
Φ Abstract — This paper set out a new modeling technique of 
air-gap eccentricity in induction motors (IMs) taking into 
account teeth saturation due to the local air-gap flux 
concentration. The approach is based on the inclusion of the 
magnetic saturation into the analytical model by a fictive 
permeance variation. Besides that, it supposes that, in air-gap 
nonuniformity conditions, the well-known saturation factor 
must be updated in function of the spatial-dependant air-gap 
length. The 2D-modified winding function approach (2D-
MWFA) is utilized to get the inductance formalism while 
assuming a linear rise of the saturation factor with respect to 
the air-gap length in a particular circumferential region. We 
show that the proposed model yields more reasonable results 
by confirming that the magnetic saturation effect reduces the 
asymmetry of the air-gap flux distribution due to the 
eccentricity. Furthermore, we highlight this effect by 
inspecting the shapes of the calculated inductances and 
making them ready for a full dynamic simulation in sense of 
multiple coupled circuit model (MCCM).  

Index Terms — Induction motor, 2D-MWFA, convolution, 
FFT, Diagnosis, space harmonics, skew, teeth saturation, static 
eccentricity.  

I.   INTRODUCTION 
INCE the nineties, winding function approach (WFA)-
based modeling of electric machines attracts a growing 

number of researchers and students with a special emphasis 
on faults diagnosis. Although all its recognized versions 
assume until now a radial air-gap field and an infinite 
permeability of iron, which means that the air-gap is the 
main zone of electromagnetic interactions, they have 
proved to be convenient in predicting the behaviors of some 
common fault indexes. Compared to the relevant finite 
elements method (FEM), MWFA exploits advantageously 
the air-gap permeance distortions and yields fast results by 
involving only few constructional parameters. However, 
some criticisms concerning its accuracy and aptitude to deal 
with some practical cases and that in comparison with the 
FEM and the flux models have been mentioned recently 
[1],[2].        
 The slot permeance effect and the nonlinearity of the 
magnetic material are among the major sources of 
disagreement between the results of the FEM and those 
obtained from WFA. In [3], Nandi proposed a model that 
takes into account the permeance of the stator and rotor 
slots by involving the MWFA and the MCCM [4]. Besides 
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that, he discussed slotting effects on the spectral content of 
the line current. While Ilamparithi et al. found in [5] that 
close results held through linear and nonlinear model 
(MWFA and FEM), Faiz et al. in [1] state that, with an 
eccentric rotor, the classical MWFA-based model yields a 
large magnetic field amplitude and further irregularities of 
the air-gap flux density compared to the FEM and the 
experimental measurements. This fact gave way to an 
overestimation of the amplitudes of the fault related 
harmonics. Furthermore, one can find in reference [2] other 
convincing arguments proving the necessity of saturation 
modeling. This was the aim of [6] where the author shows 
that the saturation can also be included into the MCCM and 
MWFA-based model thanks to a fictive air-gap variation 
[7]. In its first version, this model handles the case of 
healthy IM. For the first time, Faiz et al. in [8] enlarge the 
scope of the MWFA by exploring the stator inductance 
fluctuations due to the saturation of the main magnetic flux 
path in case of eccentricity. The total inverse of the air-gap 
function involves components related to both saturation and 
eccentricity such as                           ݃ିଵ ൌ ݃଴ି ଵ. ݃௦௔௧ିଵ . ݃௘௖௖ିଵ                          (1) 

- ݃଴ is the geometrical air-gap length in symmetrical 
conditions. 

- ݃௦௔௧ is the saturation related part of the air-gap 
function to insure the flattened form of the flux 
density. It is calculated in reference to a fixed 
saturation factor for a chosen operational mode. 

- ݃௘௖௖ is the air-gap function part due to the eccentricity.  
 

