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Abstract

The main three axes that determine the performance of WSN MAC protocols are energy

consumption, throughput, and latency, while the major challenge that face WSN is the

drain of energy.

Studies prove that energy drain is reduced by increasing the period of sleeping, and that

throughput and latency are mainly affected by collisions, in addition to sleep delay. In our

contribution, we tried to combine TDMA with FDMA to decrease energy consumption

by increasing the sleep periods, and reduce interference by the use of the multi-channel.

Our solution is based on the concept of Block Design. We combine the two types of

Block Design: Latin Square/Rectangle and BIBD to develop a distributed and dynamic

allocation of slots and channels. In order to get a dynamic allocation, we split the Latin

Square into Latin Rectangles, where the Latin Square refers to a super-frame and every

Latin Rectangle refers to a frame, and a frame is a set of slots. In our receiver-based

method, every node generates the Latin Square following a unified formula and runs

an Algorithm to determine the number of frames per super-frame, the number of slots

per frame, its own slot-channel reservation and that of every neighbor so that we get a

distributed allocation of slots and channels.

We used NS-3 simulator to validate the major performance aspects of our method: packet

delivery ratio, end-to-end delay, and power consumption.

Keywords: WSN, Multi-channel, Energy consumption, Distributed MAC protocols, Dy-

namic channel allocation, Block Design.
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Abstract in Frensh

Les trois principaux axes qui déterminent la performance des protocoles de la couche

MAC dans les réseaux de capteurs sans fils sont: la consommation d’énergie, le débit et

la latence, quoique l’inconvénient majeur qui entrave le WSN est la perte (épuisement)

d’énergie.

Des études ont prouvé que la perte d’énergie est réduite en augmentant la période de

sommeil, et que le débit et la latence sont principalement affectée par les collisions. Dans

notre contribution, nous avons essayé de combiner TDMA avec FDMA pour diminuer

la consommation d’énergie en augmentant les périodes de sommeil et en réduisant les

collisions par l’utilisation du multi-canal. Notre solution est basée sur le concept de

Block Design. Nous combinons les deux types de bloc Design: Latin Square/Rectan-

gle et BIBD pour développer une allocation distribuée et dynamique des slots et des

canaux. Afin d’obtenir une allocation dynamique, nous avons divisé le Latin Square à

Latin Rectangles, où le Latin Square fait référence à une super-trame et chaque Latin

Rectangle se réfère à une trame, tandis que une trame est un ensemble de slots. Dans

notre base-récepteur méthode, chaque nœud génère le Latin Square suivant une formule

unifiée et exécute un algorithme pour déterminer le nombre de slots par trame, le nombre

de trame par super-trame, et la réservation de canal et de slot de lui-même et celle de

tous ces voisins, afin que nous ayons une allocation distribuée de slots et des canaux.

Nous avons utilisé le simulateur NS-3 pour valider les principaux aspects de la perfor-

mance de notre méthode qui sont: la consommation d’énergie, le débit et la latence.

Mots-clés: RCSF, multi-canal, la consommation d’énergie, les protocoles distribués de la

couche MAC, allocation dynamique des canaux, Block Design.
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General Introduction

Wireless sensor networks (referred to as WSNs)are a specific category of wireless ad hoc

networks. A WSN is composed of small sensors (nodes) deployed to monitor physical

or environmental conditions such as temperature, sound, pressure, etc. It is used in a

large number of applications, among which monitoring of a particular area, health care,

air pollution and water quality, environmental and earth sensing, detection of forest

fire, detection of landslides, etc. The structure of a sensor node varies according to the

phenomena that it monitors, but the main components are: power unit, processing unit,

and sensing unit.

Furthermore, every one of those applications has a protocol that is adapted with the

problem dealt with. For example in the military application of intrusion detection, the

installed protocol has to give a low delay so that the concerned service would react in

real time. A MAC protocol such as Q-MAC is well suited under such conditions. In

other applications such as the monitoring of air pollution and water quality, latency is

not a critical constraint, the main problem in this case is energy consumption.

Therefore, the development of a WSN MAC protocol is strongly related to the problem

dealt with, and the developer of a MAC protocol should focus on those factors that affect

the concerned problem. Besides the energy drained in transmission and reception, the

node consumes an important energy in listening to the channel (node is in busy state

listening to an idle channel). In addition, radio interference and problems of hidden and

exposed nodes cause the loss of a considerable number of packets.

In the context of wireless communication, the use of multi-channel (FDMA:Frequency

Division Multiple Access) has a better performance in terms of reducing the interference

(collisions), although it consumes more energy. The introduction of sleep mode saves

energy, however, the alternation between sleep and awake states of the nodes has to be

known by its neighbors, so that communication can be coherent and the deafness problem

will be avoided. There are two approaches to make each node know the alternation

(schedule) of their neighbors. The first, makes the node broadcast the schedule of its

awake states timing, it causes a large overhead and consumes more energy. The second

one, makes each node determine the awake timing of its neighbors by itself and thus

consumes less energy.

TDMA(Time Division Multiple Access) ensures fairness among nodes by dividing time

into frames each of which is divided into slots, where every node allocates one slot per
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frame. The most important advantages of TDMA are the avoidance of collisions and the

decreasing of overhearing.

Large number of WSN MAC protocols combine TDMA with FDMA to take advan-

tage of the benefits of each one, such as Y-MAC(2008) [8], MuChMac(2010), and MC-

LMAC(2011) [11]. In these protocols, the nodes switch the channels according to the

slot, to increase the use of channel, and to improve the throughput.

The problem we provide refers to the portion of energy that will be saved by combin-

ing TDMA and FDMA concepts, considering the factors of performance: latency and

throughput. Thus, we will not get a very high portion of saved energy, with a very low

throughput.

Our objective is to propose a distributed hybrid method at MAC layer to save energy

by the use of sleep mode, and to increase throughput by using the multi-channel.

In order to achieve our purpose, we have recourse to Combinatorial Design theory, partic-

ularly Block Design; that is an area of mathematics. Block Design is a system of subsets

of a finite set which satisfies certain conditions related to the frequency of appearance of

pairs of elements of the set in the subsets of the system. Block Design has several types,

but among them we were interested in Latin Square/Rectangle, and BIBD.

According to our solution, node exchanges neighbors’ lists with its neighbors. After that,

node reserves slots and channels to itself, and determines the reserved slots and channels

by every neighbor following the same Latin Square, which makes our solution lightweight

in terms of message exchange and distributed.

Our proposed solution saves energy, increases the throughput, and completely avoids the

deafness problem without a large overhead or overhearing.

To validate those performances, we used NS-3 simulator which has a large community

base, and extensively used by the WSN community.

We have organized the structure of the thesis in 4 chapters:

The first chapter presents generalities about WSN, definitions, sensor node components,

and performance criterion. In the second chapter we mention some challenges that face

the performance of MAC protocols, after that we classify WSN MAC protocols according

to time organization. Moreover, the third chapter, we include the development of our

method in full details: definitions of Block Design, mapping Block Design to slot-channel

distribution, and the presentation of our proposal. In the last chapter, we evaluate by

simulation the performance of our method in terms of three factors: packet delivery ratio,

end-to-end delay and energy consumption. Finally, we conclude our work by a general

conclusion.
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1.1 Introduction

Wireless sensor networks have a wide range of potential applications to industry, science,

transportation, civil infrastructure, and security. They allow the observation of different

phenomena with high accuracy in the environment where they are embedded. Nodes in

3
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WSNs process the captured data and communicate it using radio signals.

In this chapter, we care for proffer generalities about wireless sensor networks, starting

by definitions, after that we present node components, and conclude by providing the

performance criteria of WSN.

1.2 Definitions

Definition 1.1 (Wireless Sensor Networks). [1] A sensor network is an infrastructure

comprised of sensing (measuring), computing, and communication elements that gives

an administrator the ability to instrument, observe, and react to events and phenomena

in a specified environment.

Definition 1.2 (Sensor Node). [12] A sensor node is the basic component of WSN; it

is the coalescence of node to one or several sensors. Sensors design is highly dependent

on the monitored event. Many different types of sensors such as seismic, low sampling

rate magnetic, thermal, visual, infrared, acoustic and radar are able to keep track of

the targeted condition such as temperature, humidity, vehicular movement, lightning

condition, pressure, soil makeup, noise levels, the presence or absence of certain kinds

of objects, mechanical stress levels on attached objects, and the current characteristics

such as speed, direction, and size of an object.

Nodes that are in the range of each others are named neighbors (first hop neighbors),

while neighbors of a neighbor node are named second hop neighbors.

1.3 Sensor Node Components

According to the environment where sensor nodes are deployed, their architecture changes.

Sensor nodes of under water wireless sensor networks have an architecture different from

those deployed in a forest environment. However, the main components that are available

in every sensor node are: sensing, processing, transceiver, and power units. According

to the type of WSN other components will be present, such as the actuator that assets

in the sensor node of mobile wireless sensor networks.

Figure 1.1 exhibits the typical architecture of the sensor node.

1.3.1 Sensing Unit

Sensor node can has one or more sensing unit. It is composed of two elements. The first

one is the sensor that senses the environment and sends the analog signals to the ADC.
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Figure 1.1: Typical sensing node [1]

The second one is ADC (Analog to Digital Converter) that is in-charge of converting the

analog signals of the sensors to the digital format.

1.3.2 Processing Unit

It manages the correlation of network nodes to carry out the assigned tasks. It is the

unit that process the data transfered form the sensing unit, where it runs protocols of

communication.

The processing unit is associated with a small storage space. The types of embedded

processors that can be used in a sensor node includes Microcontroller, Digital Signal

Processor (DSP), Field Programmable Gate Array (FPGA) and Application-Specific

Integrated Circuit (ASIC). Among them the Microcontroller has been the most used

because of its flexibility to connect to other devices and its cheap price [13].

1.3.3 Transceiver Unit

It connects the node to the network, it is responsible for the wireless communication. It

often switches between four states: transmit, receive, idle and sleep.

Wireless transmission media used by transceiver unit includes Radio Frequency (RF),

Laser and Infrared, while RF based communication fits to most of WSN applications.
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1.3.4 Power Unit

Batteries are the main source of power supply for sensor nodes. Power unit is the most

important unit, it supplies the power for the system. Most of the energy is consumed by

the transceiver, and the processing units. Thereby, the energy drain is the main concern

in WSN. For that reason, developers recourse to energy-harvesting techniques for WSNs.

1.4 WSN Performance Criteria

To evaluate the performance of wireless sensor networks, different performance measures

then the traditional ones are required because WSNs differ from the other networks.

