∃y ∈ X•,∃ a path from y to u of length not greater than λ}),
(by definition of a path)

δλ/2(X•) = {u ∈ G× | D(•,×)
X• (u) ≤ λ}, (by Equation 3.2)

The relation (3.8) will be deduced by duality from the relation (3.7). Using the
property of duality provided in [14], we have δλ/2(X•) = ελ/2(X•). Therefore, by rela-
tion (3.7), we have the equality δλ/2(X•) = {u ∈ G× | D(•,×)

X• (u) ≤ λ} which is equivalent
to ελ/2(X•) = {u ∈ G× | D(•,×)

X• (u) > λ}.

In other words, Theorem 22 states that, when λ is odd, the set δλ/2(X•) contains any
edge of value not greater than λ (resp. greater than λ for the distance map D

(•,×)
X• . Also,

the theorem states that the set ελ/2(X•) contains any edge of value greater than λ for the
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distance map D
(•,×)
X• .

For instance, the dilations {δλ/2(X•)} (resp. the erosions {ελ/2(X•)} ) for odd values
of λ in {1, 3}, which are shown in Figure 3.11 (resp. Figure 3.12), can be obtained and
characterized by thresholding the vertex-edge distance map D(•,×)

X• (resp. D(•,×)
X• ) presented

in the second column of Figure 3.11 (resp. Figure 3.12) at the values 1 and 3 (see the third
and the fourth column of the Figure 3.11, respectively (resp. Figure 3.12)).
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Figure 3.11: Illustration of the operator δλ/2(X×) with λ ∈ 1, 3. The considered sets are
depicted by black dots segments.

3.3.3 Edge-vertex Dilation and erosion

When the parameter λ is odd value, the operators of dilation ∆λ/2 and of erosion
ελ/2 map a set of edges to a set of vertices. In order to obtain these operators, relations
are established between these operators and the proposed edge-vertex distance map D(×,•)

X× .
Indeed, as stated by the following theorem (Theorem 23), one needs to compute an edge-
vertex distance map and to deduce the result of these operators of dilation and erosion by
considering thresholds of distance map at value λ.

Theorem 23. Let λ be any odd positive integer. The four following relations hold true.

∆λ/2(X×) = {x ∈ G• | D(×,•)
X× (x) ≤ λ}, for any X× ∈ G×; and (3.9)

ελ/2(X×) = {x ∈ G• | D(×,•)
X× (x) > λ}, for any X× ∈ G×, (3.10)

where X× is the complement of X× in G×, that is X× = G×\X× and X• is the complement
of X• in G•, that is X• = G• \X•.
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Figure 3.12: Illustration of the operator ελ/2(X×) with λ ∈ 1, 3. The considered sets are
depicted by black dots segments.

Proof. We are now going to prove that relation (3.9) holds true. Let λ be odd and
let X× ⊆ G•. The following statements are equivalent.

∆λ/2(X×) = δ• ◦∆(λ−1)/2(X×), (by Equation 2.51)

∆λ/2(X×) = δ• ◦ (δ× ◦ δ•)(λ−1)/2(X×), (by Equation 2.47)

∆λ/2(X×) = (δ• ◦ δ×)(λ−1)/2 ◦ δ•(X×)

∆λ/2(X×) = δ(λ−1)/2 ◦ δ•(X×), (byEquation 2.45)

∆λ/2(X×) = {x ∈ G• | D(•,•)
δ•(X×)(x) ≤ λ− 1}, (by Equation 3.11)

∆λ/2(X×) = {x ∈ G• | ∃y ∈ δ•(X×), ∃ a path from y to x of length not greater than λ− 1},
(by Definition 20)

∆λ/2(X×) = {x ∈ G• | ∃u ∈ X×, ∃ a path from u to x of length not greater than λ}
(by Equation 2.28)

∆λ/2(X×) = {x ∈ G• | D(×,•)
X× (x) ≤ λ} (by Equation 3.3)

The relation (3.10) will be deduced by duality from the relation (3.9). Using the
property of duality provided in [14], we have ∆λ/2(X×) = ελ/2(X×). Therefore, by rela-
tion (3.9), we have the equality ∆λ/2(X×) = {u ∈ G× | D(×,•)

X× (u) ≤ λ} which is equivalent
to ελ/2(X×) = {u ∈ G× | D(×,•)

X× (u) > λ}.

In other words, Theorem 23 states that, when λ is odd, the set ∆λ/2(X×) contains any
vertex of value not greater than λ for the distance map D

(×,•)
X× . And, the set ελ/2(X×)
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contains any vertex of value greater than λ for the distance map D
(×,•)
X× .

For example, the dilations {∆λ/2(X×)} (resp. the erosions {ελ/2(X×)}) with odd value
of λ in {1, 3}, which are shown in Figure 3.13 (resp. Figure 3.14), can be obtained by
thresholding the edge-vertex distance map D

(×,•)
X× (resp. D(×,•)

X× ) presented in Figure 3.13
(resp. Figure 3.14) presented in the second column Figure 3.13 (resp. Figure 3.14)at the
values 1 and 3 (see the third and the fourth column of the Figure 3.13 respectively (resp.
Figure 3.14)).
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Figure 3.13: Illustration of the operator ∆λ/2(X×) with λ ∈ 1, 3. The considered sets are
depicted by black dots.

3.3.4 Vertex-vertex Dilation and erosion

When the parameter λ is even value, the operators of dilation δλ/2 and of erosion ελ/2

map a set of vertices to a set of vertices.
Based on the link proposed in [58], the following property states that one can compute

a the vertex-vertex distance map D
(•,•)
X× and deduce the result of the dilation or erosion by

considering thresholds of that distance map at value λ.

Property 24 (from [58]). Let X• be a subset of G. Then, the following relations hold
true:

δλ/2(X•) = {x ∈ G• | D(•,•)
X• (x) ≤ λ}, for any X• ∈ G•; (3.11)

ελ/2(X•) = {x ∈ G• | D(•,•)
X• (x) > λ}, for any X• ∈ G•, (3.12)

where X• is the complement of X• in G•, that is X• = G• \X•.
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Figure 3.14: Illustration of the operator ελ/2(X×) with λ ∈ 1, 3. The considered sets are
depicted by black dots.

In other words, the set δλ/2(X•) contains any vertex with a value not greater than λ for
the distance map D(•,•)

X• . The set ελ/2(X•) contains any vertex with a value greater than λ
for the distance map D

(•,•)
X• to the complementary set X• of X•.

For example, the dilations {δλ/2(X•)} (resp. the erosions {ελ/2(X•)}) with odd value
of λ in {2, 4}, which are shown in Figure 3.15 (resp. Figure 3.16), can be obtained by
thresholding the vertex-vertex distance map D

(•,•)
X× (resp. D(•,•)

X• ) presented in Figure 3.15
(resp. Figure 3.16) presented in the second column Figure 3.15 (resp. Figure 3.16) at the
values 2 and 4 (see the third and the fourth column of the Figure 3.15 respectively (resp.
Figure 3.16)).

As a result, based on Theorems 21, 22, 23 and Property 24 which are provided in this
section, the result of any operator of Definition 13 can be characterized by thresholding
a distance map at value λ, leading to efficient algorithms to compute the results of these
operators. Note that, thresholding distance maps that weights the vertices X• (resp.
edges X×) of a graph G can be done in linear-time with respect to the number of vertices
|X•| (resp. edges |X×|) of the graph G with a sequential algorithm. Therefore, in the
following section linear-time sequential algorithms are devoted for computing distance maps
on graphs, hence all dilations and erosions.
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Figure 3.15: Illustration of the operator δλ/2(X•) with λ ∈ 2, 4. The considered sets are
depicted by black dots.
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Figure 3.16: Illustration of the operator ελ/2(X•) with λ ∈ 2, 4. The considered sets are
depicted by black dots.

3.4 Proposed sequential algorithms for morphological
operators on graphs

After establishing links between our proposed distance maps and the iterated morpho-
logical operators on graphs (see Definition 13), we proposed efficient algorithms to compute
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vertex-edge, vertex-vertex, edge-edge, and edge-vertex distance maps in linear time with
respect to the size of the graph G, hence all morphological operators on graphs. In par-
ticular, when the considered graph is unweighted, the lengths of shortest paths to a given
vertex can be obtained with a breadth-first search algorithm in linear O(|G•|+ |G×|) time
complexity (see Chapter 2). Therefore, our sequential algorithms proposed in this section
are variations on this breadth-first search algorithm.

3.4.1 Vertex-edge and Vertex-vertex distance map algorithm

We present in this part Algorithm 1 which allows us to compute both the vertex-edge
distance map D

(×,•)
X• and the vertex-vertex distance map D

(•,•)
X• to a given subset X• of

vertices. The basic idea of this algorithm is to perform a breadth-first exploration of the
edges and vertices of G from the elements of X•. The distance map value of each vertex
(resp. edge) is computed when the vertex is first encountered during exploration. The
breadth-first exploration, which ensures correct distance values, is made possible thanks
to the auxiliary queue Q that is managed with a FIFO (First-In-First-Out) property.

Algorithm 1: Vertex-edge and vertex-vertex distance maps.
Data: a connected graph G = ( G•, G×), and subset X• of G•.
Result: the distance maps D(•,•)

X• and D
(•,×)
X• to the set X•.

1 Q := an empty queue with FIFO property;
2 foreach vertex x in G• do
3 if x ∈ X• then Q.push(x); D(•,•)

X• (x) := 0;
4 else D(•,•)

X• (x) := ∞;

5 foreach edge {x, y} in G× do D
(•,×)
X• ({x, y}) := ∞;

6 while Q.isNotEmpty() do
7 x := Q.pop();
8 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G×

9 if D(•,×)
X• ({x, y})= ∞ then D

(•,×)
X• ({x, y}) := D

(•,•)
X• (x) + 1;

10 if D(•,•)
X• (y) =∞ then Q.push(y); D(•,•)

X• (y) := D
(•,•)
X• (x) + 2;

We provide now an overview of Algorithm 1. Given a subset X• of G•, this Algorithm 1
can be sketched as follows:

1. An initialization step consists of inserting the vertices that belong to X• into the
queue Q, and set their distance value to 0 (see lines 2 to 4) whereas set the distance
value of the remaining vertices in G• to infinity. It consists also to set the distance
value of edges in G× to infinity.