It is important to note that defining ݃௦௔௧ିଵ  in (1) without 
taking into account the varying air-gap length may indicate 
that the level of saturation depends only on the magnetic 
field position. In order to reach better results, we present 
here a new 2D-MWFA-based model of saturation in IM by 
investigating the fact that, in air-gap eccentricity conditions, 
the saturation factor is a function of the air-gap field 
position as well as the air-gap length. The study is 
supported by the estimation of the flux density shapes and 
the profiles of the derived inductances.  

II.   MODELING OF ECCENTRICITY IN SATURATED IM 

A. Preamble   

By admitting that teeth saturation is most significant than 
corps saturation in operational IMs, the saturation can be 
integrated into the analytical model by assuming a suitable 
decrease of the air-gap permeance with respect to the 
magnitude and position of the main air-gap flux [7]. Even 
in symmetrical conditions, the saturation level is primarily 
related to many factors such as the supply voltage. It 
compares the air-gap flux density to that corresponding to 
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the linear magnetic characteristic in a specified state. This 
leads to the known saturation factor which is indeed a ratio 
able to limit the permeance to a value matching the actual 
air-gap flux density. Therefore, this factor must increase or 
decreases when the permeance itself varies as a 
consequence of a rotor eccentricity. As reported by Ossama 
et al. in [9], the air-gap nonuniformity imposes that the 
saturation level must vary along the machine periphery 
with respect to the flux density value. Accordingly higher 
saturation occurs at the narrow air-gap than at the large 
one. This implies that the reluctance increases considerably 
at the smaller air-gap [10], but it is slightly affected by 
saturation, as far as we even reach the linear magnetic 
characteristic, at the larger one. In the light of this point of 
view, the saturation factor must be adjusted with respect to 
the air-gap length. In other words, we can admit in an 
extended IM model including both saturation and 
eccentricity that, if at an angular position the air-gap length 
is equal to that of the symmetric machine, the fictive air-
gap length is obtained from the common expression given 
in [7] whereas the saturation factor is identified from the 
ratio of the fundamental components of the air-gap voltage 
of the saturated and unsaturated symmetric IM. For any 
other angular position, the saturation parameters must be 
revaluated in order to reflect the local level of the flux 
density tolerated by the iron region.  

B. The inverse of the air-gap function 

The reader can find in [11] one of the methods that deals 
with the modeling of air-gap eccentricity and the 
calculation of IM inductances starting originally from the 
2D-MWFA. It should be noted that, thanks to numerical 
convolution algorithms, there is generally no need for 
Fourier series expansion neither for the inverse of air-gap 
function nor for the turn functions whatever their level of 
complexity. However, this technique is not yet adapted to 
all the known cases. To expose the suggested approach, we 
distinguish here effective quantities when the saturation is 
excluded and fictive ones when we involve the model of 
teeth saturation. In symmetrical conditions, the fictive 
inverse of air-gap function is [7]  ݃ିଵ൫߮, ௙൯ߠ ൌ ௘ܭ ൅ ௠ܭ cos൛2൫݌. ߮ െ         ௙൯ൟ       ሺ2ሻߠ

with:                                     ܭ௠ ൌ 2 · ሼܭ௦ െ 1ሽ3 · ௦ܭ ݃଴ି ଵ                          ሺ3ሻ 

௘ܭ ൌ ௦ܭ ൅ 23 · ௦ܭ ݃଴ି ଵ                                  ሺ4ሻ 

 ௦ is the saturation factor in symmetrical condition, p isܭ
the pole pair number, ߮ is a geometric angle measured with 
respect to a fixed stator reference and the electric angle ߠ௙is 
the position of the air-gap magnetic field as described in 
[7]. As a simple choice of expressing equations and 
formulas in accordance with the plan representation 
introduced in [11] which was the base of adapting the 
convolution based technique in the calculation of the 
inductances [12], we take for any arc of circumference ݔ in 
meter the corresponding arc in radian  ݔෝ ൌ  ,଴. Nowݎ/ݔ

following the above explanation, the inverse of air-gap 
function in an eccentricity condition can be written as         ݃௘௖௖ିଵ ൫ݔ, ,௙ݔ ௥൯ݔ ൌ ሖ௘ሺ݃଴́ሻܭ ൅                                ܭሖ௠ሺ݃଴́ሻ · cos൛2ሺ݌. ොݔ െ  ො௙ሻൟ            ሺ5ሻݔ

with ݔ ൌ ߮. ௙ݔ ,଴ݎ ൌ .௙ߠ ௥ݔ ଴ andݎ ൌ .௥ߠ  ௥is theߠ ଴. Angleݎ
rotor position. As for  ܭሖ௘ and  ܭሖ ௠, they are given by:  