Among them we cite the following:

1.4.1 Quality of Service

It is strongly related to the service that the WSN provides. In WSN real-time applica-

tion’s, QoS requirements are: delay, loss ratio, and bandwidth.

1.4.2 Fault tolerance

It is the ability of the WSN to exceed the damage of certain nodes. Due to the energy

constraint, the interference, or a physical damage, the node will not be effective. It is

important that the WSN as a whole tolerates such faults, else a redundant deployment

of nodes is the only solution. Thus, the objective of the WSN will be with higher number

of nodes than it is needed.

1.4.3 Lifetime

This term can be defined in several ways: (a) the duration of time until some node

depletes all its energy; or (b) the duration of time until the QoS of applications cannot

be guaranteed; or (c) the duration of time until the network has been disjointed [1].

1.4.4 Scalability

WSN should considers potential expansion by adding new nodes. Thus, it has to maintain

its performance even with large number of nodes. Its architectures and protocols must

be able scale to large numbers.
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1.4.5 Wide range of densities

There are many definitions of network density, but the most used is: the number of

nodes deployed per unit area. The distribution of nodes is not homogeneous because,

the deployment is casual, and nodes change their position in time in mobile network.

Thus, WSN should be able to adapt with different values of density.

1.4.6 Programmability

It is the multitasking; nodes should be programmable, and switch to a new task during

their operation time according to the program. Thus, node process tasks besides data.

1.4.7 Maintainability

The WSN is exposed to many internal and external changes. The internal changes could

be depleted batteries, or new tasks, etc. The external one are related to the environment

where the WSN nodes’ are deployed. Thus, the system has to adapt with the different

changes, it should be able to retain the system in, or restores it to a specified conditions.

According to its status, WSN changes operational parameters or choose different trade-

offs (e.g. to provide lower quality when energy resource become scarce). The WSN has to

maintain itself, it could also be able to interact with external maintenance mechanisms

to ensure its extended operation at a required quality [7].

1.4.8 Reliability

It is the success rate of the wireless sensor network to carry out its objective.

For applications that can tolerate packet loss, reliability can be defined as the ratio of

successfully received packets over the total number of packets transmitted [1]. Reliability

often comes at a cost in terms of energy consumption. An model for evaluating the cost

of increasing reliability for a certain class of MAC protocols can be seen in [14].

1.5 Conclusions

In this chapter, we introduced generalities about wireless sensor network definitions and

performance criteria.

It is very important for the developer who works in wireless sensor networks domain
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to understand those concepts, as the first step toward the establishment of an effective

solution. Because they are considered the gist of this type of network.



Chapter 2

WSN MAC Protocols

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 WSN MAC Protocols Challenges . . . . . . . . . . . . . . . . 10

2.2.1 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 WSN MAC Protocol Classification . . . . . . . . . . . . . . . 12

2.3.1 Random Time Allocation . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Slotted Time Allocation . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Frame Slotted Time Allocation . . . . . . . . . . . . . . . . . . 18

2.3.4 Hybrid Time Allocation . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Introduction

Wireless sensor network is composed of thousands of sensors that communicate with

each other where they are deployed in an environment to monitor a physical event. Most

of the accommodation of the sensor node are configured at MAC layer to give the best

transmission process of the monitoring results in terms of throughput, latency, or delay,

etc.

MAC is the layer that controls the reliability and efficiency of a wireless sensor network;

it controls the medium access, channel assignment, error control, energy consumption,

latency, throughput, etc.

9
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In this chapter we provide an overview about MAC protocols, challenges and attributes.

According to time access medium control whether it is random, slotted, frame slotted or

hybrid, we exhibit some MAC protocols.

2.2 WSN MAC Protocols Challenges

There are many factors that may degrade the performance of WSN MAC protocols, and

among them, we will talk about factors that have the most considerable influence on the

performance of MAC protocol.

2.2.1 Energy Efficiency

The most important events that make node drains its energy are:

1. Collisions

There are many reasons that cause collisions, among them:

• Hidden Node

Hidden node problem occurs when node and its second hop neighbor send

packet simultaneously to the same node and in the same frequency, it can be

avoided by the use of RTS/CTS mechanism. In Fig. 2.1 nodes 1 and 3 are

not in the transmission range of each other, when one of them transmits, the

other one can not detect the transmission by sensing the channel.

Fig. 2.1 illustrates the communication that faces the hidden node problem;

where nodes 1 and 3 send almost at the same time to node 2, the packets will

be collided at the level of node 2 (gray area), whereas nodes 1 and 3 complete

their transmission because collision is not known by them. Hidden node prob-

lems are usually associated with exposed node problems which occur when a

1
2

3

Figure 2.1: Illustration of hidden node problem.
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1
2

3
0

Figure 2.2: Illustration of exposed node problem.

node postpones its transmission, because of ongoing another transmission,

despite the fact that:

– It is not concerned (it is not the intended receiver of that current trans-

mission).

– The interference between current and future transmission will not lead to

the collision, and packets of both transmission will be received correctly;

the intended receiver of future transmission is not in the range of the

current one.

Fig. 2.2 illustrates node communication that face the exposed node problem,

where node 1 is sending to node 0. When node 2 senses the channel to send

to node 3, it will find the channel busy. Node 2 holds on believing that its

transmission will collide with the current one, while it will not because node

3 is not in the range of node 1.

• Deafness

Deafness problem takes place in receiver-based protocols, where node and its

first hop neighbor receive in the same time. Nodes a and b are neighbors which

have the same receiving time. When node a send to node b (or the inverse),

packets of nodes that were transmitting to a will be dropped because node a

is transmitting and could not be heard.

2. Overhearing

Overhearing is related on receiving irrelevant packets. In some cases, node receives

packet which is not concerned, or receives duplicate packets.

Overhearing problem can be reduced by adopting a receiver-based protocol, thus

node will receive only during a short period.
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3. Control Packet Overhead

Packet overhead problem occurs when control information take a considerable por-

tion from the size of the packet or consume a considerable energy. Control infor-

mation could be about synchronization,or routing, etc.

Overhead problem can be reduced by avoinding RTS/CTS mechanism that gen-

erates large overhead, although its use avoids collisions. Or by using distributed

protocol.

4. Idle listening

Idle listening is state of node in which keeps listening to the channel without sending

or receiving.

It can be alleviated by the use of receiver-based protocols and scheduling the wake

up time of nodes, thus node will listen to the channel only when it is awake.

2.2.2 Latency

Latency is the time that a packet takes from the sender to the receiver. It is negligibly

affected by the physical distance but mostly determined by the delay caused by the MAC

protocol to organize the access to the shared medium. Some MAC protocols force the

node to backoff its transmission to avoid potential collisions.

2.2.3 Throughput

Throughput is the average rate of successful message delivery over a communication

channel. The throughput is usually measured in bits per second (bit/s or bps), and

sometimes in data packets per second or data packets per time slot.

2.3 WSN MAC Protocol Classification

Authors used different criteria to classify WSN MAC protocols, such as the problem

dealt with (see [11]), synchronization (see [5]), and multichannel (see [15]).

We followed MAC protocol classification that is based on time allocation, which means

how time is distributed between nodes. There are four types: random, slotted, frame

slotted and hybrid time allocation, as it is mentioned in Figure 2.3.
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Figure 2.3: Taxonomy of MAC protocols according to time organization and historic
development [2].

2.3.1 Random Time Allocation

In Random time allocation protocols, nodes choose their own schedule autonomously.

This type of protocols does not require synchronization, thus it will saves the energy

drained caused from the overhead of synchronization. Random protocols such as STEM,

X-MAC, RC-MAC, SCP-MAC, B-MAC and WiseMAC are based on one of the following

techniques: Preamble Sampling or Low Power Listening.

Definition 2.1 (Clear Channel Assessment (CCA)). Is a fundamental mechanism in

MAC protocols. CCA determines whether the wireless channel is idle or busy by sampling

the energy level in the channel and comparing it with predetermined threshold (the noise

floor). If the sample is higher than the threshold, then announce the channel busy else

it is idle.

CCA is most used in two important strategies. First, CSMA/CA protocols that have been

used to avoid collisions on shared wireless channels, by sampling the channel activity just

before the transmission. Second, CCA has been used in Low Power Listening (LPL)[16].

Definition 2.2 (Preamble Sampling (El-Hoiydi 2002)). Is a technique that stands on

alert the receiver node before starting current data transmission by preceding it with a

preamble. The size of the preamble is the same as sampling period.

In preamble sampling, node is scheduled between sleep and awake states to decrease
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Figure 2.4: B-MAC communication example. All nodes are within range of each
other. [3].

energy consumption because when traffic is light the most of energy is wasted in idle lis-

tening. When the node samples the channel, if the channel is busy, it will keep listening

until it receives a packet or the channel becomes idle. Preamble Sampling is also called

Low Power Listening in the literature. Similarly, in LPL, every node wakes up periodi-

cally to perform CCA, and if the channel is idle, node returns to sleep state otherwise it

keeps waiting to receive the packet.

1. B-MAC (Berkeley MAC)

B-MAC uses Low Power Listening . Node in B-MAC waits a back-off time before

starting the transmission and sample the channel. If the sample is smaller than

the noise floor (this means that the node has detected outliers), it will declare the

channel as clear (because efficient transmission will never has such signal strength)

and it will start the transmission (see Fig. 2.4).

In B-MAC, each node estimates the noise floor by measuring the signal strength

when the channel is supposed to be clear (e.g., immediately after transmitting a

frame) an enqueue results measurement into FIFO queue and takes its median

[5]. B-MAC is efficient in collision avoidance but energy is drained because of the

overhead created by the preambles.

2. Wise-MAC (Wireless Sensor)

WiseMAC is the first protocol that refines preamble sampling.

In WiseMAC each node interchanges its wake up time with neighbors to construct

its internal dynamic table. Before starting transmission, node estimates clock drift

to add it to the wake up time.

After a successful reception node piggyback its wake up schedule in the acknowl-

edgment. If node doesn’t know about wake time of the receiver, it has to send a

full length preamble. Every node will sample the channel periodically during check

interval to check whether it is intended for next transmission (see figure 2.5).
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Figure 2.5: The WiseMAC Concept [4].

WiseMAC implements energy efficiency by scheduling sleep/awake periods. While

it drains energy in broadcasting because preamble will be largely long to cover the

wake up time of all receivers.

WiseMAC does not implement RTS/CTS but it can be added in the higher layer,

besides, it suffers from hidden node problem.

2.3.2 Slotted Time Allocation

In slotted time allocation protocols, nodes need to be synchronized, thus they generate

an overhead that consumes more energy. Most of the slotted protocols such as S-MAC,

T-MAC, R-MAC, DW-MAC, and Q-MAC are based on Adaptive Listening technique.

