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Abstract  

    The recorded phonocardiogram PCG signal is often contaminated by different types of 

noises that can be seen in the frequency band of PCG signal, which may change the charac-

teristics of this signal. Discrete wavelet transform ( DWT) has  become  one  of  the  most  

important  and  powerful  tools  of  signal representation, but its effectiveness is influenced 

by the issue of the selected mother wavelet and decomposition level (DL). The selection of 

DL and the mother wavelet are the main challenges. This work proposes a new approach for 

finding an optimal DL and optimal mother wavelet for PCG signals denoising. Our ap-

proach consists of two algorithms are designed to tackle the problems of noise and variabil-

ity caused by PCG acquisition in a real clinical environment for different categories of pa-

tients whereas the obtained results are evaluated by examining coherence analysis, correla-

tion coefficient, and in term of mean square error (MSE) and signal-to-noise ratio (SNR) in 

simulated noisy PCG signals. The experimental results show that the proposed method can 

effectively reduce noise. 

Keywords: denoising operation, mother wavelet selection, optimal decomposition level, 

PCG signal 

Résumé  

Le signal phonocardiogramme PCG représente l'enregistrement sonore des bruits car-

diaques, il peut contenir plusieurs types de bruit qui peut être observé dans la bande de fré-

quence de signal que permet modifier les caractéristiques de ce  dernier. La transformée dis-

crète en ondelettes (TDO) est devenue l'un des outils les plus importants et les plus puis-

sants de la représentation des signaux, mais son efficacité est influencée par  la sélection du 

niveau de décomposition  et de l‟ordre de l'ondelette, ce sont les principaux défis. Notre  tra-

vail propose une nouvelle approche pour trouver le niveau et l‟ordre optimaux pour le dé-

bruitage des signaux PCG. Cette approche est composée de deux algorithmes pour aborder 

les problèmes de bruit et de variabilité causés par l'acquisition de PCG dans un environne-

ment clinique réel pour différentes catégories de patients . les résultats obtenus sont évalués 

en examinant l'analyse de cohérence, le coefficient de corrélation et l‟erreur quadratique 

moyenne (MSE) et le "rapport signal/bruit" (SNR). Les résultats montrent que notre mé-

thode effectivement réduire le bruit. 

Mots clés: opération de débruitage, sélection de l'ondelette mère, niveau de décomposition 

optimal, signal PCG 

 



 

 الاطــــروحــــــــة ملخـــــص

مصحوباً بأنــواع مختلفــة مـن الضوضــاء التـي  PCGـراً مـا يكــون مخطـط  أصــوات القلــب ـكثي

أصبــح  .، والتـي قـد تغيـــر خصـائـص هــذه الإشــارة PCGيمكـن رؤيتهــا فـي نطــاق تــردد إشــارة 

( أحــد أهــم وأقـــوى أدوات معالجـــة الإشــارات ، ولكــن DWTتحـويــل المويجــات المتقطــعة )

والموجـــة الأم هـي التحديــات  DLإن اختيـــار  .(DLــر بمسـألـة مستــوى التحليــل )فعاليتهـــا تتأثـ

 .الرئيسيـــة فـي الوقــت الحالــى

فـي هـذا  .فـي هـذه الاطروحــة نقتــرح أسلوبًــا جديــدًا لإيجــاد مستــوى التحليــل وموجــة الأم المثلــى

نيــن مـن الخوارزميــات مصممــة فـي عمليــة  لإزالــة الضجيــج النطــاق، عملنــا يتكــون مـن اث

فـي بيئــة سريريــة حقيقيــة  للحــالات المرضيــة، فـي حيـن يتـم تقييــم  PCGاشــارة فـي  الموجــود

بــط ومعامــل الترا( Coh)ل دراســة تحليــل الاتســاق لاـــخـن مالنتائــج التـي تـم الحصــول عليهــا 

(corr.coef)( مـع الخطــأ التربيعــي المتـوسط ،MSEو ) ( نسبــة الإشــارة إلى الضجيــجSNR .)

 .تظهــر النتائــج التجريبيــة أن الطريقــة المقتــرحــة يمكــن أن تقلــل الضوضــاء بشكـــل فعـــال

 

: عمليــة تقليــل الضوضــاء ، حجــز موجــة الأم المثلــى ، حجــز مستــوى الكلمــــات الرئيسيــــــة

 PCGالتحليــل الأمثــل ، إشــارة 
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General Introduction 
  

   i 

     

    Phonocardiography (PCG) deals with processing of the acoustic signals produced by the 

mechanical actions of the heart resulting in the vibration of the valves, heart muscle tissues 

and great vessels. One of the central issues is to extract the different heart sounds from a 

noisy recording and relate them to the corresponding cardiac event. Moreover, heart sounds 

can be further analysed and certain features can be extracted for estimating the underlying 

cardiac parameters.  

    The importance of the heart was already realized in the fourth century B.C., although 

with some misconceptions: Aristotle argued that it was the seat of intelligence, motion and 

sensation. From the medical perspective, Hippocrates noted already an early form of auscul-

tation by holding an ear against the chest, but in his works he described only breathing 

sounds. Blood circulation was first described by William Harvey, an English Physician in 

1628. Nowadays, because of new advances in cardiac imaging, cardiac auscultation has be-

come a preliminary test in the primary health care. On the other hand, due to the limited 

financial and human expert resources and the development of modern low cost computation-

al devices in information technology, phonocardiography emerges also as a topic of current 

research and a possible tool aiding clinical decision making. One of the greatest problems in 

recording heart sound is noise parasitic effects.  

   A reasonable solution to noise reduction can be carried out in two parts. First, extraneous 

noises must be minimized in the vicinity of the patient during recording. Second, signal pro-

cessing methods must be effective in noisy environments. The PCG signal discloses infor-

mation about cardiac function through vibrations caused by the working heart. The  heart  

sound  signals are  very weak  in range, from 10 Hz to  250  Hz, and they can  be  easily  

subject  to  interference  from  various noise  sources [1]. These various noise components 

make the diagnostic evaluation of PCG records difficult or even impossible in some cases.   

Observed  signals  as  PCGs  in  nature  usually  show  non-stationary  and  multi-temporal 

scale  characteristics.  

    The separation of noise from PCG recordings proves a more problematic task due to their 

inherent overlap in frequency and temporal domains. De-noising methods used presently are 

mainly based on simulation model or spectral analysis [2], and they cannot reveal these 

complicated characteristics of signals and thus cannot satisfactorily meet practical needs. In 

the other hand, Denoising is a substantial issue in signal analysis because noise has a great 

influence on the real characteristics of the signal [3].  The denoising  techniques used  to 

remove the additive  noise  while  retaining  as  much  as  possible  the  important  signal  

features, such  as the technique of Independent Component Analysis, Principle Component 
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Analysis [4]. Compared with them, the discrete wavelet transform (DWT)  method  is  

more  effective  and  is  especially  applicable  in  various  engineering applications such as  

medicine, physics,.. etc., because it can elucidate the localized characteristics of non-

stationary signals both in the temporal and frequency domains [5]. Hence, DWT has been 

widely adopted in biomedical signal processing, because it has the ability to capture the en-

ergy of signals in few energy and it can be separate noise from signal. However, in the cur-

rent study only orthogonal wavelets are examined since they allow perfect reconstruction of 

a signal. While many key issues impact the DWT and the most logical question at this point 

is how to choose a mother wavelet and decomposition level, although many studies have 

been conducted presently. These issues have not been completely solved. Selecting decom-

position levels and mother wavelet to denoise signal are a major challenge to which current 

methods do not provide guidance. 

 

Framework of the thesis 

   This the work focus on selecting  the optimal DL and the best mother wavelet for PCG 

signal, which are more appropriate for real time denoising operation. The results of study 

will be between Symlet and Daubechies wavelet family under simulative noise added to the 

clean signal.This thesis is structured in four main chapters. 

   Chapter (1) presents a literature review covering the basic principles of the cardiovascular 

system, how the different heart sounds are produced and gives an introduction to ausculta-

tion and phonocardiography. Chapter (2) presents  an introduction to Wavelets. Chapter (3) 

explains the procedure of the signal denoising using wavelet transform through threshold-

ing fuctions and threshold estimation with  the proposed method. In this thesis, Experi-

mental results and discussion are presented in chapter (4). Finally, presents the conclusions
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1.1 Introduction 

Heart sounds are generated by the interactions between heart chambers, valves and great 

vessels and the blood flowing through them. Mechanical vibrations reflect the turbulence 

that occurs when heart valves close. Traditionally, a stethoscope is used in cardiac ausculta-

tion to listen to these sounds that provide important acoustic information regarding the 

condition of the heart. The transient nature of the PCG signal deprived it from pioneering 

medical signals aimed for cardiac exploration. Moreover, the controversy still blurring the 

origin of heart sounds and murmurs.  Indeed, heart sounds and murmurs, going across the 

tissues between the heart and the thorax, are transmuted by the filtering effect of the heart–

thorax system [6, 7]. Furthermore, recording heart sounds and murmurs from various tho-

racic sites complicates the analysis and comparison of the acquired PCG signals. When com-

puters‟s dawn broke, a new era loomed up yielding digital phonocardiography. Hence, data 

acquisition gave a new perception of heart sounds and murmurs as digital phonocardiogram 

signal which can be stored within a computer. Moreover, the advents of digital signal pro-

cessing techniques enable digital phonocardiography to benefit from new processing meth-

ods. Resonant features of heart valves as well as blood flow turbulence within heart cavities 

can be digitally quantified. Therefore, digital phonocardiography became a reliable tool for 

detecting valvular pathologies as well as preventing valvular prosthesis dysfunction. Thus, 

several researchers watched over analysis of heart sounds and murmurs by advanced digital 

signal processing methods. Hence, the PCG signal can provide a valuable medical diagnosis 

towards exploration of the cardiac activity. This chapter starts with a brief description of the 

anatomy of the heart that is complemented with a brief introduction on the origin of heart 

sounds. Since heart sounds are originated as a consequence of the vibration of the heart 

valves and shear stress of the blood on the surface of the heart vessels, it is important to 

highlight the physical components of the cardiac muscle that are most active.  

 

1.2. Heart’s Anatomy and Physiology 

The heart is a constituent of the cardiovascular system located in the lower thorax, in the 

middle mediastinum slightly to the left of the mid sagittal plane   and in relation to vessels: 

the superior and inferior vena cava, the pulmonary artery and vein, and aorta [8]. It weighs 

about 250 to 300 grams, and its wall is composed of cardiac muscle, also called myocardium; 

the heart has four compartments/chambers: the right and left atria and right and left ventri-

cles. The heart is oriented such a ways that the anterior aspect is the right ventricle while 

the posterior Aspects shows the left atrium, see Figure (1.1) the upper atria compartments 
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are constituted as one unit and the lower ventricles as another. The left ventricular free wall 

and the septum are much thicker than the right ventricular wall.  The function of the heart 

is to receive oxygenated blood from the lungs and to supply it to every organ of the body. In 

order to execute its function, the heart has four chambers and four types of valves. During 

the pumping process, blood is forced through the valves, out of the chambers when the heart 

contracts, flowing from one chamber to another. 

 

Figure (1.1). (Left) Anatomy of the heart and physiology (right) blood flow through the chambers of 

the heart.  