ሖ௠ሺ݃଴́ሻܭ ൌ 2 · ሼܭሺ݃଴́ሻ െ 1ሽ3 · ሺ݃଴́ሻܭ ݃́଴ି ଵሺݔ,  ௥ሻ               ሺ6ሻݔ

ሖ௘ሺ݃଴́ሻܭ ൌ ሺ݃଴́ሻܭ ൅ 23 · ሺ݃଴́ሻܭ ݃́଴ି ଵሺݔ,  ௥ሻ                     ሺ7ሻݔ

with ݃́଴ି ଵሺݔ, ௥ሻݔ ൌൌ  1݃଴ሼ1 െ ௦ߜ · cosሺݔොሻ െ .ௗߜ cosሺݔො െ  ො௥ሻሽ            ሺ8ሻݔ

The minimum effective air-gap is taken at ݔො ൌ 0. 
Equations (5)-(7) signify that ܭሖ௠, ሖ௘ܭ  as well as the 
adjusted or local saturation factor ܭ depend on the effective 
air-gap length ݃଴́which, under air-gap eccentricity 
conditions, depends on ݃଴, ݔ and ݔ௥ . Fig. 1 depicts an 
evolution curve of the saturation factor with respect to ݃଴́ . 
As can be seen, ܭ is delimited by ܭ௠௔௫ and 1 while passing 
through ܭ௦ when the air-gap becomes equal to that of the 
symmetric machine. ܭ௠௔௫  denotes the saturation factor at 
the minimum effective air-gap ݃́଴௠௜௡. One can already 
write  ܭሺ݃଴́ሻ ൌ ሻݔ௦    if     ݃́଴ሺܭ ൌ ݃଴                   (9) 

       

Fig. 1. Evolution model of the adjusted saturation factor as a function of 
the effective air-gap length in case of eccentricity.   

According to (2), the biggest value of the fictive air-gap 
function, which goes with the maximum of the flux density 
curve in a specified condition, can be easily estimated. By a 
reverse reasoning, we can admit that at the position where 
the effective air-gap length in an eccentricity case reaches 
that value, called ݃́଴௨௡௦, no more saturation can occur. This 
is translated as  ܭሺ݃଴́ሻ ൌ 1    if    ݃́଴ሺݔሻ ൒ ݃́଴௨௡௦                     (10) 

and from (2) we get 
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 ݃́଴௨௡௦ ൌ 1 ሺ ܭ௘െܭ௠ሻ⁄                        (11) 

As shown in fig. 1, we assume first a linear rise of the 
adjusted saturation factor K between these two points:  ሺ݃଴, ,௦ሻ and ሺ݃́଴௨௡௦ܭ 1ሻ.  So  ܭሺ݃଴́ሻ ൌ .ܣ ݃଴́ሺݔሻ ൅                                           ሺ12ሻ                         ܥ

Relations (9)-(12) yield 

൞ܣ ൌ ൬14 ௦ܭ െ 1൰ · ݃଴ି ଵ  ܥ ൌ 34 ௦ܭ ൅ 1                                      ሺ13ሻ 

(5)-(8) and (12)-(13) describe completely the suggested 
model of the fictive inverse of the air-gap function when 
the air-gap varies as a consequence of a rotor eccentricity. 