1. S-MAC (Sensor MAC)

S-MAC uses a fixed duty cycle. Nodes are organized in virtual clusters, where

each cluster has a separated schedule that contains three periods: SYNC, DATA

and SLEEP. Nodes of the same cluster are locally synchronized and have the same

schedule. They wake up every SYNC period to synchronize with each other and

adjust their clock if there is a drift.

When a node starts up, it keeps listening to the channel during an initial phase

period to receive SYNC packet, thus it can join the cluster associated to the packet.

If the initial period elapses and node did not receive any SYNC packet, it starts

constructing new virtual cluster by broadcasting SYNC packets, so other nodes

can join it later.

Node can join more than one virtual cluster (see Figure 2.6), it depends on the

number of different received SYNC packets. The node should run schedules of

every virtual cluster in which it is a member leading it to waist its energy.
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Figure 2.6: Overlapping virtual clusters with bridging nodes running both schedules
[2].

Figure 2.7: The adaptive listening in S-MAC [5].

After synchronization and during DATA period, if node has to transmit, then it has

to contend to access the medium by using RTS/CTS mechanism. In sleep period,

if node is not concerned in the current transmission, it switches off its transmitter,

otherwise it stays active till the end of the transmission and the acknowledgment.

In every cycle, packet can forward only one hop. The principle of the establishment

of virtual clusters has also been used in [17] to create virtual structures for efficient

broadcasting in WSN.

2. S-MAC with Adaptive Listening

S-MAC protocol has been optimized by inducing adaptive listening where packet

can forward two hops during one cycle as it is exhibited in Figure 2.7.

In S-MAC with adaptive listening, a node can hear only its first hop neighbor.

During DATA period, if node sends CTS, all of its immediate neighbors that are

not involved in current transmission will overhear it, and will schedule to wake up

in SLEEP period after the transmission is finished. So, if the node is the next hop

of packet, it will forward it, else it will return to sleep again.

S-MAC is not efficient in low traffic load, because even if node is not sending

or receiving any packet. Node will stay active during all of DATA period, witch
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Figure 2.8: Data exchange in T-MAC, showing the early sleeping problem in (a) and
the future-request-to-send technique in (b) [6].

create idle listening that drain energy. Even adaptive listening is induced in S-

MAC, idle listening, latency and energy consumption are increased in low traffic

load networks.

3. T-MAC (Timeout MAC)

Fixed duty cycle makes S-MAC not adaptive to different traffic load. Besides,

the interval of duty cycle is constrained. T-MAC protocol mitigates effect of those

problems by introducing adaptive active period and decreases the interval of DATA

period from 300 ms in S-MAC to 15 ms [2] to make node return to sleep as quickly

as possible.

When transmission operation ends, participated nodes keep listening to the channel

for a short timeout waiting for new transmission. The timeout should be long en

aught to allows neighbors to send and receive CTS.

The Figure 2.8(a) shows an example of data transmission using T-MAC, where TA

represents the DATA period. Nodes A and C compete to access the medium. The

node A wins and start sending the data to node B, but node C keeps listening to

the channel waiting to overhear the ACK of its immediate neighbor. When node

A receives ACK, node C returns to compete on the access to the channel.

The node C wins but the future receiver (node D) will not receive RTS of node C,

because node D is in SLEEP period.

So to avoid such problem, T-MAC introduces FRTS (Future Request To Send).

When node looses the access to medium, then it sends a FRTS to inform receiver

to stay awake and to not switch to sleep state, as it exhibited in Figure 2.8(b).
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2.3.3 Frame Slotted Time Allocation

In this type of protocols, nodes are globally synchronized. TRAMA, ZMAC, TreMAC,

Crankshaft are frame slotted MAC protocols that are based on TDMA.

1. TRAMA(Traffic-Adaptive Medium Access)

The TRAMA protocol itself composed of 3 protocols: Neighborhood, Schedule

Exchange and the Adaptive Election algorithm. TRAMA assumes that nodes are

time synchronized.

Time is divided into periodic random access intervals (signaling slots), and sched-

uled access intervals (transmission slots). While cycle is signaling slot followed by

a transmission slot.

During random access intervals, nodes use Neighbor Protocol to discover their first

and second hop neighbors. Node chooses randomly a slot, and send without any

carrier sensing a short control packet to gather information about neighborhood.

The control packet maintains a set of the new and the deleted neighbors. In case

there are no changes, this packet serves as "keep-alive" beacon [6].

Relying on the gathered information and for every slot of scheduled access inter-

vals, node runs distributed scheduling algorithm to determine from nodes those

that will send, those that will receive and those that can switch to sleep mode in

the current slot. Node that has the highest priority can transmit, and in case it

does not need to send, then it announces that with all determined parameter by

piggybacking them in packet called schedule packet [7].

During scheduled access intervals, nodes use Schedule Exchange Protocol (SEP)

to interchange schedule packet. From the received schedules, if in slot s, node x is

future receiver of y and y have the highest priority within 2 hops neighbors of x,

node x will stay awake during slot s to receive packets of y, otherwise it will return

to sleep.

In complicated cases, such as the example in Figure 2.9. Node D has the highest

priority in 2 hops neighbors of B, and node A has the highest in 2 hops neighbors

of C. Adaptive Election Algorithm is used to overcome such situation and also to

manipulate unused slots of neighbors (see [7]).

2. Crankshaft

Crankshaft is receiver-based protocol that combine TDMA with CSMA.

In Crankshaft time is divided into frames and frame to slots, and there are two

types of slots. Each frame starts by slots that are dedicated to unicast traffic,

followed by slotted dedicated to broadcast traffic.

Because Crankshaft is receiver-based protocol, each node has its specified slot to
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Figure 2.9: TRAMA: conflict situation [7].

receive data and this slot is determined by calculating the modulo of MAC address

on n, where n is the number of unicast slots. It is not forbidden that two nodes

share the same slot.

Crankshaft is similar to WiseMAC in the method they used to access the medium

[11]. To mitigate contention, nodes that loose the access in current frame try with

higher probability of 70% portion in the next frame.

Slot interval should be large enough to hold contention, transmission and acknowl-

edgment.

Although, Crankshaft decreases overhearing that consume energy, it drains energy

during broadcast slots of the channel sampling.

2.3.4 Hybrid Time Allocation

Hybrid protocols combine TDMA with FDMA, their main issue is channel allocation and

cross-channel communication. Time allocation for some hybrid protocols is by assuming

that time is synchronized, and divided into fixed length beacon intervals, such as MMSN,

TMCP, and Y-MAC.

1. MMSN

Multi-frequency Media access control for wireless Sensor Networks (MMSN) is

receiver-based protocol that does not use RTS/CTS mechanism to reduce the over-

head generated by this mechanism. In MMSN node uses exclusive frequency assign-

ment to allocate one frequency among four frequencies (see [18]), to avoid having

the same frequency as its second hop neighbor. The node that has the smallest Id
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Figure 2.10: Channel allocation in MMSN MAC protocol.

within its first and second hop neighbors allocates the smallest available frequency,

then beacons the chosen frequency in two communication hops. Nodes that do

not have the smallest Id in its two communication hops, wait for the decision of

neighbors that have an Id smaller than its Id to select the smallest free frequency.

In Fig. 2.10, node 2 has the smallest Id withing its two communication hops (in

green oval). We suppose that the smallest available frequency is f0, thus node 2

broadcast in two communication hops that it allocates frequency f0, while node 4

have to wait for the frequency allocation of node 2 and 3 to decides its frequency

and broadcast its decision in two communication hops (the blue oval).

In some cases, where there is not enough of frequencies, node find that every

frequency is allocated by at least one of its second hop neighbors. Thus, node

select the lesser used frequency and broadcast its frequency.

2. Y-MAC

Y-MAC concept can be used as receiver-based or sender-based protocol, but in

generally it is a receiver-based protocol, because this one gives better performance

in terms of energy consumption. Y-MAC node use low power listening to access

medium during its slot.

Time is divided to frames and frame is composed of two periods: broadcast and

unicast. The unicast period is divided to slots, while the broadcast period is not

divided. Node wakes up during its slot, and all nodes wake up at the beginning of

the broadcast period to wait for broadcast packets, and if there is not, every node

returns to sleep till its wake up slot.

Y-MAC uses its own method of synchronization that based on exchanging the

remaining time of the current super frame, thus it reduces overhead generated

from synchronization.

Node in Y-MAC maintains a vector of slot allocation of its first hop neighbor

including itself, where the byte at position i refers to the slot i.
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Figure 2.11: A light weight-channel hopping mechanism [8].

Acknowledgment can be enabled or disabled. Every node at the beginning of its

slot switches to the base channel and also all potential senders too.

The mechanism of channel hopping in Y-MAC is illustrated in Fig. 2.11. After

that node receives a unicast message in the base channel (f1), it determines the

channel of communication by using the hopping sequence generation algorithm (see

[8]).

At the start of the slot, the receiving node sends an independent packet, so node

can know whether it wins in the contention to send or not. Thus, notifying loser

node in the contention by overhearing the packet whether the receiving node will

be waiting during the next time slot or not.

2.4 Conclusions

In this chapter, we presented the main constraints faced in the conception of MAC

protocol of wireless sensor network. We also exhibited the reasons that led the drawbacks

and how to mitigate its effect. Then we classified some MAC protocols according to time

allocation and explained its concept of communication as well.
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3.1 Introduction

Block design is a special type of combinatorial designs. Its concept is to gather randomly

elements of a set in subsets considering different parameters (number of subsets, number
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of elements per subset). It is used in large number of applications such as experimental

design, cryptography [19], finite geometry, software testing, and algebraic geometry [20].

Block design has many types, however we are mainly interested in Latin Square Design

to develop a pattern in the reservation of the slot and the channel.

In the core of multichannel WSN communication, many studies used Latin Square such

as [21], [22], [23] and [24]. Each one has a different purpose and exploits properties of

Latin Square in a special manner.

In the course of this chapter, we start by sitting definitions of some types of Block Design

that are basically introduced, followed by the mapping to slot-channel distribution, and

propose at the end a pattern of distributed allocation method of slots in multi channel

(including one channel) networks.

3.2 Block Design

3.2.1 Pair Design

Definition 3.1. [25] For positive integers t ≤ k ≤ v and λ, a t− (v, k, λ) design is a pair

(X,B), satisfying the following properties:

1. X is a set of v elements, called points,

2. B is a family of k-subsets of X, called blocks,

3. every t-subset of X is contained in exactly λ blocks. By convention b = |B| denotes
the number of blocks.

Definition 3.2. [20] An (r, λ)-design is a pair (V,B) where V is a set of v elements

and B is a collection of b subsets (blocks) of V such that every distinct pair of elements

occurs in precisely λ blocks and every element occurs in precisely r blocks.

