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ABSTRACT 
 
 

The general purpose of this thesis is to develop new finite elements based on the strain 

approach. In order to ameliorate the accuracy of the results, the static condensation technique 

has been used. Most of the finite elements developed by Sabir are characterized by a regular 

form and appropriate coordinates with the form of the element. To overcome this geometrical 

inconvenience; a new analytical integration is developed to evaluate the element stiffness 

matrix for the finite elements with distorted shapes. This will help to know how the elements 

will behave when they have irregular form, and to extend their applications domain for the 

curved structures no matter what the geometrical shape of the element might be. 

 



 

  

  

  صــلخـم

تهدف هذه الأطروحة بصفة عامة إلى تطوير مجموعة جديدة من العناصر المحدودة 

 تم استعمال تقنية التكثيف ،في النتائجالتقارب من أجل تحسين . اعتمادا على مبدأ التشوه

والتي تعتمد  Sabir  الباحثن أغلب العناصر المحدودة المطورة من طرفأبما  .الستاتيكي

من فوالإحداثيات الخاصة بشكل العنصر، تتميز بالشكل الهندسي المنتظم تشوه، على مبدأ ال

 تم تطوير علاقة تكامل ،هاأجل تجاوز هذه السلبية الهندسية التي تحد من مجال استعمال

إن هذه  .كان شكله الهندسي غير منتظممهما عنصر للتسمح بحساب مصفوفة الصلادة 

تمكننا  ،معرفة سلوك العنصر في حالة الشكل الكيفي، وفي الحالة الإيجابيةمح بالعلاقة تس

  .شكل هندسي غير منتظمذات ولو كانت في الإنشاءات توسيع مجال استعماله من 
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CHAPTER 1  

 

GENERAL INTRODUCTION 

1.1. Introduction    

The analysis and design of structures is a topic of interest in a variety of engineering 

disciplines.  The civil engineer is concerned with the design of large span roofs, liquid storage 

facilities, silos and many other structures. The mechanical engineer is interested in the design 

of pressure vessels, including nuclear reactor containment and pipes. The aeronautical engineer 

is involved in the structural design of aircrafts, rockets and aerospace vehicles. All of these 

structures require the analysis and design in one form or another. In problems of structural 

mechanics the analyst seeks to determine the distribution of stresses throughout the structure to 

be designed. It is also necessary to calculate the displacements of certain points of the structure 

to ensure that specified allowable values are not exceeded.      

For the skeletal structures, the analysis can be carried out by considering first the 

behaviour of each individual part independently and then assembling these parts together in 

such away that equilibrium of forces and compatibility of displacements are satisfied at each 

junction. An example of such process is the analysis of a continuous beam using the slope 

deflection method. However, when analyzing a structure consists of many members forming a 

multi-storey frames, this type of approach becomes very laborious and involves the solution of 

a large number of simultaneous equations. Hence efforts should be geared towards to the 

development of analytical techniques based on a physical appreciation of the structural 

behaviour. In some cases, this leads to the reduction of the amount of work required for the 

analysis to be completed and a direct solution of the many simultaneous equations may not be 

necessary. With the advent of the electronic digital computers, however, engineers realised that 

the resolution of a large number of simultaneous equations, no longer posed problems. Thus a 

return to fundamental methods of analysis is followed, and the resulting so-called matrix 

methods for analysing skeletal structures are established. 
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In the case of the continuum structures, such as slabs, shell structures, dam walls and 

deep beams, where the structural surface is continuous rather than being composed of a number 

of individual components. Such continua require more sophisticated numerical techniques such 

as the finite difference or the finite element methods of analysis, which are widely used in 

engineering problems. Both methods require the analyst to descretisize the structure being 

analysed. 

When dealing with the continuum structures, the finite element method is a more 

suitable and powerful tool of analysis, one can vary the size, the shape, the thickness and the 

material property of an element to suit the overall property of the structure which makes it 

particularly suitable for complicated problems involving non-homogeneous material properties, 

such as composite structures.  

1.2. Historical evolution of the finite element method  

  The finite element method has essentially been developed to provide approximate 

solutions for the analysis of continuum problems. As is often the case with original 

developments, it is rather difficult to quote an exact date on which the finite element was 

invented, but the roots of the method can be traced back to two separate groups, applied 

mathematicians and engineers. This method as known today was presented in 1956 hy Turner, 

Clough, Martin and Topp [TUR 56] and was first applied to the analysis of aircraft structural 

problems, which is considered as one of the key contribution to the development of the finite 

element method. Numerically it had been observed that the finite element method often leads 

to convergent results as the number of elements is increased. The earliest convergence studies 

of the finite element method were reported by Melosh [MEL 62] who later he published a 

paper, in which he developed a criterion to insure monotonic convergence [MEL 63]. 

Zienkiewicz and Cheung [ZIE 65] and Visser [VIS 65] in 1965 were the first to apply the 

method to general problems, such as the conduction heat transfer. Motivated by the specific 

formulation of elements for plane stress, a wide variety of elements were developed including 

bending elements, curved elements and the isoparametric concept was introduced [FEL 66, 

IRO 68]. Once these had been established for the purpose of linear static elastic analysis, 

attention turned to special phenomena such as dynamic response, buckling and material 

nonlinearity. These developments were followed by a period of rather intensive development 

of “general purpose” computer programs intended to place the capabilities of the method in the 

hands of the practitioner. Along with the development of high speed computers, the application 
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of the finite element method also progressed at a very impressive rate. Thereafter within a 

decade, the potentialities of the method for the solution of different types of applied science 

and engineering problems were recognised, and many books have been written on the finite 

element method, the four editions of the books authored by Zienkiewicz [ZIE 88], received 

worldwide diffusion. During the same period a number of journals devoted most of their pages 

to the finite element method. On the development side many researchers continue to be 

preoccupied with the problem of the formulation of new elements, and further development of 

improved algorithms for special phenomena. At the same time a new approach of elements was 

developed at Cardiff, referred to as the strain based approach details of which will be given 

throughout this thesis. Within all this progress, the finite element method is today considered 

as one of the well established and convenient analysis tools by engineers and applied scientists. 

General purposes programs for the finite element analysis are now extensively dispersed in 

practice. The availability of such programs at a modest cost of acquisition accounts for the 

abundance of practical application of the method. 

1.3. Different formulations (Models) 

According to the choice of the interpolation field several models of the finite elements 

can be generated which are:  

1.3.1. Displacement model 

This model is the most popular and most developed. In this model, the finite elements 

are based on an interpolation of the displacements field. The displacements are determined in a 

single and detailed way in the structure, whereas the stresses are not continuous at the 

boundaries.  

1.3.2. Stress model  

In this model the element is formulated on the base of stress field approximation only. 

1.3.3. Mixed model  

This model is based on two independent interpolations of two or more various unknown 

fields, generally the displacements fields and stresses fields within the element. In general this 

model takes the unknown parameters of theses fields as degrees of freedom.     
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1.3.4. Hybrid model  

This model takes in consideration an assumed stress distribution within the element and 

assumed displacements along its edge.  

1.4. Previous work on Strain Based Approach 

Investigations by many researchers since the 1970s on the suitability of the available 

finite elements, especially for curved structures, showed that in order to obtain satisfactory 

converged results, the assumed displacement elements required the curved structure to be 

divided into a large number of elements [ASH 71a]. At that time, the strain based approach was 

developed, not only for curved elements but also for flat elements as well. The approach is 

based on the calculation of the exact terms representing all the rigid body modes and the other 

components of the displacement functions which are based on assumed independent strain 

functions insofar as it is allowed by the elasticity compatibility equations. This approach leads 

to the representation of the displacements by higher order polynomial terms without the need 

for the introduction of additional internal and unnecessary degrees of freedom. Good 

convergence can also be obtained when the results are compared with the corresponding 

displacement elements i.e displacement elements having the same total number of degrees of 

freedom. 

Earliest, numerical tests were carried out by Ashwell, Sabir and Roberts [ASH 71b], on 

simple circular arches with different aspect ratios, the results obtained show that a better 

convergence can be obtained  when assumed strain based elements are used instead of assumed 

displacement models. 

Then, a new class of simple and efficient finite elements for arches of all proportions 

was developed, and the effectiveness of the strain based approach was demonstrated. 

Moreover the opportunity was taken to develop high order elements requiring only the 

essential external degrees of freedom such as: 

Cylindrical shell element was developed by Ashwell and Sabir [ASH 72]. The effectiveness of 

this element was tested by applying it to the analysis of the familiar pinched cylinder and barrel 

vault problems, and the results obtained were shown to converge rapidly for both 

displacements and stresses.  
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The work on the strain based was further extended by Sabir [SAB 75] to develop 

elements for arches deforming out of the plane as well as within. In order to investigate the 

performance of the strain shell element in predicting the high stresses at the neighbourhood of 

applied concentrated loads Sabir and Ashwell [SAB 78] carried out tests on thin shells and the 

loads applied were either radial or axial forces as well as moments about tangents to the 

circular cross section, and the results obtained corresponded closely with theoretical solutions 

Fosburg and flugge [FLU 66]. 

The development of elements based on the strain approach has continued and many 

elements were developed for general plane elasticity problems as well as shells by Sabir et al 

[SAB 85a, SAB 85b and SAB 86]. New classes of elements were developed by Sabir [SAB 

83]; where a basic rectangular element having the only essential nodal degrees of freedom and 

satisfying the requirements of strain free rigid body modes and compatibility within the 

element is first developed. This element is based on linear direct strains and constant shear 

strain. Other elements meeting the above basic considerations together with equilibrium within 

the element are also developed. The problem of the inclusion of the in-plane rotation as an 

additional degree of freedom has also been treated by using the strain approach and a simple 

and efficient rectangular element including the in-plane rotation is derived. This element was 

first applied to the simple problem of cantilevers and simply supported beams, where the 

results for deflections and stresses converged to the exact solution. 

Furthermore, with the success of the application of the strain approach to the plane elasticity 

problems [SAB 85b], the extension of the work to the development of finite elements in polar 

coordinates has continued [SAB 85c, SAB 86]. Many elements for shells and three- 

dimensional elasticity have been developed by [DJO 95, SAB 96, SAB 97a, BEL 98a, 98b, 98c 

and 99, ASS 99].   

Lately, Djoudi and Bahai have developed a new strain based cylindrical shell finite 

element using shallow shell formulation [DJO 2003, 2004a, 2004b]. This element is used for 

linear and non linear analysis of cylindrical panels. Belounar & Guenfoud have also developed 

a new rectangular finite element, which is the first plate bending element based on the strain 

based approach and the Reissner/Mindlin theory for plate bending [Bel 2004]. A new 

rectangular element was elaborated for the general plane elasticity by Belarbi & maalem [Bel 

2005a]. An improved Sabir triangular element with drilling rotation was developed; this 
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triangular element, with three nodes and three degrees of freedom, presents very good 

performance and may be used in various practical problems [Bel 2005b]. 

1.5. Advantage of the strain approach  

  Direct interpolation based on the strain approach provides a better precision on these values 

and on constraints and displacements (obtained by integration); compared to the classic 

formulation where deformations are obtained by derivation of the chosen displacement fields.  

The main advantages of this approach [SAB 71] and [BEL 2000] are: 

• Easy satisfaction of the main two convergence criteria bound directly to strains (constant 

strains and rigid body movement). 

• Effortlessly decoupling of the various strain components (a field of uncoupled 

displacements generates coupled strains).  

•  Possibility of enriching the field of displacements by terms of high order without the 

introduction of intermediate nodes or of supplementary degrees of freedom (allowing so to 

treat the problem of locking). 

1.6. Finite element method modeling and its applications to structures 

1.6.1. Finite element method modelling 

The finite element procedure reduce the continuum structure of any dimension to one of 

a finite number of unknowns by dividing the solution region into elements and by expressing 

the unknown field variable in terms of assumed approximating functions within each element. 

The approximating functions are defined in terms of the values of the field variables at 

specified points called nodes. The nodal values and the approximating functions for the 

elements completely define the behaviour of the field variable within the elements. For the 

finite element representation of a problem, the nodal values of the field variable become the 

new unknowns. Once these unknowns are found, the approximating functions define the field 

variable throughout the assemblage of elements. In the field of structural analysis, the most 

common approach, to finite element modeling of structure, is to consider that the 

displacements at the nodal points are the main unknown parameters of the problem.           
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1.6.2. Modelling the structure 

The model should be chosen to represent the real structure as closely as possible with 

regard to the geometrical shape, loading and boundary conditions. The geometrical form of the 

structure is the major factor to be considered when deciding the shape of elements to be used 

(Fig.1.1). Another factor in the idealisation process is the size of the elements used. This, 

however, depends on many other factors, such as the efficiency of the elements and the 

importance of local features in the structure, e.g. stress concentrations. In many cases, only one 

type of elements is used for a given problem, but sometimes it is more convenient to adopt a 

mixed subdivision in which more than one type of elements is used, e.g. a beam element is 

connected to a shell element as a stiffener. 

 

 
 
 
 
 
 
 
 
 
 
  (a)                   (b) 
 
            Fig.1.1:   (a) A plane structure of arbitrary shape  
                            (b) A possible finite element model of the structure 

1.6.3. Formulation of the element stiffness matrix 

The evaluation of the stiffness matrix of the finite element is the most critical step in 

the whole procedure and in which the accuracy of the approximation is controlled. This step 

includes: 

The number of nodes, the number of nodal degrees of freedom and the choice of the 

displacement functions used to represent the variation of the displacement within the element. 

Each element may contain corner nodes, side nodes or even interior nodes. The degrees of 

freedom usually refer to the displacements and their first order partial derivatives at a node but 

very often may include second or even higher order partial derivatives. 

Pressure p 
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By using the principle of virtual work or the principle of minimum potential energy, a stiffness 

matrix relating the nodal forces to the nodal displacement can be derived. Hence, the choice of 

suitable displacement functions is the major factor to be considered in evaluating element 

matrices. 

With a good displacement pattern, convergence towards the correct value will be much 

faster than with a poor pattern, thus resulting in a saving in the computing time. In order to 

achieve the convergence towards the correct value, three rules govern the choice of 

displacement functions known as “convergence criteria”: 

* Rigid Body Movement: It must be possible for the element to move as a rigid body 

movement without causing any internal strains at the same time. For the displacement 

functions given in terms of simple polynomials, this requirement will only be satisfied when 

the elements become very small. 

* Constant Strains: When the number of elements in a structure is very large (and their size 

very small), nearly constant strain conditions may exist in each element. Thus in the limit the 

displacement functions chosen must allow any state of constant strain to exist within an 

element. 

* Inter Element Compatibility: The element subdivision must” fit” together both before and 

after deformation. Thus along a common edge between adjacent elements, the displacement 

must be described uniquely by the common nodes along that edge. A poor choice of 

displacement functions for any element type may however violate the requirement of 

continuity. In general, it is not always necessary that the element should be fully compatible 

across its boundaries (i.e. conforming). In fact, many elements exist which do not satisfy this 

requirement yet they yield accurate results [CLO 66]. 