 

The pumping action of the heart is divided into two phases: systole when the ventricles con-

tract and eject blood from the heart, and diastole, when the ventricles are relaxed and the 

heart is filled with blood. Four valves prevent the blood from flowing backwards; the atrio-

ventricular valves (mitral and tricuspid) prevent blood flowing back from the ventricles to 

the atria and the semilunar valves (aortic and pulmonary valves) prevent blood from flowing 

back towards the ventricles once being pumped into the aorta and the pulmonary artery, 

respectively. Deoxygenated blood of the body enters the right atrium, passes into the right 

ventricle and is ejected out through the pulmonary artery on its way to the lungs. Oxygen-

ated blood from the lungs re-enters the heart in the left atrium, passes into the left ventricle 

and is then ejected out to throughout the body. 
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1.2.1. Heart Valves 

Heart valves are passive elements consisting of connective tissue, responsible for the unidi-

rectional blood flow. The atrioventricular valves that is the mitral and tricuspid valves sepa-

rate the atria and ventricles, whereas the semilunar valves, called the aortic and pulmonary 

valves are located at the outflow of the ventricles. There is a single fibrous ring around each 

of the heart valves, and these rings are connected forming a fibrous skeleton. This frame-

work has several physiological functions: it is the base, to which the heart valves and great 

arteries attach, and it protects the valves from overstretching as the blood passes through 

them; furthermore, it behaves as an isolating layer between the atria and ventricles prevent-

ing them from simultaneous contraction.  All four valves consist of so called leaflets or cusps 

(Fig. 1.2)[9]. Except the mitral valve, all other valves have three cusps. The main difference 

between the atrioventricular and semilunar valves is that the atrioventricular valves are 

connected to the ventricular wall via the tendinous chords. These tendons prevent the 

valves from turning over into the atria when the ventricles contract to push the blood out 

into the great arteries. There is less danger of prolapse in the case of the semilunar valves 

since they have to resist much smaller pressure gradients. 

 

 

 

Figure . (1.2). Heart valves are present at the connections of the atria and ventricles, as well as the 

pulmonary artery and aorta to achieve a single flow direction circuit. The white arrows indicate the 

direction of blood flow 
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1.2.2. Cardiac Cycle with Pressure Profile 

Under one heart cycle the ventricles and the atria contract and relax in two sequential phas-

es. The phase contraction is known as systole, when the heart pumps out the blood from the 

ventricular chambers to pulmonary arteries and aorta, and the phase relaxation, also known 

as diastole, when blood flows from the atria to the ventricles. Concisely, during systole the 

heart chambers eject blood, and during diastole the heart chambers fill with blood. Two con-

secutive heart cycles are presented in Figure 1.3, where it can be seen that gradients in the 

pressure curves correspond to the events of heart sounds and ECG that is resulted from the 

sequential systole and diastole. The constituents of ECG were introduced in the previous 

subsection while heart sounds‟ components are described in the next subsection. Cardiac 

cycle can be understood with the pressure profile which is associated with the mechanical 

and electrophysiological changes in the heart. The times involved in realizing contraction 

and relaxation are addressed as systolic and diastolic period, respectively. Thus, a heart cy-

cle is composed by one systolic and one adjacent diastolic period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1.3). [10]Cardiac cycle phases: (1) atrial systole, (2) is ovolumetric contraction,(3) rapid 

ejection, (4) reduced ejection, (5) isovolumetric relaxation, (6) rapid filling, and (7) reduced filling, 

LV: left ventricle, AP: aortic pressure, LVP: left ventricular pressure, LAP: left atrial pressure, 

LVEDV: left ventricular end–diastolic volume, LVESV: left ventricular end–systolic volume. 
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1.3. Digital Auscultation 

 Cardiac auscultation is known to have been practiced during the Hippocratic period (460 to 

370 BC) [11]. At that time, until the nineteenth century, auscultation was performed by 

pressing the hand or the hearing against the patient‟s body, a process known as immediate 

auscultation. Only in 1816 did a french physician named Rene Laennec discover the stetho-

scope when faced with difficulties when examining a fat patient. Based on simple acoustics, 

he decided to roll a paper into a sort of cylinder which allowed him to better listen to heart 

sounds [11]. His discovery gave rise to a number of developments in cardiology and the 

stethoscope has since then evolved into a high precision instrument used commonly in every 

hospital. With the advent of new technology in the twentieth century, which brought to 

light other sophisticated diagnostic modalities such as echocardiography and chest x-rays, 

phonocardiography, the diagnostic technique that creates and studies a graphic record of 

heart sounds, became less important. The decline of auscultation teaching in medical schools 

and a consequent lack of confidence and accuracy in identifying heart sounds and murmurs 

also contributed to this fact [12]. However, with the evolution of computers and digital sig-

nal processing, phonocardiograms (PCGs) may reveal important information [13]. Tradi-

tional mechanical stethoscopes possess certain limitations in what concerns the study of the 

PCG: they cannot store and playback sounds, cannot offer a visual display nor process the 

acoustic signal. In order to overcome the limitations of these mechanical tools, electronic 

stethoscopes have been developed. Nowadays, with the advent of miniaturized and powerful 

technologies for computing, these limitations are rapidly receding [11] and electronic and 

digital stethoscopes are being used in areas such as telehealth [12], phonocardiography 

[13], among others. 

 

1.3.1 Auscultation areas  

Perception of heart sounds is influenced by their production and transmission as well as the 

capability of the human auditive sensory system in recognising correct amplitude and fre-

quency of each sound. The human ear is not equally responsive to sound in all frequency 

ranges, and has a relative perception about loudness and softness of a sound. Two sounds 

with the same intensity at different frequencies are perceived differently. The human ear has 

an optimal sensitivity range between 1 and 5 kHz. This frequency range is perceived louder 

than an equally intense, but lower frequency sound (e.g., 200 Hz) because of the ear‟s poor 

sensitivity in the lower frequency range [14]. Auditory performance of a human being is 

limited and requires adapted devices to achieve better cardiac auscultation. 
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Figure (1.4). Audibility of heart sounds and murmurs  

The other hand the technique of deciphering the sounds of the body based on their intensity,  

frequency, duration, number and quality is called auscultation [15]. The acoustic signal is 

affected by a chain of transfer functions before the physician‟s actual decision-making pro-

cess starts. The signal transmitted from the sound source propagates through the human 

body, where the sound waves are both reflected and absorbed. The most compressible tis-

sues such as lung tissue and fat contribute most to the absorption. Low frequencies are less 

attenuated compared to high frequencies, but the high frequencies are easier to perceive. 

 

Figure (1.5 ).The traditional auscultatory areas on the chest 
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The consequences of the attenuation are therefore hard to predict. To reduce the effect of 

thoracic damping, certain areas of cardiac auscultation have been defined. In these locations, 

as shown in Figure 1.5, the sound is transmitted through solid tissues or through a minimal 

thickness of lung tissue. The traditional areas of auscultation where the radiated sound in-

tensity from each of the four heart valves is maximized and are described below by  . 

• Mitral area: The cardiac apex. 

• Tricuspid area: The fourth and fifth intercostal space along the left sternal border.                     

• Aortic area: The second intercostal space along the right sternal border. 

• Pulmonic area: The second intercostal space along the left sternal border. 

 

1.3.2 Electronic stethoscope 

 Based on the technology provided by digital stethoscopes, a tool for collecting, storing and 

processing acoustic auscultation signals has been created. The DigiScope collector [16] was 

developed with the immediate goal of creating a repository of annotated auscultation signals 

for biomedical signal processing and machine learning research. This repository has been 

the testing ground for the work developed during this thesis and will henceforth be referred 

to as Digi-Scope repository. Figure 1.6 shows the DigiScope collector with a Littmann 

Model 3200 digital stethoscope, used to record and transmit heart sounds. 

 

Figure (1.6). The DigiScope Collecto hardware prototype. It has unrivalled acoustic performance of 

24x magnification with 85 percent of the noise reduction for friction and ambient noise. 

  

Using the capabilities of a digital stethoscope to record and transmit heart sounds will allow 

this software application to be used as a transmission tool for professionals to  discuss diag-

noses together, as a teaching tool for medical students, or as a method for screening cardiac 

pathology by using signal processing and machine learning computational resources. 
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1.3.3 Noise reduction in digital stethoscopes  

Auscultation now uses digital stethoscopes and concerns with the automated acoustic re-

cording and processing of medical signals. But these medical signals can potentially be cor-

rupted by noise in a variety of ways. The sequence of corruption demonstrates several key 

areas where external interferences could cause degradation of the original signal. When 

dealing with critical medical signals, such as heartbeats, it is important if the data does be-

come corrupted by noise and these alterations can be eliminated in an accurate and effective 

manner. 

 

 1.3.4 Noise analysis  

In reality, heart sound records are often disturbed by various factors, which can prohibit the 

accuracy of the original sound. Most of these factors are noises from sources such as breath 

sounds, contact of the stethoscope with the skin, fetal heart sounds if the subject is pregnant 

and ambient noise that may corrupt the heart sound signals. To make it easier, these factors 

can be categorized as two aspects in the mass: external factors and internal factors. 

 External factors:  

 Small movement of the stethoscope (“shear noises” or friction noises) 

 Ambient noise 

 Instrument noises 

 Human voices   

 Patient movements  

Internal factors:  

 Respiration sounds (lung mechanics) or breathing noise. 

 Acoustic damping through the bones and tissues. 

Currently, there is no way of knowing a priori what the particular noise component is, or 

of determining the noise component once the measurement has been recorded.  

The electronic stethoscope will become a much more useful diagnostic tool if unwanted 

noises are removed, revealing the heartbeat sound clearly and integrated. This research 

attempts to find the suitable way to reduce the unwanted noise and improve the quality of 

the heart sound.   
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1.3.5 Similar phonocardiogram 

Phonocardiogram or PCG is a high fidelity technique for registering sounds and murmurs 

made by the heart during a cardiac cycle with the help of phonocardiograph. The sounds are 

thought to result from vibrations of the heart valves. It allows the detection of the timing 

and relative intensities of faint sound and murmur, and make a permanent record of these 

events. In contrast, the conventional stethoscope cannot detect such sounds or murmurs, 

and provides no record of their occurrence. The ability to quantify the heart sounds provides 

vital information about the effects of certain cardiac changes in wave shape and timing pa-

rameters upon the heart. It is also an effective method for tracking the progress of the pa-

tient's disease. Although Phonocardiography can record and store auscultator findings accu-

rately, its usage as a diagnostic tool is uncommon because of critical procedures and compli-

cated instrumentation.  

 

1.4 Sounds of Intracardiac Vibrations 

In this section, electronic resources of cardiac auscultation tutorials designed of auscultation 

training purposes are used to study the various cardiac disorders through their phonocardi-

ographic recordings. 

 

1.4.1 Timing of heart sounds 

The heart, during its continuous cyclic beating, generates sounds recorded as phonocardio-

gram (PCG) signal. The phonocardiogram of a healthy subject can record up to four sounds, 

which are not all audible (see Figure 1.4). A normal phonocardiogram is usually formed by 

S1 and S2 sounds during a cardiac cycle. These sounds appear at the onset of the systole and 

the diastole phases respectively. The sinusal node is closer to the tricuspid valve in compari-

son to the mitral valve. Consequently, the right atrial contraction leads up to the left one. 

Therefore, the left and right hearts are not synchronized, as are their generated sounds. In-

terestingly, the contraction of the left ventricle begins and finishes before that of the right 

ventricle. These electromechanical events generate sounds appearing at different moments 

of time during the cardiac cycle. This timing is of great importance in diagnosis assessment. 

 

1.4.2. Heart Sounds 

There are two major heart sounds, which are always present, and two less dominant heart 

sounds, which can be observed only in a restricted group of people. As shown in Fig. 1.7, the 

first heart sound (S1) is produced at the beginning of the systole, and is caused by the clos-

ing of the atrioventricular valves and vibration of the ventricle walls.The second heart 
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sound (S2) coincides with the end of the systole and beginning of the diastole, and it is gen-

erated by the closing of the aortic and pulmonary valves and by the fast deceleration of the 

arterial blood. The third (S3) and forth (S4) heart sounds occur during the diastole. The S3 

sound is believed to be initiated by the sudden deceleration of atrioventricular blood when 

the ventricle reaches its limit of distensibility, causing vibrations of the ventricular wall. 