Let n = r - λ. Let ki be the size of the ith block in the (r, λ)-design. We have the

following definition:

If k ≤ v, then the design is called: Incomplete Design,

If λ is constant, then the design is called: Balanced Design,

If b = v, then the design is called: Symmetric Design.
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3.2.2 Balanced Incomplete Block Design (BIBD)

Definition 3.3. [19] Let v, k and λ be positive integers such that v > k ≥ 2. A (v,k,λ

)-Balanced Incomplete Block Design (which we abbreviate by (v,k)-BIBD) is a design

(X,A) such that the following properties are satisfied:

1. |X| = v,

2. Each block contains exactly k points.

3. Every pair of distinct points is contained in exactly λ blocks.

Proposition 3.4. [20]

The trivial necessary conditions for the existence of a BIBD(v, b, r, k, λ) are:

vr = bk (3.1)

r(k − 1) = λ(v − 1) (3.2)

Parameter sets that satisfy 3.1 and 3.2 are admissible.

3.2.3 Splitting Designs (SD)

Definition 3.5. For positive integers t, v, b, c, u, λ with t ≤ u and cu ≤ v, a

t− (v, b, l = cu, λ) Splitting Design D is a pair (X,B), satisfying the following prop-

erties:

1. X is a set of v elements, called points,

2. B is a family of l-subsets of X, called blocks, suck that every block Bi ∈ B(1 ≤
i ≤ |B| = b) is expressed as a disjoint union

Bi = Bi,1 ∪ . . . ∪Bi,u

with |Bi,1| = . . . = |Bi,u| = c and |Bi| = l = cu,

3. every t-subset {xm}tm=1 of X is contained in exactly λ blocks

Bi = Bi,1 ∪ . . . ∪Bi,u

such that

xm ∈ Bi,jm (jm between 1 and u) for each 1 ≤ m ≤ t, and j1 . . . jt are mutually

distinct.
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3.2.4 Row-Column Block Design (RCBD)

Row-Column Block Design is a type of Block Design that is used to treat problems with

two dimensions, that unidimensional Block Designs cannot deal with.

Definition 3.6. A Latin Square is a n∗n table filled with n different symbols, in such a

way that each symbol occurs exactly once in each row and exactly once in each column.

Here is an example:

Example 3.1. 3 ∗ 3 Latin Square 
1 2 3

2 3 1

3 1 2


Definition 3.7. If each entry of an n ∗ n Latin Square is written as a triple (r, c, s),

where r is the row, c is the column, and s is the symbol, we obtain a set of n2 triples

called the orthogonal array representation of the Latin Square.

See the following example:

Example 3.2. The Orthogonal Array Representation of the Latin Square of the Example

3.1 displayed above is:

{(1, 1, 1), (1, 2, 2), (1, 3, 3), (2, 1, 2), (2, 2, 3), (2, 3, 1), (3, 1, 3), (3, 2, 1), (3, 3, 2)}

Definition 3.8. A Latin Rectangle is a n ∗ r table, with n greater than r in which each

row is a permutation of the numbers 1, 2, . . . , n. No number appears in a column more

than once, and no number appears in a row more than once. See the example below:

Example 3.3. 3 ∗ 4 Latin Rectangle.
1 2 3 4

2 3 4 1

3 4 1 2



3.3 Mapping Block Design To Slot-Channel Distribution

In the mapping to slot-channel distribution, set of points X can be considered as a set of

nodes in a network, or as vertices (existing link between two nodes). Although, vertices

represent the spatial distribution of sensors, we did not use it because, we intend to

develop receiver-based protocol, and it fit much more link-based protocol.

In this section we try to apply the concepts and properties of Block Design to develop a

dynamic distribution of time slots and channels on nodes. Our work is inspired by [26].



Chapter 3. Block Design Slot-Channel Distribution for MAC Protocols 26

Remark 3.3.1. We did not use the Symmetric Design (b = v (k = r)) because it

assumes that the number of points in a source state set is equal to the number of blocks.

Our purpose from using Block Design is to group nodes in sets where each set will receive

in one slot (channel) so:

b = v =⇒ number of slot (channel = number of nodes.)

It is very constrained , it does not fit our problem, and it may reduce scalability, because

for every new node we add slot(channel).

3.3.1 Mapping Balanced Incomplete Block Design To Slot-Channel
Distribution

BIBD is unidimensional design that has one parameter (cardinality of block). It is the

first type of Block Design that we used to resolve our problem. We set the mapping and

present it in the Table 3.1.

BIBD is included in our solution, but we do not use it as the core of our method because

our work has two dimensions: slots and channels.

Remark 3.3.2. We set k = 2 because we scheduled communication links between 2

nodes, but k can take other values. For example, if we want to schedule receivers; k the

is number of nodes that receive in the current slot. And if we want to schedule senders

k is the number of nodes that send in the current slot. But to settle the correct value of

k that will reduce collisions, deafness, and saves energy, it is inescapable to set a central

node that has the topology of the entire network and decides the best value for k. Beside

that, there will be bottleneck problem when all nodes send their list of neighbors to the

central node.

The value of k is constant and depend, on the number of neighbors of the node, so node’s

distribution should be highly symmetric to avoid making node awake worthless. When k

represent number of nodes that send at the same time, to avoid collision neighbors have

to send in separate slots or channels.

Because k is constant, the number of times that every node will receive is constant too,

then when nodes i and j have respectively 7 and 2 neighbors, i will be scheduled to receive

as much as j, while i have 7 neighbors and j have only 2. So node j will wake up and

drain energy listening to the channel uselessly.

From proposition 3.4 the ratios b/λ and r/λ are determined by v and k.

The proposition 3.4 give the following equation:

b =
v(v-1)λ
k(k-1)

(3.3)



Chapter 3. Block Design Slot-Channel Distribution for MAC Protocols 27

Symbol BIBD Slot Distribution
|X| = v X is the set of points (source

states), v is the number of
source states

Set of nodes of WSN and v is
the number of nodes

|B| = b Set of blocks which is a subset
of points from X

Set of slots which is a combi-
nation of nodes so the number
of slots is b

k The number of points in a
block

The number of nodes that
have the same slot, so k = 2

λ and t Every t-subset of X is con-
tained in exactly λ blocks

Every combination of two
nodes (slot) is contained ex-
actly in one block so λ = 1 and
t = 2

r Constant such that each point
lies in exactly r blocks

Each node appear exactly in r
slots

Table 3.1: Table of mapping Balanced Incomplete Block Design to Slot Distribution
in WSN

Example 3.4. In Mapping Table 3.1, we have assumed that k = 2, t = 2 and λ = 1, so

our design will be: 2− (v, b, r, 2, 1).

Because our issue is time distribution with energy efficiency and r represent the wake up

times of a node, we will build our Block Design in function of r.

Therefore, Equation (3.3) will be rewritten as:

b =
v ∗ (v − 1)

2
(3.4)

and if we apply Equation (3.2), we find:

r = v-1 (3.5)

This is the largest value of r, it gives all the possible combinations in a design.

Therefore, if v = 8 then b = 28 and r = 7.

The Block Design becomes D = 2− (v, b, r, 2, 1), thus we have:

In case r = 1:

D = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
In case r = 2:

D = {{1, 2}, {3, 4}, {5, 6}, {7, 8} {2, 3}, {4, 5}, {6, 7}, {8, 1}}
In case r = 3:

D = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {2, 3}, {4, 5}, {6, 7}, {8, 1}, {1, 3}, {2, 4}, {7, 5}, {8, 6}}
In case r = 4:
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D = {{1, 2}, {3, 4}, {5, 6}, {7, 8} {2, 3}, {4, 5}, {6, 7}, {8, 1}, {1, 3}, {2, 4}, {7, 5}, {8, 6},
{3, 5}, {4, 6}, {1, 4}, {2, 7}}
In case r = 5:

D = {{1, 2}, {3, 4}, {5, 6}, {7, 8} {2, 3}, {4, 5}, {6, 7}, {8, 1}, {1, 3}, {2, 4}, {7, 5}, {8, 6},
{3, 5}, {4, 6}, {1, 4}, {2, 7}, {1, 5}, {2, 6}, {3, 7}, {4, 8}}
In case r = 6:

D = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {2, 3}, {4, 5}, {6, 7}, {8, 1}, {1, 3}, {2, 4}, {7, 5}, {8, 6},
{3, 5}, {4, 6}, {1, 4}, {2, 7}, {1, 5}, {2, 6}, {3, 7}, {4, 8}, {1, 6}, {2, 5}, {3, 8}, {4, 7}, {1, 7},
{2, 8}, {3, 6}, {5, 8}}

In such time distribution, we will have 28 slots of time, all nodes can reach each other

in different slot it schedules links between pair of nodes.

3.3.2 Mapping Splitting Design To Slot-Channel Distribution

Splitting Design seems more flexible than BIBD. It has more parameters that generate

hierarchy of subsets, because it has b number of blocks, u number of sub blocks, and c

number of elements per sub block. We have found that SD can be used to distribute

only slots, or slots and channels. We resume the mapping in the Table 3.2.

Example 3.5. [25].

A 3− (10, 15, 6 = 2 ∗ 3, 1) Splitting Design can be obtained by taking as point set X such

as:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}

and as block set B such as:

B = {B1, . . . , B15}

with

B1 = {{1, 2}, {4, 0}, {5, 9}}
B2 = {{1, 3}, {2, 8}, {5, 0}}
B3 = {{1, 4}, {3, 8}, {6, 9}}
B4 = {{1, 5}, {4, 7}, {6, 8}}
B5 = {{1, 6}, {2, 3}, {4, 8}}
B6 = {{1, 7}, {2, 5}, {6, 9}}
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B7 = {{1, 8}, {6, 7}, {9, 0}}
B8 = {{1, 9}, {2, 5}, {3, 7}}
B9 = {{1, 9}, {3, 4}, {7, 0}}
B10 = {{2, 4}, {5, 6}, {7, 9}}
B11 = {{2, 5}, {4, 7}, {3, 0}}
B12 = {{2, 9}, {6, 8}, {3, 0}}
B13 = {{2, 0}, {4, 5}, {6, 8}}
B14 = {{3, 7}, {4, 6}, {8, 0}}
B15 = {{3, 9}, {5, 7}, {6, 0}}

So we have 10 nodes and 15 channels and 3 slots, in each channel there are 3 pairs of

nodes that can communicate in different slot, or 15 slots and 3 channels where every pair

of nodes communicate in different channel.

Some nodes can never communicate with each other, for example node 1 with 10, 11, 12, 13, 14

and 15.

