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Abstract 

i 

 

Abstract: The simulation of the Immune System (IS) is extremely complex due to the 

high mechanisms and interactions existed behind it; however great models have been 

issued to better understand these mechanisms and interactions. Our work is 

motivated by this challenge for the ultimate aim to enrich the existing IS models that 

are recently taking place. The current presented work is an attempt to simulate the 

first humorol immune response initiated in the Lymph Node organ against both T-

Independent and T-Dependent antigens. The model is developed under the AnyLogic 

simulation tool and it’s a Multi-Agent system based model in which the behavior of 

the constitute agents are modeled using the Statecharts formalism. The results issued 

from our AnyLogic simulation respects several immunology experimentations (B-Cell 

activation, proliferation, differentiation and antibody generation). 

Key words:  Simulation, first humoral immune response, Lymph Node, AnyLogic, 

Multi-Agent system, Statecharts. 

Résumé: La simulation du système immunitaire (SI) est extrêmement complexe due 

aux hautes mécanismes et d’interactions qui existent derrière lui; cependant des 

modèles considérables ont été élaboré afin de mieux comprendre ces mécanismes et 

interactions. Notre travail est motivé par ce défi pour le but d'enrichir les modèles  

existants du SI qui ont été récemment utilisés. Le présent travail est une tentative 

pour simuler la première réponse immunitaire humorol monté dans les lymphatiques 

organes contre les antigènes de type T-indépendants et celui de type T-dépendantes. 

Le modèle est un système multi-agent développé sous l'outil de simulation AnyLogic 

dans lequel les comportements de chaque agent du système sont modélisés en 

utilisant le formalisme Statecharts. Les résultats issus de nos simulation AnyLogic 

respectent plusieurs expérimentations immunologiques (activation des cellules B, la 

prolifération, la différenciation et la génération d'anticorps). 

Mots clés: Simulation, première réponse immunitaire humorale, les ganglions 

lymphatiques, AnyLogic, System Multi-Agent, Statecharts. 

إٌ انتحذٌاخ انتً ًٌُحٓا يحاكاج َظاو انًُاػح تسثة اَنٍاخ ٔانتفاػلاخ تانغح انصؼٕتح انتً تًٍزِ، أدخ إنى  : الخلاصة

ٔ انذافغ يٍ ٔساء انؼًم انزي َحٍ تصذد تقذًٌّ .  يٍ ًَارج انكًثٍٕتش نفٓى أفضم نٓزِ اَنٍاخ ٔانتفاػلاخدتطٌٕش انؼذي

إٌ تحثُا ْزا ْٕ يحأنح نًحاكاج الاستداتح . ْٕ إثشاء قائًح ْتّ انًُارج انتً تذأخ تأخز يكآَا فً أََح الأخٍشج

 ٔ انتً T-Dependent ٔ راخ انُٕع T-Independentراخ انُٕع  انًُاػٍح انخهطٍح الأنى ضذ كم يٍ يستضذاخ

انًُٕرج انًقذو ُْا ْٕ َظاو يتؼذد انٕكلاء تى تطٌٕشِ تاستخذاو أداج . تدشي خصائصٓا فً أػضاء انؼقذ انهًفأٌح

ٔ تظٓش انُتائح انًتحصم . Statecharts   حٍث أٌ سهٕك كم ٔكٍم تى ًَزختّ تاستخذاو   تقٍُح  AnyLogicانًحاكاج 

،  Bتُشٍط انخلاٌا )ػهٍٓا يٍ خلال يحاكاتُا نٓتّ الاستداتح أٌ انؼذٌذ يٍ انتداسب انًُاػٍح تى احتشايٓا ػهى غشاس 

 .(تكاثش انخلاٌا ٔ تًاٌزْا، ٔتٕنٍذ ألأخساو انًضادج

، َظاو يتؼذد انٕكلاء ، AnyLogicانًحاكاج، الاستداتح انًُاػٍح انخهطٍح الأٔنى، انؼقذج انهًٍفأٌح،  : الكلمات المفاتيح

Statecharts. 
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Introduction 

The human immune system is one of the most complex, adaptive, highly 

distributive learning systems that exist in nature. This amazing system operates at 

multiple levels [1] (molecules, cells, organs, and organisms); for the ultimate goal to 

defend the human body against foreign pathogens. Each human individual has tens of 

immune system organs and some 1012 immune cells that belong to multiple types and 

subtypes. These cells produce molecules that act as initiators, regulators, and 

effectors of the immune function.  

The powerful information-processing capabilities of the immune system, such 

as feature extraction, pattern recognition, learning, memory, and its distributive 

nature provide rich metaphors for its artificial counterpart. From 1985 to now there 

has been an increased researches interest in immunity-based techniques and their 

applications. Some of these models [2] are intended to describe the processes that 

occur in the immune system to have a better understanding of the dynamic behavior 

of immunological processes and simulate immune system’s dynamic behavior in the 

presence of antigens/ pathogens.  

1. Motivation: Immune system features 

The immune system is characterized by several features that have let great 

researches to be interested in. The following ones which are cited in the work of [3] 

seek to motivate what takes to formally modeling the behavior of the immune system: 

An immune system is a highly distributed communicating system: An immune 

system consists of a number of independent components (for example cells, antigens, 

etc) in which each element performs a small, specific task and coordinates one 

another. The coordinated individual components play an important role in the 
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production of the immune system behavior via the very high number and kinds of 

interactions between them.  

An immune system is diverse: cells; that are implicated in the immune response 

and belong to the same class; differ from one another in a manner that entails a cell’s 

ability to non-self detection. Hence the noticeable thing for one might be unnoticeable 

for others. As consequence an immune system is highly robust due the diversity of its 

cells.  

An immune system is mobile: the raison that the constitute immune system are 

on continuous circulating in the body aiming to raise its possibilities to successfully 

detect antigens and to accomplish its recognition abilities; yields to the mobility 

feature which is an essential for performing the immune system.  

Also an immune system is highly dynamic: the dynamic feature of the immune 

system resides in the changes of the components number of the same kind, as well as 

the structure of the entire system; that are noticed over time and with regards to 

circumstances. For instance, some cells may live a few days; other will survive much 

longer.  

2. Simulating the Immune system 

Simulating the immune system is a challenge that involves multidisciplinary 

efforts. In immunology [1], simulators are used to get answers to a variety of 

questions, including understanding the general behavior of the immune system, the 

causes of disease, effects of treatment, analysis of cellular and molecular interactions, 

and simulation of laboratory experiments. Models and simulations have proven 

useful in studying the roles of single constituents and simple interactions, planning of 

experiments, testing theoretical assumptions, and even highly abstract tasks such as 

suggesting theory modifications. 

Immune system simulators will be required if there is to be a significant 

increase in the generation of new immunological ideas, because computational 

simulation is considerably faster than lab experiments. Simulations may even allow 

researchers to answer questions that are impossible to explore using wet lab 

techniques, such as the total interactions of an individual B cell during its lifetime. 

Normally, however, simulations will be used to assess the validity of immunological 

theories.  



Introduction 

 3 
 

Several works have been taken place to carry out the simulation of the immune 

system; all of them don’t seek to simulate the whole phenomena launched during an 

immune system response but only a part of it is taken into account due to the very 

height complexity of the immune system. The most important works are around four 

main models: (1) the Differential Equations (DE) based models, (2) the Cellular 

Automata (CA) based models, (3) the Agents based models (ABM) and (4) the 

Reactive Animation (RA) based models. 

The DE based models are traditional top-down approaches based on continuous 

simulation technique in which a system is modeled by a set of mathematical 

differential equations that intend to give an average behavior of the modeled system; 

so only a minimum number of homogenous entities of the system are carried out. 

These models are difficult to be used in such situation when the behavior of the 

modeled system is non-linear. 

The CA based models are bottom-up approaches seeking to simulate 

homogenous agents in the microscopic level. The systems to be modeled via these 

methods are considered as fully discretized dynamical systems based on local 

interactions; thus space, time, and states of the modeling system are discrete. The 

resulting simulation that is in exponential increase with the number of entities is 

generated by a synchronous update of all entities (cells) on the regular spatial lattice.  

The ABMs are also bottom-up approaches that are mostly used to simulate a 

large number of agents interacting with each other in both synchronous / 

asynchronous way. In this modeling method that has wider model scope than CA 

based one: Agents are heterogeneous and they are specified at individual level 

(microscopic); they can sense their environment and can also change the state of its 

environment 

Finally the RA technique which has been recently used to simulate reactive 

systems those are on continuous interactions with their environments by the use of 

inputs and outputs. The RA technique seeks to combine state-of-the-art reactivity and 

state-of-the-art animation by linking two modeling tools: the Statecharts formalism 

with a front-end animation tools. The Statecharts technique is a visual formalism that 

can be considered as a combination between bottom-up and top-down approach for 

the raison that they can enable us describing systems at multiple levels, and  zooming 
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in and zooming out between these levels. The resulting executable reactive machine 

code generated by compiled Statecharts has been then combined with front-end 

animation engines such as flash engine or other 3D engines to give more realistic 

visualization simulation. 

3. Contributions 

In our work we have tried to take advantage of the different models that have 

been cited above aiming to give a first attempt to model the immune system response 

using a Statecharts based agent model in our laboratory. The model proposed in this 

essay is based on the AnyLogic simulation tool which proved to be a sufficient 

platform for the modeling of Multi-Agents systems as it allows a convenient 

Statecharts and state events implementation. 

 In our proposed model, we have modeled the behavior of the humorol immune 

first response mounted in the Lymph Node (LN) against both the T-Dependent and 

the T-independent antigens. The whole system is viewed as a multi-agents system in 

which: the agents behaviors are Statecharts based models and the interactions 

between constitutes agents are based on events. The proposed model; that has been 

developed using the AnyLogic simulation tool under an Evaluation License only; is 

inspired from the model of the LN B-Cell immune response proposed in the wok of [4] 

which is based on the RA technique; our model re-take parts of its suggested 

Statecharts based behavior of the B-Cell Immune Response and adapt it in the 

AnyLogic simulation tool.  

The work cited in this thesis doesn’t simulate the whole immune humoral 

immune response process launched as an antigen is encountered in LN; the profound 

levels such as the details of the communication signals between B-Cells and 

encountered antigens and those between B-cells and T-Helper Cells are not taken into 

account due to the high complexity of these immune interaction. Contrary to the work 

suggested in [4] in which the proposed Statecharts have a concurrent state (also 

called orthogonal state; which is one of the most advanced features of the Statecharts 

formalism that allow the concept of parallelism); ours doesn’t support this concept 

for the raison of the limitation of the AnyLogic simulation tool which is in its actual 

version doesn’t support orthogonal Statecharts. However we have simulated this 

feature on profiting from the ability of the AnyLogic simulation tool to create multi-
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statecharts for the same agent. These multi-statecharts can be executed on parallel 

manner with the same execution fashion of orthogonal states. 

The AnyLogic model of the B-Cells LN first humorol immune system response 

suggested in this essay; isn’t only the first challenge that has been initiated in our 

laboratory but also it’s the first attempt to carry out the simulation of an immune 

response using the AnyLogic tool. 

4. Organization 

The present thesis is organized in conventional manner around four chapters in 

which the first one aims to give an overview of the immunology background; the 

functional of the immune system, its layers, its different organs and components are 

briefly presented in this chapter. The second chapter is focusing on the different 

computational models that have been taken place in order to model and simulate the 

immune system, a comparison between the different models are also presented at the 

end of this chapter. The third one seeks to present an overview of the combined 

model to be adopted in the present work. a presentation of the AnyLogic simulation 

environment and its features are viewed in the first section of the fourth chapter; 

which illustrates in a deep fashion our AnyLogic proposed model for the B-Cells LN 

first humoral immune response; at the end of this chapter a discussion of the 

resulting simulation results, suggestions and future works are given. 
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Chapter I 

Immunology Background 

Immunology is a domain looking first of all to understand how the human body 

protect himself face to the various micro-organisms present in the environment [5]. 

It’s considered as one of the most domains that provide a research challenge due to 

the complexity, the adeptness and the high distributiveness features that it 

characterizes. 

In this chapter we are looking for giving an immunology background; in which 

we present an overview of the main immune system components (organs, cells, 

molecules …) and their functionalities, followed by illustrating a detail process of 

mounting a Lymph Node humoral immune response against T-Dependent and T-

Independent antigens. 
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1. The task of the immune system 

The immune system is considered as a multi-layer system that protects the body 

against disease; it’s made up of a network of cells, tissues, and organs that work 

together in a complex and highly regulated way to drive back foreign organisms from 

the body [6]. The crucial cells that are involved include white blood cells, or 

leukocytes, which come in two basic types that combine to seek out and destroy 

disease-causing organisms or substances [7]. 

The features that characterize the immune system make it amazingly complex; 

such features are [8]: its capability to remember and recognize millions of different 

enemies, in addition its remarkable ability to distinguish between the body’s own 

cells (Self) and foreign cells (non-self).  

The body’s immune system is triggered immediately when the immune 

defenders encounter cells or organisms that are recognized as “foreign”. The foreign 

cell (which can be a microbe such as a virus or a part of microbe such as molecule) is 

called “antigen” [8]. The process of attack that is initiated instantly by the immune 

system is than called “immune response”. 

2. Functional Elements of the Immune System 

As we have mentioned in the previous section, the immune system is a 

collection of organs, cells, and molecules responsible for dealing with potentially 

harmful invaders. The following section illustrates the most implicated immune 

components during an immune response. 

2.1. Organs 

The immune system is composed of two classified organs [Fig 1.1]: central 

lymphoid organs and peripheral lymphoid ones [9]. The central lymphoid organs 

participate in the generation and the assistance of the mature lymphocytes. The 

organs that are involved are the bone marrow and the thymus. Whereas the 

peripheral lymphoid organs aim to facilitate the interaction that are taken place 

between lymphocytes and antigens. These organs incorporate lymph nodes, the 

spleen, and mucosal and submucosal tissues of the alimentary and respiratory tracts. 

In the below section a brief overview of each of these organs is presented: 
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Fig 1.1: the functional components of the biological immune system [9]. 

2.1.1. Bone Marrow 

The bone marrow is the organ where naïve immune cells are initially generated 

and then derived through the process of hematopoiesis [9]. During this process, two 

distinguished classes of stem cells are produced: either matures immune cells that 

perform immunological function, or precursors of cells that migrate out of the bone 

marrow for the continuity of their maturation process away. The bone marrow also 

generates B-Cells, natural killer cells, ranulocytes, and immature thymocytes.  

2.1.2. Thymus 

For abstraction raison [9], the thymus organ is where mature T-Cells are 

formed. These mature T-cells which are beneficial to the immune response are then 

released into the bloodstream to perform immunological functions. 
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2.1.3. Spleen 

It’s in this organ that [9] foreign substances are captured after they have been 

brought by migratory macrophages and dendritic throw the bloodstream that enters 

the spleen. 

This organ can be viewed as an immunological “conference center” in which B 

cells become activated and generate large numbers of antibodies in one of its 

factories, called the general center. Moreover, old red blood cells are destroyed in the 

spleen. 

2.1.4. Lymph Node (LN) 

LNs are distributed throughout the whole body and they are considered as 

immunologic filter [9] for the lymph fluid. Alike the spleen, an immune response is 

initiated in the LN via macrophages and dendritic cells that capture and present 

antigens to T-Cells and B-Cells. 

2.2. Immune Cells and Molecules 

It’s in the bone marrow that all the immune cells are generated as an immature 

stem cells [7] which than respond to different cytokines and other signals to develop 

into either myeloid progenitor cells or into lymphoid progenitor ones. 

The cells that are involved by the myeloid progenitor cells are: monocytes, 

macrophages, neutrophils, eosinophils and basophils. Their response to infection is 

initiated in a premature and nonspecific manner. By Contrast; the lymphoid 

progenitor cells become small white blood cells known as lymphocyte which initiate 

lately a response to infection. B-Cells and T-Cells are the two major classes of this 

type of progenitor cells. 

The [Fig 1.2] shows a hierarchical diagram of the foremost cells that take part in 

immune response. The following section describes them in some details. 

2.2.1. B-Cells 

B-Cells are specialized lymphocytes that are responsible to generate and secrete 

substances called antibodies, which bind to specific antigens. The process of 

producing these antibodies begins when a B-Cell [8] encounters its triggering antigen 

and becomes an activated B-Cell which then proliferates and differentiates into either 
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large cell known as plasma cell or into memory B-Cell. Each plasma cell [9] is 

responsible for manufacturing millions of identical antibody molecules and pours 

them into the bloodstream to attack infected cells. 

 

 

Fig 1.2: Immune cells that contribute to immune response [9]. 

2.2.2. Antibodies 

Antibodies (Abs) are specific molecules that are produced by plasma cells and 

that they belong to the immunoglobulin (Ig) molecules class. 

As it’s mentioned in the [Fig 1.3]; each antibody is made up of two heavy chains 

and two light chains [8]. An antigen is recognized when it matches to the antigen 

variable region, which differs from one antigen to another. 

Scientists have identified nine chemically distinct classes of human 

immunoglobulins [8, 9] that play different roles in the immune defense strategy, four 

kinds of IgG and two kinds of IgA, plus IgM, IgE, and IgD. 



