
République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Superieur et de la Recherche Scientifique

Université Mohamed Khider Biskra

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie
Département d’Informatique

THESE
Présentée pour obtenir le grade de

DOCTORAT EN SCIENCE EN INFORMATIQUE
Par

Tarek Ababsa

THEME

Emergence des Structures Evolutionnistes à
Base de Robots Cellulaires Auto-Organisés

Emergent Structures in Self-Reconfiguring Cell Robots

Soutenue le: 11/12/2016
Devant le jury composé de:

Pr. Abdelmalik Bachir Université de Biskra Président
Pr. NourEddine Djedi Université de Biskra Rapporteur
Pr. Foudil Cherif Université de Biskra Examinateur
Pr. Abdelouahab Moussaoui Université de Setif Examinateur
Pr. Mohamed Benmohamed Université de Constantine Examinateur
Pr. Mohamed Chaouki Batouche Université de Constantine Examinateur

Abstract:
Modular robots are complex systems composed of a set of simple robotic
units. These units can rearrange to change the shape of the whole
structure. This ability enables the reconfigurable robots to be extremely
adaptive to changes in the environment for performing real-world tasks.
Unlike conventional robots such robots are: i) Modular, since they are
assembled from numerous robotic modules. ii) Self-reconfigurable, since
the modules themselves are able to change how they are combined. iii)
Autonomous, since robots control themselves with-out human guidance.
Such robots are attractive to study because of the several desirable
characteristics they have, such as versatility, reliability and cheapness.

Challenges of enhancing modular robotic system capabilities not only are
limited to designing reliable, responsive, and robust hardware, but also
include developing software and algorithms that can effectively fulfill tasks
through performing fundamental functions like shape-formation, locomo-
tion, manipulation, . . . etc. In this thesis, we address these challenges by
exploring three central elements of autonomous self-reconfigurable modu-
lar robots: adaptation, self-reconfiguration and structure evolution.

Firstly, we tackled the problem of adaptation of modular robots in their
environment, we proposed a three layered approach to evolve the structure
of the robot. In the first layer a parallel GA engine is used for finding
the most suitable morphology, while in the second layer a PacMan-like
algorithm is used to transform the current morphology into the target
morphology identified by the first layer. Secondly, we integrated a hormone
signaling system into the model for allowing the system to perform parallel
tasks and avoiding the system to get stuck in local minimum. Thirdly,
we proposed a genetic programming based mechanism for finding the
near-optimal sequence of primitive actions in order to reduce the cost of
self reconfiguration.

Keywords : Modular Robots, Self-Reconfiguration, Adaptation, Struc-
ture Evolution, Emergent Behaviors.

Resumé:
Les robots modulaires sont des systèmes complexes composés d’un grand
nombre d’unités élémentaires. Ces unités peuvent s’arranger pour changer
la structure globale du système. Cette capacité permet aux robots
modulaires de s’adapter aux changements de l’environnement pour réaliser
des tâches relativement complexes. A l’inverse des robots conventionnels,
ces robots sont i) Modulaires, puisqu’ils sont composés de plusieurs
unités. ii) Auto Configurables, car les modules composant le système sont
capables de changer la manière dont ils sont reliés pour pouvoir former
plusieurs combinaisons iii) Autonomes, car ils sont capables eux-mêmes
de réaliser des tâches sans avoir besoin d’intervention humaine. Cette
discipline a attiré plusieurs chercheurs de la communauté scientifique pour
réaliser des études dans ce domaine. Les défis d’améliorer les capacités
des robots modulaires ne s’arrêtent pas à la conception mécanique et
électronique, ils englobent également l’amélioration des algorithmes et
des systèmes de contrôle pour que le système robotique se comporte
de manière efficace. Dans cette thèse, nous nous proposons de relever
ces défis en explorant trois éléments centraux de l’auto-reconfiguration
des robots modulaires : l’adaptation, l’auto-configuration et l’évolution
de la structure des robots. Dans un premier temps, nous nous sommes
intéressés au problème d’adaptation des robots modulaires dans leur
environnement. Pour cela, nous avons proposé une méthode en trois
couches pour évoluer la structure des robots. Dans la première couche, un
algorithme génétique réparti est utilisé pour trouver la structure optimale
que le robot doit réaliser, tandis que dans la deuxième couche, nous avons
utilisé l’algorithme PacMan pour transformer le système en une nouvelle
configuration identifiée par la première couche. Dans une deuxième étape,
nous avons intégré un système hormonal à l’architecture proposée pour
permettre au système de réaliser des tâches en parallèle ainsi pour que le
système soit capable d’agir de différentes manières pour ne pas se bloquer
dans un seul état. Quant à la troisième étape, nous avons utilisé la
programmation génétique pour reconfigurer le système de manière efficace
et réduire le coût de la reconfiguration du système.

Mots clés : Robots modulaires, Auto-Reconfiguration, Adaptation,
Evolution des structures, Emergence.

ملخص:
وحدات العنصریة. المكونة من عدد كبیر من معقدة) ھي أنظمة Robots	Modularالروبوتات الوحدویة (

للتماشي مع لتشكل عددا كبیرا من الھیاكل المختلفة الوظائفالتنظیم فیما بینھا ھتھ الوحدات یمكن لھا أن تغیر

خلافا على الروبوتات .انجاز المھمة الموكلة الیھاقصد تمكینھا من و ذلك متغیرات البیئة التي وضعت فیھا

مبنیة على ذات الھیاكل المھندسة, فان الروبوتات الوحدویة تتمیز بأنھا أ) ذات بنیة جزئیة: اذ أن تركیبتھا

الھیكلة: حیث أن الوحدات المكونة لھا قادرة على أن تتعاون فیما بینھا ذاتیة تداخل العناصر فیما بینھا, ب)

القیام بمھام بشكل مستقل بإمكانھاج) ذاتیة التصرف: حیث أنھ دون تدخل خارجي, لتغییر الھیكل العام للبنیة

من مجالا یستھوي العدید ھذه الخصائص و غیرھا جعلت من الروبوتات الوحدویة عن القیادة الخارجیة.

المفتوحة و التي لم یتم حلھا لحد الساعة. الباحثین و ذلك لثرائھ بالتحدیات العلمیة

التحدیات التي نتكلم عنھا لا تقتصر فقط على الجانب الالكترومیكانیكي بل تتعداه الى ما دون ذلك من

ذه الأطروحة سوف في ھ بمردودیة عالیة.خوارزمیات و أنظمة تحكم ذات فعالیة لتمكینھا من أداء مھامھا

الھیكلة الذاتیة, المسایرة و التأقلم, و أخیرا : ثلاث عناصر وھينقوم بمواجھة بعض ھتھ التحدیات من خلال

تطور الھیكلة.

في المرحلة الأولى سوف نقوم بمواجھة مشكلة تأقلم الروبوتات الوحدویة مع بیئتھا. لذلك قمنا بتطویر طریقة

تطویر الھیكلة للتماشي مع المستحدثات, بینما في المرحلة تعتمد على مرحلتین. المرحلة الأولى التي یتم بھا

منا بتطویر قدرات الروبوتات الجزئیة قمنا ةصلباستعمال خوارمیات خاصة لتعدیل الھیكلة. مواالثانیة نقوم

في الأخیر قمنا و ذلك لتمكینھا من الانقسام و مزاولة مھامھا بطریقة أكثر فعالیة. بدمج نظام ھورموني

سلسلة الأوامر التي تمكنھا من اعادة الھیكلة بطریقة لإیجادبتطویر طریقة تعتمد على البرمجة الجینیة و ذلك

أقل كلفة.

مات المفتاحیة:الكل

السلوكیات الناشئةالروبوتات الوحدویة, الھیكلة الذاتیة, التأقلم, التطور,

Acknowledgments

All praise and thanks to my lord, Allah !

I am grateful to Prof. NourEddine Djedi my academic supervisor and
equally to Prof. Yves Duthen, for their support, guidance, assistance
and encouragements during this long journey.

I deeply thank Jury members: Prof. Foudil Cherif, Prof. Abdelmalik
Bachir, Prof. Abdelouahab Moussaoui, Prof. Mohamed Benmohamed,
and Prof. Mohamed Chaouki Batouche, for accepting to evaluate this
work. In addition, I would like to express my sincere respect to the
anonymous reviewers of the published papers who provided me with
helpful critics, suggestions and guidance.

My thanks go to my colleagues at the computer science department of
the university of Biskra. I am also grateful for friends who helped me. I
sincerely thank them all for their support.

I would like to mention my family (my mother, my father, my wife, my
children, my brothers, my sisters and all my relatives). I cannot say
enough thankful to them simply because they are the reasons for me to
keep on trying.

Finally, to all of my dear friends, who I cannot name all of them since I
am afraid of missing someones, I sincerely appreciate their friendships,
which have brought different meanings to my life.

Contents
List of Figures xi

List of Tables xiii

1 Introduction and Motivation 1
1.1 Introduction . 2
1.2 Motivation of the thesis 4
1.3 Problem Statement . 6
1.4 Contributions . 8
1.5 Thesis outline . 10

I State of the Art 13

2 Self-Reconfigurable Modular Robots 15
2.1 Introduction . 17
2.2 Lattice Modular Robots 17

2.2.1 Crystalline Robots 18
2.2.2 Molecule Robots 20
2.2.3 TeleCube . 21

2.3 Chain Modular Robots 22
2.3.1 PolyBot . 23
2.3.2 GZ-I . 24
2.3.3 ModRED . 24

2.4 Hybrid . 25
2.4.1 M-TRAN . 25
2.4.2 Molecube . 26
2.4.3 Roombots . 27
2.4.4 SuperBot . 28

2.5 Mobile . 29
2.5.1 S-Bots . 30
2.5.2 KiloBots . 31
2.5.3 Symbiotic robot 32

2.6 Stochastic . 33
2.6.1 M-Block . 34

viii Contents

2.6.2 Programmable Matter 35
2.7 Deterministic . 37
2.8 Summary . 37

3 Self-Reconfiguration Algorithms 39
3.1 Self Reconfiguration Problem 40

3.1.1 Search-based approach 41
3.1.2 Control-based approach 48
3.1.3 Bio-inspired approaches 51

3.2 Flow methods . 54
3.3 Gait Methods . 59

3.3.1 Control methods 60
3.4 Self-assembly methods 64

3.4.1 Control methods 65
3.5 Summary . 67

4 Artificial Life and Morphogenetic Engineering 69
4.1 Introduction . 70
4.2 Artificial Life Techniques 70

4.2.1 Reproductive Systems 71
4.2.2 Evolutionary Computation Systems 73
4.2.3 Learning Systems 76

4.3 Emergent Properties in Modular Robotic Systems . . . 78
4.3.1 Complex Systems Engineering 78
4.3.2 The importance of being emergent 79
4.3.3 Emergent Behaviours 80

4.4 Artificial Evolution and Artificial Ontogeny 81
4.5 Morphogenetic Robotics 82

4.5.1 Morphogenetic Swarm Robotic Systems 83
4.5.2 Morphogenetic Self Reconfiguration 84
4.5.3 Morphogenetic Brain-Body Design 85

4.6 Conclusion . 87

Contents ix

II Contributions 89

5 Decentralized Approach to Evolve the Structure of Metamor-
phic Robots 91
5.1 Overview . 92
5.2 Discovering the Topology of the Robot 92
5.3 Evolving The Structure of the Robot 95

5.3.1 Evolving modules configuration using GA 97
5.3.2 The domination of new structural information . 100
5.3.3 Reconfiguration to the target pattern 102

5.4 Experimental Results . 103
5.5 Conclusion . 105

6 Splittable Metamorphic Carrier Robots 107
6.1 Overview . 108
6.2 The Modular Robot and its Environment 108
6.3 Generate Cyclic Locomotions 111
6.4 Encapsulation into the modules 112
6.5 Clustering The Modules 115
6.6 Experimental Results . 116
6.7 Conclusion . 118

7 G-Programming-based Self-Reconfiguration Planning 121
7.1 Overview . 122
7.2 Overview of the Simulator 123

7.2.1 Unit-Compressible Motion 124
7.2.2 Vocabulary of Module Actions 124
7.2.3 Compressible Units Simulator 125

7.3 GP-Based Reconfiguration Planning 126
7.3.1 Target Shape Description 128
7.3.2 Representation of GP Individuals 129
7.3.3 Fitness Evaluation 132

7.4 Experimental results . 136
7.5 Conclusion . 141

8 Conclusions and Future Work 143
8.1 Summary . 144

x Contents

8.2 Future Work . 145
8.2.1 Improvement on the proposed approaches 145
8.2.2 Evolving efficient Communication system for mod-

ular robots . 145

Bibliography 147

List of Figures
2.1 The physical prototype for the Crystalline Atom. 19
2.2 Several snapshots of the Atom prototype hardware per-

forming the inchworm experiment. 19
2.3 Molecule Robot . 20
2.4 (a-e) convex transition sequence, (f-h) concave transition

sequence . 21
2.5 Telecube Robot . 22
2.6 PolyBot Robot . 23
2.7 M-TRAN Robot . 26
2.8 Molecube Robot . 27
2.9 Roombot . 28
2.10 SuperBot . 29
2.11 Swarm-Bot . 30
2.12 kilobot . 32
2.13 Symbiotic robots . 33
2.14 M-Block . 34
2.15 Groups of modules can move as rigid assemblies 35
2.16 Miche and Pebble Robot 35
2.17 Fluidic assembly and Catom robots 36

3.1 Examples of reconfiguration planning: (a) self-
reconfiguration from an initial random configuration into
a chair;1 (b) self-reconfiguration in presence of surround-
ing obstacles (walls).2 40

5.1 Propagation of local perception over modules of the meta-
morphic robot. The red cells represent 4 connected mod-
ules (M1,M2,M3,M4), while the green cells represent
empty cells perceived by the modules and the white cells
represent the unperceived cells in the environment . . . 93

5.2 The diagram of our evolutionary approach 97
5.3 Encoding individuals by using character strings 98
5.4 Crossover operation, the two candidate configurations

(phenotype1, phenotype2) are encoded by character string 98

xii List of Figures

5.5 Mutation operation, the candidate configuration
(phenotype1) is encoded by character string 98

5.6 An example of using PacMan algorithm to transform the
configuration (A) into the configuration (B) 102

5.7 The evolution of a metamorphic self-reconfigurable robot
during its movement in a tunnel from left to right to
surround the yellow square 104

6.1 Cyclic locomotion . 111
6.2 FSM modeling the global task 113
6.3 The interaction between the FSM, the hormonne system,

and the GA engine . 114
6.4 Hormones concentrations during the time of simulation,

(a,b,c) are the three parts of the global task 117
6.5 The modular robot during the evolution 117

7.1 Compressible units in different configurations 123
7.2 The general scheme of the planner. The planner takes

initial and target configurations as inputs and outputs a
near optimal sequence of primitives required to perform
the corresponding transformation. 127

7.3 Hierarchical representation of a composition of functions. 130
7.4 The Genotype implementation. Each node encodes a

single primitive ”Cop” and its arguments (”idm”: for the
module identifier and ”dir”: for the actuator) 131

7.5 The five different reconfigurations considered for test-
ing the planner. In-Place-Tunneling reconfiguration is
constrained by obstacles "X symbol" 135

7.6 Left-Hand (a,c,e,g,i) the evolution over time of the size
(z) of best individuals. Right-Hand (b,d,f,h,j) the fitness
function against generations 138

7.7 The evolution of the perceived positive and negative mor-
phogens when using injective and non-injective fitness
function . 139

7.8 Snapshots of Interior Move Reconfiguration 141

List of Tables
5.1 experimental setup parameters 103

7.1 The set of all parameters used for the experiments . . . 136
7.2 Summary of experimental results 140

1
Introduction and

Motivation
The first chapter introduces the Modular Robotic Systems and highlights
the motivation of the research conducted in the thesis

Contents
1.1 Introduction . 2
1.2 Motivation of the thesis 4
1.3 Problem Statement 6
1.4 Contributions . 8
1.5 Thesis outline . 10

2 1. Introduction and Motivation

1.1 Introduction

When we think about the future, one of the most things that come to
mind is the Robot. A robot is a machine performs useful actions and
is capable of making decision about its behavior. Robots are the love
children of computer and powerful electromechanical components. They
come in all shapes and sizes, each specific to its function.

Since they first come on the see in 1960’s, real world robots have slowly
worked there where into the industry taking over more and more 3D
(Dirty, Dull, and Dangerous) jobs for each passing year. In assembly
line businesses, such as building cars, the ability of robots to perform
complicated tasks over and over is perfect, but getting a robot off of
its initial working area has proven far more difficult than science fiction
films would have to believe. The robots should master an incredibly
complex skill before fitting into our world. For example, walking is one
of the major challenges that is very difficult for them to learn but comes
naturally to us. In other word, if we want robots to live with us in an
environment designed for humans, then they have to get the shape and
the skill capacity of human beings.

Tele-operated robotic systems have introduced to fill the skill gaps.
However, robotic systems must be smart enough to get the job done,
especially if there is a time delay between human action and machine
response. The revolution in computing power combined with new ap-
proaches for building robot brains has resulted in new best robotic
systems ever devised.

Sophisticated robots are already called into the human service. But what
of all these robots lack is versatility. Indeed, there is no single robot that
is good in everything. The conventional approach in designing robots
has been to design their hardware and software in conformance with
the tasks they are supposed to do. Conventional robots are successfully
used in industry to perform repetitive tasks at much higher speed and
precision than humans can ever do. However, these robots are not very
flexible and adaptive, and thus applications consigned to them heavily

1.1. Introduction 3

depend to their physical structure on the one hand and their controller
capabilities on the other hand.

Even though robotics have clearly shown its usefulness, it is only used to
a limited extent by complex tasks. What we mean here by complex tasks
is those tasks where the operating conditions and ability requirements
are substantially more challenging than the predictable conditions. One
important thing to note is that the problem of adaptive locomotion is
indeed so hard that it has not been completely solved by nature. To the
best of our knowledge, no animal is able to move in any environment
efficiently. For example an albatross is really comfortable in the air
because of the size of its wings but not at all on the ground for the
same reason. In order to overcome this limitation, robots should be able
to dynamically select the best shape according any environment. This
idea brought the research community to contemplate autonomous kine-
matic machines with variable morphology or self-reconfigurable modular
robots.

Real robots that change their shape, made up of many identical modules
have been created and are being studied by a wide variety of groups.3

These robots promise to be versatile, low cost, and robust. While these
systems do not yet behave like liquid metal (possibly many million
microscopic modules), systems of the order of 100 modules have been
built and promise to be useful in search and rescue or space exploration.

The concept of morphologically variable robots was introduced
for the first time by Fukuda and Nakagawa in 19884 with the
biologically-inspired CEllular roBOT (CEBOT). They define that a
self-reconfigurable robot consists of several cells (or modules), each cell
have some measure of intelligence and mechanical capabilities. Modules
have their own computational power and are able to communicate with
other modules and sense the environment. The modules have connec-
tors and actuated degrees of freedom that allow them to connect to,
disconnect from and move relative to each other in order to deliberately
change the shape of the whole structure. The design of the modules pro-
vides the self-reconfigurable robot with abilities such as failure tolerance,
redundancy and the ability to self-repair.

With the electronic revolution and the appearance of 3D printing ma-

4 1. Introduction and Motivation

chines, the hardware field has dramatically progressed further with
working implementations of many modular robot prototypes. These
prototypes can be classified into three categories: lattice, chain, and
hybrid based systems. In a lattice-based system, modules are restricted
to move in a 3D grid. This gives them a regular structure and simplifies
the interaction between modules. Discrete motion can occur by the
repetitive movement of individual modules among each other, this is
a highly flexible approach, and can allow the system to pass through
relatively small gaps in obstacles. In a chain-based systems, modules
are connected in long chains capable of continuous rather than discrete
motion. This makes the connection more difficult, but simplifies the use
of motion via high level actuation mechanisms such as walking, sliding,
and so on. A hybrid system combines features of the lattice and chain
paradigms.

The reasons for studying self-reconfigurable robots are at least two-
fold. On one hand, the exploration of such systems may provide insight
into the nature and principles of biological organisms: To understand
biology, we must understand its basic principles such as modularity,
redundancy, emergence, self-organization and self-replication. On the
other hand, a reason for studying self-reconfigurable robots is their
possible applications. Potential areas of applications include exploration
of unknown environments such as space, collapsed building or earthquake
areas, entertainment such as educational toys and industry such as
flexible robot arms or reconfigurable machine tools. We believe that a
strong focus on the basic research of biological principles will uncover
new possibilities and open new doors for long-term applications. The
study conducted in this thesis is not far from possible applications, while
at the same time contains a more fundamental scientific value.

1.2 Motivation of the thesis

Although it is a relatively new field of inquiry, work in modular self-
reconfigurable robots has already yielded demonstrations of working
systems and significant advances in both hardware and software design.

1.2. Motivation of the thesis 5

However, exploiting the adaptive potential of changing morphologies has
not been fully investigated.3 It raises many issues not only in engineering
design but also in understanding natural forms of intelligence.

Realizing the full capabilities of modular self-reconfigurable robots will
require the development of systems with a very large number of modules.
This poses a significant engineering challenge in hardware and software
as well. Such for example, as the computation and communications
methods associated with a central controller perform poorly at large
scales, planning and control methods must be entirely decentralized.
Ideally, each module must execute its own copy of the same code,
reacting to locally sensed information and the one being passed to it by
its neighbors.

One of the major challenges for the modular robotic systems is Planning
and Control Challenge. Although algorithms have been developed for
handling millions of units under specific ideal conditions, challenges to
scalability remain both in low-level control and in high-level planning to
overcome realistic constraints such as:3

• Algorithms for parallel motion for large-scale manipulation and
locomotion with and without obstacles.

• Algorithms for optimal (time, energy) reconfiguration planning
with and without obstacles.

• Algorithms for robustly handling a variety of failure modes, from
misalignments and dead units (not responding, not releasing) to
units that behave erratically.

• Algorithms that determine the optimal configuration for a given
task and environment.

• Efficient and scalable (asynchronous) communication among mul-
tiple units.

Note that the added degrees of freedom make modular robots more
versatile in their potential capabilities, but also incur a performance
trade off and increased mechanical and computational complexities.

6 1. Introduction and Motivation

1.3 Problem Statement

Several key technical difficulties stand in the way of progress for modular
robotic systems before they would be used in vast numbers for practical
applications. In this section, we describe several problems to be addressed
in this thesis. These problems can be expressed in four items as follows:

1. Adaptation to terrain: Since a score of years, several robotic
systems have been proposed for locomotion over natural terrains.
In real-world applications, self-reconfigurable robots are required to
perform locomotion, manipulation, and self-reconfiguration tasks
in the presence of obstacles and in an uncontrolled environment.
Based on the different design experiences of such complex systems,
we have noticed that a dynamic adaptation of the structure and
its behavior is more than useful. The main reason for this fact is
that the mechanical solutions for locomotion on rough terrain are
multiples and none is ideal for all situations. Rus et al.5,6 presented
general distributed algorithms for adaptive locomotion and shape
formation, over a terrain with unknown obstacles. However, in this
work, the authors used hand-designed algorithms which took hours
of design time to synthesize. Besides, they considered an abstract
modular robot and it is not clear how easy it will be to translate
the abstract model of sensing to actual hardware. Chih et al.7

presented a full decentralized algorithm for the self-organization of
environmentally-adaptive shapes to form a flexible sheet structure.
A chain-based modular robot is used to form a flexible surface.
However, the structure has been already designed, meaning that
the system complexity is significantly reduced.

Reinforcement learning has been used in8 for locomotion and
adaptation in modular robots. The proposed approach suffers from
local optima where the robot is effectively stuck in a configuration
from which it will not be able to move. Besides, the scalability
remains to be demonstrated.

Leading robots to learn through experience for reaching the highest

1.3. Problem Statement 7

adaptability grade to the perceived information has been largely
explored by searchers9–12 . The learning process has specially
proven their capability of learning for specific situations. The
achieved controllers perform well for the trained problems and
make the process useful in the search for solutions. However, they
do not perform well when tested in environments different from
the trained ones.

When the environment is highly disordered, systems that use
cognitive architectures or those that use learning process perform
poorly in their environment due to the limitation resources for
perceiving the world and affecting it. Thus, it is important to look
forward into alternative approaches where the autonomous system
adjusts itself via perception and interaction with the environment.

2. Failure recovery: Whenever we think of keeping all of our sys-
tems up and running in an environment, we very often think about
what can happen if the systems suffer physical damage following a
hardware failure. So we have to think about redundancy and fault
tolerance.

One of the major desirable features of modular robotic systems
is their ability to recover from failures by ejecting and replacing
damaged or malfunctioning modules. In such a case, the control
system should be responsive to the new situation to allow the
robot to reach a repair station or even to finish its task without
the need to exchange the broken modules (recovery behavior would
be created to minimize the consequences of the damage).

Failure in modular robotic systems is mainly occurred for two
reasons: communication errors or joint failures. Possible solutions
to overcome this problem usually mentioned in literature3,13,14

, some of them need to be adapted for the whole environment,
others used the motion planning with the adaptation of motion
primitives for failure recovery. It is interesting to study the impact
of the failure recovery on the behavior of the system.

3. Performing parallel tasks: The most important characteristic
of modular robotic systems is that they are composed of a large

8 1. Introduction and Motivation

number of units. Although, it has been proved in theory that the
reconfiguration of modular robots linear scales with the number
of modules,15 it is also interesting to give importance to the self
reproduction of the system since the huge number of modules
gives material for the modular robot to replicate itself in several
independent smaller robots with the same basic functionality (but
not identical size). Self assembly methods can be applied to
aggregate the units again in order to build the original system as
the global task is achieved.

Self-replicating robots are useful in tasks where the overall ef-
fectiveness and task completion time is improved by parallelism.
Thus, it is important to empower modular robots with the ability
to split up when they need to explore different directions.16,17

4. Planning efficient self reconfiguration: In modular robots,
the self-reconfiguration problem is difficult for planning because
of two reasons. On one hand, the robotic units are obstacles to
each other, and on the other hand, the search space (the number
of possible sequences of configurations) grows exponentially with
the number of modules in the system.

Since the mechanical actions (expand, contract, attach, detach)
performed by the modules are typically the slowest part of the
system, it would be desirable to design an optimal algorithm that
minimizes the total number of mechanical operations required to
reach the final configuration.15,18

1.4 Contributions

To address some of the challenges described previously, this thesis makes
three major contributions: (i) an approach for evolving the structure of
metamorphic robot in a decentralized fashion, (ii) empower the modular
robot with the ability to split up in response to environmental needs (iii)
find a near-optimal sequence for self reconfiguring modular robots.

1.4. Contributions 9

1. Decentralized approach to evolve the structure of meta-
morphic robots:19 In which, we propose a three-layered motion
planning approach where at the higher level a parallel genetic algo-
rithm (GA) search is used for finding the most suitable morphology
that a lattice based modular robot (particularly “Crystalline”)
must assume during its Flow among obstacles toward a goal po-
sition. The genome data structure in the proposed GA contains
coordinates of modules in a grid environment, and the fitness
function evaluates the Euclidean distance of the robot’s center
of mass to the destination position. In such a model, the fitness
function does not include any subjective information about “how
to accomplish the task” but objective information about “how the
task has been accomplished”.

Since each module runs the same copy of the genetic algorithm,
the population can be divided among modules so that the planning
is done in a decentralized manner. Once the next morphology of
the modular robot is determined, the lower level plans motions
of the modules using a PacMan-like algorithm to transform the
current morphology to the target morphology identified by the
higher level.

Our model, takes advantage of the computational power of each
unit in the system where the majority of the existing systems
neglect this capability. In the existing older modular robotic
systems, the embedded CPUs were limited just for controlling
the actuators and managing the inter-modules communications.
However, the last generation of micro CPUs is extremely different
from the older micro-controllers and they are much more powerful
in term of performance. Thus, we believe that involving the
computational power of each module will give the system another
dimension and it will open the doors for various quantities of
interest.

2. Splittable Metamorphic Carrier Robots:17 Here we improve
our previous work as follows: Firstly, we used the concept of
positional information which is most commonly thought to be
implemented by morphogen gradients. The main reason for that,

10 1. Introduction and Motivation

is to overcome the U-Shaped obstacles, while the second reason
is to allow the robot to respond in a concentration-dependent
manner rather than dealing with any global point of information.
Secondly, we integrate a hormone signaling system to control the
robot behavior. As a result, the system is being able to replicate
itself in several smaller parts to perform a parallel task, moreover,
the robot is being able to escape the local optima in almost cases.

3. Genetic Programming-based Self-Reconfiguration Plan-
ning for Metamorphic Robot18 (accepted paper): In which
we use the genetic programming paradigm as an automatic pro-
gramming tool for finding the near-optimal sequence of primitive
actions which are required for reshaping the robot into the desired
configuration. The proposed model is intended for both Crystalline
and Telecube robots; however, it can be easily extended to any
lattice based modular robot.

1.5 Thesis outline

This thesis contains state of the art study, a description of the proposed
contributions, and some conclusion and perspectives. This content is
organized in 8 chapters as follows:

• Chapter 2 presents a background material on: Self Reconfigurable
Modular Robots. Some mechanical designs and properties.

• Chapter 3 presents a background material on: Self Reconfigura-
tion Algorithms which exist in the literature.

• Chapter 4 Introduces Artificial Life and Morphogenetic Engi-
neering as a novel field of inspiration for developmental robotics.

1.5. Thesis outline 11

• Chapter 5 introduces an approach for evolving the structure of
metamorphic robots.

• Chapter 6 describes how to use a finite state machine coupled
with a hormone signaling system to control the behavior of the
modular robot, and how to allow the system to split up into several
parts to perform the parallel task.

• Chapter 7 introduces a genetic programming as an automatic
programming tool for finding a near-optimal sequence of primitive
actions which are required to reform the robot into the desired
shape.

• Chapter 8 concludes the thesis a summary of contributions, and
outlines some future research directions.

List of Papers

A Tarek Ababsa, Nouredinne Djedi, Yves Duthen, Sylvain Cussat-
Blanc. Decentralized Approach to Evolve the Structure of Metamor-
phic Robots (regular paper). In : IEEE Symposium on Artificial
Life (IEEE-ALife 2013), Singapore, 16/04/2013-19/04/2013, IEEE
e-suppor.

B Tarek Ababsa, Nouredinne Djedi, Yves Duthen, Sylvain Cussat-Blanc.
Splittable Metamorphic Carrier Robots (poster). In : Artificial Life,
New York, 30/07/2014-02/08/2014, The MIT Press e-support.

C Tarek Ababsa, Nouredinne Djedi, Yves Duthen. Genetic
Programming-based Self-Reconfiguration Planning for Metamorphic
Robot. accepted paper. International Journal of Automation and
Computing IJAC, 2016.