Example 3.6. 2− (8, 7, 8 = 2 ∗ 4, 1)
D = {B1, B2, B3, B4, B5, B6, B7}

B1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
B2 = {{2, 3}, {4, 5}, {6, 7}, {8, 1}}
B3 = {{1, 3}, {2, 4}, {7, 5}, {8, 6}}
B4 = {{3, 5}, {4, 6}, {1, 4}, {2, 7}}
B5 = {{1, 5}, {2, 6}, {3, 7}, {4, 8}}
B6 = {{1, 6}, {2, 5}, {3, 8}, {4, 7}}
B7 = {{1, 7}, {2, 8}, {3, 6}, {5, 8}}

In this example, the number of slots will be reduced to 7 instead of 28 in BIBD. We

present this slot allocation in Figure 3.1, where we can see when (in which slot) each two

nodes can communicate.

We did not fill the other half because it is the same (permutation in Block Design and

in our study does not make difference. Blocks {1, 5} and {5, 1} are the same).

Our allocation of time slots seems like it is collision-free. In fact it is not, because we

did not take in our consideration the position of nodes.

As shown in Figure 3.2, the 3rd slot for every time that Node 3 is sending and Node 5 is

receiving, there will be collision at node 3 level (problem of hidden nodes). But if they

use different channels (multichannel), there will not be such a problem at all.
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Figure 3.1: Slot distribution based on Split Design.

Figure 3.2: Networks where nodes face hidden and exposed nodes problem.

The 1st slot of time is allocated to {1, 2}, {3, 4}, {5, 6} and {7, 8} but nodes 1 and 2

can not hear each other, but both will wake up each slot and this will consume energy

uselessly.

3.3.3 Mapping Latin Square to Slot-Channel Distribution

The main feature of the Latin Square design is that there are the two blocking factors.

Each treatment is present at each level of the first blocking factor and is also present at

each level of the second blocking factor.

In our studies the two factors are channel and time. Although the formulas associated

with a Latin Square are fairly simple, it is an unbalanced design (every pair occurs in

exactly λ blocks, where λ is not constant).
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Figure 3.3: Time Slots Distribution based on Latin Square.

Latin Square can be represented as a set of triples (r, c, s). In this case, entries (source

set) will be links (vertices’s) and not nodes, r and c represent nodes whereas s is the

time slot that will be used for each combination of nodes.

For example, nodes 1 and 2 have a direct link between them and they can communicate

in time slot 1, we will represent this by using the orthogonal array representation as

{(1, 2, 1)} and for nodes that can not communicate the value of s will be 0.

If we take the same example we used in Splitting Design and re-organize slot distribution

so that we respect Latin Square rules, it will look like Figure 3.3 and the corresponding

Latin Square will be:



2 3 7 6 5 4 1 0

4 5 6 7 3 2 0 1

7 6 5 3 1 0 2 4

6 7 4 2 0 1 3 5

5 4 1 0 2 3 7 6

3 2 0 1 4 5 6 7

1 0 2 4 7 6 5 3

0 1 3 5 6 7 4 2


The orthogonal array representation of Row 1 is:

{(1, 1, 0), (2, 1, 1), (3, 1, 3), (4, 1, 5), (5, 1, 6), (6, 1, 7), (7, 1, 4), (8, 1, 2)}
And for Row 8 is:

{(1, 8, 2), (2, 8, 3), (3, 8, 7), (4, 8, 6), (5, 8, 5), (6, 8, 4), (7, 8, 1), (8, 8, 0)}
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3.4 Latin [Square/Rectangle] Based MAC Protocols

Based on Block Design concept our method performs a distributed slot and frequency

assignment respecting design drivers for WSN MAC protocols mentioned in [11], with

a particular attention to the deafness problem. Based on the resulted reservation, node

stays awake (and switch to the appropriate channel) or turns to sleep mode to conserve

energy.

In this section, we explain how we use BIBD and Latin Square/Rectangle, to reserve

channel and slot to nodes. We extract the Latin Rectangles from the Latin Square

adopting a mathematical basis, so that we make sure that all nodes have the same

opportunity in assignment, and no constraints are on the number of nodes or channels

in the network.

3.4.1 Slot-Channel Distribution

3.4.1.1 Latin [Square/Rectangle] Generation

References [23],[24], and [27] use different methods to generate the Latin Square that

suits their study. We thought to exploit the properties of Latin Square as much as

possible to provide a fair and dynamical slot and channel reservation, as well as avoid

randomness by making all nodes generate the same Latin Square. We start by forming

Latin Square from which we extract a set of Latin Rectangles, where a Latin Square

represents a super frame (set of frames), and every Latin Rectangle represents a frame

(set of slots), whereas, column refers to channel (see Figure 3.6). Our method to generate

these Latin Squares is described hereafter.

The core of our procedure is the position of node id in the Latin Square (Rectangle). If

we use the method of [21] described in Equation (3.6), channel and slot assignment, will

be almost static because nodes show in the same order.

Equation used by [21] to generate Latin Square is:

LS(i, j) = (i+ j) mod n (3.6)

Where i is the index of the row and j is the index of the column.

See below, an example of a Latin Square generated by using this method:
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7 0 1 2 3 4 5 6

6 7 0 1 2 3 4 5

5 6 7 0 1 2 3 4

4 5 6 7 0 1 2 3

3 4 5 6 7 0 1 2

2 3 4 5 6 7 0 1

1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7


To make our allocation of slots and channels more dynamic, we thought to generate our

Latin Square by following those steps:

• Node classification in sets.

• Generation of the partial Latin Squares.

• Column permutation (Extraction of Latin Rectangles).

1. Node classification in sets

We classify nodes in s sets using the following BIBD Block Design:

D = 2− (v, b, k, r) where:

v = number of source state → n=
⌈

number of nodes
number of channels

⌉
* number of channels.

b = number of blocks → number of channels.

k = number of source states in each block →
⌈ n
number of channels

⌉
= number of

frames.

r = 1 because we need that each source state appear only in one block.

vr = bk is always true for our design ⇒ D is BIBD.

We use the notation described in Table 3.3 in our analysis.

Symbol Description
n Number of nodes as multiplier of number of channels
nb_channels The number of orthogonal channels in the WSN
nb_nodes The number of nodes in the WSN
nb_frames The number of frames in a super frame
frame_id Identifier of a frame in a super frame
node_id Identifier of a node
slot_id Identifier of a slot
channel_id Identifier of a channel

Table 3.3: Notation used in the analysis.
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Example 3.7. In a network of 10 nodes and 3 orthogonal channels we get:

D = 2-(12, 4, 4, 1)

D = (0, 1, 2, 3), (4, 5, 6, 7),(8, 9, 10, 11)

2. Generation of the partial Latin Squares

After organizing nodes in sets, we will deal with block id instead of node id, to

generate an initial Latin Square using the method in [21], that will give a b ∗ b
matrix.

Example 3.8. The initial Latin Square of Example 3.7 is:
b2 b0 b1

b1 b2 b0

b0 b1 b2


Now, in the resulted Latin Square, we replace every Block i in the initial Latin

Square with a partial Latin Square.

Partial Latin Square of block i is the Latin Square of its k elements. It is generated

using the same method described in the Equation 3.6.

Example 3.9. The initial Latin Square of Example 3.8 after replacing every block

i with its Partial Latin Square is exhibited in the Fig. 3.4.

7 4 5 6
6 7 4 5
5 6 7 4
4 5 6 7

11 8 9 10
10 11 8 9
9 10 11 8
8 9 10 11

7 4 5 6
6 7 4 5
5 6 7 4
4 5 6 7

11 8 9 10
10 11 8 9
9 10 11 8
8 9 10 11

7 4 5 6
6 7 4 5
5 6 7 4
4 5 6 7

11 8 9 10
10 11 8 9
9 10 11 8
8 9 10 11

3 0 1 2
2 3 0 1
1 2 3 0
0 1 2 3

3 0 1 2
2 3 0 1
1 2 3 0
0 1 2 3

3 0 1 2
2 3 0 1
1 2 3 0
0 1 2 3

Figure 3.4: Initial Latin Square of b partial Latin Squares, where b= number of
channels.

3. Column permutation (Extraction of Latin Rectangles)

Now, our purpose is to extract the Latin Rectangles from the Latin Square.

We could use a simple method, where every k columns represent one Latin Rect-

angle, to get b Latin Rectangles.
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As we have seen before, b refers to the number of channel which has a very lim-

ited value, so whatever is the value of n, we will have b frames. And we will note

that there is not a considerable change of node’s position between two successive

columns. Thereby, we thought to make a column permutation to increase the

number of frames in a super frame by using the feature that: k > b. Thus, we

generate k Latin Rectangles instead of b to make the reservation of slot-channel

more dynamic.

To generate Latin Rectangle LRi that will be used by nodes to reserve slot and

frequency, we gather columns j satisfying Eq. (3.7):

j mod nb_frames = i (3.7)

Figure 3.5 shows column permutation of the introduced Latin Square in example

3.9, where columns that have the same color form one Latin Rectangle.

11
10
9
8
7
6
5
4
3
2
1
0

8
11
10
9
4
7
6
5
0
3
2
1

9
8
11
10
5
4
7
6
1
0
3
2

10
9
8
11
6
5
4
7
2
1
0
3

3
2
1
0
11
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9
8
7
6
5
4

1
0
3
2
9
8
11
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5
4
7
6

2
1
0
3
10
9
8
11
6
5
4
7

7
6
5
4
3
2
1
0
11
10
9
8

4
7
6
5
0
3
2
1
8
11
10
9

5
4
7
6
1
0
3
2
9
8
11
10

6
5
4
7
2
1
0
3
10
9
8
11

0
3
2
1
8
11
10
9
4
7
6
5

Figure 3.5: Columns permutation of a Latin Square to make a Latin Rectangle.

Figure 3.6 shows a view of the final Latin Square and its Latin Rectangles with the

significance of every column.

In the resulted Latin Rectangle, if we consider that column identifier refers to

channel number, channel allocation will be almost static.

In the example of Fig. 3.6, node 1 has the second position in the first column of

the frame 0 and the first position in the first column of frame 1. If the column

identifier refers to the channel number, node 1 will allocate the same channel in

frames 0 and 1.

For that reason, in networks of nb_channels orthogonal channels, we set Id of
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channel represented by the column j in the Latin Rectangle of frame_id is c where:

c = (j + frame_id ) mod nb_channels (3.8)
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6
1
0
3
2

10
9
8
11
6
5
4
7
2
1
0
3

3
2
1
0
11
10
9
8
7
6
5
4

1
0
3
2
9
8
11
10
5
4
7
6

2
1
0
3
10
9
8
11
6
5
4
7
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6
5
4
3
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1
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11
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8
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7
6
5
0
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1
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1
0
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9
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6
5
4
7
2
1
0
3
10
9
8
11

0
3
2
1
8
11
10
9
4
7
6
5

frame 0

f1 f2

frame 1 frame 2 frame 3

f0 f0f1 f1 f1f0f0f2 f2f2

Figure 3.6: The final Latin Square and its Latin Rectangles.