2. Browse the neighbors (i.e. the adjacent vertices and adjacent edges) of each vertex
popped from Q, and set the distance value of the adjacent vertices (resp. adjacent
edges) not yet traversed to the distance value of the popped vertex +1 (resp. +2).
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3. Repeat the step 2 until Q is empty.

Observe that in Algorithm 1, the distance value between two neighbors is equal to two.
This is indeed correct with respect to the above definition of length of a path.

3.4.1.1 The correctness of Vertex-edge and Vertex-vertex distance map algo-
rithm

In order to establish the correctness of Algorithm 1, let us analyze four invariants of
Algorithm 1, i.e. four properties that hold true at every iterations of the main loop (line
6): i) every finite value associated to a point or an edge is the correct distance map value
to the input set X•; ii) every vertex of G with a finite value that has an adjacent edge or
vertex with an infinite value belongs to Q; iii) the vertices of Q are mapped to finite values
and they are stored in increasing order, the value of the first element of Q being Qmin and
the one of the last element being not greater than Qmin +2 ; and iv) any element e of G• or
of G× such that there is a vertex x in X• with L(x, e) < Qmin is mapped to a finite value.

These invariants trivially hold true after the initialization step (lines 1-5). At every
iteration of the main loop, a vertex x is popped from Q (line 6). Let λ be the distance
map value of this vertex. In order to preserve properties i)-iv) above, all vertices and edges
adjacent to x are analyzed thanks to the foreach loop at line 8. If an adjacent edge (resp.
vertex) with an infinite value is found, then we can easily deduced that this element can
be reach from X• (through x) with a path of length λ+ 1 (resp. λ+ 2). Furthermore, such
path is a shortest one (otherwise, due to invariant ii) and iv)), there would be an adjacent
vertex in Q with a value smaller than λ, a contradiction with invariant iii)). Thus, the new
value is correct and invariant i) is preserved. The newly discovered vertex is pushed in Q
at line 10 in order to preserve invariant ii). Note that invariant iii) is trivially preserved
since the newly inserted vertex has a value of λ+ 2. Let us finally establish that invariant
iv) holds true at the end of the while loop iteration. It can be seen that any element e
in G•∪G× such that there is a vertex y in X• with L(y, e) < Qmin is adjacent to a vertex z
such that L(y, z) < Qmin − 2. But it can be observed that we have Qmin ∈ {λ, λ + 2}.
Thus, we deduce that L(y, z) < λ. Hence, since invariant iv) holds true at the beginning
of the while loop iteration, we deduce that z is mapped to a finite value. Furthermore,
since L(y, z) < λ, we deduce that z is not in Q. Therefore, by (the contraposition of) ii),
we may affirm that e is mapped to a finite value, which proves that invariant iv) holds
true at the end of the iteration of the while loop. Thus, invariants i)-iv) hold true when
the foreach loop at line 8 terminates. Hence, we deduce that when the algorithm halts
the produced maps D(•,•)

X• and D
(•,×)
X• are indeed the vertex-vertex distance and the the

vertex-edge distance map to X•.
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3.4.1.2 Complexity analysis of Vertex-edge and Vertex-vertex distance map
algorithm

Let us now analyze the time complexity of Algorithm 1. First, the initialization of
the queue Q (line 1) is done in constant time. Since a push operation on a queue can
be done in constant time, the overall complexity of the initialization loop at lines 1-4 is
done in O(|G•|) and the edge distance map initialization is done in O(|G×|) by the loop
at line 5. Then, in order to analyze the complexity of the main loop of Algorithm 1, it
is important to note that every vertex of the graph is pushed at most once in Q. This is
ensured by immediately setting to a finite value a point which is inserted in Q and by only
inserting in Q points with an infinite value (see lines 3 and 10). Thus, since a vertex is
popped from Q at every iteration of the while loop, we deduce that there are at most |V |
iterations of this loop. At each iteration of the while loop the vertices and edges adjacent
to the vertex which is popped are explored (foreach loop at line 8). Thus, if the graph G
is represented as an array of lists associating to each vertex the list of its adjacent edges,
the complexity of line 8 is O(|V | + |E|). The instructions, inside this foreach loop are
executed at most 2 × |E| times, each of them being individually performed in constant
time. Therefore, the overall complexity of these instructions is O(|E|). Thus, we deduce
that the overall complexity of the algorithm is O(|V |+ |E|).

3.4.2 Edge-edge and Edge-vertex distance map algorithm

In this part, we provide Algorithm 2 that allows us to compute both the edge-edge
distance map D

(×,×)
X× and edge-vertex distance maps D(×,•)

X× to a given subset X× of edges
instead of the vertex-vertex and vertex-edge distance maps to a subset of vertices. The
initialization steps of algorithm presented hereafter (lines 2 to 8), which has to be made from
a set of edges rather than from a set of vertices, is the main difference with Algorithm 1.
However, the same arguments can be used to establish the correctness and the complexity
of Algorithm 2.

As a conclusion, the following property resumes the main ideas of last sections.

Property 25. Algorithm 1 outputs two maps D(•,•)
X• and D

(•,×)
X• that are the vertex-vertex

and vertex-edge distance maps, respectively, to the input subset X• of G•. Algorithm 2
outputs two maps D(×,×)

X× and D(×,•)
X× that are the edge-edge and edge-vertex distance maps,

respectively, to the input subset X× of G×. Furthermore Algorithms 1 and 2 both run in
linear time with respect to |V |+ |E|.

3.5 Conclusion

In this chapter, we show that all operators of erosions and dilations defined in [14]
(see Definition 13) can be characterized thanks to our proposed distance maps, leading to
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Algorithm 2: Edge-edge and edge-vertex distance maps.
Data: a connected graph G = ( G•, G×) and a subset X× of G×.
Result: the distance maps D(×,×)

X× and D
(×,•)
X× to the set X×.

1 Q := an empty queue with FIFO property;
2 foreach vertex x in G• do D

(×,•)
X× (x) := ∞;

3 foreach edge {x, y} in G× do
4 if {x, y} ∈ X× then
5 if D(×,•)

X× (x)== ∞ then Q.push(x); D(×,•)
X× (x):= 1 ;

6 if D(×,•)
X× (y)== ∞ then Q.push(y); D(×,•)

X× (y):= 1 ;
7 D

(×,×)
X× ({x, y}) := 0;

8 else D(×,×)
X× ({x, y}) := ∞ ;

9 while Q.isNotEmpty() do
10 x := Q.pop();
11 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G×

12 if D(×,×)
X× ({x, y})== ∞ then D

(×,×)
X× ({x, y}) = D

(×,•)
X× (x)+1;

13 if D(×,•)
X× (y)== ∞ then Q.push(y); D(×,•)

X× (y) := D
(×,•)
X× + 2 ;

efficient computation of these operators. First, theorems are provided to demonstrate that
the result of any operator of Definition 13 can be obtained by thresholding a distance map
at value λ. These characterizations lead to obtain all operators of dilations and erosions on
graphs with a single iteration and without any dependence with the parameter λ. Then,
linear-time sequential algorithms are proposed to compute the proposed distance maps,
hence the morphological operators on graphs.

The next chapter is devoted to propose a parallelization strategy leading to a fast
computation of the proposed distance maps, hence the morphological operators of [14].

.
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Chapter 4

Parallel strategy for distance maps
on graphs
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4.1 Introduction

In order to exploit the parallel machines and to benefit from the multi-core processors
architecture, we propose a parallel strategy that leads to a fast computation of distance
maps introduced in previous chapter, hence the mathematical morphology operators on
graphs of [14]. To this end, a description of the proposed parallel strategy is provided in
Section 4.2 and necessary auxiliary functions for this strategy are described in Section 4.2.2.
Then, we state the complexity of our parallel algorithms under some proved assumptions
about the graph and set under consideration in Section 4.3.

4.2 Proposed parallel strategy

The parallel strategy proposed in our work is based on dynamic partitioning. The
partition method depends on the input set (the set of vertices or set of edges) and is iter-
atively computed during the execution. More precisely, our strategy iteratively considers
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the successive level-sets of the distance maps where each level set being partitioned and
then traversed in parallel.

In this section, we provide a precise description of our parallel strategy for vertex-
vertex and vertex-edge distance maps (ı.e. a parallelization of Algorithm 1) which can
also be adapted to edge-edge and and edge-vertex distance maps computations to obtain
a parallelization of Algorithm 2.

4.2.1 Description of parallel algorithms

Let us first present our strategy from a high level point of view. To this end, we recall
the notion of a level set: Given an integer λ and a (distance) map D from G• in the
set of integers, the λ-level set of D is the set of all elements of value λ for D (i.e., the
set {x ∈ G• | D(x) = λ}).

We are now ready for providing the overview of our parallel algorithm for vertex-vertex
and vertex-edge distance maps (see Algorithm 3). This description is similar for the parallel
algorithm which compute edge-vertex and edge-edge distance maps to a given subset of
edges (see Algorithm 4). The main difference with Algorithm 3 is in the initialization steps
of Algorithm 4 (lines 7 to 12), which has to be made from a set of edges rather than from
a set of vertices. So, for the sake of simplicity, hereafter we only focus on the Algorithm 3.

Given a subset X• of G•, after an initialization step where an integer variable λ is set
to 0 and where the elements of X• are inserted in a variable set E (hence E is the (λ = 0)-
level-set of D(•,•)

X• ), our algorithm can be sketched as follows:
1. Partition E (i.e., the λ-level set of D(•,•)

X• ) into p balanced subsets E1, . . . , Ep (line 10
of Algorithm 3).