The following steps summarise the general procedure for establishing the stiffness relations of 

plane finite elements, in matrix notation: 

-  The strains within an element are expressed in terms of the nodal displacements 

          { } [ ]{ }eB δε =   

-   The stresses at any points in the element are expressed in terms of the strains at that point  

          { } [ ]{ }εσ D=  



Chapter 1                                               General introduction   10

The external work done by the nodal forces:  

     External work   ( ) { } { }eTe
eext PW δ

2
1

=  

The internal work given by the strains energy of deformation within the element:  

           Internal work     ( ) { } { }∫=
V

T
e voldW )(

2
1

int σε  

Hence, substituting for { } [ ][ ]{ }eBD δσ =  and { } { } [ ]TTeT Bδε =  in the above two equations, and 

equating external and internal work we end up with:                                                                      

{ }eP  = [ ] [ ][ ][ ])(voldBDB T∫ { }eδ  

These are the stiffness relations  

{ }eP  = [ ]{ }eek δ  

Where: [ ]ek  is the element stiffness matrix. 

1.7. Scope of the work 

To analyse a structure with complex geometrical shape in real problem, by a limited 

number of finite elements with a regular shape is not at all sufficient. The purpose of this 

work is to overcome this geometrical inconvenience and to provide additional developments 

of new finite elements formulated essentially on a strain based approach. 

The application of the finite elements method and the results obtained in the analysis 

of structures has progressively improved with the development of elements based on the strain 

approach. Therefore to achieve this purpose, the thesis attempts to make some contributions 

along this line of reasoning as described in the following chapters: 

The second chapter is entirely devoted to the development of a new sector element based on 

the strain approach.  This element has four nodes in addition to the central node. The 

performance of the developed sector element baptised SBMS-BH is tested by applying it to a 

thick cylinder under internal pressure.  
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           The Third chapter attempts to develop a new analytical integration solution routine to 

evaluate the element stiffness matrix for the finite elements with irregular shapes. For reasons 

of importance and particularity of the developed elements based on strain rather than 

displacement approach (higher order shape functions expressed in terms of independent 

strains) with coupled variable kinematics. This complicates the use of the numerical 

integration. These elements are also characterized by regular forms, which tend to decrease 

their utilization domain. To overcome this geometrical inconvenience, this chapter presents a 

new integration solution routine to extend their applications domain for the structures no 

matter what the geometrical shape might be. 

The fourth chapter is entirely devoted to the development of a simple quadrilateral 

element with two degrees of freedom at each node and is formulated by using the concept of 

static condensation. It is based on the strain approach and satisfies the equilibrium equations. 

This element can be used to solve general plane elasticity problems. The results obtained are 

comparable with those given by the standard quadrilateral element Q4 and the robust element 

Q8. 

The fifth and sixth chapters deal with the formulation of two finite elements. As it is 

well known, that calculations by finite elements of structures formed by plates and shells 

became a real tool with industrial vocation. It is very wide-spread in numerous sectors with 

high technology, civil or military (aprons of bridges, motor bodies, fuselages and wings 

planes…). Many engineers prefer to deal with the structures analysis by simple finite elements 

such as triangular elements with 3 nodes, quadrilateral with 4 nodes or solids with 8 nodes and 

with the same number of degrees of freedom per node:  

The first element is a flat shell element ACM_Q4SBE1, is composed by assembling the two 

elements Q4SBE1 and ACM. This element can be used for the analysis of shell structures. 

The second element is a parallelepiped finite element baptized SBP8C (3 d.o.f/node; 9 nodes) 

based on the strain approach. It has the three essential external degrees of freedom at each 

corner node in addition to the centroidal node.  

To test the performance of these elements, they have been applied to some reference 

validation examples and compared to the other elements.  

 

 



Chapter 2                 A new strain based mixed sector element 
 

12

  

 

  

 

 

 
CHAPTER 2 

 
A NEW STRAIN BASED MIXED 

 SECTOR ELEMENT  
 



Chapter 2                 A new strain based mixed sector element 
 

13

CHAPTER 2 

 
A NEW STRAIN BASED MIXED  

SECTOR ELEMENT 

2.1. Introduction 

As described in the first chapter; in order to obtain satisfactory finite element results, 

the analysis of arbitrary shaped structures by displacements model, can be done by using finite 

elements with typical geometry. Argyris and Kelsey [ARG 60] have proposed the use of 

rectilinear elements such as triangles, rectangles and quadrilaterals for the analysis of complex 

structures. In case of structures with curved boundaries, it was revealed that, to obtain 

satisfactory converged results, the finite elements based on assumed independent polynomial 

functions, require the curved structures to be divided into a large number of elements. However 

in some particular cases where the boundaries are circular such as annular plates and at the 

neighbourhood of circular holes, it would appear more appropriate and economical to use 

sector element.  

The success of the application of the strain based approach to the two dimensional 

plane elasticity problems impelled researchers to extend their work to the other structure types, 

arbitrary shaped structures and curved structures. The development of finite sector elements in 

polar coordinates can be achieved in three ways: 

The first method “ direct integration” is to derive strain based elements in polar 

coordinates, using a direct approach, i.e. by giving due consideration to the strain- 

displacement relationship in polar coordinate, assuming polynomial expressions for the strain 

and integrating the resulting equations to obtain the displacement functions. This method has 

been used by Sabir and Bouzerira [BOU 87]. 

The second method “Coordinate transformation” is to use the displacement fields 

obtained in Cartesian coordinates and converting the coordinates system to polar one. This 

method has been used by Sabir and Slahi [SAB 86]. 

The third method “direct approach or Raju approach ” is to use the displacement fields 

obtained in Cartesian coordinates and replacing x and y with r and θ (polar coordinates). 
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2.2. Previous developed Sector Elements  

The following sector elements are developed using strain based approach: 

2.2.1. Raju and Rao Element [RAJ 69] 

One of the most commonly used finite elements for plane elasticity problems in 

Cartesian coordinates is the rectangular bilinear element where the displacement functions are 

given by  

U =  a1  +  a2 x  +  a3 y  +  a4 x y                                                                    (2.1a) 

V =  a5  +  a6 x  +  a7 y  +  a8 x y             (2.1b)  

Raju et al developed a sector element based on the above functions by replacing x and y with r 

and θ  ; hence the displacement field would be 

 Ur =  a1  +  a2 r  +  a3 θ   +  a4 rθ                                                                 (2.2a) 

 
θ

V =  a5  +  a6 r +  a7 θ   +  a8 r θ                                         (2.2b) 

2.2.2. Sabir and Salhi Element [SAB 86]  

Sabir and Salhi used the second approach and developed a strain based sector element. 

It has two degrees of freedom at each corner node. The coordinates systems and displacements 

are as shown in Fig.2.1.  

The displacement functions are given by the following equations: 

U  =  a1 – a3 y + a4 x+ a5 xy + a8 y/2  - a7 y2/2                                                           (2.3a)  

            V = a2 + a3 x + a6 y  + a7 xy + 0.5 a8  x - a5 x2/2                                                      (2.3b)    
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To convert the above two equations in terms of polar coordinate system, using the following 

expressions from Fig.2.1.(b).  

       x  =  r sinθ                                                                                               (2.4a) 

      y  =  r cosθ  -  R                                                                                       (2.4b) 

Where R is the radius of curvature of the central circumferential line of the element and the 

polar coordinates r  and  θ  are as shown in Fig.2.1(a) . 

The displacement components in the εy are the direct strains, γxy  is the hearing strain, and U and 

V are the translational displacement in the r  and θ  directions U and V are given by Fig.2.1(b): 

                             U = U sinθ  + V cosθ                           (2.5a) 

                             V = U cosθ  - V sinθ                                                                                (2.5b) 

The final displacement functions are given in terms of polar coordinates as follows:  

U = a1 sinθ + a2 cosθ + a3 R sinθ + a4 rsin2θ + a5  r sin2θ  (r cosθ /2 – R)+ a6  cosθ (r cosθ – R)   

+ a7 sinθ (r2 cos2θ – R2)/2 + a8 sinθ (r cosθ – R/2)  

V = a1 cosθ – a2 sinθ + a3 (R cosθ – r ) + a4 r sinθ cosθ + a5 r sinθ  (r cos2θ + r sin2θ /2)  

+ a6 sinθ (R – r cosθ ) – a7 (r2 cos3θ – R2 cosθ +2 r2 sin2θ cosθ – 2rR )/2 + a8 (cos2θ – R 

cosθ)/2  

 

Fig.2.1: Coordinates systems and displacements for the sector element 
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2.2.3. Bouzerira Element [BOU 87]  

Bouzerira has developed a twelve degrees of freedom strain based sector element, the 

strain field proposed is: 

( )
ε θ

ε θ

γ θ θ

θ

θ

r

r

a a a r

a a a
r a r

a a
r a r a r

= + +

= + + +

= + + + ⎛
⎝⎜

⎞
⎠⎟

4 5 6

7 8
9

6

10
11

12
6

2

                                                                   (2.6) 

However the results obtained by this element when analysing some plane elasticity problems 

were shown to be unsatisfactory, particularly for the deflection convergence. 

2.2.4. Djoudi   Elements [DJO 90]  

Djoudi has developed two sector elements: 

The first element is developed by using the second approach and using the shape functions of 

the SBRIEIR developed by Sabir [SAB 86], the strain filed  

εx =  a4 + a6 y + a10 y2+ 2a11 xy3                 (2.7a)

 εy =  a7 + a8 x –  a10  x2 –2a11 yx3 (2.7b)

 γxy = 2 a5 + a6 x+ a8 y + 2a9 y + 2a12 x (2.7c)

The Second element is developed by using the first approach and using the shape functions of 

Bouzerira element [BOU 87], the strain filed is 

 raaar 654 ++= θε                  (2.8a)

 ( )rar
aaa 6

9
87 +++= θεθ   (2.8b)

 ⎟
⎠
⎞⎜

⎝
⎛+++= 2

6
12

11
10

θθγ θ
rarar

aar  (2.8c)

One may note here that these two elements ameliorate the results, but still unstable against 

aspect ratio. 
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2.2.5. Belarbi Element SBS4 [BEL 98a]  
 

Belarbi and Charif have used the same approach as Raju and Rao [RAJ 69], and 

developed a strain based sector element. It has Three degrees of freedom at each corner node. 

The displacement fields proposed in Cartesian coordinates are:  

xayx3axy2ayaaθ

xaxyayxaxyaya
2
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yxaxyaya
2
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                              (2.9) 

By replacing x and y with r and θ  ; hence the displacement field would be: 

rar3ar2aaa

rarararaa
2
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θθθθ

θθθθ

θθθθθθθ

θ                (2.10) 

 

2.3. Formulation of the New Mixed Sector Element SBMS-BH 

2.3.1. Satisfaction of rigid body movements (RBM) 

Consider the rectangular element shown in Fig.2.2 (a): the three components of strain at 

any point in the Cartesian coordinate system x and y will be given by 

x
U

x ∂
∂ε =                               (2.11a) 

y
V

y ∂
∂ε =                    (2.11b) 

x
V

y
U

xy ∂
∂

∂
∂γ +=                     (2.11c) 

Where εx  and εy are the direct strains, γxy  is the hearing strain, and U and V are the translational 

displacement in the x and y directions respectively 
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If we consider a rigid body movements Fig.2.2, i.e. displacements of an element without 

straining, we will have: 

                         0=xε                               (2.12a) 

 0=yε                    (2.12b) 

 0=xyγ            (2.12c) 

Integrating the first two equations (2.12a) and (2.12b), we obtain the following expression for 

U and V 

Y

X

1 2

34
Y

1 2

34

X

a

b

(a) Before bending

             (c) Deformed shape 
   «Displacement approach » bilinear 

     (b) Deformed shape 
 «Strain based approach  

     Fig .2.2: Pure bending state 
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U  =  a1     + f1  (y)                                                        (2.13a)

V  =  a2   + g1  (x)                                                      (2.13b)

Then differentiating equations (2.13) and substituting in the equation (2.12c), we obtain the 

following equation      

 f'1  (y)+ g’1  (x)=0                      (2.14) 

We should mention here that  f'1  (y) and g’1  (x) must be constant, then  if we take  

 f'1  (y)  =  - a3                                                         (2.15a)

g’1  (x)  =  a3   (2.15b)

Then integrating the two above equations we find: 

f1  (y)  = - a3 y                                                         (2.16a)

g1  (x)  =  a3 x   (2.16b)

Substituting f1 (y) and g1 (x) in equations (2.13), we obtain the rigid body movements  

U  =  a1     - a3 y                                                         (2.17a)

V  =  a2   + a3 x (2.17b)

Equations (2.17) represent the displacement fields for the sector element in terms of its three 

rigid body movement components a1, a2 and a3. Where  a1 and a2 are the translations in the in x 

and y directions respectively, wile the component a3 is the in plane rotation see Fig.2.3   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a2 

a1

Y 

a3 
X 

 

 

 

Fig.2.3: Rigid body movements 
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2.3.2. Displacement functions for The R4BM element 

   Belarbi and Maalem have developed a membrane finite element for plane elasticity 

analysis [BEL 2005]. This element is rectangular with four corner nodes and a central node, 

each node has two degrees of freedom and based on the strain approach as shown in Fig.2.4. 

The suitable shape function assumed is given as follows: 

 εx =  a4 + a5 y + a9 x               (2.18a)

 εy =  a6 + a7 x + a10 y (2.18b)

 γxy =  a8 (2.18c)

In equations (2.18) the three strain components can not be taken arbitrarily, they must satisfy 

the compatibility equation  

 0
2

2

2

2

2

=−+
yxxy
xyyx

∂∂
γ∂

∂
ε∂

∂
ε∂

                                                                            (2.19) 

By integrating equations (2.18), the displacement functions are obtained as follows: 

 U = a4 x+ a5 xy  - 0.5 a7 y2 + 0.5 a8 y + 0.5 a9 x2                     (2.20a)

 V=  - 0.5 a5 x2 + a6 y + a7 xy + 0.5 a8  x +0.5 a10 y2   

 

  (2.20b)

The final displacement functions are obtained by adding equations (2.17) and (2.20): 

 U = a1 – a3 y + a4 x+ a5 xy  - 0.5 a7 y2 + 0.5 a8 y + 0.5 a9 x2           
          

(2.21a)

 V= a2 + a3 x  - 0.5 a5 x2 + a6 y + a7 xy + 0.5 a8  x +0.5 a10 y2   
 

(2.21b)

   

Fig.2.4: Co-ordinates and nodal points for the rectangular R4BM element 
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2.3.3. Displacement functions for the New Sector Element SBMS-BH 

The second approach mentioned above is used to develop a new sector element based 

on the shape functions of R4BM element [BEL 2005a]. This element has four nodes in addition 

to the central node, and two degrees of freedom per node U and V (Fig.2.5), by replacing x and 

y with r and θ ; hence  

Ur = a1 – a3 θ  + a4 r+ a5 rθ   - 0.5 a7 θ 2 + 0.5 a8 θ  + 0.5 a9 r2           

          

(2.22a)

 Vθ = a2 + a3 r  - 0.5 a5 r2 + a6 θ  + a7 rθ  + 0.5 a8  r +0.5 a10θ 2   

 

(2.22b)

The stiffness matrix [Ke] for the sector element can now be calculated from the well-known 

expression 

[ ] [ ] [ ] [ ][ ] [ ]11 −−
⎥
⎦

⎤
⎢
⎣

⎡
= ∫∫ A d.dr.r.B.DB AK

T

S

T
e θ       (2.23a) 

 [Ke] = [A-1 ]T [K0 ] [A-1 ]   (2.23b) 

          With: [ ] [ ] [ ][ ]∫ ∫
−

=
β

β

θ
2

1

...0

r

r

T ddrrBDBK                            (2.23c) 

Where [D] is the rigidity matrix, [A] is the transformation matrix and [B] is the strain matrix.  