Part I
State of the Art

2
Self-Reconfigurable

Modular Robots
This chapter introduces the concept of the modular robot and highlights
the mechanical designs of some existing modular robotic systems

Contents
2.1 Introduction . 17
2.2 Lattice Modular Robots 17

2.2.1 Crystalline Robots 18
2.2.2 Molecule Robots 20
2.2.3 TeleCube . 21

2.3 Chain Modular Robots 22
2.3.1 PolyBot . 23
2.3.2 GZ-I . 24
2.3.3 ModRED . 24

2.4 Hybrid . 25
2.4.1 M-TRAN . 25
2.4.2 Molecube . 26
2.4.3 Roombots . 27
2.4.4 SuperBot . 28

2.5 Mobile . 29
2.5.1 S-Bots . 30
2.5.2 KiloBots . 31
2.5.3 Symbiotic robot 32

2.6 Stochastic . 33
2.6.1 M-Block . 34

16 2. Self-Reconfigurable Modular Robots

2.6.2 Programmable Matter 35
2.7 Deterministic . 37
2.8 Summary . 37

2.1. Introduction 17

2.1 Introduction

The concept of self-reconfigurable robots was introduced by Fukuda and
Nakagawa4 in the late 1980s, they define that a self-reconfigurable robot
is an autonomous robot with a variable morphology that consists of
several cells (or modules). The modules have connectors and actuated
degrees of freedom that allow them to connect to, disconnect from and
move relative to each other in order to morph the whole structure into
different shapes without outside assistance. The design of the modules
provides the self-reconfigurable robot with abilities such as morphing
into the optimal configuration in a given situation, failure recovery and
ability to self-repair as well.

There are at least two reasons for studying self-reconfigurable robots: On
one hand, the exploration of such systems may provide insight into the
nature of biological systems: To understand biology, we must understand
its basic principles such as modularity, redundancy, emergence, self-
organization and self-replication. On the other hand, a reason for
studying self-reconfigurable robots are their possible applications in a
variety of domains such as industry (modular manipulators), search
and rescue in collapsed buildings (snake robot), or even entertainment
(educational toys).

There are several ways of categorizing modular robotic systems. One is
based on the geometric arrangement of their units3 (Lattice vs. chain
vs. mobile), and another is based on the methods of moving between
the locations for attaching20 (Stochastic vs. deterministic).

2.2 Lattice Modular Robots

A lattice-based modular robotic system has modules arranged and con-
nected in some regular, three-dimensional pattern, such as a simple cubic
or hexagonal grid. In this category, there are discrete positions that a

18 2. Self-Reconfigurable Modular Robots

given module can occupy. In contrast to chain-based architectures where
modules are free to move in continuous space, the grid based structure of
lattice systems generally simplifies the reconfiguration process. Control
and motion can be executed in parallel. Lattice-based modular robotic
systems usually offer simpler reconfiguration, as modules move to a
discrete set of neighboring locations.

Over a couple of years, a large number of working lattice platforms have
been developed. Many module designs have been proposed, ranging from
the very simple to relatively complex. A number of different connection
mechanisms have been developed for physically joining modules and a
variety of different actuation methods have been proposed for controlling
and reconfiguring systems. Some of these platforms are described in this
section as follows:

2.2.1 Crystalline Robots

First introduced by Rus et al.21 (Figure 2.1). Crystalline robot is a
mechanism with some of the same motive properties as biological muscles
that can be closely packed in 3D space and that can attach themselves
to similar units. Each of the Crystal modules is actuated by expansion
and contraction of its four faces. By expanding and contracting the
neighbors in a connected structure, an individual module can be moved
in general ways relative to the entire structure. Crystal atoms never
rotate relative to each other. Their relative movement is actuated by
sliding via expansion/contraction. This basic operation has yielded
new algorithms for global self-reconfiguration planning. When fully
contracted, each atom is a square measuring two inches on each of its
sides. When fully expanded, each atom is a square with a four-inch side
(twice the contracted size). Crystal robot systems can realize a wide
range of geometries. Crystalline robot systems are dynamic structures.
They move using sequences of reconfigurations to implement locomotion
gaits and undergo shape metamorphosis. The dynamic nature of these
systems is supported by the ability of individual modules to move globally
relative to the entire structure. Unlike other developed unit modules,

2.2. Lattice Modular Robots 19

Figure 2.1: The physical prototype for the Crystalline Atom.

in which modules are relocated only by traveling on the surface of a
structure, Crystalline atoms can be relocated by traveling throughout
the volume of a Crystal. Instead of propagating the module along the
surface of the robot structure, the same goal can be achieved using a
constant number of internal expansion and compression operations.21

The first locomotion experiment was designed to evaluate whether Atoms
could work together to effect a reconfiguration. In this experiment (see
Figure 2.2), both a and b were initially contracted. a was connected to
0 (at a.n) and b was connected to 1 (at b.n). a and b were connected
together at b.w. The Atoms were programmed with state sequences
designed to perform a variant of inchworm translation along the fixed
connectors.

2

ba

10

a

0 1

a

2

b

0 1 2

a

0

a

1

4 5 6 7

1 3
2 0 1 2

b

2

b b

a

a

0 1 2

b

a

0 1 2

b

0 1 2

b

free b.n from 11.
expand a2.
expand b3.
connect b.n to 24.
disconnect a.n from 05.
connect a and b6.
connect a.n to 17.
repeat8.

Figure 2.2: Several snapshots of the Atom prototype hardware performing
the inchworm experiment.

20 2. Self-Reconfigurable Modular Robots

2.2.2 Molecule Robots

A Molecule robot22 consists of multiple units called Molecules (Figure
2.3). The Molecule is capable of independent movement on a substrate
of identical Molecules, including straight-line traversal and 90 degrees
convex and concave transitions to adjacent surfaces (Figure 2.4).

Figure 2.3: Molecule Robot

The Molecule is a 4 degree-of-freedom, small-scale module capable of
aggregating with other identical modules to form three-dimensional
dynamic structures. The Molecule consists of two atoms linked by
a rigid connection called a bond. Each atom has five inter-Molecule
connection points and two degrees of freedom. One degree of freedom
allows the atom to rotate 180 degrees relative to its bond connection, and
the other degree of freedom allows the atom (thus the entire Molecule)
to rotate 180 degrees relative to one of the inter-Molecule connectors at
a right angle to the bond connection.

The rotating connection points on each atom are the only ones required
for Molecule motion. The other connection points are used for attach-
ment to other Molecules in order to create 3D structures. Each Molecule
also contains a microprocessor and the circuitry needed to control the
servomotors and connectors.

Each individual Molecule has three basic motion capabilities. Linear
motion on the top of identical Molecules, convex 90-degrees transitions
between two planar surfaces composed of Molecules, and concave 90-
degrees transitions between two planar surfaces composed of Molecules.

These primitive motions for a Molecule relative to a substrate can be
combined and sequenced by the robot control system to achieve global

2.2. Lattice Modular Robots 21

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 2.4: (a-e) convex transition sequence, (f-h) concave transition
sequence

motions of the entire robot. It has been found that a four-Molecule
robot is the smallest one that can move in general ways in the plane.22

2.2.3 TeleCube

Similar in design to Crystallyne modules used by Rus et al. in21 , these
cube shaped modules are designed and constructed at Xerox PARC23

(Figure 2.5). The Telecube module has the ability to independently
extend out each of the 6 faces (called plats). These extensions and
retractions provide the modules particular form of motion. The arms
can extend independently up to half of the body length, giving the
robot an overall 2:1 expansion ration along each dimension. A latching
mechanism on the plats on the end of each arm enables two aligned
modules to connect to each other. For power routing, communication
and alignment reasons, the modules must remain globally connected to
each other at all times.

The modules have the following low level primitives:

• ExtendArm(Direction): if there is a free space to extend the arm
in Direction, then extend the arm.

• RetractArm(Direction): Retract the arm in Direction, attempt-
ing first to disconnect connections which are perpendicular to
Direction.

22 2. Self-Reconfigurable Modular Robots

Figure 2.5: Telecube Robot

• Connect(Direction): if there is a neighboring module in Direction,
then latch to that module.

• Disconnect(Direction): if there is a module is currently latched in
Direction, then break the connection in between.

Prior to moving, the module must confirm that it has at least one
neighbor along the direction of motion on which it can push or pull.
Moreover, it must disconnect from all neighbors perpendicular to the
direction of movement.

2.3 Chain Modular Robots

A chain based modular robotic system consists of modules arranged
in groups of connected serial chains, forming tree and loop structures.
Since these modules are typically arranged in an arbitrary point in space,
the coordination of a reconfiguration is complex. In particular, forward
and inverse kinematics, motion planning, and collision detection are
problems that do not scale well as the number of modules increases.

The reconfiguration scheme in the chain based modular robot is achieved
by detaching an array of modules from one point of the architecture,
and reattaching it at a different point while maintaining the physical
connectivity of the entire assembly. This is realized either autonomously,

2.3. Chain Modular Robots 23

or under human supervision. Some of the chain based modular robots
are presented in this section as follows:

2.3.1 PolyBot

Figure 2.6: PolyBot Robot

PolyBot24 (Figure 2.6) is one of the earliest examples of a chain-based
modular robot. It is composed of two types of modules; a flexible
segment that provides actuation with 1 DOF and 2 connection ports,
and a static node that supplies power and serves as a branching point
within structures.

In this platform, the main design goal is that each module is very simple
and cannot do very much by itself. In combination with many others
a more complex system can be built to achieve more complex tasks.
Another design goal for PolyBot is that for each module should fit within
a cube. Two opposing faces of the cube have connection plates. The
module’s one DOF allows these two faces to be rotated so they are no
longer parallel. They can be rotated up to +/- 90 degrees.

As for computational power, each module has embedded processor
with external RAM. Each module is equipped with a hall-effect sensors
serving both for communication as well as joint position. The modules
communicate with each other over a controller area network bus.

The PolyBot systems have demonstrated that n-modular systems can
be very versatile by showing several different forms of statically stable
locomotion with a variety of characteristics24 . In addition, they have
demonstrated some manipulations as well. Some of the gaits that
have been implemented resemble: earthworm locomotion, turning and
sinusoid snake like locomotion, rolling track, three legged caterpillar like

24 2. Self-Reconfigurable Modular Robots

locomotion. The platform is notable for being the first to demonstrate
the automatic transition between two different modes of locomotion and
for its repeated deployment within unstructured environments.25

2.3.2 GZ-I

GZ-I26 is a modular chain robot with manual configuration. It is com-
posed of several modules which provide only one revolute degree of
freedom and three connection faces for attaching other modules. These
faces provide docking means with adjacent modules in the assembly via
bolts and nuts. Experiments showed the ability of these modules to
reconfigure into snake and quadruped robots.

The underlying motivation for this system is driven by the prospects
of building complex electromechanical structures from simple building
blocks. By homogenizing the structure of individual modules, repairing
and maintaining faulty components becomes easier and cost-effective as
any part can replace any other part in the assembly. However, as opposed
to self-reconfiguration, this robotic system requires human intervention
any time a reshaping of the morphology is desired.

2.3.3 ModRED

More recently, in 2010, Nelson et al. introduced ModRED27 (Modular
Self-reconfigurable Robot for Exploration and Discovery). Each single
module of the ModRED is composed of an end bracket to which another
module can connect, two parts, each of them contains actuators and
drive-train components, and another end bracket for module docking.
The two end brackets are connected to the respective half-bodies by
revolute joints, and the central axis running the length of the two half-
bodies is the common location of 1 prismatic joint and 1 revolute joint,
giving the module 4 DOF overall. The two end brackets can rotate
±90 degrees, and the rotation along the central axis of the module is
unbounded. Although this 4-DOF architecture provides a more versatile

2.4. Hybrid 25

set of motion possibilities than many other chain-type designs, the
authors have yet to demonstrate autonomous docking with real robotic
hardware.

2.4 Hybrid

There have been some modular robotic systems which combined ca-
pabilities from both lattice and chain architectures to take advantage
of the both architectures. Such systems were investigated for mobile
reconfigurable furniture applications (Roombots28), as well as for other
highly adaptive mobile systems.

2.4.1 M-TRAN

The M-TRAN system (Figure 2.7) developed by Murata et al.29 at
AIST/Tokyo Institute of Technology combines the positive capabilities
of chain and lattice based systems to implement a highly maneuverable
and reconfigurable system. The hybrid-morphology robot consists of
semi-cylindrical modules attached together in either a lattice or chain
architecture. Each module of the robot is composed of one passive and
one active cube that can continuously pivot about the link that con-
nects them and can form chains for performing tasks. However, during
reconfiguration, each of a module’s two cubes can occupy a discrete set
of positions in space when attempting to align with another module and
bond for reconfiguration as in a lattice system. The recent generation of
M-TRAN modules utilizes a mechanical latch as a bonding mechanism
which is considerably faster, stronger and more reliable than the previ-
ous generation’s magnetic latch. M-TRAN modules are self-contained,
meaning that all hardware, electronic boards and batteries are housed
inside the semi-cylinders and the links. Data communication and power
sharing among modules is achieved through electrodes implemented on
the mating surfaces. As for the software part, kinematics and dynamic

26 2. Self-Reconfigurable Modular Robots

c

Figure 2.7: M-TRAN Robot

simulator with GUI have been developed to aid the user in planning
a reconfiguration or motion sequence of operations before relaying the
commands to the real hardware to realize the desired configuration.

2.4.2 Molecube

Molecubes are first introduced by Lipson et al.30 They are designed and
prototyped at the Computational Synthesis Lab to demonstrate a step
towards self-reproducing machines. Molecubes are electromechanical
cubes which are able to attach and detach from one another using
electromagnets on the cube faces (Figure 2.8). The polarity of these
electromagnets can be switched electrically between “north”, “south”,
and “off” states so as to attract, repel or act as a neutral element to
the neighboring module. Thus each cube has at most 36 = 729 possible
states of electromagnetic activation if all six surfaces are equipped with
connectors. Switching between states, allows modules to pick up, hold,
and drop other modules or groups of blocks, as well as grip and climb
over other structures.

The revolute joint that connects the two halves of the body is actuated
by an embedded motor that enables one half-cube to swivel around the
other, allowing the modules to position themselves in arbitrary, three
dimensional way using this swiveling action.

2.4. Hybrid 27

Figure 2.8: Molecube Robot

Each module is a 10-cm cube, split into two halves along an inclined
plane perpendicular to the cube’s long diagonal. Swiveling two of these
blocks relative to each other by 120 degrees causes the entire structure
to reconfigure into a Z-shape and then into an L-shape. The cubes are
powered through the baseplate and transfer data and power through
their faces.

There are a number of ways self-replication may occur in a Molecube
space. Looking for possible self-replicating designs Z. Victor et al.31 ex-
plored this space manually and automatically, by evolving self-replication.
A number of designs of self-reproducing machines (both structure and
control) were found ranging from simplest 4 modules designs to larger
and more complex designs. However, for larger machines, it is likely
to introduce new power, force, and additional physical constraints that
would need to be addressed.

2.4.3 Roombots

Merging technologies from information technology, roomware, and
robotics raised Roombots as self-reconfiguring modular robots. These
robots are constructed by Sproewitz et al.28 in the hope of developing
units which autonomously connect to each other to form different types
of adaptive furniture such as stools, chairs, sofas and tables, depending
on user requirements (Figure 2.9). The Roombots are also capable of
locomotion by using the actuated joints of the modular robots.

Each Roombots module consists of several actuated joints with three
degrees of freedom, controllers, and energy supply. Unlike molecubes,
Roombots have mechanical connectors for rapid and solid attachment

28 2. Self-Reconfigurable Modular Robots

Figure 2.9: Roombot

and detachment between modules to allow the structure to support high
loads.

To tackle locomotion control, the authors developed a method for online
learning of locomotion by running a gradient-free optimization algo-
rithm in parallel to the central pattern generator (CPG) model. The
method produces coordinated patterns of rhythmic activity without any
rhythmic inputs from sensory feedback. Besides, it exhibits limit cycle
behavior, produces smooth trajectories even when control parameters
are abruptly changed, and it is robust against imperfect communication
among modules.

2.4.4 SuperBot

An advanced hybrid system is the SuperBot of Shen et al.32 The
SuperBot modular robot has been designed and built at the University
of Southern California in 2007. The Superbot system improves on the
mechanical design of M-TRAN (next section) by adding an additional
degree of rotational freedom between the two existing rotation axes.
To demonstrate the diversity and multifunction of the modules which
constitute this robot, both indoors and outdoors experiments have been
done include crawling, slithering, walking, moving in sand, climbing ropes
between buildings. SuperBot system was designed to be a more robust
modular robot, capable of operating in rough environment and real-world
situations, perform locomotion, manipulation and self-reconfiguration
tasks in the presence of obstacles in an uncontrolled environment. Each
SuperBot module consists of three main parts (Figure 2.10): Two end
effectors and a rotating central part. This design allows a module to

2.5. Mobile 29

Figure 2.10: SuperBot

have three degrees of freedom in the form of 180 degrees yaw, 180 degrees
pitch, and 270 degrees roll. This design gives the SuperBot module the
most flexible movements that we know in the literature, and allow a
single module to bend and twist into many different shapes and provide
the needed flexibility for multimode locomotion.

There are six connectors on each SuperBot module; one on each side of
the end effectors. Each of the six connectors of a module can connect to
any connectors of another module in all 90 degrees interval orientations.
It is through connectors that SuperBot modules are reconfigured into
different shapes.

2.5 Mobile

The mobile class of reconfiguration occurs with modules moving in the
environment disconnected from other modules. When they attach, they
can end up in chains or in a lattice. Examples of mobile reconfiguration
devices include multiple wheeled robots that drive around and link
together to form trains, modules which float in a liquid or outer space
and dock with other modules.

30 2. Self-Reconfigurable Modular Robots

2.5.1 S-Bots

A SWARM-BOT entity is composed of many single robots (S-Bots)
physically interconnected.33 S-Bots are modular robots which combine
collective team-work with reconfigurability accomplished via robotic
grippers.

Each module in the S-Bot is autonomous, and is equipped with nine
degrees of freedom that operate the mobile tracked-and-wheeled platform,
as well as the gripper. In addition to these features, an S-Bot is able
to communicate with other S-Bots and physically connect to them in
flexible ways. To achieve reconfigurability, modules use their grippers
to hold on to one another (Figure 2.11). Partial gripping between two
modules allows one to rotate in a horizontal plane with respect to the
other, while full gripping restricts this motion, but enables one module
to lift the other off the ground in a chain-like formation.

The SWARM-BOT is able to perform exploration, navigation and trans-
port of heavy objects in very rough terrain, where a single S-Bot has
major problems to achieve the task. This hardware structure is combined
with a distributed adaptive control architecture inspired upon ant colony
behaviors.

Figure 2.11: Swarm-Bot

The mobility of the system is ensured by a combination of tracks and
wheels. The S-Bot can freely move in the environment and easily rotate

2.5. Mobile 31

on the spot. Each S-Bot is allowed to move in rough terrain, with more
complex situations being addressed by SWARM-BOT configurations.
This kind of modularity and flexibility to pass large obstacles is very
similar to the one developed by self-reconfigurable robots. The main
difference consists in the fact that the SWARM-BOT has less 3D capa-
bilities than self-reconfigurable robots, an S-Bot is able to lift only one
single S-Bot. This aspect is compensated by exploiting the mobility of
each module, which the self-reconfigurable robots lack.

Rigid connections between S-Bots are implemented by a gripper mounted
on a horizontal active axis. The gripper can connect to other S-Bots on
a T-shaped ring around the main S-Bot body. If not completely closed,
the connection leaves some degrees of freedom, which are very important
for positioning and physical interaction between robots. If completely
closed, the gripper ensures a rigid connection and can be used to lift
other S-Bots.

One point to be considered, is that interconnecting robots to build a
self-assembling SWARM-BOT differs from interconnecting modules in
a self-reconfigurable robot. Self-reconfigurable robots can compute the
exact position of each module in order to ensure precise positioning
during interconnection.

2.5.2 KiloBots

KiloBot (Figure 2.12) robot is designed and prototyped at Harvard univer-
sity34 . This robot is low cost and quick assembly. It has abilities similar
to other collective robots. These abilities include: differential drive
locomotion, on-board computation power, neighbor-to-neighbor com-
munication, and neighbor-to-neighbor distance sensing. These abilities
are achieved at low cost through the use of vibration based locomotion
and a simple range sensor. The major issue in designing such a robot is
that the robot needs enough functionality to allow it to perform a wide
variety of collective behaviors, while at the same time, it must be simple
enough to keep the cost low. One important capability of the Kilobot is
that it must be able to move in its environment. Two vibration motors

32 2. Self-Reconfigurable Modular Robots

Figure 2.12: kilobot

are embedded in Kilobot for low cost locomotion system. When one
of these motors is activated, the centripetal forces generated by the
vibrating motor are converted to a forward force on the Kilobot located
at the motor’s mounting location. The principle of converting the mo-
tor vibration to a forward force can be explained using the slip-stick
principle. By controlling the magnitude of vibration for the two motors
independently in a differential drive manner, the robot can move in a
continuous range from clockwise rotation, to straight forward, to counter
clockwise rotation.

One major drawback to using this low-cost slip-stick based locomotion
is that there is no real form of odometry. This makes moving precisely
over long distances or for a long time difficult. Another limitation to this
system is that it requires a smooth surface such as a dry erase surface
to work and it cannot move over rougher surfaces. While this does limit
the environments that Kilobot can operate in, it dramatically reduces its
cost, and still allows for the demonstration of many interesting collective
behaviors.

2.5.3 Symbiotic robot

To investigate collective intelligence, S. Kernbach et al.35 developed
several independent modules with limited complexity and capabilities
(Figure 2.13). These modules are able to connect to each other in different
configurations, in order to form a robot with greater capabilities.

From bio-inspired and evolutionary perspectives, novel principles of
adaptation and evolution of symbiotic multi-robot organisms has been

2.6. Stochastic 33

Figure 2.13: Symbiotic robots

developed to allow a large-scale of these units to dock with each other,
share energy and computational resources as a single “artificial-life-form”.
When it is advantageous to do so, these swarm robots would dynamically
aggregate into one or many symbiotic organisms and collectively interact
with the physical world via a variety of sensors and actuators. The
bio-inspired evolutionary paradigms combined with robot embodiment
and swarm-emergent phenomena enable the organisms to autonomously
manage their own hardware and software organization in order to meet
the demands of different working tasks and environments.

2.6 Stochastic

At the micro and nano-scales, biological and physical systems massively
rely on parallel stochastic self-assembly, and the system’s reorganization
is based on passive motion of too small components. This tendency is
progressively pronounced as scales decrease.

As scales reduce, deterministic active locomotion becomes extremely
difficult due to the limits achieved by the miniaturization of the elec-
tromechanical components, whereas stochastic passive motion becomes
easier. Over the last years, there have been a considerable effort to build
micro-scales modular robotic systems, some of them is described in this
section as follows.

34 2. Self-Reconfigurable Modular Robots

2.6.1 M-Block

M-Blocks (Figure 2.14), are magnetically-bonded, angular momentum-
actuated modular robot.36 These cube-shaped robots have no external
actuated moving parts, and no active connectors. The modules pivot
relative to the edge of each others using inertial force actuation. A
flywheel located inside the module, (oriented in the plane of the intended
motion), is used to store angular momentum before a braking mechanism
is used to decelerate the flywheel and, during a short duration, exert
a high torque on the module. If this torque is sufficiently high, the
module breaks its magnetic bonds with its neighbors and pivots into a
new location.

Figure 2.14: M-Block

Thanks to this pivoting locomotion, each individual module can move
autonomously in an unstructured environment without any help of other
modules. Each module can also move on a 3D lattice of identical modules,
achieving a desired trajectory on a planar surface or making convex and
concave transitions to other planes. Moreover, the modules can jump
over distances up to several body widths wide. This broad range of
motions enables the M-Block system to achieve a wide range of shape
morphing and locomotion capabilities (Figure 2.15).

In a stochastic system, M-Blocks move in a 2D or 3D environment
randomly and form structures by bonding to each other. Modules
move in the environment in a passive state. Once a module contacts
the substrate or another module, it makes a decision about whether
it will bond to the structure or reject a bond. The time that it takes

2.6. Stochastic 35

Figure 2.15: Groups of modules can move as rigid assemblies

for the system to reach a desired configuration can be measured only
statistically.

2.6.2 Programmable Matter

The fantastic miniaturization of today’s electromechanical components
is primarily the result of high-volume nanoscale manufacturing. One
possible outcome of this technology is the ability to inexpensively produce
millimeter-scale units that integrate computing, sensing, actuation, and
locomotion mechanisms. A collection of such units can be viewed as a
form of programmable matter.37

Figure 2.16: Miche and Pebble Robot

A small end of the scale includes the Miche38 and Pebble39 systems
(Figure 2.16) developed at the MIT Computer Science and Artificial
Intelligence Laboratory. Envisaged as a test bed for future systems of
programmable matter, using magnetic connectors, these small, immobile,
cube-shaped modules are assembled by hand (they also may self-assemble
with the help of an external stochastic force). After the modules in
the initial structure use local communication to establish their location,

36 2. Self-Reconfigurable Modular Robots

they cooperatively distribute a user-defined goal configuration using
neighbor-to-neighbor communication. Once all modules know whether or
not to remain a part of the system, the unnecessary modules disconnect
from the system and drop off to create the desired shape. In contrast,
a lattice of interconnected smart particles (pebble robots) is used to
demonstrate a generic and architecture-independent approach to digital
fabrication by distributed shape sensing and duplication.39

Other examples from the field of programmable matter include Catom37

and Fluidic assembly40 modules’ (Figure 2.17). Catom is a small cylin-
drical module which uses a set of electromagnets to connect modules on
a two-dimensional plane. By coordinating which magnets are on and
which are off, modules can reconfigure by revolving around one another.
In contrast, Fluidic assembly modules self-assemble with the help of
external stochastic force (flow of liquid). Their special design, allows
them to channel the flow of liquid through their bodies by adjusting a
set of values. The flow of liquid through a structure allows the modules
to direct the assembly process.

Figure 2.17: Fluidic assembly and Catom robots

Programmable matter systems have shown an interesting idea for shape
sensing and duplication, however, there are several larger problems
that need to be addressed before they become practical. First, the
modules need to be miniaturized so that the resulting objects have
acceptable resolution. Second, a distributed duplication in 3D needs to
be implemented.

2.7. Deterministic 37

2.7 Deterministic

In deterministic modular robotic systems, modules move or are ma-
nipulated directly from one position to another in the lattice or chain
architectures. The positions of each module in the system are known at
all times and the time that it takes for the system to reach a desired
configuration can be accurately measured. A module’s reconfiguration
mechanism requires a control structure that allows it to coordinate and
perform reconfiguration sequences with its neighbors.

2.8 Summary

The field of modular robotic systems has seen a great deal of creativity
and innovation from the level of designing physical systems capable
of matching shapes to the level of designing algorithms that achieve
this capability. The convergence of innovation in hardware design and
materials for creating the basic building blocks has resulted in the success
of many modular robots which are involved more and more in the study
of self organizing systems.

In this chapter, we showcased some self-reconfigurable modular robotic
systems that have been developed over the past years. The function-
ality of these systems varies from simple unactuated structures, to
self-contained robots, to robot swarms. These robots either can function
in the plane (2D) or in space (3D) and their environments can vary
from being on land or submerged in liquid. These systems are classified
according to the taxonomy of Yim et al.3 in four main types: chain,
lattice, hybrid and mobile. The different types of platform shown in
this chapter are distinguished according to the manner in which they
reconfigure themselves, and may be further be classified according to
the number of degrees of freedom that the individual modules possess,
the type of docking mechanism they utilize and whether reconfiguration
is performed in a deterministic or stochastic manner.

38 2. Self-Reconfigurable Modular Robots

Differing in the mechanical design and the basic functionality of their
elementary components, each of these robots has specific strengths and
weaknesses. For example, at the macro-scales, lattice-based robots
perform better on the reconfigurability criterion compared to chain-
based robots. The reason is that in the chain-based robots, a chain of
modules has to bend and dock with the chain itself. This docking process
involves the coordination of several modules and is difficult to control
as described in3 . The big advantage of lattice-type systems is that
often only a few modules are involved in the self-reconfiguration process.
However, they are still expensive to be constructed in a large number
due to the difficulty of reducing the cost of attachment mechanisms.
There are thus very few platforms available to buy or which have been
released as open hardware projects.

Several bio-inspired platforms have been developed in large number and
in micro-scale in order to provide a simple, low-cost systems, which may
be used to investigate the interesting properties of self-reconfigurable
modular robotics from a simplified level. Some of these systems use
external stochastic forces to compensate for the lack of the actuators.

For complexity reason, the design scope considered in this thesis is
limited to lattice modular robots able to interact with the environment
and further fulfill the general design goals: i) scalable in the number of
modules, ii) versatile to solve a large range of different tasks, iii) reliable
to tolerate module failures and iv) autonomous to be independent from
human guidance.

3
Self-Reconfiguration

Algorithms
This chapter highlights the important Self-Reconfiguration Algorithms

Contents
3.1 Self Reconfiguration Problem 40

3.1.1 Search-based approach 41
3.1.2 Control-based approach 48
3.1.3 Bio-inspired approaches 51

3.2 Flow methods . 54
3.3 Gait Methods . 59

3.3.1 Control methods 60
3.4 Self-assembly methods 64

3.4.1 Control methods 65
3.5 Summary . 67

40 3. Self-Reconfiguration Algorithms

3.1 Self Reconfiguration Problem

The most central characteristic of a modular robot is the ability to
change its shape or morphology. Such a change is the subject of the
Self-Reconfiguration Problem (SRP), which has been emerged as a focus
area in the mid-1990s in parallel with the evolution of modular robots
hardware design. Self-Reconfiguration is the process of transforming a
modular robot from an initial configuration to a desired configuration
through a set of primitives and module-level actions while the total
number of modules is preserved. Self-Reconfiguration Planning refers
to the process of the determination of the sequence of module motions
from any given initial configuration to any given final configuration in a
reasonable number of moves.41

Figure 3.1 shows examples of the reconfiguration process. SRP concerns
with two aspects: on one hand, it concerns the algorithmic and optimiza-
tion aspects, and on the other hand, it deals with kinematic constraints
of modules. Hence, SRP is not only a software and hardware challenge,
but also a difficult problem that a general solution for it has not been
devised yet.42

Figure 3.1: Examples of reconfiguration planning: (a) self-reconfiguration
from an initial random configuration into a chair;1 (b) self-reconfiguration
in presence of surrounding obstacles (walls).2

The SRP is formally defined as the problem of planning a sequence of
reconfiguration steps that optimally transforms an initial configuration
I into a goal configuration G. It has been proved that SRP is an NP-
complete for chain modular robots,43 therefore, this discipline is being

3.1. Self Reconfiguration Problem 41

open to heuristic-based methods. The main challenge in SRP is the
exponential growth of possible configurations as the number of modules
and degrees of freedom increase. Klarner in 1965 found a typically
exponential lower bound of an > 3.6n

8 for the number of morphologically
different possible shapes that can be made by a finite number of cells, in
which an is the number of arrangements of polygonal-shaped cells to form
different configurations for n square-shaped cells.44 Klarner also found
that the size of an can be increased further if there is more than one
way that two connectors can mate. In his turn, F. Harary et al.45 found
that for hexagonal modules, the number of configurations generated
(N) is asymptotic to N = (2n−1)!

(n−1)!(n+1)!(
5
4)
√

5, where n is the number of
modules. This, as well as the results of other works suggests a very
rapid (non polynomial) growth in the number of different configurations
as a function of the number of modules. This fact prompted many
researchers to look forward for using metamodules in order to reduce
the complexity of the system.

In this section we use the taxonomy of Ahmadzadeh et al.46 to categorize
SRP solution approaches into three classes of Search-based, Control-
based, and Bio-inspired approaches.

3.1.1 Search-based approach

Many problems in AI can be solved in theory by intelligently search-
ing through many possible solutions. There have been many search
techniques which are widely used in solving constraints satisfaction
and optimization problems by representing a problem as a state space
graph. The graph theory can then be used to analyze the structure and
complexity of both the problem and the search procedures employed to
solve it.