2. Assign each of the p subsets E1, . . . , Ep to one of the p processors (line 11 of Algo-
rithm 3).

3. Let, in parallel, each processor browse on the neighbors of the elements in its assigned
subset Ei, insert those which are not yet traversed into a private variable set Si, and
set their distance map values to λ+ 2, also set the distance map values of the edges
linked the elements in Ei with their neighbors not yet traversed to λ + 1 (lines 13
to 18 of Algorithm 3).

4. Merge the private sets {Si | i ∈ {1, . . . , p}} and store the result in E so that E
becomes the (λ + 2)-level set of D(•,•)

X• or the (λ + 1)-level set of D(•,×)
X• (line 19 of

Algorithm 3).
5. Increment λ and repeat steps 1-4 until E becomes empty (line 20).

In Step 3, in order to concurrently check if a vertex has been already traversed, we need to
equip each vertex with a synchronization Boolean variable that is handled with an atomic
test-and-set instruction. The test-and-set instruction sets a given variable to true and
returns its old value as a single atomic (i.e., non-interruptible) instruction.
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Algorithm 3 provides the precise description of our parallel strategy. It uses two auxil-
iary functions called Partition and Union (see Section 4.2.2 for an extensive study) . The
function Partition takes two arguments. The first one is the set E to be partitioned and the
second one is an integer p corresponding to the number of classes of the returned partition.
The function Partition returns a balanced partition of E into p classes, the partition being
balanced in the sense that any of its classes contains either |E|/p or |E|/p + 1 elements.
The function Union is simply computing the union of its arguments.

Algorithm 3: Parallel vertex-vertex and vertex-edge distance maps.
Data: A connected graph (G•,G×), a subset X• of G•, the number p of processors.
Result: The distance maps D•X• and D×X• to the set X•.

1 E := ∅; λ :=0;
2 Set to False all elements of a shared Boolean array Traversed of size |G•|
3 (E1, . . . ,Ep):= Partition(X•, p);
4 (F1, . . . ,Fp):= Partition(G×, p);
5 foreach processor i in {1, . . . ,p} do in parallel
6 foreach vertex x ∈ Ei do D•X•(x) := λ; Traversed[x] := True ;
7 foreach edge e ∈ Fi do D×X•(e) := ∞ ;
8 E:=Union(p, E1, . . . , Ep);
9 while E 6= ∅ do

10 (E1, . . . ,Ep):= Partition(E, p);
11 foreach processor i in {1, . . . , p} do in parallel
12 Si:=∅;
13 foreach x in Ei do
14 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G×

15 if D×X•({x, y}) =∞ then D×X•({x, y}) := λ+ 1;
16 if test-and-set(Traversed[y]) = False then
17 Si:=Si ∪ {y};
18 D•X•(y) := λ;

19 E:=Union(p, S1, . . . , Sp);
20 λ:=λ+ 2;

4.2.2 Parallel partition and disjoint union algorithms

Let us now present the two auxiliary algorithms for the Partition and Union functions
used in our parallel strategy.

The parallel partition algorithm (see Algorithm 5) consists of computing in parallel,
with p processors, a balanced partition {E1, . . . , Ep} of a set E. The partition is balanced
in the sense that the k first sets of the partition contain |E|/p + 1 elements whereas the
following ones contain |E|/p elements, where k is the remainder in the integer division
of |E| by p and where a/b denotes the quotient of the integer division of a by b. The
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Algorithm 4: Parallel edge-edge and edge-vertex distance maps.
Data: A connected graph (G•,G×), a subset X× of G×, the number p of processors.
Result: The distance map D

(×,×)
X× and D

(×,•)
X× to the set X×.

1 E := ∅; λ :=1;
2 Set to False all elements of a shared Boolean array Traversed of size |G•|
3 (E1, . . . ,Ep):= Partition(G•, p);
4 (F1, . . . ,Fp):= Partition(G×, p);
5 foreach processor i in {1, . . . ,p} do in parallel
6 foreach vertex x ∈ Ei do D

(×,•)
X× (x) := ∞ ;

7 foreach edge e = {x, y} ∈ Fi do
8 if {x, y} ∈ X× then
9 if D(×,•)

X× (x)== ∞ then Traversed[x] := True; D(×,•)
X× (x):= 1 ;

10 if D(×,•)
X× (y)== ∞ then Traversed[y] := True; D(×,•)

X× (y):= 1 ;
11 D

(×,×)
X× ({x, y}) := 0;

12 else D
(×,×)
X× ({x, y}) := ∞ ;

13 E:=Union(p, E1, . . . , Ep);
14 while E 6= ∅ do
15 (E1, . . . ,Ep):= Partition(E, p);
16 foreach processor i in {1, . . . , p} do in parallel
17 Si:=∅;
18 foreach x in Ei do
19 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G×

20 if D×X×({x, y}) =∞ then D×X×({x, y}) := λ+ 1;
21 if test-and-set(Traversed[y]) = False then
22 Si:=Si ∪ {y};
23 D

(×,•)
X× := λ+ 2;

24 E:=Union(p, S1, . . . , Sp);
25 λ:=λ+ 2;

elements of E, stored in an array of size |E|, are moved to arrays previously allocated for
the subsets E1, . . . , Ep in the order of their indices: the first set receives the first elements
of the array E and so on (see Figure 4.1). Thus, each processor computes the index of the
first and of the last element that must be copied (lines 2 to 6) before actually copying the
elements of E located between the computed indices (line 7). The computation of the first
and of the last indices can be done in constant time and the copying step is done in linear
time with respect to |E|/p (each processor moves at most |E|/p+ 1 elements according to
its number elements). For these steps, there is no dependence between processors. Thus,
all processors can perform these steps in parallel.

The parallel Union algorithm (see Algorithm 6) computes the union of p disjoint
sets {S1, . . . , Sp} with p processors. The elements of each set are stored in an array and
each processor pi (i ∈ {1 . . . , p}) copies the elements of the array Si in the array E. The
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Algorithm 5: Partition.
Data: An array E of n = |E| elements, the number p of processors.
Result: A balance partition (E1, . . . ,Ep) of E.

1 foreach processor i in {1, . . . ,p} do in parallel
2 if i ≤ (n mod p) then
3 start[i] := (i− 1) ∗ (n/p+ 1); end[i] := start[i] + n/p;
4 else
5 start[i] := (n mod p) ∗ (n/p+ 1) + (i− 1− (n mod p)) ∗ (n/p);
6 end[i] := start[i] + n/p - 1;
7 foreach ji in {start[i], . . . , end[i]} do Ei[ji − start[i]] := E[ji] ;

0 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

start[1] end[4] start[5]start[2]end[1] end[5]start[3]end[2] start[4]end[3]

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 0 1 2

E

E1 E2 E3 E5E4

Figure 4.1: Illustration of the Partition algorithm with p = 5 processors.

elements of Si are stored consecutively in the resulting array E from the index start[i],
where start[i] is the sum of the cardinalities of the sets S1, . . . , Si−1 (see Figure 4.2):
start[i] = ∑

j∈{1,...,i−1} |Sj|. Thus, our algorithm first computes the values start[i] for any i
in {1, . . . , p} (line 1) before actually copying the elements into E (line 3). Given the car-
dinalities |S1|, . . . , |Sp|, computing the values start[i] for any i in {1, . . . , p} is known as
the prefix-sum problem. It can be solved in parallel with p processors with a O(log2 p)
running-time algorithm [33]. Then, each processor i copies in parallel (line 3) the elements
of Si into E at the correct position.

Algorithm 6: Union.
Data: A series S1, . . . , Sp of p sets, and the number p of processors.
Result: An array E whose elements constitutes the union of {S1, . . . , Sp}.

1 start = ParallelPrefixSum(|S1|, . . . , |Sp|);
2 foreach processor i in {1, . . . , p} do in parallel
3 foreach ji in {0, . . . , |Si| − 1} do E[start[i] + ji] := Si[ji] ;
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Processor 3 Processor 5Processor 4Processor 2
0 1

Figure 4.2: Illustration of the Union algorithm with p = 5 processors.

4.2.3 Example of step illustration of parallel algorithm

Before further studying Algorithm 3, let us analyze an execution example. To this end,
the graph G = (G•,G×) and the set X• = {A,B, F, S, T} shown Figure 4.3(a) are consid-
ered. For the sake of simplicity, in this example, let us focus only on the distance map D•X•

and let us discard the instructions concerning D×X• . Figure 4.3(b) illustrates the iterations
of the main loop of Algorithm 3 with three processors, i.e., with p = 3. After the initial-
ization, we have E = X• = {A,B, F, S, T}, λ = 0, and D•X•(A) = D•X•(B) = D•X•(F ) =
D•X•(S) = D•X•(T ) = 0. In the first iteration, the first step consists of partitioning the in-
put set E = {A,B, F, S, T} into 3 balanced subsets E1 = {A,B}, E2 = {F, S}, E3 = {T}.
Then, the sets E1, E2, and E2 are assigned to the processors 1, 2, and 3, respectively.
Each processor i, in parallel, explores the non-already traversed neighbors of the vertices
in its subset Ei and inserts these neighbors into a private set. As shown in Figure 4.3, the
resulting private sets S1, S2, and S3 are such that S1 = {C,G}, S2 = {K,R,N}, S3 = {O}.
Observe that the vertex G (written in bold in the figure) was concurrently found by two
distinct processors (numbered 1 and 2) since it is a successor of B, which belongs to E1,
and a successor of F , which belongs to E2. But thanks to the test on the synchronized
Boolean array Traversed, it was actually inserted only into S1 and not into S2. When a
element is inserted into a set Si, its distance map value is updated with the current value
of λ plus 2 which here is equal to 2 since we are at the first iteration. Thus, we now
have D•X•(C) = D•X•(G) = D•X•(K) = D•X•(R) = D•X•(N) = D•X•(O) = 2. Then, once the
parallel neighbor search on E1, E2, and E3 is over, the sets S1, S2, and S3 are merged thanks
to a call to the Union function resulting into the updated set E = {C,G,K,R,N,O}. This
updated set E, the 2-level set of D•X• , is considered for the next iteration of the main while
loop of the algorithm. Before starting a new iteration the value of λ is updated and there-
fore set to 2. After this first iteration, since E is nonempty, a second iteration of the main
while loop is considered. In fact, on this example, four iterations of the main loop are
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necessary to compute the resulting distance maps, as shown on Figure 4.3.
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Figure 4.3: Illustration of the proposed parallel algorithm (Algorithm 3): a step-by-step
execution example with p = 3 processors.