 

 
 
 
 
 
 
 
 

 

 

 

         
     
 
 

5
P

X 

y 

  

1  

 

 

R r

θβ

3 

 

2

4
r2 

r1 

O  
Fig.2.5:  Coordinate system and displacements for  

the sector element SBMS-BH 
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In polar coordinates the strain displacement relationships are given by 

   
r

U r
r ∂

∂ε =                                                                                                                (2.24a) 

∂θ
∂εθ r
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r
U rr +=     (2.24b) 

r
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U r

r
θθ

θ ∂
∂

∂θ
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Where rε  and θε are the direct radial and circumferential strains and θγ r  is the shearing strain. 

From Eqs. (2.22) and (2.24) the strain matrix [B] can be derived. See Appendix A.1 

For the case of plane stress problems where: 

         [D] =
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The result of the matrix multiplication and integration required to obtain the bracketed part [K0] 

is given explicitly in the Appendix A.2.  [Ke] is then calculated by carrying out the 

multiplication by [A-1] and its transpose in the usual way. 

2.3.4. Evaluation of Stresses  

        Having obtained the displacements, the stresses are evaluated by using the stress-strain 

relationships, the stresses within the element can then be obtained by the strain filed derived 

from the following displacement functions [BEL 98a].   
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Results and convergence curve for deflections and stresses are given and compared with the 

exact solution and those obtained from other sector elements.    
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2.4. Validation test  

 The performance of the developed sector element SBMS-BH is tested by applying it to 

a thick cylinder under internal pressure. 

The dimension, loading and elastic properties for this rotationally symmetric plane stress 

problem are given in Fig.2.6. Due to symmetry only one quarter of the cylinder is considered 

in the finite element idealisations Fig2.6. (b).   

 Internal radius   a = 20 mm       Thickness t = 1 mm     

 External radius b = 40 mm        Poisson ratio ν = 0,3      

 Young’s modulus E = 2 105 MPa (Steel)            

      σe = 210 MPa                       α =  π/4 

Condition of symmetry: 

AB and CD Vθ = 0   Internal pressure q = 0,1 KN/mm2 

 
 
 
      
         
     
         

 
   

 
 
 
   

 

The results obtained for the radial deflections Ur and the stresses rσ  and θσ are compared to 

the analytical solution given by Rekatch [REK 80]:    
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In this case: Pi = q   ;     Pe = 0 
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Fig.2.6: Thick cylinder under internal pressure. 

(a) (b) 
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The following are calculated for the mid point E (r =30 mm) along the radial section m-n., 

Ur: The radial deflection   

rσ : The radial stress   

θσ  : The tangential stress 

The convergence of radial deflection Ur, and the stresses σr  and σθ  at point  E (r = 30 mm)  are 

presented in Table 2.1 and also plotted by using different mesh size.  
 

Mesh  

 

Radial deflection 

Ur (mm) 

Radial Stress 

σr (MPa) 

Tangentielle Stress 

σθ (MPa) 

2 x 2 1,4146 38,828 86,997 

4 x 2 1,4155 28,883 91,320 

6 x 2 1,4155 27,228 92,033 

8 x 2 1,4156 26,633 92,288 

10 x 2 1,4157 26,383 92,404 

12 x 2 1,4156 26,248 92,458 

14 x 2 1,4156 26,174 92,486 

Exact Sol.     1,4155      25,9259     92,5900 

  Table 2.1: Thick cylinder under internal pressure 

        The computed results for the radial deflection at mid point along the radial section m-n are 

shown in Table 2.1. Figures 2.7, 2.8 and 2.9 give the convergence curves for the results 

obtained from elements SBMS-BH and SBS4 (BEL 98) for the radial deflection, radial stress 

and tangential stress at point E.  
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Fig.2.7:  Convergence curve for the radial deflection Ur at point E (r =30 mm) 

  

 

 

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 5 10 15 20 25 30

 
 

Fig.2.8:  Convergence curve for the radial Stress σr  at point E (r = 30 mm) 
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Fig.2.9:  Convergence curve for the tangential Stress σθ  at point E (r = 30 mm) 

Figure 2.7 also shows that the results obtained from element SBMS-BH convergence  

to the analytical results when the cylinder is divided into a small number of elements (2x2), 

which illustrates the high degree of accuracy obtained from element SBMS-BH, for instance 

for a mesh size 2x2 elements the error accounts is equal to 0.063 % of the exact solution. 

        Furthermore, the results obtained for the various components of stresses were 

satisfactory and converged to the theoretical solution as the number of elements was increased. 

 

Figures 2.10, 2.11 and 2.12 show the variation of the radial deflection Ur, the stresses σr 

and σθ  across cylinder wall. The values obtained from the developed sector element SBMS-

BH are compared to the exact solution.  
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 Fig. 2.10: Variation of the radial deflection Ur across cylinder wall 
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Fig.2.11: Variation of the radial stress σr  across cylinder wall 
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Fig.2.12: Variation of the tangential stress σθ  across cylinder wall 

 
 
 

2.5. Conclusion   

The inclusion of the internal node ameliorates the results obtained.   

The results obtained from the developed element SBMS-BH are shown to converge to the 

theoretical solution for the problem considered. 

           It should be mentioned here that the convergence is monotone for both deflections and 

stresses 

The good performance of the developed sector element SBMS-BH is confirmed. 
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CHAPTER 3 

 
 

A NEW INTEGRATION SOLUTION ROUTINE FOR 
QUADRILATERAL AND TRIANGULAR SHAPES 

 
 

3.1. Introduction 

           The analytical expressions for the fully integrated stiffness matrix of a rectangular four 

node element have been published by Hacker and Schreyer [HAC 89] and the analytical 

integration formulae for linear isoparametric elements were written by Babu and Pinder [BAB 

84] and Rathod [ RAT 88], Griffiths has described how the stiffness matrix of a general 

quadrilateral element can be expressed in closed form by expending and simplifying the four 

terms in the numerical integration summation [ GRI 88]. Most of the finite elements based on 

assumed strains have been developed since 1972 by many researchers, Sabir  and  Ashwell       

[ASH 72], Sabir and Salhi [[SAB 86]], Belarbi [BEL 98a], [BEL 99], Djoudi and Bahai [DJO 

2004a], [DJO 2004b] and others. Many of them were undertaking their research work at 

Cardiff University in the U.K. These elements were characterized by a regular form and 

appropriate coordinates with the form of the element; these coordinates can be Cartesian, polar, 

spherical, cylindrical or else conical. With the continuation of the development of the strain 

based approach many elements for general plane elasticity as well as shells have been derived 

by Sabir et al [ SAB 85a], [ SAB 85b] and [ SAB 95]. 

            It is not sufficient at all, to model a structure with a complex geometrical shape in real 

problem, by a limited number of elements as cited above;. To overcome this geometrical 

inconvenience; this chapter presents a new integration solution routine. This solution is 

adopted for two reasons. First, to know how these elements will behave when they have 

irregular forms. Second, in the positive case, to extend their applications domain for the 

structures no matter what the geometrical shape might be [BEL 2003]. The performance of this 

new solution routine is tested by applying to the analysis of the problems used in previous 

publications and to obtain solutions for practical problems in engineering. 
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3.2. Integration method 

3.2.1. Numerical integration  

The element stiffness matrix [Ke] can be calculated using the well known Eq.(3.1)  

            [ ] [ ] [ ][ ]d e t . .
T

e
S

K B D B J d dξ η= ∫ ∫                                                   (3.1) 

Where: 

 [B]: the strain matrix   

 [D]: the rigidity matrix 

 det J: the determinant of Jacobian matrix  

To carry out the integral, we have to choose either numerical integration (e.g Gauss 

integration) or analytical integration. One of the disadvantages of the numerical integration is 

the high order of the monomials after the three multiplications of integral matrices Eq.(3.1), 

which would signify many integration points. 

 

3.2.2. Sabir approach [SAB 85a] 

If we consider the triangular element shown in Fig.3.1, the element stiffness matrix can 

be calculated using Eq.(3.2) 

 

 
 
 
 
 
 
 
 

 
 

Fig.3.1: Triangular element, Coordinate axes 
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 Where: 

     [A]: Transformation matrix  

     [Q]: Strain matrix  
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The multiplication and integration of the terms within the brackets Eq.(3.2) are carried 

out explicitly. In order to use the nodal Sabir solution routine and to simplify the assembly of 

the finite elements, for the problem considered, Sabir used the following technique in which 

two triangles are combined together to form a rectangular element as shown in Fig.3.3. This 

was achieved by substituting the coefficients of each node from the element stiffness matrices 

of the two triangles into their corresponding place in the element stiffness matrix of the two 

combined elements as shown in Fig.3.2 and Fig.3.3. The stiffness matrix of the combined 

elements will then be used in the assembly of the overall stiffness matrix of the structure. 

Unfortunately, the above technique is suitable only for a rectangle triangular element 

(rectangular form) which decreases its utilization domain: 

Firstly according to the integral limits, the obtained element has a simple shape which is a 

rectangle triangle. 

Secondly, according to quadrilateral shapes, the element obtained is a simple rectangle. Hence 

the applied domain will be limited.    

  

 
 
 
     
 
 
 
 
 
 
 
 
 
 
 

 
           

 
 
 
 
  

 
 

Fig.3.2: Stiffness matrix of each triangle element 
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Fig.3.3: Stiffness matrix of the combined elements  

3.2.3. A new approach  

The evaluation of the element stiffness matrix is summarized with the evaluation of the 

following expression:   

                             [ ] [ ] [ ] [ ][ ] [ ]11 −−
⎥
⎦

⎤
⎢
⎣

⎡
= ∫∫ A dy.dx..Q.DQ AK

T

S

T
e                                                 (3.3a) 

                                [Ke] = [A-1 ]T [K0 ] [A-1 ]                                                                        (3.3b) 

With:                        [K0] = [ ] [ ] [ ]. . .
T

S

Q D Q dx dy∫∫                                                                    (3.3c) 

Since [A] and its inverse can be evaluated numerically, the evaluation of the integral (3.3c) 

becomes the key of the problem.   

In general, the multiplication QT D Q can be done manually, we will end up by calculating the 

double integrals of the form:   

                       I= [K0] = C x y x y
s

. d .d∫∫ α β                                                               (3.4)

  

3 1  

2  4 
 



Chapter 3                                                   A new integration solution routine    
  

34

Knowing that, for certain elements, a too great distortion can lead to erroneous 

numerical results particularly in the calculation of the Jacobien. An expression that is general, 

and easy to implement numerically is being formulated. It  allows  the  evaluation  of  the  

matrix  [K0] in  an  automatic  way whatever  the  degree  of  the  polynomial of  the  

kinematics  field  and  the  distortion  of  the element (Fig. 3.4)   

The calculation of integral I is the principal problem of the calculation of the element stiffness 

matrix [Ke].   

In a very simple and effective manner, the integral is solved by the subroutine 

''INTEGRATION''. To illustrate the step of calculation of the integral in detail, let us take the 

case of an arbitrary element as shown in Fig.3.4. The integral is composed of three parts 

symbolized on the figure by Roman numerals I1  II2   and III3 , each integral must be  calculated 

separately.   

The integral will be solved easily if one can determine the limits of the integral with 

precaution, which is far from being obvious.  The fact that the limits can change with the 

geometry of the element raises difficulties, which makes the programming enormously 

complex.  

 
 

 

 

 

  

 
 
 
 

Fig.3.4: Quadrilateral element 
 
 
          I = I 1 + II 2 + III 3                                                                                               (3.5)  

Where:   
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dxdyyx.CI

3

2

3

2

x

x

y

y
3 ∫

β
∫

α=
    (3.6c) 

This means calculating the double integrals of the following form:    

                 I= yxyxC d.d.
s

βα∫∫                                                                                           (3.7a) 

Where  

    C:  constant  

 y:  the ordinate of the segment of equation                      y = ax + b                                    (3.7b) 

 y2 = (ax +b)2 = 1a2x2 +2abx + 1b2                                                                                        (3.7c) 

 y3 = (ax +b)(ax +b)2 =1 a3x3 +3a2 bx2 + 3ab2x +1b3                                                             (3.7d)                  

We will end up with the general form of yβ : 

( ) ( )y C k a b x C k a b x
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k k kβ
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β= =
=

+
+ − − + −

=

+
− + − −∑ ∑

1

1
1 1 1

1

1
1 1 1. . . . . .                                     (3.8)  

Where: 

C(k):  Coefficients function of β  (see  Table 3.1), is for example:   

if β=1 we will have 2 coefficients (see (3.7b)).   

if β=2 we will have 3 coefficients (see (3.7c)).   

if β=3 we  will have 4 coefficients (see  (3.7d)).   

 

C(k)K=1,6  
β C(1) C(2) C(3) C(4) C(5) C(6) 
0 1 - - - - - 
1 1 1 - - - - 
2 1 2 1 - - - 
3 1 3 3 1 - - 
4 1 4 6 4 1 - 
5 1 5 10 10 5 1 

 
Table 3.1: C(k) coefficients relating to the  expression (3.8)  

 
In which:   
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In our case:   

    I IP
P

=
=

∑
1

3

                                                                                                                (3.13) 

The general expression of IP   for a quadrilateral would be:   
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That is to say the expression of I for a triangle is:   

               ∑
=

=
2

1P
PII                                                                                                                  (3.15)  

3.3. Programming the integral expression (3.14) 

3.3.1. Determination of the integral limits   

            The limits of the volumetric integral of the equation (3.4) depend on the element 

geometry.  In the   following figures (Figs. 3.5 to 3.12) all the possible cases that must be 

distinguished when calculating the integral are schematized. The different figures are 

characterized by their integration limits. Let us take for example Fig. 3.5 and 3.6; to calculate 

the integral of the first part, I1 should be solved by the following equations:   
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( )

( )
dxdyyxI

Bx

Ax

y

y
∫ ∫= βα

4

1
1             In the case of Fig. 3.5                             (3.16)  

( )

( )
dxdyyxI

Dx

Ax

y

y
∫ ∫= βα

4

1
1                In the case of Fig. 3.6                          (3.17) 

There is obviously a change of the limits of co-ordinates x. Figures 3.5 to 3.12 show all 

the possible cases:  to form a distorted element, there are theoretically 6 possibilities (Fig.3.5 

through Fig.3.10).  As the distortion of the elements of Figs.3.11 and 3.12 is exaggerated, we 

can ignore the study of these two cases.  We will accept only the use of the elements whose 

distortion remains moderate.   

There remain only the 5 cases of a distorted element (Fig.3.5 to 3.9) and the particular case of a 

rectangular element, illustrated in Fig.3.10.   