We abbreviate steps listed above, and set Algorithm 1 used by node to generate Latin

Square of nb_frames Latin Rectangles in networks of nb_nodes and nb_channels.

We define the function Round as the following:

Round(nb_nodes, nb_frames) =
⌈
nb_nodes
nb_frames

⌉
∗ nb_frames (3.9)

Algorithm 1: LS_Generation
Input: nb_nodes, nb_channels

Output: Latin Square matrix

1 nb_nodes ← Round (nb_nodes, nb_channels) ;

2 nb_frames ← nb_nodes
nb_channels

;

3 for frame_id ← 0... nb_frames - 1 do

4 for i← 0...nb_nodes - 1 do

5 for j ← 1...nb_channels do

6 ls_column_id ← frame_id * nb_frames + j ;

7 LS(i, ls_column_id)←
(
Round(i, nb_frames) + (i+

frame_id)%nb_frames+ (j − 1) ∗ nb_frames
)
%nb_nodes ;
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3.4.1.2 Slot-Channel Allocation Description

The first concern of our slot-channel reservation approach is to avoid deafness problem

by preventing the reservation of the same slot by a node and its first hop neighbor.

We set an initial phase, in which every node sends to its first hop neighbors the list of

its 1st hop neighbors. The second concern is to reduce idle listening by scheduling the

sleep mode, so node listen to the channel only during its slot and spend the rest of time

in sleeping.

At first, node runs Algorithm 3. After that, every node broadcasts the max value of

slots of every frame. So nodes will have the same number of slots in a super frame and

synchronize with each other.

In some cases, the reservation that node predicts for its first hop neighbor will not much

the reservation obtained by the neighbor itself. For that reason, every node will re-run

Algorithm 3, at this time the node takes node_id as the id of its first hop neighbor to

adjust reservation. While node adjusts reservation, if in Frame i it finds that it receive

in the same slot of its first hop neighbor, then node deletes allocation of this neighbor in

Frame i to prevent deafness.

The details of our method are expressed in Algorithm 2 and Figure 3.7.

Remark 3.4.1. We manage our method to make node does not keep Latin Square/Rect-

angles in memory because it has a restricted memory space.

As it is exhibited in Algorithm 3, SF_Allocation procedure reserves channel_id in

slot_id of frame_id to node_id, only if slot_id of frame_id is not allocated to a first

hop neighbor of node_id, so deafness problem is completely avoided.

Note that to avoid deafness problem, the slot should not be allocated to a first hop

neighbor what ever was the channel.
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Algorithm 2: Global SF_Allocation
Input: nb_nodes, nb_channels
Output: Latin Square matrix

1 nb_nodes ← Round (nb_nodes, nb_channels) ;

2 nb_frames ← nb_nodes
nb_channels

;

/* Initialization of the Assignment table */

3 for frame_id ← 0 ... nb_frames - 1 do
4 for every neighbor from list(1st_hop_neighbors) do
5 Assignment[frame_id][neighbor_id] ← (-1, -1) ;

6 Assignment[frame_id][node_id] ← (-1,-1) ;
7 Neighbor_Assignment[frame_id][node_id] ← (-1,-1) ;

8 Assignment ← SF_Allocation (current_node_id) ;
9 for every neighbor from list(1st_hop_neighbors) do

10 Neighbor_Assignment ← SF_Allocation (neighbor) ;
11 for frame_id ← 0 ... nb_frames - 1 do
12 if

(
slot(Assignment[frame_id][neighbor]) 6=

slot(Neighbor_Assignment[frame_id][neighbor])
)
then

13 if
(
slot(Assignment[frame_id][current_node_id]) 6=

slot(Neighbor_Assignment[frame_id][neighbor]
)
then

14 slot(Assignment[frame_id][neighbor]) ←
slot(Neighbor_Assignment[frame_id][neighbor]);

15 else
/* Delet allocatin of this neighbor in frame_id */

16 Assignment[frame_id][neighbor] = (-1, -1) ;

17 for every neighbor from list(1st_hop_neighbors) do
/* Test whether the current neighbor has at least one allocation in a super fame */

18 if ∀ frame_id
(
Assignment[frame_id][neighbor] = -1

)
then

/* Add a slot at the end of (nb_frames-1) and allocate it to the current neighbor

and the current_node_id in channel 0 */

19 Assignment[nb_frames-1][neighbor] = number max of slots in (nb_frames-1)
+1 ;

20 Assignment[nb_frames-1][current_node_id] = number max of slots in
(nb_frames-1) +1 ;
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int current_node_id
int node_id_itr

int nb_neighbor

array slots[frame_id]

struct (node, frame, slot, channel) node_reservation
struct (node, frame, slot, channel) neighbor_reservation

node_reservation ← S_F_Allocation (current_node_id)

YES

neighbor_reservation ← S_F_Allocation (node_id_itr)

NO

Delete allocation of node_id_itr
in the current frame

from node_reservation

Have all neighbors been tested ?

NO

END

BEGIN

YESneighbor_reservation of node_id_itr
=

node_reservation of node_id_itr

neighbor_reservation.slot of node_id_itr
=

node_reservation.slot of current_node_id

YES

NO

node_reservation.channel of node_id_itr ← neighbor_reservation.channel of node_id_itr
node_reservation.slot of node_id_itr ← neighbor_reservation.slot of node_id_itr

Brodcast the table slots

Receive the broadcasted table slots of every neighbor

Brodcast the table slots

Update the table slots[i], where
slots[i] ← the max of received number

of slots in frame i

Receive the broadcasted table slots
of every neighbor

Does every neighbor has at
least one allocation?

node_id_itr ← One of the non tested neighbors

YES

NO

slots[nb_frames] ← slots[nb_frames] +1

s ← slots[nb_frames]

Allocate the slot s to the current_node_id
and to the non allocated nodes

Update the table slots[i], where
slots[i] ← the max of received number

of slots in frame i

\\ number of neighbors of the current node

\\ iterator of neighbors of the current node

\\ table of number of slots in every frame

\\ add a new slot to the last frame in the super frame

Figure 3.7: Reservation of channel and slot process (executed by every node).
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Algorithm 3: SF_Allocation
Input: node_id
Output: (node_id, frame_id, slot_id, channel_id)
Data: Constants: nb_nodes, nb_channels
Data: Toplogy table (1st and 2nd hop neighbor)

1 n ← Round(nb_nodes, nb_channels) ; // Our Latin Square is a n ∗ n matrix

2 nb_frames ← dn/nb_channelse ; // Our Latin Rectangle is a n ∗ nb_channels matrix

3 for frame_id ← 0 ... nb_frames -1 do
4 for i ← 0 ... n - 1 do

/* We set this loop at first to make node switches between channels as much as

possible. To provide more dynamism in channel allocation. Because when we

set the next loop (j goes from 1 to nb_channels) at first, most of allocation

in every frame will be in the channel referred by the first column of the

Latin Rectangle that represent the frame. */

5 for j ← 1 ... nb_channels do
6 node_id_to_be_allocated ←

(
Round(i, nb_frames) +

(i+frame_id)%nb_frames + (j-1)*nb_frames
)
%n;

7 list(1st_hop_neighbors) ← 1st hop neighbors of node_id;
8 if node_id_to_be_allocated = node_id or node_id_to_be_allocated ∈

list(1st_hop_neighbors) then
9 channel_id ← (column_id+frame_id)%nb_channels;

/* Test whether node_id_to_be_allocated is already allocated */

10 if Assignment[frame_id][node_id_to_be_allocated] = (-1, -1) then
11 slot_id ← 1;

/* because we start from the first slot every time and jump to next

slot only if present slot is assigned to a 1st hop neighbor */

12 is_slot_free ← false;
13 while (is_slot_free = false) do
14 is_slot_free ← true;
15 list(1st_hop_neighbors) ← 1st hop neighbors of

node_id_to_be_allocated;
16 for every neighbor from list(1st_hop_neighbors) do
17 if slot(Assignment[frame_id][neighbor]) = slot_id then
18 slot_id ← slot_id +1;
19 is_slot_free ← false;
20 Break;

21 Assignment[frame_id][node_id_to_be_allocated] =
(slot_id,channel_id);
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Example 3.10. When we apply our method to the network exhibited in Fig. 3.8.

we have to consider that number of nodes is n, so we get m frames where:

n =
⌈

8
3

⌉
*3

m = d n
3 e

1 2

3 4 5

6 7

0

Figure 3.8: Example of WSN.

So every node runs Algorithm 2 that follows this Latin Square to reserve slots, and chan-

nels in each frame.

Frame 0︷ ︸︸ ︷
f1 f2 f0

Frame 1︷ ︸︸ ︷
f2 f0 f1

Frame 2︷ ︸︸ ︷
f0 f1 f2

0 3 6 1 4 7 2 5 8

1 4 7 2 5 8 0 3 6

2 5 8 0 3 6 1 4 7

3 6 0 4 7 1 5 8 2

4 7 1 5 8 2 3 6 0

5 8 2 3 6 0 4 7 1

6 0 3 7 1 4 8 2 5

7 1 4 8 2 5 6 0 3

8 2 5 6 0 3 7 1 4


Node determines assignment for itself and every first hop neighbor.

In our example, nodes 0, 4, and 7 get the slot-channel assignment as in Table 3.4.

Remark 3.4.2. In our example, we set number of nodes to 8 and channels to 3, because

with such values we get all cases that node my face during allocation.

For example, nodes 7 and 4 will get exactly the same slot in every frame, thus, they can

not communicate with each other. So they have to add another slot (in this case Slot 5

of Frame 2) and specify it only for (4, 7) link transmission, as it is shown in Table 3.4.

Node 7 can not communicate with node 5 in frame 0 because it receives in the same slot,

but they can communicate in Frames 1 and 2.