Chapter I: Immunology Background 

 
11 

 

Fig 1.3: Structure of an antibody [8]. 

 

2.2.3. T-Cells 

T-Cells are particular kind of immune cells that contribute in the immune 

defences in two essential ways [8]:  some direct and stabilize immune responses; 

others directly attack infected or concerous cells. The major subpopulations of these 

T-Cells are Helper T-Cells (Th cells), Killer T-Cells (cytotoxic T Lymphocytes)and 

Memory T-Cells.Th cells contribute in the immune response by stimulating nearby B-

Cells to form antibodies, or by participating in activating other T-Cells. Killer T-Cells 

directly attack cells that hold certain abnormal molecules on their interfaces. Wheras 

Memory T-Cells form a pool that will remember earlier immune responses. 

2.2.4. Major Histocompatibility Complex (MHC) 

MHC molecules are known as proteins [8, 9] that; for the raison to provide a 

recognizable scaffolding to present a foreign antigen to the T-Cells; they bring sites 

polypeptides to the cells’ exterior surface from inside the cells they are a part of. 

The two most important MHC proteins classes that are mentioned in this 

essayare [9]: 

 MHC I molecules: they exist in almost every nucleated cell of the body 

playing a role in presenting antigens to cytotoxic T-Cells.  

 MHC II molecules: only a few specialized cells types; such as 

macrophages, dendritic cells, activated T and B cells; can hold this MHC 

class which presents antigens to helper T-Cells. 
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2.2.5. Phagocytes and their relatives  

Phagocytes are large kind of white cells that are able to eat and absorb microbes 

and other foreign particles [9]. They are categorized into monocytes, macrophages, 

granulocytes, neutrophiles, eosinophils and basophils.  

Each category has certain functionalities [8]. For example [Fig 1.4] monocytes 

develop into macrophages when they migrate into tissues; macrophages act as 

hunters: riding the body of used up cells and others rubbish, displaying some foreign 

antigens with drawing the attention of matching lymphocytes, as well churning out a 

remarkable variety of powerful chemical signals (monokines) that are vital to the 

immune responses; granulocytes contribute mostly in inflammatory and allergy 

responses, they destroy microorganism with the assist of its granules full of potent 

chemical; neutrophiles ingest microbes and kill them using its prepackaged chemical; 

eosinophils and basophiles are kinds of granulocytes that “degranulate,” spraying 

their chemicals onto harmful cells or microbes nearby. 

 

Fig 1.4: types of phagocytes [8]. 
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2.3. Layers of the Immune System 

The immune system can be considered as a multilayer system in which different 

types of defense mechanisms are the constitute component of each layer.  Biologic 

scientists have distinguished three major layers [9]: the anatomic barrier, the innate 

immunity, and the adaptive immunity. These layers can be classified [Table 1.1] into 

two main categories: nonspecific and specific defense mechanisms. In the nonspecific 

category; the same type of immune response is generated for any pathogen entering 

the body. Whereas in the specific category; a process of recognizing particular 

pathogens is launched. 

Nonspecific defense mechanisms Specific defense 
mechanisms 

First line of defense: 
Anatomic barrier 

Second line of defense: 
Innate immunity 

Third line of defense: 
Adaptive immunity 

 Skin 
 Mucous membranes 
 Secretions of skin and 

mucous 
 membranes 

 Phagocytic white blood cells 
 Antimicrobial proteins 
 Inflammatory response 

 Lymphocytes 
 Antibodies 

Table 1.1: Biological defense mechanisms [9]. 

In the section below, a brief description of each layer is presented: 

2.3.1. Anatomic Barrier 

Although the anatomic barrier; which is composed of the skin and the surface of 

mucous membranes; is the first defense line that emphasizes pathogens and inhibits 

most bacterial growth, many other pathogens can escape this layer and enter the 

body by penetrating through the mucous membranes. 

2.3.2. Innate Immunity 

Innate immunity [10] refers to all defense mechanisms against foreign 

pathogens that individuals are born with. Innate immunity is mainly composed of the 

following mechanisms: 

 Phagocytic barriers. Some specialized cells (like macrophages, neutrophils, 

and natural killer cells) are able to ingest foreign substances, including whole 

pathogenic microorganisms. This ingestion has two purposes: to kill the 
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antigen and to present fragments of the invader’s proteins to other immune 

cells and molecules. 

 Inflammatory response. Activated macrophages produce cytokines (hormone 

like protein messengers), which induce the inflammatory response 

characterized by vasodilatation and rise in capillary permeability. These 

changes allow a large number of circulating immune cells to be recruited to the 

site where an infection occurs.  

2.3.3. Adaptive Immunity 

Adaptive immunity [9], also called acquired or specific immunity, represents the 

part of the immune mechanism that is able to specifically recognize and selectively 

eliminate foreign microorganisms and molecules. 

Adaptive immunity produces two types of responses in the presence of 

pathogens: humoral immunity and cellular immunity. The humoral immunity is based 

on the synthesis of antibodies by B cells; however, in cellular immunity, T cells cause 

the destruction of microorganisms that carry invading antigens and those self-cells 

that have been infected. 

 Humoral immunity. Humoral immunity is mediated by antibodies contained 

in body fluids (known as humors). The humoral branch of the immune system 

involves B cell/antigen interaction, and the subsequent proliferation and 

differentiation of B cells into antibody-secreting plasma cells. Antibodies 

function as effectors of the humoral response by binding to antigens and 

facilitating their elimination. 

 Cellular immunity. Cellular immunity is cell-mediated; thus, effectors T cells, 

generated in response to an antigen, are responsible for cell-mediated 

immunity. Cytotoxic T lymphocytes (CTLs) participate in cell-mediated 

immune reactions by killing altered self-cells; they play an important role in 

killing virus-infected- and tumor cells. Cytokines secreted by TDH cells can 

mediate cellular immunity, and activate various phagocytic cells, enabling 

them to kill microorganisms more effectively. This type of cell-mediated 

immune response is especially important in host defense against intracellular 

bacteria and protozoa. 
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3. Overview of Humoral immunity Response 

The Humoral immunity refers to the production of antibodies and the accessory 

processes that accompany it in response to an antigen. It’s mediated by secreting 

antibodies which are produced in the lymph node via plasma-cells which are also 

generated by activated B-cells [10].  

The humoral immunity process begins when an encountered antigen is 

recognized in the body. At this moment and relating to how often the encountered 

antigen is recognized; one of two responses might be mounted: the primary antigen 

response or the secondary antigen response one. These two antibodies responses 

differ quantitatively and qualitatively.  

The schema illustrated in the [Fig. 1.5] shows a general overview of the 

initiating process for those responses. The primary antigen response results from the 

first exposure to a microbe or an antigen which lead to the activation of unstimulated 

naïve B lymphocytes [10],[11]. These activated B cells enter so on into the phase 

called clonal Expansion where large clones of identical cells are produced; the 

proliferating cells will than differentiate into antibody-producing plasma cells and 

memory cells. Some of the antibody producing cells migrate to the bone marrow and 

live in this site for several years; the others circulate in the blood and participate in 

the process of destructing or neutralizing antigens. 

The secondary antigen response is due to the stimulation of memory B cells 

triggered by the second exposure or more of an antigen [10, 11]. The activated 

memory B-cells take again the same cycle of proliferating and differentiating 

processed in the first response with a high level of protection. 
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Fig 1.5: Primary & secondary immune response process [11]. 

 

The humoral immunity might be stimulated via two kinds of antigens: one is 

called a T-dependent antigen and the other is known as a T-independent one: 

3.1. Response to T-Dependent Antigens 

T-dependent antigens, which are the most existing ones, are those that need the 

implication of the T-helper cells (Th4) in the process of mounting an humorol 

response. This means, cooperation between the antigen-specific B cells and T 

lymphocytes must be processed in order for naive B-lymphocytes to proliferate, 

differentiate and mount an antibody response against these T-dependent antigens.  

The entire process is illustrated in [Fig. 1.6]: the interaction between antigens 

and both helper T-Cells and B-Cells involve sequentially antigen presentation to both 

T-Helper Cells (via antigen presentation cells (APCs) in conjunction with MHC II 

molecules) and B-Cells (via B-Cells Receptors (BCRs)) which also express antigen-

MHC complexes) [11],[12].  

The interaction between helper T-Cells and B-Cells entail the activation of the B 

cells which enter the cycle of proliferating and differentiating to plasma-cells and 

memory-cells. This interaction induces a sequence of surface receptor binding and 

cytokine production that results in B-cell activation, proliferation and differentiation. 
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(1) Binding of the T cell receptor (TCR) to MHC induces the T cell to produce CD40L, 

which binds to CD40 on the B cell, producing a major stimulatory signal. (2) CD28 on 

the T cell then interacts with B7 on the B cell (co-stimulatory signal). Cytokines are 

also involved. 

 

Fig 1.6: B-Cell activation process [11]. 

3.2. Response to T-Independent Antigens 

Contrary to T-Dependent antigens, the T-Independent ones are those that they 

stimulate mounting the humorol immune response in the absence of Helper T-Cells. 

The process of activation, proliferating and differentiating of B-Cells is than launched 

directly without the requirement of helper T-Cells. This is caused by the fact that 

many non-protein antigens such as polysaccharides and lipids can’t be recognized by 

helper T-Cells for the reason that they are not processed and presented along with 

MHC proteins.  

3.3. Process of Lymphocyte recirculation 

We have viewed in the previous section that an humorol immune response can 

be mounted against two kinds of antigens (T-dependent and T-independent antigens) 

and we have seen also the process of activating, proliferating and differentiating of 

lymphocytes (B-Cells). But the question that might be asked heir is where these entire 

actions do are carried on? In other term in which part of the body these actions will 

be taken place? 
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3.3.1. Structure of Lymph Node  

We have showed above the immune system organs that are implicated during 

an immune response against antigens. One among them is the Lymph nodes which 

are secondary lymphoid organs that are considered as sites of lymphocytes-antigens 

interaction and lymphocytes-other immune cells interaction. Lymph nodes act as 

filters that are sampling lymphatic fluid for bacteria, viruses, and foreign particles [4]. 

It’s in these organs that the process of mounting an immune response against an 

antigen is launched; the meeting and the interaction between the antigen and the 

various immune cells type implicated in the process of mounting such immune 

response (including B-Cells, Helper T-Cells) is than entirely orchestrated by the 

Lymph nodes. 

An illustrated schema presented in [Fig. 1.7] shows the different major regions 

that compose a Lymph node:   

 Afferent lymphatic: drain lymph fluid from tissues, including antigen 

presenting cells (APC) and antigen from infected sites to the lymph node 

(LN).  

 HEV (High Endothelial Venules): the capillary walls where T and B cells 

enter the LN from the blood. Paracortex: the T cell zone. 

  Primary Follicles (PF): where B cells are localized, includes Follicular 

Dendritic Cells (FDC’s). 

  Germinal Center (GC): is formed when activated B cells proliferate in the 

PF.  

 Medullary Cords: where plasma cells secrete Antibodies.  

 Efferent lymphatics: the only exit from the LN, where activated or re-

circulating T and B cells, as well as antibodies (Ab’s) leave the LN and 

join the blood circulation. 
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Fig 1.7: Lymph Node schematic structure [4]. 

 

4. Summary 

In this chapter we have wished-forgiving readers having no or little knowledge 

of the immune system an overview of topics that are available in basic immunology. 

However, this chapter doesn’t provide enough information for immunologists or 

specialized readers of the immunology domain. 

The purpose of this chapter is to provide an abstract view of the biological 

immune system and its important mechanism that inspired to develop computational 

models. For that a sum up of the basic elements of the biologic immune system; in 

particular, roles of various immune components: organs, immune cells (such as B 

cells, T cells, and other lymphocytes), and the overall process by which an humoran 

immune response mounts; are described. 
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Chapter II 

Computational Models for Immune System 

From the detailed description of the immune system mentioned in the first 

chapter, we can see that its mechanisms are very highly complex. Even the biologists 

are not able to know totally the internal mechanisms of the immune system. As to the 

engineering applications, only the macro features, such as the distribution, 

parallelism, self-adaptation, self-organization and so on, are known. Therefore, 

modeling the immune system is a purpose for both biological and computer 

researchers for the aim to better understand the immune system and solve the 

engineering problems. 

Many models based on different approaches are developed to model and 

simulate the immune system; the present chapter focuses on the most well known 

models having taken place during the last years. 
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1. The purpose of modeling the immune system 

Modeling the immune system is a subset of the larger field of biological 

simulation. As such, it is related to work in artificial intelligence, artificial life, neural 

networks, and network simulation [6]. Lots of benefits can be gained from building 

the model of the immune system for both biological and computer researchers [13]. 

The below section gives answers for the question: why the immune system should be 

modeled? 

1.1. For biological researchers 

Up to now biologists suggest lots of hypotheses on how the immune system 

confronts outer virus. However, it is still in question that whether these hypotheses 

sufficiently demonstrate the phenomena observed by us. Therefore, the computer 

simulation can help biological researchers to further understand the functions of 

every component and the internal mechanisms of the immune system and verify 

these hypotheses such as hypotheses about the infection process or simulate the 

responses of some drugs. Furthermore, it can provide some inspirations for biological 

researchers to develop some new medicines capable of restraining certain disease 

and to verify the suitability of the medicines for human body. So computing model 

with computer not only is cheaper than living tissue, but can minimize the requiring 

time. 

1.2. For computer researchers 

For the aim to attempt to bridge the divide between immunology and 

engineering, a new area of research called Artificial Immune System (AIS) has been 

released throw the application of techniques such as mathematical and 

computational modeling of immunology [14]. In this domain, many different aspects 

of the immune system have been used as inspiration for engineering applications 

yielding the appearance of the immunity-based algorithms. These algorithms can help 

us improve the current intelligent algorithms and explore new nature-inspired 

computing methods that have been applied to a wide range of problems, including 

computer security, control engineering, robotics scheduling, fault tolerance, and 

bioinformatics [15].  
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2. Approaches for modeling the immune system 

The immune system can be viewed as a typical Complex Adaptive System (CAS) 

[13]. Many features of CAS such as emergence, co-evolution, aggregation, variety, 

simple rules and self-organization, are possessed by the immune system. The immune 

system has a large amount of nonlinear interactions between cells with simple rules 

and has the ability of self-regulation with the varying environment. Thus, there are 

two methods to model the immune system: top-down approach and bottom-up 

approach. 

2.1. Top-down approaches 

A top-down approach is essentially the breaking down of a system to gain 

insight into its compositional sub-systems. It abstracts a complex system into high-

level biological functions and quantities to simplify the description and prediction of 

its dynamics [16]. 

In this approach an overview of the system is first formulated and specified 

without detailing any first-level subsystems. Each subsystem is then refined in yet 

greater detail, sometimes in many additional subsystem levels, until the entire 

specification is reduced to base elements. 

These approaches do not emphasize the microscopic entities explicitly, but 

estimate the behavior in macroscopic level [13].  

2.2. Bottom-up approaches 

A bottom-up approach emphasizes the microscopic level, it can be defined as 

the piecing together of systems to give rise to grander systems. This means that 

systems are formed by firstly specifying in great detail their individual based 

elements, then linking together these elements to form larger subsystems, which then 

in turn are linked, sometimes in many levels, until a complete top-level system is 

formed. In these approaches [17] biologists seek to understand the components first, 

then determine how the components could fit together to produce a functioning 

system.  

 These approaches require greater computational power in order to simulate a 

large number of significant entities in real world. The computational complexity is 

exponential growth with the number of entities in the model [13]. 



Chapter II: Computational Models for Immune System 

 
23 

3. Related methods for modeling the immune system 

3.1. Differential Equation Based Models 

The earliest models of the immune system that were created are differential 

equation (DE) based models [18]. These models are traditional top-down approaches 

which use continuous simulation technique rather than discrete event simulation. DE-

based models perform interactions based on parameter, population and 

subpopulation [13]. They have been very popular, and a wide range of immunological 

phenomena have successfully been simulated using differential equation based 

models.  

DE-based models usually simulate how average concentrations of IS agents 

(cells, antibodies, cytokines, etc.) change over time and identifying critical parameters 

of an immune response [19], [20]. A very simple example for such model is a system, 

which consists of three types of cells: Healthy cells C, Infected cells I that can infect 

healthy cells and IS cells K that kill infected cells. This system can be modeled by the 

following differential equations [21]:  

𝒅𝑰

𝒅𝒕
=  𝒑𝒊𝒏𝒇𝒆𝒄𝒕𝑰𝑪 −  𝒑𝒌𝒊𝒍𝒍𝑰𝑲 −  𝒅𝑰𝑰 

𝒅𝑲

𝒅𝒕
=  𝒑𝒓𝒆𝒔𝒑𝑰𝑲 −  𝒅𝑲𝑲 

𝒅𝑪

𝒅𝒕
= 𝒔 −  𝒑𝒊𝒏𝒇𝒆𝒄𝒕 𝑰𝑪 − 𝒅𝑪𝑪 

The equations above describe a situation that may be interpreted as follows: 

Infectious agents of type I transform agents of type C into new agents of type I upon 

contact with a rate 𝒑𝒊𝒏𝒇𝒆𝒄𝒕 . Agents of type I get removed (killed) upon contact with 

agents of type K with a rate 𝒑𝒌𝒊𝒍𝒍. Agents K proliferate upon contact with I with a 

rate𝒑𝒓𝒆𝒔𝒑 .Agents of all three types die naturally at their specific rates dI, dK and dC.  C 

type agents are produced at a constant rate s.  