C. Static eccentricity modeling 

The inverse of the air-gap function in case of static 
eccentricity is taken from (8) while considering ߜௗ ൌ 0. 
Even though pure static eccentricity can be modeled 
mathematically, it was shown in previous work that, due the 
ensuing unbalanced magnetic poles, an amount of dynamic 
eccentricity occurs in practice leading to a mixed 
eccentricity form. We begin with a pure static eccentricity 
case by illustrating plots of ܭሺ߮ሻ and ܭሺ݃଴́ሻ related to a 
3kW, 2-pole, 3-phase stator winding. The motor has 36 
stator slots and 28 skewed rotor bars (fig. 2). It can be seen 
that the local saturation factor at the narrowest air-gap for 
40% of static eccentricity reaches a big value over that of 
what can be expected for a typical symmetrical machine 
[6].  

Equations (8) and (12) yield  ܭ௠௔௫ ൌ ௦ܭ ൅ ௦ሺ1ߜ െ  ௦ሻ                    ሺ14ሻܭ0.25

Taking ߜ௦ ൌ 0.4 and ܭ௦ ൌ 1.1 yields  ܭ௠௔௫ ൌ 1.39. For  ݔො௨௡௦ ൑ ොݔ ൑ ߨ2  െ  ො௨௡௦, there is no saturation. Theݔ
substitution of (8) in (11) leads to  ݔො௨௡௦ ൌ ߮௨௡௦ ൌ cosିଵ ൬݃଴ െ ௘ܭ ൅ .௦ߜ௠ܭ ݃଴ ൰          ሺ15ሻ 

 
Fig. 2.  Evolution of the adjusted saturation factor K in function of the 
stator angle (top) and the effective air-gap (bottom) in case of 40% of 
static eccentricity (ܭ௦ ൌ 1.1).  

The fictive inverse of the air-gap function enclosing 
saturation and static eccentricity effects have to be lower 
than the equivalent effective quantity principally at and 
around the minimum air-gap, in particular when the 
position of the flux density maximum reaches that of the 

minimum air-gap. Fig. 3 illustrates an idealized flux density 
shape by considering that the position of its maximum 
coincides with the minimum effective air-gap ሺ ߠ௙ ൌ െ గଶሻ. 
Excluding saturation means that the effective inverse of air-
gap function takes its highest values at that position. The 
other cases allow us to consider that teeth saturation 
reduces the permeance value with proportions specified by 
the adjusted saturation factor. That can be seen through the 
examination of the curve of the fictive inverse of the air-
gap function which looks lower than that of the unsaturated 
case but approaches it when moving away from the position 
of the minimum effective air-gap.  

 
Fig. 3. A typical shape of the fundamental of the flux density (top), the 
inverse of air-gap function under uniform air-gap (middle) and that related 
to static eccentricity (bottom) all for p=1 and ߠ௙ ൌ െ2/ߨ.   

 

Fig. 4. A typical shape of the fundamental of the flux density (top), the 
inverse of air-gap function under  uniform air-gap (middle) and that related 
to static eccentricity (bottom) all for p=1 and ߠ௙ ൌ 0.   
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In fig. 4 related to  ߠ௙ ൌ ො௙ݔ ൌ 0, the fictive inverse of 
the air-gap function takes the same value as the effective 
one at ݔො ൌ 0 because ܤ is null at that position. Elsewhere, 
the ratio ݃௘௖௖ሺ௫ሻିଵ /݃́଴ି ଵሺݔሻ is lower because of the relatively 
lower value of the ratio ݃́଴ି ଵሺݔሻ/ܤሺݔሻ compared to the first 
case.  