4.3 Complexity analysis

In this part, the worst-case time complexity of our parallel algorithms is analyzed.
This complexity depends of the ratio, called the unbalancing balancing factor of the graph
(Definition 27), of the maximum degree of a vertex of the graph over the minimum one.
As seen above, for the sake of simplicity, we only focus on Algorithm 3, but all the study
can also be adapted to Algorithm 4.
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The complexity of Algorithm 3 is analyzed under an assumption about the graph and
set under scrutiny. Indeed, in some “degenerated” cases, which we seek to avoid by this
assumption, the distance map computation problem becomes sequential. This is the case,
in particular, when the graph depicts a “linear shape”, e.g., when each vertex is adjacent
to at most two other vertices. An example of such graph is shown in Figure 4.4a. In order
to handle such problematic situations, the following notion of a regular set is proposed.
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Figure 4.4: (a) A graph G and a subset X• (in black) of vertices that is 1-regular but
not 2-regular. The distance map D•X• is given by the blue numbers. (b) A graph whose
unbalancing factor is 3

2 used to illustrate a situation of unbalanced workload obtained with
Algorithm 3 (see text).

Definition 26 (regular set). Let p be a positive integer and let X• be a subset of G•. We
say that X• is p-regular (for G) if every nonempty level-set of D•X• contains at least p
elements.

For instance, if we consider the graph G of Figure 4.4(a), the set X• (black vertices in
Figure 4.4(a)) is 1-regular but not 2-regular since every level set of D•X• (represented by
blue numbers in the figure) contains a single vertex. It can be seen that when Algorithm 3
is applied to the graph G and the set X• of this example, then, at each iteration, there is
a single nonempty set among the sets E1, . . . , Ep obtained after the call to the Partition
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function. Thus, it can be observed, that, at each iteration, there is no parallel calculus
done in the parallel loop line 11. Hence, in order to study the complexity of Algorithm 3,
it is assumed in the following that the input set X• is p-regular, p-being the number of
available processors. This ensures that any of the sets E1, . . . , Ep, obtained after the call
to the Partition function, is nonempty. Hence, every processor processes a nonempty set
Ei at every iteration of the parallel loop line 11.

Another important issue for studying the time-complexity of Algorithm 3 is related to
the degrees of the vertices of G. Indeed, after line 10 of Algorithm 3, the sets {Ei | i ∈
{1, . . . , p}} are balanced and each processor must traverse all the neighbors of exactly one
of these sets. Thus, if all vertices of the graph have the same degree (i.e., if they all belong
to the same number of edges), the workload is well balanced over the processors. On the
other hand, if the degree varies from one vertex to another one, then, one may easily end
up in a situation which is unfair for one of the processors. An example of such situation
is provided in Figure 4.4(b) which illustrates a possible execution of Algorithm 3 on the
set X• of black vertices with two processors called P1 and P2. It can be seen that every
level set of D•X• contains three vertices which are partitioned at line 10 of Algorithm 3 into
two sets E1 and E2, handled respectively by P1 and P2. In the figure, we indicate in green
the processor which traverse every vertex. It can be seen that the obtained partition is, at
each iteration, such that E1 contains two vertices and E2 contains one vertex. Furthermore,
each vertex in E1 belongs to three edges, whereas each vertex in E2 belongs to a single edge.
Overall, it can thus be checked that P1 must browse over 30 edges (10 vertices contained
in 3 edges) in the loop line 14 whereas P2 browses over only 10 edges (5 vertices contained
in two edges), leading to an unbalanced workload between P1 and P2. The occurrence
of such situation and its amplitude can be bounded thanks to the notion of unbalancing
factor of a graph, that is introduced hereafter (Definition 27). Then, the time-complexity of
Algorithm 3, established in Theorem 29, can be expressed as a function of this unbalancing
factor.

We recall that, if x is a vertex of G, the degree of x, denoted by d(x), is the number
of edges that contain x, i.e., d(x) = |{{x, y} ∈ G×}|. Furthermore, we denote by dmin(G)

(resp. dmax(G)) the minimum (resp. maximum) of the degrees of the vertices of G: dmin(G) =
min{d(x) | x ∈ G•} (resp. dmax(G) = max{d(x) | x ∈ G•}).

Definition 27 (unbalancing factor). The unbalancing factor of G, denoted by β(G), is the
fraction:

β(G) = dmax(G)
dmin(G) . (4.1)

For instance, the unbalancing factor of the graph G shown in Figure 4.4(b) is equal
to 3/2 since dmin(G) = 2 and dmax(G) = 3. The unbalancing factor of the 4-adjacency graph
of Figure 4.3 is 2. Note that if we modify this graph by identifying the vertices of the first
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and last lines and those of the first and last columns (so that a torus is obtained), then
the degree of every vertex in the obtained graph is equal to 4, leading to an unbalancing
factor of 1.

The time complexity of Algorithm 3 depends of the unbalancing factor of G. The next
lemma is an important result in order to establish this time complexity.

Lemma 28. Let p be a positive integer and let X• be a p-regular subset of G•. When
Algorithm 3 is executed on G, X•, and p, then the following statements hold true.

1. The instruction lines 15 and 16 are executed less than 4β(G)
2β(G)+p+1 |G

×| times by each
processor;

2. Using an array of linked lists to represent the graph G (i.e., one linked list for any
vertex to store its adjacent edges), the continuation condition in the for each loop at
line 14 is tested less than 2

p+1 |G
•|+ 4β(G)

2β(G)+p+1 |G
×| times by each processor.

Proof. At every iteration of the main loop line 9 the set E is the λ-level set of D•X• .
Let nλ be the cardinality of E. Then, by definition of the Partition function, for any i

in {1, . . . , p} , the number nλ,i of elements in the set Ei obtained at line 10 is either
equal to nλ/p or to nλ/p + 1, where a/b denotes the quotient in the integer division of a
by b. Let δ×(E) (resp. δ×(Ei)) be the set that contains any edge with a vertex in E

(resp. in Ei). Let us also denote by mλ and mλ,i the cardinalities of δ×(E) and δ×(Ei),
respectively. Note that for a given value of λ, the instruction lines 15 and 16 are executed
exactly mλ,i times by the processor i. In order to establish Lemma 28. 1, we are going to
prove that mλ,i ≤ 2β(G)

2β(G)+p−1mλ. To this, end we are going to distinguish two cases.
– Let us first assume that nλ > p. Thus, we have q ≤ nλ,i ≤ 2q, where q is the quotient

in the integer division of nλ by (p + 1). Since nλ > p, the quotient q is nonnull.
By definition of dmin(G) and dmax(G), we have dmax(G).nλ,i ≤ mλ,i ≤ dmax(G).nλ,i.
Hence, we deduce that dmin(G)q ≤ mλ,i ≤ 2dmax(G)q. By definition of mλ, we have:

mλ,i

mλ

= mλ,i

mλ,i + ∑
j∈{1,...,p}\{i}mλ,j

= 1−
∑
j∈{1,...,p}\{i}mλ,j

mλ,i + ∑
j∈{1,...,p}\{i}mλ,j

. (4.2)

Hence, since mλ,i ≤ 2dmax(G)q, we deduce that:

mλ,i

mλ

≤ 1−
∑
j∈{1,...,p}\{i}mλ,j

2dmax(G)q + ∑
j∈{1,...,p}\{i}mλ,j

, which can be rewritten as: (4.3)

mλ,i

mλ

≤ 2dmax(G)q
2dmax(G)q + ∑

j∈{1,...,p}\{i}mλ,j

(4.4)
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Since, dmin(G)q ≤ mλ,j, for any j ∈ {1, . . . , p} we deduce that:

mλ,i

mλ

≤ 2dmax(G)q
2dmax(G)q + (p− 1)dmin(G)q , which can be simply rewritten as: (4.5)

mλ,i

mλ

≤ 2dmax(G)
2dmax(G) + (p− 1)dmin(G) , which can again be rewritten as: (4.6)

mλ,i

mλ

≤
2dmax(G)
dmin(G)

2dmax(G)
dmin(G) + (p− 1)dmin(G)

dmin(G)

, which can be simplified as: (4.7)

mλ,i

mλ

≤ 2β(G)
2β(G) + p− 1 . (4.8)

Thus, since mλ is positive, we deduce that:

mλ,i ≤
2β(G)

2β(G) + p− 1mλ. (4.9)

– Let us now assume that nλ = p. In this case, for any i ∈ {1, . . . , p}, we have nλ,i = 1
and dmin(G) ≤ mλ,i ≤ dmax(G). Using similar arguments as in the previous case, we
deduce that

mλ,i ≤
β(G)

β(G) + p− 1mλ (4.10)

Hence, since 2β(G) ≥ β(G) ≥ 0, we also have in this second case:

mλ,i ≤
2β(G)

2β(G) + p− 1mλ. (4.11)

Let us set mi = ∑
λ∈Nmλ,i. It can be seen that mi is the overall number of execu-

tions of the instruction lines 15 and 16 by the processor i. Since the set of all level-sets
of D•X• partitions G• and since every edge contains exactly two vertices of G, we deduce
that ∑

λ∈Nmλ = 2.|G×|. Hence, from Equations 4.9 and 4.11, we deduce the following
inequation that establishes Lemma 28.1:

mi ≤
4β(G)

2β(G) + p− 1 |G
×|. (4.12)

Let us now establish Lemma 28.4.3. To this end, it can be seen that there are, for
each processor i ∈ {1, . . . , p}, mi positive continuation tests at line 14 of Algorithm 3. It
can also be seen that, for every value of λ, there is one negative test for each element
in Ei. Hence, for any processor i and any value of λ, there is at most 2nλ

p+1 negative tests.
Hence, since the level-set of D•X• partitions G•, and since nλ is the number of elements in
the λ-level set of D•X• , we deduce that, for any processor, there are at most 2|G•|

p+1 negative
tests at line 14 of Algorithm 3. Hence, the condition in the for each loop at line 14 is tested
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less than 2
p+1 |G

•|+ 4β(G)
p+1+2.β(G) |G

×| times by each processor.