K could be considered to be an immune system cell type being produced as a 

response to the appearance of the infectious agent I. C may be presenting any possible 

type of target cell for the pathogen I. 
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Fig 2.1: Time development of agent concentration in the immune system 

model [21]. 

 
Fig 2.2: A ‘chronic infection’ settled down to an immune system model with 

very low concentrations of I [21]. 

 

Integrating this system of equations yields different kinds of time development 

for I, K and C depending on the parameters 𝒑𝒊𝒏𝒇𝒆𝒄𝒕 , 𝒑𝒌𝒊𝒍𝒍 , 𝒑𝒓𝒆𝒔𝒑 ands, the death rates 

dx and, of course, the initial values of I, K and C. 

[Fig. 2.1] shows the development of the agents for one set of parameters. At 

first, the number of infected agents I grows while the number of healthy agents C 

decreases. Then, as the response from the IS’ agents K grows, the number of infected 

agents declines while C recovers. Finally, the system ends up in a steady state that 

may be interpreted as a chronic infection. [Fig. 2.2] shows in a half-logarithmic plot a 

system that settles down into a steady ‘chronic infection’ state after having gone 

through states where the concentration of I is very low. 
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A great efforts based on DEs models have been done to model immune system, 

such as for modeling virus-neutralizing immunoglobulin response [22], dynamics of 

co-infection of M. tuberculosis and HIV-1 [23], the dynamics of Plasmodium 

falciparum blood-stage infection [24], change in CD4 lymphocyte counts in patients 

before and after administration of HIV protease inhibitor indianvir [25], and the 

differentiation of B lymphocytes under control of antigen [26].  

DE-based models of the immune system are still used widely for simulating 

many different phenomena, with good results. However, they are most often used to 

simulate one particular phenomenon, and do not simulate the whole immune system. 

This makes them of limited use when studying immune system models from an 

artificial intelligence or complex systems point of view [6]. 

Other problems have also been enumerated with these approaches. Some of 

them that they assumes large populations of essentially identical entities, which is not 

the case with biological cells as each cell has a unique life history that defines its 

interaction with the environment, The DE approach gives only average behavior of 

the system, and It is difficult to model non-linear behavior [27]. 

3.2. Cellular Automaton (CA) based Models  

Cellular Automata (CA) is a bottom-up approach, which is often used to simulate 

some natural phenomena [13]. They are fully discretized dynamical systems that are 

well suited for computer simulations of biological systems [28]. They are defined as a 

class of spatially and temporally discrete, dynamical systems based on local 

interactions [29].  

In a CA system: space, time, and the states are discrete. Each cell Ci, defined by a 

point in a regular spatial lattice, can have any one of a finite number of states that are 

updated according to a local rule; i.e., the state of a cell at a given time depends only 

on the immediately preceding states of itself and its nearby neighbors Hi. All cells on 

the lattice are synchronously updated so as to realize the development of the dynamic 

system in discrete time steps [24], [30]. 

In general, we can define cellular automata of any dimension. One, two, and 

three dimensional automata are often used in science. For an example a two 

dimensional automata is best represented as a regular spatial lattice or grid. In this 
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case, cell Ci,j is surrounded by cells that form its neighborhood Hi,j [31]. Traditionally, 

there are two possible sizes of Ci,j's neighborhood in a two dimensional automaton, 

namely, |Hi,j|= 4 in the von Neumann neighborhood and |Hi,j|= 8 in the Moore 

neighborhood [32] [Fig. 2.3]. The state of cell Ci,j at time t is determined by the state of 

its neighborhood Hi,jat time t-1 [Fig.2.4]. The function f can be considered as the rule 

that dictates how a particular state configuration of Hi,jdetermines the next state of 

Ci,j. More overview of a CA and their classification can be founded in [33]. 

  
Fig 2.3(a):von Neumann neighborhood [29] Fig 2.3 (b):Moore neighborhood [29] 

 

Fig 2.4: Cellular Automata Update from time step t-1 to t [33] 

 

The initial idea of using a CA model in immunology was proposed by Kaufman 

and al [34]. In this model, various cellular populations and interactions were 

represented by Boolean values. Several subsequent discrete models such as the work 

of Weisbuch and Atlan [35]; Cohen and Atlan [36]; Chowdhury and Choudary [37]; 

Sieburg [38] were all developed based on this idea. In the work proposed in [39], the 

Boolean structure was extended to a cellular automaton which adapted the concept of 

the ‘shape space’ [24]. 

Other CA models for immune system [40]-[42] are based on the work of de Boer 

and al. [43] which was derived from Jerne’s immune network theory [22]. In these CA 

models, each site of the CA grid represented an idiotype or clone, and the state of the 

site represented the concentration of that particular clone. The dimensionality of the 

grid represented the variable characteristics of the clone (e.g. geometric shape and 
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electric charge), and the size of the grid represented the number of different possible 

values (e.g. the number of different shapes that were possible). The interaction rules 

specified that a clone situated at 𝒙   = (𝒙𝟏, 𝒙𝟐  …  𝒙𝑵), where N is the dimensionality of 

the grid, could stimulate the proliferation of clones, thus simulating the phenomenon 

of cross-reactivity [14].  

The next generation of computational immune models based on CA was more 

ambitious, incorporating significantly more immunological details [44]-[46].The CA 

grid was used to represent physical space, rather than abstract properties of clones. 

The simulators incorporated enough detail that one model could be used to study 

several aspects of immune dynamics or disease [14].  

In the next section we will discuss the successfulness applications of this 

computational immunology generation, which attempted to build general immune 

system simulators that have been used to investigate a number of immune system 

phenomena.  

3.2.1. Related Immune system simulators based on CA 

 ImmSim 

The first successful model of the immune system was proposed by Celada and 

Seiden [46]. This model, that is called ImmSim, incorporates many generally accepted 

theories about the immune system such as interaction between B- and T-cells, affinity 

maturation and thymic maturation of T-cells [6]. ImmSim was a conceptually 

important advance, because it developed a general modeling framework that could be 

used for multiple studies [14]. Scientists consider it as one of the most referenced and 

peer reviewed IS simulators available [47], and many of the underlying ideas have 

been used in other models and frameworks. Its basic idea consists in the capture and 

processing of antigens and how that processing affects the various cell populations 

[20]. 

The ImmSim model is a model of a lymph node. It simulates the interactions 

between lymphocytes, APCs, antibodies and antigen. The lymph node is represented 

by a two dimensional CA with periodic boundary conditions [Fig 2.5] where each site 

contains a number of cells and molecules, which interact with each other. The 

behavior of the system emerges from interactions between cells and molecules [46]. 
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The ImmSim model represents also the bone marrow, the thymus and the 

environment as peripheral components which bring new lymphocytes and antigen 

into the lymph node. 

Each grid site contains a number of entities which belong to two groups, cellular 

and molecular entities. The group of cellular entities (or cells) consists of Bcells, T-

cells, plasma cells and APCs, as shown on [Fig. 2.6]. Each cell has its own age and 

several other properties. 

Antigen, antibody and antigen-antibody complexes [Fig. 2.7] are molecular 

entities or simply molecules. They are modelled as quantities. At each site, only the 

amount of each possible antigen, antibody and complex is stored. 

The original version of ImmSim was written in APL2, it modeled the humoral 

response [33] which was complemented by a new release version called “ImmSim3” 

to include Th and Tc cells as well as epithelial cells and cellular response [15], [48]. 

Although the general idea for the code was good, the fact that the code was written in 

the APL2 language was beginning to be a real nuisance [49].  

This situation was carried out by Bernaschi and Castiglione who came up with a 

new ImmSim based versions coded entirely in language C. The following section gives 

more details about their work. 

 

 

 

Fig. 2.5: An overview of the ImmSim model. The lymph node is the main component. It is modeled as a grid of 
sites. The bone marrow, thymus and environment are black box modules called peripheral components. They 
generate B-cells, T-cells and antigen. A grid site contains a number of entities. Cellular entities are modeled as 

individuals; molecular entities are modeled as amounts. [46] 
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 C-ImmSim,  ParImm, SimTriplex and ImmunoGrid 

C-ImmSim and the correspondent parallel variant, ParImm [50], are versions of 

ImmSim developed by F. Castiglione and M. Bernaschi in the C programming 

language, with focus on improved efficiency and simulation size and complexity [51].  

In these adaptations of the ImmSim model, the IS response is designed and 

coded to allow simulations considering millions of cells with a very high degree of 

complexity. The code can resort to parallel processing to run faster; optimized data 

structures and I/O have allowed stretching the limits of available memory and disk 

space [14]. 

Currently, C-ImmSim [52] is the most advanced open source IS simulator based 

on the original Celada-Seiden automaton, with consistent publication throughput. It 

simulates both the innate and adaptive immune responses, and it can represent 

macrophages, dendritic cells, Tcells and B-cells, antibodies, antigens, and some 

cytokines as agents [22]. The most recent upgrades include, among other features, the 

 
 

Fig. 2.6: A schematic picture of an APC, a B-cell and a T-cell in the ImmSim model. B- and T-cells have a 
receptor, APCs and B-cells have MHC on which they present antigenic determinants [18]. 

 
 
 

Fig. 2.7: A schematic picture of antigen and antibody in the ImmSim model. Antigen consists of a 
number of epitopes and peptides, each represented by a bit string. Antibody consists of a fixed Fc region 
and a variable paratope. The Fc region is identical for all antibodies; the paratope is an antigen specific 

receptor [18]. 
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use of three-dimensional shapes, inclusion of the chemotaxis phenomena and 

consideration of different cell speeds [14].  

C-ImmSim uses a bit-string polyclonal lattice model. The “bit-string” refers to 

the representation of molecules and Receptor-specific interactions, “polyclonal” 

indicates that multiple clones of different specificity of lymphocytes are represented, 

and “lattice” means that discrete lattice is used to represent the discrete space [23].  

C-ImmSim based simulations have been yielding results with interesting 

potential. Some examples are work regarding progression of the HIV-1 infection in 

untreated host organisms [33], scheduling of Highly Active Anti-Retroviral (HAART) 

for HIV-1 infection [32], simulation of cancer immuno-prevention vaccine concerning 

its effectiveness and scheduling [53]-[54], and the modeling of Epstein-Barr virus 

infection [55]. In the correct context, these results have biological relevance, 

motivating further experiments with the framework [43]. 

SimTriplex [56] is a specialized cellular automaton in modeling mammary 

carcinoma, Triplex vaccine and the immune system competition based on a 

modification of ImmSim framework. It mimics the behavior of immune cells at the 

cellular level in both vaccinated and in naive mice. 

ImmunoGrid [57] is a European Union funded project to establish an 

infrastructure for the simulation of the IS at the molecular, cellular and organ levels 

for various applications [43]. Its main objective is the development of a human 

immune system simulator using common computational platform to help 

development of vaccines and immunotherapies. The project is a web-based 

implementation of the Virtual Human Immune System using Grid technologies. It 

adopts a modular structure that enables easy extensions and modifications [23].   

Currently, C-ImmSim and SimTriplex constitute the main part of the system 

level models. C-ImmSim simulates the immune responses to bacteria and viruses (e.g. 

HIV-1), and SimTriplex is used to model tumor growth and responses to 

immunization. The results produced by C-ImmSim and SimTriplex are presented on 

the web in graphical and text file formats for educational and research users. 
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3.3. Agent-Based Models (ABM) 

Agent based modeling (ABM) is a bottom-up approach that has been applied 

recently in variety of research areas; such as in social sciences [58], economics [59], 

Transportation Management [60] and increasingly in Life Sciences; as an 

interdisciplinary tool to simulate, understand and study the dynamics of complex 

systems. In this modeling approach, a collection of autonomous decision-making 

entities called agents is used to model a system. Each agent of the system individually 

assesses its situation and makes decisions on the basis of a set of rules [60]. These 

agents interact, co-operate and at times work towards a common goal while keeping 

their own individual interest at hand [61]. They can sense their environment and can 

also change the state of its environment.  Simulations based on this approach are very 

closer to the real interaction between entities than the previous methods. 

Currently, in life sciences: especially in biology and biomedicine and precisely in 

immunology very interesting works are based on ABM have been done to simulate 

phenomena in immunology. for example a Multi-Agent immune model has been used 

in the Evolutionary and Complex Systems Lab of Nanyang Technological University in 

Singapore to validate the three stages of HIV infection [13],[62], the diversity and 

mutation of HIV virus is also emphasized in the School of Computing of Dublin City 

University in Ireland [13],[63]. Other ABM works have been also done; we cite heir 

two examples: the first is the one presented by jacob [64]; he proposed a swarm-

based approach with 3D visualization to model the immune system in which every 

individual element is represented by an independent agent controlled by rules of 

interaction. The second is the platform of CAFISS [65] which stands from Complex 

Adaptive Framework for Immune System Simulation; CAFISS is an agent based model 

in which rectangular grids representing spatial locations are used to divide the 

simulation. The CAFISS simulation is asynchronously updated via multithreading; 

where every IS cell instance runs in its own thread and interact with other cells by 

events [19]. In this framework a bit string is owned by each cell and is acted as a cell 

sensorial input. Antigen receptors or receptors are represented by specific substrings 

which are activated with variable strength depending on the number of matching bits.  

CAFISS is developed for the main task to simulate how the immune system confronts 

HIV, and to display the dynamics of the immune system [13].  
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Using ABM approaches to model immunology phenomenon is a well suited 

choice that led to the comprehensive abstract models described in Immune system. In 

these approaches the immune system is viewed as a complex adaptive system [20] in 

which every single cell or pathogen is represented by an agent that can interact with 

other agents to encode some of cell behaviors (cell death, division, cell activation or 

differentiation). 

The modeling based on agents for immunology in particular and CAS in general 

brings a lot of benefits than the previous models, the most of these benefits [66],[67] 

are (1) capturing of emergent phenomena that result from the interactions of 

individual entities, (2) providing natural description of a system composed of 

behavioral entities and (3) having the flexibility feature which can be observed along 

multiple dimensions and the discrete feature that characterizes the interactions 

between agents. 

3.3.1. Related Immune system simulators based on ABM 

 SIMMUNE 

Simmune is an agent-based simulator developed by Meier- Schellersheim and 

Mack [68]; it seeks to model the immune system using molecular and cellular 

interactions [69]. In this simulator, the both behaviors of the IS agents (cells, 

molecules) and the IS’s challengers (bacteria, viruses) are described on a 

microscopical scale [68]. 

It can be viewed also as a hybrid of continuous and ABM techniques for the 

reason that it combines both molecular such as cytokines defined as continuous 

quantities with differential equations modeling for their dynamics; and cellular level 

entities modeled as discrete computational agents [28], [70]. 

Simmune was firstly developed at the Institute for Theoretical Physics of the 

University of Hamburg, Germany; but Now, the Laboratory of Immunology of the 

National Institute of Allergy and Infectious Diseases, NIH, has taken it as part of the 

bio-computation effort and continues its development  within the framework of the 

new program in systems immunology and infectious disease modeling of the NIAID. 

The point power in SIMMUNE is that it can be applied not only to simulate IS cells but 

also any living cell system [28].  

http://unith.desy.de/
http://www.uni-hamburg.de/index_e.html
http://www3.niaid.nih.gov/labs/aboutlabs/li/
http://www.nih.gov/news/pr/jul2006/niaid-12.htm
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The Simmune package comes with three components [21], [71]:  (1) Simmune 

modeler (short: 'simmod'), (2) simulator (short: 'simmune'), (3) and signaling 

network browser. The simmode offers graphical user interface to define models of 

multi-cellular system by defining properties of molecules, molecular complexes, 

enzymatic transformations, Cellular behavior, Extracellular compartments and 

Simulation parameters, etc. whereas simmune generates the simulation basing on 

input models created by simmode. During the simulation of a model, three different 

views, which can be also saved in various data forma, are offered: (1) a concentration 

over time view, (2) a pseudo 3D view, (3) and a ‘slice’ view. The first view lists 

molecule types, cells and how their spatial (average concentration or total number) 

changes as the simulated time progress, a vision of the simulated extracellular 

compartment are shown in the second view, and the last one shows a 2D cut through 

the extracellular compartment and visualize molecule concentration gradients. The 

signaling network browser is used to investigate the dynamics of the signaling 

processes contained in the detailed behavior of the cellular biochemistry. 

 CyCells 

 

For the aim to study intercellular interactions mediated by molecular signales, 

Warrender has designed a multi-purpose simulator called CyCells [72] in which many 

of the features are particularly designed for modeling the intercellular infections. 

CyCells; that it’s written entirely in C++; has the flexibility to be used for modeling 

many different kinds of multi-cellular systems, and allows significant flexibility in 

choosing cell behaviors and molecular properties [73]. It has a similarity with the 

Simmune simulator in the way that it can considered as a hybrid simulator in which 

molecular concentrations are represented continuously whereas cells are 

represented discretely. To implement CyCells, Warrend has used a three-dimensional 

square grid in which initial numbers of cells, cell types such as B cells and 

macrophages, and molecular signals such as cytokines are specified  to define models 

in which explicit representation are used to symbolize each cell of each cell type, and 

real valued concentrations are used to represent molecular signals [20]. 