Let us examine initially the case of the distorted elements (Fig.3.5 through Fig.3.9). Illustrated 

in the figures in Roman numerals, the integration is composed of three different parts.  To 

calculate the integral of these elements, we need a routine which is able to make the distinction 

between the 4 possible cases, and which provide the limits of integration. The programming of 

such a routine is not obvious. The numbering of the nodes varies from 1 to 4 but a priori we do 

not know which node has which numbering.  To illustrate the problems, let us look at figure 

3.5.  To calculate the integral I1 we should solve the following integral:   

           
( )

( )
dxdyyxI

Bx

Ax

y

y
∫ ∫= βα

4

1
1                                                                   (3.18) 

Neither the lines y1 and y4 nor the limits x (A) and x (B) are easy to determine.  The numbering 

of nodes A and D is unknown.  We do not know which nodes are hidden behind the nodes A 

and B. We thus need a routine which determines the numbering and assigns it with the nodes 

A, B, C and D.   

To simplify the problem, we introduce a convention to number the nodes in 

anticlockwise direction.  

Although this convention was adopted by several authors; it does not solve the whole problem. 

We cannot still identify the various nodes.   
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To finally solve the problem, a subroutine FORM_ICORD is introduced into the 

programming. The purpose of this subroutine is to find the sequence of the nodes and to 

provide the order of the nodes of the element arranged by co-ordinates x (according to the 

ascending order).   

Let us look at figure 3.4 which shows an element having an arbitrary numbering. The 

subroutine FORM_ICORD introduces a  Icord vector of dimension  4.  In the example of the 

figure 3.4, Icord stores the following values:   

 

Icord Icord(1) Icord(2) Icord(3) Icord(4) 

Number of the node 1 4 2 3 

 

Icord(1) contains the node number with the lowest co-ordinate x .   

Icord(4) contains the node number with the highest co-ordinate x.   

Using the Icord vector we can determine the limits of the integral easily.  For example the 

integral I1  of  the example of figure 3.5 is calculated in the following way:   

( )

( )
dxdyyxCI

Icordx

Icordx

y

y
∫ ∫=

)2(

)1(

4

1
1

βα
                                                        (3.19a) 

The key point of this step is to introduce into the limits of the co-ordinates of x the Icord 

vector.  For the  calculation of the above integral I , it is necessary to  integrate the node with 

the lowest  co-ordinates of x until the node which follows:  x(Icord(1)) →   x(Icord(2)).   

The second integral II2 is calculated with the same method.  

                         
( )

( )
dxdyyxCII
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y

y
∫ ∫=
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4

2
2

βα
                                                          (3.19b) 

The limits of the co-ordinates of x are replaced by  x(Icord(2)) →  x(Icord(3)).  Likewise, it is 

necessary for the third integral III3 to replace the limits by x(Icord(3)) →  x(Icord(4)).  
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Now we know the limits of co-ordinates x, but we cannot still calculate the lines y1 to y4.  

 
 
 
 
 
 
 

 
 
        

       Fig. 3.5: Shape 1                                             Fig.3.6: Shape 2 
 

 
 
 
 
 
 
 
 
 

Fig. 3.7: Shape 3                                                         Fig.3.8: Shape 4        
 
 

 
 
 
 
 
 

 
 

Fig. 3.9: Shape 5                                             Fig. 3.10: Shape 6 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3.11: Shape 7                                             Fig. 3.12: Shape 8 
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For the case of triangular shapes, we have the following figures (3.13, 3.14). 

 
 
 
 
 
 
 
 
 
                
                   
                     Fig.3.13: Shape 1                                                        Fig.3.14: Shape 2 

3.3.2. Determination of the lines y1 to y4 (y3) 

a) Case of quadrilateral shapes 

Numbering the nodes in anticlockwise direction simplifies the determination of lines y1 

to y4. Let us take the element of figure 3.6. In the drawing we can see the true numbering of the 

nodes and the numbering with the Icord vector. We can observe that the lines y1 to y4 do not 

change with the geometry of the element. The starting point of line y1 is always the node stored 

in Icord(1). In the example of figure 3.4(a) the value stored in Icord(1) is 1.  We can easily 

calculate the second point of the line using the equation:   

   2 2nd  node = Icord(1) + 1 = 2  

In the case of figure 3.4(b) the value stored in Icord(1) is 3. The second point of the line can be 

calculated using the equation:   

   2 2nd  node = Icord(1) + 3 = 4  

The other lines y2 and y3 are determined in the same way. Any handling of the Icord vector 

must hold account of which the node numbering is between 1 and 4.  If for instance, the node 4 

is hidden behind Icord(1), the complement Icord(1) +1 will be 5, which is obviously false. A 

correction is programmed easily with the order IF of  FORTRAN77.    

In the case of a rectangular element a subroutine must take account that the slope of the lines y1 
and y2 is infinite, a value which does not exist in the programming languages.   

The subroutine treating the calculation of the lines is called COEFF.  
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b) Case of triangular  shapes 

The triangular element is similar to the quadrilateral in point view of numbering of 

nodes in Icord vector (Fig.3.13 and 3.14), within a minimum of geometric forms can be used. 

For the two possible cases illustrated, the integration procedure can be used in two parts 

whatever the position of the nodes.   

           3.4. Calculation of the integral for the distorted elements  

With the explanations of the preceding paragraphs, it is now possible to determine the 

limits of the integral: the lines y1to y4 and the limits of the co-ordinates of x. For the case of 

quadrilateral shapes a routine which carries out the integration “INTEGRATION” is given in 

Appendix B.1 with the related subroutines. 
        

3.5. Numerical applications  

 
In order to illustrate the interest of the integration subroutine, ''INTEGRATION'' is 

thus developed. We have chosen to test the Sabir membrane element SBRIEIR [ SAB 85a ] 

through three case tests of isotropic plane elasticity, taking into account the geometrical 

distortions.  These tests are regarded as a tool to validate of the membrane elements. The 

displacement field for the element "SBRIEIR" is as follows [SAB 85a]:  

                u = a1 – a3 y + a4 x + a8 y/2 + a5 xy + a10 y 2 /2  +  a11 x y 2 + a12 x 2 y 3  

                v = a2  + a3 x + a6 y + a8 x/2 + a7 xy + a9 x 2 /2 -  a11 x 2 y - a12 x 3 y 2                        (3.20) 

                φ  = a3  - a5 x/2 + a7 y/2 + a9 x/2 - a10 y - 2a11 xy - 3 a12 x 2 y 2  

After the programming of the routines which calculate the integral, we can finally carry 

out the calculation of the element stiffness matrix [K0], see Appendix B.2  

Note 1:  The distorted version of the element "SBRIEIR" will be baptized "SBQIEIR"    

3.5.1. High Order Patch Test: Pure bending of a cantilever   

The cantilever is modeled by two membrane rectangular elements (regular mesh) or 

trapezoidal (distorted mesh); various cases of boundary conditions [SZE 92]  are  shown  in the  

figures 3.15a, 3.15b and 3.15c.   
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 The results obtained with the element "SBQIEIR" are compared with those 

obtained with other known quadrilateral elements (Q4, 07β  MAQ, AQ and PS5β) (Figs.3.16 

and 3.17).   

Note 2    Q4 and PS5β are elements without rotation dof.   
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 Fig. 3.15a: Pure bending of a cantilever; Data and mesh.   

 Rotation θZ is free at 2.     
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Fig.3.15b: Pure bending of a cantilever; Data and mesh.   

 Rotation θZ is fixed at 1 and 2.     
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       Fig.3.15c: Pure bending of a cantilever; Data and mesh.   
 Rotation θZ is free at 1 and 2.     
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Fig. 3.16a: Pure bending of a cantilever; Rotation θZ is free at 2.     

Vertical displacement at A. (Fig.3.15a) 
 

For the case of the regular mesh (Fig.3.15a; e = 0), good results are obtained for all the 

elements except for the standard element Q4 which gives unacceptable results.  However, for 

the case of the distorted mesh characterized by the distance  "e" (e > 0), the results of 

SBQIEIR are powerful and comparable with the robust element 07β. Elements AQ, PS5β  and 

MAQ remain  sensitive to the distortions of the mesh.  For the standard element Q4, the 

precision is always largely insufficient (Figs.3.16a and 3.16b). 

In the case of the figure 3.15b, the robustness of this element via the regular and 

distorted mesh is confirmed. The figures 3.17a and 3.17b show the stability, the reliability and 

the good performance of SBQIEIR no matter what the geometrical distortion might be (only 

one element on h!). This is probably in part explained partly by the nature of analytical 

integration carried out.  The distortion has a considerable influence on elements AQ and MAQ, 

while 07β element   is not very sensitive to the geometrical distortions (Fig.3.17).  These 

results confirm that the modified version of element SBRIEIR (SBQIEIR) satisfied the High 

Order Patch Test [ SAB 85a] and [SAB 85b].   

The figure 3.17c confirms the good performance and the stability of SBQIEIR element.   
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Fig.3.16b: Pure bending of a cantilever; Rotation θZ is free at 2.     
Normal stress at point B. (Fig.3.15a) 
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Fig.3.17a:  Pure bending of a cantilever; Rotation θZ is free at 1 and 2.     
Vertical displacement at A. (Fig.3.15b) 
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Fig.3.17b: Pure bending of a cantilever; Rotation θZ is fixed at 1 and 2.     

 Normal stress at point B. (Fig.3.15b) 
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Fig.3.17c:  Pure bending of a cantilever. Normalized results 

             Rotation is free at 1 and 2. (Fig.3.15c) 
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3.6. Conclusion  

This chapter has shown the importance of the subroutine "INTEGRATION". 

The results demonstrate the stability of the element "SBQIEIR" whatever the value "e". 

This is partly explained probably by the nature of analytical integration carried out.   
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CHAPTER 4 
 

A NEW QUADRILATERAL FINITE ELEMENT FOR 
GENERAL PLANE ELASTICITY PROBLEMS 

 

4.1. Introduction 

The strain based approach was used by Sabir [SAB 83] to develop a new class of 

elements for general plane of elasticity problems in Cartesian coordinates. A basic rectangular 

element having the only essential nodal degrees of freedom (2 d.o.f / node) and satisfying the 

requirements of the strain free rigid body modes is developed. The compatibility within the 

element is first established. Other elements meeting the above basic considerations together 

with equilibrium within the element are also developed. A simple and efficient rectangular 

element including the in-plane rotation is derived. This element was first applied to the simple 

problem of cantilevers and simply supported beams, where the results for deflections as well as 

stresses were satisfactory and converged to the exact solution. With the continuation of the 

development of the strain based approach many elements for general plane elasticity as well as 

shells have been derived by Sabir [SAB 85a], [SAB 85b], [SAB 86] and [SAB 95]. 

Several models such as rectangular elements were developed, among them the elements 

of Sabir SBRIE (Strain Based Rectangular In-plane Element) and SBRIE1 (Strain Based 

Rectangular In-plane Element with An Internal Node) [SAB 95]. The first element is based on 

linear variation of direct strains and constant shearing strain. The second is based on linear 

variation of all three strain components. Attention was therefore focused on the development of 

more sophisticated elements based on the strain approach by Belarbi [BEL 98a], [BEL 99] 

[BEL 2000] and [BEL 2002].  

In the present chapter, an improved quadrilateral strain based element that satisfies the 

equilibrium equations is formulated, in order to give supplementary amelioration. This element 

has two degrees of freedom (d.o.f) at each corner node in addition to the internal node. 

Through the introduction of additional internal node an element that has proven to be more 

accurate was developed, even though it requires static condensation [BATH 76]. 
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The element is applied to the analysis of some civil engineering problems and it is 

shown that satisfactory results can be obtained without the use of large number of elements. 

The efficiency of this element was established and the convergence of the results for stresses 

and displacements to a satisfactory degree of accuracy was shown to be faster when compared 

with the quadrilateral standard element Q4, moreover the results obtained are comparable with 

those obtained when using the robust element Q8.   

The performance of this element is tested by applying it to the analysis of the problems 

used in previous publications. A comparison with existing results is given. This element 

produces rapid convergence of deflections as well as stresses.  

4.2. Description of “SBRIE2 “element [SAB 95] 

Consider the rectangular element shown in Figure 4.1; the three components of the 

strain at any point in the Cartesian coordinate system are given in terms of the displacements U 

and V:  

                         εxx  =  U,x    (4.1a)

                          εyy  =  V,y    (4.1b)

                          γxy  =  U,y+ V,x  (4.1c)

If the strains given by equations (4.1) are equal to zero, the integration of these 

equations allows obtaining the following expressions: 

                          U  =  a1     -  a3  y    (4.2a)

                           V  =  a2   +   a3  x (4.2b)

Equations [2] represent the displacement field in terms of its three rigid body displacements. 

 

 

 

 

 

 

Fig. 4.1: Co-ordinates and nodal points for the rectangular element “SBRIE2” 
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The assumed strains for SBRIE2 element [SAB 95] are: 

                εxx =  a4 + a5 y –a7 x-(1-v/2v) a10 x   (4.3a)

                εyy =  a6 + a7 x – a5 y -(1-v/2v) a9 y (4.3b)

                γxy =  a8+ a9 x+ a10 y (4.3c)

Such assumption will lead to the displacement fields given below 

               U = a1 – a3 y + a4 x+ a5 x y  - a7 (x2 + y2 )/2+ a8 y/2  – a10 [ (1-v)x2/4v – y2/2]

 

(4.4a)

               V =  a2 +  a3 x  - a5 (x2 + y2)/2+ a6 y+ a7 xy  + a8 x/2  – a9 [(1-v)y2/4v – x2/2]    (4.4b)

Unfortunately this element baptized SBRIE2 does not satisfy equilibrium equations. 

Further more it has a rectangular shape which limits its application domain. 

4.3. Variational formulation of the new element “Q4SBE1” 

The present element is a quadrilateral with four corner nodes and a central node, each 

node has two degrees of freedom. Thus, the displacement field should contain ten independent 

constants. Figure 4.2 shows the geometry of the “Q4SBE1” element and the corresponding 

nodal displacements.  

 

 
 
 

  
 

 
 
 

Fig.4.2: Co-ordinates and nodal points for the quadrilateral element” Q4SBE1” 

The three components of the strain field at any point are given by equation (4.1). The 

components of the displacements in the directions x and y are U and V respectively. 