D. Prediction of the flux density shapes 

In the spirit of the modeling of teeth saturation by the 
equivalent permeance variation and for an illustrative 
purpose, we suppose only in this section that the magneto 
motive force (MMF) is unaltered by the saturation and that 
only the fundamental air-gap MMF is responsible for the 
saturation harmonics. This assumption is similar to what 
was considered in [2] and [10]. This means that the 
saturation effect on the flux density shape comes only from 
the introduced fictive permeance variation. Later, in the 
iterative process (i.e. when solving the system of state 
variables of the MCCM), some saturation harmonics in the 
MMF might appear. Accordingly, one can admit that      ܤ௦௔௧ ൎ .଴݃ିଵߤ   ሺ16ሻ                               ܨ

where F denotes the fundamental component of the MMF 
and ݃ିଵis taken from (2). This consideration should result 
in a flattened form of the flux density plot. In case of 
eccentricity, we can get a typical shape of the flux density 
from that of F by substituting the fictive inverse of the air-
gap function in (16) by the corresponding one described by 
(5) for saturation and static eccentricity state. Hence ܤ௦௔௧ା௘௖௖ ൎ ଴݃௘௖௖ିଵߤ .  ሺ17ሻ                            ܨ

As shown in fig. 5 and fig. 6, the flux density is 
distributed along the air-gap with a more regular form 
compared to the case when the saturation is excluded. This 
is most evident in fig. 6 and the bottom of fig. 5 related to a 
moment when the maximum flux density coincides with the 
minimum effective air-gap. Note that at  ߮ ൌ 0, the 
saturation action on the flux density is most important 
implying a main effect on its relative plot.   

 
Fig. 5. Typical air-gap flux density wave forms for the cases: with and 
without eccentricity, and by including and excluding saturation.  ߠ௙ ൌ 0 
(top) and ߠ௙ ൌ െ2/ߨ  (bottom).  p=1.  

 
Fig. 6. Typical air-gap flux density wave forms of the eccentric IM when 
including and when excluding saturation.  ߜ௦ ൌ 0.4 (top) and ߜ௦ ൌ 0.2   
(bottom).   ߠ௙ ൌ െ2/ߨ . We suppose here that p=2. 

E. Calculation of the stator-rotor mutual inductance  

The skew of the rotor bars, the linear rise of the MMF 
across the slot, the space harmonics, teeth saturation and 
static eccentricity can now be included into the 2D-MWFA-
based model [11]. However, reference [2] states that slot 
permeance effect could not affect the spectral content of the 
motor current. For this reason and in order to simplify the 
study, this effect is not accounted for by the present model. 
Starting from the usual expression of magnetizing winding 
inductances and mutual inductances, we can get the IM 
inductances related to the static radial eccentricity problem 
by allowing teeth saturation to be taken into account. We 
consider here the winding inductances related to the 
MCCM and we begin with the expression of the mutual 
inductance ܮ஺௥ೕbetween the stator phase A and the ݆௧௛  rotor 
loop while involving the fictive inverse of the air-gap 
function. According to fig. 7, ܮ஺௥ೕ  can be written as [12]   ܮ஺௥ೕ൫ݔ௥, ௙൯ൌݔ ଴ߤ න න ஺ܰ൫ݔ, .௙൯ݔ ݃௘௖௖ିଵ ൫ݔ, .௙൯ݔ ݊௥௝ሺݔ, ,ݖ ௥ሻ௟ݔ

଴
ଶగ௥బ଴ .  ݔ݀ݖ݀

(18) 
with  

஺ܰ൫ݔ, ௙൯ݔ ൌ ݊஺ሺݔሻ െ .ଵି݃ۃ ݊஺ି݃ۃۄଵۄ                     ሺ19ሻ 

݊஺ሺݔሻ ൌ ෍ ݊஺೔ሺݔሻ                             ሺ20ሻజ௜ୀ଴  ଴ is the permeability of the free space, NA and nA are theߤ 
winding function and turns function of stator phase A 
respectively, Ai is the ith coil of phase A and nrj is the jth 
rotor loop turn function. Knowing that ݊௥௝ሺݔ, ,ݖ ௥ሻݔ ൌ ൜1,   ݔଵ௝ ൏ ݔ ൏ , ଶ௝ݔ ଵ௝ݖ ൏ ݖ ൏  ሺ21ሻ     ݁ݏ݅ݓݎ݄݁ݐܱ                                    ,ଶ௝0ݖ