Let us now analyze the complexity of Algorithm 3. At every iteration of the main loop
(line 9), the set E is the λ-level set of D•X• . Since the Partition function (Algorithm 5)
presented in the previous section runs in linear time with respect to |E|/p and since the level
sets of D•X• partitions G•, the time complexity of line 10 is O(|G|/p). Furthermore, after
the execution of line 10, we always have |Ei| ≤ |E|/p+ 1, for any i ∈ {1, . . . , p}. Thus, the
complexity of line 13 is O(|G|/p). From Lemma 28.4.3, we deduce that the time complexity
of line 14 is O( β(G)

β(G)+p |G
×|+ 1

p
|G•|) and, from Lemma 28.1, we deduce that the complexity

of lines 15 and 16 is O( β(G)
β(G)+p |G

×|). Let us finally analyze the complexity of line 19. By
Lemma 28.1, the overall number of insertions in a set Si is less than 4β(G)

2β(G)+p+1 |G
×|, for

any i in {1, . . . , p}. In the function Union (Algorithm 6), each element of Si is copied once
in E (line 3) by the processor numbered i. Thus, when Union is called by Algorithm 3, the
overall complexity of line 3 in Algorithm 6 is O( β(G)

β(G)+p |G
×|). Furthermore, since there is

one call to ParallelPrefixSum for each call to Union, there is one call of ParallelPrefixSum
for each level set of D•X• . Therefore, if K is the number of level set of D•X• , the time
complexity of line 19 is O( β(G)

β(G)+p |G
×|+K log2 p) since the complexity of ParallelPrefixSum

is O(log2 p). It can be also seen that the worst-case time complexity of the initialization
steps (lines 1 to 8) is O( β(G)

β(G)+p |G
×|+ log2 p). Hence, the following theorem can be stated.

Theorem 29. Let p be a positive integer and let X• be a p-regular subset of G•. Then, Al-
gorithm 3 terminates in O(1

p
|G•|+ β(G)

p+β(G) |G
×|+K log2 p) time, where K is the number of

distinct level sets of D•X•.

Observe that, when the unbalancing factor of G is less than a small constant, the com-
plexity of Algorithm 3 reduces to O( |G

•|+|G×|
p

+K log2 p). Considering the complexity of the
sequential distance map algorithm (Algorithm 1), the best possible theoretical complexity
for a parallelization of Algorithm 1 with p processors would be O( |G

•|+|G×|
p

). This complex-
ity is reached with Algorithm 3 (in the case of small unbalancing factor) up to a K log2 p

term, which is due to the computation of the parallel dynamic partition. On the other
hand, it can be observed that, when the unbalancing factor of G is high compared to the
number p of processors, the complexity of Algorithm 3 tends to O(1

p
|G•|+ |G×|+K log2 p).

Hence, in this case the complexity gain over the sequential algorithm is less interesting.
Fortunately, in practical cases, the considered graphs have a small unbalancing factor. For
instance, as mentioned before in this section, when an image is structured with the 4-
adjacency relation, the unbalancing factor of the resulting graph is two (or even one if the
image borders are identified). Hence, in the next chapter we aim to confirm that in practi-
cal case, the proposed parallel algorithm offers an interesting speedup over the sequential
version.
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4.4 Conclusion

In this chapter, we proposed a parallel strategy that leads to a fast computation of our
new distance maps on graphs, hence all morphological operators of [14]. Our parallelization
strategy is based on dynamic partitioning of the input set which acts on successive level-
sets of the distance maps. Each level set being partitioned and then traversed in parallel.
Under some proved assumptions about the graph (unbalancing factor) and set (p-regular)
under consideration, the parallel algorithms run in O(n/p + K log2 p) time complexity,
where n, p and k are the size of the graph, the number of available processors, and the
number of distinct level sets of the distance map, respectively.

In the following experimental chapter, we will confirm in practical cases that our parallel
algorithms offer an interesting speedup over the sequential version.
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Evaluation and Experimental results
of parallel implementation of
Distance maps on graph on shared
memory architectures
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5.1 Introduction

In this chapter, we start by presenting the target platform used for multithreaded imple-
mentation of our proposed parallel strategy. Then, we provide in Section 5.3 a description
of the 2D image and 3D textured meshes datasets used for experimental evaluations. In
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order to assess the regularity assumptions of Theorem 29 on the considered datasets, an
analysis is given in Section 5.4. After, we analyze in Section 5.5 the results obtained by
applying the implementations of the proposed sequential and parallel algorithms on the
target architecture to the considered datasets. First, Section 5.5.1 describes the mea-
sures assessing the performance of the proposed implementations (execution times and
speedups). Then, Section 5.5.2 presents the evaluation results.

5.2 Target Platform and Multithreaded Implementa-
tion

Today, most modern computer systems include multicore chips that support shared
memory in hardware. Therefore, parallel computing on shared memory multicores archi-
tecture is now very popular. Because of the high availability of this architecture, the large
amount of available computing paradigms for these architectures and the parallelism in our
proposed strategy, we decided to carry out experiments on a two quadcore Intel(R) Xeon(R)
E5630 processors, i.e., on a machine with 8 cores. The Intel Xeon E5630 (Westmere-EP
which have the same microarchitecture of the Nehalem-EP) is a 32nm quadcore processor
at 2.53 GHz. Its high level overview is provided in Figure 5.1. Each core has a private
32KB L1 and 256 KB L2 cache, while the 12 MB L3 cache is shared across the cores on a
socket. Each core supports Simultaneous Multi-Threading (SMT), allowing two threads to
share processing resources in parallel on a single core. The Nehalem-EP has three DDR3
memory channels per chip, each one is capable of performing simultaneous read and write
transactions, effectively doubling memory bandwidth. The 3-channel Quick Path Inter-
connect (QPI) at 5.86 GigaTransactions per second gives over a 25.6 GB/sec bandwidth
to the other neighboring processors in a blade [1].

With such multicore-multithreaded shared memory architecture, up to 8 threads can
run in parallel, emulating the p processors (with p ≤ 8) of the theoretical parallel model
used in the previous Chapter. Therefore, a multithreaded implementation of our algorithms
is devised for the above described target architecture. POSIX Threads (Pthreads) library
on a Linux system is considered for this implementation since it allows to handle low-
level synchronization between threads. We remind that such synchronization is required to
implement the proposed parallelization strategy which controls precisely the load balancing
between the available processors. It can also be noticed that the use of MPI and PVM
is not adapted to our target architecture (shared memory) and that the use of OpenMP
does not allow one to control precisely the load balancing between processors as proposed
in our algorithms.

Despite the distribution of data in our parallel algorithms, each thread has access to an
overlap data (the Boolean array Traversed) in order to check if a vertex has been already
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Figure 5.1: High-Level Overview of Intel Nehalem-EP.

traversed or not. The only access to this shared memory is done with the test-and-set
instruction at line 16 (resp. line 21) of Algorithm 3 (resp. Algorithm 4). This instruction
involves a synchronization between processors or threads. The test-and-set instruction can
be implemented with Pthreads library using a mutex variable. To this end, one must
consider a mutex variable instead of a Boolean one. Then, the test-and-set instruction is
implemented due to a Pthreads function. This function is non-interruptible, locks a mutex
and returns 0 if the mutex is unlocked at the time of the call or returns a positive value
otherwise (i.e., if a mutex is already locked when the function is called). With this test-
and-set implementation, a Boolean array Traversed of Algorithms 3 and 4 is implemented
with an array of mutexes that are initially unlocked.

5.3 Datasets description

5.3.1 2D image datasets

We consider two 2D image datasets in the experimental evaluations,. The first image
dataset is the one of [14]. It is a set of 33 binary images of different size (786 x 540, 800 x
600, 700 x 1285) and various contents (see some samples in Figure 5.2.a and Figure 5.3.a).
The images of this dataset have been obtained by adding black and white random noise of
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different sizes and shapes to bitmap images of simple shapes (mainly letters). The second
one is the Standard dataset which is a set of 12 images found frequently in the literature
such as Lena, peppers, cameraman, lake, etc. All images of this dataset are grayscale and
of the same size (512 x 512) (see some examples in Figure 5.4(a)).

Elementary mathematical morphology operators are often considered as a post pro-
cessing step after the binarization of images since it allows to reduce noise and regularize
contours. Therefore, we apply Otsu thresholding method [36] to binarize the images of the
standard dataset (see Figure 5.4(b)). Otsu thresholding method considers as a very pop-
ular technique, which applies an automatic threshold to reduce the variance inter-classes
between foreground and background. Then, after this step, two databases of typical bi-
nary images are obtained. These binary images are processed with the mathematical
morphological operators described in chapter 2 (see examples of results in Figure 5.2(b),
in Figure 5.3(b) and Figure 5.4(c)). In order to filter an image with the operators studied
in this thesis, the image domain is equipped with a graph. For each image, the vertex
set of the considered graphs is made of the image pixels and the edge set is given by the
well known 4-adjacency relation on these pixels. For each of these two image datasets, Ta-
ble 5.1 provides the image sizes, the number of images of each size, the average number of
white pixels (i.e., the vertices X•), and the average number of level-sets in the considered
distance maps.

Image DSs: Standard DS DS of [14]

Images size 512 × 512 786 × 540 800 × 600 700 × 1285

Number of images 12 2 29 2

Avg. number of vertices in X• 17 090 321 499 372 044 663 259

Avg. number of level-sets of D(•,•)
X• 66 4 11 6

Table 5.1: Main features of the image datasets used for experimental evaluation. In the
table, DS stands for dataset.