Finally, the S4 sound is produced by the end-diastolic atrial contractions, resulting in vibra-

tions of the ventricle wall like in the case of the S3 sound [17]. The S3 and S4 sounds are 

rarely observed in the neonatal period. In the case of fetal and preterm heart sound record-

ings only the S1 and S2 sounds can be detected, due to the low signal-to-noise ratio. 

  

 

 

 

 

 

 

 

 

 

Figure (1.7).Three heart cycles of typical (A) fetal and (B) preterm neonatal heart sound recordings. 

 

1.4.3 Heart sound analysis 

Heart sound provides clinicians with valuable diagnostic clues and crucial prognostic infor-

mation with acoustical and mechanical phenomena of the cardiac cycle. As many heart dis-

eases are associated with the characteristic changes in the intensities of or the time relation 

between the S1 and S2, it is crucial to analysis the frequency range of each heart component 

to conduct the initial diagnostics. The whole frequency of heart sounds and murmurs is a 

wide range from 0.1Hz to 2000Hz. However, most of the information carried by the heart 

signal is too weak to be recognized by the human ear. Thus the audible range of the heart 

sounds above the audible level is about 40–500 Hz, which possessed only a narrow audible 

range . The first heart sound (S1) is characterized by higher amplitude, low tone and longer 

duration in comparison with other heart sounds. S1 has two major high-frequency compo-

nents and its frequency components are mainly in the range of 10–200 Hz. The second heart 

sound (S2) usually has a more extended spectral activity compared with the first heart sound 

(S1). Specifically, S2 spectra have greater amplitude than S1 spectra above 150Hz. It occu-
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pies frequencies between 50Hz and 300Hz.  Because the frequency range of heart sound is 

generally certain to some degree, removing the noises outside this range is as easy as intro-

ducing the suitable digital filters. However, for those noises contained in the pass band, an-

other method is necessary.  

 

1.4.4. Splitting of heart sounds 

A feature which has clinical significance is the splitting of heart sounds. As described earlier, 

the S1 and S2 sounds are the result of valve closure and vibration occurring on  both sides of 

the heart, which yield two components for both heart sounds. There is usually just a very 

short delay between the timing of these components producing in general a single heart 

sound. Nevertheless, if - due to some reason - the closing of the valves happens significantly 

earlier or later on one side, then this single heart sound will change into two sounds - a split 

heart sound. The genesis of the S1 is surrounded by some controversy [13, 14]; however, 

the closing of the atrioventricular valves is beyond all doubt involved in the generation of 

the first heart sound. The mitral valve closes usually slightly earlier than the tricuspid valve 

on the right side, but in general they cannot be separated. Splitting of the S1 sound has also 

important clinical implications. An example of fetal S1 split is shown in Fig. 1.7. It is well 

supported that the S2 sound is composed of a component produced by the closure and vibra-

tion of the aortic valve and surrounding tissues (A), followed by a sound resulting from the 

closure and vibration of the pulmonary valve and surrounding tissues (P2). The A2 compo-

nent usually precedes the P component; their temporal separation is denominated as the S2 

split. In adults, the separation increases during inspiration up to 80 ms, known as physiolog-

ical split, due to an increased amount of blood returning to the right ventricle and a de-

creased amount of blood returning to the left ventricle, which results in a delayed P2 com-

ponent and an earlier A2 component, respectively. During expiration the splitting decreases 

again, resulting in the sensation of a single sound. Reversed splitting, that is splitting only 

during expiration might indicate aortic stenosis or left bundle branch block. On the other 

hand, splitting during inspiration and expiration is often a symptom of pulmonary stenosis, 

atrial septal defect or ventricular septal defect. 

 

1.4.5. Abnormal Heart Sound or Heart Murmur 

Abnormal heart sounds, or heart murmurs, mainly emerge as a result of a turbulent blood 

flow by a constriction in the artery or an insufficiently functioning heart valve . Since turbu-

lence is a chaotic dynamic state, the resulting heart murmur differs greatly from the heart 

sounds which have an oscillating background. Although simulations of flows in cylindrical 
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tubes with certain constrictions give new insight into the dynamics behind heart murmur, 

there is still a great lack of understanding, which hinders the exploitation of the diagnostic 

value of heart murmur 

 

Figure (1.8). Fetal heart sound record with 60 ms S1 split, separating the mitral (M) and 

tricuspid (T) component of the first heart sound. 

 

 

Figure (1.9). Fetal heart sound record with a significant systolic murmur due to turbulent 

blood through collateral arteries. 

 

Although the presence of murmur is always related to some deviation resulting in turbulent 

blood flow, if the real cause is hemodynamically insignificant, it is regarded as innocent 

murmur. In contrast, murmur related to some cardiovascular disease is called pathological 

murmur [15]. Usually five properties of heart murmur are assessed during auscultation in 

clinical practice [16]: 

 Timing and duration: murmurs should be identified as being systolic or diastolic (or 

rarely, continuous). The duration can then be subdivided into further subcategories, such 

as early, mid, late systolic or even holosystolic. 

 Intensity: the intensity of a murmur is graded on a scale of 1-6, where grade 1 is a quiet 

murmur that can be heard only after careful auscultation over a localized area and grade 
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6 is a murmur sufficiently loud to be heard with the stethoscope raised just off the chest 

surface. 

 Point of maximal intensity and radiation: point of maximum refers to where the 

murmur can be heard well. Several locations on the chest are defined which correspond 

to specific parts of the heart. Regarding the radiation, a general rule of thumb is that the 

sound radiates in the direction of the blood flow. 

 Shape: the shape describes the intensity change of the murmur during the cardiac cycle 

and it is related to the corresponding ow velocities. It is described by musical notions, for 

example crescendo or decrescendo, but the intensity can also remain fairly constant. 

 Character: it is described by the pitch of the murmur and based on the spectral configu-

ration. For example, in the case of a musical murmur typically a dominant tone is pre-

sent, but usually many frequencies build up the murmur, making it blowing, harsh, or 

rumbling. However, in Cardiac murmurs are vibrations caused by turbulence in the 

blood as it flows through some narrow tube. A murmur is one of the more common ab-

normal phenomena that can be detected with a stethoscope - a somewhat prolonged 

“whoosh” that can be described as blowing, rumbling, soft, harsh, and so on. Murmurs 

are sounds related to the non-laminar flow of blood in the heart and the blood vessels. 

They are distinguished from basic heart sounds in that they are noisy and have a longer 

duration. While heart sounds have a low frequency range and lie mainly below 200 Hz, 

murmurs are composed of higher frequency components extending up to 1000 Hz. Most 

heart murmurs can readily be explained on the basis of high velocity flow or abrupt 

changes in the caliber of the vascular channels.  

The Table 1.1 summarizes various types of heart sounds and murmurs with unique per       

ceptual features that distinguish from other murmurs. Doctors use these perceptual features 

(e.g., gushing sound with high pitch, spilt sounds etc.) and play significant role auscultation. 

The perceptual features carry significant clinical information that can be used for the clinical 

diagnosis and cardiovascular treatments. 
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Table 1.1. Murmurs and their psychoacoustic or perceptual features. 

Heart sound or murmurs Sound/acoustic  properties 

Aortic Stenosis (AS) High pitch, high energy envelope 

Mitral Regurgitation (MR) High pitch, high energy envelope with clear 

Third Heart Sound (TS) Faint heart sound after second heart sound 

Fourth Heart Sound (FS) Faint heart sound after third heart sound 

Early Systolic Murmur (ESM) Systolic, early cycle of S1, high pitch, high freq 

Late Systolic Murmur (LSM) Systolic, late cycle of S1 or S2, high pitch, high  freq 

Ejection Click (EC) High energy pulse of 2-5 ms 

Diastolic Rumble (DR) Rubbing sound 

Atrial Septal Defect (ASD) Gushing sound with high pitch 

Patient Ductus Arteriosus (PDA) Gushing sound with low pitch and inaudible 

II Heart Sound Split (2SS) Clear split sound of duration 2- 48 ms after s1 

III Heart Sound Split (3SS) Clear split sound of duration 5 - 50 ms after s2 

Diastolic Summation Gallop (DSG) Galloping sound 

Diastolic Tricuspid Stenosis (STS) High pitch and rhythmic 

Diastolic Ventricular  Gallop (SVG) Galloping with high intensity & reducing with time 

Ejection Murmur (EM) High intensity and high pitch ejection sound 

 

Heart murmurs have various shapes and timing during the cardiac cycle. Indeed, a heart 

murmur can occur in systole (e.g. systolic in aortic stenosis and mitral regurgitation) or in 

diastole (e.g. aortic regurgitation and mitral stenosis). Heart murmurs can also be continuous 

such for patent ductus arteriosus. 

(i) Systolic Murmurs 

Systolic murmurs may be categorized as mid systolic ejection or pansystolic regurgitant. 

Although any single categorization has serious deficiencies, the classification popularized by 

Leatham is attractive because it has a physiologic as well as a descriptive basis [17]. Systolic 

ejection murmurs are due to flow across the left or right ventricular outflow tract, whereas 

systolic regurgitant murmurs are due to retrograde flow from a high-pressure cardiac 

chamber to a low-pressure chamber. Since, the systolic ejection murmur begins shortly after 

pressure in the left or right ventricle exceeds aortic or pulmonic diastolic pressure sufficient-

ly to open the aortic or pulmonic valve. The result is a delay between $1, which occurs 

shortly after atrioventricular pressure crossover, and beginning of the murmur (see Figure 

1.10). The intensity of an ejection murmur closely parallels changes in cardiac output. Any 

condition that increases forward flow, such as exercise, anxiety, fever, or increased stroke 
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volume associated with the long diastolic filling period after a premature beat, increases 

murmur intensity.  

 

Figure (1.10). Midsystolic ejection murmurs occur during ventricular ejection. As a result, onset of 

murmur is separated from first heart sound ($1) by period of isometric contraction, and murmur, 

which is crescendo-decrescendo in nature, stops before respective semilunar valve closure. LV, left ven-

tricle; $2, second heart sound 

 Pansystolic Regurgitant Murmurs 

Pansystolic regurgitant murmurs are produced by retrograde flow from a high-pressure 

chamber to one of lower pressure [17]. Mitral regurgitation, tricuspid regurgitation, and 

ventricular septal defect murmurs are classic examples. Since there is usually a high pressure 

differential between the two chambers throughout systole, the murmurs are holosystolic in 

duration, high-pitched and blowing in quality, with a plateau-like configuration. Pansystolic 

regurgitant murmurs begin with $1 and continue up to and through the aortic closure sound 

 

Figure (1.11). Pansystolic  regurgitant murmur of mitral regurgitation begins with  and may re-

place first heart sound ($1). This murmur continues up to and through aortic valve closure sound 

(A2), as ventricular pressure continues to exceed left atrial (LA) pressure. Murmur has plateau con-

figuration and varies little with respiration. LV, left ventricle. 
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 Variants of the Pansystolic Regurgitant Murmur 

 Early Systolic Regurgitant Murmurs: a regurgitant murmur may be confined to early sys-

tole, as in the presence of a small ventricular septal defect. This murmur begins in the 

usual manner, at the onset of ventricular systole, and stops suddenly in early or midsys-

tole [18,19]. The murmur ceases because ventricular size decreases as ejection contin-

ues, and the small defect is sealed shut as the ventricular septum thickens during systole, 

resulting in cessation of flow through the defect. This murmur is important because it is 

typical of the type of ventricular septal defect that may disappear with age. 

 midsystolic and late systolic regurgitant murmurs: Midsystolic murmurs can occur with mi-

tral regurgitation due to papillary muscle dysfunction [20]. The timing of this murmur 

may also be late systolic, and may be intermittent or constant. These murmurs are often 

transient and provoked by episodes of ischemia. Mitral valve prolapse is the most fre-

quent cause of late systolic murmurs; indeed, this entity is one of the most common caus-

es of systolic murmurs seen in clinical practice. It is best heard at the apex and often has 

a tendency to crescendo in late systole (see Figure 1.12) 
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Variants of the Pansystolic Regurgitant Murmur 

 Pansystolic Murmur 

Mitral Regurgitation Tricuspid  

Regurgitation Ventricular Septal 

Defect 
  

Early Systolic Murmur 

Small Ventricular Septal Defect 

  

 

Acute Mitral Regurgitation 

 

 

 

 

 

 

 

Late Systolic Murmur 

 

Mitral Valve Prolapse   Papillary 

Muscle Dysfunction 

 

 

 

 

Figure (1.12). In addition to classic pansystolic regurgitant murmur seen in mitral regurgitation, tricuspid 

regurgitation, and ventricular septal defect, variations exist. In patients with small ventricular septal defects, 

murmur that starts with first heart sound ($1) may suddenly stop during early or midsystole, purportedly be-

cause ventricular volume becomes smaller after maximal ejection, defect seals shut, and murmur ceases. In 

acute mitral regurgitation, regurgitant murmur may end well before aortic valve closure sound as a result of 

extremely high left atrial V wave, which abolishes left ventricular-left atrial pressure gradient during late 

systole. $1 may be soft if flail mitral leaflet is present and is preceded by prominent fourth heart sound ($4). 