Nodes 3, 5, 6 receive in Slot 4 of Frame 2 but nodes 3, 5 in Channel f0 and Node 6 in

Channel f1 therefore, hidden node problem will be avoided.
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For Node 0:
Frame 0

S1 S2 S3 S4
f0
f1 0 1
f2 3 4

Frame 1
S1 S2 S3 S4

f0 4 3
f1
f2 1 0

Frame 2
S1 S2 S3 S4 S5

f0 0 1
f1 3 4
f2

For Node 4:
Frame 0

S1 S2 S3 S4
f0 6
f1 0 1,2
f2 3 4

Frame 1
S1 S2 S3 S4

f0 4 3,5
f1 6
f2 1 0,2

Frame 2
S1 S2 S3 S4 S5

f0 0 2 1
f1 3,5 4
f2 6 7

For Node 7:
Frame 0

S1 S2 S3 S4
f0 6
f1
f2 3 7

Frame 1
S1 S2 S3 S4

f0 7 3, 5
f1 6
f2

Frame 2
S1 S2 S3 S4 S5

f0 4
f1 5 3
f2 6 7

Table 3.4: Slot and Channel Assignment.

3.4.2 Improvement

Our method can be applied to Mobile Wireless Sensor Networks too by scheduling initial

phase at the beginning of every super frame.

In Mobile WSNs that have nodes with constant position, nodes need to discover their

neighborhood only once. The initial phase is scheduled after the deployment.

We illustrate the cycle in constant network in the Figure bellow:

Super Frame 1

Frame 1 Frame nFrame 2 ....

Initialization
Phase

Frame 1 Frame nFrame 2 ....

Super Frame 2

Frame 1 Frame nFrame 2 ....

Super Frame m

...

Figure 3.9: Cycle in WSNs with constant nodes.

While in Mobile WSNs, nodes’ position change in time, thus the neighborhood of the

node changes. So they have to schedule the initial phase periodically to update its

neighbors list.

According to the velocity of the node, the cycle length is determined. The cycle in Mobile

WSNs that have high velocity have to be shorter than the cycle in Mobile WSNs that

have low velocity.

We illustrate the cycle in Mobile WSNs in the Figure bellow:
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Super Frame

Frame 1 Frame nFrame 2 ....

Initialization
Phase

Initialization
Phase

Frame 1 Frame nFrame 2 ....

Super Frame

Figure 3.10: Cycle in Mobile WSNs, where, the cycle length is equal to the super
frame length.

The same principle of our method can be used to avoid hidden node problem in sender-

based allocation, but in this case nodes need to know about their first, second and third

hop neighbors. And node reserves slot_id of frame_id to node_id, only if channel_id

in slot_id of frame_id is not allocated to a second hop neighbor of node_id.

3.5 Conclusions

In this chapter we proposed a new method of reservation of slots in a multi channel

wireless sensor network or even in networks which can also be used in the case of one

channel. We showed the development of our method from the first phase, where we used

the Block Design BIBD in the distribution of channels and slots to the phase where we

used combination of BIBD, Latin Square, and Latin Rectangle.

This method of combining TDMA and FDMA takes the advatanges of TDMA of reducing

collisions and overcomes its drawbacks, such as the hidden node problem, thanks to

FDMA. At the same time, our method overcomes the drawback of FDMA of power

consumption by using a sleep mode state that makes nodes save energy.
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4.1 Introduction

Simulation of networks allow emulating the real world communications, thereby allowing

a developer to discover potential limitations, problems, design errors, and fix them.

There are many simulators to simulate WSN. NS-2 and NS-3 seem to be the most popular

to simulate wireless communication protocols. Since NS-3 is not backward compatible

with NS-2, we had to select one of them, and although the number of models and

contributed codes in NS-3 is limited in comparison with NS-2, we chose NS-3 because it

acts better than NS-2 in many aspects as explained below:

1. In NS-2, bi-language (C++/Tcl) system make debugging complex, but for NS-3

only knowledge of C++ is required (single-language architecture is more robust in

the long term).

2. The total computation time required to run a simulation scales better in NS-3

compared to NS-2. This is due to the removal of the overhead associated with

interfacing oTcl with C++, and the overhead associated with the oTcl interpreter.

3. NS3 performs better than NS-2 in terms of memory management.

4. NS3 has an emulation mode, which allows for the integration with real networks.

4.2 NS-3 MAC Based Components

The NS-3 is a discrete-event network simulator. Its core and models are implemented in

C++.

There are several modules such Mesh, WiMAX and WiFi that can set wireless communi-

cation, but the nearest one that fits our situation is WiFi. Therefore, in this section we

will describe the main components that are responsible on WiFi packet transmission/re-

ception in NS-3 simulator, particularly WifiNetDevice and WifiChannel.

4.2.1 WifiNetDevice

Fig. 4.1 shows WifiNetDevice architecture and the role of every components in trans-

mission/reception process with its corresponding stage as well.

In order to clarify Fig. 4.1, we use the following explanation.

WifiNetDevice components are:

1. WifiPhy

WifiPhy behaves as a state machine as illustrated in Fig. 4.2 and clarified below:
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Figure 4.1: WifiNetDevice architecture [9].

Figure 4.2: The state machine of the physical layer emulator distinguishes between
Tx, Idle, Busy, Sync and Rx states [10].
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(a) Idle: as long as the energy detected in the receiver is below CCA threshold,

or no header is successfully decoded.

(b) Sync: detects preamble. It is eventually followed by Rx state if the corre-

sponding header is decoded successfully.

(c) Busy: The energy detected in the receiver is more than CCA threshold. While

no signal header is successfully decoded.

(d) Tx: The node is transmitting.

(e) Rx: The node is receiving.

The YansWifiPhy is the only implementation of the physic layer model, (see [28]).

It works seamlessly with YansWifiChannel and interference is considered by Inter-

ferenceHelper that is based on ErrorRateModel.

2. WifiMac

There are four models of MACLayer which are inherited from the regular WifiMac

and they are:

(a) AdhocWifiMac

(b) ApWifiMac

(c) StaWifiMac

(d) MeshWifiInterfaceMac

3. WifiRemoteStationManager

It maintains a list of connected stations to the wireless network, information on its

states, and it incarnates an algorithm of adaptation of throughput.

4.2.2 WifiChannel

WifiChannel components are:

1. PropagationLossModel

This model allows simulating the power loss (attenuation) of signal operating in

a transmission channel. It actually allows calculating the power of receiving of

destination node, which is used to determine whether it can receive the signal.

This calculation is based on the transmission power of the source node and the

position of both the source and destination nodes (which depends on a mobility

model).
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2. PropagationDelayModel

This model allows simulating delay of propagation in a transmission channel, it

is based on the position of the source and destination nodes (which depends on a

mobility model).

3. List of pointers to every node.

4.3 Implemented Modules

After studying and understanding wireless networks in NS-3, we found that the best

module that will contain our method is WiFi module. So we adapt it on our needs and

inject a new layer (SlotChannelMannager) between MAC and Phy layers.

In this section, we present the adaptation that we made on WiFi module and different

steps of the implementation of the new layer.

4.3.1 Implementation of SlotChannelManneger

All the changes that we have made on WiFi module keep respect to class architecture

(class aggregation) of NS-3.

To inject the new layer, we added a function AllocatorInstall to NetDeviceContainer

class to be used instead of Install function. At this stage we determine the number of

channels, and the use of sleep mode whether it will be enabled or disabled.

Al the level of Dynamic Channel Assignment (DCA), we make the operation of enqueue

packet delayed until the wake up time of the receiver. So when node i sends to j at

second 1, but the wake up slot of j is 3, then DCA layer schedules the enqueue operation

of the packet after 2 seconds.

At the beginning of simulation (Initial phase), nodes elaborate their table of slot-channel

allocation. So all of aforementioned modification are not effective until the end of initial

phase, where nodes recognize their neighbors and finish elaborating table of slot-channel

allocation. Thus, in initial phase nodes DCA does not delay the enqueue of packets.

4.3.2 Implementation of Neighbor Discovery

Like we have seen in Chapter 3, nodes of the network that will follow our method have

to know about their first, second and third hop neighbors. So we have to add these

functionalities to node, because it is not implemented in the version NS-3.21.
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Neighbor discovery can be done at the routing layer and it is already implemented in

AODV protocol. There is a class neighbor and we can use the member TTL to know

neighbor’s degree, whether it is 1st or 2nd hop. But we did not use it, because it is

available at routing layer, while we settle our method at MAC layer.

The node distinguishes its neighbors by using the MAC or IP address, but in our reser-

vation procedure of slot and channel, node needs its neighbors id. We can get them by

adding a function that downcast MAC address to int, but we can not use MAC address

at low layer (Phy layer). For that reason, we thought to set it with another method.

So in initial phase, when node succeeds in packet reception, it updates a shared global

table of neighbors and sets packet’s sender as a 1st hop neighbor.

At the end of this phase, the shared global table of neighbors contains topology of the

entire network. Now, each node extracts from this table a local table of neighbors that

contains only its first, second and third hop neighbors. According to this table, node

runs the process of channel and slot reservation.

4.3.3 Implementation of Multichannel

Multi channel can be implemented by using a feature that nodes in NS-3 can have more

than one interface (net device), unlike NS-2 where node can only have one interface.

In the reference [29], authors create a multi radio wireless node that has more than one

NetDevice to implement the multichannel.

In order to set a multichannel communication, we can make nodes have net devices as

much as number of channels and we will set for every net device a different parameter

like channel id and frequency. However, we did not use that option because the switching

of channels will be scheduled at high layers (and may be at routing layer), while we have

to implement it at low layer (MAC).

Channels are distinguishable only by their numbers (Ids). Current NS-3 doesn’t account

for inter channel interference. SetChannelNumber is a function that sets Id of channel

according to the given value.

After initial phase, nodes determine their slots and channels. So every wake up slot,

node switches to the appropriate channel to start receiving the transmitted data of its

neighbors.

4.3.4 Implementation of Sleep mode

We used the sleep mode to reduce energy consumption and the depletion of energy is

not handled; node does not switch to sleep mode when energy is depleted.
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Sleep mode is scheduled to make node resume from sleep mode only during its slot or

when transmitting. Setting sleep mode or resuming from it, is done by using the func-

tions SetSleepMode and ResumeFromSleep.

So after initial phase (neighbor discovery), node sets sleep mode to reduce energy con-

sumption. Node resumes from sleep mode only during its slot or when transmitting as

it is showed in Fig. 4.3.

While its not the end of slotSleep Awake

RXTX

Figure 4.3: Abstract states of Phy layer that distinguishes between Sleep, Awake, RX
and TX states after the installation of SlotChannelMannager layer.

4.4 Experimentation Environment

4.4.1 Types of Topologies

We experiment in two different topologies, grid and random:

1. Grid Tpopology

We used grid topology where the maximum number of neighbors is 8 and the

minimum number of neighbors is 3, as shown in Fig. 4.4. Where neighbors of node

0 are: 1, 10, and 11, while neighbors of node 11 are: 0, 1, 2, 10, 12, 20, 21, and 22.

2. Random Topology

In the random topology, the number of neighbors is unpredictable, but it varies in

function of the network density.