5.3.2 3D triangular meshes dataset

We also consider for the experimental evaluation a dataset of 3 three-dimensional tri-
angular meshes. Each mesh is equipped with two binary black and white textures, one
being obtained by adding random noise to another. Hence, overall, this dataset is made of
6 binary-textured meshes (see, e.g., Figure 5.5).

In order to filter textured meshes with operators on graphs (see Figure 5.5), texture
domains are equipped with graphs. More precisely, given a mesh, each corner of each
triangle is a vertex of the associated graph and two vertices of the graph are linked by an
edge if the associated triangle corners belong to a same triangle or if the associated triangle
corners are at the same spatial position and belong to two adjacent triangles. Table 5.2
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(a) initial binary images. (b) results of graph ASF.

Figure 5.2: Illustrations of mathematical morphology ASF on graphs on some images of
the dataset used in [14].

provides the number of vertices and of edges of the considered graphs, the average number
of white vertices in the textures, and the average number of level-sets in the distance maps
associated with the textures.

Number of textured meshes 6

Number of vertices/edges per graph 98 226 / 392 904

Average number of white vertices (vertices in X•) 45 102

Average number of level-sets in D
(•,•)
X• 31

Table 5.2: Main features of the binary-textured mesh dataset used for experimental eval-
uations.

5.4 Experimental-assessment dataset and regularity-
assumption assessment

Let us now analyze the datasets described above in order to assess the regularity
assumptions of Theorem 29 defined in chapter 4. Indeed, Theorem 29 asserts that if
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(a) initial binary images. (c) results of graph ASF

Figure 5.3: Illustrations of mathematical morphology ASF on graphs on some images of
the dataset used in [14].
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i) the unbalancing factor of the graph G is lower than a small constant and if ii) the
considered set of vertices is p-regular, then the time complexity of our algorithms is
O((|G•|+|G×|)/p+K log2 p), where K is the number of nonempty level-sets of the distance
maps and where p is the number of available processors.

5.4.1 Case of 2D image datasets

Our parallel algorithms are applied to sets of pixels of 2D binary images equipped with
the 4-adjacency relation. As mentioned in chapter 4 (see Section 4.3), the unbalancing
factor of the graphs associated to the images is 2. Thus, assumption i) is practically
verified for the considered datasets. In order to assess assumption ii), we analyze the
number of vertices in each level-set of the considered distance maps and compare these
numbers with the numbers of processors used in the experiments presented in Section 5.5.
Due to the chosen target architecture, this number is always lower than 8. For each dataset,
the proportion of level-sets with less than k vertices is estimated for k ∈ {2, 4, 6, 8}. The
result of this analysis is presented in Table 5.3. To perform this analysis a total of 797
(resp. 716) level-sets are analyzed for the 12 (resp. 33) images of the standard dataset
(resp. the dataset of [14]. Observe that the average number of level set is significantly less
for the dataset of [14] than for the standard dataset. This can be explained by the addition
of random black and white noise in the later images which implies that every image pixel
is close to white pixel and to a black one. For the standard dataset, 3 level-sets contain
less than 2 vertices (0.37%), 10 level-sets contain less than 4 vertices (1.25%), 16 level-sets
contain less than 6 vertices (2 %), and 23 level-sets contain less than 8 vertices (2.88%).
For the dataset of [14], 6 level-sets contain less than 2 vertices (0.83%), 11 level-sets contain
less than 4 vertices (1.53%), 18 level-sets contain with less than 6 vertices (2.51%) and 20
level-sets contain less than 8 vertices (2.79%).

k 2 4 6 8
Standard dataset 0.37% 1.25% 2% 2.88%
Image dataset used in [14] 0.83% 1.53% 2.51% 2.79%

Table 5.3: Proportion of level-sets of the vertex-vertex distance maps with less than k
vertices, the total number of analyzed level-sets being equal to 797 (resp. 716 ) for the 12
images (resp. 33 images) of the standard dataset (resp. the dataset of [14]).

5.4.2 Case of textured mesh dataset

In this case, by construction the unbalancing factor of the graph associated to the
meshes is 1 because each vertex is exactly linked to four other vertices. Thus, assumption
i) is practically verified. To assess assumption ii), we follow the same process applied to the
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2D image datasets. The result of the analysis is presented in Table 5.4. To perform this
analysis a total of 187 level-sets are analyzed for the 6 binary-textured meshes. We obtain
no level-set contains less than 2 vertices (0%), 3 level-sets contain less than 4 vertices
(1.6%), 5 level-sets contain with less than 6 vertices and less than 8 vertices (2.67%).
Hence, the number and the proportion of level-sets with less than k ∈ 2, 4, 6, 8 vertices is
relatively small. It is also observed that the level-sets with few vertices tend to appear for
the highest distance values.

k 2 4 6 8
Binary-textured mesh dataset 0% 1.6% 2.67% 2.67%

Table 5.4: Proportion of level-sets of the vertex-vertex distance maps with less than k
vertices, the total number of analyzed level-sets being equal to 187 for 6 textured meshes
of the textured mesh dataset.

These analysis confirm that the assumptions defined in Theorem 29 are reasonable for
the considered datasets on experiments in this work.

5.5 Performance evaluation and experimental results

5.5.1 Performance Evaluation

The performance of the proposed sequential and parallel algorithms (chapters 3 and
4) is assessed through the execution times obtained with the implementation and target
platform described above. For assessing the gain of the parallel implementation over the
sequential one, execution time and speedup measure are considered in our evaluations.

The reported execution times are obtained with Gprof. Gprof is a profiling software
available on GNU Linux. This profiler has been introduced in 1982 [24] by group of
researchers of the Berkeley University. Gprof measures the time spent on each function for
a particular execution of a program as well as the number of times each function is called.
Each measurement reported in Section 5.5.2 is the average of the executions times of forty
runs of the same program on the same data.

5.5.2 Experimental results

The results presented in this section are obtained by applying the proposed sequential
and parallel algorithms (namely, Algorithms 1 and 3) on the datasets presented in Sec-
tion 5.3. We tested our implementations on two different types of sets: the sets of white
vertices and their complements, which are the sets of black vertices. The distance map
to a set of white vertices is used to obtain the dilations of this set whereas the distance
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map to its complementary set is used to obtain the erosions of the set (see Property 24,
Theorems 21, 22 and 23).

Tables 5.5 and 5.6 and Figures 5.6 and 5.8 show the average execution times of the
sequential and of the parallel implementations on 1, 2, 4, 6, and 8 cores for the different
datasets. Clearly, as expected from the theoretical analysis of our parallel algorithms in
chapter 4 (Section 4.3), the obtained running times are decreasing with the number of
cores, whatever the considered dataset.

Execution times (in seconds)

original images complemented images

Images size 512 ×

512

786 ×

540

800 ×

600

700 ×

1285

512 ×

512

786 ×

540

800 ×

600

700 ×

1285

Sequential
algorithm

0.026 0.055 0.057 0.060 0.035 0.04 0.044 0.07

P
ar

al
le

la
lg

or
it

hm

1 core 0.025 0.052 0.054 0.063 0.032 0.038 0.042 0.069

2 cores 0.020 0.040 0.035 0.050 0.024 0.029 0.028 0.056

4 cores 0.014 0.030 0.026 0.040 0.020 0.020 0.019 0.040

6 cores 0.011 0.018 0.018 0.030 0.017 0.016 0.012 0.035

8 cores 0.009 0.013 0.014 0.015 0.012 0.011 0.008 0.018

Table 5.5: Average execution times of the vertex-vertex distance map algorithms for the
2D image datasets.

The speedup values achieved by the parallel implementation are presented in Tables 5.7
and 5.8. We observe that, in all the cases, a good speedup over the sequential implementa-
tion is reached. Figures 5.7 and 5.8 plot the obtained speedups when the number of threads
varies from 2 to 8. On the image datasets (resp. textured-mesh dataset) the best speedup
value, obtained with 8 cores, is equal to 5.5 (resp. 5.33). These values are obtained for the
set of black pixels of the images of size 800 × 600 and for the set of black vertices of the
textured meshes, respectively.

The previous experiments was designed to asses the gain of the parallel distance map
implementation over the sequential one for processing binary 2D images and textured
meshes. Let us now move to assess the results obtained using distance maps to compute
the results of the morphological operators presented in Definition 13. We recall that the
computation of results of the dilations and erosions on graphs for any size parameter λ can
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Execution times (in seconds)

original textures complemented textures

Sequential algorithm 0.015 0.016

P
ar

al
le

la
lg

or
it

hm

1 core 0.014 0.014

2 cores 0.008 0.009

4 cores 0.005 0.006

6 cores 0.004 0.004

8 cores 0.003 0.003

Table 5.6: Average execution times of the vertex-vertex distance map algorithms for the
textured-mesh dataset.

Speedup

original images complemented images

Images size 2 cores 4 cores 6 cores 8 cores 2 cores 4 cores 6 cores 8 cores

512 × 512 1.3 1.85 2.36 2.88 1.45 1.75 2.05 2.91

786 × 540 1.37 1.83 3.05 4.23 1.37 2 2.5 3.63

800 × 600 1.62 2.19 3.16 4.07 1.57 2.31 3.66 5.5

700 × 1285 1.2 1.5 2 4 1.25 1.75 2 3.88

Table 5.7: Average speedups of the parallel vertex-vertex distance map algorithm on the
2D image datasets.

be computed with a single iteration by thresholding a distance map instead of applying
λ iterations of elementary dilation as one would do by straightforwardly applying the
definition. However, such straightforward implementation, was, as far as we know, up to
the present work, the only available implementation of these operators.