Audible expiratory splitting with accentuated pulmonic valve closure sound is present. Midsystolic to late sys-

tolic regurgitant murmurs may be due to papillary muscle dysfunction and prolapse of mitral or tricuspid 

valve. In latter conditions, valve is competent in early systole, but as ventricular volume decreases, leaflets be-

come incompetent and murmur begins, building in late systole and becoming maximal at time of second heart 

sound ($2). 
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(ii) Diastolic Murmurs 

Diastolic murmurs have two basic mechanisms of production: Diastolic filling murmurs or 

rumbles due to forward flow across the atrioventricular valves and diastolic regurgitant 

murmurs due to retrograde flow across an incompetent semilunar valve [17]. 

Diastolic rumbles are caused by forward flow across the atrioventricular valves, and their 

onset is delayed from their respective closure sounds by isovolumic relaxation. Following 

this period, when atrial pressure exceeds the declining ventricular pressure, the atrioven-

tricular valves open and filling begins. The two phases of rapid ventricular filling are early 

diastole and presystole. These murmurs tend to be more prominent during these two filling 

periods. Because flow velocity is relatively low, these murmurs have low-frequency content 

and rumble. 

 

Diastolic Filling Murmur (Rumble) 

Mitral Stenosis 

 

Mild 

 

 

 

severe 

 

 

Figure (1.13). In mild mitral stenosis, diastolic gradient across valve is limited to two phases of 

rapid ventricular filling in early diastole and presystole. Rumble occurs during either or both periods. 

As stenotic process becomes severe, large gradient exists across valve during entire diastolic filling 

period and rumble persists throughout diastolic filling period. As left atrial pressure becomes higher, 

time from aortic valve closure sound (A2) to opening snap (OS) shortens. In severe mitral stenosis, 

secondary pulmonary hypertension results in louder pulmonic valve closure sound (P2) and splitting 

interval usually narrows. S1, first heart sound; S2, second heart sound. 

 

When the aortic valve becomes incompetent during diastole, a blowing, high-pitched dias-

tolic murmur ensues. Isovolumic relaxation of the ventricle is very rapid. A high gradient 

quickly develops between the aorta and the left ventricle, and the murmur builds to maxi-
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mum intensity almost instantaneously. Thereafter, as the gradient between the two cham-

bers slowly falls, the murmur is decrescendo up to the next S1. The murmur of aortic regur-

gitation characteristically has the highest pitch of the commonly heard cardiac murmurs and 

lies in the frequency range to which the ear is most sensitive. 

 

Early Diastolic Murmur 

aortic regurgitation 

Pulmonic regurgitation 

(with pulmonary 

hypertension) 

 

Organic pulmonary  

regurgitation 

(without pulmonary 

hypertension) 

 

Figure (1.14). In aortic regurgitation or pulmonic regurgitation secondary to pulmonary hyperten-

sion, murmur begins almost simultaneously with second heart sound ($2). Since gradient between 

aorta and left ventricle is maximal almost instantaneously and then slowly decreases, murmur is also 

high-pitched, slow decrescendo. In contrast, organic pulmonary regurgitation without pulmonary 

hypertension is manifested by murmur that starts later and has rapid crescendo with longer decre-

scendo. This murmur is lower pitched than usual early diastolic blowing murmur because regurgi-

tant flow is across lower pressure system with small gradient. $1, first heart sound. 

 

(iii)  Continuous Murmurs 

A continuous murmur is defined as one that begins in systole and extends through $2 into 

part or all of diastole [20]. It need not last the entire cycle; therefore, a systolic murmur 

that extends into diastole without stopping at $2 is considered continuous, even if it fades 

completely before the subsequent $1. 

Continuous Murmur 

 

Figure (1.15). During abnormal communication between high-pressure and low-pressure systems, 

large pressure gradient exists throughout cardiac cycle, producing continuous murmur. 
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(iv) Innocent murmurs 

Innocent murmurs are always systolic ejection in nature and occur without evidence of 

physiologic or structural abnormalities in the cardiovascular system when the peak flow 

velocity in early systole exceeds the murmur threshold [18]. These murmurs are less than 

grade 3 in intensity and vary considerably with body position, level of activity, and from one 

examination to the next. They are not associated with a thrill or radiation to the carotid ar-

teries or axilla. They may originate from flow across either the normal left or right ventricu-

lar outflow tract and always end well before semilunar valve closure. Innocent murmurs are 

found in approximately 30-50% of all children; the vibratory systolic (Still‟s) murmur is 

common, especially in children aged 3-8 years. It has a very distinct quality described as 

groaning, croaking, buzzing, or twanging and is heard best along the left sternal border at 

the third or fourth interspace. It disappears at puberty. Although its exact cause is contro-

versial, most authorities agree that this murmur originates from flow across the left ventric-

ular outflow tract. Innocent murmurs have also been attributed to flow across a normal 

right ventricular outflow tract and are called innocent pulmonic murmurs because the site of 

their maximal intensity is heard best in the pulmonic area at the second left interspace, with 

radiation along the left sternal border. These are low to medium pitched, with a blowing 

quality, and are common in children, adolescents, and young adults. In adults over 50, inno-

cent murmurs due to flow across the left ventricular outflow tract are often heard and may 

be of high frequency, with a musical quality. They are frequently auscultated best at the 

apex. Since both innocent and pathologic ejection murmurs have the same production mech-

anism, it is not the nature of the murmur itself that allows the differential diagnosis but ra-

ther associated cardiac findings. Thus, it is the company the murmur keeps that allows the 

differential diagnosis from the pathologic systolic ejection murmur; the innocent murmur 

must occur during an otherwise normal cardiovascular examination [21] (see Figure 1.16). 
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Differential Diagnosis of the Innocent Murmur 

 

 

CONDITION 

 

EXPIRATION 

 

 

INSPIRATION 

 

NOTES 

 

Innocent  

Cardiac Murmur   

 

Physiologic $3 so me-

times  present 

 

High Output State 

  

 

Loud St;S3  and $4 

often present 

 

Atrial Septal Defect 

  

Loud Tt ; wide, fixed 

splitting of $2; tricuspid 

flow rumble sometimes 

heard in diastole 

 

Mitral Valve Prolapse 

  

 

Midsystolic click followed 

by murmur 

 

Mild Valvular 

Aortic Stenosis   

Loud aortic valvular ejec-

tion sound and A2; soft 

AR murmur 

commonly present in 

diastole 

 

Mild Valvular  Pulmo-

nic Stenosis   

Pulmonic valvular 

Ejection sound loud on 

expiration only; wide 

physiologic splitting of $2 

 

Hypertrophic 

Cardiomyopathy   

 

Paradoxical  splitting of 

$4 commonly heard 

Figure (1.16). Differential diagnosis of innocent murmur versus pathologic systolic murmur by the 

company the murmur keeps. Innocent murmur must be found in otherwise normal cardiovascular 

examination. $1, first heart sound; $2, second heart sound; $3, third heart sound; S4, fourth heart 

sound; A2, aortic valve closure sound; P2, pulmonary valve closure sound; T1, tricuspid valve closure 

sound; M1, mitral valve closure sound; C, midsystolic nonejection sound; AVES, aortic 
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1.5 Conclusion 

     This chapter introduced some background information on the cardiac structure, the 

origin of heart sounds, their characteristics and their diagnostic value, but these medical 

signals can potentially be corrupted by noise in a variety of ways.  

     At the start of this chapter, the anatomy and physiology of heart sound was explained in 

which the structure of the heart and its function, i.e. pumping blood to the body, were de-

scribed. Then, the origin of and the important characteristics of the main heart sounds‟ con-

stituents, S1, S2, S3 and S4, were highlighted. Since, Abnormal heart sounds are originated 

because of some cardiovascular anomalies, namely in valvular diseases, have been explained
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2.1 Introduction 

Physiological of biomedical signals are mostly non-stationary such as phonocardiogram 

(PCG) and electroencephalogram (EEG) and electromyography (EMG) signals . Addition to 

the main difficulty in dealing with signal processing is the extreme variability of the signals 

and the necessity to operate on a case by case basis. The Wavelet transform (WT) has been 

extensively used in signal processing, mainly due to the versatility of the wavelet tools. It 

has been shown to be a very efficient tool for analysis of non-stationary and fast transient 

signals due to its good estimation of time and frequency (scale) localizations.  

 

2.2 Wavelet History 

The development of wavelets can be linked to several works in different domains, starting 

with the first wavelet introduced by Haar in 1909. In 1946, Denis Gabor, introduced the 

Gabor atoms or Gabor functions, which are functions used in the analysis, a family of func-

tions being built from translations and modulations of a generating function. In 1975, 

George Zweig, former particle physicist who had turned to neurobiology, has discovered the 

continuous wavelet transform (named first the cochlear transform and discovered while 

studying the reaction of the ear to sound). Morlet, studying reflection seismology observed 

that, instead of emitting pulses of equal duration, shorter waveforms at high frequencies 

should perform better in separating the returns of fine closely-spaced layers. Grossmann, 

who was working in theoretical physics, recognised in Morlet‟s approach some ideas that 

were close to his own work on coherent quantum states. In 1982, Grossmann and Morlet 

have given the formulation of the Continuous Wavelet Transform. Yves Meyer recognized 

the importance of this fundamental mathematical tool and developed this theory with col-

laborators as Ingrid Daubechies and Stéphane Mallat . 

 

2.3 Continuous Wavelet Transform (CWT) 

There are different ways to explain the wavelet transform. This goal is in general achieved 

by introducing the Fourier theory at the beginning. In practice, signals are represented in 

time amplitude format in the time domain. However, for most signals processing applica-

tions, There is  a  need  for  other  representations  as  some  important  information  are  

hidden  in  the frequency content of the signal. A Fourier Transform (FT) decomposes the 

signal into complex exponential functions at different frequencies in order to get the fre-

quency content of the signal as in [22]: 
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 ( )  ∫  ( )
  

  

                                                                 (   ) 

The integration covers all time instances from minus infinity to plus infinity.  Therefore the 

frequency component   is equally reflected in the result of the integration, whenever it oc-

curs over time. Simply, the integration won‟t change whether the frequency component f 

appears at time t1 or time t2.  This makes the Fourier Transform unsuitable for non-

stationary signal whose frequency content changes over time.  The signal is supposed to 

have the frequency component w at all times in a way that the Fourier transform will turn to 

be useful. Therefore the stationary and the non-stationary nature of the signal is of im-

portance to the FT. It is then natural that a transform with both time and frequency locali-

sation is required for non-stationary signals.  The short time Fourier transform (STFT) falls 

into this category of transforming. There is only a minor difference between the STFT and 

the FT. In STFT, the signal is divided into small enough segments, where these segments 

(portions) of the signal can be assumed to be stationary. For this purpose, a window function 

"w" is required. The width of this window must  be  equal  to the  segment  of  the  signal  

where  its  stationarity  is  valid.  The STFT is summarised in one line in equation 2.2. 