In CyCells, a computational abstraction in Multi-Agent systems known as Sense-

Process-Act is used to modal Agent behaviors in which three categories can be 

segregated: (1) those handling sensing of the external environment, (2) those  

http://www3.niaid.nih.gov/labs/aboutlabs/psiim/computationalBiology/screenshots.htm#Simulation
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updating the internal state, and (3) those implementing concrete actions that affect 

the agent or its environment or both [73]. So by describing the sense, process, and act 

functions appropriate for each cell type, it led to define the simulation model.  To run 

this simulation three steps are required [72]: (1) model definition, (2) model 

initialization, and (3) the simulation execution. In the model definition: behavior of 

each molecule and cell type to be used in the simulation is specified in the way that 

molecular types are defined via a name and the appropriate diffusion rates whereas 

cell types are defined via cell attributes (how those attributes should be initialized 

and how they should be updated or used to make decision during each time step). 

Besides to this, a line for every sense, process, or action function used by each cell 

type, with the related parameter values are included in the modal definition. In the 

model initialization: the simulation geometry, initial molecular concentrations, and 

initial numbers of each cell type are specified. In the simulation: three sequences of 

activities compose one time step simulation: (1) molecular diffusion and decay, (2) 

updating of each cell according to sense, process, and act functions, and  (3) Cell 

movement. The actions (death, division, differentiation, movement, migration, etc) 

that can be attached to a Cell affect the composition of the local population. 

CyCells have been applied in various immunology phenomena exemplified in 

particular to study hypotheses about the maintenance of peripheral macrophage 

population sizes in the lung [74] and to model early infection dynamics of 

Mycobacterium tuberculosis (Mtb) bacteria [73]. 

3.4. Reactive Animation based modeling 

In the last few years, Prof. Harel and his group have carried out a new project at 

the Institute of Wizmeman for the aim to model biologic systems throw a formalism 

called Statecharts. This formalism; which had been invented in the first time by Harel 

(1984) as a visual language to assist in the development of the avionics system of a 

new aircraft [75]; have been also used in variety of industries (including 

telecommunication, aircraft, automobiles, interactive software systems, medical 

diagnostic systems, aerospace and control application  ...) to specify the behavior of 

complex reactive systems [75], [76]. Reactive systems are systems that change its 

actions, outputs and conditions/status in response to stimuli from within or outside 
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it; in other terms, they are on continuous interactions with their environments by the 

use of inputs and outputs that are either continuous in time or discrete [77]. 

This visual formalism, which has developed as a language for specifying reactive 

behavior, views complex systems as a set of objects in which their behavior are 

represented via a set of states, substates that an object can enter over its lifetime and 

a set of messages or events causing transitions between one state to another [20], 

[78]. This led the description of both: how objects communicate and collaborate and 

how they carry out their own internal behavior under different conditions.  

Statecharts can be considered as a combination between bottom-up and top-

down approach for the raison that they  can enable us describing systems at multiple 

levels (state may contain sub-states), and  zooming in and zooming out between these 

levels [75]. They can be implemented by tools like Rhapsody (or other similar tools) 

and they can be compiled into executable reactive machine code (for example, in C++, 

Java…) which then can be used to generate realistic simulations. 

Prof Harel and his group have recently given a new modeling vision that differs 

to those discussed above (section 3.3.1, 3.3.2 and 3.3.3); they have paid attention that 

biological systems are naturally reactive systems for the cause that biologic systems 

can be abstracted to various levels (organisms, organs, cells, molecular mechanisms 

…) on orthogonal/horizontal interactions with each other [79]. In consequent, they 

have used Statecharts formalism to model the behavior of biological systems. The 

resulting executable reactive machine code has been then combined with front-end 

animation tool to give more realistic visualization simulation and enable natural-

looking; this combined technique is called a reactive animation (RA) that seeks to 

combine state-of-the-art reactivity and state-of-the-art animation by linking advanced 

tools in the two areas [80]. 

The most important biological related works based on the RA technique have 

involved [79] the development of the mammalian pancreas, the differentiation of T 

cells in the thymus, and the dynamic architecture of the lymph node; their snapshot 

simulations are illustrated in [Fig 2.8 (A)], [Fig 2.8 (B)] and [Fig 2.8 (C)] successively.  

In the first work the authors [81] model the early stage of pancreatic organogenesis 

by linking three components: (1) a Statecharts based reactive model to model the 

behavior of molecular processes and morphogenesis, (2) a 3D interactive front-end 
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animation using 3D game studio for visualizing the molecular processes and its 

interactions, and (3) a Matlab GUI for mathematical analysis. The other two works 

relate to the immune system: the first simulates the differentiation of T-cells in the 

thymus gland [75]; in this simulation the authors combine between the Statecharts 

based model for the biological complexity of the thymus with a 2D interactive front-

end animation using pre-recorder flash animations. The second one simulates the 

development and function of cells in the lymph node [4]; it merge a fully executable, 

bottom-up computerized model of the Lymph node using the visual language of 

Statecharts with dynamic 2D front-end animation using flash. 

The simulations cited above have proved that the vision to simulate biological 

system (including immune system) as a reactive systems basing on Statecharts 

modeling combined by a front-end animation tool; is very closer to the reality and it 

allow users to interact with the running simulations throw the front-end tier in any 

level by querying the simulation or modifying it at some point as it runs. It has also 

become one of the new based projects carried by Microsoft to release a new visual 

formalism called Biocharts [82] which is specific to model complex biology systems 

and it is now under development. 

 

Fig. 2.8: Reactive Animation Simulation of organ level in three models: (A) pancreatic organogenesis; 
(B) maturation of T-cells in the thymus; (C) development of the lymph node [79]. 
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4. Comparison between different approaches 

We have reviewed above different methods on how to model the immune 

system. In this section, an analyze of these methods is summarized in [Table 2.1] and 

is detailed as follow: 

Modeling 
Method 

DE CA ABM RA 

Approach Top-down Bottom-up Bottom-up Top-down & Bottom-up 

Level Macroscopic  Microscopic Microscopic Macroscopic & 
Microscopic 

Entities Homogeneous Homogeneous Heterogeneous Heterogeneous 

Time Continuous Discrete Discrete Discrete 

Structuring 
(1) 

- - compositional Hierarchical & 
compositional 

Scope of model 
(2)

 Limited types of entities Rules-based Rules-based State-based, substate-
based and event-based 

Concurrency 
(3)

 - Synchronous Synchronous 
&asynch. 

Synchronous &asynch. 

Examples of 
modeled Systems 

virus-neutralizing 
immunoglobulin 
response, dynamics of 
co-infection of Mtb and 
HIV-1, dynamics of 
Plasmodium falciparum 
blood-stage infection 

progression of the HIV-
1 infection in untreated 
host organisms, 
simulation of cancer 
immunoprevention 
vaccine , modelling of 
Epstein-Barr virus 
infection 

infection dynamics of 
(Mtb) bacteria, 
validating  the three 
stages of HIV 
infection, mutation of 
HIV virus 

development of the 
mammalian pancreas, 
The Lymph Node B Cell 
Immune Response, 
differentiation and 
activation of T-cells in 
the thymus gland,  

Cost Low Exponential increase 
with the number of 
entities 

High, requiring 
parallel computing to 
improve efficiency 

Very High, requiring 
parallel computing to 
improve efficiency 

1. 
(1):

A language is compositional if the behavior of a system can be specified by modeling a set of interacting sub-systems. A language is 
hierarchical if models of sub-systems can serve as indivisible, reusable building blocks within a larger system model.

 

2. 
(2):

Scope of model represents the entities & interactions that are present in the model.
 

3. 
(3):

Concurrency refers to the way in which different parts of a system interact and change. A synchronous state change is a state change 

where the individual parts of the system change their contributions to the state simultaneously. An asynchronous state change is a state 
change where different parts proceed independently of each other. 

Table 2.1: A comparative overview between different immune system modeling methods. 

 

The traditional one is a top-down approach based on DEs that uses continuous 

simulation technique to model a minimum number of homogenous entities of the 

system; hence it limits model scope and takes a macroscopic view of the real system 

to be modeled. DEs-based methods are widely still in use for the raison they are more 

suitable for verifying the designer’s hypotheses, for discovering “what and when” 

characteristics from an observed biological phenomenon, in addition to its low cost 

CPU consummation. 
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The next studied methods are Cellular Automata Based ones. These methods are 

a bottom-up approach seeking to simulate homogenous agents in the microscopic 

level. On the contrary of DEs based methods that are continuous based simulation; 

the CA based models are fully discretized dynamical systems based on local 

interactions. The resulting simulation that is in exponential increase with the number 

of entities is generated by a synchronous update of all entities (cells) on the regular 

spatial lattice.  

ABM is also a bottom-up approach that has been applied in variety of research 

area; it is particularly suitable for simulating a large number of agents that can 

interact with each other in both synchronous / asynchronous way. In this modeling 

method that has wider model scope than CA based one: Agents are heterogonous and 

they are specified at individual level (microscopic). Simulations issued from this 

method require high parallel computing to improve efficiency. 

Finally we have presented the Reactive Animation based model that is one of 

the recent methods that have been applied in biology simulation. This method; which 

aim to give more realistic simulation and allow users to interact with the simulation 

in any level of the system; is a combined approach between state-of-the-art reactivity 

and state-of-the-art animation. This simulation method needs a very high parallel 

computing to improve efficiency. Contrary to the other methods, RA based modeling 

is a combined bottom-up and top-down approach that can simulate very large 

heterogonous agents in both microscopic and macroscopic level. The agents can be 

updated in both synchronous and asynchronous way; their behavior and its 

interactions are specified by defining states, sub-states and events (as a part of the 

Statecharts formalism); this led to view the system composed by hierarchical levels in 

addition to its compositional one.  
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5. Summary 

The present chapter outlines the different modeling approaches that have used 

to simulate an immune system; it illustrates in a detail manner the two well-known 

approaches (bottom-up and top-down) with its most related models that focus on the 

modeling and simulation of immunology (DE- based models, CA-based models, ABMs 

and RA based models). The chapter doesn’t detail the architecture of the models 

involved, because it aims to give a general overview of all kinds of the immunology 

models that have taken place. At the end of this chapter a comparison between the 

different models is done for the purpose to get a clear idea about the approach and 

the model which will be taken in or immune response simulation. 

As a conclusion: in our computing simulation to a response immune system 

against a virus infection; we will use as it will be discussed in the next chapter, a 

combined model between the Statecharts based behavior modeling; which have been 

used in RA simulation; with ABM. This combined approach aspires to get profit from 

the advantages of the two combined models. In our proposed modeling approach we 

are seeking that it will be the first immune model carried out by an ABM in which 

agents behavior are Statecharts based models. 
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Chapter III 

Statecharts based Behavior for Agent Based 
Modeling 

As we have viewed in the previous chapter, there are several modeling 

techniques that have been used in immunology simulation. Our overview is to tack 

advantage of those techniques by the combination of the Multi-Agent and the 

Reactive Animation Based models. 

Our approach is a Multi-Agent based model in which the Agent behavior is 

modeled by Statesharts. In the present chapter we introduce both the basic concepts 

of Multi-Agent modeling and the Statecharts formalism, finally an overview of the 

works that have proposed a modeling and simulating approaches based on the 

presented method are then cited. 
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1. Overview of Multi-Agent Based Modeling 

For several years, a wide discussion and research have been taken place in the 

field of agent-based modeling (ABM) (also sometimes related to the term multi-agent 

system or multi-agent simulation). The goal of this new class of computational models 

[83] is how to build complex systems composed of autonomous interacting 

computing elements called agents who, while operating on local knowledge and 

possessing only limited abilities, are nonetheless capable of enacting the desired 

global behaviors; In other term how to take a description of what a system of agents 

should do and break it down into individual agent behaviors. 

 

Fig.3.1: An agent-based model: The micro level entities, their actions and interactions, and the 
environment [84]. 

In ABM, agents and their behaviors are not the only modeled things; but also the 

actions and interactions between these multiple agents (as individual entities or 

collective one such as organizations or groups) can be simulated throw the 

environment. Thus ABM focuses explicitly [84] on modeling the micro level entities 

and dynamics of the real system to be modeled (e.g., individual characteristics and 

behaviors, actions and interactions between the entities and the environment, etc.) 

[Fig. 3.1]. The process is one of emergence from the lower (micro) level of systems to 

a higher (macro) level. As such, a key notion is that simple behavioral rules generate 

complex behavior. 

ABMs have been used in an increasingly wide variety of applications, ranging 

from comparatively small systems for personal assistance to open, complex, mission-

critical systems for industrial applications. As examples: from modeling agent 

behavior in the stock market and supply chains, to predicting the spread of epidemics 

and the threat of bio-warfare, from modeling the growth and decline of ancient 

civilizations to modeling the complexities of the human immune system, and many 

more. 

http://en.wikipedia.org/wiki/Multi-agent_system
http://en.wikipedia.org/wiki/Multi-agent_system
http://en.wikipedia.org/wiki/Emergence
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In order to best understand the foundations of ABMS, a brief overview of the 

fundamental concepts behind this computational model will be given in the sections 

below: 

1.1. Simulation of Multi-Agent Based Models 

To simulate MAS, a height level view of agent-based simulating models has been 

suggested by Fabien Michel, Jacques Ferber, AlexisDrogoul [84]. In their proposition, 

three correlated modeling activities have been considered for simulating such MAS 

[Fig. 3.2]. The first one, known as “the behavior module”, concerns modeling the agent 

behaviors; the second one, named “the environment module”, defines the virtual 

place wherein the agents evolve and interact; and finally, “the scheduling module” 

which is related to the definition of how the other modules (environment and agents) 

are coupled and managed with taking into account the time factor. 

In the following sections we will give an overview of how to model every 

module among these three modules. 

 

 

 

Fig.3.2: MAS Modules [84]. 

1.1.1. The Behaviors Module 

Before we tackle the modeling of agent’ behavior an overview of the concept of 

agent and its related features will be viewed in the sections below: 

 What is an agent? 

The huge discussion and debate that have involved the ABM’ subject, had led to 

a variety definitions of the term of “agent”. Unfortunately, some sort of them risked 

losing all the meaning of the term; whereas others were important as the ones 

suggested for example by (Wooldridge and Jennings [85]; Ferber [86]; Russell and 

Norvig [87]). Although there is no universal definition of the term agent, but most of 

them are focusing that an agent [84]-[87] is essentially a special component(software 

Behavior Environment 

Scheduling 
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or hardware) situated in virtual or real environment that they can act in, and in order 

to satisfy their design objectives they are capable: firstly to decide for themselves 

how they autonomously behave basing on their perception, representation and 

interaction; and secondly to interact with each other both indirectly (by acting on the 

environment) or directly (via all forms of the encountered social activity: 

cooperation, coordination, negotiation…)[Fig. 3.3]. So from the definition of the agent 

given above; in MAS agents have a certain basic features which can be summarized 

below [88], [89]: 

 Autonomy: ability to behave alone without the direct intervention of 

others and has control over its actions and internal state. 

 Sociability: ability to cooperate with other agents to achieve its tasks in 

a social point of view. 

 Reactivity:capability to perceive its environment and to respond in a 

timely fashion to change the environment.  

 Situatedness: regarding the fact that the agents are placed into an 

environment which defines the conditions in which the agents exist, act, 

and interact.  

 

 

 
 

 

 

Fig.3.3: An agent in its environment. The agent takes sensory input from the environment, and produces as output 
actions that affect it. The interaction is usually an ongoing, non-terminating one. 
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Environnement 

 

Sensor input Action output 
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 Agent Architectures 

The term “Architecture” is habitually used to describe the internal organization 

of such an agent. The research community specialized in MAS domain has 

distinguished the following approaches that analyze the architecture of an agent: 

a. Reactive Architecture 

In this architecture [84], [90] and [91], a mediate decision is made by an agent 

basing on its perceptions of the state of the environment and the set of its available 

actions might be performed.  The reaction of the agent, which in this case has an 

implicit representation of its environment and of the other agents, is based on a 

stimulus–response mechanism triggered by sensor data. Brooks [92] have proposed 

one of the most-known reactive architecture called “subsumption architecture”, in 

which a set of hierarchy of behaviors are defined using connected layers of state finite 

machines. Each layer implements a particular goal of the agent, and higher layers are 

increasingly abstract. In other terms, layers are used to arrange behaviors in a 

manner that lower layers inhibit higher one. The lower layers have the higher 

priority. This architecture is better performed in dynamic environment, as well as it’s 

often simple in its implementation. 

b. Cognitive Architecture 

A cognitive architecture can be used to model cognitive phenomena which are 

enabled by the definition of the organizational structure of functional processes and 

knowledge representations [93]. It specifies the different parts of such a system, their 

functionality, and the interaction between them in a high-level manner [94]. The 

foundation of this approach takes in account that agents reason from knowledge 

which is an explicit representations of their environment (states, properties, and 

dynamics of objects in the environment) and the other agents [84].  