In the state space model of problem solving, all possible solutions to
a problem are represented in the form of a graph G = (V,E) in which
each node v ∈ V represents a solution to the problem and each edge
e(v, w) ∈ E corresponds to the total cost of transition from node v to
node w.47 Search algorithms provide systematic strategies for searching

42 3. Self-Reconfiguration Algorithms

the graph G until a path that optimizes some quality measures and
satisfies particular constraints is found. In the context of SRP, the
search space is represented by a Configuration Graph, each node of
which represents a configuration, and each edge represents an action
that transits the robot from a configuration into another. Due to
the fact that the branching factor of the configuration graph increases
exponentially with the increase of number of modules (section 3.1), the
space complexity of search space is intractable. Therefore, it is crucial to
take some measures to make the search process tractable, among which,
Abstraction methods are used widely and effectively.

3.1.1.1 Abstraction methods

Abstraction techniques are generally used for reducing the size of the
search space and speeding up the search process. They must be com-
patible with search methods, that is, they have to be defined in such a
way that provides a concise representation of the state-space for search
algorithms. The most prominent abstraction methods are as follows:

Graph Representation : Graph theory has been widely used for repre-
senting modular robot topologies, through which the morphology
of reconfigurable robots is modeled by a one-dimensional combi-
natorial topology of edges and vertices, creating a planar graph
representation, also known as Connectivity Graph. In such a
graph, nodes represent module IDs and edges denote connections
between them.48 One issue with graph representation is that when
modules are connected via different connectors, it is very likely
to encounter configurations with identical graph topologies but
different functionality.

Connector Graph : F. Hou et al.43 introduced the Connector-graph
(C-graph) method to integrate connection ports and orientations
in the graph representation of a configuration. Such a method is in-
troduced to resolve the problem of identical graph representations
for configurations with different functionalities. In the C-graph

3.1. Self Reconfiguration Problem 43

representation, a connection between two modules i and j is rep-
resented by the 3-tuple (Ci, ORi, Cj), in which Ci and Cj refer to
the ID of the connectors of modules i and j, respectively, and
ORi is selected from the orientations set denoting the orientation
of module j relatively to module i.

Abstract Modules : This general method abstracts modular robots as
cubes (or any geometric structure that supports the formation of
lattices) with connectors on all faces. These abstract modules are
capable to perform general actuation model, presuming that mod-
ules can generally move over the surface of a group of modules and
convex transition as well.49 The concept of abstracting modules by
cubes had been previously developed by Butler et al.,50 although it
was extended later by Fitch et al.49 in order to support a class of
module hardware instead of one specific modular robot. The use
of abstract modules significantly simplifies kinematic constraints
of modular robots and decouples the configuration transition com-
plexities from self-reconfiguration algorithms. It allows also the
researchers to examine architecture-independent algorithms that
can be instantiated for many different systems because an indi-
vidual abstract module can move in general ways relative to a
structure of modules by traveling on the surface of the structure
or even through the volume of modular robot’s body.

Proteo Modules : This model is introduced by Yim et al.51 Proteo
model is defined as a class of three-dimensional metamorphic
robotic system capable of approximating arbitrary 3D shapes by
utilizing repeated abstract modules, each of which encapsulates
both module residence spaces and module motion constraints. This
model is intended to be general enough for accommodating a large
class of robots with different geometry and motion constraints.
The model is applicable to regular-shaped modules that inhabit
lattice grid positions and abstracts translational steps of modules
into discrete motion steps by the constraint that a module can
translate into vacant grid cells only when one of its neighboring
modules provides support for its motion.

Meta-Module : Meta-Modules are used as a way to reduce motion

44 3. Self-Reconfiguration Algorithms

constraints and the complexity of shape planning. In this model,
groups of modules that act as a unit are attached to one another to
perform high-level actions and offer more motion capabilities than
single modules.52,53 As a result, not only is the size of the search
space reduced, but also higher manipulability can be achieved
through meta-module actions. Due to usual nonholonomic kine-
matic constraints of modules, meta-modules can be used in compos-
ing a group of modules that can act as holonomic units.54,55 Meta-
modules transform the SRP from finding sequences of module-level
actions into finding a sequence of meta-module actions.

3.1.1.2 Solution methods

Uninformed Search Methods : Uninformed Search Methods like Depth-
First, Breadth-First and Lowest-Cost-First search do not take into
account the location of the goal. Intuitively, they ignore where
they are going until they find a goal and report success. These
algorithms are among the most elementary solution methods to
SRP. However, the high branching factor of configuration graphs
on one hand, and the explicit enumeration of generated and ex-
panded nodes (e.g. the OPEN or CLOSED lists) on the other
hand, make the space complexity of uninformed search methods
intractable. Therefore, these methods are avoided for solving
self-reconfiguration problems in general. In contrast, they can
be used for self-reconfiguration planning applications under the
following two scenarios: (1) they can be utilized as core search
components when the size of configuration graph is manageable, as
studied in,56,57 (2) they can be employed as auxiliary components
in finding a path between two positions in a lattice structure, as
studied in.2,15,52,58

Hierarchical Task Network (HTN) : In AI, Hierarchical Task Network
is an approach to automated planning in which the dependency
among actions can be given in the form of networks. This engi-
neering top-down approach plans for sequences of actions in order
to transform the system from an initial state into a goal state.

3.1. Self Reconfiguration Problem 45

In other words, it plans a sequence of primitive actions so that a
certain goal task satisfying a condition is realized. HTN is based on
recursive decomposition of compound tasks into smaller subtasks
until reaching primitive tasks performable by planning operators.59

In modular robotics context, SHOP2 (Simple Hierarchical Ordered
Planner 2)60 as a domain-independent planning system based on
HTN has been successfully employed by Bihlmaier et al.61 for re-
configuration planning of SYMBRION and REPLICATOR mobile
modular robots. In this work, a domain description of the SRP is
provided to the SHOP2 planning system and a heuristic function
that counts the number of docking and undocking actions is used
for guiding the SHOP2 searches.

Divide and Conquer : This method simplifies a problem by recursively
breaking down a problem into two or more sub-problems of the
same or related type, until these become simple enough to be solved
in their own subspaces locally. The solutions to the sub-problems
are then combined to give a solution to the original problem. In
order to solve SRP, this method plans reconfigurations via inter-
mediate (canonical) configurations. The key challenge here is to
characterize intermediate configurations such that not only they
should represent most of configurations in the configuration space,
but also reconfiguration planning between them should be less com-
plex than planning directly between initial and goal configurations.
Casal and Yim48 adopted this method in solving SRP for a class
of closed-chain modular robots in which at first both initial and
goal configurations are decomposed into loop and chain substruc-
tures using Hierarchical Substructure Decomposition (HSD) rules,
and then reconfiguration between intermediate configurations are
pre-computed, pre-optimized, and stored in a lookup table. In-
termediate configurations in62 were characterized in such a way
that a transition between them requires at most a specific number
of reconfiguration actions. Motion planning for many thousands
of modules using divide-and-conquer was studied in63 in which
pre-computed reconfiguration plans were reused for recursively
reconfiguring groups of modules into meta-modules. Aloupis et
al.64 employed the divide-and-conquer method for reaching goal

46 3. Self-Reconfiguration Algorithms

configurations through merging canonical forms generated by re-
cursively decomposing lattice surfaces into a hierarchy of square
cells.

Dynamic Programming (DP) : Dynamic Programming is a major clas-
sic optimization method for sequential decision problems that can
compute an optimal solution through breaking down a complex
problem into a collection of simpler sub-problems in the form of
a sequence of decisions over time. Like the divide-and-conquer
method, DP solves problems by combining the solutions to sub-
problems. However, the difference is that the sub-problems in the
former are independent while, in the latter, they are not indepen-
dent, meaning that subproblems themselves share subproblems.65

A dynamic programming algorithm solves each sub-subproblem
just once and then saves its answer in a table, thereby avoiding
the work of recomputing the answer every time it solves each
sub-subproblem. In the first stage, the algorithm examines all
possible ways to solve the problem and then picks the best solution.
As a solution to SRP, DP has been used as a backward search
policy in66 where the minimum cost of reconfiguring an open-chain
robotic system was found in O(n2) time and O(n) space com-
plexities. The DP has also been used for implicitly searching the
state-action space to learn a reconfiguration policy that maximizes
the expected sum of discounted rewards by solving an underlying
Markov Decision Process (MDP) through Bellman equations.67

Simulated Annealing (SA) : The Simulated Annealing method
searches the neighborhood of a solution for an iterative improve-
ment of the objective function through hill-climbing, but accepts
worse solutions with a probability of e−4E/T , in which 4E is the
change in energy (quality) of solutions, and T is the temperature
parameter controlling the search process.

For employing the SA in SRP, it is necessary to identify neigh-
borhood configurations, and compute either the energy level of
each configuration or the difference in system energy level after
each reconfiguration. The SA has been employed in SRP in.68,69

Pamecha et al.69 computed the energy difference E(C,G) between

3.1. Self Reconfiguration Problem 47

an arbitrary configuration C and the goal configuration G using the
two distance metrics of Overlap and Optimal assignment denoted
by δc and δ0 respectively. A configuration CN is called a neighbor
of C if, and only if, δc = 1 and δ0 = 1. During the run, the
algorithm randomly chooses the next configuration N from neigh-
boring configurations which satisfy4E = E(CN , G) - E(C,G) < 0.
In case that all neighboring configurations lead to higher energy
(4E ≥ 0 ∀N) the next configuration will be selected according
to the normalized probability of pi = e−4Ei/T∑|N|

j=1 e
−4Ej/T

, where |N | is

the number of neighborhood configurations and T is the current
system temperature. Experiments showed that the energy function
corresponding to the optimal assignment metric yielded better
results than the overlap metric in all cases.

Genetic Algorithm (GA) : The GA method works by initializing a
population of solutions in the form of arrays and assigning a
fitness value to each individual of the population. Then, at each
iteration, a number of individuals are selected according to a
selection operator to form parents, which are used to reproduce
offsprings by means of crossover and mutation operators. Finally,
a replacement strategy determines which individuals will be passed
to the next generation. This process iterates until a stopping
criteria is satisfied.

In SRP, the GA-based search have been used for various purposes.
For example, it has been: (1) employed particularly for evolving
emergent behaviors by modular robots,70 (2) used for evolving
algorithm parameters in complex systems which lack obvious ways
of finding their optimal values, (3) used for finding network weights
in artificial neural networks,71 and (4) used for tuning parame-
ters of Central Pattern Generators of gait controllers.72 Besides,
GA can be utilized in evolving bodies that fit on-hand tasks,
as Chen73 employed it to find task-optimal configurations via a
task-oriented objective function which was formulated as a combi-
natorial optimization problem. The procedure was to search among
non-isomorphic configurations identified by the help of defining
some chromosomes called assembly strings. A hybrid GA–SA

48 3. Self-Reconfiguration Algorithms

method was introduced in74 for multi-objective optimization of
both generation of configuration and selection of joint variables of
the modular robots to achieve a specified orientation and position.

3.1.2 Control-based approach

The Control-based approach tackles the SRP from the Control Theory
perspective. It considers the self-reconfiguration as the result of local
and distributed acts of controllers.75 A direct correspondence can be
established between the elements of SRP and those of conventional
control systems by mapping reconfiguration action sets to the input,
consecutive configurations to the output, and goal configuration to
the reference elements of a control system. Therefore, these elements
should necessarily be characterized in any control-based approach to self-
reconfiguration. In the Control-based approach, the role of Abstraction
methods is to describe the goal configuration for the controller, while
the role of Solution methods is to develop mechanisms for selecting
suitable actions to transform a modular robot into its ultimate goal
configuration.46

3.1.2.1 Abstraction methods

Abstraction methods in the Control-based approach constitute tech-
niques that facilitate presentation of goal configuration either implicitly
or explicitly for each module, such that local controllers can easily detect
whether or not they have reached the goal configuration. The most
straightforward technique is to provide each module with a common-
knowledge about geometrical characteristics of the goal configuration.
Different techniques have been developed for this purpose:

Coordinates Map : In this technique, the workspace is discretized into
a 2D or 3D grid and the coordinates of each module in the goal
configuration are explicitly specified and stored. However, this
technique, not only consumes huge amount of memory in each

3.1. Self Reconfiguration Problem 49

module, but also urges the modules to have the capability of
localizing themselves.76

Volume Approximation : This method describes the goal configuration
as a geometrical expression and requires localization capability
of modules. Volume Approximation describes the volume of the
goal configuration by boxes of same size as studied in,2,38,55 or by
boxes of different sizes called overlapping bricks that can overlap
each other to represent complex geometries, as used in.75,77 The
accuracy of approximation is affected by the two parameters of
size and number of modules. In fact, the more modules (boxes)
with smaller size are available, the finer approximation of the goal
geometry can be achieved.42

Surface Approximation : The goal configuration can also be geometri-
cally described by its exterior surface, where its boundary faces
partition the space into inner and outer sub-spaces.78 This method
is similar to what is done in computer graphics for defining different
shapes using small triangular faces. However, a module must be
equipped by the capability of detecting whether it is located inside,
outside or on the boundary of the approximated volume, which
is computation-intensive considering the limitation of onboard
processors of modular robots.42

3.1.2.2 Solution methods

Random Action : The simplest though least efficient control method is
to choose reconfiguration actions at random, where in each step
the controller hopes to reach the goal position by chance.79 The
performance of this policy is not predictable and obviously has no
guarantee to converge to the goal configuration in a finite number
of steps.

Self-evolving Controllers : This method aims to evolve suitable con-
trollers for the tasks at hand either automatically or semi-
automatically, while reducing the need for predesigned controllers
and a priori information about the environment.31,74 As evolution

50 3. Self-Reconfiguration Algorithms

of a controller takes place across several populations, this method
is suitable for circumstances in which problem specifications do not
change significantly from instance to instance. For example, when
defining a goal configuration subjectively, problem specifications
do not change much. Thus, self-evolving controllers are mostly
adopted to solve problems in which various behaviors (without
emphasizing on assuming specific morphologies) must be exhibited
by modular robots, such as supporting and balancing functions, in
which a modular robot acts as a stanchion to support an unstable
object,71 or locomotion through gait.80,81

Gradient-based : A control policy could be as simple as following a
gradient which is used to attract wandering modules to an unfilled
position. Thereby, the complexity of self-reconfiguration is mostly
incorporated into a process which generates the gradients rather
than controllers. In the Gradient-based method, some modules
or cells of a lattice grid become a source module and play the
role of a seed. A seed module acts as a source and sends out a
constant integer, representing the concentration of an artificial
chemical, to all neighboring cells. Non-source modules calculate
the concentration of artificial chemicals in their neighborhood and
follow them according to the steepest descent scheme.82

Gradient-based methods have been employed in growing objects
from an initial seed module in.75,83 In,75 gradient-based motions
are produced for cubic lattice modules by utilizing the attraction
between vacant spaces and modules, which reside inside and out-
side of the goal configuration, respectively. Both modules and
holes contribute to generating gradients. Direction and distance
information of the movement are implicitly encoded in gradients.
Here, the holes play the role of seeds and produce integer con-
centration values which are propagated to their neighbors. Each
neighbor then recursively adds a unit number to the received value
and propagates the new value to its own neighbors. In this way,
the concentration value is propagated all over the structure. When
the gradient propagation front reaches a module, it starts to tra-
verse across the structure by following a decrementing path of
concentration values until reaching the source module.

3.1. Self Reconfiguration Problem 51

The paths to the unfilled positions always go through or on the
surface of the structure. The structure does not contain local
minima, because of the staging structure. Therefore, the paths to
unfilled positions never contain local minima.

Distributed Planning : In this method, similar to the Gradient-based
method, a path is searched from a seed (a target position in the
goal configuration) to a moving module (a module that can be
moved without disconnecting the structure) using a distributed
depth-first search method. Once a moving module is assigned
to a seed, the moving module backtracks the path (i.e. the tree
generated by the search algorithm) until reaching the seed.84,85

In order to plan motion of modules in a distributed manner, Butler
et al.84 developed the PacMan algorithm inspired from a video
game with the same name for a system of Crystalline modules,
in which target modules attract moving ones via a motion path
drawn for each module by means of special data structure called
pellets. Their algorithm places pellets in the grid environment
such that undesirable situations such as deadlocks, fragmentation,
and conflicts are avoided.

3.1.3 Bio-inspired approaches

Developing controllers for self-reconfigurable systems gets more chal-
lenges when the systems are supposed to face some undesirable facts such
as unpredictable events, sensor noise, and actuator imperfection, under
which circumstances classical engineering approaches fail to function
efficiency. However, it is interesting to note that biological systems are
able to handle such complex situations efficiently in autonomous and
decentralized manner. For this reason, biological systems have been
a rich source of inspiration for many engineering and mathematical
methods, such as bioinformatics and biocomputation.

In the context of modular robotics, bio-inspired approaches take their
motivation from the self-organization property of multicellular organisms
in such a way that the principles that govern self-organization of natural

52 3. Self-Reconfiguration Algorithms

systems are translated into algorithms that can exhibit comparable
self-organizing behaviors in modular robotic systems.

There are two categories of bio-inspired methods: (1) methods inspired
from morphology development and growth process of multicellular organ-
isms, and (2) methods inspired from the physiology of organisms (the
means by which organs carry out their chemical or physical functions in
an organism). The former is applicable to the process of producing differ-
ent morphologies in modular robots while the latter is mainly applicable
in the process of developing controller for behaviors such as locomotion
through gait. In addition, there are other biologically-inspired comput-
ing methods such as Genetic Algorithm (GA), Gene Regulatory Network
(GRN), Artificial Neural Networks (ANN), and Cellular Automata (CA)
which are inspired from natural evolution, brain, and life, respectively.

3.1.3.1 Abstraction methods

Abstraction techniques in Bio-inspired approach assume modules as
entities that cooperatively exhibit a particular behavior.

Genome Data Structure : This method was proposed in86 to store
information about controller structure and controller dynamics. A
Genome is a collection of genes which can be a simple part of a
blueprint, which depicts a part of the final controller. But a gene
can also work as a rule, which is used to construct parts of the
final controller.

Morphogen Concentration Gradients : It is a technique for abstractly
describing target shape information in the methods inspired from
the biological morphogenesis process in organisms.87 Where,
a signaling gradient regulates differential gene expression in a
concentration-dependent manner, provides a basis for performing
many patterning processes.

3.1. Self Reconfiguration Problem 53

3.1.3.2 Solution methods

Virtual Embryogenesis (VE) : The process of embryogenetic develop-
ment and evolutionary adaptation of living organisms (EvoDevo)
was the inspiration source in development of the Virtual Embryo-
genesis (VE) method.88 The VE method uses artificial evolution
to evolve processes which manage assembly of mobile units such
that regenerative abilities are exhibited when the robot suffers any
damage during the evolution.

Morphogenetic Robotics : Jin and Meng89 studied the morphogenesis
procedure in multicellular organisms in order to tackle the chal-
lenges of autonomous adaptation of modular robots morphologies
with environmental changes. Morphogenesis is a biological pro-
cess that causes an organism to develop its shape, during which,
gene expression generates various cellular functions. Expression
of genes, however, is regulated by their own protein products, as
well as by proteins produced by other genes in the same cell or
its neighborhood through intracellular and intercellular diffusion.
Such interactions form a complex regulation network called Gene
Regularity Network (GRN). By using GRN, a hierarchical model
consisted of a two-layer morphogenetic controller for modular
robots has been proposed in,90,91 where the the first layer is a
rule-based pattern generator that generates appropriate patterns
for the current environment and assigns tasks, and the second
layer is a GRN-based controller that automatically generates re-
configuration plans that converge the current configuration into
patterns generated by the first layer.

Protoplasmic Streaming : This method is inspired from slime molds
in exhibiting collective behaviors. A cellular slime mold is a
primitive organism that fully employs decentralized control for
self-organization based on reaction–diffusion of a substance called
Cyclic Adenosine Monophosphate (AMP). Slime molds are unusual
creatures which sometimes live individually as monocellular organ-
isms but at other times form multicellular bodies. As monocellular

54 3. Self-Reconfiguration Algorithms

organisms, they are amoebae that move individually. When envi-
ronmental conditions deteriorate (e.g. when food is running out),
many amoebae gather to form a slug-like entity, which then moves
as a whole.92

A decentralized algorithm to control 2D translational DOF modu-
lar robot was introduced in93 through focusing on the primitive
organism of slime mold, in which coupled nonlinear oscillators
were utilized to simulate Protoplasmic Streaming. In this method,
modules are arranged in a network of passive and real-time tun-
able springs and covered by an outer skin, and are filled with an
incompressible fluid (i.e. protoplasm). The modular robotic sys-
tem could exhibit supple locomotion similar to adaptive amoeboid
locomotion by conforming to the principle of protoplasmic mass
conservation and by the exploitation of long distance interaction
among modules.

Physarum Robotics : Physarum polycephalum is a slime mold that
inhabits in shady, cool, and moist areas and can exhibit trans-
portation, navigation, and complex behaviors from very simple
local interactions. Inspired by such slime molds, Jones et al.94

studied complex behavior generation from simple components, and
developed a particle-based model which mimicked plasmodium (a
mass of protoplasm containing many nuclei) of Physarum poly-
cephalum and could spontaneously generate oscillatory patterns.
This model can exhibit self-reconfiguration behaviors which are
morphologically adaptive, amenable to external influences, and
robust to environmental assaults. Through this model modules
are able to perform different forms of controllable motions such as
linear, rotational, helical, reciprocal, and amoeboid movements.

3.2 Flow methods

Modular robots can mimic the flow of fluids usually through concurrent
reconfiguration of modules, similar to the way that spilt water traverses

3.2. Flow methods 55

a terrain toward a sink.95 Lattice-based modules have the ability to
move on the surface of their neighbors along any direction relative to the
whole structure, while the connectedness of the whole body is preserved.
Therefore, inspired from the way fluids run toward a sink, such modular
robots can relocate through simulating this behavior.

In the Flow, modules change their morphology in conformance with the
rough environment and the obstacles they meet during locomotion, just
like fluids conforming to their stream bed. This way of locomotion is
called water-flow motion as it simulates the flow of water on the ground,
in which modules assume the shape of their underlying terrain while
moving forward.95 While in water-flow motion, Flow is planned at the
level of modules, in Cluster-flow it is planned for a block of modules.

The Flow operation is realized through changes in the morphology of
the modular robot. Thus it can be considered as a self reconfiguration
problem and then solved using the solution methods. However, a deli-
cate point is that consecutive target configurations in Flow are defined
subjectively, i.e. they are defined to attain a desired functionality (which
is to translate the robot’s center of mass along a particular direction)
rather than an explicit geometrically-defined shape.46

It is important to note that the Flow operation is generally implemented
through distributed interactions of modules, thus, it is necessary to
adopt synchronization methods to guarantee that the whole cluster of
modules remains connected while flowing, and modules are sufficiently
coordinated such that overcrowding situations (where several modules
intend to enter the same lattice position) are avoided.

3.2.0.3 Control methods

Cellular Automata (CA) : The local nature of transition rules in CA
fits well with Flow locomotion, where modules should decide on
their next state according to their local state, local configurations
of surrounding modules, and limited sensory data about the en-
vironment. Xu et al.96 developed a set of rules for the class of
planar lattice modules based on modules local perception about

56 3. Self-Reconfiguration Algorithms

their immediate neighboring lattice cells. When executed on the
Finite-State Machine of modules, the rules can result in flow-like
locomotion behavior in presence of obstacles on a 2D grid. Butler
et al.95 proposed a set of transition rules for realizing water-flow
motion by MoleCube, M-TRAN, and Crystal modules, in which
a modular robot is considered as a particular type of Cellular
Automata which runs local rules in each individual cell. Local rule
sets are based only on the local configuration around a particu-
lar module, and consist of five and eight rules for water-flow in
obstacle-free and obstacle-filled environments, respectively. The
rules exhibit a behavior similar to a tank tread, by which modules
move in turn from the back of a module cluster over its top and
eventually place at the front, either on the ground or on another
module. Wu et al.97 developed CA for flow locomotion in presence
of obstacles by the M-Cubes lattice modules. In this work, the
state of a cell is defined by the ID of modules located in front
of its connectors and the next system state is computed by a
transition rule generated by a two-layer artificial neural network
with seven inputs and one output. Murata et al.98 employed CA
for generating the Flow operation based on an abstract model for
a specific meta-module of M-TRAN called tile model, in which a
planar regular structure is considered as a plane filled with 2 x 2
tiles (cells). Their work considered these cells as objects of control
as opposed to conventional CA implementations that consider
moving modules as control objects. Obstacle avoidance is realized
by setting a vector field in the cell space through a process similar
to gradient generation which places sources and sinks next to the
cells on edges of the structure. Then, Flow on the contour of the
environment is realized by using modules that can detect obstacles
in their neighborhood.

Distributed Planning : It is possible to fulfill the Flow operation by
parallel execution of locomotion paths planned per each individual
module. For example, the PacMan algorithm by Butler et al.84 can
be utilized for generating surface-moving systems, and is applicable
to unit-compressible systems like the Crystalline module, in which
paths of modules are planned in parallel using the depth-first search

3.2. Flow methods 57

strategy and path conflicts are resolved in the actuation phase to
let modules flow among obstacles or even climb up them. Fitch and
Butler67 employed distributed dynamic programming for planning
an individual locomotion path for each module, where modules
use local constant-time search and a module-locking scheme in
order to ensure physical integrity of the robot, while following
their paths toward the goal of locomotion which has been specified
by a simple bounding box.

Hierarchical Planning : Flow can be considered as a two-level planning
problem: at the higher level gross locomotion of the modular
robot’s body is planned, and at the lower level detailed local
movements of modules, coordination of their actions and con-
flict resolution issues are addressed. For example, for cluster-flow
of a class of regular structures and especially M-TRAN mod-
ules, Yoshida et al.99 proposed a centralized two-layered planning
method where the upper layer (called global flow planner) plans
the overall cluster motion along a desired trajectory, and the lower
layer (called motion scheme selector) locally determines low-level
module motions by means of a set of If-Then rules. As a result,
a block of modules from the tail is transferred toward a given
heading direction. The lower layer checks whether paths found
by the global planner are valid for each module in the block by
repeatedly applying rules which include local motion sequences
and are defined according to the initial local configuration of the
module. Our approach (Ababsa et al.19) is another instance of
the layered motion planning in which at the higher level a parallel
GA search is used for finding the most suitable morphology that a
lattice based modular robot must assume during its Flow among
obstacles toward a goal position. The genome data structure in the
proposed GA contains coordinates of modules in a grid environ-
ment, and the fitness function evaluates the Euclidean distance of
the robot’s center of mass to the destination position. Since each
module runs the same copy of the GA algorithm, the population
can be divided among modules so that the planning is done in
decentralized manner. Once the next morphology of the modular
robot is determined, the lower level plans motions of modules using

58 3. Self-Reconfiguration Algorithms

a PacMan-like algorithm to transform the current morphology to
the target morphology identified by the higher level.

Reinforcement Learning : The RL method can also be utilized for ex-
hibiting flow-like motions. Varshavskaya et al.100 implemented
RL on a 2D lattice modular robot with a learning objective of
displacing the center of mass towards a particular direction. Var-
shavskaya101 also employed Distributed Reinforcement Learning on
a 2D lattice-based modular system and set the learning objective
to move modules in presence of obstacles such that the robot’s
center of mass is translated toward a given direction while the
connectivity of modules is preserved. Consequently, each action
that moves the center of mass toward the desired direction gains a
reward. The problem was modeled as a Partially Observable MDP
since each module could identify the presence of obstacles or mod-
ules in its eight immediate neighbors. The modules learned proper
reconfigurations through centralized and decentralized methods
based on direct search of parameterized state-space called Gradient
Ascent in Policy Space.

3.2.0.4 Synchronization methods

Messaging : Modules can coordinate their motions by passing messages
between themselves. For example, messaging can be used to assure
that the destination of a module is not occupied by another mod-
ule, and if so, to ask the blocking module to leave that location.
However, such a coordination scheme requires the messages to
be exchanged between all modules of a modular robotic system,
which not only is bandwidth-intensive, but also needs some kind
of centralized controller for coordination. Murata et al.98 used
meta-modules of four modules as an approach for resolving commu-
nication and coordination problems as locally as possible. In that
method, modules are grouped together and communication paths
between two adjacent groups are determined automatically. A
module aiming to occupy a particular location within an adjacent

3.3. Gait Methods 59

group verifies the vacancy of its destination through messages
exchanged at the group level. As a result, by considering meta-
modules as groups, flow motion is realized in a distributed manner
by means of a hierarchical control structure, in which the lower
level controls the motion of meta-modules via coordinating their
constituting modules, while the higher-level is responsible for the
distributed control of meta-modules.

Locking : Controllers must also care about the arrangement of modules
within the robot’s structure in order to prevent modules from
taking actions that may lead to collisions. The aim of a locking
mechanism is to synchronize access of modules to the free space in
the same way. Critical sections handle simultaneous access to a
shared resource in concurrent programming. In modular robotic
systems, rather than defining critical sections as blocks of program
codes, Lund et al.102 defined them as regions in the free space, and
instead of constraining a critical section to be executed by only
one module at a time, they devised a locking mechanism in which
the module that wants to use the critical section must lock the
module that controls the critical section. The controlling module
is a module that has to be accessed exclusively in order to avoid
collisions (like a module used as a base for a movement). Fitch et
al.67 utilized the locking mechanism for assuring the connectedness
of the modular robot structure during parallel actuation of modules.
Connectivity is preserved by locking the modules located on the
path searched toward the goal position by the MDP method,
and collisions between modules are prevented through locking the
immediate vacant destination position of a module in order to stop
other modules from occupying it. After that, locked modules are
unlocked and allowed to follow their own plans.

3.3 Gait Methods

Although the Flow locomotion is applicable to structures with many mod-
ules, they are extremely inefficient in practice due to the substantial time

60 3. Self-Reconfiguration Algorithms

and energy required for the modules, in order to assist other modules in
moving on the faces of each other. Thus, researchers incorporated a more
energy-efficient robot locomotion technique into modular robots that is
locomotion through Gait, in which scheduled rotations of joints and ad-
justments of joint angles leads to translation of a limbed or limbless body
along a desired direction. In Gait motion, since the joints merely rotate
at their positions and no attachment/detachment action takes place, the
morphology of the modular robot remains fixed during locomotion. De-
spite the abundance of developed gaits for bipedal, multi-legged, crawler,
caterpillar, and snake robots, their direct implementation to modular
robots is not straightforward because in most cases, conventional robots
are designed to suit a particular locomotion gait while modular robots
are normally designed to be general purpose.46

In order to realize a particular gait in modular robots, it is necessary
to characterize two basic elements of controller and synchronization
methods. In fact, a gait is a set of cyclic actions that need a controller to
tell each individual module what action must be done at each time-step.
On the other hand, synchronization is crucial for creating harmony
between movements of modules so that discrete movements of each
module lead to a continuous and smooth gait.