The strains in equation (4.1) can not be considered independent, they are in terms of 

two displacements U, V and hence the strains must satisfy an additional equation called the 

compatibility equation. This equation can be obtained by eliminating U, V from equation (4.1), 

hence: 
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ε∂                                        (4.5)  

            Equation (4.2) gives the three components of the rigid body displacements and requires 

three independent constants (a1, a2, a3). Thus it is left seven constants (a4, a5… a10) for 

expressing the displacement due to straining of the element. These seven independent constants 

are apportioned among the three strains as follow: 
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a a a
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                              (4.6) 

                 With: 
( ) ( )

2 2
    ;     

1 1

v
H R

v v
= =

− −
 

These strains given by equations (4.6) satisfy both the compatibility equation (4.5) and 

the two- dimensional equilibrium equations (4.7a) and (4.7b) 

                        0=+
yx
xyx

∂
∂τ

∂
∂σ                                                                         (4.7a)                 

0=+
xy
xyy

∂
∂τ

∂
∂σ

                                                                                       (4.7b) 

By integrating equations (4.6) we obtain:  

                       U =  a4 x+ a5 xy  - a7 y2 (R +1)/2+ a8 y/2  + a9 (x2 – H y2)/2          
          (4.8a)

                       V =  - a5 x2(R + 1)/2+ a6 y+ a7 xy  + a8 x/2  + a10 (y2 – Hx2)/2   
   (4.8b)

The final displacement functions are obtained by adding equations (4.2) and (4.8) to 

obtain the following: 
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                 (4.9)  

Another version of this element “Q4SBE2” having the same strain assumptions as above, with 

a rearrangement of the different coefficients, the strain field will be:  



New Quadrilateral Finite ElementA                            4                                              hapterC 52

                         εxx =  a4 + a5 R y + a9 H x   (4.10a)

                         εyy =  a6 + a7 R x+ a10 H y (4.10b)

                         γxy = - a5 x- a7 y + a8  - a9 y - a10 x (4.10c)

             With:  H = (1-2v)/2(1-v);    R = (1-2v)/2v                                                                                 

The final displacement field is: 

U =  a1 – a3 y +  a4 x+ a5 R x y  - a7 y2 (R +1)/2+ a8 y/2  + a9 (H x2 –y2)/2    
                      (4.11a) 

V =  a2 + a3 x - a5 x2(R + 1)/2+ a6 y+ a7 R x y  + a8 x/2  + a10 (H y2 –x2)/2   
                (4.11b) 

  This version produces similar results to those obtained by (4.9). 

 The stiffness matrix can be calculated from the well known expression: 

                          [Ke] = [A-1 ]T [K0 ] [A-1 ]                                           (4.12a)

                          [K0] = [ ] [ ][ ] dydxQDQ
S

T .∫∫                                           (4.12b)   

          With:  

                            

[ ]
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1

y x
Q x y

xR yR Hy Hx

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

                (4.13)   

                 And       [D] =
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

D11 D12 0
D12 D22 0

0 0 D33
                   the usual constitutive matrix 

                Where:
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=
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33
2 1

ED
ν

=
+

    

For [A] and [K0] see the Appendix C.1 

            We notice that the final functions of displacement (4.9) contain quadratic terms thus 

allowing the change of curvature.  

            If the classical formulation is adopted, two problems can arise:    
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            The first one is the geometrical problem of distortion for some finite elements of higher 

degree (loss of precision); the second is the problem of locking for the finite elements of degree 

relatively low. 

            The adoption of a strain approach with an analytical integration method would allow 

avoiding these problems Belarbi [BEL 2000].  

4.4. Analytical evaluation of the [K0] matrix 

The evaluation of the element stiffness matrix is summarized with the following expression:   

                       [ ] [ ] [ ] [ ][ ] [ ]11  .... −−
⎥
⎦

⎤
⎢
⎣

⎡
= ∫∫ AdydxQDQAK

T

S

T
e                         (4.14a)          

                    [Ke] = [A-1 ]T [K0 ] [A-1 ]                                                              (4.14b)         

             With:  [K0] = [ ] [ ] [ ]. . .
T

S

Q D Q dx dy∫∫                                         (4.14c) 

Since [A] and its inverse can be evaluated numerically, the evaluation of the integral 

(4.14c) becomes the key of the problem.   

Knowing that, for certain elements, a too great distortion can lead to erroneous 

numerical results particularly in the calculation of the Jacobien, an expression that is general, 

and easy to implement numerically is being formulated. It  allows  the  evaluation  of  the  

matrix  [K0]  in  an automatic way whatever  the degree of  the  polynomial of  the  kinematics  

field  and  the  distortion  of  the element [Chapter 3], Fig.4.3.  

                        I = [K0] = yxyxC d.d.
s

βα∫∫                                         (4.15) 

 

 

 

 

 

 

Fig.4.3: Quadrilateral element 
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x1, x2, x3 and x4 are the coordinates of the nodes 1, 2, 3 and 4 in X direction, y1, y2, y3 and y4 

are the functions of the quadrilateral sides, 1-2, 2-3, 3-4, 4-1 respectively as shown in figure 3. 

The general expression of the equation (4.15) for a quadrilateral is:   

  I IP
P

=
=

∑
1

3

                                                                        (4.16) 
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..)(.1
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          (4.17) 

The stiffness matrix is derived without using any tricks, which implies that it is 

obtained using exact and not reduced integration, see Appendix C.2. 

4.5. Numerical tests 

           First, the numerical results of several quadrilateral plane elements are used and 

compared with those obtained from the present Q4SBE1 element, and in the second, the 

behaviour of the formulated element with irregular forms (distorted shape) is tested.  

The present element is compared to the following elements: 

SBRIE: the strain based rectangular in-plane element Sabir [SAB 86]. 

SBRIE2: The strain based rectangular in-plane element with an internal node Sabir [SAB 95].          

Q4: the standard four-node isoparametric element. 

Q8: the standard eight -node isoparametric element. 

PS5β:  Pian and Sumihara’s four- node five-beta mixed element Pian [PIA 84] 

AQ: Cook’s quadrilateral counterpart Cook [COO 86] of Allman’s triangle [ALL 84] 

MAQ: a mixed counterpart of AQ using complete linear stress modes (in term of isoparametric 

coordinates) for all stress components Yunus [YUN 89]. 

Q4Rβ: the quasi-conforming counterpart of AQ proposed by Lin et al.  [LIN 90]. 

Q4S: Mac-Neal and Harder’s refined membrane element with drilling degree of freedom Mac. 

et al. [MAC 89]. 

07β: the Sze element [SZE 92]. 
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Q8: the Mac -Neal element [MAC 88]. 

Allman element [ALL 88b] 

           Most of the examples dealt with have been proposed at various stages in open literature 

to validate the element performance. It will be seen that the SBRIE and the SBRIE2 versions 

show the same results for all cases. 

4.5.1. High Order Patch Test:  Pure bending of a cantilever beam  

            It is useful to know the behaviour of a finite element presenting an important 

geometrical distortion. Sze, Chen and Cheung [SZE 92] have studied this Problem in order to 

test the performance and the precision of the elements 07β and 07β*.  

A cantilever beam with a rectangular section (l x t x h = 10 x 1 x 2) is subjected to two 

nodal forces (P =1000) forming a couple to produce pure bending (Fig.4.4a). 

Two meshes (rectangular, trapezoidal) are considered and the boundary conditions are taken 

as shown in Fig.4.4a. The results obtained with "Q4SBE1" are compared with the analytical 

solution given by Ibrahimbegovic [IBR 93a]. and the quadrilateral element Q4, figures (4.4b 

and 4. 4c). 
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c) Normalised stress at Point B.  Normalised results 

Fig.4.4: Pure bending of a cantilever beam 

            For the case of the regular mesh (Figs.4.4b, 4.4c; e = 0), good results are obtained for 

"Q4SBE1" element; whereas the standard element Q4 gives unacceptable results. For the case 

of the distorted mesh characterized by the distance «e" (e > 0), the results of "Q4SBE1" are 

powerful and comparable with the exact solution for standard quadrilateral element Q4, the 

precision is always largely insufficient (Figs.4.4b and 4.4c). 

       The Figures 4.4b and 4.4c show the stability, the reliability and the good performance 

of "Q4SBE1" element no matter what the geometrical distortion might be (only one element on 

h!), this is in part probably explained by the nature of analytical integration carried out. These 

results confirm that the formulated element Q4SBE1 satisfies the High Order Patch Test Taylor 

et al. [TAY 86] and Batoz et al [BAT 90b]. 

           The robustness of this element "Q4SBE1" via the regular and distorted mesh is 

confirmed. 

4.5.2. Allman’s cantilever beam (Distortion sensitivity study)    

  In the following example, it is a question of evaluating the vertical displacement VA at 

the free end of a short cantilever Fig.4.5 subject to a uniform vertical load (resultant W).   

      This test is considered by many researchers as a tool to validate the plane elements.  It 

makes it possible to examine the aptitude of an element of the membrane type to simulate the 

problems dominated by bending.  
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Fig.4.5. Allman’s cantilever beam; Data and mesh 

            The analytical solution for the vertical deflection at point A is calculated by the 

following equation [TIM 51]: 

 ( ) 0,3553PL
2EH

5υ4
3EI
PLV

3

A =
+

+=                                                    (4.18)      

The results obtained for the two cases of meshes (regular and distorted) are listed on 

Table 4.1. 

 

 

 

 

 

 

 

 

 

 



New Quadrilateral Finite ElementA                            4                                              hapterC 58

 

Formulation/ Element Mesh Normalized vertical 

displacement at A 

Mac-Neal [MAC 88a]  Reg. 0,959 

Mac-Neal [MAC 88a] Dist. 0,838 

Allman  [ALL 88b] Reg. 0,852 

Allman  [ALL 88b] Dist. - 

PS5β 

PS5β 

Reg. 

Dist. 

0,978 

0,925 

AQ Reg. 0,918 

AQ Dist. 0,947 

MAQ Reg. 0,918 

MAQ Dist. 0,952 

QR4b Reg. 0,978 

QR4b Dist. 0,977 

Q4S Reg. 0,978 

Q4S Dist. 0,976 

07β Reg. 0,978 

07β Dist. 0,978 

Q4 Reg. 0,679 

Q4 Dist. 0,596 

Q8 [MAC 88b] Reg. 0,985 

Q8 [MAC 88b] Dist. 0,994 

Q4SBE1 Reg. 0,983 

Q4SBE1 Dist. 0,995 

Exact solution [TIM 51]  
1,000 

(0,3553) 

Table 4.1:  Allman's short cantilever beam 

                                           Normalised vertical displacement at point A 
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Comments: Regular mesh (Fig.4.5b) 

           For the case of the regular mesh (Fig.4.5b), the results obtained for Q4SBE1 are 

powerful and comparable with those given by the robust element Q8, in terms of total number 

of degrees of freedom. 

Comments: Distorted mesh (Fig.4.5c) 

       For the case of the distorted mesh (Fig.4.5c), the very good performance of element 

Q4SBE1 is confirmed. The corresponding results are more precise than the results of the other 

elements [MAC 88a], PS5ß, MAQ, QR4b, Q4S, 07ß, Q4 (Table 4.1) and comparable with 

those given by the robust element Q8, in terms of total number of degrees of freedom. 

4.5.3. Mac-Neal's elongated cantilever beam 

Let us consider the example of the elongated cantilever beam of Mac-Neal and Harder 

[MAC 85], with  rectangular section (6 x 2 x 1) deformed in pure bending by one  moment at 

the end (M =10) and by a load applied at the free end (P=1).   

 

 

 

 

 

 

 

 

 

 

Fig.4.6: Mac-Neal's elongated beam subject to (1) end shear and (2) end bending. 

 

            The cantilever is modelled by six membrane elements rectangular (Fig.4.6a), 

trapezoidal (Fig.4.6b) and parallelogram (Fig.4.6c).  
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The results obtained for Q4SBE1 are compared with those obtained with other known 

quadrilateral elements (Table 4.2).  

Mac-Neal [MAC 87] affirms that the trapezoidal shape of the membrane finite elements 

with four nodes without degrees of freedom of rotation (with linear fields) generates a locking 

even if these elements pass the patch-test.  This problem is known as "trapezoidal locking" 

NOTE. — This rule does not apply to the finite elements based on the strain approach.  

 

Pure bending End shear Element 
Regular Trapezoidal Parallel Regular Trapezoidal Parallel 

Q4 0,093 0,022 0,031 0,093 0,027 0,034 
PS5β 
[PIA 84] 1,000 0,046 0,726 0,993 0,052 0,632 

AQ  
[COO 86] 0,910 0,817 0,881 0,904 0,806 0,873 

MAQ 
[YUN 89] 0,910 0,886 0,890 0,904 0,872 0,884 

Q4 
[MAC 89] - - - 0,993 0,986 0,988 

07β  
[SZE 92] 1,000 0,998 0,992 0,993 0,988 0,985 

Q4SBE1 1,000 1,000 1,000 0,993 0,994 0,994 

Theory 1,000 
(0,270) 

1,000 
(0,1081) 

Table 4.2:  Normalised tip deflection for Mac-Neal's elongated beam 

The results obtained for elements Q4 and PS5β (Table 4.2) show well the problem of 

trapezoidal locking announced by Mac-Neal [MAC 87]. 

Through these three cases of meshes (Figs. 4.6a, 4.6b, 4.6c), the effectiveness of this 

Q4SBE1 element is confirmed. 

In order to test the convergence performance of Q4SBE1 element, using four different 

regular mesh divisions (1x3, 1x6, 1x9, 1x12) Fig.4.6a, the normalised tip deflections are 

computed and compared with those obtained by other elements (Q4, SBRIE, SBRIE2) in Figs 

(4.7 and  4.8). 

A pertinent point to note is that exact solution can be obtained for the Q4SBE1 element. 

The accuracy of the SBRIE2 is not sufficient. 
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Fig.4.7: Convergence Curves for deflection at point A 

        Mac- Neal’s cantilever beam under pure bending 

 
 

Fig.4.7: Convergence curves for deflection at point A 
 Mac-Neal’s cantilever beam under end bending. 

 
 

 

 

 

 

 

 

 

 
Fig.4.8: Convergence curves for deflection at point A 
             Mac-Neal’s cantilever beam under end shear 

   In conclusion, it can be said that "Q4SBE1" element is very powerful for this type of 

problems dominated by bending, and it remains stable with geometrical distortions. 

4.5.4. Tapered Panel under End shear   

This problem, proposed by Cook as a test for the accuracy of quadrilateral elements 

[COO 87] and Bergan et al. [BER 85], is another popular test problem. 

A tapered panel of unit thickness with one edge subjected to a distributed shear load 

and with the other edge fully clamped (u = v = 0) is shown in Fig.4.9. 

The panel is analysed by using 2 x 2 and 4 x 4 meshes (Figs. 4.9a, 4.9b). The 

normalised vertical deflection Vc at point C, maximum principal stress σmaxA at point A and 

minimum principal stress σminB at point B are presented in Table 4.3.  
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16 in

44 in

 
               (a) 2 x 2 mesh                                                  (b) 4 x 4 mesh 

          Py = 1 pi (uniformly distributed load)                              Boundary conditions: 

           E = 1 psi,    ν = 1/3 Thickness t =1 in       U = V = 0   (DE) 

                         Fig.4.9: Tapered panel subjected to end shear; data and meshes 

2 x 2 mesh 4 x 4 mesh 
Element model  

VC σmaxA σminB VC σmaxA σminB 

Q4  0,496 0,437 0,533 0,766 0,756 0,719  

AQ  0,890 0,780 0,900 0,965 0,936 1,010 

Ref. [ALL 88b] 0,848 0,771 0,856  0,953 0,956 0,997 

PS5β 0,884 0,786 0,771 0,963 0,950 0,924 

MAQ 0,890 0,779 0,886 0,965 0,941 0,967 

QR4b 0,941 0,879 1,059 0,980 0,990 0,997 

Ref. [BER 85] 0,852 0,720 0,898 0,938 0,902 0,849 

Ref [IBR 90] 0,865 - - 0,962 - - 

Ref [SIM 89] 0,884 - - 0,963 - - 

07β  0,945 0,835 1,069 0,981 0,982 1,012 

Q4SBE1 1,0652 1,508 1,171 1,011 1,004 0,992 

32 x 32 mesh 

Ref. [BER 85] 

1,000 

(23,90) 

1,000 

(0,236) 

1,000 

(-0,201) 

1,000 

(23,90) 

1,000 

(0,236) 

1,000 

(-0,201) 

Table 4.3: Normalised prediction for tapered panel under end shear 

Principal stresses at points A and B are evaluated based on the averaged stress 

components of the elements sharing nodes A and B, respectively. The results obtained for the 
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Q4SBE1 element are compared to the other quadrilateral elements. It can be noted that the 

displacement predictions of the Q4SBE1 are slightly better than the other quadrilateral 

elements for both meshes (Table 4.3). 