Since the eighties to nowadays, researchers in the MAS fields have developed 

various cognitive architectures in which the most well-known among them are the 

BDI (Belief-Desire-Intention) [95] based architectures. The hypothesis [89] behind 

these lasts is that each agent is intending to achieve its goals by performing certain 

rational actions with regards to its beliefs about world states, its knowledge and 

those of others, its intentions and those of others. Thus cognitive agents are 
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characterized by its beliefs which represent the information an agent have about the 

environment, its goals (desires) that represent the specified corresponding tasks to 

be accomplished, intentions which represent desires that the agent has committed to 

achieve, and finally plans that specify some courses of action might be followed by an 

agent in order to achieve its intentions. 

c. Hybrid Architecture 

In such situation, it seems to be very complicated to use single agent 

architecture to model the behavior of an agent; so some solutions have been 

proposed in which the intention is to combine between the two above cited agent 

architectures in order to profit from their advantages. Although the resulting 

combination architecture that is called “hybrid architecture” can built more flexible 

agents composed of modules that might be treated independently with reactive and 

cognitive aspects of the agent behavior, the main encountered problem in such 

architectures is how to ensure a good balance and a good coordination between these 

diversified modules. The best works developed in this sense are: InteRRap done by 

Muller and Pischel [96] and the Touring Machine done by Arango’s team [97]. 

 Interaction 

In MAS, collaboration, negotiation and cooperation between agents will be 

never achieved without communication that allows agents to interact with system 

resources and with each other [84], [89]. This key feature can be expressed by special 

language called “Agent Communication Languages ACL” which the most distinguished 

among them are those issued from the theory of social sciences linguistics and 

philosophy language in a hand, and Biology and ethology in the other hand.  

The first ACLs kind that is known as speech acts is the traditional model of 

communication between agents, and it’s interpreted via “Message Passing”. Actually 

the most widely used and studied ACL is the Foundation for Intelligent Physical 

Agents “FIPA” ACL. FIPA [98] is an IEEE Computer Society standards organization 

that promotes agent-based technology and the interoperability of its standards with 

other technologies. 

In the second ACLs type, “signal” is used to interpret the interaction between 

agents. This model of ACL is based on the theory of communication between animals 
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where they use signals to behave collectively. In the MAS domain, the most used kind 

of signals is marks [84] which are traces made by agents while they are on movement. 

 Modeling the agent behavior 

For a simplification purpose to not explain in details the existing modeling agent 

architectures, an agent model has been proposed in which the agent is always in a 

cyclic three phase process: [Fig. 3.4] perception – deliberation – action. The 

representation of this cycle has been illustrated in the work of F.Michel, J.Ferber, and 

A.Drogoul [84]. The work assumes that: 

a. Firstly from the current state of the environment, a perception is obtained by 

an agent. The obtained perception might be a simple raw data structure or 

more complex one. 

b. Secondly, a deliberation (memorization) function starts its process in which 

the agent makes its internals progress and renew its own representation of the 

world using the perception obtained before. In this process a specification of 

the core part of the behavior of an agent and its architecture (reactive or 

cognitive) is defined. In such situation as memorization process is not needed, 

and perceptions are harmonized directly to actions, the deliberation process is 

skipped. 

c. Finally, an action is taken by the agent basing on its new internal state and its 

current perception. The result of the taken action is immediately noticed in the 

modification of the environment. 

 

 

 

Fig. 3.4: An agent as a three phases process [84]. 
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1.1.2. The Environment Module 

As a part of a MAS component, the environment is considered also as an 

essential compound of MAS since all the perceptions and actions that might be taken 

or had by an agent are broadly defined by it. According to Russel and Norvig [84], 

[87] and [88], an environment in which agents are situated can be: 

 Accessible in the case in which complete, accurate, up-to-date state can 

be obtained by the agent; Inaccessible In the other hand. 

 Determinist in the situation in which the resulting state achieved from 

performing an action is definite; non-determinist in the opposite 

situation. 

 Static when it remains unchanged except by the performance of actions 

by the agent; dynamic in contrast. 

 Discrete while the number of actions and perceptions is fix and finite; 

continuous otherwise. 

Related to the environment properties cited above, there are two 

distinguished main approaches to model an environment: 

 Discretized approach: it views the environment as a collection of connected 

bounded areas in which agent perception/action are defined; the most 

important platforms that use this kind of approach are those characterized by 

their based-grid environment formed by a regular grid of cells (or patches) 

[Fig. 3.5]. This approach is broadly used for the simplicity of its 

implementation (e.g., StarLogo [84], TurtleKitb [99]). 

 Continuous approach: it computes the range of perceptions/actions basing on 

each agent which is considered as a reference point [Fig. 3.6]. It is frequently 

used when accurateness is needed, for an example it has been used for 

simulating soccer robots (e.g., in RoboCup soccer simulators [86]) 
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Fig. 3.5: discretized environment [86]. Fig. 3.6: Continuous approach for the perception of the agent [86]. 

1.1.3. The Scheduling module 

The scheduling module is viewed as a coupling manner between the agents and 

the environment with respect to the evolution of time which is one of the crucial parts 

that should be modeled while simulating MAS. This coupling manner is achieved via a 

function that defines the evolution of the whole MAS from one moment (t) to the next 

(t+dt). In fact there are three main approaches that could be used to model the time  

[86]: (1) continuous time in which the system state is computed for any time stamp 

via time functions, (2) discrete time where time evolves discretely with respect to 

constant time intervals, and (3) discrete event-based in which time evolves discretely 

from one event to the next considering a continuous time line. Choosing one among 

these approaches needs to take in account: 

 Modeling the behavior time of the agents:  the majority of models, which 

represents the behavior time of an agent, associate for simplicity reasons a 

single instant t to a perception-deliberation-action process cycle. This means 

that the internal states of an agent are changed instantaneously. In the other 

hand, certain works in some application domains use a no-instantaneous 

approach to represent the behavior time of an agent. 

 Modeling the temporal evolution of the environment: in such application 

domain, taking account of modeling the evolution of an environment in time 

could be essential for the raison that the environment in addition to its 
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reaction to the agent inputs may also progress in time according to its own 

dynamic. 

To sum up this section, In the scheduling module the manner, of how the 

environment and the behavior modules are coupled and managed, is defined with 

respect to time which is also is specified by choosing a particular time management 

(continuous time, discrete time or event-based). The environment evolution, the 

agent perceptions, actions and interactions should also be defined with respect to one 

another. The [Fig. 2.7] below illustrate a global overview of MAS viewed as a three 

modeling modules:  

 

 

 
 
 
 
 
 
 
 
 

 
 

Fig. 3.7: Simulating a MAS as three modeling modules [86]. 
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2. Overview of the Statecharts Formalism 

In this section we present an overview of the Statecharts modeling formalism 

and its related concepts: 

2.1. What are Statecharts? 

Statecharts are a graphical state-transition formalism based on exchanging 

messages or events between the system and its environment. They have been 

developed in 1982 by Prof Harel when he assisted in the development of the avionics 

system of a fighter aircraft at the Israel Aircraft Industries (IAI). Harel in his article 

[100] has detailed the full history of how he could create this new modeling 

formalism which has been used to describe the behavior of reactive systems in a 

manner that shows how the system reacts to the reception of an event or a specific 

sequence of events and what events the system generates.  

Statecharts are an attempt to overcome the limitations of traditional Finite State 

Machines (FSMs). So they are essentially FSMs extended into a modular, highly 

structured, and economical description language that [101], [102]: 

 Enable clustering, orthogonality (i.e.: concurrency) and refinement, 

 Encourage zooming capabilities for moving easily back and forth between 

levels of abstraction,  

 Incorporate a broadcast communication mechanism, time out and delay 

operators for specifying synchronization and timing information.  

 Include a means for specifying transitions that depends on the history of the 

system’s behavior. 

In its short definition [103]: 

Statecharts = state diagrams + depth + orthogonality + broadcast 

communication 

The example shown in [Fig.3.8 (a)] illustrates a Statecharts corresponding to the 

FSM shown in [Fig.3.8 (b)]. The Statecharts is composed of an initial state, a simple 

state A, a composed state P and a final state.  
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Fig.3.8 (a):Statecharts composed of: initial state, 
Simple state A, composed state P and final state 

Fig.3.8 (b):  FSM composed of: initial state S, 4 transit 
states A,B,C and D and final state F 

2.2. Basic concepts of Statecharts 

The two basic components of Statecharts are states and transitions. 

2.2.1. States 

States, which are used for memory purposes, are a condition of an object in 

which it performs some activity or waits for an event. They are denoted by a rounded 

square symbol [Fig. 3.9 (c)] that represents different contexts in which system 

behaviors occur [104]; for example they can represent: a time period during which a 

predicate is true, an action is being performed, or someone waits for an event to 

happen [105]. 

States may have associated actions [Fig. 3.9 (d)]: 

 OnEntry: these actions are triggered as soon as the state is entered 

 Do: these actions take place during the lifetime of the state 

 OnEvent:  these actions take place in response to an event  

 OnExit: these actions take place just before the state exists 

     

(a) 

Initial state 

(b) 

Final state 

(c) 

Simple stateS 

(d) 

Advanced state S 
with associated 

activities 

(e) 

Composite state 
(superstate) S composed of 
simple states (substates) : 

S1 and S2 

Fig. 3.9: Different types  of statecharts 
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2.2.2. Transitions 

Transitions are relationships between states, drown as a splined arrows, 

optionally labeled by a trigger that causes actions; the general syntax of such trigger 

is a triple: Event [Condition]/Action. This indicates that an object in the source state 

will perform certain actions and enter a target state when a specified event occurs 

and specified conditions are satisfied [106], [107]. 

 

 

 transition from State S1 to State S2: transition taken with performing an action a1 is when the event E1 occurred and the 
condition c1=c2 is satisfied. 

 transition from State S2 to State S1: transition taken each time the condition c3>c4 is satisfied. 

Fig. 3.10: Statechartstransitions 

 

As it’s sown in [Fig 3.10]; transitions’ triggers can combines some events: It may 

consist of the condition, enclosed in square brackets, or it may consist of the 

condition only. Thus if the transition is labeled E1 [c1=c2] / a1, the action a1 is 

performed if the condition c1=c2 is satisfied at the instant the event E1 occurs. If the 

transition is labeled [c3>c4], the condition c3>c4 is tested at each instant of time 

when the system is in the transition’s source state, and the transition is taken if it’s 

true [108]. 

Events are used to represent information that is available for a precise instant in 

time and then vanish. They may launch actions and they are edge-sensitive, 

comparable to signals and interrupts; as for example a single ring on a phone, triggers 

an action which can be either a respond to take the call or ignore it [107]. Events can 

be generated externally to the Statechart coming from external sources or internally 

coming from internal sources. 

 

 

S1 

S2 

E1 [c1=c2] / a1 [c3>c4] 



Chapter III: Statecharts based behavior for Agent Based Modeling 

 
53 

2.3. Advanced concepts of Statecharts 

2.3.1. The hierarchy of States (nested states) 

Hierarchy (or states-nesting) that allows dealing with highly complex behaviors 

in elegant and modular manner is one of the most important innovations of 

Statecharts over the classical FSMs. It is used to group sets of states together by 

drawing super-states (lower-level states inside a higher-level states) [107], [109] and 

[110]. The super-state is called also an or-state, and it’s the parent of its lower-level 

states. 

The [Fig.3.11 (a)] illustrates how we can cluster states into new super-states 

yielding the minimization of the number of transitions between states: In [Fig.3.11 

(b)] the system is composed of 3 states A, B and C. and as the event β takes the system 

to State B from either A or C we can create a new super-state D [Fig. 3.11 (b)] that 

group the two sub-states A. 

 

  

(b): Clustering of states (a): A simple statecharts 

Fig. 3.11: Statecharts hierarchy(or-states decomposition) [111]. 

2.3.2. Zooming-in & zooming-out 

The example shown above [Fig. 3.11] might also be approached from a different 

angle of view: it illustrates the capability of Statecharts to view the system as a multi-

levels decomposition which yields the ability to zoom-in and zoom-out into the 

different levels of the system [101]. For example looking inside super-state D 

disregarding external interface for the time being [fig.3.12 (a)] represent the 

zooming-in concept ; whereas eliminating inside of D and abstracting [Fig.3.12 (a)] to 

[Fig.3.12 (b)] illustrate the concept of zooming-out. 
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(a): zooming-in (b): zooming-out 

Fig. 3.12: Zooming-in and zooming-out capabilities [101]. 

2.3.3. Concurrency (orthogonal states) 

We have seen in the previous section, the capability of Statecharts to decompose 

states in X-Or way giving the possibility to view the system in hierarchical levels. 

Statecharts formalism hasn’t only this part of features; it has another improvement 

residing on the possibility to allow and-decompositions of states [108], [109]. These 

and-states, which are also called orthogonal components, describe the feature of 

parallelism inside a Statechart; it allows modeling of concurrent behaviors in the 

same modal. Orthogonal states are all activated when an and-state is entered and are 

all deactivated when it is exited. 

So the concept of concurrency in Statecharts means [109], [110] that a 

concurrent state is described as consisting of two or more parallel active sub-states, 

and to be in such state entails being in all of those sub-states simultaneously. 

As it’s shown in the [Fig.3.13], to represent graphically a concurrent state, we 

use the notation of a dashed line that partitions the state into regions (and-

components). The figure illustrates an orthogonal state Y consisting of and-

components A and D. Both A and D are an Or-state while The first consists of sub-

states B and C, and the second consist of  sub-states E, F and G. they have both 

defaults internal transitions; So the combination (B, F) is achieved when default 

transitions are applied in the absence of any additional information, from the outside 

of Y. Then the occurrence of event α, imply transferring the system into (F, G) 

simultaneously which illustrates a certain kinds of synchronization (a single event 

causing two simultaneous happenings). In the other hand, the appearance of event µ 

at (B, F) tacks the system to (B, E) affecting only the D component. This illustrates a 
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certain kind of independence [108], [111] (a transition is taken in an and-component, 

independently of what might be happening in the others). 

 

Fig.3.13:  Statecharts concurrency (and-states decomposition) [101]. 

2.3.4. Connectors: 

To clarify the specification of such a system, Statecharts allow different kinds of 

connectors that are used to economize the number of entrance arrows to complicated 

sub-states [108], [111].  These connectors are presented in the section below. 

a. Condition Connectors 

A condition connector [Fig 3.14 (a)] (called also C-Connector) is a [101], [104] 

and [108] conditional pseudo-state that indicates a branch point from where each 

outgoing transition has a condition (guard). At the occurrence of the event, either, the 

transition having the true evaluate condition is then taken among the various 

outgoing ones; or the event is discarded if none of the conditions are true.  

b. Switch Connectors: 

The switch connector [Fig 3.14 (b)] (S-Connector) is a [101], [108] branch point 

that allows a transition to be connected to several different states depending on the 

value of an event. It’s usually used with a set of events (rather than conditions) in 

which at least one event among them must be appears in all transitions stimulated by 

this set of events. 

c. Junction Connectors 

Statecharts allows also another type of connectors called a junction connector 

[Fig 3.14 (c)]. It’s a junction point indicating that several states can transition to the 

same state on a given event. It joins transition arrows which its labels can be split as 

Y 

A 

B 

α 
β(G) 

C 

D 

E 

G 

F λ 
δ 

µ 

α 

 



Chapter III: Statecharts based behavior for Agent Based Modeling 

 
56 

desired. This possibly economizes [108] both the number of lengthy arrows and the 

number of identical portions of labels presented in the chart.  

d. History Connectors: 

History connectors also called H-connectors are pseudo-states allowing 

entering the state most recently visited within a given super-state. They are required 

in such cases; in which the last configuration of a complex state must be known when 

it was recently reactivated after it was been deactivated previously. This can provide 

a mechanism for memorizing and returning to previously visited sub-state [106], 

[112]. 

History connectors can be located only inside a composite state; they are shown 

as H or H* in the diagram and are categorized as follow [113], [114]: 

 The shallow history H [Fig. 3.14 (d)] stores the last visited state 

on the same level of hierarchy.  

   

(a): Condition Connector [101]. (b): Switch Connector [101]. (c): Junction Connector [101]. 

 

 

 

 

 

 

 

 

(d): shallow history connector [114]. (e): deep history connector [114]. 

Fig 3.14: Different types of connectors 
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 The deep history H* [Fig. 3.14 (e)] stores all last visited states on the path 

from the node to the leaf in the hierarchy tree.  

So to summarize; the different kinds of connectors cited above are meant to 

visually emphasize the distinction between different kinds of behavior [108]: a C-

connector indicates branching by conditions, S-connector branches by events, and 

junction connectors are used for the remaining cases; whereas history connectors are 

used for memorizing the state most recently visited. 

3. Statecharts based Agent behavior 

In the above sections we have presented the basics of Multi-Agent Simulation 

and the Statecharts formalism. In this section we will talk about combining the two 

modeling approaches in which Statecharts formalism is used to model the behavior of 

agents. 