3.3.1 Control methods

In general, gait controllers can be devised either manually (by a designer)
or automatically (by the controller itself). In the first type, a mapping
between states and actions is constructed using lookup tables, periodic
functions, and event-driven state machines, etc. as employed in Control
Tables and Phase Automata methods44 . However, the difficulties associ-
ated with hand-designing of state–action mappings instigated methods
that can automatically develop gait controllers, including methods that
solely automate the controller development process, such as Central
Pattern Generator (CPG) and Neuroevolution, and methods that auto-
mate both the development of body and controller so that optimal gait
locomotion is realized, such as Brain and Body Coevolution.9,103

3.3. Gait Methods 61

Control Tables : The most common and obvious approach to control
locomotion of a chain-type robot in a specific configuration is
a centralized gait control table.103 This approach assumes that
the modules are equipped with a list of predesigned mappings
from a set of states (either motion-step or time-step) into a set
of actions which tell the module what action to adopt according
to its current state. Various gaits for rolling-track, slinky-like,
cartwheel, earth-worming, and snake-like locomotion have been
implemented by means of mapping from motion-steps to actions,
as studied in44,104,105 . Control Tables is basically an open-loop
controller that its adaptation to environmental changes is limited
to the flexibility incorporated in the mappings of actions.42

Another approach in using Control Tables is to map time-steps
of each module to actions through a cyclic function. Time-based
control tables are implemented in106 for sidewinder, rolling, and
caterpillar gaits.

Distributed Reinforcement Learning : Christensen et al.14 developed
a Distributed Reinforcement Learning strategy for learning simple
gait control tables in which the velocity of the whole modular robot
is considered as a global shared reward signal to individual learning
modules. Each module selects its action from an action set at
random based on ε-greedy policy for exploration and exploitation.
Although, such a learning strategy is independent of the robot’s
morphology, it converges slowly to a meaningful behavior. Hence,
in order to accelerate the learning process, a heuristic was proposed
to bias the exploitation toward the action that has received a
reward greater than the maximum expected value of other actions.
While this accelerated strategy may converge more quickly, it is
prone to remain trapped in local optima conditions longer than the
normal ε-greedy policy. These two strategies were experimentally
employed in learning gait control tables for realizing typical gaits
in ATRON and M-TRAN modules such as snake, walker, and
crawler, which each module independently learns what action to
do at each time interval.

Central Pattern Generator (CPG) : CPGs are biologically-inspired

62 3. Self-Reconfiguration Algorithms

neural networks capable to produce coordinated patterns of rhyth-
mic motor actions while being initiated and modulated by simple
input signals even in isolation from motor and sensory feedbacks.107

In108 a simple CPG is employed in a robot composed of eight
modules in which each module is equipped by a sinusoidal CPG
equation that controls the rotation angle of each module. Through
the interactions between CPGs and by manual tuning of each
individual CPG parameters, five different gaits were developed,
namely, sinusoidal, turning, rolling, rotating, and lateral shift.
In109 sensory information feedback was incorporated in tuning
CPG parameters so that enhanced locomotion movements such
as traveling through an obstacle-filled uneven terrain could be
achieved. The Genetic Algorithm was employed in72,110,111 for
automatic optimization of parameters in a network of intercon-
nected CPG oscillators towards finding a stable walking gait where
four state variables belonging to each CPG and the connection
weights among CPGs were evolved using GA. Furthermore, CPGs
have been successfully implemented in developing adaptive gaits
of M-TRAN,112 YaMoR,113,114 and Roombots81 modular robots.

Neuroevolution : The Neuro-Evolution of Augmented Topologies
(NEAT) is a Genetic Algorithm for evolving Artificial Neural
Networks (ANNs) by altering both weighting parameters and struc-
tures of networks.115 As an extension to the NEAT, HyperNEAT
evolves a particular type of ANN called Compositional Pattern
Producing Network (CPPN) which in contrast to traditional ANNs
can employ a mixture of many activation functions in addition
to the widely-used sigmoid function. As a generative encoding
description, the HyperNEAT was employed in116 for generating
genotypes that give rise to controllers that work appropriately in
different positions of a given organism, and for developing gait
controllers for locomotion and obstacle avoidance in a corridor
with some bricks randomly placed on the terrain.

Brain and Body Coevolution : Throughout implementing conventional
gait control methods in modular robots, a subtle presumption is
transferred as well, that is, the body of the robot (the morphology
of the modular robot) remains fixed during locomotion. However,

3.3. Gait Methods 63

this presumption has roots in conventional robotics where con-
trollers are developed to best fit into the fixed morphologies of
robots, which is not the case with modular robots which enjoy a
reconfigurable and versatile body. The concept of Coevolution of
Brain and Body was employed in117–119 in order to develop more
sophisticated gait controllers and to generate optimal locomotion
patterns. This method is also used for coevolving both morphology
and controllers through bringing flexible robot morphology, con-
troller development, and environment dynamism together. Brain
and Body Coevolution results in generation of Developmental Mod-
ular Robots that change their body and controller automatically in
harmony with the situations they encounter. The Morphogenetic
Robotics method can also be used for locomotion purposes and
for modeling neural and morphological development in single and
multi-robot systems. Jin and Meng89 showed how the Brain and
Body Coevolution method was used for both guiding the flow of
a rectangular block of 16 CrossCube modules through a narrow
passage, and forming a vehicle shape with a gait controller which
traversed a flat terrain with freely rotating wheels.

Hormone-Based : For all living organisms, the ability to regulate inter-
nal homeostasis is a crucial feature. This ability to control variables
around a set point is found frequently in the physiological networks
of single cells and of higher organisms120 . Shen et al.121 took
inspiration from hormones to design reliable, distributed control
algorithms that can deal with dynamic configuration changes. A
Digital Hormone is, as its biological counterpart, a message that
propagates in the cells-network (e.g the organism’s body) and
triggers different actions from different receivers. In contrast to
message broadcasting, a hormone may have a lifetime and can be
modified or deleted by cells as it travels through the cells-network.

The Artificial Homeostatic Hormone System (AHHS) introduced
by Hamann et al.122 constitutes artificial hormone messages which
are diffused in the body of modular robots carrying parameters
that control behavior of actuators at each time-step. As a re-
sult, movements of modules are synchronized due to diffusion of
hormones in the whole body. Moreover, hormone-based synchro-

64 3. Self-Reconfiguration Algorithms

nization is robust to addition or removal of modules, since (1)
the action of each module is basically a reaction to the hormone
level it has absorbed, and (2) unlike lookup tables, hormone-based
synchronization is independent of modules IDs. Hormones are
used in synchronizing controllers either individually, as in,123 or in
conjunction with other techniques, as in109 , in which a hybrid gait
control strategy based on hormone-based messaging and CPGs was
proposed. In that work, CPGs are responsible for generating motor
primitives while hormones propagate sensory feedback information
to CPGs enabling CPG network to achieve complex tasks such as
obstacle avoidance and traversing across uneven terrains.

3.4 Self-assembly methods

The Self-assembly operation is a means for fulfilling Shape-formation
function, in which modules aggregate spontaneously to a final formation
(configuration). More precisely, Self-assembly enables modular robots
to transform into desired morphologies and concerns motion planning
of several dispersed, initially-detached modules which move freely in
the environment and can establish multiple bilateral connections to
other modules in such a way that a coherent configuration is built up at
the end124 . Self-assembly can be used in forming final configurations
for both self-actuated modular robots, as studied in86,125–127 , and for
modules that lack primary actuation ability, like stochastically-driven
modules in liquid environment. Self-repairing can be considered as
an extension to Self-assembly, in which a modular robot repels faulty
modules autonomously and replaces them with working ones, whether
they are constituted in the current configuration or not.

3.4. Self-assembly methods 65

3.4.1 Control methods

The most common self-assembly approach is to grow the final shape
from a so-called seed module, which is a dedicated module that initiates
a Self-assembly operation and guides the growth process by attracting
other modules. The final configuration is then achieved as a result of
interactions not only between the seed module and other modules, but
also between semi-assembled structures (intermediate products) and the
modules in the environment. Thus, it is crucial to devise methods that
control the interactions between modules (including communication,
motion, and connection) according to the state of modules and towards
the final configuration so that the likelihood of reaching the desired
assemblies is maximized.

Simulated Chemical Kinetics : An analogy between chemical kinetics
and dynamics of self-assembling systems was drawn by Hosokawa
et al.128 , which maintains that disassembly processes can be accel-
erated or decelerated by controlling the rate of assembly reactions
through manipulating probabilities that stochastically control the
bonding policies of modules. Inspired from this analogy, Miyashita
et al.129 studied the self-assembly behavior of Tribolon modules
and represented the composition of an intermediate product (called
cluster) by a state variable Xi, in which i denotes the number of
modules in the cluster. The state transition of the system is then
expressed in the form of an easy interpretable chemical reaction
(e.g X1 +X2 → X3) regarding the constraint that no more than
two units can aggregate into a cluster at the same time. In127 reac-
tion rates were used for exhibiting at what speed assemblies were
forming or decaying. Also, global performance of the system was
tuned and optimized by tuning the probabilities associated with
each reaction. Klavins et al.130 utilized programmed self-assembly
for maximizing the assembly yields through tuning the rates of
experimentally-determined self-assembly reaction pathways.

Finite State Machines (FSM) : In this method each module is
equipped with an internal logic that determines its docking be-

66 3. Self-Reconfiguration Algorithms

havior according to the sequence of states. Tolley and Lipson131

suggested an open-loop FSM for self-assembly with the goal of
minimizing the required feedback and consisting of four funda-
mental assembly operations corresponding to the four main states
of Attract, Align, Latch, and Release in the system. Wei et al.57

designed a FSM controller for self-assembly of Sambot modules
and categorized modules based on their role into three types of: (1)
SEED to denote modules that initiate the Self-assembly operation,
(2) Docking Sambot (DSA) to mention modules that participate in
the growth of the assembly, and, (3) Connected Sambot (CSA) to
refer to modules that have connected to the assembly. The pro-
posed FSM was devised for DSA modules and included Wandering,
Navigation, Docking, and Locking states. Experiments show that
the devised FSM is scalable and capable of self-assembling into
snake, quadruped, H-shape, etc. without any modification in the
controller.

Cellular Automata : The CA method is also applicable to the Self-
assembly operation and can produce distributed controllers that
can generate desired structures using local rules. Kotay and Rus6

studied the development of self-assembly controllers using CA
and devised a set of ten transition rules for creating a cubic
assembly with n modules in each dimension. Stoy1 proposed a seed-
based self-assembly system in which gradients in the system were
generated by seeds in order to produce growth in the system. Once
gradient paths are generated, the automatically generated cellular
automata were utilized to guide the growth process. Simulations
showed that time to complete a configuration scaled almost linearly
with the number of modules.

Gene Regularity Networks (GRN) : Bongard132 employed GRNs for
automatic evolving assemblies of hypothetical cylindrical agents
by employing transcription factors that affect the expression of
genes along the genome. In this work, 23 pre-defined phenotypic
transformations such as increasing the length, dividing a unit
into two, and deleting or modifying the properties of the agent’s
neurons or synapses were initiated. Kernbach et al.124 utilized
the GRN method and its algorithmic inspirations to propose a

3.5. Summary 67

self-assembly scheme which can produce functional assemblies from
heterogeneous modules. In this work, regularity networks were
employed to generate environment-dependable topologies (ΦS)
with a process analogous to gene expression process. Then, the
expressed topologies were optimized subject to the number of
on-hand modules in the assembly, availability of docking ports,
assembling dynamics (e.g. the number of collisions). Scalability
tests showed that this approach can scale well to systems with 5
to 30 modules.

3.5 Summary

In the previous chapter we have seen that self-reconfigurable robots are
useful because of their robustness, versatility, scale extensibility, and
adaptability. In order to realize this vision it has to be supported by
the hardware as well as the underlying control algorithms.

In this chapter the discussion is focused on the complexity of the self
reconfiguration problem, and on which classes of control systems hold
the promise to realize the vision of self-reconfigurable robots. It is
observed that Self-reconfiguration of lattice-based modular robots is
most-addressed subject in the development of modular robotic systems
algorithms. Both biological-inspired and artificial intelligence-based
techniques are widely used for exploiting the potential relationship
between the robot and its environment to produce control policies that
would cause the robot to reshape and exhibit new behaviors. A major
challenge in self reconfiguration problem is to produce simultaneous
motions of modules while it is guaranteed that there is no chance for
deadlock conditions, collision between modules, and risk of fragmentation
in the modular robot.

Due to the high complexity of the self reconfiguration problem, Search-
based methods are not competent in finding optimal solutions, but only
suboptimal ones. Indeed, challenges of self reconfiguration problem
are beyond finding an optimal sequence of attachment and detachment

68 3. Self-Reconfiguration Algorithms

actions between modules. Therefore, a planner must accurately produce
module-level actions so that undesirable conditions that are likely to
emerge in modular robotic systems are avoided (e.g Fragmentation in
which modular robot’s body gets separated into several parts). In addi-
tion, the Overcrowding situation mostly occurs in local and distributed
search methods, as several modules traverse concurrently on the surface
and may block each other51 . Also, falling into local minima is a very
common problem when local search methods are employed. This issue
can be addressed by adding randomness or turbulence to the search
methods.

In contrast, Control-based methods are mostly applicable to goal configu-
rations that are defined subjectively based on their functionalities because
guaranteeing convergence to a particular geometry is relatively more
difficult than guaranteeing convergence to a behavior. Control-based
methods generally decide upon next actions based on local communica-
tions between modules. A main issue in generating controllers is their
convergence to the goal configuration as they are usually developed
based on local interactions and communications between modules.

Bio-inspired methods of self-reconfiguration originate from biological
self-organizing systems and aim to realize self-reconfiguration through
Emergence, which means to exhibit complex behaviors through simu-
lating simple local interactions between individuals in the absence of
a central commander. Unlike the conventional top-down approach in
which a high-level problem is decomposed into simpler subproblems solv-
able by known algorithms, an emergent behavior is realized through a
bottom-up approach. A challenge that must be addressed in developing
Bio-inspired methods is to control the Emergence phenomenon such
that the desired behavior is achieved. Although, emergent approaches
are desirable for the control of self-reconfigurable systems, they all have
different advantages and disadvantages, and none of them can be said
to have solved the problem by providing a method which is at the same
time robust, systematic, efficient, and provably convergent.

4
Artificial Life and

Morphogenetic
Engineering

This chapter introduces the concept of Artificial Life and Morphogenetic
Engineering in the context of modular robotic systems

Contents
4.1 Introduction . 70
4.2 Artificial Life Techniques 70

4.2.1 Reproductive Systems 71
4.2.2 Evolutionary Computation Systems 73
4.2.3 Learning Systems 76

4.3 Emergent Properties in Modular Robotic Sys-
tems . 78

4.3.1 Complex Systems Engineering 78
4.3.2 The importance of being emergent 79
4.3.3 Emergent Behaviours 80

4.4 Artificial Evolution and Artificial Ontogeny . . 81
4.5 Morphogenetic Robotics 82

4.5.1 Morphogenetic Swarm Robotic Systems 83
4.5.2 Morphogenetic Self Reconfiguration 84
4.5.3 Morphogenetic Brain-Body Design 85

4.6 Conclusion . 87

70 4. Artificial Life and Morphogenetic Engineering

4.1 Introduction

The term Artificial Life (also known as ALife) was originally coined by
Cristopher Langton in the 1980s with the aim to shed light on life as it
could be possible in a vast number of settings and ways133 . The two most
important qualities of artificial life are that it focuses on the essential
rather than the contingent features of living systems and that it attempts
to understand living systems by artificially synthesizing extremely simple
forms of them. Three different kinds of synthetic methods are used
in artificial life, theses are: Soft artificial life, which creates computer
simulations or other purely digital constructions that exhibit life-like
behavior; Hard artificial life, which produces hardware implementations
of life-like systems; and Wet artificial life, which involves the creation of
life-like systems in a laboratory using biochemical materials.

In computer science, One of the first attempts to replicate life-like
phenomena was the Conway’s Game of Life134 . A simple game in which
every cell of a lattice could switch from alive to dead following some basic
rules (the roots of this work return back to Von Neumann and his cellular
automata). This field has flourished in a rich and interesting manner,
covering many disciplines spanning from biology to social sciences. A
lot of tools have been used include: cellular automata, neural networks,
agent simulation . . . ect, aiming to study different scientific phenomena
that share a common trait in being the emergent outcome of dynamical
interactions among simple agents at a lower scale.135

4.2 Artificial Life Techniques

Three main classes to which refers almost every topic in artificial life.
These classes are related to the fundamental characteristics of living
systems which are evolve, learn and reproduce. Each of these classes
contains several systems which can be devised as following:

4.2. Artificial Life Techniques 71

4.2.1 Reproductive Systems

One of the fundamental functions that provides living systems with
mechanisms for allowing them to survive under various environmental
conditions is their ability to multiply by self-reproduction. This mecha-
nism is necessary for living systems because it enables them to create
offspring and continue their population.

Self-Reproductive Systems are systems that have the ability to produce
copies of themselves. Biological organisms are of course the most familiar
examples of such systems. However, around 1950 mathematicians and
computer scientists began studying artificial self replicating systems
in order to gain a deeper understanding of complex systems and the
fundamental information processing principles involved in self replication.
In Computer Science, the quest for artificial self-reproduction dates back
to the end of the 1940’s and started with the work of John Von Neumann
on self-reproducing artificial machines. Since that, the logic necessary for
self-reproduction has been formally investigated in many work-related
issues, which can be classified in the following three categories:

4.2.1.1 Reaction-Diffusion

Reaction-Diffusion systems are systems involving constituents locally
transformed into each other by chemical reactions and transported in
space by diffusion in order to push the system to the state of chemical
equilibrium. It has long been realized that the approach to equilibrium
can be both in the form of a simple exponential decay, or more involved
transient behaviors associated with non-trivial space dependencies.

The most familiar quantitative description of reaction-diffusion systems
is based on the evolution of the macroscopic variables (e.g (u1, u2) in
equation 4.1) and the dynamics at the molecular level, which provides
the values of a set of phenomenological parameters. The concentration of
the macroscopic variables u1(r) and u2(r) are governed by the following
master equations:136

72 4. Artificial Life and Morphogenetic Engineering

{
∂u1
∂t = r1(u1, u2) +D1 52 u1
∂u2
∂t = r2(u1, u2) +D2 52 u2

(4.1)

where the following assumptions are made:

1. The reaction terms, r1 and r2, are assumed to be a function of
present and local concentration ui only (i = 1, 2), but not explicitly
on space and time.

2. The diffusion coefficient Di do not explicitly depend on space and
time.

Reaction diffusion systems arise, quite naturally, in chemistry and chem-
ical engineering but also serve as a reference for the study of a wide
range of phenomena encountered beyond the area of chemical science
such as environmental and life sciences.

4.2.1.2 Cellular-Automata

For investigating the logic of the fundamental properties of living sys-
tems, especially self-reproduction and the evolution of complex adaptive
structures, the mathematician Von Neumann designed the first artificial
life model when he created his famous self-reproducing, computation-
universal Cellular Automata. A cellular automaton is a regular spatial
lattice of cells, each of which can be in one of a finite number of states,
and each cell’s state is updated on every time step according to a deter-
ministic rule based on the values of the neighboring cells and the value
of the cell being updated.

A cellular automata is a model of a system of cell objects with the
following characteristics:

1. The cells live on a grid.

2. Each cell has a state. The number of state possibilities is typically
finite.

3. Each cell has a neighborhood. This can be defined in any number
of ways, but it is typically a list of adjacent cells.

4.2. Artificial Life Techniques 73

This simple model is used to describe a universal constructing machine,
which can read assembly instructions of any given machine, and construct
that machine accordingly. The copying mechanism is similar to the
replication of living cells whereby the DNA-instructions are first copied
by cells preceding cell division.

4.2.1.3 L-Systems

L-systems are parallel rewriting systems which were originally intro-
duced as a mathematical tool for modeling the development of simple
filamentous organisms.137 The central concept of L-systems is that of
rewriting. Therefore, the development happens in parallel everywhere
in the organism. This means, from the point of view of rewriting, that
everything has to be rewritten at each step of the rewriting process.

An L-system consists of an alphabet of symbols, an initial sequence
of symbols used to begin a construction, a set of production rules
that expand individual symbols into strings, and a set of rules that
match terminal symbols to drawing functions in order to translate
generated strings into geometric structures. To construct an L-system,
the production rules are iteratively applied, starting from the initial
string. In each iteration all rules are applied in parallel.

In general, rewriting is a technique for defining complex objects by
successively replacing parts of a simple initial object using a set of
rewriting rules or productions.

4.2.2 Evolutionary Computation Systems

Evolutionary Computation Systems can technically be considered as
global optimization methods with a stochastic optimization character.
They are characterized by the maintenance of candidate solutions (a
population of search points), rather than just iterating over one point
in the search space. Alternatively, evolution is often seen as a process

74 4. Artificial Life and Morphogenetic Engineering

of adaptation. From this perspective, the fitness is not seen as an
objective function to be optimized, but as an expression of environmental
requirements.

Over the past years, there have been many different variants of Evolu-
tionary Algorithms (EA) which have been proposed to solve complex
problems. However, the common underlying idea behind all these algo-
rithms is the same: given a population of individuals, the environmental
pressure causes natural selection (survival of the fitness) and this causes
a rise in the fitness of the population. In an EA a number of artificial
creatures search over the space of the problem. They compete continu-
ally with each other to discover optimal areas of the search space. It is
hoped that over time the most successful of these creatures will evolve
to discover the optimal solution.

There have been three main independent implementation instances of
EAs, each of them provides a framework for effectively sampling large
search spaces. These implementation instances are discussed in turn as
follows:

Genetic Algorithms (GA) : The effective beginnings of Genetic Algo-
rithms can be traced back to the work done in the late 1960s at
the university of Michigan under the direction of John Holland,
following-up to past research undertaken by several biologists,
all of whom have used computers for simulations of biological
systems.138

A genetic algorithm is a programming technique that mimics
biological evolution as a problem-solving strategy. It is devised
to model adaptation process, mainly operates on binary strings
and uses genetic operators which are Sellection, Crossover, and
Mutation.

Given a specific problem to solve, the input to the GA is a set
of potential solutions to that problem, encoded in some fashion,
and a metric called a fitness function that allows each candidate
to be qualitatively evaluated. These candidates may be solutions
already known to work, with the aim of the GA being to improve
them, but more often they are generated at random.139

4.2. Artificial Life Techniques 75

Evolution Strategies (ES) : Evolution Strategies were developed in
the 1960s at the technical university of Berlin by Rechenberg and
Schwefel140 . From the beginning, ES have been developed as
a method to solve parameter optimization problem. The search
space is the continuous domain, Rn, and solutions in search space
are n-dimensional vectors.

In Evolution Strategies, the selection method and the population
are described by two variables µ and λ. The variable µ gives the
number of parents (corresponding to the population size) while
λ descibes the number of offspring produced in each generation.
The selection scheme is deterministic and the notation (µ + λ)-
ES describes an algorithm where parents and offspring together
compete to reach the next generation with a quantity of µ best
individuals.

Genetic Programming (GP) : Another interesting approach was devel-
oped relatively recently by Koza141 . In that work, Koza developed
a new methodology named Genetic Programming, which provides
a way to run a search in the space of possible computer programs
in the hope to find the best one (the most fit).

Genetic Programming is one of a number of evolutionary algorithms
that solves problems without being explicitly programmed141 .
It achieves this goal of automatic programming by genetically
breeding a population of computer programs using biologically
inspired operations (stochastic selection, crossover and mutation).
On each generation, the fitness of each individual in the population
is evaluated. Once the termination criterion for the run is satisfied,
the best single individual obtained during the run is considered as
the result of the run. Such a process, stochastically transforms a
population of random computer programs into new, more optimized
generation of programs.

Unlike genetic algorithm’s individuals which are typically encoded
as linear bit-strings, GP usually uses tree-based expressions as
nonlinear structures for hierarchically structuring and manipulat-
ing individuals. The shape, and the contents of these individuals
can dynamically change during the process.

76 4. Artificial Life and Morphogenetic Engineering

4.2.3 Learning Systems

The term learning system is very broad, and often misleading. In the
context of Artificial Intelligence (AI), a learning system is considered to
be any system which uses information obtained during one interaction
with its environment to improve its performance during future inter-
actions. The idea behind learning is that percepts should be used not
only for acting, but also for improving the system’s ability to act in the
future.

In AI landscape, learning in machines is the subject of Machine Learning.
It refers to a system capable of acquiring and integrating the knowledge
automatically. The capability of the systems to learn from experience,
training, analytical observation, and other means, results in a system
that can continuously self-improve and thereby exhibit efficiency and
effectiveness. The field of Machine Learning seeks to answer the question:
How can we build computer systems that automatically improve with
experience, and what are the fundamental laws that govern all learning
processes. To this end, many researchers think it is the best way to
make progress towards human-level AI.142 The field of machine learning
has traditionally been divided into the following three sub-fields:

Supervised Learning : Supervised learning is the machine learning task
of inferring a function from a set of labeled examples called train-
ing dataset. This function can be used to assign a value (make
predictions) for all unseen observations. In literature, this is the
most common scenario associated with classification, regression,
and ranking problems.

In supervised learning, each example is a pair consisting of an
input object (typically a vector) and a desired output value. Given
a set of training examples of the form {(x1, y1), . . . , (xn, yn)}, a
supervised learning algorithm analyzes the training data and pro-
duces an inferred function g : X → Y where X is the input space
and Y is the output space. The function g is called a classifier
if the output is discrete, or it is called regression function if the
output is continuous. The inferred function should predict the

4.2. Artificial Life Techniques 77

correct output value for any valid input object. This requires the
learning algorithm to generalize from the training data to unseen
situations in a reasonable way.142

Unsupervised Learning : Unlike the supervised learning, the dataset
does not include output vector or a known outcome. Only the
input vector is available during the unsupervised learning process.
This class of algorithms seems much harder; the goal here is to
have the computer learn how to do something that we don’t tell it
how to do.

There are actually two approaches to unsupervised learning. The
first approach is to teach the learner not by giving explicit cate-
gorizations, but by using some sort of reward system to indicate
success. This approach nicely generalizes to the real world, where
learners might be rewarded for doing certain actions and punished
for doing others. A second type of unsupervised learning is called
clustering. In this type of learning, the goal is not to maximize
a utility function, but simply to find similarities in the training
data.142

Reinforcement Learning (RL) : Reinforcement learning is learning how
to map situations to actions so as to maximize a numerical reward
signal. The learner is not told which actions to take, but instead
must discover which actions yield the most reward by trying them.
In Supervised learning, the learner is learning from examples
provided by an external supervisor. This is an important kind of
learning, but alone it is not adequate for learning from interaction.
In interactive problems the machine interacts with its environment
by producing actions {a1, a2, . . . , an}. These actions affect the
state of the environment, which in turn results in the machine
receiving some scalar rewards {r1, r2, . . . , rn}. The goal of the
machine is to learn to act in a way that maximizes the future
rewards it receives over its lifetime. In such a case it is often
impractical to obtain examples of desired behavior that are both
correct and representative of all the situations in which the learner
has to act.143

78 4. Artificial Life and Morphogenetic Engineering

4.3 Emergent Properties in Modular Robotic Systems

Emergent properties represent one of the most significant challenges
for the engineering of complex systems. They can be thought of as
unexpected behaviors that arise through interactions among smaller
parts that alone do not exhibit such properties.144

In some contexts, emergent properties can be beneficial. They can also be
harmful if they blow up important safety requirements. There is, however,
considerable disagreement about the nature of emergent properties.
Some include almost any unexpected properties exhibited by a complex
system. Others refer to emergent properties when an application exhibits
behaviors that cannot be identified through functional decomposition
(the system is more than the sum of its component parts).

4.3.1 Complex Systems Engineering

Future large and robust engineering tasks will require dramatically
larger scales of design. To meet these challenges, we need to incorporate
techniques from complex systems science into engineering145 .

A complex system is often defined as a system composed of a large
number of interconnected parts that as a whole exhibits one or more
properties that are not obvious from the properties of the individual
parts.146

It is the topic of Complex Systems Research to identify and to understand
indirect effects. Problems that are difficult to solve are often hard to
understand because the causes and effects are not obviously related.
Theories need to be developed to capture the interaction of different
temporal or spatial scales, the interplay between the individual history
of a system and the universal features, the self-organized coordination
of different elements or parts, the emergence of collective phenomena
on the basis of local and nonlocal interactions, and so on. Complex

4.3. Emergent Properties in Modular Robotic Systems 79

systems research, therefore, encompasses the interaction between general
principles and methods on the one hand and the detailed investigation
of concrete complex systems on the other.146

While complex systems cannot readily be studied with a reductionist
paradigm, in principle, it provides a number of sophisticated tools, some
of them are concepts that help us to think about these systems, some
of them are analytical for studying these systems in greater depth, and
some of them are computer-based for describing, modeling or simulating
these systems.147

4.3.2 The importance of being emergent

Many macro-level phenomena that arise out of complex, adaptive systems
are called emergent by complexity science researchers148–151 . Such
emergent phenomena are considered to be unpredictable and irreducible.
Understanding of this macro-level phenomena can only be derived by
studying the consequences of the behavior of functioning micro-level
agents.

Emergence appears in a variety of fields and it can be studied by complex
adaptive systems. With complex adaptive systems we refer to a group of
locally interacting agents, who act and react to actions of other agents.
The key feature of such systems is that the cooperative interactions
of the individual components determine the emergent functionalities,
which individually do not exist.

In the context of complex systems, emergent strategies are more suitable
since they don’t require a design engineering for the system, which
significantly reduces the complexity of its implementation. Moreover,
Emergent systems could be studied by using computationally efficient
models like Cellular Automata, since it is capable of demonstrating rich
emergent behavior from a handful of simple rules based on local infor-
mation only. Emerging techniques are actually driving a revolutionary
change. This allows, for the first time, to quantitatively address many
long-standing questions about the mechanisms of pattern-formation

80 4. Artificial Life and Morphogenetic Engineering

and self-organization from Physics, Chemistry and Material Science, to
Biology and Medicine. Progress requires seamless collaboration across
all disciplines and with it a new breed of scientists that are knowledge-
able both in the field of complex systems and their specific field of
science.152

4.3.3 Emergent Behaviours

In the context of robotic systems, emergence is taken to mean that a
robot’s behavior has become something not explicitly defined in its con-
trollers, but something that has arisen as a consequence of its interaction
with its environment153,154 (the system is more than the sum of its parts).
The point here is to focus into the coupling of perception and action in
a way that ensures robots respond in a timely manner to moving and
working in dynamic, unstructured, and at least partially unknown envi-
ronments. This approach is more suited to the complex on-line context
than the classical hierarchical and decision-based approach.155,156

Some points in the design of an autonomous robot system that are
deemed favorable in encouraging emergence are:157

1. Any emergent behaviour should arise out of a large number of
parallel and not too closely coupled processes.

2. The system must be redundant.

3. The system needs to employ principles of self-organization.

4. The system should employ cheap and simple design as much as
possible, and exploit its environment.

5. Intelligence should be regarded in the context of sensory-motor
coordination.

It is clear that multi-agent systems provide excellent ground for studying
emergent behavior, especially with the appearance of easily monitored
and highly convenient multi-agent simulations, which constitute a very

4.4. Artificial Evolution and Artificial Ontogeny 81

good framework for the study of emergence, as they allow for easy high-
lighting and discovery of phenomena that would signify emergence.158

A group of robots can be seen as embodying the “more than the sum of
its parts” concept when it becomes a robotic team once it shows some
degree of specialized aptitude of performing a task cooperatively, in the
sense that the group provides better performance than its individual
components would, by taking advantage of its distributed sensing and
acting capability to carry out complex tasks while also taking into
consideration increased fault tolerance thanks to agent redundancy and
group cohesion obtained from formation-keeping algorithms and related
trajectory calculations and motion planning.159

Another emergent phenomenon is collective intelligence, the result of two
or more agents engaged in global behaviors meaning that an intelligent
multi-robot system arises from a group of mobile robots that cooperate,
communicate, and dynamically reconfigure their group during their
attempts to solve a complex task.160

It is important to note that emergence can have both a positive or
a negative effect on system performance and task achievement. For
instance in computer networking, open desktop computing grids pro-
vide a framework for unrestrictedly joining in. However, openness and
heterogeneity present serious challenges to the overall system’s stability
and efficiency since uncooperative and even furtive participants are free
to join.161

4.4 Artificial Evolution and Artificial Ontogeny

Taking the morphology into account is a necessity and would be a
big step forward if we are interested in developing morpho-functional
machines. The field of morpho-functional machines is still in its infancy.
Exploiting the adaptive potential of changing morphologies has not
been systematically investigated. Many related issues are raising up not
only in engineering design but also in understanding natural forms of
intelligence.162

82 4. Artificial Life and Morphogenetic Engineering

While conventional evolutionary robotics starts from a given morphol-
ogy, variable morphology has to be taken into account when studying
morpho-functional machines. In most approaches, the morphology is
parameterized in one way or another.