     * ( )+   (   )  ∫  ( ) (   )
  

  

               (   ) 

Where x (t) represents the signal under consideration and w(t) the window function. As it 

can be seen from the equation, the STFT of the signal is the FT of the signal multiplied by a 

window function. The STFT transform of a signal x(t) is thus defined around a time θ 

through the use of a sliding window [23]. As it can be seen from equation 2.2, even if the 

integral limits are infinite, the analysis is always bounded by the limits [-θ , θ ] of the slid-

ing window. The combination of time domain and frequency-domain analysis yields a more 

revealing picture of the signal, showing which spectral components are present in a signal at 

a given time slot [24]. According to Heisenberg‟s uncertainty principle, it is not possible to 

know what spectral components exist at a particular time instance [25]. This leads to some 

limitations of the STFT. A time interval is necessary to find which specific frequencies occur 

at this specific time. The time information is limited to the time interval, leading to a low 

resolution. While a Kernel function  being  infinite  in  length  leads  to  perfect  frequency  

resolution  (with  no  time information) in the case of the FT, finite window length in STFT 

assures no perfect frequency resolution. Moreover, the window used in the STFT should be 

short enough to assure that the signal is stationary.   

The narrower the better is the time resolution and the poorer is the frequency resolution. 
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The Wavelet Transform is useful if the signal to be processed has high frequency compo-

nents for a short while and low frequency components for longer time; which is typical of 

signals.  Although the CWT is applied in a similar way as the STFT, there are two main 

differences: Unlike the STFT, the window function is modified as the transform is computed 

for every single spectral component. The continuous wavelet transform of a function  ( ) at 

a scale ( ) and translational parameter ( ) is defined as 

    〈      〉   ∫  ( )
  

  

 

√ 
   (

   

 
)                         (   ) 

Where   ( )  is a continuous function in both time domain and the frequency domain called 

the mother wavelet and  ( ) belongs to the square integrable function space,  L (R).  In the 

same way, The inverse CWT can be defined as: 

 ( )  
 

  
∫ ∫

 

√ 

 

  

 

 

      (
   

 
)
     

  
                            (   )     

 

The    factor  is  crucial  for  reconstruction purposes  which is  known  as  the admissibility 

condition (Daubechies)[26].  

   ∫
| ( )| 

 

 

 

                                                             (   ) 

Where  ( ) is the Fourier transform of  ( ). In practice  ( )  will have sufficient decay, 

so that the admissibility condition reduces to  

          ∫  ( )  
  

  

  ( )                                                      (   ) 

The time-frequency planes of a STFT and Wavelet Transformation (WT) illustrated in 

Figure (2.1), (2.2). The difference between the STFT and the WT is visually clear. 

 

Figure (2.1). Time-Frequency Structure of            Figure (2.2). Time Frequency structure of 
STFT. The graph shows that time and fre-            WT. The graph shows that frequency reso- 
quency localizations are independent.                       lution is good for low frequency and time  
cells are always square.                                             resolution is good at high frequencies 
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After this brief introduction, let's define what wavelet transforms are.  Although a wavelet 

transform is defined as a mathematical tool or technique, there is no agreed definition on the 

wavelet transform within the scientific community.   

According to Sweldens, three properties have to be fulfilled to call a particular function a 

wavelet system [27]: 

 Most  of  the energy of  wavelet  is  limited in a finite interval  and the transform con-

tains  frequencies  only  from a  certain  frequency  band  which  is  called space frequen-

cy localization. 

 Wavelets are building blocks for general functions. Namely, a function is represented in 

the wavelet space by mean of an infinite series of wavelets. 

 Wavelets support fast and efficient transform algorithms which are important when im-

plementing the transform.    

However, the result of a wavelet transform for one-dimensional signal results in a two-

dimensional function depending on the location   and scale  . In Figure (2.3), the working 

principle of a wavelet transform is explained. 

 

 

Figure (2.3). Representation of the (continuous) wavelet transform  
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2.4 Discrete Wavelet Transform (DWT) 

The wavelet transform can be computed discretely on the time-frequency plane to reduce 

the redundancy. The crucial point is how to sample  s and   to guarantee the precise recon-

struction of original signal x(t) from its wavelet transform. There are several forms of wave-

let transform according to the different level of discretization. Simply let     
 
 and 

       
 
, where     and   are the discrete scale and translation steps  respectively 

    
 

√  
 

 (
       

 

  
 

)                                                         (   ) 

The necessary conditions imposed on         and    for             to be a frame of   ( ) 

is to fulfill the admissibility condition given in equation (2.5) and the theorem (2.1).  

Theorem 2.1. (DAUBECHIES) [28]. if               is a frame of   ( ) that provides the 

lower and upper bound for the frame bounds A and B ,where A and B are constants,     

  
  

       
                                                                           (   ) 

     * +   
 

  
∑ | (  

 
 )|

 
  

  

    

                         (   ) 

The condition (2.9) imposes that the Fourier axis is completely covered by wavelets dilated 

by {  
 
}
   

. When    and    is close to 0 and 1, the functions of the frame are strongly relat-

ed and behave like continuous wavelet. However    and    are chosen to compose an or-

thogonal basis and hence wavelet series (WS) transform is defined to a continuous mother 

wavelet   and wavelet frames offer good localization both in time and frequency. For 2-D 

discrete grid of coefficients,      ( )    (  ),The WS transform of a signal  ( ) is: 

  (   )  〈     〉   
 

√  
 

∫  ( )
  

  

   (
       

 

  
 

)                 (    )           

The most commonly used values for    and    are 2 and 1 respectively. Where the resulting 

from this particular case of discretization is called the Dyadic Wavelet Transform. DWT of 

a signal  ( ) can be written as: 

   (   )  〈      〉  
 

√  
∫  ( )

  

  

   (
   

  
)                        (    )         
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When a dyadic wavelet transform is discretized in time with a constant interval,       ,it 

leads to the classic Discrete Wavelet Transform (DWT). In addition Meyer showed that 

there exist wavelets   ( ) [29] 

(√   (     ))
(   )   

                                                             (    ) 

 

is an orthonormal basis of   ( ) and the wavelet decomposition of signal  ( ) is  

 

 ( )  ∑∑   (   )                                                             (    )

  

 

The most widely used form of such discretization with      and      on a dyadic time-

scale grid is shown in Figure (2.4). Such a wavelet transform is described as the standard 

DWT. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure (2.4). Standard DWT on dyadic time-scale grid 
 

Several such wavelet bases have been reported in the literature [30-31] to evaluate  ( ) using 

the summation of finite basis over index j and k with finite DWT coefficients with almost no 

error. All these wavelets can be derived with an arbitrary resolution and with finite DWT co-

efficients.. The wavelet orthonormal bases provide an important tool in functional analysis; 

before them it has been believed that no construction could yield simple orthonormal bases 

of   ( ) whose elements had good localization properties in both the spatial and Fourier 

domains. 

 
2.5 Implementation of DWT 

In order to take advantage of the Wavelet Transform‟s properties, a computation algorithm 

and an implementation scheme were needed. Mallat [32] solved these problems by discuss-

ing the Multi-Resolution Analysis (MRA) which is linked to the Perfect Reconstruction 

(PR) filter bank structures [33]. 
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2.5.1 Multiresolution Analysis (MRA) 

A signal‟s approximation at resolution     is defined as an orthogonal projection on a space 

        ( )  The space    groups all possible approximations at the resolution     the or-

thogonal projection of         is the function       that minimizes distance ‖    ‖  The 

details of a signal at resolution     are the difference between the approximations at the 

resolutions              . However, A multiresolution analysis consists of a sequence of 

successive approximation spaces {  }   
 resented in Figure 2.5 by the following properties: 

 
( )                                                                                                               (    )          

(  )             ( )       (
 

 
)                                                                 (    )  

(   )                   * +                                                                            (    )   

(  )                   (       ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ( )                                                 (    )  

 
Figure (2.5). Approximation Spaces    and Detail Spaces    

 

For a given multiresolution approximation  {  }   
 , there exists a unique function  ( ) 

.    ( )      ⁄  (      )/
   

 is an orthonormal basis of   . The orthogonal projection 

on    can be computed by decomposing the signal  ( ) in the scaling orthonormal basis. 

Specifically, 

  ( )    ( )     ( )  ∑〈      〉

 

  

                                  (    ) 

The inner products      , -  〈      〉                                                               (    ) 

Hence represent the discrete approximation of the signal  ( ) at scale      It can also be 

written as :  

 

  , -      
̅̅ ̅(   )  

 

√  
∫  ( )

  

  

   (
     

  
)       (    )   
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Where   
̅̅ ̅( )  

 

√  
  (     )   

It can be easily proved that   
̅̅ ̅( ) is the impulse response of a low-pass filter, so, the discrete 

approximation   , - is a low-pass filtering of    sampled by a factor of   . The orthonormal-

ity condition of the elements of        

 

〈         〉   ( )    (  )   ( )                                (    ) 

 
2.5.2 The Detail Signal 

 The difference of information between the approximations of a signal  ( ) at scales      

and    is called the detail signal at scale     It was shown in the previous paragraph that the 

approximations of a signal at scales      and    are equal to its orthogonal projection on 

            respectively. It can be easily proved that the detail signal at the scale    is given 

by the orthogonal projection of the original signal on the orthogonal complement of 

           , denoted here by   (see Figure 2.5). If    is the orthogonal complement, then 

            Mallat proves in [34] that there exists a function  ( ), called an orthogonal 

wavelet, such that, if we denote     ( )   .
     

  / for any scale   ,  {    }
   

 is an or-

thonormal basis of    and  {    }
      is an orthonormal basis of   ( )  for all scales. 

Hence, the detail signal of  ( ) at the resolution   
 is equal to 

  , -  〈      〉                                                                              (    ) . 

 

2.5.3 Filter-bank Implementation of the Discrete Wavelet Transform 

As previously mentioned, both approximation and detail coefficients can be obtained by 

filtering and sub-sampling of the original signal. It is proved that any scaling function is 

specified by a discrete filter called a „conjugate mirror filter‟. Its impulse response is given 

by:  

 , -  〈
 

√  
 (

 

 
)   (   )〉                                                 (    ) 

 

Where  ( ) denotes the father wavelet (also known as a scaling function). Its Fourier trans-

form, denoted by  ( ) is given by: 
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 ( )  ∑ , -                                                                        (    )  

  

  

 

 

With the definitions from above, the following theorem can be introduced: 

Theorem 2.2.: (MALLAT, MEYER) [35] 

 ( )  satisfies the following conditions: 

 

     | ( )|  | (   )|                                                 (    )        

And  

                                         | ( )|  √                                                                      (    ) 

Conversely, let  ( ) be a Fourier transform satisfying (2.25) and (2.26) and such that 

| ( )|          0  
 

 
1                                                         (    ) 

The function defined by 

 ( )  ∏ (    )

  

  

                                                                   (    ) 

Where   is the Fourier transform of a scaling function. 

the filters that satisfy the property (2.25) are called conjugate mirror filters. Relation (2.27) 

implies that  ( ) is a low-pass filter. As  {    }
   

 is an orthonormal basis of    any 

               can be decomposed as follows: 

       ∑〈           〉

  

  

                                                         (    ) 

The inner products can be further processed and, taking into account relation (2.24),  

we obtain: 

 ,    -  〈
 

√  
 (

 

 
)   (      )〉                               (    ) 

Hence 

       ∑  ,    -

  

    

                                                         (    ) 

Using (2.19), we can write: 

    , -  〈        〉  ∑ ,    -〈      〉

  

  

                          (    )    
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 ∑ ,    -  

  

  

, - 

                                , -    ,  -                                                 (    )  

Where   , - is the reverse filter associated to  , -,   , -   ,  -  

From equation (2.32), we can observe that the approximation coefficients from one iteration 

can be computed from the approximation coefficients from the previous iteration through 

low-pass filtering and subsampling with a factor of 2. As previously discussed, orthonormal 

wavelets carry the details necessary to increase the resolution of a signal approximation. 