The results obtained for the deflection and principal stresses for the refined mesh (4x4) 

are  very good compared to an accurate solution given by Bergan and Felippa using a (32x32) 

mesh [BER 85] (error  1 %). 

4.5.5. A simple beam   

 A simple beam with a length to height aspect ratio of 10 is subjected to a pure bending 

state. The beam is modelled by 1x 6 meshes with both regular and irregular elements as shown 

in Fig.4.10. Only a minimum number of restraints are imposed to eliminate rigid body 

movement. The load is a unit couple applied at the free end.   

This beam is selected as a test problem by Ibrahimbegovic, Taylor and Wilson [IBR 

90]. The results obtained for both regular and irregular mesh are compared with some of the 

results available in literature, and the exact solution given by beam’s theory. All are presented 

in Table 4.4. 

 

 

 

 

 

 

Fig.4.10: A simple beam; Data and meshes 

The results obtained for the distorted element (Q4SBE1) are found to be more accurate 

than the other elements for the same finite element mesh size (Table 4.4). 
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43’  

E = 40x106 lb/ft2

 t =1.0 ft;  
 υ = 0.2
 P = 80000 lbs.

It is observed that the results show very good numerical accuracy obtained for both 

regular and distorted mesh, and confirm the good performance of the Q4SBE1 element. 

Formulation Mesh Vertical displacement  

Mixte-type [IBR 90] Reg. 1,50000 

Mixte-type [IBR 90] Dist. 1,14185 

Displ-type [IBR 90] Reg. 1,50000 

Displ-type [IBR 90] Dist. 1,14045 

Taylor et Simo [TAY 85] Reg. 1,50000 

Taylor et Simo [TAY 85] Dist. 1,14195 

 Q4 Reg. 0,62888 

Q4 Dist. 0,26362 

Q4SBE1 Reg. 1,50000 

 Q4SBE1 Dist. 1,50000 

                   Beam’s theory                                    1,50000 

               Table 4.4:  A simple beam under pure bending Fig.4.10 

4.6. Others applications (Civil engineering)  

4.6.1. Solid cantilever wall [SAB 84] 

In order to test the convergence performance of Q4SBE1 element, it was also applied to 

the analysis of a solid cantilever wall. Figure 4.11 shows the dimensions and the elastic 

properties of the cantilever which is subjected to a point lateral load at the top free end. 

 

 

 
 

 

 

 

 

     

Fig. 4.11:  Shear wall  
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The obtained results for both membrane elements Q4SBE1 and Q4 are compared to the 

exact solution. 

Figures (4.12, 4.13 and 4.14) show respectively the convergence curves for the lateral 

displacement of the loaded edge, the direct bending stress at point A and the shear stress at 

point B.  

 
 
 
 

 
 
 
 
 
 
 
 

Fig.4.12: Convergence Curve for edge deflection 

 
 

 
  

 
  

 
 
 
 

Fig.4.13: Convergence Curve for bending stress at Point A 
 

 
   
 
 
 
 
 
 
 
 
 
 

Fig.4.14: Convergence Curve for Shearing stress at Point B 
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4.6.2. Boussinesq problem [NOB 86] 

The following example is the Boussinesq problem in the theory of linear elasticity. 

Suppose that a point force P is vertically applied at the center of the top surface of a semi-

infinite plate. Under the generalised plane stress assumption, the stress component xxσ  along 

the x axis is given Timoshenko and Goodier [TIM 70] by the following equation: 

                       xPxx ./2 πσ −=                                                                           (4.19)   

Since infinite domains cannot be treated by the finite element approximations studied 

so far, we shall make a finite element model by taking only a finite portion of the semi-infinite 

domain shown in Fig.4.15. 

Assuming homogeneity and isotropy of the material, the boundary condition has been 

assumed along the bottom and the right side edges. The results are shown in figure 16 for the 

case that: 

Young’s modulus E =3 2000KN/mm2, Poisson’s ratio ν =0.25,  

Thickness =10 mm (generalised plane stress), Applied force P = 100 N    

 

 

 
 
 

 
 
 
 
 
 

   

Fig.4.15: Domain for Boussinesq problem 
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Fig.4.16. Stress σxx along x Axis (θ=900) 

 

The results obtained are in close agreement with those of the analytical solution.  

4.6.3. Concrete culvert [WILL 84] 

The concrete culvert as shown in Fig.4.17 (a) represents a plane strain problem. Its 

geometry consists a half of hexagon with a semicircular opening. A uniformly distributed 

loading by (force per unit length) is applied to the top edge in the negative y direction. Values 

of physical parameters are: 

Young’s modulus E = 2x107KN/m2, Poisson’s ratio ν = 0.3, Thickness =1m. 

Applied force by = 5 x 103 KN/m2 

For which S.I. units are used. 

 To analyse half the problem, we discretize the part on the right side of the centerline, as 

shown by the network of quadrilaterals in Fig.4.17 (b). Restraints needed for this analytical 

model consist of rollers at nodes on the axis (in a plane of symmetry) and pinned supports at 

nodes on the axis (to fix the base points).  

For the purpose of design, we shall investigate the variations of the normal stress yσ along 

the line EF Fig.4.17 (a). 

Graph of stress ratios yσ / by (on line EF) appear in Fig.4.18. 
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Fig.4.17: Concrete culvert 
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Fig.4.18: Stress Ratios on line EF 

We see from this plot that the normal stresses chosen tend to be high near the opening.  

4.7. Conclusion  

A new strain based element is formulated for the analysis of general plane elasticity 

problems. It has only the customary two displacements degrees of freedom. The various 

numerical examples show the performances of the strain based approach. Some very good 

results were obtained. This element can be used for the civil engineering analysis problems. It 

has been shown that satisfactory finite element solutions can be obtained without the use of 

large number of elements. 

The Q4SBE1 element turned out to be particularly robust (Rich of membrane), much 

more simplified and more powerful than the standard element Q4.   
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CHAPTER 5 

 
FORMULATION OF A NEW FLAT  

SHELL ELEMENT  
 

5.1. Introduction 

Shells possess many useful properties arising from their elastic nature and suitable 

design. They can be made to support large loads even when they are very thin .This property of 

shells is readily  utilised  in constructions which are strong and adaptable to a broad range of 

applications such as aircrafts, ships and reinforced concrete roof structures. In recent years the 

analysis of structures has been considerably eased by the use of computers programs especially 

those based on the finite element method. 

The application of the finite element method to the analysis of shells started in the early 

1960’s by replacing the actual curved surface of the shell by an assembly of triangular or 

rectangular flat plate elements [GRE 61], [ARG 60], [CLO 60] and [ZIE 77]. Intuitively, as the 

size of the subdivision decreases it would seem that convergence must occur, and indeed 

experience indicates such a convergence. The stiffness matrix of the shell was approximated by 

combining the two independent membrane and bending stiffness matrices of the plate element. 

5.2. Numerical study  

5.2.1. Construction of the shell element ACM_Q4SBE1 

The quadrilateral shell element used is obtained by the superposition of the Q4SBE1 

membrane strain based element developed in chapter 4 with the ACM standard plate bending 

element ([ADI 61], [MEL 63]). We have obtained a flat element shell called ACM_ Q4SBE1.  

The stiffness matrix of the shell element ACM_ Q4SBE1 is obtained by using the 

analytical integration of the membrane and bending stiffness matrix. 

Description of the Q4SBE1 element 
 

The figure 5.1 shows the geometric properties of Q4SBE1 element, the corresponding 

nodal displacements.  At each node (i) the degrees of freedom are U i and V i . 
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Fig.5.1: Co-ordinates and nodal points for the quadrilateral element” Q4SBE1” 

 
Displacement field of the element “Q4SBE1” 

In practice many engineers prefer to deal with the structures analysis by simple finite 

elements such as triangular elements with 3 nodes, quadrilateral with 4 nodes or solids with 8 

nodes and with the same number of degrees of freedom per node .The purpose is to avoid 

mistakes which can be made when using complicated data elements. The displacement field of 

the Q4SBE1 element is given by the following equations:  
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    (5.1) 

 
Rectangular plate element ‘ACM’ 

 
The displacement fields of the ACM element (Fig.5.2) are given by the following 

equations:  

W(x,y) =  a1 + a2 x  + a3 y+ a4 x2  + a5 xy + a6 y 2 + a7 x3  + a8 x2y  

              + a9 xy2   + a10 y3 + a11 x3y + a12 xy3          

xθ  = -(a3 + a5 x  +2 a6 y+ a8 x2  + 2a9 xy + 3 a10 y 2 + a11 x3     (5.2) 

         +3 a12 xy2 )                               

yθ  =  a2 + 2a4 x  + a5 y+3a7 x2  + 2a8 xy + a9 y2 +3 a11 x2 y + a12 y3 
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Fig.5.2: Co-ordinates and nodal points for the rectangular plate element” ACM” 

 

The shell element ACM_Q4SBE1 (Fig.5.3) is composed by assembling the two 

elements Q4SBE1 and ACM in the following manner: 
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Fig.5.3: The shell element ACM_Q4SBE1 

5.2.2. Validation 

The performance of the developed shell element is evaluated on a standard test 

problems presented in this section.  

5.2.2.1. Clamped cylindrical shell  

The clamped cylindrical shell presented in Fig.5.4 (a) is selected as a test problem in 

literature. The geometrical dimensions, loading and elastic properties are given in Fig.5.4. Due 
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to symmetry of the cylinder only 1/8 (ABCD) is considered in the finite element idealisations 

Fig.5.4 (b). 

 

D 

R 

A 

C 

P/4 = - 0,25 N 

B 
θ 

Z ,W 

Y ,V 

X ,U 

Clamped  

Sym. 

Sym. 

Sym. 

L/2 

Data: 

L=6  ;  R=3m  ;  h = 0,03m  ;  E = 3x10
10  Pa   ;  ν  = 0,3

             
Symmetry conditions:  

 Boundary conditions:  

               W =  θ Y  =  θ X  = 0      at  AB U = W =  θ Y = 0            at  AD 
  V =  θ X  =  θ Z  = 0       at  BC 
  U =  θ Y  =  θ Z  = 0       at  CD 

Rigid diaphragm (a) 

(b) 

   

   Fig.5.4: Clamped cylindrical shell 
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 The results of this analysis are compared to the analytical solution based on the thin 

shell structures (R/h=100) given by Flugge [FLU 60] and Lindberg et al [LIN 69] below: 

  WC = -WC Eh/P = 164,24    deflection under load P in point C only 

  VD = -VD Eh/P = 4,11         deflection in Y direction 

            This test of thin shells (R/h=100) is considered by some researchers as a sever test. It 

makes it possible to examine the aptitude of shell element to simulate complicated membrane 

states problems dominated by bending.  

The results obtained for different meshes are given in Tables 5.1 and 5.2 

Displacement Wc at point C 
Meshes 

ACM_Q4SBE1 ACM-SBQ4 
[BEL 2000] 

4 x 4 106,62 101,50 

6 x 6 138.30 135,00 

8 x 8 156,85 148,226 

20 x 4 161,78 157,145 

 
Analytical solution 

 

164,24 
 

 
                 Table 5.1: Clamped cylindrical shell, convergence of WC  

 

Displacement VD   at point D 
Meshes 

ACM_Q4SBE1 ACM-SBQ4 
[BEL 2000] 

4 x 4 6,206 6.153 

6 x 6 4,837 4,809 

8 x 8 4,521 4,274 

20 x 4 4,179 4,192 

 
Analytical solution 

 
4,11 

 
                 Table 5.2: Clamped cylindrical shell, convergence of  VD 
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The results obtained for both deflections WC and VD for the refined mesh (20x4) are 

very good compared to the analytical solution.  

Figures 5.5 and 5.6 give the convergence curves for the results obtained from elements 

ACM_Q4SBE1 and ACM-SBQ4 (BEL 2000) for the deflections at points C and D. 
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Fig.5.5:  Convergence curve for the deflection Wc at point C  
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                 Fig.5.6:  Convergence curve for the deflection VD at point D  

From the above figures, it might be concluded that the good convergence of the 

ACM_Q4SBE1 element is confirmed. 
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5.2.2.2. Scordelis-Lo roof 

 The next test to be considered which is frequently used to test the performance of shell 

element is that of Scordelis-Lo roof having the geometry as shown in Fig.5.7. The straight 

edges are free, while the curved edges are supported on rigid diaphragms along their plan. The 

geometrical and mechanical characteristics are given in Fig.5.7.  
  

 
Data : 

  L = 6 m ;  R = 3 m ;  h = 0,03 m ;  ϕ = 40° 
  E = 3 x 1010 Pa   ;  ν = 0   ;   fz = -0,625 x 104 Pa 
 Boundary conditions: 

  U = W = θY = 0    for AD 

 Symmetry conditions: 

  U = θY = θZ = 0    for CD 
  V = θX = θZ = 0    for CB 
 Reference value (Deep Shell Theory): 

  WB = -3,61 cm    ;     WC = 0,541 cm 

 Analytical solution (Shallow Shell theory): 

  WB = -3,703 cm    ;     WC = 0,525 cm 
  UB = -1,965  cm     ;     VA = -0,1513 cm 

Fig.5.7: Scordelis-Lo roof 

 Considering the symmetry of the problem only one quarter of the roof is analysed (part 

ABCD). The results are presented in Table 5.3 for the vertical displacement at the midpoint B 

of the free edge and the centre C of the roof. 

Free edge

Rigid diaphragm  
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The results obtained by the new formulated element ACM_Q4SBE1 are compared to 

the reference values based on the deep shell theory. The convergence of this element is also 

compared to other kinds of quadrilateral shell elements Q4γ 24, DKQ24 [BAT 92] and ACM-

SBQ4 [BEL 2000]. The analytical solution based on the shallow shell theory is given by 

Scordelis and Lo[SCO 69], which is slightly different from the deep shell theory. The results 

obtained for different meshes are given in Table 5.3. 