We compare the execution times of the parallel dilation implementation based on dis-
tance map on 8 cores with the sequential version also based on distance map and with
the straightforward iterative implementation. Figure 5.9 displays the resulting execution
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Speedup

original textures complemented textures

2 cores 4 cores 6 cores 8 cores 2 cores 4 cores 6 cores 8 cores

Speedup 1.87 3 3.75 5 1.77 2.66 4 5.33

Table 5.8: Average speedups of the parallel vertex-vertex distance map algorithm on the
textured-mesh dataset.

times. It can be seen that the running times of the implementations based on distance
maps remain constant while the size parameter increases whereas, with the straightfor-
ward implementation, the execution times increase linearly with the size parameter. In
particular, when λ = 2, the sequential implementation based on distance maps and the
straightforward implementation runs in about the same time (0.060 sec) but when λ is
equal to 24 the implementation based on distance map is more than 10 times faster than
the straightforward implementation. Observe also that, due to the speedup of 5.5 achieved
by the parallel implementation for 8 cores machine, the result of the dilation of size 2/2 is
obtained 5.5 times faster with the parallel implementation than with the straightforward
implementation and more than 55 times faster when the size parameter is equal to 24/2.

5.6 Conclusion

In this chapter, we presented the target shared memory architecture and we precised the
motivation of using multithreaded implementation in our proposed parallel strategy. We
also described the various datasets considered for experimental evaluations in this work.
Then, we analyzed the cardinalities of the level-sets of the considered distance maps to
assess the regularity assumptions of the proposed Theorem 29 on the experimental 2D and
3D textured meshs datasets. Indeed, this theorem asserts that if the unbalancing factor of
the graph G is lower than a small constant and if the considered set of vertices is p-regular,
then the time complexity of our algorithms is O((|G•|+|G×|)/p+K log2 p), where K is the
number of nonempty level-sets of the distance maps and where p is the number of available
processors. Consequently, the analysis carried out confirmed that these assumptions are
reasonable for the considered datasets.

After, we assessed the gain of the parallel distance map implementation over the se-
quential one for processing binary 2D images and textured meshes. The obtained results
show clearly, as expected from the theoretical analysis of our algorithms, that the obtained
running times are decreasing with the number of cores, whatever the considered datasets.
Furthermore, in all presented cases, a good speedup over the sequential implementation is
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achieved. In the case of 2D image (resp. the case of 3D textured meshes) dataset, the best
speedup value is equal to 5.5 (resp. 5.33) with 8 cores.

More after, we assessed the results obtained using distance maps to compute the results
of the morphological operators presented in Definition 13, we compared the execution times
of the parallel dilation implementation based on distance map on 8 cores with the sequential
version also based on distance map and with the iterative implementation. The obtained
running times of both the sequential and parallel implementations based on distance maps
remain constant while the size parameter increases whereas, with the straightforward im-
plementation (iterative), the execution times increase linearly with the size parameter.
We reached a faster operator with the parallel implementation of distance map than the
other ones. Therefore, implementations of the proposed algorithms on a shared-memory
multicore architecture on datasets of 45 images and 6 textured 3-dimensional meshes, show-
ing a reduction of the processing time by a factor up to 55 over the previously available
implementations on a 8 core architecture.
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(a) grayscale images (b) results of Otsu binarization (c) results of graph ASF

Figure 5.4: Illustration of Otsu binarization followed by mathematical morphology filtering
on graphs from two images of the Standard image dataset.
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Figure 5.5: Mathematical morphology filtering of a texture defined over a 3 dimensional
mesh; (left) two renderings of a 3 dimensional mesh M equipped with a binary texture T ;
and (right) two renderings of the ASF-filtered version of the texture T on a graph associated
with the mesh M .
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Figure 5.6: Average execution times, for the 2D image datasets, of the parallel vertex-vertex
distance map algorithm, plotted as a function of the number of cores.
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Figure 5.7: Average speedups, on the image datasets, of the parallel vertex-vertex distance
map algorithm, plotted as a function of the number of cores.
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Figure 5.8: Average execution times and speedups, on the textured-mesh dataset, of the
parallel vertex-vertex distance map algorithm, plotted as a function of the number of cores.
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Figure 5.9: Experimental evaluation of iterated dilations δλ/2 when λ is even.
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Chapter 6

General Conclusions and
Perspectives

Contents

6.1 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

In this thesis, we focused on the framework of mathematical morphology acting on
graphs defined in [J. Cousty et al, ” Morphological filtering on graphs ”, CVIU 2013]. The
main aims of this work is to provide efficient computation and implementation of these (bi-
nary) morphological operators on graphs. To reach this goal, our contributions are divided
into threefold: i) new three distance maps that lead to original characterizations of the
operators of [14]; ii) based on these distance maps, first linear-time sequential algorithms
for all dilations/erosions on graphs; and iii) a parallelization strategy leading to fast com-
putation of these distance maps on multicore shared memory architectures.

Distance maps for morphological operators on graphs

In this thesis, we have studied the background notions about mathematical morphology
on graphs [14]. This work introduces a framework of mathematical operators where the
input and output are both graphs. They investigate four elementary dilations and erosions
that map a set of vertices to a set of edges and a set of edges to a set of vertices. We have
discussed the problem of the composition of these elementary operators (iterated versions)
defined in [14] in order to obtain interesting morphological filters (opening, closings, and
associated alternate sequential filers) on graph. These filters are parameterized by a in-
teger value related to a notion of size of the features to be preserved or removed. Larger
structures are removed/preserved when higher numbers of iterations of basic operators are
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considered. Because of these elementary operators map from a kind of subsets to another
kind, they cannot be directly iterated to built such composition. So, there exist two cases
(even and odd) of iterated operators that are depending whether a final composition with
an operator from a subset of vertices to a subset of edges (resp. from a subset of edges
to a subset of vertices) is considered or not. More precisely, eight iterated morphological
operators on graphs were introduced in [14]. When λ is even, the inputs and outputs of the
operators are subsets of vertices or subsets of edges of graph. When λ is odd, the inputs
and the outputs of the operators are distinct: one of them is subset of edges whereas the
other one is a subset of vertices.

The naive computation of these iterated operators consists of performing λ iterations
of elementary operators. When the complexity of an elementary operator is O(n) where n
is the size of the underlying graph. Thus, the time-complexity of the associated algorithm
increases with the size parameter. More precisely, for a parameter value of λ the algorithm
runs in O(λ.n) time, where n is the size of the underlying graph. Therefore, there is a
dependence between the size parameter λ and the time-complexity.

The two first operators act on the set of vertices in the case of even value of λ amount
to classical morphological operators for which efficient algorithms exist. These algorithms
are introduced by L.Vincent in [58] by linear-time algorithms based on thresholding of
distance map. Contrary, there exist no efficient algorithms for the six remaining operators.

As first contribution of this thesis, we have introduced three original notions of distance
maps on graphs called edge-edge, edge-vertex, and vertex-edge distance maps. Given a set
of edges, the edge-edge (resp. edge-vertex) distance map provides for each edge (resp. each
vertex) of the graph a geodesic distance to the closest edge in the input set. Given a set
of vertices, the vertex-edge distance map provides for each edge a geodesic distance to the
closest vertex in the input set. Then, we have proved by characterization theorems that
the edge-edge distance map allows us to characterize (by thresholding) the two remaining
operators when λ is even, and the edge-vertex and the vertex-edge distance maps allow us
to characterize (by thresholding) the four operators defined when λ is odd.
In addition, in standard graph textbooks the length of any path is often considered as
the number of edges along the path. whereas, in this thesis, we have considered both the
numbers of vertices and of edges along the path. Therefore, we have directly established
the link between the length of paths and the iterated operators of [14]. Furthermore, based
on this notion of length, we have presented our vertex-vertex distance map in order to
obtain the two first operators act on the set of vertices in the case of even value of λ.

Sequential algorithms for morphological operators on graphs

We have proposed efficient sequential algorithms lead to compute vertex-vertex, edge-edge,
vertex-edge and edge-vertex distance maps. In particular, these algorithms are derived
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from the breadth first search algorithm. Then, we have established the correctness of our
algorithms in order to verify if our algorithms really solve our problem and for any valid
input they produce the distance maps required. Furthermore, we have analyzed their time
complexity which runs in linear time with respect to the size of graph.
This contribution allowed us to efficiently computing the results of all operators of dilations
and erosions defined in [14] by thresholding distance maps whatever the size parameter in
linear time with respect to the size of the graph, with a single iteration and without any
dependence to this size parameter.

Parallel strategy for distance maps on graphs

In order to exploit the parallel multi-core processors architecture, we have proposed a
first parallelization strategy leading to a fast computation of the proposed distance maps,
hence all morphological operators of [14]. Our parallel strategy handle the regular and non-
regular structure of a graph. It is based on dynamic partitioning which depends on the
input set and which is iteratively computed during the execution. In our strategy, we have
considered the successive level-sets of distance maps where each level set being partitioned
and then traversed in parallel. To manage the dynamic partitions, we have proposed two
auxiliary functions. The first one is the parallel partition function that compute in parallel
p balanced partitions where p is the available processors. The second one is the parallel
union function that computes the union of p disjoint sets with p processors.
To state the complexity of our parallel algorithms, we have proposed and proved a theorem
that asserts if the unbalancing factor of the graph G is lower than a small constant and if
the considered set of vertices is p-regular, the time complexity of our parallel algorithms
is O((|G•| + |G×|)/p + K log2 p), where K is the number of nonempty level-sets of the
distance maps and where p is the number of available processors.

Based on our contributions, the parallel implementation on shared memory multi-
core/multithreaded architecture is proposed. We have confirmed in practice the regularity
assumptions of the proposed theorem on 2D images and 3D textured meshes datasets.
Then, we have assessed the gain of the sequential implementation of proposed distance
maps over the parallel one for processing binary considered datasets. The obtained results
on the target architecture have showed clearly, as expected from the theoretical analysis of
our algorithms, that the running times was decreasing with the number of cores, whatever
the considered datasets. The sequential implementation based on the proposed sequen-
tial distance map algorithm shows a significant improvement over the previous existing
implementation of the operators defined in [14] since it runs about ten times faster on
the tested images for a dilation size of 24/2. Furthermore, the parallel implementation
based on distance maps yields another significant improvement over the sequential one:
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a speedup factors up to 5.5 are achieved for 8 cores machine, leading to execution times
55 times smaller than with the previous existing implementation of the operators of [14].
Note that the implementation of the proposed parallel algorithms and its assessment are
also completely original.