Theorem (2.2) proves that one can construct an orthonormal basis of    by scaling and 

translating a wavelet. 

Theorem 2.3:. (MALLAT, MEYER) Let   be a scaling function and h the corresponding 

conjugate mirror filter. Let   be the function whose Fourier transform is 

 ( )  
 

√ 
  .

 

 
/ .

 

 
/                                                             (    ) 

With 

 ( )        (   )                                                                  (    ) 

The necessary and sufficient conditions imposed on G for designing an orthogonal wavelet 

are: 

| ( )|  | (   )|                                                             (    ) 

And    

 ( ) ( )   (   ) (   )                                      (    ) 

Where H is a low-pass filter and G is a high-pass filter 

From theorem (2.2), we can prove that  ( ) is the Fourier transform of: 

 ( )  〈
 

√ 
 (

 

 
)   (   )〉                                                      (    ) 

which are the decomposition coefficients of 

 

√ 
 (

 

 
)  ∑  ( )

  

    

 (   )                                                   (    ) 

and 

 ( )  (  )    ,   -                                                              (    ) 

 

Let us consider               .We can write: 
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                                                     (    ) 

It can be proved that 

〈           〉  〈
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)   (      )〉   ,    -     (    ) 

 Consequently : 

       ∑  ,    -

  

    

                                                            (    ) 

But the detail coefficients from scale     can be computed with (see also 2.22): 

    , -  〈        〉                                                                       (    ) 

By replacing (2.42) in (2.43) and having in mind relation 2.29, we get: 

    , -  〈  ∑  ,    -

  

    

    〉  ∑  ,    -

  

    

〈      〉 

 ∑  ,    -  , -

  

    

 

                                        , -    ,  -                                         (    ) 

Analyzing (2.44), we can conclude that the detail coefficients from one scale can be comput-

ed from the approximation coefficients from the previous scale by convolution with the 

high-pass reverse filter   ,   , -   ,  -  followed by a subsampling with a factor of 2. 

 

 

 

Figure (2.6). One-level DWT decomposition scheme 

 

If we consider level 0 as the starting level, namely  , -    , -. for a three-level  decompo-

sition we obtain: 

 

Figure (2.7). Three level DWT decomposition 
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The implementation presented above was first proposed by Stephane Mallat and is also 

called „Mallat’s implementation‟. Due to the down samplers, the number of coefficients 

from one scale is equal to the number of approximation coefficients from the previous 

scale, (      (    )        (    )        (  ))   

 

2.5.4 Perfect Reconstruction 

In the reconstruction stage we want to synthesize the original signal from the coefficients 

obtained in the decomposition stage. This transform is also known as the „Inverse Discrete 

Wavelet Transform‟ (IDWT) .Since      is the orthogonal complement of      in   , the 

union of the two bases  {      }
   

 and  {      }
   

 is an orthonormal basis of   . Conse-

quently, any      can be decomposed in this basis 

     ∑ 〈           〉

  

    

       ∑ 〈           〉

  

    

       (    ) 

inserting (2.29 and 2.41 ) in (2.45) yields 

     ∑  ,    -

  

    

       ∑  ,    -

  

    

                 (    )    

Using equation  (2.56)  and the properties of the inner product,we can write  

the approximation coefficients at level     , - as : 

  , -  〈      〉                                                                                 (    ) 

 ∑  ,    -

  

    

〈        〉  ∑  ,    -

  

    

〈        〉     (    )    

       , -         , -                                                            (    ) 

Where,           and with  , - ,we have denoted the signal 

 , -  {
 , -         

  
           

                                                                 (    ) 

This reconstruction can be seen as an interpolation by a factor of 2, that inserts zeros to ex-

pand      and     , followed by a filtering of these signals. 

In order to achieve perfect reconstruction, one can use orthogonal filters that satisfy 

 

| ( )|  | ( )|                                                                     (    ) 
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Theorem 2.4. (Vetterli) :The filter bank performs an exact reconstruction for any input sig-

nal if and only if 

  (   )  ( )    (   )  ( )                                     (    ) 

and 

  ( )  ( )    ( )  ( )                                                     (    ) 

A one-level reconstruction scheme is presented in Figure 2.8. 

 

Figure (2.8). One-level DWT reconstruction scheme 

 

A three-level reconstruction can be seen in Figure 2.9, where we have considered the ap-

proximation at level zero equal to the signal to be reconstructed. 

 

 

Figure (2.9). Three-level DWT reconstruction scheme 

 

2.6 Wavelets for analyzing PCG signals  

 One of the primary benefits of the wavelet transform is that it is localized in both time and 

frequency, whereas other classical methods like the Fourier transform are localized in fre-

quency, only.Moreover, the wavelet transform offers good time resolution for low-frequency 

components and good frequency resolution for high-frequency components of the signal 

being analyzed. It overcomes shortcomings of other similar methods, such as the short-time 

Fourier transform, where in time-frequency localization is constant for all frequencies. The 

result is that a wavelet transform can be designed to detect specific signal transitions local-

ized in time and frequency. CWT is powerful in singularity detection. With standard DWT, 

signal has a same data size in transform domain and therefore it is a non-redundant trans-

form. Standard DWT can be implemented through a simple filter bank structure of recur-

sive FIR filters. A very important property; Multiresolution Analysis (MRA) allows DWT 

to view and process different signals at various resolution levels. The advantages such as 

non-redundancy, fast and simple implementation with digital filters using micro-computers, 

and MRA capability popularized the DWT for PCG signal denoising 
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2.7 Basic wavelets and their properties 

1. Symmetry and antisymmetry: Since both the scaling function and the mother wavelet 

can be seen as filters, their phase characteristic plays an important role as the negative de-

rivative of the phase is a group delay. It is very desirable in signal processing application 

that the filters have a linear phase, thus constant group delay. The linear phase of wavelet 

filter requires its scaling function to be symmetric or antisymmetric. 

2. Orthogonality: This property guarantees the independence of wavelets in time (their 

shifts and scales), thus some specific kind of exclusivity in signal analysis. 

Note that there must always be a trade-off between the orthogonality and symmetry of 

wavelets, since it is not possible to impose both of them simultaneously. 

One of the big issues in research was to design orthogonal wavelets which are symmetric to 

the degree possible. It is also possible to exploit wavelets which are non-orthogonal, never-

theless, the wavelet theory is then much complicated and is built up on theory of Riesz‟s ba-

ses. Moreover, the wavelet synthesis is not perfect anymore, since there is always an error 

between original and reconstructed signal. 

 

3. Number of vanishing moments: Some wavelets suppress moment functions, thus poly-

nomial functions of certain order as well. It results in more sparse representation of the 

wavelet analysis, what can significantly save the memory space while implemented Fugal 

[2009]. Again, there is a trade-off between number of vanishing moments and the length 

(dimension) of the wavelets. 

 

4. Existence of scaling function: The simple rule holds about this property: When the 

scaling function does not exist, the analysis is not orthogonal. Note that the rule is rather 

theoretical and has no impact on the choice of wavelet family tobe applied in practise, since 

the (non)orthogonality property of particular wavelet family is always known. 

 

5. Time-frequency localisation: A good localisation of wavelet in either time or frequency 

determines the possibility of the wavelet to detect particular phenomena in corresponding 

domain. However, in order to the uncertainty principle, both the compact support and the 

band-limitations property cannot be attained simultaneously. In other words, the more strict 

resolution in frequency, the larger support of wavelet, thus the worse time resolution. Anal-

ysis in time proceeds by shifting the wavelet along the time axis and analysis in frequency 

proceeds byscaling the wavelet. Obviously, widening the wavelet shifts its frequency content 
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towards low frequencies and conversely, narrowing the wavelet shifts its frequency 

content towards high frequencies. 

 

2.8  Wavelet Families 

In general, There are  basic properties of a number of common wavelet families. Since,much 

of this information is drawn from Daubechies [35] and Mohlenkamp and Pereyra [36], but 

may be found in any standard wavelet reference (for example, Kaiser [37]). The father and 

mother wavelets of the first few Daubechies wavelets are shown in figure (2.10). Note that 

the 2 tap Daubechies wavelet is equivalent to the Haar wavelet. Coiflets were created so that 

the father wavelets has vanished moments too. They are nearly symmetrical and are or-

thonormal, but have a wide compact support. A Coiflet wavelet family is shown in Figure 

2.11. Symlets are a modified version of the Daubechies wavelets, which have maximal sym-

metry for compactly supported orthogonal wavelets through a wider compact support. A 

Symlet wavelet family is shown in Figure 212. 

 

 

   (a) The Daubechies 2 tap father wavelet             (b) The Daubechies 2 tap mother wavelet 

 

(c) The Daubechies 4 tap father wavelet                 (d) The Daubechies 4 tap mother wavelet 
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(e) The Daubechies 6 tap father wavelet             (f ) The Daubechies 6 tap mother wavelet 

 

  (g) The Daubechies 8 tap father wavelet       (h) The Daubechies 8 tap mother wavelet 

Figure (2.10). The Daubechies wavelet family. 

 

      (a) The Coiflet father wavelet                                (b) The Coiflet mother wavelet 

Figure (2.11). The Coiflet wavelet family 

 

           (a) The Symlet father wavelet                          (b) The Symlet mother wavelet 

Figure (2.12). The Symlet wavelet family 
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Almost all known orthonormal wavelets, except for the Harr and the Shannon (the sine 

function), cannot be expressed in closed form or in terms of simple analytical functions, such 

as the sine, cosine, exponentials, and polynomials. The main feature of wavelets is their nat-

ural splitting of objects into different scale components  according to the multiscale resolu-

tion analysis. However, The discontinuities in the Haar wavelet and poor time localization of 

the Shannon wavelet have limited their application in the multi-scale modeling. Meyer 

wavelets are similar to Shannon wavelets, but sacrifice some localisation in frequency to gain 

exponentially rapid decay. They are shown in Figure 2.14. 

 

 

      (a) The Shannon father wavelet                       (b) The Shannon mother wavelet 

Figure (2.13). The Shannon wavelet family 

 

In order to keep the weights equivalent to an inner product a second family of synthesis 

wavelets orthonormal to the analysis wavelets is used. Weights are computed using the 

analysis wavelets, and the function can be reconstructed using the synthesis wavelets. While 

many biorthogonal wavelet families exist, the name usually refers to the Cohen Daubechies-

Feauveau (CDF) wavelet [38]. The analysis wavelets of a biorthogonal wavelet family are 

shown in Figure 2.15, but The synthesis wavelets  are  in Figure 2.16 

 

 

             (a) The Meyer father wavelet                          (b) The Meyer mother wavelet 

Figure (2.14). The Meyer wavelet family 
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(a) A biorthogonal father wavelet                          (b) A biorthogonal mother wavelet 

Figure (2.15). A biorthogonal analysis wavelet family 

 

     (a) A biorthogonal father wavelet                    (b) A biorthogonal mother wavelet 

Figure (2.16). A biorthogonal synthesis wavelet family 

 

Spline wavelets have received special attention in recent years due to their attractive proper-

ties for function synthesis, rather than analysis [39] [40]. B-spline wavelets are the synthe-

sis wavelets of a biorthogonal wavelet family, and their father wavelets are given directly by 

B-splines shifted such that they support starts at the origin. These wavelets are not orthog-

onal, but are symmetric, differentiable, compactly supported and have a closed form expres-

sion. B-spline wavelets provide good localisation in time and frequency, and tend towards 

Gabor functions as the order of the spline tends to infinity, which have optimal localisation 

in both time and frequency with respect to the uncertainty principle [41]. These wavelets 

are shown in Figure 2.17. Note that the zeroth order B-spline father wavelet is a tile, or bina-

ry function 
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Figure (2.17). B-spline wavelets of various orders 

 

Of all known wavelet types, B-splines will give the tightest approximation error bounds 

[42]. B-spline father wavelet functions are the smoothest possible father wavelets for a giv-

en compact support, and have the shortest support width for a given order. The B-spline  

father wavelet equation is given by repeated self-convolution of a tile across the unit interval 

[43]. Battle-Lemarie wavelets are orthogonal spline wavelets, although the spline is in the 

Fourier domain, meaning that the wavelet has good frequency localisation, but infinite sup-

port (although it has exponential decay). An example of this wavelet type is shown in Figure 

(2.18). 