In fact, there are several researches that have been proposed to model agent 

behavior via Statecharts-based approaches. for instance, State-based programming 

for agent behavior has been explored to model agent communication and behaviors, 

UML state machine based models have also been used in JADE “Java Agent 

DEvelopment Framework” [115] platform where SmartAgent have been developed as 

an extension of the JADE agent behavior model [116], in the work done in [117] the 

behavior of situated agents have been modeled using a combination between 

Statecharts standard notation and the free-flow architecture with a focus on reusing 

roles in different applications. A proposed modeling and distributed simulation 

approach for discrete event systems (DESs) was suggested in the work of [118], the 

approach uses the statecharts-based formalism to express complex behaviors of the 

constitutes entities of the modeled system. Another work done in [119], it aims to 

describe the ELDATool; which is a Statecharts-based visual tool for a rapid 

prototyping of Multi-Agent Systems based on the Event-driven Lightweight Distilled 

Statecharts-based Agents (ELDA) model.  

Although the above cited works have intended to use the Statecharts formalism 

to model agents’ behavior and have been a references works for the upcoming ones, 

but there were other well-known successful woks that have been also became a 

reference works in how to use Statecharts based behavior for MAS. These works use 

http://www.google.com/url?sa=t&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fjade.tilab.com%2F&rct=j&q=JADE%20platf&ei=Q9myTaPjNMuq8QOnyNiVDA&usg=AFQjCNHRdf0l8IYEGEaeNHDy1vGyZoeaAQ&cad=rja
http://www.google.com/url?sa=t&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fjade.tilab.com%2F&rct=j&q=JADE%20platf&ei=Q9myTaPjNMuq8QOnyNiVDA&usg=AFQjCNHRdf0l8IYEGEaeNHDy1vGyZoeaAQ&cad=rja
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the AnyLogic [120] simulation tool; which is the only simulation environment on 

hand that allows us to combine different techniques and approaches such as 

differential equations, discrete events and agent based systems. 

For instance: Stephan Emrich and al. [121] proposes a fully agent based 

modeling of epidemic spread; the work uses the AnyLogic as implementation 

platform agents characterized especially by its Statecharts tool which can be 

programmed very conveniently to model the agent’s behavior. The modifications 

and/or extensions of the final model can be also handled in an elegant way. 

 Peer-Olaf Siebers and al.illustrates in their work [122] how to build a combined 

Agent Based / System Dynamics Model in AnyLogic; their work shows the ability of 

AnyLogic to build a simulation model by combining ABM and SD methods in one 

model using one particular architecture. they highlight the “points of interaction” of 

agents; which its behavior is based on Statecharts; and system dynamics and try to 

show that model elements belonging to different approaches live a single space of 

AnyLogic model and can easily access each other. 

David Buxton and al. [123] suggest an Agent-based AnyLogic Simulation to 

understand dynamic behavior of the aero-engine value chain under future business 

environments. The value chain encompasses original equipment supply, aftermarket 

services and consumables supply. Each player in the value chain is represented as an 

agent, allowing detailed capture of individual business processes, logic, attitudes to 

risk and responses to changes in the market place. The agent-based model developed 

here is based on Statecharts formalism that models the business processes, decision 

rules and exchanges of information and materials involved.  

Maxim Garifullin, Andrei Borshchev [124] presents an agent based approach to 

model consumer market using the AnyLogic Tool. The goal of this paper is to 

introduce the patterns in consumer market modeling that are most frequently met in 

the consulting practice. The work presents how we use the Statecharts formalism of 

AnyLogic to model the behavior of the consumer agents. Many other AnyLogic’ works 

can be found in [125]. 

So to sum up this section, the AnyLogic simulator tool is actually the only 

available tool that allows us to build a simulation model using multiple methods: 

System Dynamics, Agent Based and Discrete Event (Process‐centric) modeling. 
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Moreover, the AnyLogic tool can combine different methods in one model: putting 

agents into an environment whose dynamics is defined in SD style, use process 

diagrams or SD to define internals of agents, etc. In addition The AnyLogic tool 

provides a capability to use Statecharts formalism which can be programmed very 

conveniently to model the agent’s behavior. The modifications and/or extensions of 

the final model can be also handled in an elegant way. Thus the AnyLogic tool is the 

suitable environment which can assist us to model our immune response against a 

virus infection. 

4. Summary 

We have viewed in this chapter an overview of both the Agent based modeling 

and the formalism of Statecharts. The basic concepts that characterize these tow 

viewed techniques are also given. We have cited also at the end of this chapter the 

works that have intended to use the Statecharts formalism to model agents’ behavior. 

The most important works are those using the AnyLogic simulator which we will use 

it as a platform in our immune simulation. 
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Chapter IV 

The AnyLogic Simulation of the first Humorol 
Immune response against an antigen infection 

In the current chapter we will illustrate how we model and simulate the 

immune response against an antigen infection using the AnyLogic simulation tool 

which we have already proven in the last section of the previous chapter, that it’s the 

suitable tool for our immunology simulation. 

As the process being launched by the immune system to response to an 

encountering antigen in such body is hardly complex to be modeled as a whole 

system (chapter1), we will focus only on simulating a part of the immune response 

against an antigen infection. The part to be modeled and simulated concerns the first 

humoral immune response process that is initiated in the Lymph node wherein 

antigens are recognized.  

This chapter is initiated by an overview of the AnyLogic simulator tool and its 

basic features, followed by a synopsis of the biologic behavior of the part of the 

immune system being simulated while an encountering Antigen is recognized. We 

have destined our study for the humoral immunity first response processed in the 

Lymph Node against both T-dependant and T-independent Antigens which have been 

already explained in the first chapter. A proposed model than will be illustrated using 

the AnyLogic environment tool, finally experimental results of the result simulation 

will be discussed. 
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1. The AnyLogic Simulation Tool 

AnyLogic is a Java based multi-approach simulation modeling tool developed by 

XJ Technologies [120]. It’s actually the only available tool that not only supports the 

three well-known modeling paradigms: discrete event  (DE), systems dynamics (SD), 

and agent-based (AB); but, it has also the ability to combine between these different 

approaches to find solutions for problems that would be difficult to formulate into 

tradition ‘single approach’ tools. These combination possibilities make it a very 

interesting tool that has applied for simulating complex systems in a wide range of 

domain applications including : control systems, traffic, system dynamics, 

manufacturing, supply chain, logistics, telecom, networks, computer systems, 

mechanics, chemical, water treatment, military, nonstandard problems, education,… 

In the following sections: a brief overview of the AnyLogic features, its 

architecture framework, and its available tools are presented. 

1.1. AnyLogic Features 

AnyLogic is innovative professional simulation software based on advanced 

technologies such as UML, Java, hybrid systems theory, and best numerical methods. 

These make it full of sophisticated features that have been improved in its current 

professional release “6.5.1”, and which provide to the final users the below 

advantages [126]: 

 Reducing development cost and time: with regards to its competitors, 

AnyLogic has a visual development environment [Fig. 4.1] that 

considerably speeds up the development process of such model saving 

time and cost. Its development environment comes with a set of object 

libraries that provide the ability to quickly integrate reused pre-built 

simulation objects in a hand; and in the other hand, it has the ability to 

import models from other widely used IDE. In addition the fact that it’s 

based on Eclipse makes it works in multi operating system (Windows, Mac 

and Linux). 

 Developing more models with one tool: the crucial feature of AnyLogic is 

that not only allows the development of agent-based, system dynamics, 

discrete-event, continuous and dynamic system models [Fig. 4.2] but also 

it allows combinations between these modeling methods all in one tool. In 

http://en.wikipedia.org/wiki/Discrete_event_simulation
http://en.wikipedia.org/wiki/Systems_dynamics
http://en.wikipedia.org/wiki/Agent-based_model
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AnyLogic users can seamlessly integrate discrete and continuous 

simulations, and they can limitlessly extend their models with custom Java 

codes, external libraries and external data sources. AnyLogic provides also 

a powerful experimental framework that supports extensive statistical 

distribution functions, Monte Carlo simulations and advanced forms of 

optimization. 

 

Fig. 4.1:AnyLogic screenshots  

 

 

Fig. 4.2: AnyLogic modeling approaches [126]. 
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 Improving the visual Impact of models: in addition to the sophisticated 

animation functions that are available in AnyLogic simulation 

environment and which allow it to develop simulations that are visually 

rich and interactive; AnyLogic has the ability to export models as Java 

applets allowing users to run their simulations in a web site. 

1.2. AnyLogic Modeling Framework 

As it’s shown in [Fig. 4.3], the AnyLogic framework based modeling architecture 

is viewed as superposed layers, in which each layer offers its services to the upper 

one [127].  

The foundation layer is the Java programming language which is considered as a 

high-level standard cross platform object-oriented language that can “assist” visual 

modeling language. Besides that the Java Development Kit (JDK) comes with high 

libraries and packages including UI, graphics, math, animation and others; Java has 

also the possibility to run applications in Web browsers as Java applets. 

The next layer is the UML for Real Time (UML-RT), which is an extension to 

UML. This last is a general purpose modeling language for specifying, visualizing, 

constructing and documenting the artifacts of systems; it has a strong set of concepts 

applicable across domains. The UML-RT is a complete working modeling standard 

which is specifically fine-tuned for the development of complex, event-driven, real-

time systems. Its modeling constructs have rigorous formal semantics that provide 

for model execution. UML-RT modeling means explicit structural decomposition, 

clear separation of structure behavior and great degree of reusability. Real world 

objects are modeled in AnyLogic via a set of “active object” UML-RT classes which 

may encapsulate other active objects to any desired depth yielding to form a 

hierarchy of object instances when the model is running. Active objects interact with 

their surroundings exclusively through interface objects: ports and variables. Ports 

are used for discrete communication (message passing) and variables are used for 

continuous communication. The notion of interface makes active object classes highly 

reusable. 

The upper layer is the modeling approach used to model a system. The 

approach can be a discrete, continuous, or hybrid and belongs to the chosen method 
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used to model a system; AnyLogic comes with a set of modeling tools that can be used 

for each approach. For example using discrete approach yields the use of message 

passing ,message class, port, Statechart , triggering transitions ,timers ,events, threads 

, event scheduling. Choosing a continuous approach entails the use of: variables, 

connections, equations, formulas, vector/matrix support, built-In Numerical Methods, 

using external numerical methods; whereas hybrid approach is allowed via hybrid 

Statecharts. 

 

Fig. 4.3: AnyLogic Framework Architecture [127]. 

1.3. Agent-Based modeling in AnyLogic 

AnyLogic has significantly simplified the development of agent-based models 

due to the visual tools that are available in its development environment. It offers an 

agent-based modeler design time that can easily model the agents’ system and their 

behaviors, than putting them in a certain environment which can be either 

continuous or discrete. The agents can form social networks with other agents; can 

also communicate and send messages to each other; and can move in space, have 

states, and follow rules. 

Unlike the discrete event and system dynamics modeling approaches that are 

supported in AnyLogic and in which a variety set of libraries are available; AnyLogic 

hasn’t a universal agent-based library that can help reducing the modeler’s work. 
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However AnyLogic simplifies the agent-based models development via offering some 

reusable design patterns [128]: 

1.3.1. Agents 

From architectural viewpoint, a typical AnyLogic agent is a special subclass of 

ActiveObject class that extends the latter with services useful for agent based 

modeling. Belongs to the environment in which the agent is situated, the AnyLogic 

agent can be either a discrete or continuous type. The user can define any properties, 

methods or events, and can add behaviors to the agent via the rich components pallet 

offered by AnyLogic including: UML Statecharts which are used to define agent 

behaviors, ActionCharts used to define algorithms, Environment objects which help to 

describe the agent environment and to collect the statistics, Events used to describe 

occasional or time-certain occurrences. The user can also write specific Java code for 

special or unanticipated agent models. The defined agents are than embedded into an 

ActiveObject Main class which is considered as a root class that contains a replicated 

object of the modeled agents. The main class also may contain one or more 

Environment constructs to specify properties shared by the replicated agents. 

1.3.2. Space 

AnyLogic supports two-dimensional continuous and discrete space types for 

agents: 

a. Continuous Space  

AnyLogic delivers by the use of this kind of space a set of abilities that can the 

user implement in its models. Among these abilities we find: setting and retrieving 

the current agent location, moving the agent with the specified speed from one 

location to another; executing actions upon arrival, animating agent at its location, 

establishing connections based on agent layout, and other useful services. 

b. Discrete Space  

AnyLogic also supports discrete space which is a rectangular array of cells fully 

or partially occupied by the agents. The cell can only contain one agent at once. The 

abilities offers by Anylogic for the support of this kind of space includes: distribution 

of agents over the cells, moving to a neighboring cell or jumping to arbitrary cell, 

http://127.0.0.1:55257/help/topic/com.xj.anylogic.help/html/agentbased/Discrete%20space.html
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finding out who are the agent's neighbors (with respect to the neighborhood model), 

finding empty cells, and other useful services.  

1.3.3. Communication between Agents  

AnyLogic supports several regular inter-object communication techniques for 

agents, the user can call methods, send messages via ports, link continuously 

changing variables, etc. 

1.4. AnyLogic Interfaces 

AnyLogic comes with a graphical interface [Fig. 4.4], tools, and library objects 

that allow the user to quickly model diverse areas such as manufacturing and 

logistics, business processes, human resources, consumer and patient behavior. The 

object-oriented model design paradigm supported by AnyLogic provides for modular, 

hierarchical and incremental construction of large models. 

 

 
Fig. 4.4:AnyLogic main interface 

 

http://127.0.0.1:55257/help/topic/com.xj.anylogic.help/html/agentbased/Discrete%20space.html#Neighborhood#Neighborhood
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It’s also delivered with the below different visual simulation languages which 

can be combined together for hybrid modeling [Fig 4.5]:  

 Stock & Flow Diagrams are used for System Dynamics modeling. 

 Statecharts are used mostly in Agent Based modeling to define agent 

behavior. They are also often used in Discrete Event modeling, e.g. to simulate 

machine failure. 

 Action charts are used to define algorithms. They may be used in Discrete 

Event modeling, e.g. for call routing, or in Agent Based modeling, e.g. for agent 

decision logic. 

 Process flowcharts are the basic construction used to define process in 

Discrete Event modeling. Looking at this flowchart you may see why Discrete 

Event style is often called Process Centric. 

 

 

 

Statecharts Stock & Flow diagrams 

 

 

ActionCharts Process FlowCharts 

Fig. 4.5: AnyLogic visual simulation language. 

2. Model of the Lymph Node humoral immune response 

We have illustrated in the last section of the first chapter the process of 

mounting an humoral immune response against T-Dependent and T-Independent 

Antigens. This process is summarized in the two diagrams (Fig. 4.6 & Fig. 4.7) which 

simplified the progression of the process cycle. 

http://en.wikipedia.org/wiki/State_machine
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Fig. 4.6: Simplified illustration of the Humoral immune response against T-Ind. Antigen. 

 

Fig. 4.7: Simplified illustration of the Humoral immune response against T-Dep. Antigen. 
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In the model developed in this issue we have simplified this process due to the 

height complexity mechanism founded in it. The modal is an AnyLogic Agent-based 

model in which the chosen type of agents is ContinuousAgent2D. ContinuousAgent2D 

is a subclass of the AnyLogic ActiveObject class that offers a full APIs for developing 

such agent’s type. The model focuses on a single, two-dimensional LN from the time 

of the initial entry of a subset of immune cells together with an immunogenic antigen. 

The modeled agents including: lymphocytes (B-Cells, T-Helper Cells, and 

Memory B-Cells), the plasma cells, the secreting antibodies, and the antigens are 

modeled with regard to their behavior, movement, location, and interactions. They 

are in continuous movement in a two-dimensional environment which is represented 

as a real image of a LN. The environment is divided into different regions that 

represent the various real LN zones wherein the agents are initially situated and 

wherefrom they enter or live; the movement of agents between these regions are 

specified with regard to their behaviors, events and stimulations appeared during 

their interactions. [Fig. 4.8] gives a simplified process of the whole modeled system 

from the time that B-Cells enter the LN to the moment that they exit it. 

 

  

 

 

 

 

 

 

 

 

Fig. 4.8: simplified view of the process launched in the LN. 
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The detailed behind this model is presented in the sections below: 

2.1. Modeling the Time 

Time is an important factor in every biologic system and in certain cases it’s too 

long to model directly the entire processes that take place during these systems. 

Immune response is one of these biologic systems for which we should be careful 

when simulating the time of its processes. In our simulation we have tried to keep the 

relative times between its different processes correct; for that we have used the 

AnyLogic simulated time unit (TU) which is fixed to (0,001) and which in our model 

corresponds to 1 second so an hour is evaluated to (0,36 UT). In immunology many 

processes, for which time is an important factor, were examined; for example: a 

typical lymphocyte circulation cycle takes 12–24 hours [4]; normal proliferation 

takes 8–12 hours [4]; etc. In our model, we attempted calculating the corresponding 

time values, although adjustments were made to allow for technical obstacles. 

2.2. Modeling the LN environment 

In our AnyLogic simulation of the LN B-Cell response to a T-Dependent and T-

Independent antigens, we have tried to let the simulation realistic. For that it’s 

suitable to use a real image of a LN (taken from [129]) which can show its different 

constitute regions. LNs can be functionally separated into three major areas each 

supporting a different cellular environment: the cortex, the paracortex, and the 

medulla. The cortex zone is mostly composed of B-Cells and various APCs, the 

paracortex zone where B-Cells and T-Helper Cells interact, and the medulla contains 

mostly lymphocytes including the antibody producing plasma cells. 