Vertical displacement at point C and B 

Meshes 
WC 

 
WB 

 

2 x2 0.7116 - 4.948 

4 x 4 0.5582 -3.680 

6 x 6 0.5534 -3.674 

8 x 8 0.5477 -3.642 

9 x 10 0.5475 -3.640 

 
Reference Value  

 

0.541 
 

-3.610 
 

 
     Table 5.3: Scordelis-Lo roof, convergence of WC and WB 

Figures 5.8, 5.9, 5.10, and 5.11 show the convergence curve for the deflections Wc at 

point C and WB at point B obtained from the quadrilateral shell elements cited above.   
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Fig.5.8:  Convergence curve for the deflection Wc at point C 
Scordelis-Lo roof 
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Fig.5.9:  Convergence curve for the deflection WB at point B. 
Scordelis-Lo roof 

 

The above results show the good convergence of the new formulated shell element 

ACM_Q4SBE1.  
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Fig.5.10:  Convergence curve for the deflection Wc at point C. 
   For other quadrilateral shell elements,  Scordelis-Lo roof.  
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Fig.5.11:  Convergence curve for the deflection WB at point B. 

        For other quadrilateral shell elements,  Scordelis-Lo roof. 

5.3. Application (Experimental work) 

The analysis of thin shell structures has generally been purely carried out on a 

theoretical basis and it is of importance to try to establish the validity of the theories pounded 

by comparing their correlation with experimental results. It will be appreciated that the 

numerical analysis exposed in this study has assumed that the material from which the shell 

was constructed is perfectly elastic. In attempting to verify this theory by experimental test it 

would be natural to use such a perfectly elastic material. This would obviously provide the 

closest correlation between numerical and experimental results. 

Tests on full-scale shells are few because the loading of such structures is difficult and 

costly. Experimental investigation of shells therefore usually resorts to small-scale tests. 

Hence, the experimental work described in this study is of this type. 

Study of the elliptical paraboloid shell (Fig.5.12) 

Denoting the three sets of co-ordinates by O1, X1, Y1, Z1, O2, X2, Y2, Z2, and O3, X3, 

Y3, Z3, respectively, the equation for the surface will be written in the following manner [BEL 

& SOA 75].  
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The corners of the surface occur in the same plane, at a distance (fx + fy) from the crown 

of the paraboloid. If the OZ axis points towards the base, the values obtained from equations 

(5.3a) and (5.3c) will be positive, whilst those obtained from equation (5.3b) will be negative. 

* Note 1: The mesh size used in numerical analysis is (16 x 8) elements. 

 

Fig.5.12: Elliptic paraboloid rectangular on plan 

Model test 

  The test model is made of an aluminium alloy in an elliptical shape and has a constant 

thickness of 2 mm with a plan rectangular projection of 880 mm by 400 mm Fig. 5.13., the 

material properties have been assumed to be: The modulus of elasticity E = 70000 N/mm 2 , the 

Poisson ratio υ = 0.33  

The model is free along the long edges, fixed at certain points on wooden support along 
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the short edges. Due to the double symmetry in geometry and loading, measuring points are 

located on one quarter of the area of the model at eight points Fig.5.14.  Eight deflections 

gauges capable of measuring deflections perpendicular to the surface of the shell within 0.01 

mm, are located under the shell model, so that the deflections in global co-ordinates can be 

computed. A further two deflection gauges are mounted to check symmetry Fig.5.14.  

Four proving rings are mounted on the four corners of the model to check the 

distribution of loading, Fig.5.13. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.13: The elliptical paraboloid shell undergoing the experimental test. 
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Fig.5.14: Dial gauge positions; (distance in mm) 

Loading  

A uniform normal pressure is applied by covering the shell top surface with a 

pneumatic pressure bag in close contact with it [HAM 89]. Four different values of loading are 

applied, 10, 20, 30, and 40 cm of water (in which 1 cm of water =0.0142233 lb/ in 2  equivalent 

to 2.5x10 −3  N/mm 2 ). Each load is applied three times as follows:                                        

The initial readings of the gauges are recorded, then the load is applied, the new 

readings of the gauges are recorded. The shell is then unloaded and gauge readings are 

recorded meanwhile to check the initial readings *. 

* Note 2: Professor J.E. Gibson used this method in his different experimental works [GIB 77]. 

5.3.1. Numerical and experimental results 

The vertical deflections resulting from numerical analysis and experimental work for 

different loading values are presented in Table 5.4. Figures 5.15, 5.16, 5.17, and 5.17 show the 

deflection curves for some points of the model test.  
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Points 3 4 5 6 7 8 
ACM_Q4SBE1 0.24 0.40 2.01 0.16 0.25 0.41 

Case  a 
Load =25x10 −3  

N/mm 2  
 

Exp.Work 0.19 0.31 1.67 0.13 0.18 0.30 

ACM_Q4SBE1 0.48 0.80 4.02 0.32 0.50 0.82 Case  b 
Load =50x10 −3  

N/mm 2  Exp.Work 0.49 0.80 3.10 0.33 0.47 0.85 

ACM_Q4SBE1 0.72 1.20 6.03 0.48 0.75 1.23            Case  c     
Load =75x10 −3  

N/mm 2   
Exp.Work 0.66 1.09 5.20 0.43 0.63 1.15 

ACM_Q4SBE1 0.96 1.60 8.02 0.65 1.00 1.64            Case  d     
Load =100x10 −3  

N/mm 2  Exp.Work 1.04 1.70 7.70 0.68 1.00 1.90 

Table 5.4: Vertical Displacements W (mm) Under Different Applied Loadings 

 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120  
 
 

Fig.5.15: Vertical deflectionat point 3. 
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Fig.5.16: Vertical displacement at point 6. 

 
 
 

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120
 

 
 

Fig.5.17: Vertical displacement at point 5. 
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Fig.5.18: Vertical displacement at point 8. 

5.3.2. Differences between theoretical and experimental results  

In elastic analysis, as the loading is doubled, the deflections were doubled. This was not 

the case in this experimental work. This results in a few points which could be explained as 

follows: 

One of the main problems with the experiment was the lack of the uniformity of the 

distributed load. The air-filled bag did not evenly distribute the pressure because loads 

measured at the four corners were found to be slightly different. 

A further probable cause of inaccuracy was the positioning of the deflection gauges. 

The problem was to ensure that the gauges were perpendicular to the shell surface. Although 

this was easy to achieve in the central position (since it is horizontal), this was note so easily 

achieved near the edges where the shell surface is considerably angled.  

In addition to the various experimental inaccuracies, in the theoretical analysis non 

deflecting support conditions are assumed, which is not strictly the case in the experiments 

Finally, differences may be results from other considerations.  
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5.4. Conclusion 

From the results obtained from the numerical analysis the following conclusion can be 

drawn: 

Fine relatively meshes lead to almost identical results thus proving the efficiency of the 

strain based element. Excellent agreement is shown between the shell element ACM_Q4SBE1 

results and those from experimental work (in inside points). The presented shell element 

‘ACM_Q4SBE1’ has been demonstrated to be robust, effective and useful in analysing thin 

shell structures. It also exhibits strong convergence, as can be seen in the numerical analysis 

presented. 
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CHAPTER 6 

 
AN EFFICIENT PARALLELEPIPED FINITE ELEMENT 

BASED ON THE STRAIN APPROACH «SBP8C" 
 

6.1. Introduction 
 

Calculation by finite elements of structures formed by plates and shells became a real 

tool with industrial vocation. It is very wide-spread in numerous sectors with high technology, 

civil or military (aprons of bridges, motor bodies, fuselages and wings planes…). Before 1991 

no one imagined that the calculation of the biggest platform in the world: Hibernia (Terre-

Neuve, Canada) would be treated in a complete way with thick shell finite elements [AYA 93], 

with on the whole a number of 420 000 degrees of freedom. Practice shows that the engineers 

prefer to model their structures with the simplest finite elements of the continuum (nodes in the 

only summits; the same number of unknowns by node…), such quadrangles with 4 nodes or 

bricks with 8 nodes.  

 
Numerous studies (theoretical and numerical), were dedicated to the bending plate. 

Numerically, the calculation of the thick plate with 3D finite elements has been examined by 

several authors, references [ZIE 77] and [GAL 75] used these elements by maintaining 3D 

constants, let us quote for example the brick with twenty nodes, B20 and bricks without 

intermediate nodes following thickness . According to these authors, 3D elements give good 

results in this last case, but do not approach known solutions for the thin plates [BELO 2006]. 

The major inconvenience in the use of these elements of superior order is the high cost because 

of the large number of points of numeric integration necessary for the exact evaluation of the 

element stiffness matrix.  

 
The objective of this chapter, is to develop a new parallelepiped finite element, simple 

and effective baptized SBP8C (Strain Based Parallelepiped 8-nodes condensed), contributing 

to enrich the existing finite elements library. This last one is formulated, by the use of the static 

condensation, not only for the study of the 3D problems but also and especially for the thin and 

thick plates bending. 
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6.2. Description of the SBP8C element  

Figure 6.1 shows the geometry of the element SBP8C and the correspondent kinematic 

variables. Each node (i) is attributed the three d.o.f  Ui, Vi and Wi. 

 
 

     

 

 

 

 

 

 

 

 

 

Fig.6.1: Geometry of the element SBP8C 

6.3. Analytical formulation of the SBP8C element  

6.3. 1. Displacement field  

For a linear theory where the unitary strains are small, there are six strain components 

occurring in completely 3D analysis. 

  εxx = U,x γxy =  U,y + V,x     (6.1a, b)

εyy  = V,y γyz =  V,z + W,y (6.1c,d)

εzz = W,z γxz =  W,x + U,z (6.1e,f)

U, V and W: are the displacements in the three directions X, Y and Z respectively. 

Equations (6.2) represent the condition of the rigid body modes (RBM). We have: 

εii =  0    (6.2a)

γij =  0  (6.2b)

By integrating equations (6.2), we obtain a particular solution: 
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UR  = a1 + a4 y + a6 z  (6.3a)

VR  = a2 - a4 x - a5 z (6.3b)

WR = a3 + a5 y - a6 x (6.3c)

Equations (6.3) represent the displacement fields corresponding to the rigid body 

modes (RBM). 

The present element is an eight parallelepiped node in addition to the central node, with 

three degrees of freedom (d.o.f) by node (Fig.6.1). Therefore, the field of displacement has to 

contain twenty-seven independent constants. Six of them (a1, a2 ... a6) are already used to 

represent the RBM, so the remaining twenty-one (a7, a8 ... a27) represent in a rough way strains 

in the element, while verifying the six equations of compatibility. The strain field is: 

εxx = a7 + a8 y + a9 z + a10 yz + a25 x (6.4a)

εyy = a11 + a12 x + a13 z + a14 xz + a26 y (6.4b)

εzz  = a15 + a16 x + a17 y + a18 xy+ a27 z (6.4c)

γyz =  – a10 x2 – a19+ a20 x+ a22 x  (6.4d)

γxz = – a14 y2+ a21 + a22 y + a24 y  (6.4e)

γxy = – a18 z2 + a20 z+ a23 + a24 z  (6.4f)

Substituting equations (6.2) and (6.4) into (6.1) and solving the resulting differential 

equations gives: 

 U = a1 + a4 y + a6 z + a7 x+ a8 xy + a9 xz + a10 xyz – 0.5 a12 y2 – 0.5 a14 y2z      

       – 0.5 a16 z2 – 0.5 a18 yz2 + 0.5 a21 z  + 0.5 a23 y + a24 yz + 0.5 a25 x2   

       

(6.5a)

 V=  a2 – a4 x – a5 z – 0.5 a8 x2 – 0.5 a10 x2 z + a11 y + a12 xy + a13 yz + a14 xyz  

– 0.5 a17 z2 – 0.5 a18 xz2 + 0.5 a19  z  + a20 xz + 0.5 a23 x + 0.5 a26 y2   

 

(6.5b)

W= a3 + a5 y – a6 x – 0.5 a9 x2 – 0.5 a10 x2y –  0.5 a13 y2  – 0.5 a14 xy2 + a15 z 

+ a16 xz + a17 yz + a18 xyz+ 0.5 a19  y  + 0.5 a21 x + a22 xy + 0.5 a27 z2   

(6.5c)
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It should be noticed here, that the final displacement functions contain quadratic terms 

so allowing the change of curvature. The parallelepiped element having the displacement fields 

given by equations (6.5) is referred to as SBP8C. The classic element based on the 

displacement model will be referred to as DBB8.  

6.3.2. Evaluation of the matrix [ K0 ] 

The evaluation of the element stiffness matrix is summarized with the evaluation of the 

following expression:   

                             [Ke] = [A-1 ]T [K0 ] [A-1 ] 
where 
 

(6.6)

                      [K0] = [ ] [ ][ ]∫∫∫
V

...Q dzdydxQDT  (6.7)  

Since [A] and its inverse can be evaluated numerically, the evaluation of the integral 

(6.7) becomes the key of the problem. While the shape of the element is regular, numerical 

integration is reduced to an analytical integration 
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2  (6.8)  

[D] is the usual constitutive matrix 

For [A] and [K0] see the Appendices D.1 and D.2   

6.3.3. Mechanical characteristics of the fictitious material  

The matrix (6.9) is a modified form (fictitious material) of the material matrix 

properties by introducing the plane stress constants and a corrective coefficient of transverse 

shearing (TS) noted K [AHM 70]. 

 

                                        [D] =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

D1 D2 0 0 0 0
D2 D3 0 0 0 0
0 0 D4 0 0 0
0 0 0 D5 0 0
0 0 0 0 K D6 0
0 0 0 0 0 K D7

                                      (6.9) 
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Where: 
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                       K= π2/12    in Uflyand-Hencky-Mindlin's theory 

                       K= 5/ 6      in Reissner's theory,               ν is the Poisson's ratio 

6.4. Numerical examples 

The more and more increasing use of structures having an important ratio between the 

bending stiffness and shearing; this incited the researchers to formulate and to validate an 

element, which would be reliable for all the types of plates, thin or thick. The precision of the 

present element SBP8C is estimated through a series of standard tests limited to simple but 

self-important applications to show the interest of the strain model. The peculiarity of these 

examples lies generally, on one hand, in their geometrical simplicities, and on the other hand, 

in their very varied behaviour toward the phenomenon of locking in transverse shearing (TS). 

These two aspects make these examples an ideal tool for the validation of new models of finite 

elements.  

6.4.1. Plate patch tests 

In plate problems, the importance of the patch tests is paramount [ZIE 91]. A number of 

popular numerical problems mainly extracted from the proposed standard set of problems by 

White and Abel [WHI 89]. All reference solutions are taken from the same paper unless stated 

otherwise.  

6.4.1.1. Constant bending moment patch test for plates 

The response of single element cantilever to a constant bending moment applied as 

shown in Fig.6.2(c) is considered. Vertical deflections at the tip of the plate are calculated. It is 

seen in Table 6.1 that the SBP8C shows the same tip deflection and stresses as theory and 

gives more accurate results. 
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Fig.6.2: Plate patch tests (P = 1.0); Mesh :( a) regular 1x1; (b) regular 3x3. 

                  (c) Constant bending moment test; (d) Out-of-plane shear load test; 

                      (e) and (f) boundary conditions and loading for twisting moment tests. 
 