 
 
(a) A Battle-Lemarie father wavelet wavelet                     (b) A Battle-Lemarie mother        

Figure (2.18). A Battle-Lemarie wavelet family 
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However,The properties of these wavelet families are summarised in table 2.1 and table 2.2 .  

 Table 2.1. Comparative properties of wavelet families[44] 

 
Family 

 
Order 

 
Support 
Width 

 
Orthonormal 

 
Symmetric 

 

Haar - 1 yes yes  

Daubechies 2n 2n-1 yes no  

Coiflet 2n 3n-1 yes no  

Symlet 2n 2n yes nearly  

Shannon - R (Infinity) yes yes  

Meyer - R (Infinity) yes yes  

B-spline n n+1 no yes  

Battle-
Lemarie 

n R (Infinity) yes yes  

 
Table 2.2. Unique features of wavelet families [45] 

 

Family 

 

Special Properties 

 

Haar Best spatial localisation, worst frequency local-

isation 

Daubechies -Maximal vanishing moments for support 

width. 

- Robust, fast for identifying signals 

with both time and freq characteristics (use  

longer filters for better frequency resolution).  

 

Coiflet Additional vanishing moments in mother 

wavelets 

Symlet Least asymmetry in a compactly supported 

orthonormal wavelet 

Shannon Best frequency localisation, worst spatial local-

isation 

B-spline Tends towards optimal time-frequency locali-

sation 
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2.9 Conclusion 
 
   In signal processing, wavelets have been widely investigated for use in filtering  signals, 

among many other applications. A multiresolution analysis (MRA) is the design method of 

most of the practically relevant discrete wavelet transforms (DWT) and the justification for 

the algorithm of the fast wavelet transform  (FWT) .the wavelet theory is then much com-

plicated and is built up on theory of Riesz‟s bases. Moreover, the wavelet synthesis is not 

perfect anymore, since there is always an error between original and reconstructed signal 
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3.1Introduction 

One of the major problems with PCG is noise corruption. Many sources of noise may pollute 

a PCG signal including lung and breath sounds, environmental noise and blood flow noises 

which are known as murmurs. These murmurs contain much information on heart hemody-

namic which can be used, particularly in detecting of heart valve diseases. An automated 

system for heart murmurs processing can be an important tool in diagnostic of heart diseas-

es using a simple electronic stethoscope. However, the first step before developing any au-

tomated system is the segmentation of the PCG signals from which the murmurs can be 

separated. A robust segmentation algorithm must have a robust denoising technique, where, 

wavelet transform (WT) is among the ones which exhibits very high satisfactory results in 

such situations. However, the selection of decomposition level and the mother wavelet are 

the major challenges. This work  proposes a novel approach for an automatic selection of 

mother wavelet and level of decomposition that can be used in heart sounds denoising 

 

3.2 Brief Overview of Discrete wavelet transform (DWT) denoising 

The basic idea of DWT for one-dimensional signals is that the signal is split into two parts: 

a high-frequency component and low-frequency component. This splitting process is called 

signal decomposition. The edge components of the signal are largely confined to the high-

frequency part. The signal is passed through a series of high-pass filters to analyze the high 

frequency components and low-pass filters to analyze the low-frequency components. Filters 

with different cutoff frequencies are used to analyze the signal at different resolutions. How-

ever, in the current study only orthogonal wavelets” Daubechies and Symlet” are examined 

since they allow perfect reconstruction of a signal. In Matlab environment, the Daubechies 

family of wavelets consists of 45 wavelets, and the Symlet family consists of 45 wavelets. 

 

3.3 Noise in Wavelet Domain 

Noise in DWT is considered as a source of information, especially for identifying systematic 

noise which is usually occurs at a specific location with low magnitude. When using wavelet 

for the denoised PCGs, the performance of our algorithm will be tested by adding noise to 

PCG signal. An empirically, noisy signal that is corrupted by additive noise which can be 

represented by the equation (2) 

  ( )   ( )   ( )                                                                            (   ) 

Where s (n) is actual signal and SN (n) signal is corrupted by noise v (n). 
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In denoising operation, the objective of noise removal is to reconstruct the original signal 

 ( ) from a finite set of    ( ) values without assuming a particular structure for the signal. 

So that it is important to monitor the influence of noise on our results and this requires sim-

ulation is run in MATLAB. Note that noise length  ( ) takes approximately the same actu-

al signal length  ( )  

 

3.4 Wavelet denoising 

Figure 3.1 shows a general DWT denoising procedure with three main steps: (i) decomposi-

tion, (ii) thresholding detail coefficients and (iii) reconstruction. In the first step, signal is 

decomposed into several levels of approximation and detail coefficients. Decisions have to be 

made about an appropriate DWT method, a mother wavelet and number of de-composition 

levels (N). Denoising process  rejects noise by thresholding in the wavelet domain, which is 

the second step. For thresholding detail coefficients one must decide about thresholding 

method and thresholding mode. The choice eventually involves a trade-off between keeping 

a bit of noise in the data and removing a bit of actual signal  details. Finally, the denoised 

signal is reconstructed using approximation coefficients of the last level (N) and thresholded 

detail coefficients of all levels (1 - N). 

 

 

Figure (3.1). General DWT denoising procedure, where thershold mode is soft or hard thresholding   

 

A more detailed and comprehensive explanation of DWT can be found in numerous publica-

tions, e.g. (Daubechies, 1992; Fugal, 2009). The thresholding process with its variants, 

threshold methods and threshold modes, is also presented 

 

 3.5 Threshold selection rules  

Donoho and Johnstone  gives a better understanding of how wavelet transforms work, and 

this understanding combined with nonlinear processing solves currently problems and gives 

the potential of formulating and solving completely problems. The method is based on tak-
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ing the discrete wavelet transform (DWT) of a signal, passing this transform through a 

threshold, which removes the coefficients below a certain value. Generally, most of research 

work has used the universal threshold selection rule proposed by Donoho. Where, modified 

universal rules have been proposed as described in table 3.1 

 

Table 3.1. Threshold selection rules 

Thresholding  rule 
 

Description 

Universal It uses a fixed form threshold (Donoho &Johnstone, 1994) [47] which 

can be defined as    √    ( ), where N is the length in samples 

of time domain signal and σ is standard deviation of noise. The pa-

rameter σ can be estimated using median parameter which can be cal-

culated as           (|   |) ⁄          where      is the detail 

wavelet coefficients at scale level j and 0.6475 is a normalization fac-

tor. 

SURE Rigorous sure or shrink sure, it is used for One-Dimensional (1D) 

data, threshold achieved by minimizing Stein‟s Unbiased Risk Esti-

mate depends on shrinkage function and the multi-resolution level. 

The sorted squared coefficients are computed as    (    (| |))
 
 , 

Then the threshold value is selected using the square root of the min-

imum risk as:   √   .
(    ) (∑    

 
 ) (    )

 
/  where N=length( ) 

A=12..N and B=N-1,N-2,..0  

Hybrid This option attempts to overcome limitation of SURE. It is a mixture 

of the universal and the SURE rules. The exact conditions of this al-

gorithm are described in Donoho and Johnstone (1995) [49]. 

Minimax It uses a fixed threshold chosen to yield minimax performance for 

MSE against an ideal procedure. The minimax estimator is the option 

that realizes the minimum, over a given set of functions of the maxi-

mum MSE  

                  
    ( )

    ( )
 

Length Modified Universal 

rule (LMU) 

It was modified by Donoho to be used with soft thresholding Function 

(Donoho, 1995)[50]. It is defined as    
 √    ( )

√ 
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Scale Modified Universal 

rule (SMU) 

It was modified by Donoho1992 [51] to be used with the level de-

pendent method . It can be expressed as    √    ( )  
   

   

 

Global Scale Modified  

Universal rule (GSMU) 

It was modified by Zhong and Cherkassky (2000) [52] It is given by 

   √    ( )   
 

    

 

Scale Length Modified  

Universal rule (SLMU) 

It is a combination between LMU and SMU rules by Donoho 

(1992)[51]. 

 It is shown as   
  √    ( )

 
   
 √ 

  

Log Scale Modified Univer-

sal rule (LSMU) 

It takes the different thresholds at different scales by Song and Zhao 

(2001) [53]. It can be defined as   
 √    ( )

   (   )
 

Log Variable Modified  

Universal rule (LVMU) 

It was modified by Zhang and Luo (2006). The equation can be de-

fined as   
 √    ( )

   [  (   ) ]
, experiment of Zhang and Luo (2006) [54] 

showed that the constant d is associated to the wavelet function 

where d should be ranging between 0 and 3 

 

 

3.5.1 Threshold rescaling methods 

All threshold selection rules can be smoothing their thresholds by using rescaling methods. 

In threshold rescaling, three categories can be identified: global (GL), first-level (FL) and 

level dependent (LD) (Elena et al., 2006; Johnstone & Silverman, 1997) [55, 56]. In the first 

one, standard deviation of noise ( ) can be adapted to three categories (GL, FL and LD). 

While the second one, length of wavelet coefficients (N) can be adapted to only GL and LD 

thresholding. To identify the threshold rescaling methods, GL defines   as the estimated 

standard deviation of all wavelet coefficients and N as the length of the total wavelet  coeffi-

cients. FL defines    as the estimated standard deviation of the first-level detail coefficients 

(   ). LD defines    as the estimated standard deviation for every possible decomposition 

levels and    as the length of the wavelet coefficients at decomposition level j. 
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3.6 Wavelet Threshold Function 

3.6.1 Classical Threshold Function 

The hard threshold function sets the decomposition coefficient to zero which is less than the 

threshold value under different scale spaces and reserves the decomposition coefficient which 

is greater than the threshold at the same time [47]. This method does not change the local 

properties of the signal, but because of the discontinuity, it leads to a certain fluctuation in 

the reconstruction of the original signal. It is defined as 

  ̃  ,
                     |   |    

                    |    |    

                                               (   )   

The soft threshold function is to select the specified threshold value of the decomposition 

coefficient to zero. After the algorithm, the decomposition coefficient is coherent, but it loses 

a part of the high frequency coefficients above the threshold (Donoho & Johnstone, 1994) 

[47].The soft threshold function is determined by: 

  ̃   {     (   )(|   |    )    |    |                           (   ) 

Where     and   ̃  are noisy and denoised wavelet coefcients, respectively, at the jth de-

composition level. 

 

3.6 .2 The Improved Threshold Function 

The continuity in the soft threshold function is much better, but it has a constant deviation. 

So, in order to overcome its shortcomings.   Modified soft threshold function have been pro-

posed In this chapter. where  we provide the specific name to each function as follows. 

Threshold Function Description 

Mid function (MID) It is an extension of soft threshold Function (Percival & Walden, 

2000) [57], small wavelet‟s coefficients are zeroed, and then large 

wavelet‟s coefficients are not affected. intermediate wavelet‟s coeffi-

cients are reduced by  

  ̃  {

      |    |    

     (   )(|   |    )

           

 |    |     

Hyperbolic function 

(HYP) 

It is described in Vidakovic (1999) [58] work and its equation is 

defined same as modulus squared function (Guoxiang & Ruizhen, 

2001) [59]that is given by 
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  ̃   ,     (   )√(   
    )     |    |     

Modified hyperbolic func-

tion (MHP) 

It combines the advantage of hard and soft functions. It is modified 

by Poornachandra et al. (2005) [60]  and is shown as 

  ̃   {
(     )

                
*  (

   
 

 
)+     |    |       

where k is the scaling function and, in studies  using 1 for the con-

stant k. 