Lichtensteiger and Eggenberger162 have experienced a very simple mor-
phology parameterization which consists of the angles at which the
facets are positioned. Sims9,10 used length, width, and depth of the
limb and body segments, types of sensors and types of joints to describe
artificial creatures. Lipson and Pollack163 evolve robots consisting of
rods which are physically characterized by diameter, length, and ma-
terial constants, as well as types of joints. The implication of this is
that no really complex morphological structures can emerge. Complex
structures like muscles or other types of organs cannot emerge. By
contrast, Bongard and Pfeifer162 provide a model of artificial ontogeny
which is based on structural units equipped with genetic regulatory
networks that have the potential of growing morphologies that are more
complex and incorporate more variety.

While artificial ontogeny is able to produce a large variety of morphologies
(creatures with flexible deformation), materials and soft deformable
surfaces have not yet been included in the systems. In contrast the
developed systems are parameterized and sufficiently flexible to allow
inclusion of this aspect as well. In the experiments conducted so far,
typically no completely rigid morphologies have emerged.162

4.5 Morphogenetic Robotics

The past decade has witnessed rapid theoretical and technical advances
in evolutionary developmental biology164 (also known as evo-devo) and
systems biology in understanding molecular and cellular mechanisms
that control the biological morphogenesis. These advances have not
only helped us in understanding biological processes such as human
deceases, but also provided us new powerful tools for designing robust

4.5. Morphogenetic Robotics 83

engineered systems. Indeed, biological morphogenesis has shown a sur-
prising degree of robustness. Morphogenetic robotics generally refers to
the methodologies that address challenges in robotics inspired by bio-
logical morphogenesis. Due to the attractive properties that biological
morphogenesis exhibits, much attention has been paid to employing
genetic and cellular mechanisms for designing robotic systems, in partic-
ular for self-organizing swarm robotic systems and self-reconfigurable
modular robots. In addition, many researches have been performed in
artificial life and robotics to design the morphology plan and neural con-
troller of robots using an evolutionary developmental approach89 . For
instance, Developmental robotics (also known as epigenetic robotics) is a
rather new emergent area of research in the field of robotics that employs
simulated or physical robots to understand natural intelligence on the
one hand, and to design better robotic systems using principles of bio-
logical development, on the other hand165–168 . Lungarella and Metta169

have mentioned that there are two driving forces for developmental
robotics:

1. Engineers are seeking novel methodologies for construction of ad-
vanced robots which are more autonomous, adaptable and sociable
robotic systems. In that sense, studies of cognitive development
can be used as a valuable source of inspiration.

2. Robots can be employed as research tools for the investigation of
embodied models of development.

Jin and Meng89 have suggested the term morphogenetic robotics to
denote research efforts dedicated to the application of morphogenetic
mechanisms to robotics, which belongs to developmental robotics. Ac-
cording to their perspective, morphogenetic robotics may include the
following three main topics:

4.5.1 Morphogenetic Swarm Robotic Systems

Distributed robotic systems are often considered particularly appropriate
for inhospitable and rapidly changing environments170 . It is important

84 4. Artificial Life and Morphogenetic Engineering

for teams of distributed robots operating in space, in search and rescue
conditions, or even inside the human body to work together in order to
overcome the physical limitations of individual robots. For these systems
to display efficient physical cooperation, it is a prerequisite that they
are able to form larger composite robotic entities with morphologies
appropriate to the tasks and environmental conditions.

The basic idea in applying genetic and cellular mechanisms in biological
morphogenesis to self-organized control of swarm robots is to establish
a metaphor linking Swarm Robotic Systems to Multicellular Systems89

. It is assumed that the movement dynamics of each robot can be
modeled by the regulatory dynamics of a cell171–173 . Christensen et al.174

experimented morphogenesis with self-assembling robots. The authors
have proposed SWARMORPH : a system that enables the construction of
arbitrary two-dimensional morphologies with self-propelled autonomous
robots. Both, low-level and higher-level control logic are developed to
allow the Swarm-bot robotic platform to form desired morphologies.
In175,176 , the authors proposed a morphogenetic approach based on
the Gene Regulatory Network (GRN) to control swarm robots. This
approach has the following advantages. First, the global behavior (the
target shape in the context of pattern formation) can be embedded
in the robot dynamics in the form of morphogen gradients. The GRN
model can then generate implicit local interaction rules automatically
to generate the global behavior, which can be guaranteed through a
rigorous mathematical proof. Second, the morphogenetic approach is
robust to perturbations in the system and in the environment. Third, it
has also shown that the morphogenetic approach can provide a unified
framework for multi-robot shape formation and boundary coverage.177

4.5.2 Morphogenetic Self Reconfiguration

Morphogenetic approach is used again in177,178 for reconfiguring modular
robots. Similar to morphogenetic swarm robotic systems, each unit
in modular robots can be seen as a cell. There are similarities in

4.5. Morphogenetic Robotics 85

control, communication and physical interactions between cells in multi-
cellular organisms and modules in modular robots. For instance, the
decentralized control is the main aspect that characterizes both modular
robots and multi-cellular organisms. Besides, the global behavior of
both modular robots and multi-cellular organisms emerges through local
interactions of the units, which include electro-mechanisms in modular
robots, and chemical production and diffusion of different proteins trough
neighboring cells as well as cellular physical interactions such as adhesion
in multicellular organisms. Therefore, it is a natural idea to develop
control algorithms for self-reconfigurable modular robots inspired from
biological morphogenetic mechanisms.

Meng and Jin90 experimented the attraction and repellent behaviors of
the modules which are regulated by a GRN-based controller. As biologi-
cal cells, the modules produce different artificial proteins which diffuse
into neighboring modules and decay over time to create morphogen
gradients. Morphogens are artificial chemical substrates which are used
to define the target configuration. The dynamic of this approach is
modeled by a finite state machine which includes the following five
states, namely, stable, unstable, attracting, repellent, and repelled. The
transition between these states is controlled by a single GRN in two
layers. Where one layer defines the desired configuration of the modular
robots while the other layer organizes the modules autonomously to
achieve the desired configuration. Similar to biological gene regulatory
networks, such a hierarchical structure makes it possible to separate the
control mechanisms for defining a target configuration from those for
realizing it90,179 . In response to the environment changes, the layer
for defining the robot configuration is able to adapt the target config-
uration, based on which the second layer can reorganize the modules
autonomously to realize the target configuration.

4.5.3 Morphogenetic Brain-Body Design

Traditionally, evolutionary robotics is concerned with the design of robot
controllers using evolutionary algorithms and morphological computation

86 4. Artificial Life and Morphogenetic Engineering

was employed for connecting brain, body and environment in robot
design. Unfortunately, it turned out that morphological computation
has put too much emphasis on the hard design of the morphology of
robots in shaping intelligent robotic behaviors and has not paid sufficient
attention to the developmental aspects. Indeed, the role of neural and
morphological development in designing intelligent robots has largely
been neglected in evolutionary robotics90,180 , although co-evolution
of brain and body has long been recognized both in co-evolutionary
robotics180 and artificial life181 .

In the research field of artificial life, there has been much attention payed
to Brain-body co-evolution since the seminal work of Karl Sims9 . The
most attractive aspect of the work is that a developmental model using a
directed graph has been adopted for both neural controller and body plan.
No significant progress in the understanding of biological principles have
been achieved since Sims’ work due to the following facts. First, there are
a lack of knowledge about the developmental mechanisms in biology and
a lack of physically realistic environment182 . Second, the influence of
artificial development on the systems performance is not well understood.
Although it is believed that the developmental mechanism offers the
possibility to evolve complex systems, the performance advantage of such
developmental systems over non-developmental ones remains unclear.
Finally, necessary hardware, which is of particular importance in robotics,
such as growing materials, adaptable structures, adaptable sensors and
actuators are still lacking.

Genetic Regulatory Network models have been proposed for the devel-
opment of a nervous system and body plan of primitive creatures for
elaborating upon the cellular growth model for structural design183–186

. The importance of co-evolving the development of morphology and
control in robotics is twofold. First, object manipulation with a robot
is in itself a challenging task as such systems are usually highly redun-
dant. Existing work focuses on the design of the controller for a given
morphology, which becomes inefficient when the shape of the objects
changes noticeably. A better approach is to co-design the morphology
and control in a developmental manner. Second, co-evolution of the
morphology and control in a computational environment gives us means
for understanding the phylogenetic changes in evolution of creatures

4.6. Conclusion 87

structures. It is also important to note that brain-body co-evolution in
computational environments has led to findings regarding the organi-
zational principles of nervous systems and the emergence of bilateral
symmetry in neural configuration.170

4.6 Conclusion

The field of morpho-functional machines is still in its infancy. Exploiting
the adaptive potential of changing morphologies has not been systemati-
cally investigated. It raises many issues not only in engineering design
but also in understanding natural forms of intelligence.

It is important to look at meta-morphing machines not as a problem in
isolation, but in the context of a complete machine that has to perform
a set of tasks in the real world. If morpho-functional machines are
viewed in a traditional way where everything needs to be controlled, the
attempt of designing them will not be met with much success due to the
high complexity of the system. However, if morphology and materials
are appropriately exploited, many problems may turn out to be much
simpler.

In this chapter we showed the examples of emergent morphology for-
mation techniques in multi-robot system, which showed that, to build
a distributed morphological structure by a number of elements, there
are at least two fundamental actions, repulsion action and attraction
action among the elements. One such technique, which holds promise
for the creation of large and robust designs, is artificial development. It
concerns the inclusion of a mid-step between the representation and a
pattern in an automated design task, inspired by biological embryogen-
esis. Through the emulation of this biological phenomenon, desirable
properties of biological organisms can be included into the machine-
learned designs, resulting in increased evolvability in the underlying
search space.

To achieve a realistic control in multi-robot system, it is important to
find a way to generate the position or direction information for each

88 4. Artificial Life and Morphogenetic Engineering

individual robot. Indeed, each robot has neither information planned in
advance nor global information about its environment. In this thesis we
are strongly interested in paying attention to the generation mechanism
and the characteristics of the emergent behaviors of morphological
formation by multi-robots. Note that such emergent behaviors of multi-
robot system are caused by only primitive interaction among the robots
themselves and between robot and its environment. We also have to
pay attention to the fact that such emerging behaviors of the multi-
robot system are based on the simple mechanical function and very
small control algorithm. This may offer us a possibility to utilize such
behavior of a multi-robot system to achieve a given task.

Part II
Contributions

5
Decentralized Approach

to Evolve the Structure
of Metamorphic Robots

In this chapter we present a decentralized method for evolving the struc-
ture of compressible modular robot

Contents
5.1 Overview . 92
5.2 Discovering the Topology of the Robot 92
5.3 Evolving The Structure of the Robot 95

5.3.1 Evolving modules configuration using GA 97
5.3.2 The domination of new structural information . 100
5.3.3 Reconfiguration to the target pattern 102

5.4 Experimental Results 103
5.5 Conclusion . 105

92
5. Decentralized Approach to Evolve the Structure of

Metamorphic Robots

5.1 Overview

The objective of this chapter is to present our decentralized method
that can evolve the structure of a metamorphic modular robot using
the computing capability of each module in the system. The method is
experimented within a crystalline based modular robot whose goal is to
surround a known target object dropped in the environment. The task
requires a set of reconfiguration to the robot shape in order to emerge
water-flow like behavior to go through a tunnel that separates the target
position from the initial position of the robot. Our approach is divided
in two layers in which at the higher level a parallel GA search is used for
finding the most suitable morphology that a lattice based modular robot
must assume during its Flow among obstacles toward a goal position.
The genome data structure in the proposed GA contains coordinates
of modules in a grid environment, and the fitness function evaluates
the Euclidean distance of the robot’s center of mass to the destination
position. Since each module runs the same copy of the genetic algorithm,
the population can be divided among modules so that the planning
is done in a decentralized manner. Once the next morphology of the
modular robot determined, the lower level plans motions of modules
using a PacMan-like algorithm to transform the current morphology to
the target morphology identified by the higher level.

5.2 Discovering the Topology of the Robot

The topology of metamorphic robots is defined by both the spatial
location of each module and the physical links between modules. Before
evolving the morphology of the modular robot, we need to discover the
initial robots’ topology by distributing the perceived information over all
the units to emerge a global vision of the whole structure and initialize
the morphology generator that will evolve this structure into a more
suitable one.

5.2. Discovering the Topology of the Robot 93

The structural discovering must use only local communications, therefore
the modules have to keep the whole structure in a connected state (no
fragmentation must be occurred) during all the time steps of the simula-
tion. We consider here the crystalline units to form our metamorphic
robot where the number of units is known in advance.

a

c

e

h

g h
1M

4M3M

2M

b c

d

e

fg

a

c

e

h

g h
1M

4M3M

2M

b c

d

e

fg

a

c

e

h

g h
1M

4M3M

2M

b c

d

e

fg

Step 1 Step 2 Step 3

Figure 5.1: Propagation of local perception over modules of the metamorphic
robot. The red cells represent 4 connected modules (M1,M2,M3,M4), while
the green cells represent empty cells perceived by the modules and the white
cells represent the unperceived cells in the environment

Each module (i) has an adjacency matrix (Mi) with a size of (n2) where
(n) is the number of modules forming the robot. To discover the robot
topology, modules use message propagation mechanism based on two
primitives of asynchronous communication “Send(Mi, Destination)” and
“Receive()” (black arrows in Figure 5.1) to achieve the next constraints:

1. The local vision (perception) of the module (k) is encoded in an
adjacency sub-matrix that encodes the next three values : Mk[i,j]
= 0 if cell (i,j) is empty, Mk[i,j] = 1 if cell (i,j) is occupied by a
module and finally Mk[i,j] = 2 if cell (i,j) is occupied by obstacle.

2. Each module perceives the environment to get local vision about
both environment and robot morphology by extending free arms
of the module. If the extension is done without physical contact
then the first cell in the same direction is empty, otherwise the
physical contact identify if there is a module or an obstacle.

3. If sub-matrix Mk that encodes the local vision of the module (k)
is updated then the module should send the updated matrix to
neighbor modules.

94
5. Decentralized Approach to Evolve the Structure of

Metamorphic Robots

Algorithm 1: Broadcast
1 Lr : list of received messages;
2 Ls : list of broadcasted messages;
3 Ln : list of imediate neighbor modules;
4 while true do
5 if Lr ∩ Ls 6= ∅ then
6 for each u ∈ Ln do
7 Sendu(Lr ∩ Ls);
8 end
9 Ls ← (Lr ∩ Ls);

10 Lr ← ∅;
11 end
12 end

Algorithm 2: Receive
1 r : new received request;
2 ρ : request being processed;
3 π : local fitness;
4 if (ρ = Null ∧ π > rπ) then
5 Respond("Not OK", rid);
6 Initiate Domination by means of local state;
7 end
8 if (ρπ > rπ) then
9 Respond("Not OK", rid);

10 end
11 if (rπ > π) then
12 Wait.stop(ρid);
13 ρ← r ∧ π ← rπ;
14 Broadcast(ρ);
15 Wait(ρid);
16 Respond("OK", rid);
17 end
18 if (rid = ρid) then
19 Respond("Request Being Processed", rid)
20 end

5.3. Evolving The Structure of the Robot 95

Algorithm 3: Initiate Domination
1 r : domination request;
2 Broadcast(r);
3 Wait(rid);

Algorithms 1,2,3 show the implementation of these constraints to ensure
the propagation of local perceptions over the modules. The two algo-
rithms (1 and 2) explain the dynamic of the propagation of messages
through the modules. A global vision of the metamorphic robot emerges
from this mechanism, and gives each module in the system the ability
to have a full description of the robots’ topology and its surrounding
environment using only a set of simple local communications.

5.3 Evolving The Structure of the Robot

In this work, we have adopted a decentralized approach to evolve the
structure of metamorphic robots. The robot consists of a set of au-
tonomous units that have the same properties, so the nature of the
system does not imply the existence of a supervisor module: all mod-
ules have the same functional level and they can all contribute in the
evolution of the whole structure.

A genetic algorithm is used to find the successive time step configurations.
Looking to involve the computing capacity of each module in the system,
we attempt to parallelize the GA in order to reduce the computation
time. In fact, Parallel Genetic Algorithms (PGA) have been developed to
reduce the large execution times that are associated with simple genetic
algorithms for finding near-optimal solutions in large search spaces. They
have also been used to solve larger problems and to find better solutions.
PGAs have considerable gains in terms of performance and scalability.
PGAs can easily be implemented on networks of heterogeneous computers
or on parallel mainframes.

Mainly, there are two models of parallel genetic algorithms; master-slave

96
5. Decentralized Approach to Evolve the Structure of

Metamorphic Robots

model and island model187 . In our work the results are obtained using
our proper framework developed in JAVA. This framework makes a
heterogeneous computer network (where each machine runs java virtual
machine) looking as a supercomputer with a shared memory and multiple
processing units that can run a set of parallel algorithms (the efficacy of
our framework is not the subject of this work).

A copy of the same genetic algorithm is implemented in each unit in
the system to perform the distribution of the algorithm according to
the island model. The initial population is divided into several sub-
populations that are processed separately by a set of interconnected
computing units (CPUs embedded in each unit).

At the beginning, we create (n) occurrences of the same process that
performs a copy of the genetic algorithm and progress in separate
machines within the required parameters. Each process evolves its
local population independently and from time to time it migrates some
genomes (a quantity proportional to the size of the local population)
into a selected process. The receiver process adds the new genomes
to its population and eliminates the worst genomes (the size of local
population must be respected).

This strategy of parallelization makes it easy to perform a genetic
algorithm within a large population, and gives result in a reasonable
time step. It is observed that a proper size for sub-population must
be correctly selected because a subdivision of too small size leads to
non-reliable genetic algorithms. Indeed, a population must also contain
enough diversified genomes so that the search space can be well explored
and the result returned is more interesting.

To reduce the system complexity, we consider a static environment mod-
eled by a lattice of 2D cells, where each cell has the interior architecture
shown in Figure 5.2 and may be in one of the following states:

Empty : and it can be filled by a single module as it goes along.

Occupied by a module : and it become empty if the inside module
moves into one of the neighbor cells.

5.3. Evolving The Structure of the Robot 97

Occupied by an obstacle : while considering static environment, this
state remains unchanged during all time steps of the simulation.

Task Requirements

Layer 2

(PackMan-Like Algorithm)

Reconfiguration planning

Management of
Intermodules Communication

Layer 3

Layer 1

Generate Set of Configurations
by Genetic Algorithm

Config 1

Config 2 Sellect and Return
Best Configuration

Config p

Sensors

Environment

Figure 5.2: The diagram of our evolutionary approach

The proposed approach is shown in Figure 5.2. It consists of the next
three stages: evolving modules configuration, domination of new struc-
tural information and reconfiguration to the new pattern.

5.3.1 Evolving modules configuration using GA

At this stage, each module uses its computational capacity to run
a distributed genetic algorithm to find the next step configurations
which are better adapted to the environment where the best one is
the configuration that maximizes the fitness function. Here the fitness
function is defined as the euclidean distance between the center of mass
of the robot and the target object that has to be surrounded.

Initially, each module in the system have the following genetic informa-
tion: initial population where the genomes encode both the links between

98
5. Decentralized Approach to Evolve the Structure of

Metamorphic Robots

*C ** *B E C * C B F A DA D * C * * E * * F B F E * * C

r u l d r u l d r u l d r u l d r u l d r u l d

6 4 *2 * * 6 3 * * 6 51 4 * 1 * * 5 * 3 * * 6 3 2 1 *

Module (1)

Adjacency of
module (1)

(r) : Right neighbor
(u) : Up neighbor
(l) : Left neighbor
(d) : Down neighbor

2

1 6 3

54

F

A C

E

B

D

phenotype 1 phenotype 2

genotype 1

genotype 2

r u l d r u l d r u l d r u l d r u l d

Figure 5.3: Encoding individuals by using character strings

*C ** *B E C * C B F A DA D * C * * E * * F B F E * * C

6 4 *2 * * 6 3 * * 6 51 4 * 1 * * 5 * 3 * * 6 3 2 1 *
Genotype G1

a b c d

e f

fragments to be eliminated

*6 ** C2 * * 6 3 * * 6 *1 6 3 2 1 * A C * * * C * * A 2

a b c d e f

2

1 6 3

A C

New phenotype

New Genotype

F

A C

E

B

D

phenotype
2

2

1 6 3

54

phenotype
1

Genotype G2

Figure 5.4: Crossover operation, the two candidate configurations
(phenotype1, phenotype2) are encoded by character string

2

1 6 3

54

phenotype
1

phenotype
1

after mutation

2

1 6 3

5

4

6 4 *2 * * 6 3 * * 6 51 4 * 1 * * 5 * 3 * * 6 3 2 1 *
Genotype G1

*6 ** 2 * * 6 3 4 * 6 51 4 * 5 3 * * 6 3 2 1 ** * * 3 *

Genotype G1
after mutation

Figure 5.5: Mutation operation, the candidate configuration (phenotype1) is
encoded by character string

5.3. Evolving The Structure of the Robot 99

modules and the position of each module in the environment. The fitness
function is defined to calculate the importance of each genome.

Considering a metamorphic robot of (n) modules, a set of genomes with
a size of (n) genes are randomly created and diversified as much as
possible. Each genome should also be well-formed (it must encode non
fragmented robot structure) where each gene of the genome contains
the next two integer fields (see Figure 5.3):

• Identifier field (id): to identify each module in the system.

• Discrete coordination field (i, j): to encode the discrete positions
in the lattice based environment.

The links between modules are deduced by using neighbor rules (all
the neighboring modules are linked together). The genetic operations
(crossover, mutation) are applied only for discrete coordination field,
while the identifier field remains always unchanged.

Crossover : The crossover operation is used for producing offspring
from individuals which are most successful in each competition,
thus each successive generation will become more suited to the
environment. Commonly, a crossover site along the character
strings is randomly chosen, then the values of the two strings are
exchanged up to this point. However, this operation does not work
directly with the genomes shown in Figure 5.3. The next four
additional actions are required:

1. From the first parent G1, eliminate (n−m) modules so that
m < n and ∀Mi ∈ G1 / Adjacency(Mi) 6= φ. (n is the
number of modules)

2. From the second parent G2, eliminate (n − k) modules so
that n = m+ k and ∀Mi ∈ G2 / Adjacency(Mi) 6= φ.

3. From G1 (respectively G2), select two modules x1, x2 that
have not a full adjacency list {∀genomei ∃ module xj ∈
genomei / ‖ Adjacency(xj) ‖< 4} so that the translation
of every module of the remaining part in G2 by the vector
−−−−→px1px2 (px: denotes the position of the module (x), Figure
5.4) should respect the next constraint: ∀ xj ∈ SubGenome2

100
5. Decentralized Approach to Evolve the Structure of

Metamorphic Robots

@ xi ∈ SubGenome1 / pxi = Translate−−−−→px1px2
(pxj) Where,

SubGenomei is the remaining part of Genomei.

4. Translate all the modules (update the p vectors) of
SubGenome2 by means of the vector −−−−→px1px2 , then update
the adjacency list of (x1, x2) and integrate them together into
new children genome as shown in Figure 5.4.

Mutation : The mutation operation is applied to a single genome from
which a gene is chosen to be mutated. Except the part that
encodes the module position, the remaining parts of the selected
gene should not be mutated. This operation proceeds as following:

1. Randomly select a genome A from the population.

2. Randomly select two genes (g1, g2) from the genome A so
that g2 has not a full adjacency list and the translation of
the module specified by g1 to fill a random free neighbor of
the module specified by g2 should not produce a fragmented
phenotype.

3. Perform the translation and update the neighbor lists of
(g1, g2) as shown in Figure 5.5.

Selection : In selection, the individuals producing offspring are chosen
by means of their reproduction probabilities. Each individual
receives a reproduction probability depending on its own fitness
value and the fitness values of all other individuals. To select a
genome we used a roulette wheel selection method. When choosing
a parent to produce offspring, the probability ρ for a genome g to
be selected is evaluated by means of equation 5.1.

ρ(g) = ∇(g)∑n
i=1∇(gi)

(5.1)

5.3.2 The domination of new structural information

After a number of iterations (fixed in advance), each module in the system
retrieves the best genome of its local population, this genome encodes

5.3. Evolving The Structure of the Robot 101

the current best configuration evolved by this module. A message of
domination request that contains this genome is created and sent to
the neighbor modules that will process it using the fitness function to
measure the importance of the encapsulated genome, and in particular
they deal with the following five situations:

1. If the extracted genome has a higher fitness than the best one
in the local population then, first suspend the genetic algorithm
progressing inside the module, next add this genome to the local
population and diffuse the same message to neighbor modules that
will do the same operation. At this moment each sender module
must wait for the acknowledgment answer from the contacted
modules in order to answer positively the domination request of
the initiator.

2. If the fitness is smaller than the best one in the local population
then, create a message of genome migration, in which the best
genome of the local population is encapsulated. Next, respond
negatively to the domination request with this message. This
operation is executed without suspending the progress of the
genetic algorithm.

3. If the answer to the domination request is negative, then extract
the encapsulated genome from the received message (this genome
is the best individual of the local population at the moment of the
domination request), add the genome to the local population, and
send the acknowledgment message to the initiator module (the
module that initially requests the domination).

4. If (n−1) acknowledgment messages are gathered within a particular
module then it must report the domination of the new configuration
using propagation of the dominated message to allow the modules
starting the reconfiguration stage.

As a module receives a message of domination (this message contains the
geometric description of the conventional best configuration) it cancels
the processing of other messages, sends this message to the neighbor
modules, and starts the reconfiguration process.

102
5. Decentralized Approach to Evolve the Structure of

Metamorphic Robots

5.3.3 Reconfiguration to the target pattern

The reconfiguration to the new pattern is the last stage in our approach.
At this stage, we use a PacMan-Like algorithm85 since it is a parallel
planning algorithm used to reconfigure crystalline robots. In fact, the
PacMan algorithm was inspired by the video game of the same name.
This algorithm is parallelized and reused by Bulter et al.85 It uses a
specific data structures called “pellets” as a way of marking the path
that each module should follow to perform its part of reconfiguration.
An example of application of the PacMan algorithm is illustrated in
Figure 5.6. Once the pellets are distributed, the modules start their
asynchronous virtual locomotion where each module switches its identi-
fier with the neighbor module found in the direction along its path of
the reconfiguration.

A B

4

4

4

4

3

33

3.1

3

43

1

1

1

1.2
22

21

1

1 1

2

2

1 2 3 4

2 3 1 4

Figure 5.6: An example of using PacMan algorithm to transform the configu-
ration (A) into the configuration (B)

The figure 5.6 shows that the PacMan approach lets several modules
to do simultaneous moves, which make it possible for the occurrence
of a deadlock or structure fragmentation. To recover this problem, the
following constraints must be applied:

• The switching of identifiers between modules must be executed in
mutual exclusion.

5.4. Experimental Results 103

• At the end of its displacement, each module must diffuse a message
that indicates the end of PacMan algorithm to all the modules, to
inform them that it successfully reaches its final destination.

5.4 Experimental Results

Initially, the crystalline units are aggregated in an entire connected
structure (no fragment must be occurred), where each module runs a
genetic algorithm in order to evolve the whole structure. To ensure the
autonomy of modules, we used a grid of 4x4 computers to perform the
computation of the parallel island genetic algorithm, where each machine
acts as the computing unit of a module. A mechanism of inter-modules
communication is implemented using the SOCKETs of BERKLEY. The
results shown in Figure 5.7 are obtained by using the experimental setup
shown in table 5.1.

Table 5.1: experimental setup parameters
Parameters Values
Selection Roulette Wheel
Mutation rate 5%
Crossover rate 60%
Sub-population size 60 genomes
Migration rate 5%

To demonstrate our approach, we assumed that the robot should sur-
round an object in the environment. Knowing the object position we
define the fitness function as the euclidean distance (D) between the
object and the center of the mass of the robot. So the quantity (D)
must be minimized as much as possible to ensure the best surrounding
of the object.

The environment is simulated as a 2D lattice matrix composed from
23x8 cells as shown in figure 5.7, where 23 cells represent obstacles (black
cells) and the metamorphic robot is represented by 4x4 red cells. The

104
5. Decentralized Approach to Evolve the Structure of

Metamorphic Robots

Figure 5.7: The evolution of a metamorphic self-reconfigurable robot during
its movement in a tunnel from left to right to surround the yellow square

green calls represent the perceived cells while the yellow cell represents
the object to be surrounded. Figure 5.7 shows instances of simulation
of the metamorphic robot evolution that moves from left to right while
moving through a tight tunnel to surround the object represented by
the yellow square.

During this simulation, we can clearly observe in all time steps the
changes in the morphology of the robot while performing its evolution.
It adapts to the environment to achieve the goal at hand. This evolution
is emerged by the cooperation of all the modules that evolve population
of feasible configurations and make an agreement (by using domination
request) to apply the best one.

We can also observe a kind of liquid-like locomotion behavior of the whole
structure that emerges from the overlap of successive configurations of
the metamorphic robot. This locomotion is expected because the search
space of the genetic algorithm integrates and disintegrates dynamically
the perceived cells for each configuration which create not only a local
vision for each module (the green cells in Figure 5.7 represent the vision

5.5. Conclusion 105

field of the modules) but also a local vision of the whole evolutionary
structure(by propagating information) thus the emerging behavior is
well-adapted to the environment because the evolved structure is strongly
influenced by the information perceived from the environment.

5.5 Conclusion

In this chapter, we presented a decentralized approach that evolves
the configuration of metamorphic robot which consists of crystalline
modules. This approach mainly uses PacMan-like algorithm coupled
with a genetic algorithm.

In fact, the propagation of the local information trough modules emerges
a full-description of the structural topology of the metamorphic robot
in each module. This description is indispensable to perform a dis-
tributed genetic algorithm using modules as computational units. Each
unit in the system is an autonomous module that has a computational
capacity, though limited but it is sufficient to perform genetic oper-
ations “crossover, selection, mutation” because these operations are
relatively simple. This first stage occurs prior to an evolutionary pro-
cess which is distributed over the modules of the robot, where the
perceived information is shared between all modules. The second stage
uses a reconfiguration algorithm (PacMan algorithm which is devised
for compressible units) to reshape the robot structure from the current
configuration to the one defined in the first stage.