 Tip deflection W (x 10-1) 

Mesh Theory PN30 

[VEN 96] 

ANSYS SBP8C 

1 x 1 0.12 0.1092 0.1092 0.12 

3 x 3 0.12 0.1106 0.1092 0.12 

Table 6.1: Constant bending moment patch test for plates 
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6.4.1.2. Out-of-plane patch test for plates 

We use the same meshes as in previous section. The boundary conditions and end shear 

loading used are shown in Fig.6.2 (d). The solutions obtained are shown in Table 6.2. It is seen 

for the SBP8C that the results are satisfactory and convergence to the analytical solution is 

obtained as the number of elements used is increased. 

  

 Tip deflection W 

Mesh Theory PN30 

[VEN 96] 

ANSYS SBP8C 

1 x 1 0.16 0.132 0.121 0.1268 

3 x 3 0.16 0.151 0.147 0.1459 

          Table 6.2: Out-of-plane patch test for plates 

6.4.1.3. Constant twisting moment patch test for plates 

The boundary conditions and the twisting moment loads are shown in Fig.6.2 (e) and 

Fig.6.2 (f). Table 6.3 shows the results for the deflection of the tip. It is seen that the strain-

based element gives better results. 

 

 Tip deflection W(10-1) 

Mesh Theory PN30 

[VEN 96] 

ANSYS SBP8C 

1 x 1 0.312 0.312 0.312 0.312 

3 x 3 0.312 0.314 0.312 0.312 

Table 6.3: Constant twisting moment patch test for plates 

6.4.2. Cantilever beam under pure bending 

A single-element is subjected to a pure bending load applied as portrayed in Fig.6.3. 

The cantilever is of dimensions 10 x 1 x 1, the material modulus E and Poisson's ratio ν are 106 

and 0.0. The elegance of SBP8C can be observed in Table 6.4, in which the vertical deflections 

are listed. 
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Fig.6.3: Cantilever beam under pure bending 

 

                          W 

FI  [BAS 2000] 0.11764. 10-4 

FCB [BAS 2000] 0.60000. 10-3 

SBP8C 0.60000. 10-3 

Theory  0.60000. 10-3 

      Table 6.4: Cantilever beam under pure bending 

6.4.3. Simply Supported Square Plate 

The test of the simply supported square plate is examined with either a uniform loading 

(q = 1) or with a concentrated load (P = 1) at the centre (Fig.6.4). The quarter of the plate is 

divided into a mesh of N x N elements. The convergence tests are carried out on two different 

L/h ratios of 10 and 100 for thick and thin plates respectively. The results for the central 

deflection are given in Table 6.5 and Table 6.6. The effect of L/h ratio on the deflection at the 

centre WC for a plate is studied. The results presented in Table 6.7 are given for the 12x12 

meshes in terms of WC/Wk where Wk is the reference Kirchhoff solution [ZIE 91] for thin 

plates.  

 
 
 
 
 
 
 
 
 
 
 

  
 

 
 

 
Fig.6.4: Simply supported square plate (L = 10, h = 1. or 0.1, E=10.92, ν = 0.25) 

 

L

L
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4qL
wD x100 

 L/h=10 L/h=100 
Mesh SBP8C SBH8 

[BEL 2000] 
DBB8 SBP8C SBH8 

[BEL 2000] 
DBB8 

2x2 0.3812 0.326 0.2283 0.0349 0.0523 0.0045 
4x4 0.4218 0.4048 0.351 0.2563 0.3081 0.0171 
8x8 0.4229 0.4145 0.3982 0.3856 0.3883 0.0582 

12x12 0.4270 0.4249 0.4171 0.4033 0.4029 0.0786 
Exact solution 

[TAY 86] 0.427 0.406 

D = Eh3/12(1-ν2) 

Table 6.5: Central deflection of a simply supported plate with a uniform load 
 
 

 
2PL

wD x100 

 L/h=10 L/h=100 
Mesh SBP8C SBH8 

[BEL 2000] 
DBB8 SBP8C SBH8 

[BEL 2000] 
DBB8 

2x2 1.1745 0.9907 0.7269 0.113 0.1452 0.0134
4x4 1.321 1.243 1.097 0.789 0.8387 0.0481
8x8 1.363 1.333 1.289 1.108 1.115 0.1636

12x12 1.372 1.364 1.344 1.152 1.145 0.2269
Kirchhoff solution 

 [TAY 86]  1.16 

Ref. [GAL 75] 1.346  
 

Table 6.6: Central deflection of a simply supported plate with a concentrated load 
 
 

 
 Wc/Wref 
 Uniform load Concentrated load 
L/h SBP8C SBH8 

[BEL 2000] 
DBB8 SBP8C SBH8 

[BEL 2000] 
DBB8 

5  1.2067 1.2024 1.2016 1.739 1.7317 1.7338 
10 1.0522 1.0466 1.0273 1.1866 1.1759 1.1586 
20 1.0143 1.0074 0.9206 1.0456 1.0363 0.9473 
40 1.0019 0.9975 0.7027 1.0086 1.0008 0.6987 
50 1.000 0.996 0.6000 1.0038 0.9959 0.5919 
100 0.9931 0.9924 0.1936 0.9895 0.9871 0.1956 
Wref 0.406x10-2qL4/D 1.16x10-2PL2/D 

Table 6.7: Influence of L/h on the central deflection for simply supported plates 
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The numerical tests show that: 

- The strain based elements SBP8C has quite rapid rate of convergence to reference solutions 

for both thick and thin plates. 

- The SBP8C elements is free from any shear locking since it converge to the Kirchhoff 

solution for thin plates, contrarily for the corresponding displacement based element DBB8  

- SBH8 and SBP8C have similar behaviour, and they have the advantages to be valid for both 

thin and thick plates. 

 - The influence of the transverse shear for the strain based elements is much more important 

for plates with concentrated load than for those with uniform load.  

6.5. Conclusion 

           The present element (SBP8C) passes the constant strain patch test and the three plate 

patch tests. Numerical results obtained using these elements tend to agree well with those from 

other investigations and theoretical results for both thin and thick plates. The robustness of the 

present element was demonstrated. The plate bending can be very well simulated with a simple 

parallelepiped element (SBP8C) based on the strain approach.  

The performance of this element has been demonstrated in plate bending, and the 

advantages of using the strain approach are again confirmed. 
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CONCLUSIONS 
 

In this thesis, a review of the available strain based sector elements for curved 

structures that have led to the development of a new sector finite element SBMS-BH (Strain 

Based Mixed Sector Belarbi and Hamadi) based on the strain approach. This element can be 

used for the analysis of general plane elasticity in polar coordinates. It has four nodes in 

addition to the central node, and two degrees of freedom per node, the inclusion of the internal 

node ameliorates the results obtained. To test the performance of the element, it has been 

applied to a thick cylinder under internal pressure. The results obtained are shown to converge 

to the theoretical solution for the problem considered. It should be mention here that the 

convergence is monotone for both deflections and stresses. The good performance of the 

developed sector element SBMS-BH is confirmed. This new sector element “SBMS-BH” 

based on the strain approach is the first element to be developed and requires static 

condensation. 

To overcome the geometrical inconvenience for the structures with irregular forms; a 

new integration solution routine is formulated. It  allows  the  evaluation  of  the  matrix  [K0] 

in  an  automatic  way whatever  the  degree  of  the  polynomial of  the  kinematics  field  and  

the  distortion  of  the element. The interest of this subroutine of integration is also shown. 

A new quadrilateral strain based element “Q4SBE1” that satisfies the equilibrium 

equations is formulated. This element has two degrees of freedom (d.o.f) at each corner node in 

addition to the internal node. Through the introduction of an additional internal d.o.f, this 

element has proven to be more accurate even though it requires static condensation. The 

efficiency of this element was established and the convergence of the results for stresses and 

displacements to a satisfactory degree of accuracy was shown to be faster when compared with 

the quadrilateral standard element Q4. Furthermore the results obtained are comparable with 

those obtained when using the robust element Q8.  

 Applications of the developed element to the analysis of some civil engineering 

problems have been carried out. It is shown that satisfactory results can be obtained without the 

use of large number of elements. 
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 To ameliorate the membrane behaviour of thin shells, the previously developed 

quadrilateral strain based membrane element “Q4SBE1” is combined with the plate bending 

element ACM to obtain a flat shell element called ACM_ Q4SBE1.  The formulated shell 

element is applied to various types of shells with different loading and boundary conditions. 

 Clamped cylindrical shell with a central point load; which is considered by some 

researchers as a sever test was first analysed.  The results obtained for both deflections WC and 

VD for the refined mesh (20 x 4) are very good compared to the analytical solution.  

 The Scordelis-Lo roof which is frequently used to test the performance of shell element 

is also used to test the new formulated shell element    

From the results obtained, the following conclusions can be drawn: 

Fine relatively meshes lead to almost identical results thus proving the efficiency of the 

strain based element.  

The presented shell element ‘ACM_Q4SBE1’ has been demonstrated to be robust, 

effective and useful in analysing thin shell structures. It also exhibits strong convergence, as  

it can be seen in the numerical analysis presented.  

Facing the difficulty of achieving C1 continuity in the formulation of Kirchhoff plate 

bending finite elements, considerable research works have been oriented to the 

Reissner/Mindlin plate theory] which can be used for the analysis of both thick and thin plates. 

Other researchers have used three-dimensional elements (solid elements)  for the thick plates in 

bending. These elements tend to cause undesirable shear locking phenomena when dealing 

with thin plates.  

As an alternative for displacement models, a new parallelepiped finite element, simple 

and effective baptized SBP8C (Strain Based Parallelepiped 8-nodes condensed), is 

contributing to enrich the existing finite elements library. This last one is formulated, by the 

use of the static condensation, not only for the study of the 3D problems but also and especially 

for the thin and thick plates bending. 

To test the performance of the developed element (SBP8C) it has been applied to 

several test problems for which analytical solutions and numerical results exist.   
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Plate patch tests are proposed standard set of problems by White and Abel. The 

response of single element cantilever to a constant bending moment applied is considered. 

Vertical deflections at the tip of the plate are calculated. It is shown that the SBP8C element 

illustrates the same tip deflection and stresses as indicated theoretically  

The test of the simply supported square plate is examined with either a uniform loading 

or with a concentrated load at the centre of the plate. The convergence tests are carried out on 

two different L/h ratios of 10 and 100 for thick and thin plates respectively.  

The numerical tests show that the performances of the SBP8C element are again 

confirmed by the rapid convergence to the analytical solution for thin plates and to the 

numerical results given by DBB8 element for thick plates. 

The performance and robustness of the developed elements has been demonstrated, and 

the advantages of using the strain based approach are again confirmed. The proposed extension 

of this work is the application of the developed elements in non linear analysis of structures, 

especially thin shell structures.  
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Appendix A.1 

The strain matrix [B] for the Sector Element SBMS-BH 
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Appendix A.2 

a/ Elements of [K0 ] matrix   (Eq. 2.23c) 

 

[K0 ] = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

39

3837

363534

33323130

27

2423

2221201918

151413

10987

654321

0000
0000

00
00000
00000

0000

H
HH
HHH
HHHH

H
HH

HHHHH
HHH

HHHH
HHHHHH

 

          
 
D1 = E(1-ν)/(1+ν)(1-2ν) ;   D2 = ν.D1/(1-ν) ;   D3 = E/2(1+ν) ; 
 
Ei = (r2

i - r1
i ) i = 1,6  ;    AL = ALog(r2) - Alog(r1) ; 

 
A1 = D1 - D2 ;     A2 = D1 + 2 D2 ;     A3 = 2 D1 + 2 D2 ;   
A4 = D1 - D2 ;     A5 = D2  - D3 + D1/2 ;     A6 = D1 -D2 + 2 D3 ;   
A7 = 5 D1 + 4 D2 ;    A8 = 8 D1 + 16 D2 - 24 D3 ;   A9 = D1 + D2 - D3/4 ;     
 
H1 = 2β.AL.D2

1     H17 = - E1.β.E2.D2 
H2 = 2β.E1.A1                       H18 = β.E1 A1  
H3 = 2β.AL.E1.D1     H19 = 2β.E1.A4 
H4 = D1 β3.AL/3 + 2β.E1    H20 = A1 (β.E1 + β2.E1/2) 
H5 = β2.AL.D1.E1     H21 = 3β2.E1.A1/2 
H6 = 2β3.E1.A2/3 + β.E2.D1    H22 = 2β3.E2.A1/3 - 2β.E3.A1/3 
H7 = 2β.AL.D4     H23 = 2β3.AL.D2 /3 + 2β.AL.D1  
H8 = 2β.AL.D3     H24 = 2β3.E1.A1/3 + 2β.D3 (E1 + E2/4) 

Symmetry
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H9 =  2β.AL.D1     H25 = β3.(β2.E2.A2/5 - 4.E3.A4/9 + E2.D3)    
H10 = - 2β.D3 (E1 + E2/2)               H26 = β.E2.D3 

H11 = β3.D3 (2.E3/3 - 3.E2/2)/3  H27 = 2β3.E2.A4/3 + β.D3 (E2 - 2.E1/3 +E4/8) 

H12 = - β.E2.D3    H28 = β3(2.A1 β2.E3/5-A9.E4/3+D3(2E2/3-2E5/15))         

H13 = 2β3.AL.D1 /3 - 3β.AL.D3  H29 = D2.β(E3/4-2.E1/3) 

H14 = - 2β3.AL.D1/3 - 2β.AL.D3  H30 = 3AL.2β(D1-β2.D3/3) 

H15 = -2β3.E1.A1/3 + 2β.D3 (E1 + E2/4) H31 = 2β.(D1.(2.E1+β2.AL/3)-2β2.AL.D3/3) 

H16 = -β5.E2.A2/5+4β3.E3.A7/9-β3.E2.D3   H32 = 2β3.AL.(D1 -2.D3)/3 

H33 = (β3/3)(2.E1.A1+D3.(E2-4.E1))-βE2.D2    H37 = 3β2.AL(β2.D4/5)+4.D3/3) 

H34 = β2.(D1.(2.E1/3-β2.AL/10)+2.AL.D3/3)+β.E2.D1   

H35 = β3.(D1.(2.E1/3+β2.AL/5)-4.AL.D3/3)   

 H36 = β3.(A1.β3(2.E4/5+A5.E2/3-4.E2.D3/3)-2β.D2.E3/3 

H38 = β2.(2β2.E1.A1/5-E2.D1/3-.D3.(6.E1/3-2.E2/3)) 

H39 = β3.(2.A1.β2.E2/3-4.A6.E3/4+D3.E4/6-4.D3.E2/3)+β.E4.D1/2 
 

b/ Elements of [A ] matrix  (Eq. 2.23b) 
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ABSTRACT 
 
 

The general purpose of this thesis is to develop new finite elements based on the strain 

approach. In order to ameliorate the accuracy of the results, the static condensation technique 

has been used. Most of the finite elements developed by Sabir are characterized by a regular 

form and appropriate coordinates with the form of the element. To overcome this geometrical 

inconvenience; a new analytical integration is developed to evaluate the element stiffness 

matrix for the finite elements with distorted shapes. This will help to know how the elements 

will behave when they have irregular form, and to extend their applications domain for the 

curved structures no matter what the geometrical shape of the element might be. 

 