(18) can be rewritten as 
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,௥ݔ஺௥ೕ൫ܮ ௙൯ݔ ൌ ଴ߤ න ஺ܰ൫ݔ, .௙൯ݔ ݃௘௖௖ିଵ ൫ݔ, .௙൯ݔ 1. ൛ݖଶ௝ሺݔ, ௥ሻଶగ௥బݔ
଴െ ,ݔଵ௝ሺݖ .௥ሻሽݔ ݔ݀                                     ሺ22ሻ 

with 

,ݔଶ௝ሺݖ  ௥ሻݔ െ ,ݔଵ௝ሺݖ ௥ሻݔ ൌ ݔ ݎ݋݂  0 ൒ ݔ ڀ ଶ௝ݔ ൑ ,ݔଵ௝ሺݖ ଵ௝   ሺ23ሻݔ ௥ሻൌݔ ቐ0,                                        ݔଵ௝ ൑ ݔ ൑ ൫ݔଵ௝ ൅ .଴ݎ ߛ଴ݎ௥൯݈ߣ ሺݔ െ ௥ݔ െ ݆. ଵ௝ݔ଴ሻ,   ൫ݎ௥ߣ ൅ .଴ݎ ௥൯ߣ ൑ ݔ ൑  ଶ௝    ሺ24ሻݔ

,ݔଶ௝ሺݖ ௥ሻൌݔ ቐ ߛ଴ݎ݈ ሺݔ െ ௥ݔ െ ሺ݆ െ 1ሻ. ,଴ሻݎ௥ߣ ଵ௝ݔ   ൑ ݔ ൑ ൫ݔଵ௝ ൅ .଴ݎ ଵ௝ݔ൯݈,                                                   ൫ߛ ൅ .଴ݎ ൯ߛ ൑ ݔ ൑ ଶ௝ݔ  

(25) 

 
Fig. 7. Plane representation of the crossing of a skewed rotor loop under 
the field of the stator coils.  

where λr=2π/Nb is the rotor slot pitch, Nb the number of the 
rotor bars, αAi the stator coil pitch, γ the skew angle and (x1i, 
x2i) are the coordinates of the ends of the stator coil Ai. The 
rotor loop ends, (x1j, x2j), are defined by considering that xr 
is measured with respect to the first end of the first rotor 
loop such as ቊݔଵ௝ ൌ ௥ݔ ൅ ሺ݆ െ 1ሻ. .௥ߣ .଴    ሺ݅ݎ ଵଵݔ   .݁ ൌ ଶ௝ݔ ௥ሻݔ ൌ ௥ݔ ൅ ሺ݆. ௥ߣ ൅ .ሻߛ  ଴                                          ሺ26ሻݎ

For the particular case of static eccentricity, it is 
important to see that, even with the suggested additions to 
the initial saturation model, the inverse of the air-gap 
function described by (5) remains independent from ݔ௥ . 
Furthermore, it is shown in [12] that the integral bounds in 
the axial direction, (ݖଵ௝, ݖଶ௝), may be viewed as a function 
of one variable ሺݔ௥ െ  ሻ describing a shift instead of theݔ
double variable ሺݔ௥,  ሻ. It means that the convolutionݔ
theorem can be once more a prerogative in order to carry 
out the inductance calculation task. Besides that, we should 
bear in mind that the convenience of this theorem in the 
actual purpose compared to the uniform air-gap situation is 
striking. In the symmetric case, one can prove the 
possibility of obtaining analytical expression of the 
inductance starting from its integral form, whereas in the 
actual case of static air-gap eccentricity it is not evident. 
Accordingly, convolution based solution appears here to be 
more than a choice. Note that in order to apply the 
convolution based technique, we seek to define all the rotor 
position functions using the dummy variable ߦ ൌ ሺݔ௥ െ  .ሻݔ
So taking ݄ሺߦሻ ൌ ሻߦଶ௝ሺݖ െ  ሻ                            ሺ27ሻߦଵ௝ሺݖ