To model these regions we have used a set of closed curves each represents a 

special LN areas. As it’s shown in the [Fig. 4.9] the center LN is chosen to be the 

environment where all the interacted system’ agents are distributed. The agents can 

move continuously between these areas with regards to the biologic experiments. 

The detailed process of circulation of each agent is presented later. 

In the main ActiveObject class of the simulation, we have developed a set of 

functions [Table 4.1] that is shared by all the agents indicating the movement to one 

zone to another, for example the function moveToGC(AgentContinuous2D cell) move a 

given cell from its current location to one of the GCs illustrated in the Fig. the path 
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followed to reach the target location is specified automatically by the AnyLogic move 

API.  

 

 

Fig. 4.9: The AnyLogic simulation LN zones. 

 

Function Description  

moveToGC(AgentContinuous2D cell) Move a given cell from its current location to one of the GCs 
area. 

moveToFollicules(AgentContinuous2D cell) Move a given cell from its current location to the Follicule 
area. 

moveToParacortex(AgentContinuous2D cell) Move a given cell from its current location to the Paracortex 
area. 

moveToModullaryCords(AgentContinuous2Dcell) Move a given cell from its current location to the 
ModullaryCords area. 

moveToParaFolliculesCoretex(AgentContinuous2Dcell) Move a given cell from its current location to the 
ParaFolliculesCoretexarea. 

moveToEfferent(AgentContinuous2Dcell) Move a given cell from its current location to the Efferentarea. 

setInHEV(AgentContinuous2Dcell) Sets the location of the given cell in one of the HEVs area. 
setInAfferent(AgentContinuous2Dcell) Sets the location of the given cell in the Afferent area. 

Table 4.1: List of the used functions that control the movement of cells from and into LN areas. 
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2.3. Modeling the Immune Cells agents 

 

As we are simulating a part of the humoral immune response being initiated in 

the LN against both T-Dependent and T-Independent antigens, the captured 

developed agents include: 

 B-Cells matured to recognize T-Independent Antigen (BCellsTInd).  

 B-Cells matured to recognize T-dependent Antigen (BCellsTDep).  

 T-Helper Cells (THCells). 

 Memory BCells differentiated from proliferated BCellsTInd (BMemoryTInd).   

 Memory BCells differentiated from proliferated BCellsTDep (BMemoryTDep).   

 Plasma Cells differentiated from proliferated BCellsTInd (PlasmaTInd).   

 Plasma Cells differentiated from proliferated BCellsTDep (PlasmaTDep). 

 Antibodies secreted from PlasmaTInd (AbTInd). 

 Antibodies secreted from PlasmaTDep (AbTDep). 

 T-Independent Antigen Presenting Cells (AgTIndAg). 

 T-Dependent antigen T-Independent (AgTDepAg). 

As the number of agent’s type to be modeled in this system is greater than the 

number allowed in AnyLogic evaluation license which allows only modeling five (5) 

ActiveObject classes; has let us assembling the five first captured agents (BCellsTInd, 

BCellsTDep, THCells, BMemoryTInd, and BMemoryTDep)   in one ActiveObject class 

named lympohocyte, gathering the two agents (PlasmaTInd and PlasmaTDep) in 

Plasma’ ActiveObject, coupling also the AgTIndAg and AgTDepAg agents in the 

Antigen ActiveObject, and assembling the AbTInd and AbTDep in the Antibody 

ActiveObject. 

The behavior of each modeled agent is specified by the use of the AnyLogic 

integrated Statecharts formalism. Each behavior is divided into two main Statecharts: 

one to modal the life cycle of the agent, the other modal the location cycle of the 

agent. The life cycle statecharts focuses on the concerned agent life from its first 

existence till its death passing from state to another with regards to the biologic 

experimentations. Whereas the location cycle statecharts concentrates on the current 

location of the concerned agent who is on continuous movement from LN zone to 

another basing on the events occurred during its movement in a hand, and on the 

actual life cycle state in the other hand.  
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2.3.1. The Lymphocyte Agent 

The lymphocyte agent models different lymphocytes including-Cells, Memory B-

Cells, and T-Helper Cells. For each of the B-Cells and Memory B-Cells two kinds of 

cells are taken into account: ones are matured to recognize T-Dependent antigens, the 

others are matured to recognize T-Independent antigens; the T-Helper Cells are 

implicated only in the humoral immune response to T-Dependent antigens.  

The biologic experimental that has shown in the first chapter illustrates that B-

Cells enter permanently into the LN via HEVs and migrate to its zone area (Follicules) 

where they may meet antigens. If the B-Cell recognizes the encountered antigen, the 

humoral immune response process will differ belongs to the presented antigen type: 

If the antigen is a T-Independent one the B-Cell becomes an activated cell and 

migrates to the Follicule Center (FC) where it begins what the immunologist called 

colonel expansion phase. At this moment a large number of B-Cell clones are 

generated; some of them become a plasma cells, others become a memory B-Cells and 

the others are died. 

Whereas if the type of presented antigen is a T-Dependent: the stimulated B-Cell 

will be completely activated when it migrates to the paracortex zone and waits for an 

activated T-Helper Cell which activates the B-Cell after a set of stimulating events 

interactions between them. The activated B-Cell will than take the same process of 

colonel expansion followed by a matured B-Cell activated by a T-Independent antigen. 

All the lymphocyte cells which either recognize or do not recognize antigen live 

the LN via efferent zone than restart the recirculation process. They are death after an 

expiration of their life duration. 

In our AnyLogic modal we have developed a Lymphocyte class which extends 

the AnyLogicAgentContinuous2D subclass. Its properties, methods and Statecharts 

behavior are given below: 
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Property/Methode Type Description  

Type_ Int Lymphocyte Type:  
 0: B-Cell response to T-Independent Antigen. 
 1: B-Cell response to T-Dependent Antigen. 
 2: Memory B-Cell response to T-Independent Antigen. 
 3: Memory B-Cell response to T-Dependent Antigen. 
 4: T-Helper Cell. 

LifeDuration Int Time unit representing the duration Life of the cell (default 500) 

isFromProliferating boolean Source of Lymphocyte born: 
 False: cell is previously existed (from the initiation process of the modal). 
 True: cell is born from the proliferating phase. 

FindNearestAg() Void Looking on continuous manner for a nearest APC that hold an antigen, the 
finding method is calculated based on the nearest distance. 

Recognize() Void Antigen recognizing phase of the current lymphocyte. 

Activtate() Void Activating phase of the current lymphocyte 

Proliferate() Void Proliferating phase of the current lymphocyte with regards to the proliferated 
rate defined by the user. 

toPlasma() Void Differentiating phase of the proliferated lymphocyte to a Plasma cell, the rate of 
differentiating is defined by the user. 

toMemory() Void Differentiating phase of the proliferated lymphocyte to a Memory cell, the rate of 
differentiating is defined by the user. 

Recirculate() Void Enter again the LN. 

StimulateBCell Void Stimulate a B-Cell in order to be activated. 

StimulateThCell Void Stimulate a Th-Cell in order to be activated. 

Dye() Void Remove the lymphocyte from the simulation in case that LifeDuration is expired. 

Table 4.2: Properties and functions of the Lymphocyte Agent. 
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Fig. 4.10: The Statecharts behavior of the Lymphocyte Agent. 
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2.3.2. The Plasma Agent 

Plasma cells are specialized immune cell that secrete special antibodies to kill 

antigens. They are founded in the LN medulla area where they initiate the process of 

generating a large number of antibodies. Initially plasma cells are generated in the 

FCs after the differentiation process of a clonal expansion cycle of an activated B-Cell; 

they migrate to the modularly cords zone where they begin secreting the specified 

antibodies and inject them into the blood to kill antigens. 

Alike the Lymphocyte agent, we model this aspect by a Plasma class that 

extends the AnyLogic AgentContinuous2D subclass. The properties, methods and the 

Statecharts behavior that enrich the Plasma class are illustrated bellow. 

 

 

 

 

 

 

 

 

Property/Methode Type Description  

Type_ Int Plasma Type:  
 0: Plasma response to T-Independent Antigen. 
 1: Plasma response to T-Dependent Antigen. 

LifeDuration Int Time unit representing the duration Life of the cell (default 500) 

IsFromDifferntiating boolean Source of PlasmaBorn: 
 False: cell is previously existed (from the initiation process of the 

modal). 
 True: cell is born from the differentiating phase. 

secreteAg() void Differentiating phase of the proliferated lymphocytes to one of memory B-
Cells or Plasma cells, the rate of differentiating is defined by the user. 

Recirculate() Void Enter again the LN. 

Dye() Void Remove the lymphocyte from the simulation in case that LifeDuration is 
expired. 

Table 4.3: Properties and functions of the Plasma Agent. 
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Fig. 4.11: The Statecharts behavior of the Plasma Agent. 

 

2.3.3. The Antigen Agent 

Antigens can be recognized directly by B-Cell after a set of chemical interaction 

between them. They are also recognized by TH-Cells with the assistance of a 

specialized immune cell called Antigen Presenting Cells (APCs). Antigens are on 

continuous circulation in our bodies; they are mostly recognized in the LN where they 

enter it via afferent vessels then exit it via efferent area. 

 For the raison to simplify our modal the process of how APCs capture an 

antigen and present it to Th-Cells is not specified heir. In our modal we have modeled 

two kinds of Antigens: the first a T-Independent antigen (AgTIndpAg), the second is a 

T-Dependent antigen (AgTDepAg). In our simulation, Antigens are on continuous 

movement entering and living the LN. Antigens that are recognized by a B-Cell do not 

re-enter the LN and they are completely removed from the simulation to simulate 

that the antigen is killed. 

Similar also to the modeled plasma cells and modeled lymphocyte cells and as 

it’s mentioned in the following illustrations, we have developed an Antigen class 

which is an AgentContiuous2D subclass: 

Plasma 

 

Cell-Cycle 

Recirculating 

New 

AbSecreting 

 

evAbSecreted/ 

SecretAg() 

C 

 

lifeDuration>0 / 

setInHEV(this) 

lifeDuration<=0/ 

Dye() 

evCellRecirculate 

Cell-Location 

inLN 

inBlood 

C 

inHEV 

inEfferent 

inGC 

Arrival/ ExitLN(this) 

inModullaryCords

Medullary 

Cords 

timeOut(1) 

timeOut(1)/ 

 moveToGC(this) 

C 

timeOut(1) 

timeOut(1) 

timeOut(1)/ 

moveToModullaryCords(this) 

Arrival/ 

moveToEffernet(this) 

(isFromDifferentiating) 

!(isFromDifferentiating) 

Arrival/ 

moveToModullaryCords(this) 

(isFromDifferentiating)/ 

Receive("evAbSecreted") 

(!isFromDifferentiating) 



Chapter IV: The AnyLogic Simulation of the first Humoral Immune Response Against an antigen Infection  

 
78 

Antigen 

Type_ 
LifeDuration 
 
Dye() 
 
 

 

 

 

 

 

Property/Methode Type Description  

Type_ Int Antigen Type:  
 0: T-Independent Antigen. 
 1: T-Dependent Antigen. 

LifeDuration Int Time unit representing the duration Life of the antigen (default 500) 

Dye() Void Remove the antigen from the simulation. 

Table 4.4: Properties and functions of the Antigen Agent. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.12: The Statecharts behavior of the Antigen Agent. 

 
2.3.4. The Antibody Agent 

Antibodies (Abs) are specific molecules that are produced by plasma cells.  

They are mostly generated in the LN modularly cords zone then are injected in 

blood via efferent vessel to assist killing antigens. As we have viewed in the first 

chapter, antibodies belong to variant classes of immunoglobulin (Igs) molecules.  

In our simulation not all the Igs classes are modeled, as instances we have only 

simulated two kinds among them: IgsM that are produced under the direct 
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stimulation of B-Cells by T-Independent antigens, and IgsG generated by the Th-Cell 

B-Cell stimulations. The outside antigens killing process is not taken into account heir 

for the raison that we have only modeled the process initiated inside the LN. 

The antibody features and its behavior are modeled via an AgentContinuous2D 

subclass called antibody class. The below illustrations show its main properties, 

methods, and Statecharts behavior. 

 

 

 

 

 

 

 

 

Property/Methode Type Description  

Type_ Int Lymphocyte Type:  
 0: B-Cell response to T-Independent Antigen. 
 1: B-Cell response to T-Dependent Antigen. 

isSecreted boolean Source of born: 
 False: Antibody is previously existed (from the initiation process of the 

modal). 
 True: Antibody generated by plasma cells 

Dye() Void Remove the antibody from the simulation. 

Table 4.5: Properties and functions of the Antibody Agent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13: The Statecharts behavior of the Antibody Agent. 
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2.4. The Main Classes 

During the simulation execution all the above different shown agents are 

situated in the LN environment. The dispatching of each agent inside its specific LN 

area is initially calculated in arbitrarily fashion then each agent will follow its target 

LN area with regards: to its type, its current LN zone and the interactions that may 

take place during its movement.  

In order to orchestrate and control the whole modeled system including its 

various agents with their movement into and from the major LN areas, an AnyLogic 

main class has been developed in which we have specified (Fig. 4.15): 

 The LN environment as it’s illustrated in the section (2.1). 

 A collection of each modeled agent including (B-Cells, Th-Cells, Plasma 

Cells, Antigens, and Antibodies). 

 A set of variables and functions used to develop the model. 

 A set of time statistical analyses about the current happened simulation 

 A set of input parameters that the user can change before and during the 

simulation. The parameters includes (Number of initial agents that 

compose the system “defined in the initial experimental simulation class 

(Fig. 4.14)”, controls to set and modify the proliferated, differentiated, and 

antibody secreting rates, and  finally controls to inject antigens in the LN). 

 A colored legend panel that shows the presentation used to simulate each 

agent. 
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Fig. 4.14: The LN simulation main class. 

 
Fig. 4.15: The LN main root class. 

Medulla 



Chapter IV: The AnyLogic Simulation of the first Humoral Immune Response Against an antigen Infection  

 
82 

3. Results,  discussion and future work 

3.1. Results 

In this section we describe firstly the behavior of the simulator, and then show 

the type of results it generates.  During a typical run of the simulator, a number of 

emergent behaviors can be seen that result from the rules of the model described in 

the previous section. At the beginning, the user defines the initial number of different 

immune response agents that are implicated in the simulation [Fig 4.16], the agents 

include: Th-Cells, two kinds of antigens (T-Dependent antigens and T-Independent 

antigens), two kinds of B-Cells each kind is matured to recognize an antigen type, and 

as also by the same two kinds of B-Memory Cells, two kinds of plasma and two kinds 

of secreting antibodies. 

After all these parameters were specified, the user can switch to the root 

simulation that shows the initial allotment of the entire implicated agents in their LN 

zones. For an illustration sample, the [Fig. 4.17] shows an initial result simulation of 

the modeled system for the parameters’ values given in table [Table 4.6]. The running 

simulation illustrates firstly the random distribution of the concerned defined agents; 

as we have explained previously each cell agent is located in its specified LN zone. 

Than the simulation begins showing the movement of each agent from its current 

location to its target zone with regards to the movement rules defined in its 

Statecharts location behavior. The user can interact whenever he wants with the 

simulation interface by a set of available controls: for example he can add T-

Dependent or T-Independent antigens to the simulation. In [Fig. 4.18] there is a 

situation in which some T-Independent antigens start moving after they are injected 

to the LN via the Afferent zone; if any specified B-Cell that is matured to recognize 

this kind of antigen has encountered the antigen, the humoral immune response will 

instantly begin processing from the activation of the specified B-Cells to the clonal 

expansion phase finished by plasma secreting antibody phase. In our model the 

details behind the antigen recognition phase isn’t taken into account due to the 

extreme chemical interconnection signals known in this case between an antigen and 

a B-Cell; in consequence we have only develop an event that periodically calculate the 

distance between the current B-Cell and all the antigens injected in the LN; if the 

calculated distance is less or equal to two (2), the concerned B-Cell is then becoming 

in the active state of the Clonal_Expansion composite state that invokes an immediate 
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migration of the concerned B-Cell to one of the FCs and starts proliferating with a 

specific modified proliferate rate initially has the value ρ = (24/6.24) * Ln(2) [130]. 

The proliferation process, which itself involves the creation of an additional instance 

of the same object, is stopped when the number of the total proliferate B-cells 

exceeds the allowed total proliferated number which in our model assigned the value 

(𝑇𝑝𝑟𝑜𝑙𝑖𝑓 = (2𝜌 − 1) ∗ 100). The proliferated cells will then either dye with a 

probability of 1% [4] or differentiate either to Plasma Cells or Memory Cells; the 

probability of this differentiating phase is defined by the user (the initial used 

probabilities are [4]: (Pplasma = 66%) to become a plasma cell and (Pmem = 33%) to 

become a Memory Cell).  After that the generating cells migrate to the Modullary 

Cords zone where each plasma cell has a user defined probability initiated to 25% to 

begin secreting a huge number of antibodies; it’s around 2000 Ab’s are secreted every 

second for a few days [4]; in our model the total number of secreted antibodies is 

fixed to 𝑇𝐴𝑏 = (𝑇𝑝𝑟𝑜𝑙𝑖𝑓 ∗  𝑃𝑝𝑙𝑎𝑠𝑚𝑎 ) / 2 per plasma cell for the raison of the limitations 

of the resources (memory and processor frequency) of the computer we have used 

for the simulation. 