We considered the network density as the number of nodes in a m2. We used two

random networks. In the first one, the network of x nodes will be distributed in

x ∗ 50m2, and in the second, nodes will be distributed in x ∗ 20m2 as shown in Fig.

4.5.
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Figure 4.4: Grid topology of network of 100 nodes.

(a) Random topology of network,
where 100 nodes are distributed in
5000m2, and all nodes have the same

range = 120m.

(b) Random topology of network,
where 100 nodes are distributed in
2000m2, and all nodes have the same

range = 120m.

Figure 4.5: Random topology of network where 100 nodes distributed in different
areas.

4.4.2 Traffic Generation

To evaluate our approach, we generate traffic using two different methods. The first one

is based on a loop from 1 to the number of nodes in the network, and for 5 neighbors of

random node schedule transmission operation as it is exhibited in Algorithm 4.

We set that the node send 5 packets in 1 second with packet interval equal to 0.2 second,

Because node can receive at most 5 packets per second.

The second procedure schedules neighbors to send simultaneously to nodes that have the

same wake up slot, as it is exhibited in Algorithm 5.
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Algorithm 4: Traffic Generation_1
Input: nb_nodes
Output: traffic of k packets

1 k ← 0 ;
2 for n ← 0 ... nb_nodes - 1 do
3 sender ← random non isolated node;

/* Isolated node is the node that have 0 neighbor. */

4 list_receivers ← list of neighbors of node sender ;
5 t ← 0 ;
6 for i ← 1 ... 5 do
7 receiver ← random neighbor from list_receivers ;
8 sender send to receiver second t ;
9 k ++ ;

10 t ← t+ 0.2 ;

We used this way of generating traffic to validate the performance of our method when

neighbors transmit to the receiver node in the same slot where it wakes up. Thus, we

generate a high amount of traffic in the entire network.

So, when we use the procedure Traffic Generation_1 in a network of 100 nodes, the

Algorithm 5: Traffic Generation_2
Input: id_nodes
Output: traffic of k packets

1 k ← 0 ;
2 super_frame_length ← length of super frame ;
3 n ← random node from network ;
4 for i ← 0 ... super_frame_length do
5 list_receivers ← list of nodes that receive at slot i in the reservation table of node n

;
/* We set 4 because we assumed that node can receiver 5 packets during its slot */

6 foreach element of list_receivers do
7 for j ← 1 ... 4 do
8 sender ← random neighbor of receiver ;
9 sender send to receiver at second i ;

10 k ++ ;

generated traffic will be 500 packets per 100 seconds, and the use of the procedure Traffic

Generation_2 in a network of 100 nodes and 3 channels in grid topology, generates traffic

of 544 packets. Then, to generate considerable traffic for the evaluation of our method,

we schedule both of procedures several times during simulation.

The configuration of the simulation’s context is shown in Table 4.1.
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Parameter Value
Standard ns3::WIFI_PHY_STANDARD_80211b
Remote station manager ns3::ArfWifiManager
Propagation delay model ns3::ConstantSpeedPropagationDelayModel
Propagation loss model ns3::LogDistancePropagationLossModel
Time of simulation number of nodes in network * 25 seconds
Node Initial Energy 100 J
Transmission gain 1.0 dB
Reception gain 1.0 dB
Channel Switch Delay 250 Micro Second
The radio Idle current 0.273 Ampere
The radio CCA Busy State current 0.273 Ampere
The radio Tx current 0.380 Ampere
The radio Rx current 0.313 Ampere
The radio Channel Switch current 0.273 Ampere
The radio Sleep current 0.033 Ampere
The radio Rx current 0.313 Ampere

Table 4.1: Parameters used in simulation.

4.4.3 Evaluation Metrics

We evaluate the performance according to three metrics: Packet Delivery Ratio, End-

to-End Delay, and Power Consumption.

1. Packet Delivery Ratio

In this experiment, we calculate the ratio of the number of correctly received packets

compared to the number of transmitted packets, as shown in the Equation (4.1).

Packets of initial phase are not considered.

number of received packets
number of transmitted packets

(4.1)

2. End-to-End Delay

In this experiment, we calculate the average time taken by a data packet to arrive

at the destination. It also includes the queue in data packet transmission.The only

data packets that have been successfully delivered to destinations that counted,

using the following formulas: ∑
end to end delay

number of received packets
(4.2)

3. Power Consumption

In this experiment, we calculate the total energy consumption of the device at least
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nine seconds before the end of the simulation time. We use the following formulas:

Power consumption =
∑

Total energy consumption of the device. (4.3)

4.5 Performance Evaluation

4.5.1 Performance in Terms of PDR Metric

Collisions are the main reason why packets do not get received correctly. Collisions

occur when two nodes choose to transmit to the same node. This is exacerbated in

receiver-based slot distribution as all traffic intended for the nodes gets synchronized at

the beginning of the wake-up slot of the destination node.

The frame length may play a role in the amount of collisions, because when node sends

a packet from application layer. The operation of transmitting will be delayed at lower

layer until the nearest slot of the receiver.

For example, nodes 1, 2, 3, and 4 transmit packets to node 5 respectively at seconds: 1,

2, 3, and 4. If the length of frame 1 is 4 and node 5 receives in slot 4, all packets will be

transmitted in the same time to node 5. If frames 1 and 2 have the same length, which

is 2 and node 5 receives in the 2nd slot of frames 1 and 2 then, the packets of nodes 1

and 2 will be transmitted in the second slot of frame 1 and the packets of nodes 3 and

4 will be transmitted in the second slot of frame 2.

The frame length is strongly related to the number max of first hop neighbors of every

node in the network.

The resulted plots from our simulation that represent packet delivery ratio are shown in

Fig. 4.6.

In Figures 4.6b and 4.6c, we show that PDR is not equilibrated, because of the traffic

generating procedure in Algorithm 5, that is based on the table of slot-channel allocation

of a randomly chosen node. If we run this on Example 3.10, and suppose that the

randomly chosen node is 4, Table 3.4 shows that in Frame 1 and 2, Nodes 3 and 6 receive

at the same slot and in the same channel so the probability of collision will be high.

However, if the randomly chosen node is 0, there is not any nodes that receives in the

same slot and channel so probability of collision will be very low.

This plots show that a higher number of channels gives a better performance.
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(a) (b)

(c)

Figure 4.6: Packet delivery ratio in grid and random network topologies.

(a) (b)

Figure 4.7: End-to-end delay average in grid and random network topologies.

4.5.2 Performance in Terms of End-to-End Delay Average Metric

The resulting plots that represent end-to-end delay are shown in Fig. 4.7.
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(a) Drained energy in a network of 3 channels
in a random topology (10 nodes in 500m2).

(b) Drained energy in a network of 2 channels
in a random topology (10 nodes in 500m2).

(c) Drained energy in a network of 1 channel
in a random topology (10 nodes in 500m2).

Figure 4.8: Drained energy in a network of a random topology.

4.5.3 Performance in Terms of Power Consumption Metric

Figures 4.9 and 4.8 represent the performance of our method in terms of energy con-

sumption. We run our simulation in two different configurations. The first one enable

the sleep mode, thus node wakes up during its slots or when it is transmitting. The

second disable sleep mode, thus node stay awake during all the simulation time.

In Fig. 4.10 where we combined power consumption of the 3 channels together, we

remark that when the network has either 1, 2 or 3 channels, the results are almost the

same.

Energy consumption in our method has two sides. The first one saves energy through the

use of sleep mode, which consumes only 0.033 Ampere. The second one drains energy

in the switching between the different channels which consumes 0.273 Ampere, as it is

mentioned in the Table 4.1.
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Figure 4.9: Drained energy in a network of grid topology.

In-multi channel network, node drains the energy during the switch between the channels.

While it economizes energy because it has a low number of wake up slot. As we defined

in Chapter 3, every node wakes up nb_frames time in a super frame, where:

nb_frames =
⌈ n
number of channels

⌉
For that reason, node in multi channel network have lower number of wake up slots than

node in network that have one channel.

On the other hand, the nodes in the network of one channel lose energy since it has a

higher number of wake up slots, and it reduces energy consumption by the absence of

the channel switching.

From Algorithm 3, we find that node in the network of 10 nodes and 1 channel will wake

up 10 times in a super frame, whereas node in multi channel network (3 channels) of 10

nodes will wake up 4 times in a super frame.

So in multi-channel networks, energy drained in switching will be saved in reduced num-

ber of awake slots and the inverse for network of one channel, energy saved without

the switching will be drained in high number of awake slots, this is the reason that



Chapter 4. Implementation and Experimentation 59

(a) Drained energy in a network of a grid topol-
ogy of 3 cases of the number of channels.

(b) Drained energy in a network of a random
topology of 3 cases of the number of channels.

Figure 4.10: Drained energy in different network topologies.

makes drained energy when nodes use the sleep mode in different number of channels

convergent.

4.6 Conclusions

In this chapter, we validated our method of slot-channel reservation by simulation. The

resulted plots represent the performance in the two types of topologies: grid and random,

with different numbers of channels starting from one channel to three channels.

Graphs show that a higher number of channels gives better results and that our method

is not so much affected by the number of nodes in the network. And it achieves good

results even in large networks.



General Conclusions

Due to the ease of deployment of wireless sensor networks in various environments, they

are prominent in several domains such as military, environmental, etc. Although, WSN

have been researched and deployed since decades, energy consumption remains one of

the main problems that WSNs face.

Our objective was to propose a new method to overcome one of the most important

problems of wireless sensor networks, which is energy consumption.

The layer that drains most of energy is MAC, for that reason, we were interested in MAC

protocols, and addressed our method to be implemented at MAC layer.

Our method uses TDMA, and FDMA to allocate slots and channels to nodes in a dy-

namic, and distributed manner. It is based on the concepts of Block Design for the dis-

tribution of slots and channels in WSN. The combination between TDMA with FDMA

helps solve these problems and achieves better performance in terms of either throughput

or energy consumption.

Our method is validated by using NS-3 simulator. The resulted plots from simulation

show that our method is effective in terms of three factors: PDR (Packet Delivery Ra-

tio), EED (End-to-End Delay), and power drain, even in large network. The results we

have obtained show that as much as the number of channels increased, the network gives

better performance.

The core of our method could be tuned to achieve different goals, according to what is

needed. For example, if we aim to avoid hidden node problem, we can develop a sender-

based protocol where the node will reserve a slot in a channel only if those have not

already been allocated to a second hop neighbor. Thus, node will never send at the same

slot and channel with its 2nd hop neighbor, and hidden node problem will be completely

avoided.

Moreover, we could improve this method to be used on mobile networks by only reschedul-

ing the initial phase after every super-frame.
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