 (22) can be written as ܮ஺௥ೕ൫ݔ௥, ௙൯ݔ
ൌ ଴ߤ  න ஺ܰ൫ݔ, .௙൯ݔ ݃௘௖௖ିଵ ൫ݔ, ௙൯ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ௙ೣݔ ೑ሺ௫ሻ . ݄ሺߦሻ. ଶగ௥బݔ݀

଴                     ሺ28ሻ 

Using (23), (24) and (25) yields ݄ሺߦሻ
ൌ   

۔ۖۖەۖۖ
.െ݈ۓ ሺߦ ൅ ሺ݆ െ 1ሻ. ߛ଴ݎ଴ሻݎ௥ߣ  , ሼሺ1 െ ݆ሻ. ௥ߣ െ .ሽߛ ଴ݎ ൑ ߦ ൑ ሺ1 െ ݆ሻ. ଴ ݈,                                             െݎ௥ߣ ݆. .௥ߣ ଴ݎ ൑ ߦ ൑ ሼሺ1 െ ݆ሻ. ௥ߣ െ .ሽߛ .଴݈ݎ ൭1 ൅ ߛ଴ݎ1 ሺߦ ൅ ݆. .௥ߣ ଴ሻ൱ݎ ,       െ ሺ݆. ௥ߣ ൅ .ሻߛ ଴ݎ ൑ ߦ ൑ െ݆. .௥ߣ ݁ݏ݅ݓݎ݄݁ݐܱ                                                                                            ,଴0ݎ

 

(29) 
Now, a cyclic convolution form holds  ܮ஺௥ೕ൫ݔ௥, ௙൯ݔ ൌ ଴ߤ  ቀ ௫݂೑ כ ݄ቁ ሺݔ௥ሻ                ሺ30) 

A discrete form of (30) results from the division of an 
interval of size 2.π.r0 into m sampled values at equal 
intervals. The vector corresponding to the inductance 
values with respect to the rotor position corresponds to the 
m appropriate values resulting from the discrete 
convolution so as ቀܮ஺௥ೕቁ௠ ൌ .߂ ..଴ߤ ௫݂೑ כ ݄                      ሺ31ሻ  

with   ߂ ൌ ଴ݎߨ2 ݉                                   ሺ32ሻ⁄  

Many computer codes use convolution theorem to build 
convolution-based subroutines. For instance, the use of 
MATLAB function ‘conv’ is enough is such a case. 

F. Calculation of the rotor inductances  

The same analysis yields all the rotor inductances such 
as: ܮ௠௥௝൫ݔ௥, ௙൯ݔ ൌ .଴ߤ଴݈ݎߨ2 ቆ݃ۃ௘௖௖ିଵ . ݊௥௝ۄ െ ௘௖௖ିଵ݃ۃ . ݊௥௝ۄଶ݃ۃ௘௖௖ିଵ ۄ ቇ   ሺ33ሻ 

,௥ݔ௥ೖ௥௝൫ܮ ௙൯ݔ ൌ .଴ߤ଴݈ݎߨ2 ቆെ ௘௖௖ିଵ݃ۃ . ݊௥௝ۄ · ௘௖௖ିଵ݃ۃ . ݊௥௞݃ۃۄ௘௖௖ିଵ ۄ ቇ  ሺ34ሻ 

with  ݇ ് ݆  and    ݃ۃ௘௖௖ିଵ . ݊௥௝ۄ ൌ ଴݈ݎߨ12 න ݃௘௖௖ିଵ ൫ݔ, ௙൯ᇣᇧᇧᇤᇧᇧᇥ௙ೣݔ ೑ሺ௫ሻ . ݄ሺݔ௥ െ .ሻݔ ଶగ௥బ଴ݔ݀   ሺ35ሻ 

As ݃ۃ௘௖௖ିଵ  do not depend on the rotor position, it is ۄ
calculated only once for each magnetic field position using 
a simple numerical technique. 