6.1 Perspective

The issues studied in this thesis open the doors for many avenues of research for the
future work. Our contributions is about the field of elementary mathematical morphology
operators on graphs for processing binary data (i.e. subsets of vertices or of edges of a
graph). Even if the definition of these operators can be straightforwardly extended to the
case of grayscale data (i.e. grayscale functions on the vertices or on the edges), an efficient
extension of the proposed algorithms to grayscale case is not straightforward and is an
interesting topic for future research.

On the other hand, the use of distance maps in unweighted graphs opens doors towards
the investigation of morphological operators on graphs embedded in metric spaces (or more
generally on weighted graphs) where the result of an operator depends on the “length” of the
edges according to the metric. Such study could lead to significant quality improvements
for the results of mathematical morphological operators on graphs.

A last perspective of this thesis, on the computer architecture side, is about the per-
formance optimization based on the use of massive parallelism available in the graphic
programming architecture GPU. This later optimization could require new variant around
the parallel strategy presented in this thesis.
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[5] Jan Bartovsky. Hardware architectures for morphological filters with large structuring
elements. PhD thesis, Paris Est, 2012.

[6] G Birkhoff. Lattice theory. 1995. American Mathematical Society, Providence, 1995.

[7] Isabelle Bloch and Alain Bretto. Mathematical morphology on hypergraphs, appli-
cation to similarity and positive kernel. Computer vision and image understanding,
117(4):342–354, 2013.

[8] Isabelle Bloch, Henk Heijmans, and Christian Ronse. Mathematical morphology. In
Handbook of Spatial Logics, pages 857–944. Springer, 2007.

[9] Gunilla Borgefors. Distance transformations in digital images. Computer vision,
graphics, and image processing, 34(3):344–371, 1986.

[10] David R Butenhof. Programming with POSIX threads. Addison-Wesley Professional,
1997.

[11] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[12] Michel Couprie and Gilles Bertrand. New characterizations of simple points in 2d,
3d, and 4d discrete spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(4):637–648, 2009.

90



Bibliography

[13] Jean Cousty, Gilles Bertrand, Michel Couprie, and Laurent Najman. Collapses and
watersheds in pseudomanifolds of arbitrary dimension. Journal of mathematical imag-
ing and vision, 50(3):261–285, 2014.

[14] Jean Cousty, Laurent Najman, Fabio Dias, and Jean Serra. Morphological filtering on
graphs. CVIU, 117(4):370–385, 2013.

[15] Jean Cousty, Laurent Najman, and Jean Serra. Some morphological operators in
graph spaces. In Mathematical Morphology and Its Application to Signal and Image
Processing, pages 149–160. Springer, 2009.

[16] Olivier Cuisenaire. Distance transformations: fast algorithms and applications to
medical image processing. 1999.

[17] Olaf Delgado-Friedrichs, Vanessa Robins, and Adrian Sheppard. Skeletonization and
partitioning of digital images using discrete morse theory. IEEE transactions on pat-
tern analysis and machine intelligence, 37(3):654–666, 2015.

[18] Fabio Dias, Jean Cousty, and Laurent Najman. Dimensional operators for mathemat-
ical morphology on simplicial complexes. Pattern Recognition Letters, 47:111–119,
2014.

[19] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[20] Pedro Felzenszwalb and Daniel Huttenlocher. Distance transforms of sampled func-
tions. Technical report, Cornell University, 2004.

[21] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,
1962.

[22] Lester R Ford Jr. Network flow theory. Technical report, RAND CORP SANTA
MONICA CA, 1956.

[23] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM (JACM), 34(3):596–
615, 1987.

[24] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. Gprof: A call graph
execution profiler. In ACM Sigplan Notices, volume 17, pages 120–126. ACM, 1982.

[25] Ananth Grama. Introduction to parallel computing. Pearson Education, 2003.

[26] Yoshiko Hanada, Hiroyuki Okuno, Mitsuji Muneyasu, and Akira Asano. Application
of genetic multi-step search to unsupervised design of morphological filters for noise
removal. In Intelligent Signal Processing and Communication Systems, 2009. ISPACS
2009. International Symposium on, pages 566–569. IEEE, 2009.

[27] Henk JAM Heijmans. Morphological image operators. Advances in Electronics and
Electron Physics Suppl., Boston: Academic Press,— c1994, 1, 1994.

Parallelization of morphological operators based on graphs 91



Bibliography

[28] Henk JAM Heijmans and Christian Ronse. The algebraic basis of mathematical mor-
phology i. dilations and erosions. Computer Vision, Graphics, and Image Processing,
50(3):245–295, 1990.

[29] HJAM Heijmans and Luc Vincent. Graph morphology in image analysis. OPTICAL
ENGINEERING-NEW YORK-MARCEL DEKKER INCORPORATED-, 34:171–
171, 1992.

[30] Muhammad Kaleem, M Sanaullah, M Ayyaz Hussain, M Arfan Jaffar, and Tae-Sun
Choi. Segmentation of brain tumor tissue using marker controlled watershed transform
method. In International Multi Topic Conference, pages 222–227. Springer, 2012.

[31] Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on parallel program-
ming model. In Network and Parallel Computing, pages 266–275. Springer, 2008.

[32] Ravi B Konuru, Steve W Otto, and Jonathan Walpole. A migratable user-level process
package for pvm. Journal of Parallel and Distributed Computing, 40(1):81–102, 1997.

[33] Richard E Ladner and Michael J Fischer. Parallel prefix computation. JACM,
27(4):831–838, 1980.

[34] Chin Yang Lee. An algorithm for path connections and its applications. Electronic
Computers, IRE Transactions on, (3):346–365, 1961.

[35] Romain Lerallut, Étienne Decencière, and Fernand Meyer. Image filtering using mor-
phological amoebas. Image and Vision Computing, 25(4):395–404, 2007.

[36] N Level Otsu. A threshold selection method from gray-level histogram. IEEE Trans-
actions on Systems, Man and Cybernetics, 9(1):62–66, 1979.

[37] Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mohamed Abdur Rahman,
and Saleh Basalamah. A survey of shortest-path algorithms. arXiv preprint
arXiv:1705.02044, 2017.

[38] Duhu Man, Kenji Uda, Hironobu Ueyama, Yasuaki Ito, and Koji Nakano. Implemen-
tations of parallel computation of Euclidean distance map in multicore processors and
GPUs. In ICNC, pages 120–127, 2010.

[39] Duhu Man, Kenji Uda, Hironobu Ueyama, Yasuaki Ito, and Koji Nakano. Imple-
mentations of a parallel algorithm for computing euclidean distance map in multicore
processors and gpus. International journal of networking and computing, 1(2):260–276,
2011.

[40] Georges Matheron, Georges Matheron, Georges Matheron, and Georges Matheron.
Random sets and integral geometry. 1975.

[41] Laurent Mennillo, Jean Cousty, and Laurent Najman. A comparison of some mor-
phological filters for improving ocr performance. In Mathematical Morphology and Its
Applications to Signal and Image Processing, pages 134–145. Springer International
Publishing, 2015.

Parallelization of morphological operators based on graphs 92



Bibliography

[42] Fernand Meyer and Jesus Angulo. Micro-viscous morphological operators. Mathemat-
ical Morphology and its Application to Signal and Image Processing (ISMM 2007),
pages 165–176, 2007.

[43] Fernand Meyer and Serge Beucher. Morphological segmentation. Journal of visual
communication and image representation, 1(1):21–46, 1990.

[44] Fernand Meyer and Jean Stawiaski. Morphology on graphs and minimum spanning
trees. In ISMM, pages 161–170. Springer, 2009.

[45] Laurent Najman and Jean Cousty. A graph-based mathematical morphology reader.
Pattern Recognition Letters, 47:3–17, 2014.

[46] Laurent Najman and Hugues Talbot. Mathematical morphology. John Wiley & Sons,
2013.

[47] Tuan Q Pham. Parallel implementation of geodesic distance transform with applica-
tion in superpixel segmentation. In DICTA, pages 1–8. IEEE, 2013.

[48] KR Radhika and SV Sheela. Fundamentals of biometricsâĂŤhand written signature
and iris. In Pattern Recognition, Machine Intelligence and Biometrics, pages 733–783.
Springer, 2011.

[49] Mugdha A Rane. Fast morphological image processing on gpu using cuda. Pune:
Department of Computer Engineering and Information Technology, College of Engi-
neering, 2013.

[50] Christian Ronse and Jean Serra. Algebraic foundations of morphology. Mathematical
Morphology: from theory to applications, pages 35–80, 2013.

[51] Azriel Rosenfeld and John L Pfaltz. Distance functions on digital pictures. Pattern
recognition, 1(1):33–61, 1968.

[52] Toyofumi Saito and Jun-Ichiro Toriwaki. New algorithms for euclidean distance trans-
formation of an n-dimensional digitized picture with applications. Pattern recognition,
27(11):1551–1565, 1994.

[53] S Satheesh, RT Santosh Kumar, KVSVR Prasad, and K Jitender Reddy. Skull re-
moval of noisy magnetic resonance brain images using contourlet transform and mor-
phological operations. In Computer Science and Network Technology (ICCSNT), 2011
International Conference on, volume 4, pages 2627–2631. IEEE, 2011.

[54] Jean Serra. Image analysis and mathematical morphology, v. 1. Academic press, 1982.

[55] Shyong Jian Shyu, T Chou, and Tsorng Lin Chia. Distance transformation in parallel.
In Proc. Workshop Combinatorial Math. and Computation Theory, pages 298–304,
2006.

[56] Olena Tankyevych, Hugues Talbot, Petr Dokládal, and Nicolas Passat. Spatially-
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