  The simulation illustrated from [Fig. 4.18] to [Fig. 4.22] mention a situation 

such this in which a complete first immune response is simulated beginning from the 

injection of a set of T-Ind antigens [Fig. 4.18] to a proliferation phase shown in [Fig. 

4.19] to a differentiation phase mentioned in [Fig. 4.20] and [Fig. 4.21] and finally to a 

secreting antibodies phase viewed in [Fig. 4.22]. 

During the simulation the user can also modify the parameters that control the 

proliferation rate, differentiation rate and antibody secreting rate. The illustrations 

shown in the last cited figures ([Fig. 4.18] to [Fig. 4.22]) correspond to the rate values 

cited in the [Table 4.7]. Our model offers also statistical presentations to the user 

showing him in every time unit the occupation of the total number of each Cell per LN 

zone; the graphs viewed in the left side of the shown snapshots illustrate the 

occupation of: the both types of B-Cells, Memory Cells, Plasma Cells, Th-Cells and 

Antibodies for each of: the GCs zone, the Paracortex zone, the Modullary cords zone, 

the HEVs zone and the Efferent zone. 

 

 



Chapter IV: The AnyLogic Simulation of the first Humoral Immune Response Against an antigen Infection  

 
84 

parameter value  

Initial number of B-Cells matured to recognize T-Indpendent Antigen 500 
Initial number of B-Cells matured to recognize T-Dependent Antigen 500 

Initial number of B-Memory Cells matured to recognize T-Indpendent Antigen 50 
Initial number of B-Memory Cells matured to recognize T-Dependent Antigen 50 

Initial number of Plasma Cells differentiated from B-Cells matured to recognize T-
Indpendent Antigen 

50 

Initial number of Plasma Cells differentiated from B-Cells matured to recognize T-
Dependent Antigen 

50 

Initial number of T-Indpendent Antigen 0 
Initial number of T-Dependent Antigen 0 
Initial number of antibodies generated from plasma cells  differentiated from B-Cells 
matured to recognize T-Indpendent Antigen 

50 

Initial number of antibodies generated from plasma cells  differentiated from B-Cells 
matured to recognize T-Dependent Antigen 

50 

Initial number of Th Cells 500 
Table 4.6: Initial values of the parameters used during the experimental simulation. 

Rate Description value  

Proliferate Rate The rate of generated B-Cells for every activated B-Cell ρ = (24/6.24) *Ln(2) [130] 
 

Plasma Rate The rate of differentiated Plasma cells  66% [4] 

B-Memory Rate The rate of differentiated B-Memory cells  33% [4] 
Antibody Secreting Rate The rate of secreted antibodies for a given plasma Cell 25% 

Death Rate The rate of death cell among the proliferated Cells  1% [4] 

Table 4.7: Rate values of the experimental simulation 

 

  

Fig. 4.16 :The initial running experimental simulation 
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Fig. 4.17 : The initial running simulation of the root main class: 
Each defined agent is situated in its LN zone, and it begins moving from its current zone to another with regards to its Statecharts location behavior 

 
Fig. 4.18 : A number of T-Independent antigens (green color) are added to the simulation (Entering the LN via  

afferent area) and then are starting moving 
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Fig .4.19:  A simulation of a proliferation phase of an humoral immune response against a T-Inp Ag. 

 
Fig .4.20:  A simulation of a differentiation phase of an  humoral immune response against a T-Ind Ag. 
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Fig .4.21:  A simulation of a complete clonal expansion phase (processed in a 3 FCs zones) of an humoral immune 

response against a T-Indep Ag. 

 
Fig .4.22:  A simulation of a plasma secreting antibodies phase (processed in a Medullar Cords zone) of an  

humoral immune response  against a T-Indep Ag. 
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 The user has moreover a possibility to know the current state of any agent via 

the tools offer by the AnyLogic toolbar. For instance the snapshot mentioned in [Fig. 

4.23] highlights the current state of the first generated B-Cell matured to recognize a 

T-Independent antigen (remember that a B-Cell is a Lymphocyte instance class); the 

figure shows that the concerned Lymphocyte is actually on parallel composite states: 

the Cell_Cycle one and the Cell_Location one.  Inside the Cell_Cycle composite state the 

Lymphocyte is in its BCell composite state wherein the current active state is the 

Naïve state; whereas inside the Cell_Location composite state the figure shows that 

the specified Lymphocyte is actually in the inLN composite state and inside it the 

current active state is the inFollicules state. 

The [Fig. 4.24] sums up different snapshots of the current active states for 

different simulated agents. 

   

Fig. 4.23: The current highlighted active state for the first T-Independent B-Cell at run time. 
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The current highlighted active state for a T-Independent antibody. The current highlighted active state for a T-Independent Plasma Cell. 

 

The current highlighted active state for a T-Independent antigen 

 
The current highlighted active state for a T-Independent B-Memory Cell. 
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Alike the illustrations simulation that are viewed for mounting a LN first 

humorol immune response against T-Independent antigens, the user also can inject T-

Dependent antigens into the simulation and start viewing the phenomenon emerged 

from the application of their behavior rules defined previously. This phenomenon is 

shown in the [Fig. 4.25] which gives various snapshots during the time running 

simulation.  

 
The current highlighted active state for a T-Helper Cell. 

 
Fig .4.24:  Highlighted current active states for different running simulated agents  

 

    
 

A number of T-Dependent antigens ( midnight Blue  color) are added 
to the simulation (Entering the LN via afferent area) and then are 

starting moving 

A number of activated TH-Cells that have migrated to the 
ParaFolliculeCortex zone,  one among them have stimulated B-Cells and 

these last started their proliferation phase in FCs zones 
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3.2. Discussion & Future works 

The study described in this issue demonstrates how we can use an Agent-Based 

approach for which every agent behavior is controlled completely by the Statecharts 

formalism to simulate a part of the first LN humoral immune response against 

antigens. The use of the Statecharts technique; that has been used together with a 

front-end-animation tool in the work of [4] to serve as an enlightenment of the 

manner on how a LN computational simulation can be translated into realistic 

animation; proves that it’s a suitable and powerful visual modeling technique to be 

applied in biologic systems as they are considered as reactive systems. The work 

presented heir is based on the AnyLogic simulation tool and is considered as the first 

attempt in our Laboratory even in the entire world to model and simulate such 

biologic system using the AnyLogic environment. 

In our approach we have looked for profiting from the work done in [4]; in 

which the Statecharts technique has used as a state-of-the-art reactivity to model the 

development of a LN, we have remodeled completely the LN using the AnyLogic 

simulation tool with regards to the immunological experimentations. Although we 

haven’t model all the experimental details that are issued from the immunology 

researches due to its immense complexity, however our simulation results those are 

compared at run time with a real LN image are closes to the reality. 

The results issued during the execution of our AnyLogic simulation model 

shows that the process of mounting a LN humoral immune response against both T-

Dependent and T-Independent antigens is much feet the biologic experiments; all the 

 

 

A differentiating phase in FCs zones  Secreting antibody phase in the medullar cords zone 

 
Fig .4.25:  snapshots from the simulation run time of the first  humoral immune response against a T-Dep Antigen 
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phenomenon emerged from the application of the behavior rules defined in the 

Statecharts of each implicated cell are compared with the real images issued from the 

immunology experimentations.  The obtained results demonstrate also that we were 

able to transform a part of this static experimental data into dynamical behavior 

including: cell migration from LN zone to another, cell proliferation, cell 

differentiation into memory or plasma cells and generation of antibody-producing 

plasma cells; a statistical analysis of the dynamic occupancy of the different LN zones 

is also given to the final users in order to illustrate statistics about the total numbers 

of cells that are actually residing in each LN zone. 

As a deep analyze of our LN AnyLogic model which has much been simplified 

due to the limitation of the AnyLogic evaluate License key available to us in a hand 

and due to the immense complexity of some immune mechanisms in the other hand, 

and with regards to the LN model established in [4]; our model haven’t detailed the 

cell interactions signals that can be founded during an immune response. For 

example: the antigen-BCells interaction signals, the antigen-ThCell interaction signals 

and BCell-ThCell ones aren’t carried out in our model. The model also doesn’t take 

into account the orthogonal states feature used in the work of [4] for the raison that 

the AnyLogic simulation tool doesn’t support in its current release this powerful 

Statecharts features; nevertheless we have simulated this feature on profiting from 

the ability of the AnyLogic simulation tool to create multi-statecharts for the same 

agent. These multi-statecharts can be executed on parallel manner with the same 

execution fashion of orthogonal states. 

A positive view point of our model is that it deals with two kinds of antigens: T-

Dependent and T-Independent, it’s also developed with one simulation tool that can 

combine different modeling approaches at once, and which integrates also a 2D and 

3D render engine that can animate the simulation in two or three dimensions. 

Contrary to the model of [4] which dials only with the T-Dependent antigens and it’s 

developed using two different tools: the IBM Rhapsody developer tool to model the 

cells behavior and the Adobe Flash tool as a render engine to animate the cells 

behavior. 

After we have analyzed our model and although the simulation of such an 

immune response is very highly complex due to the high complexity of the 
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mechanism behind it; we believe that we have succeeded to build a simplified 

AnyLogic model that models the first LN humoral immune response with taking into 

account a part of the immunology experimentations. Our results obtained during the 

execution simulation of the modeled system shows that the model respects several 

immunology experimentations (B-Cell activation, proliferation, differentiation and 

antibody generation) even that some behaviors such as cell signal interactions, 

activation of Th-cells, etc.., aren’t carried on for which a perspective future work can 

be initiated to extend the model.  

We hope also that other AnyLogic immune researches works can be initiated to 

involve the other immune organs such Spleen, Bone Marrow and Thymus for the aim 

to model the entire immune response by gathering piece to piece the models of each 

immune organ. This also can initiate a collaboration work between our laboratory as 

a computing simulation research side with hospital immunology laboratories as 

biology researches side. 

As also our model is developed under an Evaluation AnyLogic License which has 

limited our development, we suggest to the comity of our laboratory to buy a 

professional or university AnyLogic License in order to much profit from this amazing 

multi-modeling simulation tool and to join the various great companies, research 

institutes and research laboratories [131] that use this product in their researches. 

This would be offering great opportunities not only to the whole members of our 

laboratory but to the other laboratories of our university to initiate future researches 

work that can be based on the AnyLogic simulation tool.  

Finally it would be a great pleasure for us that our AnyLogic model is the first 

attempt in our laboratory even in the entire world to initiate a simulation of a first LN 

humorol immune response against antigens using the AnyLogic simulation tool; as 

consequence we hope that we have enriched the existing immune models that have 

taken place and we have opened a research windows for the future extension of our 

work and for other researches area. 
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4. Summary 

We have presented in this chapter an AnyLogic Agent-Based Model for the first 

LN humoral immune response against antigens. The whole modeled system is viewed 

as a multi-agent system wherein the behavior of the constitute agents are modeled 

via the Statecharts formalism. The model is developed completely using the AnyLogic 

simulation environment, which gives us the opportunity to work with such combined 

ABM and Statecharts formalism; it focuses on modeling a part of the first humoral 

immune response initiated in the LN when an encountered antigen is recognized; it 

has much been simplified due to the immense complexity behind the mechanisms of 

such immunology systems. Even though some behaviors such as cell signal 

interactions, activation of Th-cells, etc.., aren’t carried on in our work, however the 

results obtained from the simulation of our AnyLogic model shows that it respects 

several immunology experimentations including: B-Cell activation, proliferation, 

differentiation and antibody generation. 

We think that we have succeeded to enrich the existing immune system models 

by presenting our AnyLogic model which is considered as the first attempt to model 

such biologic systems in our Laboratory. Our work can be extended for the aim to 

model the other no-modeled parts of the entire LN humoral immune response in a 

hand; and in the other hand to model the whole immune response as a big future 

perspective by initiating research works that intend to model the other involved 

immune organs such: Spleen, Thymus, Bone Morrow…, and gathering together piece 

to piece these models to form the complete immune response.  
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Conclusion 

The human immune system is considered as one of the most complex, adaptive, 

highly distributive learning systems that give a challenge for both immunologist and 

engineers to work together for the aim to attempt to bridge the divide between them. 

The simulation of such immune system is extremely complex due to the high 

mechanisms and interactions existed behind these systems; however great efforts are 

taking place to better understand these mechanisms and interactions. The researches 

that have been issued during the last years varies from mathematical simulation 

models to Cellular Automata (CA) ones arriving to Multi-Agent based ones (ABM) and 

finally the Reactive Animation (RA) simulation models; each model is based on 

specific rules that it characterizes from the others.  

The reactive animation models, which aim to couple between state-of-the-art 

reactivity and state-of-the-art animation, have been one of the recent applied 

approaches for simulating biologic systems. They are based on two combined 

techniques: the Statecharts formalism to model the behavior of systems and the front-

end animation tool to visualize the animation simulation and enable natural-looking. 

The most known immunology works based on this technique is the works done by the 

David Harel’s group who has attempted to model the maturation of T-cells in the 

thymus [77] and the development of the lymph node (LN) [4]. This last studies the 

dynamic development of the LN with a focus on the behavior of a subset of immune 

cells that enter a single, two-dimensional LN with immunogenic antigens; the model 

uses a RA technique in which the behavior of the whole system including the behavior 

of its implicated cells are modeled via the Statecharts formalism; the generated 

executable code issued from this visual language is then used to visualize the 

animation front-end part.  
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At the beginning of our research work, we have intended to extend this RA 

model trying to use the same technique to model the other no-modeled part, but we 

have faced a great obstacle due to the no availability in our market of the tools that 

have been used for modeling this techniques (the state-of-the-art reactivity of the 

work was done by the IBM Rhapsody Developer tool which is a very expensive 

commercial software). Even the deep researches done to find another free tool that 

can allow us dealing with this technique have failed. 

So in our work we have obliged to find another technique which we aim to be 

the first one used in our laboratory, we have tried to remodel a part of the process 

launched in a LN using another approach that challenge to take advantage from the 

different existing approaches used to model such an immune system. We have used a 

Multi-Agent based model in which the behavior of the constitute agents are modeled 

using the state-of-the-art reactivity part of the RA technique.  

Among the available tools that have given us this opportunity to dial with such 

combined ABM and Statecharts formalism is the AnyLogic simulation tool. This one is 

an innovative professional multi-approach simulation modeling tool based on 

advanced technologies such as UML, Java, hybrid systems theory, and best numerical 

methods.  

Our AnyLogic model focuses on modeling the first humorol immune response 

initiated in the LN as an encountered antigen is recognized. The model dial with two 

kinds of antigens: the T-Independent antigens that can instantly mount an humorol 

immune response without the help of T-Helper Cells and the T-Dependent ones that 

must implicate T-Helper cells for mounting an humorol immune response. Due to the 

high complexity of the mechanisms behind this immunology system, we have 

simplified our AnyLogic model trying to not give all the details known from the 

immunology experimentation. 

Unlike the LN model presented in the work [4] in which more immunology 

mechanism details are taken into account such as the details of interaction signals 

between different immune cells or the recognizing phase interaction signals (B-Cell vs 

antigen and Th-Cell vs antigen); our AnyLogic model does not carry on these 

mechanisms due to the high complexity interaction behind them in a hand, and in the 



Conclusion 

 97 
 

other hand due to the limitation of the AnyLogic evaluation License where the 

number of the allowed modeled agent are limited to five (5). 

To achieve our wanted goals we have firstly given an overview of the natural 

immune response and the mechanism behind it; followed by presenting and 

analyzing the different computational models used to simulate such an immune 

response; then explaining  the technique to be used in our model in which an 

overview of  both Agent based modeling and Statecharts formalism are studied; next 

finishing by presenting our AnyLogic LN model starting with presenting the AnyLogic 

simulation tool, then detailing the Statecharts behavior for each implicated agent and 

finally discussing the obtained results, giving suggestions and opening overview of 

future works. 

We have proven that our AnyLogic simulation issued results of the first LN 

humorol immune response respects several immunology experimentations (B-Cell 

activation, proliferation, differentiation and antibody generation) even that some 

behaviors such as cell signal interactions, activation of Th-cells, etc.., aren’t carried on 

for which a perspective future work can be initiated to extend the model.  

We have also proposed a big perspective for future works; which can be 

founded collaboration between our laboratory as a computing simulation research 

side and hospital immunology laboratories as a biology research side; for the aim to 

model the whole immune response by coupling the initiated further AnyLogic 

researches works that involve modeling the other implicated immune organs such as 

Spleen, Bone Morrow, and Thymus. As a part of proposing this big research project, 

we have also suggested to the committee of our laboratory to buy a permanent 

AnyLogic License key (Professional or University) in order to much profit from this 

amazing multi-modeling simulation tool and to join the various great companies, 

research institutes and research laboratories that use this product in their researches. 

As consequence we view that great opportunities would be offered not only to the 

whole members of our laboratory but also to the other laboratories of our university 

to initiate future researches work that can be based on the AnyLogic simulation tool. 

Finally we hope that our first attempt in our laboratory to initiate a simulation 

of a first LN humorol immune response against antigens using the AnyLogic 

simulation tool will enrich the existing immune models that have been taking place. 
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