G. Calculation of the stator inductances  

Practically, since stator magnetizing inductances do not 
vary with respect to xr, there is no need to use convolution-
based technique or to search analytical expressions of the 
stator magnetizing inductances. Accordingly, for any value 
of xf, the stator inductances can be calculated only once 
using a classical numerical technique.    
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III.   NUMERICAL RESULTS 
The described technique was applied to the same 2-pole 

IM as previously. Fig. 8 to fig. 11 depict the curves of the 
calculated stator and rotor inductances and their first 
derivatives with respect to the rotor and air-gap field 
positions. Clearly, the added part of the permeance function 

due to saturation can be seen to affect the shapes of the 
inductances and their derivatives. We take similar 
observations as regards the rotor-stator mutual inductance 
and its derivatives (fig. 12 to 14). The main remark is that 
for ߠ௙ ൌ െ2/ߨ േ  the inductances are more affected by a ߨ
significant decrease due to the local overflux concentration. 

 
Fig. 8.  First rotor loop magnetizing inductance ܮ௠௥భin function of ߠ௥ and ߠ௙ for ሺߜ௦ ൌ 0.4, ௦ܭ ൌ 1ሻ (left), ሺߜ௦ ൌ 0, ௦ܭ ൌ 1.2ሻ (middle) and ሺߜ௦ ൌ 0.4, ௦ܭ ൌ1.2ሻ (right).  

 
Fig. 9.  First derivative of  ܮ௠௥భwith respect to ߠ௥  for ሺߜ௦ ൌ 0.4, ௦ܭ ൌ 1ሻ (left), ሺߜ௦ ൌ 0, ௦ܭ ൌ 1.2ሻ (middle) and ሺߜ௦ ൌ 0.4, ௦ܭ ൌ 1.2ሻ (right).  

 
Fig. 10.  Mutual inductance between the first rotor loops  ܮ௥భ௥మ for ሺߜ௦ ൌ 0.4, ௦ܭ ൌ 1ሻ (left), ሺߜ௦ ൌ 0, ௦ܭ ൌ 1.2ሻ (middle) and ሺߜ௦ ൌ 0.4, ௦ܭ ൌ 1.2ሻ (right).  

 
Fig. 11.  Magnetizing inductance of stator phase A in function of ܭ௦ and ߠ௙in symmetrical condition (left) and that related to 40% of static eccentricity 
(middle) as well as its first derivative with respect to ߠ௙ (right). 
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Fig. 12. Rotor-stator mutual inductance ሺܮ஺௥భሻ in saturation condition in 
function of the rotor and field position (ܭ௦ ൌ 1.2). Uniform air-gap (left) 
and 40% of static eccentricity (right). 

 
Fig. 13. First derivative of the rotor-stator mutual inductance ሺܮ஺௥భሻ with 
respect to ߠ௥ in saturation condition in function of the rotor and field 
positions (ܭ௦ ൌ 1.2). Uniform air-gap (left) and 40% of static eccentricity 
(right). 

 
Fig. 14. First derivative of the rotor-stator mutual inductance ሺܮ஺௥భሻ with 
respect to ߠ௙ in saturation condition in function of the rotor and air-gap 
field positions (ܭ௦ ൌ 1.2). Uniform air-gap (left) and 40% of static 
eccentricity (right). 

IV.   CONCLUSION 
A new 2D-MWFA-based model of air-gap eccentricity 

in saturated IM was proposed to highlight the saturation 
effect on the flux density and the inductances. It considers a 
linear rise of the saturation factor along a particular region 
of the air-gap circumference. Saturation modeling in the 
air-gap eccentricity conditions can be done efficiently 
thanks to the described model which provides a full 
impedance calculation. Especially for a 2-pole motor, there 
is no concern as for the homopolar component arising from 
eccentricity [13]. Furthermore, we can consider the current 
as a state variable in an iterative resolution process of the 
IM circuital equations and then predict some of the motor 
behaviors via the current spectral content. The authors plan 
to complete this task in their future works.  
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