The evolutionary algorithm used in this work is decentralized, which
ensures theoretically the continuity of the evolutionary process even if
there are faulty modules. A liquid-like movement behavior emerges from
the different reconfigurations of the metamorphic robot. This behavior
can be studied in a future work to get the most possible hidden potential
of evolutionary structures.

6
Splittable Metamorphic

Carrier Robots
In this chapter we improve our approach and we experiment it with a
more complex task

Contents
6.1 Overview . 108
6.2 The Modular Robot and its Environment 108
6.3 Generate Cyclic Locomotions 111
6.4 Encapsulation into the modules 112
6.5 Clustering The Modules 115
6.6 Experimental Results 116
6.7 Conclusion . 118

108 6. Splittable Metamorphic Carrier Robots

6.1 Overview

In this chapter, we show how to evolve the structure of a metamorphic
self-reconfiguring modular robot to perform the task at hand by taking
advantage of the computational power of the individual modules. The
research presented in this chapter is grounded in our previous work
(see chapter 5) in which we showed how simple local sensing, local
communication and control rules achieve useful emergent behaviors of
crystalline robots.

In this chapter, we are interested in evolving the configuration of meta-
morphic modular robots to transport sliding objects from their current
positions to specific target positions. This process can be subdivided
in three successive steps: (1) evolve dynamically the structure config-
uration to find and surround objects, we use morphogen gradients to
locate these objects, (2) evolve the current structure configuration to be
able to transport the surrounded objects, (3) release the sliding objects
whenever the final position is achieved. These steps are coded in a
simple finite-state machine (FSM) that denotes all the states which may
be taken by every unit in the system, and the possible transitions that
can be performed according to the required conditions. A basic hormone
system is used as well to control the inputs of the FSM.

6.2 The Modular Robot and its Environment

To reduce the simulation’s complexity, we consider a static environment
modeled with a lattice (grid) of 2D cells, where each of these cells may
be in one of the following states: empty, occupied with a single module,
occupied with an obstacle. Basically, all the modules have the same size.
We use the same software architecture discussed in chapter 5, with a
slight change in the sensing system.

6.2. The Modular Robot and its Environment 109

Actually, the cell-robot has no idea about the positions of the target
objects, however it can sense some particular informations called mor-
phogens diffused by these objects. We assume that the environment
contains different morphogens. They are gradually spreading through
the grid so that the variation on their concentrations between the neigh-
bor cells emerges a guidance system that gives an implicit information
about directions that should be followed to reach the source of these
morphogens. This change improves the control model to take advantages
not to use global information and makes the system more realistic. We
use a basic diffusion algorithm to spread morphogens on each cell in the
environment with respect to the following rules:

1. Each morphogen has a unique identifier.

2. Each of the target objects is considered as a morphogen source, it
produces and diffuses a unique morphogen in the environment.

3. The concentration of morphogeni is maximal at the position of
its source.

4. The concentration of morphogeni changes across the grid, and
constantly decays through the environment.

Indeed, we used morphogen gradient in the hope to improve our previous
model in which we used euclidean distance to locate target objects and to
drive the system evolution. In such a model, all the units are supposed to
know (as a global information) the exact position of all the target objects.
Besides, using euclidean distance makes the metamorphic robot unable
to overcome some situations, in particular avoiding U-shaped obstacles
(obstacles which are parabolic in shape). To resolve this problem, we
introduce fmoving fitness (equation 6.1) that should be performed by the
robot to acquire morphogens as much as possible. Maximizing fmoving,
the robot will track the morphogens concentrations from low to high
level of concentration.

fmoving =
m∑
i=1

n∑
j=1

Morphogeni(mj) (6.1)

In this equation, Morphogeni(mj) denotes the concentration of
Morphogeni perceived by the module mj and n denotes the number of

110 6. Splittable Metamorphic Carrier Robots

modules, m denotes the number of morphogens sources.

Experimental studies showed us that when we use fmoving as a fitness,
the GA may have a tendency to converge towards local optima in which
it is not defined how to sacrifice short-term fitness to gain longer-term
fitness. As a result, the robot gets stuck in an equipotential area from
which it can not get out anymore. This particular circumstance strongly
depends on the shape of fmoving landscape that depends itself on the
way of spreading morphogens (the decay function).

In order to alleviate this problem, we introduced an activator/inhibitor
coefficient δi to control the fitness fmoving as shown in equation 6.2.

FMoving =
m∑
i=1

δi

n∑
j=1

Morphogeni(mj) (6.2)

In this equation δi is used to activate or inhibit Morphogeni.

Using FMoving, the robot can perform the task at hand either sequentially
by activating a single morphogen at a time, or in parallel by dividing the
whole structure into m parts, where m > 1 is the number of morphogens
sources (target objects). To divide the whole structure, we used the
following three rules:

1. Cluster the modules into m classes, using their perceived mor-
phogens as an input data, and assign each of the modules the
appropriate class-identifier.

2. Each of the modules keeps the link with the same-class modules
and disconnect from the others.

3. For each class Ci, δi takes value as shown in equation 6.3, where
idCi is the identifier of Ci.

δi =
{

1 if(i = idCi)
0 if(i 6= idCi)

(6.3)

Once the structure divides, each part behaves as an entirely autonomous
modular robot in which only one morphogen is activated and the others

6.3. Generate Cyclic Locomotions 111

are inhibited. In such a case, no equipotential area appears and each
part will track and surround a unique morphogen source.

6.3 Generate Cyclic Locomotions

The GA used in this work is basically designed for evolving the structure
of modular robots as discussed in chapter 5. It outputs only the next
configuration that improves the fitness at hand. However, it can be used
to develop facilities for generating locomotions.

Figure 6.1: Cyclic locomotion

Actually, the modules can generate various motions as a combination of
each module micro-movement. In particular, they are able to generate an
earthworm-like locomotion as a loop of simple cyclic locomotion. Figure
6.1, shows a loop of simple cyclic locomotion that can be generated
using the following rules:

1. Define a direction for the movement.

2. Arrange the modules so that each of them can disconnect from
its neighbor modules that are perpendicular to the movement
direction without leaving any isolated module.

3. The module is able to move one step position(green modules in
Figure 6.1) once the following conditions are satisfied:

• The neighbor cell to the direction of movement is empty.

112 6. Splittable Metamorphic Carrier Robots

• The disconnection from neighbor modules that are perpen-
dicular to the direction of its movement should not leave any
isolated module.

• All faces of the module are contracted.

The direction of movement is defined by using the variation of morphogen
concentration around the space occupied by the modules, while the
modules arrangement is defined by using GA since it is a particular
configuration.

6.4 Encapsulation into the modules

As mentioned in section 6.1, we are interested in evolving the configu-
ration of metamorphic modular robot for transporting sliding objects
from their current positions to specific target positions. This process
can be subdivided in three successive steps:

Track and surround target objects : The modules run a GA for evolv-
ing the whole structure in order to acquire morphogens as much as
possible (using FMoving as a fitness where δi = 1 ∀i = 1..m). This
evolution drives the modular robot towards an equipotential area
in which it gets stuck and can not completely converge towards
any of the target objects (∆ FMoving ' 0). Each module in the
system can either produce two artificial hormones H1 and H2

(equations 6.5) or diffuse an amount of them (H1
r , H2

r) to control
their desires to switch between the three steps (see Figure 6.3).

Once the modular robot reaches an equipotential area, each module
starts to lose H1 since ∆ FMoving ' 0. An inter-modular com-
pensation is triggered (equation 6.7) to ensure the homogeneity
of H1 through all the modules. While ∆ FMoving ' 0, H1 keeps
decreasing until it reaches a lower threshold. At this moment, a
clustering method is used for determining a division scheme using
the informations perceived by the modules as an input data. The
whole structure is then divided into several parts where each part

6.4. Encapsulation into the modules 113

will be attracted by only one target object that matches with its
class identifier.

Transport target objects : As a result of step (1), each target object is
surrounded by several modules of the same class. Again, FMoving

achieves a maximum level and ∆FMoving
converges towards 0, at

this moment, every module of the class starts to lose H2. The
modules that are in interaction with the target object lose H2

faster than the others (coefficient ϕ in equation 6.5).

Once H2 gets lower, the modules define the direction of movement
using the variation in concentration of the morphogen that denotes
the final position, then the GA is used to evolve a structure that
can generate a cyclic locomotion to the defined direction.

Each substructure can push ahead the sliding object or pull it from
the back while the sliding object moves from lower concentration
level to higher morphogen concentration level. Otherwise, the
modules in interaction with the sliding object stop the movement
and diffuse a hormone H3 to switch to Step2 and redefine a new
direction.

Release the transported objects : Once the sliding object arrives at
the final position, it is expelled as is an obstacle or a failed module.

S0

S1

S2S3

H
1
< Thr

1

P(S : S)
0 1

H
2
< Thr

2

P(S : S)
1 0

H
2
< Thr

2

P(S : S)
1 3

H
3
< Thr

3

P(S : S)
2 1

H
3
< Thr

3

P(S : S)
2 3

H
2
< Thr

2

P(S : S)
1 2

H
3
< Thr

3

P(S : S)
2 0

Figure 6.2: FSM modeling the global task

114 6. Splittable Metamorphic Carrier Robots

The dynamic of these steps can be modeled by a finite state machine as
shown in Figure 6.2, where: S0: denotes the initial state of the system.
States (S1, S2, S3): denote respectively steps 1,2,3. (Thr1 , Thr2):
denote respectively thresholds of hormones (H1, H2). We integrated a
highly simplified model of biological hormone system to generate inputs
for FSM.

Fitness
1

Fitness
2

Fitness
3

Fitness

Hormone Signaling System

FSM

Curent State

Genetic Algorithm

H1

H2

H3

Figure 6.3: The interaction between the FSM, the hormonne system, and the
GA engine

The dynamics of the hormones H1 and H2 are modeled as follows:

H1 = H1
r + α1 4fit −β1f(4fit) (6.4)

H2 = H2
r + α2 4fit −ϕβ2f(4fit) (6.5)

f(x) =
{

0 ifx 6= 0
1 ifx = 0

(6.6)

Where, ∆fit = |F (t)− F (t− 1)|: denotes the change of the fitness over
the time. (α1, α2): are two coefficients used to accelerate the production
of H1 and H2. (H1

r , H
2
r): represent the received hormones. (β1, β2): are

6.5. Clustering The Modules 115

two coefficients used to decelerate the production of H1 and H2. ϕ: is
a coefficient used to enhance the deceleration of producing H2.

The function Di
x,y(t) models the diffusion of the hormone H i at time

t as described in the following equation 6.7, where di represents the
diffusion coefficient of H i:

Di
x,y(t) = di|x− y|H i(t) (6.7)

6.5 Clustering The Modules

Clustering is the task of finding natural groupings among objects in such
a way that objects in the same group (called a cluster) share similar
values188 . In our work we use clustering for partitioning modules into
several groups so that the whole structure of the modular robot will
be able to split up in order to cope with environmental variations or
to perform the task at hand in parallel. From this point of view, the
perceived information of each module is considered as a data point.

For clustering perceived morphogens, we used the well known algorithm
K-means which is commonly used to solve clustering problems. This
algorithm is based on minimizing the overall sum of the squared errors
between each pattern and the corresponding cluster center. This can be
written as minimization of the following objective function:

E =
K∑
i=1

∑
x∈Ci
‖x−mi‖2 (6.8)

where x is a data point, and mi is the mean of the data points.

116 6. Splittable Metamorphic Carrier Robots

6.6 Experimental Results

The following experimental parameters are used to set up the simula-
tion:

Max morphogen concentration = 50, hormone accelerators (α1, α2) =
(0.8,0.8), hormone decelerator (β1, β2) = (0.3,0.3), hormone diffusion
coefficient di=0.5, the cumulation of any hormon H i can not exceed 10
(otherwise the additional value is ignored except for the non divided
structure). This setup has been empirically determined, through a set
of tests.

In this experiment, the environment is modeled as a 2D grid composed
of 25x10 cells as shown in Figure 6.5, where, the shaded cells represent
obstacles, the blue cells represent sliding objects, and the modular robot
consists of 16 units which are represented by the red cells. Each of the
sliding objects produces a unique morphogen which spreads and decays
on the environment. The mission should be performed by the modular
robot is to track the sliding objects that are randomly dispersed in
the environment and to transport them into a predefined final position
(we assume that the final position diffuses a unique morphogen called
MorphFinal).

During the convergence of the genetic algorithm, it is interesting to
observe the capacity of the system to evolve the structure towards the
best solution. As shown in Figure 6.5, the modular robot starts form
its initial position and evolves its structure to acquire morphogens as
much as possible. As a result, the modular robot converges more and
more towards the most concentrated cells (red-brick cells in Figure 6.5
(a.b.c)), at this moment, the structure is not yet divided, and only H1 is
produced. Once the structure reaches the equipotential area (Figure 6.5
c), 4FMoving

approaches to 0 and H1 starts decreasing (blue curve in
Figure 6.4). When the H1 concentration gets down under a threshold
of 2.5 (empirically determined), the structure is believed to be steady
for a long time and is ready to be divided into several parts.

6.6. Experimental Results 117

Figure 6.4: Hormones concentrations during the time of simulation, (a,b,c)
are the three parts of the global task

(b)

(d)

(f)

(a)

(e)

(c)

Figure 6.5: The modular robot during the evolution

118 6. Splittable Metamorphic Carrier Robots

A k-means algorithm is used to cluster the dataset (informations per-
ceived by the modules) and to assign each module to a class for preparing
it to the separation process. Next, each module tests its neighbors and
disconnects from modules which have not the same class identifier. As
a result, the modules are separated in two classes and the structure is
divided in two parts (Figure 6.5 c), where these parts should not be
divided anymore and each of them converges only to the object attracted
by it, then it surrounds this object and evolves its configuration to be
able to perform a cyclic locomotion to the direction by which the con-
centration of MorphFinal is being increased (subscript b in Figure 6.4),
otherwise, a hormone H3 is diffused to evolve an other configuration
and move toward a new direction. As a result, the sliding object gets
closer to the final position.

The global system dynamic is already modeled by a FSM that is encap-
sulated in every module to switch between steps (parts of the global
task) a,b,c in Figure 6.4 while the hormone system produces H1, H2, H3

to generate inputs to this FSM. Coupling between the hormone system
and the FSM is illustrated as following:

• (State = Start ∧H1 < 2.5) 7→ (State← A,H2 ←Max).

• (State = A ∧H2 < 2.5) 7→ (State← B).

• (State = B ∧H3 > 0) 7→ (State← A,H2 ←Max).

Observing these rules, we notice that the second and the third rules,
create such an interesting cycle that can be used to create a generalized
process for more complex tasks.

6.7 Conclusion

In this chapter, we presented a decentralized approach that evolves the
ability of metamorphic robots according to the task being performed.
This approach is based on our previous work (chapter 5) in which we used
a GA coupled with a PacMan-like algorithm for evolving the structure
of a modular robot. In this study the genetic algorithm is used to

6.7. Conclusion 119

generate the next better configuration of the modular robot, while the
PacMan-like algorithm is used to drive the self-reconfiguration process.
Switching between generating better configuration and reforming to the
new configuration emerges an adaptive locomotion for the modular robot.
A more complex task is considered in this work, and a new improvement
is presented.

The first improvement we can talk about is the ability of our approach
to perform the task at hand in parallel by dividing the modular robot
into several parts where each part will focus on one single routine.
We note also that the modular robot is driven into the target objects
without being stuck by obstacles that are parabolic in shape. In fact,
using a gradient of morphogens instead of euclidean distance is not just
a natural choice since the modules are not supposed to have global
informations but it gets also a significant improvement to the quality of
objects-tracking in our system.

The experiment presented in this chapter shows the capacity of the
artificial hormone system to control the finite state machine (FSM)
that schedules the steps to perform the global task. To do that, the
dynamic of the global task is modeled by a FSM , then an artificial
hormone system is used to control transitions between the FSM states.
As a result, the robot’s behavior is controlled by the hormone system.

An other interesting property of our approach is the ability to generate
a separation strategy for the modules according to some circumstances.
It would be also interesting to investigate the feasibility of biological
cell division techniques as well as the multi-objective techniques for
generating such strategy.

7
G-Programming-based
Self-Reconfiguration

Planning
In this chapter we introduce a genetic programming based engine for
generating a near-optimal sequence of primitive actionts to reconfigure a
classe of modular robots

Contents
7.1 Overview . 122
7.2 Overview of the Simulator 123

7.2.1 Unit-Compressible Motion 124
7.2.2 Vocabulary of Module Actions 124
7.2.3 Compressible Units Simulator 125

7.3 GP-Based Reconfiguration Planning 126
7.3.1 Target Shape Description 128
7.3.2 Representation of GP Individuals 129
7.3.3 Fitness Evaluation 132

7.4 Experimental results 136
7.5 Conclusion . 141

122 7. G-Programming-based Self-Reconfiguration Planning

7.1 Overview

Performing motion primitives in a coordinated way is the subject of the
self-reconfiguration problem. The question is how to change connectivity
among modules to transform the robot from the current configuration
into the desired configuration within the restrictions of physical imple-
mentation3,58,189,190 . One of the major challenges in such a problem
is the number of possible configurations that increases exponentially
with the number of modules and the number of their degrees of free-
dom. Chirikjian et al.191 and Pamecha et al.192 were proved that
the reconfiguration of modular robots is NP-Complete problem. Thus,
determining efficient sequences of modules operations that transform a
modular robot from one configuration into another is a pressing need
for efficient reconfiguration process.

Most available lattice-based modular robotic systems have only basic
locomotion controllers to reshape the robot structure to a few predefined
patterns by following predefined sequences and rules. These sequences
have usually been hand-coded (by human operators), combined, gener-
alized and optimized. However, in most cases the predefined sequences
cannot predict all the possible situations that may face modular robots
under dynamic environments. Further, since many modules may perform
moves simultaneously, it is useful to increase the number of parallel
steps to reduce the reconfiguration time.

In this chapter, we present an experimental study of self-reconfiguration
planning using an automatic programming engine. The planner evolves
and optimizes sequences of low-level actions which are required to trans-
form the robot geometric structure from initial configuration to the
target one. We assume that during reconfiguration the total number
of modules and their connectedness must be preserved. This aspect
ensures that the overall structure does not fragment during actuation
due to module disconnections. The proposed planner is intended for both
Crystalline and TeleCube modules which are designed and prototyped
in hardware as cubical compressible units.

7.2. Overview of the Simulator 123

It is important to note that the mechanical actions (attach, detach,
expand, contract) performed by the units are the slowest part of the
system. Thus, we are also interested in reducing the total number of
atomic operations required to achieve the desired reconfiguration.

7.2 Overview of the Simulator

Figure 7.1 shows some 2D compressible units in different configurations.
The units are cubic in shape (squares in 2D) with an extensible arm on
all six faces. Each unit is completely autonomous with computation,
power and communication onboard. Besides, each unit can expand
each of its six arms independently up to a factor of two times its fully
contracted configuration.

East
connection

plate

West
connection

plate
M

North
connection plate

South
connection plate

34

01

56

2

(a)

34

01

56

2

(b)

3

0

45

12

6

(c)

34

012

56

(d)

34

012

56

(e)

34

012

56

(f)

34

012

56

(g)

3456

2 1 0

(h)

12

56

0

4 3

(i)

12

56

0

4 3

(j)

Figure 7.1: Compressible units in different configurations

A set range for contracting and expanding will then allow two neighboring
modules to contract to half their normal size and fill a single grid space
in the lattice. A single grid gap is then created for other modules to
be pushed into. Each face of the unit (called a connection plate) is
equipped with an electromechanical functionality, allowing the unit to
clamp onto the neighboring unit’s connection plate. The mechanical
design of compressible modular robots is particularly well-suited to take
advantage since modules are allowed to perform motion through the

124 7. G-Programming-based Self-Reconfiguration Planning

interior of a robot structure rather than only along the exterior surface.
The reader is invited to see193 for more hardware details.

7.2.1 Unit-Compressible Motion

The unit-compressible motion is controlled by attaching the unit to a
neighboring one and actuating the expansion or contraction mechanism.
First, the unit disconnects from all neighbors in directions perpendicular
to the direction of motion. Then the actual move is performed by
expanding and contracting the back and the front arm. The unit slides
one step in the desired direction with respect to some substrate modules.
A simple module is unable to move by its own without interacting with
neighboring modules, however it can carry other attached modules as
long as the target positions for the carried modules are unoccupied.
When the units combine these operations in a coordinated way, they
move relative to one another, resulting in a reconfiguration of the robot
as shown in Figure 7.1.

Crystalline and TeleCube modular robots have units that are arranged
and connected in regular, three-dimensional pattern ”cubic grid”. As
modules actuate the expansion or contraction mechanism each module
performs linear motions, which can be described as a set of functions
fi(x) where:

fi(x) = x+ 1
2µi ,

{
x = 1

2k , k ∈ Z3

µi ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
(7.1)

7.2.2 Vocabulary of Module Actions

In what follows, the unit to which we refer as parent is the unit that
executes a given action, while the dangling modules include all the units
that are attached to the parent. During the robot’s reconfiguration, each
module can perform the following low-level primitives:

7.2. Overview of the Simulator 125

• ExpandArm(Direction): Before expanding arm in Direction,
the following conditions must be guaranteed: (1) either, the par-
ent or the dangling modules must be labeled as moving blocks,
meaning that one of them is not attached to a fixed block of units,
otherwise the sum of all forces is equal to zero and the motion fails,
(2) collision should not be occurred when performing expansion.
This primitive returns true if the expansion succeeds, and false
otherwise.

• ContractArm(Direction): Before contracting arm in Direction,
the following conditions must be guaranteed: (1) either, the parent
unit or the dangling modules must be labeled as moving block,
(2) collision should not be occurred when performing contraction.
This primitive returns true if the contraction succeeds, and false
otherwise.

• Connect(Direction): If there is an immediate neighboring mod-
ule in Direction, activate the appropriate connection plate in order
to bond with that module. Then update the neighboring list of
the new connected modules.

• Disconnect(Direction): If there is a module linked in Direc-
tion, break the link with it only if the system remains connected
after disconnection, then update the neighboring list of the new
disconnected modules.

By combining these primitives, we can build more complicated actions
for height-level manipulation of the robot. We can also build a complete
program that reconfigures a modular robot to take several shapes.

7.2.3 Compressible Units Simulator

For our experiments, we implemented a simulator for two types of
compressible modular robots based on Crystalline and TeleCube units.
The units are square in shape and they all have the same size, they
are located in a regular grid and act in a two dimensional discrete
environment. We suppose that next to each connector there are a

126 7. G-Programming-based Self-Reconfiguration Planning

transceiver and a set of appropriate sensors, which allow modules to
communicate with connected neighbor modules and sense the state of
the nearby grid as well. A single square module is embedded in a discrete
coordinate system, occupies one grid location in the world when its four
arms are contracted back to the body. In contrast, it occupies an amount
of 1/2 of grid size in addition for each expanded arm. The four facing
directions (East, North, West, South) of each module are respectively
encoded as integer values in [0,3]. Moreover, the states of the four
actuators are encoded as a Boolean array Si∈[0,3] where Si∈[0,3] = true

if armi∈[0,3] is expanded and Si∈[0,3] = false otherwise.

Basically, the simulator executes a given sequence of native actions and
rewards each action with true if it is successfully performed and with
false otherwise. For reason of simplicity, no complex physical constraints
except collision-detection and Newton’s three laws of motion are taken
into account. When expanding and contracting arms, a unit exerts force
(Push or Pull) upon connected neighboring units. By using Newton’s
laws of motion, it is possible to determine which part in the system
is pushed or pulled against which other and in what direction. We
suppose that the module’s actuators (mechanisms that control arms)
have constant strength (i.e., each unit can push and pull a constant
number of other units when expanding and contracting). We suppose
also that module arms can only occupy two states, fully expanded and
fully contracted. When a module sticks somewhere to the floor, the
simulator assumes infinite strength between the module and the floor to
avoid slipping (at least one module must be connected to the floor or
any stationary obstacle when performing motion).

7.3 GP-Based Reconfiguration Planning

Genetic Programming is one of a number of evolutionary algorithms that
solves problems without being explicitly programmed141 . It achieves
this goal of automatic programming by genetically breeding a population
of computer programs using biologically inspired operations (stochastic
selection, crossover and mutation). On each generation, the fitness of

7.3. GP-Based Reconfiguration Planning 127

Near-Optimal
Sequence of primitives

GP-Engine

Environment

Initial Configuration Target Configuration

Compressible Units
Simulator

Run Programs and
Evaluate Their Quality

Evaluate
individuals

Breed Fitter Programs

Generate Population
of Random Programs

Figure 7.2: The general scheme of the planner. The planner takes initial
and target configurations as inputs and outputs a near optimal sequence of
primitives required to perform the corresponding transformation.

each individual in the population is evaluated. Once the termination cri-
terion for the run is satisfied, the best single individual obtained during
the run is considered as the result of the run. Such a process, stochasti-
cally transforms a population of random computer programs into new,
more optimized generation of programs. Unlike genetic algorithm’s (GA)
individuals which are typically encoded as linear bit-strings, GP usually
uses tree-based expressions as nonlinear structures for hierarchically
structuring and manipulating individuals. The shape, and the contents
of these individuals can dynamically change during the process.

In the area of complex systems, GP has demonstrated its potential in
evolving programs for a wide range of applications including classification
and pattern recognition, symbolic regression and circuit design141,194 .
In this work we used GP as an automatic programming engine to solve
the reconfiguration planning problem. To do that, the GP computes a
feasible plan that compiles down an abstract move into a sequence of
valid native moves that, given a source robot S and a target robot T,
reconfigures S into T. Both S and T are robots composed of n modules
arranged in 2D grid. For the purpose of reliability, we require that
the computed plan must maintain the system-connectivity on every
time-step of the reconfiguration process.

We used tree-based GP-engine that was introduced by Koza141 . In his

128 7. G-Programming-based Self-Reconfiguration Planning

model, Koza has mentioned five major steps in preparing to use genetic
programming paradigm to solve a problem. These are (1) choosing
the set of terminals, (2) the set of functions, (3) the fitness measure,
(4) the values of the numerical parameters and qualitative variables
for controlling the run, (5) the criterion for designating a result and
terminating a run.

7.3.1 Target Shape Description

Performing a successful reconfiguration requires the units to move to-
ward target positions without being stuck behind each other or behind
obstacles that exist in the environment. The goal of the units is to find
target location and all move as close to it as possible.

Defining a fitness function as the sum of each module’s distance to
the target location is particularly an attractive choice in a number
of situations. However, it seems to be useless when the environment
contains concave obstacles17 . Thus we used the concept of Morphogens
for representing the target configuration.

Morphogens are long-range signaling molecules that act as graded posi-
tional cues to control cell differentiation in a concentration-dependent
manner. This concept has brought to light the potential for signaling
gradients to provide positional information for many developing multi-
cellular organisms195 . In previous work17 we used morphogens to guide
a metamorphic modular robot toward target objects without having any
explicit information about their locations. In the present work we use
the same strategy to provide positional information for the reconfiguring
modular robot.

Cs(a) = C0e
−βL(s,a) (7.2)

We assumed that the environment contains different morphogens that
are gradually spreading on the grid by means of the decay function
indicated in equation 7.2, where C0: is the morphogen concentration at

7.3. GP-Based Reconfiguration Planning 129

the location of a producing cell s, β is a positive decay rate and L(s,a):
is the full length of the shortest path between the producing cell s and
a given position a. Morphogens diffuse only through the empty grid
with respect to the obstacles that exist in the environment. During their
spreading, the substances follow the very easy way to move from the
high concentrated grid to the low concentrated one.

The target pattern of the modular robot is defined by morphogen values
of each grid. The morphogen is released from producing cells, which
occupy each target grid. The morphogen value can be either positive
or negative. A positive value means that the grid should be occupied
by a module, while a negative gradient suggests that the module in the
grid, if any, should be removed. A higher value of morphogen quantity
indicates a higher priority for the grid to be filled by a module.

The distribution of morphogen gradients creates a virtual landscape
that helps the modular robot to decide which direction to move to while
flowing toward the target locations just like gravity does for fluids while
traversing a terrain toward a sink.

7.3.2 Representation of GP Individuals

The set of all possible individuals that GP can generate includes all
the trees that can be recursively created by compositions of a set of
function symbols F = {f1, f2, ..., fn} and a set of terminal symbols
T = {t1, t2, ..., tm}. Each function in the function set F takes a specified
number of arguments. Functions are derived directly from the description
of the hardware capabilities, they include the four mechanical primitives
that can be performed by each single module (attach, detach, expand,
contract), each of which requires both the identity of the module by
which it will be performed and the module’s actuator (east, north, west,
south) that will be used to perform this function.

The configuration space generated by a system of n lattice-based modules
is C = Z2n. It includes all configurations that may be achieved by the
collection of these modules. Any configuration (c) is a subset of the

130 7. G-Programming-based Self-Reconfiguration Planning

S

T

Function Inputs Output

t01 t02t11 t12

t21 t22

t21 t22

t31 t32t01 t02

T =S

t01 t02

t31 t32

t21 t22

t11 t12

t01 t02

t21 t22

S1

S2 S3

S4

S5
2

01

302

1

2

0

3

0

2

S2

S1

S3

S4

S5

S1

S2

S3

S4

S5

, ,t11t12 , ,t01t02 , , , ,t01t02t31t32 02 3
, ,t21t22 , ,St11t12120

Figure 7.3: Hierarchical representation of a composition of functions.

configuration space (c ⊂ Z2n) that refers to a particular arrangement of
connectivity between modules.

As a given function fi is applied to an arbitrary configuration c, the con-
figuration c is either remaining intact or turning into a new configuration
ć as expressed in equation 7.3.

fi(t1, t2, c) =
{
c if the function fi fails
ć if the function fi succeeds

(7.3)

A function fi(t1, t2, c) fails if one of the following reasons is occurred:

• Collision is detected: Due to module expansion and contraction
by means of arguments (t1, t2), collision can occur either between
modules or between any module and the obstacles that exist in
the environment.

• The overall structure is fragmented : The robot structure may be
divided into several parts due to module disconnections performed
by means of (t1, t2).

Whatever a function fi ∈ F is succeeded or failed, it always results in
a configuration c ∈ C, so that the next function can be applied to this
result. The closure property is respected since each of the functions in
the function set is able to accept, as one of its arguments, any value and
data type that may possibly be returned by any function in the function

7.3. GP-Based Reconfiguration Planning 131

set (Figure 7.3). A sequence of consecutive native actions applied on a
given configuration can be viewed as a composition of functions which
is implemented as shown in Figure 7.4. The result returned by this
composition of functions is the final configuration returned when the
entire sequence of functions is executed while traversing the program
tree by depth-first recursive process.

node

Childs

cop: [0,1,2,3]
idm: [0,n]
dir: [0,1,2,3]

Parent

Disconnect dir
idm 1

3
Disconnect dir

idm 0
3

Contract dir
idm 0

2

Expand
dir
idm 6

1

Expand
dir
idm 2

0

Disconnect dir
idm 2

3

Connect dir
idm 0

3
Expand

dir
idm 4

1
Expand

dir
idm 0

3

Expand
dir
idm 0

2
Expand

dir
idm 1

0
Expand

dir
idm 1

2

Expand
dir
idm 1

3
Expand

dir
idm 2

3
Expand

dir
idm 5

1

Expand
dir
idm 1

3
Contract dir

idm 2
0

Expand
dir
idm 2

3

Figure 7.4: The Genotype implementation. Each node encodes a single
primitive ”Cop” and its arguments (”idm”: for the module identifier and ”dir”:
for the actuator)

The set of terminal symbols T and the set of function symbols F are
respectively represented as follow:

T = {t1, t2, c}

• The first terminal symbol t1 ∈ {0, 1, ..., n− 1} is used to identify
the module Mt1 that will perform a given action fi ∈ F .

• The second terminal symbol t2 takes value in {0, 1, 2, 3}. It is used
to specify which one of the module’s actuators (east, north, west,
south) will be used to perform the given action.

• The third terminal symbol c ∈ C represents the configuration
on which the selected action fi will be applied using arguments
(t1, t2).

F = {f0, f1, f2, f3}

f0(t1, t2, c) = attach(t1, t2, c)
f1(t1, t2, c) = detach(t1, t2, c)
f2(t1, t2, c) = expand(t1, t2, c)
f3(t1, t2, c) = contract(t1, t2, c)

132 7. G-Programming-based Self-Reconfiguration Planning

7.3.3 Fitness Evaluation

Fitness is the driving force of natural selection in both conventional
genetic algorithms and genetic programming. It represents the degree
to which a given individual solves the problem of interest. This measure
is used to control the genetic operations (selection, crossover, mutation)
in the artificial population and to determine the probability that the
individual survives up to the next generation.

Since the fitness function has a great impact in guiding GP to obtain
the best solutions within a very large search space, it is important to
give it the best design as possible in order to help the GP to explore the
search space more effectively and efficiently. Our experience applying GP
to solve the reconfiguration problem suggests that the fitness function
should take into account the following three metrics:

• The sum of all distances between the location of the units and the
target locations where these units are supposed to be. However,
instead of direct measuring these distances, we use the concept
of positional information which is most commonly thought to be
implemented by morphogen gradients. In general terms, assuming
that the production of morphogens at each of the target locations,
the perceived morphogen δM will increase as the modular robot
gets closer to the target configuration. In contrast, responding
in a concentration-dependent manner might result in driving the
reconfiguration process to output an improperly shaped robot
that does not match the desired configuration. This situation is
occurred when the most concentrated grids do not bound the target
configuration space. It is thus useful to consider other metrics
such as the bounding volumes.

• Another such metric is the overlap metric δV which gives the
volume remaining outside the target configuration δ1

V = V − VT .
Where V is the space occupied by the achieved configuration, and
VT is the space occupied by the target configuration. In turn, this
metric is expressed in term of the perceived negative morphogens
which are equally spread outside the target configuration.

7.3. GP-Based Reconfiguration Planning 133

• The third metric δ2
V is the difference between the bounding boxes

of both the achieved configuration and the desired configuration.
δ2
V = VT − V

Let x = δM and y = δ1
V + δ2

V = V +VT −2(V ∩VT). The fitness function
f(x, y) we proposed is calculated by means of δM , δ1

V and δ2
V . It takes x

and y as arguments and returns the degree to which the modular robot
matches the desired shape.

(∂f
∂x

> 0) ∧ (∂f
∂y

< 0) (7.4)

In general, we assume the fitness of an individual increases with the per-
ceived morphogens (∂f∂x > 0), decreases with both the volume remained
outside the target configuration and the difference between the bound-
ing boxes of both the final configuration and the desired configuration
(∂f∂y < 0).

f(x, y) = 1
2y (1 + x

x+ 1) (7.5)

Fitness = 1
2(δ1

V +δ2
V) (1 + δM

δM + 1) (7.6)

There are many possible functions satisfying the conditions given in
equation 7.4. The fitness function that we designed is shown in equations
7.5 and 7.6. This function increases with the value of x and quickly loses
value as y gets bigger (placing modules in a proper location is more
important than getting closer to the target configuration), furthermore
this function is injective and the gradient 5f has always a non-zero
value (5f(x, y) 6= (0, 0) ∀(x, y) ∈ R2), which significantly helps the
evolutionary algorithm to explore the research space without being stuck
in critical points.

The use of arbitrary-length representations in genetic programming often
presents the bloat challenge to the search process. This challenge is

134 7. G-Programming-based Self-Reconfiguration Planning

occurred due to uncontrolled and unbounded code growth without a
corresponding improvement in fitness. Bloat slows the evolutionary
search process and significantly consumes memory. The fitness function
expressed in equation 7.5, allows individuals to constantly grow during
the evolution. Hence the search process has the potential to become
inefficient due to the evaluation of big programs that usually suffer from
the proliferation of introns (parts of the program that do not contribute
to the problem resolution). To overcome this problem, one simple
solution consists of punishing individuals in some way for being large.
However, reducing constantly the size of the individuals carries the risk
that the number of possible nodes in a tree of maximum depth could
not be enough to represent a solution for the given problem. Instead,
a Gaussian-weighted penalty is given to the fitness for controlling the
influence of the individual’s size on its performance to solve the problem
at hand. Whatever an improvement of the fitness is occurred or not
(equation 7.8), the weighted sum expressed in equation 7.7 receives more
or less influence for the individual size.

We used the fitness function expressed in equation 7.7 to avoid setting
hard limits on program sizes. The z argument represents the individ-
ual size in term of the sum of all nodes (the number of the encoded
primitives).

ft(x, y, z) = 1
2y (1 + x

x+ 1)− (1− δt
δ0

)
√
z (7.7)

δt = 1
σ
√

2π
e
−t2
2σ2 , t =

{
t/2 if(∆ft 6= 0)
t+ 1 if(∆ft = 0)

(7.8)

∆ft = ft(x, y, z)− ft−1(x, y, z) (7.9)

As the fitness function increases (meaning that the current population
evolves), the parameter t decreases by half and it keeps decreasing by
a factor of 1

2s in every time step s while ∆ft 6= 0. At this stage, it is
useful to lower the penalty for individuals to grow in order to allow
them to get more nodes (genetic material) while there is a corresponding

7.3. GP-Based Reconfiguration Planning 135

In-Place Tunneling

Initial Shape

X

XX

X X

XX

X

X

X

X

X

X

X

X X

X

X

X

X

X

X X

X

X

X

Desired Shape Achieved Shape

Out-of-Place Tunneling

Initial Shape Desired Shape Achieved Shape

Sliding

Initial Shape Desired Shape Achieved Shape Initial Shape Desired Shape Achieved Shape

Internal Move

Initial Shape

Ring Shaping

Desired Shape Achieved Shape

a b

dc

e

Figure 7.5: The five different reconfigurations considered for testing the
planner. In-Place-Tunneling reconfiguration is constrained by obstacles "X
symbol"

improvement in their fitness. The properties of this specification can be
formulated as follows:

lim
s→∞

δt = δ0 ⇒ lim
s→∞

ft(x, y, z) = 1
2y (1 + x

x+ 1) (7.10)

The evolution should benefit from the creation of new genetic material,
that should give the necessary amount of diversity for GP to evolve
individuals.

In contrast, when ∆ft = 0 (no evolution is occurred in the considered
population) the parameter t increases and keeps increasing in every time
step s while ∆ft = 0. After awhile (δt ' 0), we believe that the evolution
stagnates thus it is useful to start optimizing the population (individuals
that have less size replace those having the same performance for solving
the problem at hand). This specification can be formulated as follows:

lim
s→∞

δt = 0⇒ lim
s→∞

ft(x, y, z) = 1
2y (1 + x

x+ 1)−
√
z. (7.11)

At this stage, individuals that exceed a certain threshold ”Thr” in size
are allowed to loos some genetic materials in the hope of reducing the
amount of physical memory usage as well as the processing time required
to run and evaluate each individual.

136 7. G-Programming-based Self-Reconfiguration Planning

7.4 Experimental results

In our experiments, we used the standard GP mutation and recombina-
tion operators for trees. The mutation operator replaces a subtree with
a randomly created subtree and the crossover operator swap subtrees
rooted at two randomly chosen crossover points to generate two new
offspring trees. The execution parameters for the GP are shown in table
7.1. We used roulette-wheel selection to select individuals for performing
genetic operations. The population was initialized with random trees
(programs) with maximum tree depth of 6. A population size of 500
individuals is used to achieve the results depicted in Figure 7.6. The
simulator is synchronous, which means that each module performs its
action in turn. This assumption is unrealistic, we are trying to relax it
for future work.

Table 7.1: The set of all parameters used for the experiments
Parameters Values
Population size 500
Crossover rate 90%
Mutation rate 40%
Probability of mutating Cop 20%
Probability of removing the selected node 20%
Probability of swapping a selected subtree with new one 20%

During the evolution, each individual must be run separately to measure
how well it performs the task. The result of the composition of functions
which are encoded in a given individual is the achieved configuration
when the entire sequence of these functions is carried out on the initial
state of the system. The fitter individual is the program that transforms
the initial configuration into a configuration which corresponds most
closely to the goal.

We empirically tested the proposed method on five different reconfigu-
rations which are In-Place Tunneling, Out-of-Place Tunneling, Sliding,
Circle-Shaping and Internal-Move. The reconfigurations are depicted in

7.4. Experimental results 137

Figure 7.5. Some of them require multiple waves of actuation, others
require modules to perform corner turns or internal movements. The
results depicted in Figure 7.6 are based on 24 runs. They show the
progression over time of some system parameters while performing each
task. They also show how the fitness function forces the GP to select
genomes that best guide the modules to move toward positive morphogen
gradient and away from negative morphogens.

The first observation we can make about these results is the capac-
ity of the genetic programming to generate near-optimal sequences of
primitives for compressible based modular robots to perform self recon-
figuration. In 7.6.c, we notice that the initial solution is achieved in
generation 300 with a size of 604 total operations. This solution contains
a feasible sequence of functions that reshapes the modular robot into
the desired pattern. However, the encoded expression is complicated by
unnecessary duplication of functions "introns". For this reason, the GP
starts to recombine the genetic material of each individual in order to
pick-up the finest short-length expressions without what they loos their
performance to solve the desired reconfiguration. By only executing
effective sequences when testing the fitness function, evaluation can be
accelerated significantly. In Figure 7.6.c a near-optimal expression is
achieved in generation 1080 with a size of 15 total operations.

We noticed also that GP performs well for reconfigurations that require
moving modules toward target location which are aligned with the
direction of the move (Figure. 7.5.c). This kind of reconfiguration
may be achieved just by involving a limited number of modules which
execute some periodic sequences of actions. Here, it is important to
note that some modules (dangling modules) will not contribute to the
reconfiguration. In contrast, for reconfigurations that require orthogonal
turns (Figure 7.5.a and 7.5.b) or those that require maneuvering modules
on interior lines (7.5.d), the problem seems more complex to be solved
by GP. The reason for which it takes more generation before the first
feasible sequence is achieved. In these cases, the problem returns to
the physical complexity of turning corners under unit-compressible
actuation because the disconnections required to turn a corner (as well
as to maneuver modules on interior lines) need a minimum amount of
surrounding structure that must be present (some snapshots of interior

138 7. G-Programming-based Self-Reconfiguration Planning

In
te

ri
o

r
M

o
ve

(a)

0 1 500 3 000 4 500 6 000
0

250

500

750

1 000

0

2

4

7 000

4

2

Generations

z δv
1δv

2

S
lid

in
g

(c)

0 300 600 900
0

250

500

750

0

2

6

8

10

12

14

4

2

6

8

10

12

14

4

Initial Solution
with a size of
604 total operations

604

Code Evolution

Code Optimization

Generations

z δv
1δv

2

O
u

t-
o

f-
P

la
ce

 T
u

n
n

el
in

g

(e)

0 5 000 10 000
0

250

500

750

1 000

0

2

4

6

8

10

12

14

16

18

14 000

6

12

18

Generations

z δv
1δv

2

In
-P

la
ce

 T
u

n
n

el
in

g

(g)

0 4 000 8 000 12 000 16 000 20 000

250

500

750

1 000

2

4

6

8

10

12

14

16

00

4

8

12

16

Generations

z δv
1δv

2

(i)

6 0005 0004 0003 0002 0001 0000

250

500

750

1 000

0

200

300

400 400

0

300

200

100

Generations

δv
1δv

2z

C
ir

cl
e-

S
h

ap
in

g

(b)

Program Size z((

Unfilled volume δv
2((

Negative Morphogen δv
1((

Program Size z((

Unfilled volume δv
2((

Negative Morphogen δv
1((

Program Size z((

Unfilled volume δv
2((

Negative Morphogen δv
1((

Program Size z((

Unfilled volume δv
2((

Negative Morphogen δv
1((

Program Size z((

Unfilled volume δv
2((

Negative Morphogen δv
1((

Generations

0,00

0,25

0,50

0,75

1,00

14 00010 5007 0003 5000

F
itn

es
s

Average

Min

Max

Generations

F
itn

es
s

0,00

0,25

0,50

0,75

1,00

15 00012 0009 0006 0003 0000

Average

Min

Max

Generations

0,00

0,25

0,50

0,75

1,00

14 00010 5007 0003 5000

F
itn

es
s

Average

Min

Max

Generations

0,00

0,25

0,50

0,75

1,00

20 00012 0008 0004 0000 16 000

F
itn

es
s

Average

Min

Max

Generations

0

10

20

30

40

12 0009 0006 0003 0000 14 000

Average

Min

Max

10
E

35
 x

 F
itn

es
s

(d)

(f)

(h)

(j)

100

Figure 7.6: Left-Hand (a,c,e,g,i) the evolution over time of the size (z) of best
individuals. Right-Hand (b,d,f,h,j) the fitness function against generations

7.4. Experimental results 139

Interior Move Sliding

Out-of-Place Tunneling In-Place Tunneling

Circle-Shaping

0 3 000 6 000 9 000 12 000

5

10

15

20

26

14 500
0

100

200

300

400

500

0

Generations

δM
1 δv

1

Generations
0 4 000 8 000 12 000 16 000 20 000

0

2

4

6

0

8

16

24

32

40

δM
1 δv

1

Generations
0 3 500 7 000 10 500

0

2

4

6

0

8

16

24

32

40

14 000

δM
1 δv

1

0 3 000 6 000 9 000 12 000
0,0

1,0

2,0

3,0

4,0

5,0

5,8

0

10

20

30

38

15 000
Generations

δv
1

δM
1

0 3 500 10 500
0

2

4

6

7

0

2

4

6

8

7 000 14 000
Generations

δM
1 δv

1

δv
1Average of the negative morphogen

Average of the positive morphogen δM
1

δv
1Average of the negative morphogen

Average of the positive morphogen δM
1

δv
1Average of the negative morphogen

Average of the positive morphogen δM
1

δv
1Average of the negative morphogen

Average of the positive morphogen δM
1

δv
1Average of the negative morphogen

Average of the positive morphogen δM
1

Non-Injective Fitness Function

Injective Fitness Function

Injective Fitness Function

z = x - y2

xy

z (A)

z = arctg(x) -
2
y

x
y

z (B)

z = 1 +
1

2
y (

x
x+1

(

xy

z
(C)

(B)

(A)

(C)

Figure 7.7: The evolution of the perceived positive and negative morphogens
when using injective and non-injective fitness function

140 7. G-Programming-based Self-Reconfiguration Planning

Table 7.2: Summary of experimental results
Reconfigurations n(modules) F − Seq Opt− Seq Ratio(%)
Sliding 8 604 15 97.52 %
Tunneling(Out) 8 761 27 96.45 %
Tunneling(In) 8 995 30 96.98 %
Internal-move 10 803 17 97.88 %
Circle-Shaping 28 903 98 89.15 %

move reconfiguration are depicted in Figure 7.8).

Figure 7.7 shows how the different fitness function affect the optimal
process. When the fitness function that associates each genome to one
solution is not injective (function A in Figure 7.7), different genomes
can encode the same solution and the representation is said to be
degenerated. It’s not intrinsically too serious problem to get a slight
degeneracy. However, this phenomenon can sometimes badly affect the
search process, mostly because if several genomes can represent the same
phenotype. Which may make some kind of confusion in the search.

Table 7.2 shows the ratio between the average size of the first achieved
sequences "F -Seq" and the size of the near-optimal sequences "Opt-Seq"
for each reconfiguration. The optimized sequences have the capability
to solve the reconfiguration in reduced steps where each sequence is
executed primitive by primitive in a centralized fashion.

Although, it has been executed in a centralized fashion, the evolved
program could also be executed in a decentralized fashion as explained
in the following steps:

• Propagate the program to each unit in the system by message
passing algorithm.

• Each unit keeps both the code segments in which it is involved
and the corresponding predecessor for which it should wait before
starting the execution of the next primitive.

• The first unit is the unit which is involved in the first line of
the program. This unit starts the execution and propagates a
termination signal at the end of each single execution.

7.5. Conclusion 141

• As a unit receives a termination signal from the appropriate prede-
cessor, it starts the execution and propagate a termination signal
at the end of each single execution.

Here, the termination signal is used for synchronizing the execution
of primitives over multiple modules. It contains the module identifier
which has just finished executing the current sequential primitive. As a
unit receives this signal from a neighbor, it compares the signal identifier
with that of the module it is waiting for (the module which executes
the predecessor of its current primitive). If both identifiers are identical
the unit starts executing its current primitive, otherwise it sends the
received signal toward the neighboring units.

Initial Shape

Final Shape

(1) (2) (3) (4) (5)

(6) (7) (8)

Figure 7.8: Snapshots of Interior Move Reconfiguration

7.5 Conclusion

In this chapter, we have used genetic programming to solve the self-
reconfiguration problem for modular robots which are based on com-
pressible units. We see the self reconfiguration as a set of functions
recursively applied to a given configuration. These functions are designed
according to the mechanical actuators (motion primitives) of each unit
in the system.

142 7. G-Programming-based Self-Reconfiguration Planning

Here, genetic programming has been used as an automatic programming
tool to find a near-optimal sequence of module motion primitives that
transform the start configuration into the goal. Our approach does not
require any extra effort to breaking down the problem into subproblems
as it must be done when using dynamic programming method. In this
work, the evolution is divided into two phases. First, a population
of random programs is evolved toward better programs (sequence of
motion primitives that make the initial configuration more like that
target configuration). Once a feasible sequence is achieved, the next
phase of evolution will focus on minimizing the total number of primi-
tives performed over all units in the hope of reducing the total power
consumption.

We have tested this technique on both in-place and out-of-place recon-
figurations. As was noted in55 , in-place reconfigurations are harder to
be achieved than out-of-place reconfigurations. For the first one, the
modules tend to suffer from overcrowding due to the restricted available
space while for the second the modules are more free to actuate the
reconfiguration. The experimental results also show that the system
works well for generating primitive sequences for both Slide and Tunnel
reconfigurations, however, it does not converge very well for planning
reconfiguration that needs interior move of some modules.

For future work, we are continuing to write algorithms for automatically
identifying and encapsulating potentially useful subtrees that serve as
high-level primitives for different levels of granularity.

8
Conclusions and Future

Work
In this chapter we summarize our research and we outline the future
work

Contents
8.1 Summary . 144
8.2 Future Work . 145

8.2.1 Improvement on the proposed approaches 145
8.2.2 Evolving efficient Communication system for mod-

ular robots . 145

144 8. Conclusions and Future Work

8.1 Summary

Self-reconfiguring robots are able to adapt to the operating environment
and required functionality by changing their shape. They consist of a
set of identical robotic modules that can autonomously and dynamically
change their aggregate geometric structure to suit different locomotion,
manipulation, and sensing tasks. However, providing robots with self-
reconfiguration capabilities is a serious challenge, now being met through
new designs for reconfigurable systems and new ideas about algorithmic
planning and control that confer autonomous reconfigurability.

This thesis addressed some challenges related to the adaptation, self-
replication and self-formation problems of modular robotic systems.
These robotic systems will constitute long-lived distributed systems, all
the supporting hardware and software will have to be robust, long-lasting,
fault-tolerant, scalable, and self-healing. The hardware will have to rely
on simple and robust actuation. The units will have to be powered for
long periods of time. Adding and removing units into the system will
have to be incremental, in that, these changes should affect the overall
system only locally. When units break down, the system should be able
to repair itself without altering overall global functionality. The units
will have to be networked with a reliable communication infrastructure
and control will have to be highly parallel, scalable, and distributed.

To develop such systems, designers have to improve their under-
standing of the general properties that confer modular robots with
self-reconfiguration capabilities, as well as more generic (rather than
architecture-specific) solutions to control and planning. These issues
are being addressed by the research community, motivated by the ex-
citing vision of versatile robots achieving the same level of flexibility as
biological systems of cells.

8.2. Future Work 145

8.2 Future Work

As future work, the present thesis suggests various future research
directions related to the modular robotic systems, in this section we
outline some of these directions.

8.2.1 Improvement on the proposed approaches

• Extend the developed simulator to support more physical con-
straints for more realistic modular actuations.

• Adapt the developed framework to be run in parallel computing
devices (Clusters, GPU).

• Tackling the issue of code-bloat problem in genetic programming
for more efficient research.

• For the developed GP-Engine, it would be interesting to write
algorithms for automatically identifying and encapsulating poten-
tially useful subtrees that serve as high-level primitives for different
levels of granularity

8.2.2 Evolving efficient Communication system for modular robots

The broadcast communication is not allowed for modular robots since it
is very expensive in term of energy and messaging management. Thus,
it should be interesting to evolve an efficient communication system for
reducing the message passing traffic through the modules.

Bibliography
[1] Stoy Kasper. Using cellular automata and gradients to control self-

reconfiguration. Journal of Robotics and Autonomous Systems, 54:135–141,
2006.

[2] Fitch Robert, Zack Butler, and Daniela Rus. Reconfiguration planning among
obstacles for heterogeneous self-reconfiguring robots. Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 117–124,
2005.

[3] Mark Yim, Shen Wei-Min, Salemi Behnam, Rus Daniela, Moll Mark, Lipson
Hod, Klavins Eric, and Chirikjian Gregory. Modular self-reconfigurable robot
systems [grand challenges of robotics]. IEEE Robotics and Automation Magazine,
14(1):43–52, 2007.

[4] Toshio Fukuda and Seiya Nakagawa. Approach to the dynamically reconfig-
urable robotic system. Journal of Intelligent and Robotic Systems, 1(1):55–72,
1988.

[5] Daniela Rus, Zack Butler, Keith Kotay, and Marsette Vona. Self-reconfiguring
robots. Communications of the ACM, 45:39–45, 2002.

[6] Kotay Keith and Daniela Rus. Generic distributed assembly and repair algo-
rithms for self-reconfiguring robots. Proceeding of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 3:2362–2369, 2004.

[7] Yu Chih-Han, François-Xavier Willems, Donald Ingber, and Radhika Nagpal.
Self-organization of environmentally-adaptive shapes on a modular robot. Pro-
ceeding IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2353–2360, 2007.

[8] Paulina Varshavskaya. Distributed reinforcement learning for self-reconfiguring
modular robots. Ph.D. dissertation, Massachusetts Institute of Technology
(MIT), 2007.

[9] Karl Sims. Evolving virtual creatures. Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, ACM, pages 15–22, 1994.

[10] Karl Sims. Evolving 3d morphology and behavior by competition. Proceedings
of artificial life IV, pages 353–372, 1994.

[11] Berlanga Antonio, Pedro Isasi, Araceli Sanchis, and Jose M. Molina. Neural
networks robot controller trained with evolution strategies. Proceedings of the
IEEE Congress on Evolutionary Computation-CEC99, 1:413–419, 1999.

[12] Ijspeert Auke Jan. Central pattern generators for locomotion control in animals
and robots: A review. Neural Networks, 21:642–653, 2008.

148 Bibliography

[13] Wei-Min Shen Salemi, Behnam and Peter Will. Hormone-controlled metamor-
phic robots. In IEEE International Conference on Robotics and Automation
(ICRA), pages 4194–4199, 2001.

[14] Christensen David Johan, Ulrik Pagh Schultz, and Kasper Stoy. A dis-
tributed and morphology-independent strategy for adaptive locomotion in
self-reconfigurable modular robots. Journal of Robotics and Autonomous Sys-
tems, 61:1021–1035, 2013.

[15] Larkworthy Tom and Subramanian Ramamoorthy. An efficient algorithm for
self-reconfiguration planning in a modular robot. IEEE International Conference
in Robotics and Automation (ICRA), pages 5139–5146, 2010.

[16] Butler Zack, Satoshi Murata, and Daniela Rus. Distributed replication algo-
rithms for self-reconfiguring modular robots. Distributed Autonomous Robotic
Systems, Springer Japan, 5:37–48, 2002.

[17] Tarek Ababsa, NourEddine Djedi, Yves Duthen, and Sylvain Cussat Blanc.
Splittable metamorphic carrier robots. Artificial Life 14, MIT press, pages
801–808, 2014.

[18] Tarek Ababsa, NourEddine Djedi, and Yves Duthen. Genetic programming-
based self-reconfiguration planning for metamorphic robot. International Jour-
nal of Automation and Computing (IJAC), xx:xx–xx, 2016.

[19] Tarek Ababsa, NourEddine Djedi, Yves Duthen, and Sylvain Cussat Blanc.
Decentralized approach to evolve the structure of metamorphic robots. IEEE
Symposium on Artificial Life, pages 74–81, 2013.

[20] Yim Mark, Paul White, Michael Park, and Jimmy Sastra. Modular self-
reconfigurable robots. Encyclopedia of complexity and systems science, Springer
New York, pages 5618–5631, 2009.

[21] Rus Daniela and Vona Marsette. Self-reconfiguration planning with compressible
unit modules. Proceedings of the IEEE International Conference on Robotics
and Automation, 4:2513–2520, 1999.

[22] Keith Kotay, Daniela Rus, Marsette Vona, and Craig McGray. The self-
reconfiguring robotic molecule: Design and control algorithms. Proceedings of
the IEEE International Conference on Robotics and Automation, pages 424–431,
1998.

[23] Vassilvitskii Serguei, Jeremy Kubica, Eleanor Rieffel, John Suh, and Mark Yim.
On the general reconfiguration problem for expanding cube style modular robots.
Proceedings of IEEE International Conference on Robotics and Automation
(ICRA), 1:801–808, 2002.

[24] Mark Yim, David G. Duff, and Kimon D. Roufas. Polybot: a modular recon-
figurable robot. Proceedings of the IEEE International Conference on Robotics
and Automation, 1:514–520, 2000.

Bibliography 149

[25] Yim Mark, Kimon Roufas, David Duff, Ying Zhang, Craig Eldershaw, and Sam
Homans. Modular reconfigurable robots in space applications. Autonomous
Robots, 2:225–237, 2003.

[26] Li Yong, Houxiang Zhang, and Shengyong Chen. A four-legged robot based on
gz-i modules. Proceedings of the IEEE International Conference on Robotics
and Biomimetics, pages 921–926, 2009.

[27] Hossain S.G.M., Carl A. Nelson, and Prithviraj Dasgupta. Modred: A modular
self-reconfigurable robot for autonomous extra-terrestrial exploration and dis-
covery. International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, pages 747–754, 2011.

[28] Sproewitz Alexander, Aude Billard, Pierre Dillenbourg, and Auke Jan Ijspeert.
Roombots-mechanical design of self-reconfiguring modular robots for adaptive
furniture. Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 4259–4264, 2009.

[29] Akiya Kamimura, Yoshida Eiichi, Murata Satoshi, Kurokawa Haruhisa, Tomita
Kohji, and Shigeru Kokaji. A self-reconfigurable modular robot (mtran) —
hardware and motion planning software. Distributed Autonomous Robotic
Systems, Springer Japan, pages 17–26, 2002.

[30] Victor Zykov, Andrew Chan, and Hod Lipson. Molecubes: An open-source
modular robotics kit. Presented at the Proceeding of International Conference
of Intelligent Robots Systems, pages 3–6, 2007.

[31] Zykov Victor, Efstathios Mytilinaios, Mark Desnoyer, and Hod Lipson. Evolved
and designed self-reproducing modular robotics. IEEE Transactions on robotics,
2:308–319, 2007.

[32] Chiu Harris CH, Michael Rubenstein, and Wei-Min Shen. Multifunctional
superbot with rolling track configuration. IROS 2007 Workshop on Self-
Reconfigurable Robots and Systems and Applications, pages 50–53, 2007.

[33] Sahin Erol, Thomas H. Labella, Vito Trianni, J-L. Deneubourg, Philip Rasse,
Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Stefano Nolfi,
and Marco Dorigo. Swarm-bot: pattern formation in a swarm of self-assembling
mobile robots. Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, pages 145–150, 2002.

[34] Rubenstein Michael, Christian Ahler, and Radhika Nagpal. Kilobot: A low-
cost scalable robot system for collective behanviors. Proceedings of IEEE
International Conference on Robotics and Automation, pages 3293–3298, 2012.

[35] Kernbach Serge, Eugen Meister, Florian Schlachter, Kristof Jebens, Marc Szy-
manski, Jens Liedke, and Davide Laneri. Symbiotic robot organisms: Replicator
and symbrion projects. Proceedings of the 8th workshop on performance metrics
for intelligent systems, ACM, New York, pages 62–69, 2008.

150 Bibliography

[36] Romanishin John W., Kyle Gilpin, and Daniela Rus. M-blocks: Momentum-
driven, magnetic modular robots. Proceedings of International Conference on
Intelligent Robots and Systems, pages 4288–4295, 2013.

[37] Goldstein Seth Copen, Jason D. Campbell, and Todd C. Mowry. Programmable
matter. Computer, 38:99–101, 2005.

[38] Gilpin Kyle, Keith Kotay, Daniela Rus, and Iuliu Vasilescu. Miche: Modular
shape formation by self-disassembly. International Journal of Robotics Research,
27:345–372, 2008.

[39] Gilpin Kyle, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter
modules for programmable matter through self-disassembly. Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages
2485–2492, 2010.

[40] Neubert Jonas, Abraham P. Cantwell, Stephane Constantin, Michael Kalon-
tarov, David Erickson, and Hod Lipson. A robotic module for stochastic fluidic
assembly of 3d self- reconfiguring structures. Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2479–2484,
2010.

[41] Gregory Chirikjian and Amit Pamecha. Bounds for self-reconfiguration of
metamorphic robots. Proceedings of IEEE International Conference of Robotics
and Automation, 2:1452–1457, 1996.

[42] Stoy Kasper, David Brandt, David J. Christensen, and David Brandt. Self-
reconfigurable robots: An introduction. The MIT Press, 2010.

[43] Feili Hou and Wei-Min Shen. On the complexity of optimal reconfiguration
planning for modular reconfigurable robots. Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2791–2796,
2010.

[44] Yim Mark. Locomotion with a unit-modular reconfigurable robot. Ph.D. thesis,
Stanford University, 1994.

[45] Frank Harary and Ronald C. Read. The enumeration of tree-like polyhexes.
Proceedings of the Edinburgh Mathematical Society, 17:1–13, 1970.

[46] Hossein Ahmadzadeh and Ellips Masehian. Modular robotic systems: Methods
and algorithms for abstraction, planning, control, and synchronization. Artificial
Intelligence, 223:27–64, 2015.

[47] Judea Pearl. Heuristics: Intelligent search strategies for computer problem
solving. Addison-Wesley Longman Publishing Co., 1984.

[48] Arancha Casal and Mark H. Yim. Self-reconfiguration planning for a class of
modular robots. International Symposium on Intelligent Systems and Advanced
Manufacturing (SPIE), pages 246–257, 1999.

Bibliography 151

[49] Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for
heterogeneous self-reconfiguring robots. Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS), 3:2460–2467, 2003.

[50] Butler Zack, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic decentralized
control for a class of self-reconfigurable robots. Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 1:809–816,
2002.

[51] Mark Yim, Ying Zhang, John Lamping, and Eric Mao. Distributed control for
3d metamorphosis. Autonomous Robots, 10:41–56, 2001.

[52] Kotay Keith D. and Daniela L. Rus. Algorithms for self-reconfiguring molecule
motion planning. Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 3:2184–2193, 2000.

[53] Zhang Liang, Jie Zhao, and He Gao Cai. A substructure based motion planning
method for a modular self-reconfigurable robot. Proceedings of the IEEE
International Workshop on Robot Motion and Control (RoMoCo), pages 371–
376, 2004.

[54] Dewey Daniel J., Michael P. Ashley-Rollman, Michael De Rosa, Seth Copen
Goldstein, Todd C. Mowry, Siddhartha S. Srinivasa, Padmanabhan Pillai, and
Jason Campbell. Generalizing metamodules to simplify planning in modular
robotic systems. Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1338–1345, 2008.

[55] Greg Aloupis, Sebastien Collette, Mirela Damian, Erik D. Demaine, Robin
Flatland, Stefan Langerman, Joseph O’Rourke, Suneeta Ramaswami, Vera
Sacristan, and Stefanie Wuhrer. Linear reconfiguration of cube-style modular
robots. International Symposium on Algorithms and Computation (ISAAC),
Springer Berlin Heidelberg, pages 208–219, 2007.

[56] Liu JinGuo, YueChao Wang, Bin Li, ShuGen Ma, and DaLong Tan. Center-
configuration selection technique for the reconfigurable modular robot. Science
in China Series F: Information Sciences, 50:697–710, 2007.

[57] Wei HongXing, HaiYuan Li, JinDong Tan, and TianMiao Wang. Self-assembly
control and experiments in swarm modular robots. Science China Technological
Sciences, 55:1118–1131, 2012.

[58] Daniela Rus and Marsette Vona. Crystalline robots: self-reconfiguration with
compressible unit modules. Autonomous Robots, 10:107–124, 2001.

[59] Ghallab Malik, Dana Nau, and Paolo Traverso. Automated planning: Theory
and practice. Elsevier, 2004.

[60] Nau Dana S., Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock,
Dan Wu, and Fusun Yaman. Shop2: an htn planning system. Journal of
Artificial Intelligence Research (JAIR), 20:379–404, 2003.

152 Bibliography

[61] Bihlmaier Andreas, Lutz Winkler, and Heinz Worn. Automated planning as a
new approach for the self-reconfiguration of mobile modular robots. The 9th
Workshop on Robot Motion and Control (RoMoCo), pages 60–65, 2013.

[62] Unsal Cem, Han Kiliccote, and Pradeep K. Khosla. A modular self-
reconfigurable bipartite robotic system: implementation and motion planning.
Autonomous Robots, pages 23–40, 2001.

[63] Bhat Preethi, James Kuffner, Seth Goldstein, and Siddhartha Srinivasa. Hier-
archical motion planning for self-reconfigurable modular robots. Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 886–891, 2006.

[64] Greg Aloupis, Sebastien Collette, Erik D. Demaine, Stefan Langerman, Vera
Sacristan, and Stefanie Wuhrer. Reconfiguration of cube-style modular robots
using o(log n) parallel moves. International Symposium on Algorithms and
Computation (ISAAC), pages 342–353, 2008.

[65] Thomas H.. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. MIT Press, Cambridge., 6, 2001.

[66] Ali Nourollah and Mohammadreza Razzazi. Minimum cost open chain recon-
figuration. Discrete Applied Mathematics, 159:1418–1424, 2011.

[67] Robert Fitch and Zack Butler. Million module march: scalable locomotion
for large self-reconfiguring robots. International Journal of Robotics Research,
27:331–343, 2008.

[68] Amit Pamecha, Imme Ebert-Uphoff, and Gregory S. Chirikjian. Useful metrics
for modular robot motion planning. IEEE Transactions on Robotics and
Automation, 13:531–545, 1997.

[69] Chih-Jung Chiang and Gregory S. Chirikjian. Modular robot motion planning
using similarity metrics. Autonomous Robots, 10:91–106, 2001.

[70] Sunil Pranit Lal, Koji Yamada, and Satoshi Endo. Emergent motion char-
acteristics of a modular robot through genetic algorithm. Proceedings of thr
International Conference on Intelligent Computing, Springer Berlin Heidelberg,
5227:225–234, 2008.

[71] Christensen David Johan. Evolution of shape-changing and self-repairing control
for the atron self-reconfigurable robot. Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2539–2545, 2006.

[72] Akiya Kamimura, Haruhisa Kurokawa, Kohji Tomita E. Toshida, Satoshi
Murata, and Shigeru Kokaji. Automatic locomotion pattern generation for
modular robots. Proceedings of th IEEE International Conference on Robotics
and Automation (ICRA), 1:714–720, 2003.

[73] I.M. Chen. Theory and applications of modular reconfigurable robotic systems.
PhD thesis, California Institute of Technology, Pasadena, CA., 1994.

Bibliography 153

[74] Bo Dong and Yuanchun Li. Multi-objective-based configuration generation
and optimization for reconfigurable modular robot. Proceedings of the IEEE
International Conference on Information Science and Technology, ICIST., pages
1006–1010, 2011.

[75] Kasper Stoy. How to construct dense objects with self-recondfigurable robots.
European Robotics Symposium, Springer Berlin Heidelberg, pages 27–37, 2006.

[76] Gregory S. Chirikjian. Kinematics of a metamorphic robotic system. Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
pages 449–455, 1994.

[77] Kasper Stoy and Radhika Nagpal. Self-repair through scale independent self-
reconfiguration. Proceedings of International Conference on Intelligent Robots
and Systems (IROS), 2:2062–2067, 2004.

[78] Robert Fitch and Rowan McAllister. Hierarchical planning for self-reconfiguring
robots using module kinematics. Distributed Autonomous Robotic Systems,
Springer Berlin Heidelberg, pages 477–490, 2013.

[79] Satoshi Murata, Haruhisa Kurokawa, and Shigeru Kokaji. Self-assembling
machine. Proceeding of the IEEE International Conference on Robotics and
Automation (ICRA), pages 441–448, 1994.

[80] Heiko Hamann, Jurgen Stradner, Thomas Schmickl, and Karl Crailsheim.
Artificial hormone reaction networks: towards higher evolvability in evolutionary
multi-modular robotics. arXiv preprint arXiv, 2010.

[81] Soha Pouya, Jesse Van Den Kieboom, Alexander Sprowitz, and Auke Jan
Ijspeert. Automatic gait generation in modular robots: to oscillate or to rotate?
that is the question. Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 514–520, 2010.

[82] Kasper Stoy. Controlling self-reconfiguration using cellular automata and gradi-
ents. Proceedings the 8th International Conference on Intelligent Autonomous
Systems (IAS-8), pages 693–702, 2004.

[83] Kasper Stoy and Radhika Nagpal. Self-reconfiguration using directed growth.
Proceeding of the International Symposium on Distributed Autonomous Robotic
System, Springer, 6:3–12, 2007.

[84] Zack Butler and Daniela Rus. Distributed motion planning for 3d modular
robots with unit-compressible modules. Algorithmic Foundations of Robotics
V, Springer Berlin Heidelberg, pages 435–452, 2004.

[85] Zack Butler and Daniela Rus. Distributed planning and control for modular
robots with unit-compressible modules. International Journal of Robotics
Research, 22:699–715, 2003.

154 Bibliography

[86] Serge Kernbach, Eugen Meister, Florian Schlachter, Kristof Jebens, Marc
Szymanski, Jens Liedke, and Davide Laneri. Symbiotic robot organisms: Repli-
cator and symbrion projects. Proceedings of the 8th Workshop on Performance
Metrics for Intelligent Systems (PerMIS), ACM, pages 62–69, 2008.

[87] Hilary L. Ashe and James Briscoe. The interpretation of morphogen gradients.
Development 133, 3:385–394, 2006.

[88] Ronald Thenius, Markus Dauschan, Thomas Schmickl, and Karl Crailsheim.
Regenerative abilities in modular robots using virtual embryogenesis. Adaptive
and Intelligent Systems, Springer, Berlin Heidelberg, pages 227–237, 2011.

[89] Yaochu Jin and Yan Meng. Morphogenetic robotics: an emerging new field in
developmental robotics. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 41:145–160, 2011.

[90] Yan Meng and Yaochu Jin. Morphogenetic self-reconfiguration of modular
robots. Bio-Inspired Self-Organizing Robotic Systems, Springer, Berlin Heidel-
berg, pages 143–171, 2011.

[91] Yan Meng, Yuyang Zhang, and Yaochu Jin. Autonomous self-reconfiguration
of modular robots by evolving a hierarchical mechanochemical model. IEEE
Computational Intelligence Magazine, 6:43–54, 2011.

[92] Satoshi Murata and Haruhisa Kurokawa. Self-organization of biological systems.
Self-Organizing Robots, Springer, Tokyo, pages 19–35, 2012.

[93] Takuya Umedachi, Taichi Kitamura, Koichi Takeda, Toshiyuki Nakagaki, Ryo
Kobayashi, and Akio Ishiguro. A modular robot driven by protoplasmic stream-
ing. Distributed Autonomous Robotic Systems, Springer, Berlin Heidelberg,
8:193–202, 2009.

[94] Jeff Jones, Soichiro Tsuda, and Andrew Adamatzky. Towards physarum robots.
Bio-Inspired Self-Organizing Robotic Systems, Springer, Berlin Heidelberg, 8:215–
251, 2011.

[95] Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic decentralized
control for lattice-based self-reconfigurable robots. International Journal of
Robotics Research, pages 919–937, 2004.

[96] George M. Whitesides and Bartosz Grzybowski. Self-assembly at all scales.
Science, 5564:2418–2421, 2002.

[97] Qiu-xuan Wu, Ya hui Wang, Guang yi Cao, and Yan qiong Fei. Locomotion
control of distributed self-reconfigurable robot based on cellular automata.
Proceeding of the International Conference on Intelligent Computing (ICIC),
Berlin Heidelberg, 5564:179–188, 2005.

[98] Satoshi Murata and Haruhisa Kurokawa. Robotic metamorphosis. Self-
Organizing Robots, Springer, Tokyo, 5564:131–171, 2012.

Bibliography 155

[99] Eiichi Yoshida, Satoshi Matura, Akiya Kamimura, Kohji Tomita, Haruhisa
Kurokawa, and Shigeru Kokaji. A self-reconfigurable modular robot: reconfigu-
ration planning and experiments. International Journal of Robotics Research,
21:903–915, 2002.

[100] Paulina Varshavskaya, Leslie Pack Kaelbling, and Daniela Rus. Automated
design of adaptive controllers for modular robots using reinforcement learning.
International Journal of Robotics Research, 27:505–526, 2008.

[101] Paulina Varshavskaya. Distributed reinforcement learning for self-reconfiguring
modular robots. Ph.D. thesis, Massachusetts Institute of Technology, 2007.

[102] Lund Henrik Hautop, Rasmus Lock Larsen, and Esben Hallundbaek Ostergaard.
Distributed control in self-reconfigurable robots. Proceeding of the International
Conference on Evolvable Systems, Springer, Berlin Heidelberg, pages 296–307,
2003.

[103] Gregory S. Hornby and Jordan B. Pollack. Body-brain co-evolution using
l-systems as a generative encoding. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pages 868–875, 2001.

[104] Kimon Roufas Mark Yim, Sam Homans. Climbing with snake-like robots.
Workshop on Mobile Robot Technology (IFAC), pages 21–22, 2001.

[105] Mark Yim, Craig Eldershaw, Ying Zhang, and David Duff. Limbless conform-
ing gaits with modular robots. Experimental Robotics IX, Springer, Berlin
Heidelberg., pages 459–468, 2006.

[106] Kasper Stoy, Wei-Min Shen, and Peter Will. Global locomotion from local
interaction in self-reconfigurable robots. Proceedings of the 7th International
Conference on Intelligent Autonomous Systems (IAS-7), pages 309–316, 2002.

[107] Fred Delcomyn. Neural basis of rhythmic behavior in animals. Science, 4469:492–
498, 1980.

[108] Gonzalez Gomez, Houxiang Zhang Juan, Eduardo I. Boemo, and Jianwei Zhang.
Locomotion capabilities of a modular robot with eight pitch-yaw-connecting
modules. The 9th International Conference on Climbing and Walking Robots,
2006.

[109] Rodrigo Moreno and Jonatan Gomez. Central pattern generators and hormone
inspired messages: a hybrid control strategy to implement motor primitives on
chain type modular reconfigurable robots. Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 1014–1019, 2011.

[110] Satoshi Murata, Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Kohji
Tomita, and Shigeru Kokaji. Self-reconfigurable robots: platforms for emerging
functionality. Embodied Artificial Intelligence, Springer, Berlin Heidelberg,
pages 312–330, 2004.

156 Bibliography

[111] Haruhisa Kurokawa, Eiichi Yoshida, Kohji Tomita, Akiya Kamimura, Satoshi
Murata, and Shigeru Kokaji. Self-reconfigurable m-tran structures and walker
generation. Journal of Robotics and Autonomous Systems, pages 142–149, 2006.

[112] Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Kohji Tomita, Shigeru
Kokaji, and Satoshi Murata. Distributed adaptive locomotion by a modu-
lar robotic system, m-tran ii. Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 3:2370–2377, 2004.

[113] Rico Mockel, Cyril Jaquier, Kevin Drapel, Elmar Dittrich, Andres Upegui,
and A. Ijspeert. An autonomous modular robot with bluetooth interface for
exploring adaptive locomotion. Climbing and Walking Robots, Springer, Berlin
Heidelberg, pages 685–692, 2006.

[114] A. Sproewitz, R. Moeckel, J. Maye, M. Asadpour, and A. J. Ijspeert. Adaptive
locomotion control in modular robotics. Workshop on Self-Reconfigurable
Robots/Systems and Applications (IROS), pages 81–84, 2007.

[115] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evol. Comput., 10:99–127, 2002.

[116] Evert Haasdijk, Andrei A. Rusu, and A. E. Eiben. Hyperneat for locomotion
control in modular robots. International Conference on Evolvable Systems,
Springer, Berlin Heidelberg, pages 169–180, 2010.

[117] Olivier Chocron. Evolving modular robots for rough terrain exploration. Mobile
Robots: The Evolutionary Approach, Springer, Berlin Heidelberg, pages 23–46,
2007.

[118] Soha Pouya, Ebru Aydin, Rico Mockel, and Auke Jan Ijspeert. Locomotion gait
optimization for modular robots; coevolving morphology and control. Procedia
Computer Science, pages 320–322, 2011.

[119] Andres Faina, Francisco Bellas, Fernando Lopez-Pena, and Richard J. Duro.
Edhmor: evolutionary designer of heterogeneous modular robots. Engineering
Applications of Artificial Intelligence, 26, 2013.

[120] Thomas Schmickl, Heiko Hamann, and Karl Crailsheim. Modelling a hormone-
inspired controller for individual-and multi-modular robotic systems. Mathe-
matical and Computer Modeling of Dynamical Systems, 17:221–242, 2011.

[121] Wei-Min Shen, Yimin Lu, and Peter Will. Hormone-based control for self-
reconfigurable robots. Proceedings of the fourth international conference on
Autonomous agents, pages 1–8, 2000.

[122] Heiko Hamann, Jurgen Stradner, Thomas Schmickl, and Karl Crailsheim. A
hormone-based controller for evolutionary multi-modular robotics: from single
modules to gait learning. IEEE Congress on Evolutionary Computation (CEC),
pages 1–8, 2010.

Bibliography 157

[123] Wei-Min Shen, Behnam Salemi, and Peter Will. Hormone-inspired adaptive
communication and distributed control for conro self-reconfigurable robots.
IEEE transactions on Robotics and Automation, 18:700–712, 2002.

[124] Serge Kernbach, Benjamin Girault, and Olga Kernbach. On self-optimized
self-assembling of heterogeneous multi-robot organisms. Bio-Inspired Self-
Organizing Robotic Systems, Springer, Berlin Heidelberg, pages 123–141, 2011.

[125] J. Bishop, Samuel Burden, Eric Klavins, R. Kreisberg, W. Malone, Nils Napp,
and T. Nguyen. Programmable parts: a demonstration of the grammatical
approach to self-organization. Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3684–3691, 2005.

[126] Elio Tuci, Roderich Grob, Vito Trianni, Francesco Mondada, Michael Bonani,
and Marco Dorigo. Cooperation through self-assembly in multi-robot systems.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), pages 115–
150, 2006.

[127] Eric Klavins. Programmable self-assembly. IEEE Control systems Magazine,
pages 43–56, 2007.

[128] Kazuo Hosokawa, Isao Shimoyama, and Hirofumi Miura. Dynamics of self-
assembling systems: analogy with chemical kinetics. Artificial Life, pages
413–427, 1994.

[129] Shuhei Miyashita, Marco Kessler, and Max Lungarella. How morphology
affects self-assembly in a stochastic modular robot. Proceeding of the IEEE
International Conference on Robotics and Automation (ICRA), pages 3533–3538,
2008.

[130] Eric Klavins, Samuel Burden, and Nils Napp. Optimal rules for programmed
stochastic self-assembly. Robotics: Science and Systems II, pages 9–16, 2007.

[131] Tolley, Michael T., and Hod Lipson. Programmable 3d stochastic fluidic
assembly of cm-scale modules. Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4366–4371, 2011.

[132] Josh C. Bongard. Evolving modular genetic regulatory networks. Proceedings
of the 2002 Congress on Evolutionary Computation, pages 17–21, 2002.

[133] Christopher G. Langton. Artificial Life. MIT Press, 1989.

[134] Martin Gardner. Mathematical games: The fantastic combinations of john
conway’s new solitaire game “life”. Scientific American, 223:120–123, 1970.

[135] Marco Villani, Roberto Serra, P. Ingrami, and Stuart A. Kauffman. Coupled
random boolean network forming an artificial tissue. in: Cellular automata.
International Conference on Cellular Automata, Springer, Berlin Heidelberg,
4173:548–556, 2006.

158 Bibliography

[136] Edgar Knobloch, Michael Cross, and Henry Greenside. Pattern formation
and dynamics in non equilibrium systems. Cambridge University Press, pages
567–572, 2010.

[137] Karel Culik and Aristid Lindenmayer. Parallel graph generating and graph
recurrence for multi-cellular development. International Journal of General
Systems, 3:53–66, 1976.

[138] David E. Golberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
1989.

[139] John H. Holland. Adaptation in natural and artificial systems: an introduc-
tory analysis with applications to biology, control, and artificial intelligence.
University of Michigan Press, 1975.

[140] Thomas Back. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university
press, 1996.

[141] John R. Koza. Genetic programming: on the programming of computers by
means of natural selection. MIT press, Cambridge, Massachusetts, 1992.

[142] King-Sun Fu. Learning control systems—review and outlook. IEEE transactions
on pattern analysis and machine intelligence, 8:327–342, 1986.

[143] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduc-
tion. Cambridge: MIT press, 1998.

[144] Alex B Novikoff. The concept of integrative levels and biology. American
Association for the Advancement of Science, 101:209–215, 1945.

[145] Taras Kowaliw and Wolfgang Banzhaf. Mechanisms for complex systems engi-
neering through artificial development. Morphogenetic Engineering, Springer,
Berlin Heidelberg, pages 331–351, 2012.

[146] Hubert Anton Moser. Systems Engineering, Systems Thinking, and Learning:
A Case Study in Space Industry. Springer, 2013.

[147] Kim A. Kastens and Cathryn A. Manduca. How geo-scientists think and learn.
EOS, Transactions, American Geophysical Union, pages 265–266, 2009.

[148] James B Grimbleby. Automatic analogue network synthesis using genetic
algorithms. IEEE Proceedings-Circuits, Devices and Systems, 3:319–323, 2000.

[149] D. Steinberg, N. Monmarche, M. Slimane, and G. Venturini. Discovery of
cluster in numeric data by an hybridization of an ant colony with the kmeans
algorithm. International Journal of Automation, 3:182–2015, 1999.

Bibliography 159

[150] Clare Bates Congdon. A comparison of genetic algorithm and other machine
learning systems on a complex classification task from common disease research.
Ph.D. thesis, University of Michigan, 1995.

[151] F. Della Croce, G. Menga, R. Tadei, M. Cavalotto, and L. Petri. Cellular
control of manufacturing systems. European Journal of Operations Research,
69:498–509, 1993.

[152] Mikhail Prokopenko. Advances in applied self-organizing systems. Springer-
Verlag London Limited, 2008.

[153] Soichiro Fujiki, Shinya Aoi, Takehisa Kohda, Kei Senda, and Kazuo Tsuchiya.
Emergence of hysteresis in gait transition of a hexapod robot driven by nonlinear
oscillators with phase resetting. Proceedings of the IEEE International Con-
ference on Biomedical Robotics and Biomechatronics (BioRob), 13:1638–1643,
2012.

[154] Yukie Nagai, Yuji Kawai, and Minoru Asada. Emergence of mirror neuron
system: Immature vision leads to self-other correspondence. Proceedings of the
IEEE International Conference on Development and Learning (ICDL), 2:1–6,
2011.

[155] Georg Martius, Katja Fiedler, and J. Michael Herrmann. Structure from
behavior in autonomous agents. Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 858–862, 2008.

[156] Arnaud Revel and Pierre Andry. Emergence of structured interactions: From a
theoretical model to pragmatic robotics. Neural networks, 2:116–125, 2009.

[157] Christian Scheier Rolf Pfeifer. Understanding intelligence. MIT press, 2001.

[158] Michail Maniadakis, Marc Wittmann, and Panos E. Trahanias. Time experienc-
ing by robotic agents. 11th European Symposium on Artificial Neural Networks,
2:429–434, 2011.

[159] Francisco Bellas, Richard J. Duro, Andres Faina, and Daniel Souto. Multilevel
darwinist brain (mdb): Artificial evolution in a cognitive architecture for real
robots. IEEE Transaction on Autonomous Mental Development, pages 340–354,
2010.

[160] Owen Holland and Chris Melhuish. Stigmergy, self-organization, and sorting in
collective robotics. Artificial Life, pages 173–202, 1999.

[161] Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems. Pro-
ceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems, 40:293–304, 2006.

[162] Fumio Hara and eds Rolf Pfeifer. Morpho-functional machines: The new species:
Designing embodied intelligence. Springer Science and Business Media, 2003.

160 Bibliography

[163] Hod Lipson and Jordan B. Pollack. Automatic design and manufacture of
artificial lifeforms. Nature, 406:974–978, 2000.

[164] Scott F. Gilbert. The morphogenesis of evolutionary developmental biology.
International Journal of Developmental Biology, 47:467–477, 2003.

[165] Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini. Developmental
robotics: A survey. Connection Sciences, 15:151–190, 2003.

[166] Yan Meng, Yuyang Zhang, and Yaochu Jin. Autonomous self-reconfiguration
of modular robots by evolving a hierarchical mechanochemical model. IEEE
Computational Intelligence Magazine, 6:43–54, 2011.

[167] Tsai, Tony Yu-Chen, Yoon Sup Choi, Wenzhe Ma, Joseph R. Pomerening,
Chao Tang, and James E. Ferrell. Robust tunable biological oscillations from
interlinked positive and negative feedback loops. Science, 321:126–129, 2008.

[168] Oros, Nicolas, Volker Steuber, Neil Davey, Lola Cañamero, and Rod Adams.
Evolution of bilateral symmetry in agents controlled by spiking neural networks.
IEEE Symposium on Artificial Life, 321:116–123, 2009.

[169] Max Lungarella and Giogio Metta. Beyond gazing, pointing, and reaching: A
survey of developmental robotics. Third International Workshop on Epigenetic
Robotics, pages 81–89, 2003.

[170] Rene Doursat, Hiroki Sayama, and eds Olivier Michel. Morphogenetic engineer-
ing: toward programmable complex systems. Springer, 2012.

[171] Guo, Hongliang, Yan Meng, and Yaochu Jin. A cellular mechanism for multi-
robot construction via evolutionary multi-objective optimization of a gene
regulatory network. BioSystems, 98:193–203, 2009.

[172] Yaochu Jin, Hongliang Guo, and Yan Meng. Robustness analysis and failure
recovery of a bio-inspired self-organizing multi-robot system. Proceedings of the
IEEE International Conference on Self-Adaptive and Self-organizing Systems,
IEEE Press, 98:154–164, 2009.

[173] Yan Meng, Hongliang Guo, and Yaochu Jin. A morphogenetic approach to
flexible and robust shape formation for swarm robotic systems. Journal of
Robotics and Autonomous Systems, 61:25–38, 2013.

[174] Rehan O’Grady, Anders Lyhne Christensen, and Marco Dorigo. Swar-
morph: Morphogenesis with self-assembling robots. Morphogenetic Engineering,
Springer Berlin Heidelberg, pages 27–60, 2012.

[175] Chih-Han Yu, Kristina Haller, Donald Ingber, and Radhika Nagpal. A self-
deformable modular robot inspired by cellular structure. Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Aca-
demic Press, IEEE Press, 98:3571–3578, 2008.

Bibliography 161

[176] Yan Meng, Y. Zheng, and Yaochu Jin. A morphogenetic approach to self-
reconfigurable modular robots using a hybrid hierarchical gene regulatory
network. International Conference on the Synthesis and Simulation of Living
Systems (ALIFE XII), pages 765–772, 2010.

[177] Pauline C. Haddow and Johan Hoye. Achieving a simple developmental model
for 3d shapes: Are chemicals necessary? Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation GECCO’07, pages 1013–
1020, 2007.

[178] Douglas H. Erwin and Eric H. Davidson. The evolution of hierarchical gene
regulatory networks. Nature Reviews Genetics, 10:141–148, 2009.

[179] Yaochu Jin, Lisa Schramm, and Bernhard Sendhoff. A gene regulatory model for
the development of primitive nervous systems. Processing of the International
Conference on Neural Information, Springer, Berlin Heidelberg, 10:48–55, 2008.

[180] Jordan Pollack, Hod Lipson, Pablo Funes, Sevan Ficici, and Gregory Hornby.
Coevolutionary robotics. Proceedings of the IEEE First NASA/DoD Workshop
on Evolvable Hardware, 10:208–216, 1999.

[181] Tim Taylor and Colm Massey. Recent developments in the evolution of mor-
phologies and controllers for physically simulated creatures. Artificial Life,
7:77–87, 2001.

[182] Rolf Pfeifer and Alois Knoll. Intelligent and cognitive systems. ERCIM News,
64, 2006.

[183] Lisa Schramm, Yaochu Jin, and Bernhard Sendhoff. Emerged coupling of
motor control and morphological development in evolution of multi-cellular
animates. European Conference on Artificial Life, Springer, Berlin Heidelberg,
pages 27–34, 2009.

[184] Frank Sengpiel and Peter C. Kind. The role of activity in development of the
visual system. Current Biology, 12:818–826, 2002.

[185] Nicholas C. Spitzer. Electrical activity in early neuronal development. Nature,
444:707–712, 2006.

[186] Jean-Philippe Thivierge. How does non-random spontaneous activity contribute
to brain development? Neural Networks, 22:901–912, 2009.

[187] S.N. Sivanandam and S.N. Deepa. Introduction to genetic algorithms. Springer
Science and Business Media, 2007.

[188] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering: a
review. ACM computing surveys (CSUR), 31:264–323, 1999.

[189] Jeremy Kubica, Arancha Casal, and Tad Hogg. Complex behaviors from local
rules in modular self-reconfigurable robots. IEEE International Conference on
Robotics and Automation (ICRA), pages 360–367, 2001.

162 Bibliography

[190] Behnam Salemi, Mark Moll, and Wei-Min Shen. Superbot: A deployable,
multi-functional, and modular self-reconfigurable robotic system. Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3636–3641, 2006.

[191] Gregory Chirikjian, Amit Pamecha, and Imme Ebert-Uphoff. Evaluating
efficiency of self reconfiguration in a class of modular robots. journal of Robotic
Systems, 13:317–338, 1996.

[192] Amit Pamecha and Gregory Chirikjian. A useful metric for modular robot
motion planning. Proceedings of the IEEE International Conference on Robotics
and Automation, pages 442–447, 1996.

[193] Marsette Vona Daniela Rus. A physical implementation of the self-reconfiguring
crystalline robot. Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1726–1733, 2000.

[194] Topon Kumar Paul and Hitoshi Iba. Genetic programming for classifying
cancer data and controlling humanoid robots. Genetic Programming Theory
and Practice IV, Springer US, pages 41–59, 2007.

[195] Till Steiner, Jens Trommler, Martin Brenn, Yaochu Jin, and Bernhard Sendhoff.
Global shape with morphogen gradients and motile polarized cells. IEEE
Congress on Evolutionary Computation (CEC), pages 2225–2232, 2009.

	List of Figures
	List of Tables
	Introduction and Motivation
	Introduction
	Motivation of the thesis
	Problem Statement
	Contributions
	Thesis outline

	I State of the Art
	Self-Reconfigurable Modular Robots
	Introduction
	Lattice Modular Robots
	Crystalline Robots
	Molecule Robots
	TeleCube

	Chain Modular Robots
	PolyBot
	GZ-I
	ModRED

	Hybrid
	M-TRAN
	Molecube
	Roombots
	SuperBot

	Mobile
	S-Bots
	KiloBots
	Symbiotic robot

	Stochastic
	M-Block
	Programmable Matter

	Deterministic
	Summary

	Self-Reconfiguration Algorithms
	Self Reconfiguration Problem
	Search-based approach
	Control-based approach
	Bio-inspired approaches

	Flow methods
	Gait Methods
	Control methods

	Self-assembly methods
	Control methods

	Summary

	Artificial Life and Morphogenetic Engineering
	Introduction
	Artificial Life Techniques
	Reproductive Systems
	Evolutionary Computation Systems
	Learning Systems

	Emergent Properties in Modular Robotic Systems
	Complex Systems Engineering
	The importance of being emergent
	Emergent Behaviours

	Artificial Evolution and Artificial Ontogeny
	Morphogenetic Robotics
	Morphogenetic Swarm Robotic Systems
	Morphogenetic Self Reconfiguration
	Morphogenetic Brain-Body Design

	Conclusion

	II Contributions
	Decentralized Approach to Evolve the Structure of Metamorphic Robots
	Overview
	Discovering the Topology of the Robot
	Evolving The Structure of the Robot
	Evolving modules configuration using GA
	The domination of new structural information
	Reconfiguration to the target pattern

	Experimental Results
	Conclusion

	Splittable Metamorphic Carrier Robots
	Overview
	The Modular Robot and its Environment
	Generate Cyclic Locomotions
	Encapsulation into the modules
	Clustering The Modules
	Experimental Results
	Conclusion

	G-Programming-based Self-Reconfiguration Planning
	Overview
	Overview of the Simulator
	Unit-Compressible Motion
	Vocabulary of Module Actions
	Compressible Units Simulator

	GP-Based Reconfiguration Planning
	Target Shape Description
	Representation of GP Individuals
	Fitness Evaluation

	Experimental results
	Conclusion

	Conclusions and Future Work
	Summary
	Future Work
	Improvement on the proposed approaches
	Evolving efficient Communication system for modular robots

	Bibliography