 

Non-negative Garrote 

function (NNG) 

It combines Donoho and Johnstone‟s thresholding function with 

Breiman‟s NNG. The equation is modified by Gao (1998) [61] as 

  ̃   {
    

  
 

   
    |    |    

                

 

 

Compromising of hard 

and soft function (CHS) 

It estimates wavelet‟s coefficients by weighted average of  hard and 

soft (Guoxiang & Ruizhen, 2001) [62] . It can be expressed  

by   ̃   {     (   )(|   |     )    |    |     

Where For 0<a<1, when   is 0, it changed into HAD and when   

is 1, it changed into SOF 

Weighted Averaging 

function (WAV) 

It estimates coefficients by weighted average of HYP and hard  

(Zhang & Luo, 2006) [54]. It is given by 

  ̃   { (   )    (   )√(   
    

 )   (   )      |    |        

where 0<   <1. If   is 0, will change to HYP and it will change to 

hard, if   is 1. 

 

Adaptive Denoising func-

tion (ADP) 

 It is modified based on soft (Tianshu et al., 2002) [63]. It is given 

by   ̃         
   

    
         

 

Improved function (IMP) It is attempted to address the deficiency of HAD and SOF (Su & 

Zhao, 2005) [64]. It can be defined as 

  ̃   2     (   ).|   |   (   |   |)   /   |    |         

Where                   
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3.7 Comparison assessments by denoising application 

The most reasonable way to test the effect of noise on a signal is determining the effective-

ness of the algorithm through the comparison between the original signal and denoised sig-

nal. Many methods have been proposed to measure the effectiveness of denoising algo-

rithms. In this respect, the signal to noise ratio (SNR) , estimation of mean square error 

(MSE) and Factor of distortion are carried out in measuring the effectiveness of the algo-

rithm against noise densities of the PCG signal. In optimal SNR, higher SNR value indicates 

high performance results, while low SNR value indicates low performance resulting. Where-

as in minimum error, denoised PCG signal have minimum mean square error (MSE) with 

the original PCG signal. In this study, the most important factors determining the SNR lev-

el are the decomposition level and the filter order of DWT. Mathematical expressions of 

SNR , MSE and Factor of distortion are given by the equation (   ) , (   ) and (   ) [65] 

[66] 

           

   (   )

   (        )
                                                                  (   ) 

And 

    
∑ (        )  

   

 
                                                                               (   ) 

        (
∑         -

    
   

∑        
   

)                                                                            (   ) 

 

Where, Var is the variance operator,     is the synthesis signal (signal after filtering), PCG 

is the original signal and n denotes the length of the signal 

 

3.8 The proposed approach for selecting DL and order  

 In this section, we proposed a new approach to selecting optimal DL and the best mother 

wavelet for PCG signal, which are more appropriate for real time denoising operation. The 

results of this study will be between Symlet and Daubechies wavelet family under simula-

tive noise added to the clean signal. The proposed approach is organized in (2) sections as 

follows: Section (1) explains the procedure used to compute the SNR (i, j) matrix, the high-

est value of SNR is chosen as a principal parameter in selection of mother wavelet and level 

of decomposition (DL) that can be used in heart sounds denoising. Where the rows of SNR 

matrix corresponds to the names of the wavelet and the columns correspond to DL.  

Section (2) explains the second method for computing optimal wavelet (or order) and opti-

mal DL under several maximum values of SNR.  
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3.8.1 Section (1) 

In this Section, the analytic steps of proposed algorithm are based on matrix SNR which has 

a unique maximum value as follows: 

1- Firstly, read the     *   ( )+    signal from a wave file (*.wav) where n corre-

sponds to the number of signal coefficients.  

2-Normalize the noisy PCG signal by equation (3.7)  

       ( )  
   ( )

   (|   ( )|)
                                                                      (   ) 

3-Calculate the maximum decomposition levels (DL).and the maximum decomposition orders 

(DO) by equation (3.8)  

{
          ( )

          ( )
                                                                                           (   )   

N is the length of discrete sampling signals. 

4- For 1 ≤ i ≤ max (DO) and 1 ≤ j ≤ max (DL), Calculate the matrix SNRs (i, j) and matrix 

SNRd (i, j) are constructed by using Symlet and Daubechies wavelet family respectively as 

shown in Figure (3.2).  

5-Calculate the maximum value of SNRs and SNRd. 

6- Select optimal order and the optimal DL by finding row and column of the maximum 

value of SNRs and the maximum SNRd value.  
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3.8.2 Section (2) 

The analytic steps proposed in this section are based on SNR matrix has several maximum 

values. In this context, we propose method providing simultaneously the optimal wavelet 

with the optimal DL by using the following steps: 

Step 1: Find row (wavelet name) and column (level) at each maximum SNR value as shown 

in Figure (3.3). 

Step 2: From step (1), find all signals to different wavelet names and DL of max SNR value. 

Step 3: Calculate error MSE from the equation (3.5) at each signal. 

Step 4: Choose the denoised signal according to less error value. 

Step 5: Determination the row and the column related to the selected signal denoising. 

Step 6: From step (5), select optimal order and optimal DL. 
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3.9 Efficiency Criteria 

In this chapter, different tests are carried out to evaluate the proposed algorithm in addition 

to the issues of the choice of wavelet families for PCG signal denoising, where the current 

methods do not focus mainly on the choice of DWT that is necessary to separate noise, be-

cause that these methods are mostly applied in image processing applications which use 

specified wavelets. However, experiment method to select the appropriate wavelet can be 

challenging in finding an appropriate wavelet. The evaluation of the algorithm is based 

mainly on coherence analysis and also on denoising quality under varying the DL and opti-

mal wavelet. The retention of signal structure is important and SNR cannot differentiate 

between distorting and non-distorting noise in the signal, and hence SNR do not provide an 

accurate measure of quality. Initially, the evaluation of the algorithm is carried out by calcu-

lating the correlation coefficient. It is important to note that it can‟t be used for phase differ-

ence of signals, but generally it gives important information in amplitude. 
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3.9.1 Correlation coefficient (Corr) 

It is a measure that determines the degree quality between original PCG signal and denoised 

signal obtained under selected optimal mother wavelet and varying DL. Note that the 

changing of mother wavelet has influence on denoising quality. The better the correlation 

coefficient is near to one (Corr > 0, 95), while in case less than 0.90 indicates that signal de-

noising is poor. It is given by the equation (   ) 

         (  )  
   (   (        )    (        ))

      (        )
      (        )

                                      (   ) 

Where cov is covariance. 

 

3.9.2 Coherence (coh) 

Coherence is computed between two signals clean and denoised provides a quantitative 

measure of denoising performance in the frequency domain [67]. Greater denoising per-

formance results in higher coherence values, it is given by the equation (    ) 

    
|   ( )| 

  ( ) ( )
                                                                                                      (    ) 

Where SN S (f) is the cross-spectral density between SN (n) and S (n), SN (f) and S (f) their 

respective auto-spectra. The hamming window of data points is used for reducing the vari-

ance of the resulting spectral estimate with 50% overlap, while the values of coherence will 

always satisfy 0≤ Coh ≤ 1. However, coherence is a widely used measure for characterizing 

linear dependence between a pair of signals. For nonstationary signals, the autospectrum, 

cross spectrum, and coherence between signals may evolve over time. For stationary sto-

chastic processes, coherence between two signals may vary across frequency but remains 

constant over time. That is, linear dependence between two stationary signals does not 

change with time 

 

3.10 Conclusion  

    Selection of suitable wavelet denoising parameters is important for the success of the PCG 

signal filtration in the wavelet domain, because there is currently no known method to cal-

culate the combination of the  wavelet denoising parameters that gives the best results. 

Therefore, many works have tried to find the optimal wavelet denoising parameters which 

lead to maximum filtration performance. In this regard, we propose  method allow for  us  to 

find the optimal wavelet with the optimal level of decomposition simultaneously. 
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4.1 Introduction 

        Signal denoising remains to be one of the main problems in the field of signal pro-

cessing. When using wavelet to denoise PCGs, there are many factors that must be consid-

ered. Examples of such factors are mother wavelet and level of decomposition. In order to 

obtain perfect reconstruction after signal decomposition, only orthogonal wavelets will be 

considered. In Matlab environment, Symlet family  and the Daubechies family of wavelets 

are consists of 45 wavelets.  

    one of the major problems with PCG is noise corruption. Many sources of noise may pol-

lute a PCG signal including lung and breath sounds, environmental noise and blood flow 

noises which are known as murmurs. Various tools and methodologies have been proposed 

for denoising of heart sound signals. Among all the surveyed methods for PCG signal de-

noising, the wavelet transform is the most widely used and efficient, because it can analyze 

signals at different resolutions using the various wavelet families available. This study fo-

cuses on denoising of phonocardiogram (PCG) signals using  Symlet and Daubechies wave-

let by the selected mother wavelet and decomposition level.Since  denoised signals are com-

pared with the original PCG signal to determine the most suitable parameters for the de-

noising process. 

     The PCG signal that used in the work is part of the cardiac auscultation of heart mur-

murs database which provided by E-General Medical Inc. Data set recorded from Phono-

cardiograph having 64 signals is available in [68], it is taken from clinical using the digital 

stethoscope and from the PASCAL database has 176 recordings for heart sound segmenta-

tion and 656 recordings for heart sound classification. Although the number of the record-

ings is relatively large, the recordings have the limited time length from 1s to 30s; it is 

available in [69]. The data include not only clean heart sounds but also very noisy record-

ings. 

 

4.2 Experimental Procedure 

     The SNR and coefficient distortion Ks are carried out in measuring the effectiveness of 

the symlet wavelet against noise densities with time required for reconstruction of PCG 

signal as shown in below tables . the Systolic Pulmonary Stenosis (PS) signal is corrupted by 

random  and White Gaussian noise .  
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 Table 4.1 : Results for denoising PS signal by application of symlet wavelet 
Level 5 decomposition with  addition of  1.7750dB noise 

Wave-
let 

Additive White Gaussian noise Random noise 

Soft thresholding Hard thresholding Soft thresholding Hard thresholding 
 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

Sym1 0.05 43,8 3,57 0.05 41,5 3,81 0.05 6,7 13,2 0.05 5,91 12,27 
Sym2 0.05 41,9 3,76 0.05 36,0 4,42 0.05 3,5 16,6 0.05 3,75 14,25 
Sym4 0.05 31,9 4,96 0.05 28,1 5,51 0.05 3,6 16,3 0.05 3,03 15,18 
Sym6 0.05 28,2 5,48 0.05 25,7 5,89 0.05 3,2 17,3 0.05 2,76 15,59 
Sym8 0.06 27,5 5,59 0.05 25,7 5,89 0.05 3,2 18,6 0.05 2,63 15,78 
Sym10 0.05 26,2 5,80 0.05 24,0 6,18 0.05 3,1 17,3 0.05 2,76 15,58 

Sym12 0.05 24,3 6,12 0.05 23,9 6,21 0.05 3,1 18,6 0.05 2,51 15,99 
Sym14 0.05 22,5 6,46 0.05 25,3 5,95 0.05 2,9 18,6 0.05 2,57 15,88 

Sym16 0.05 22,8 6,44 0.05 24,3 6,13 0.05 2,9 18,7 0.05 2,57 15,89 
  

From Table 4.1,sym14 and sym16 approximately gives the same performance in soft thresh-

olding for AWGN. In case of hard thresholding, sym12 has high SNR value while Sym 1 has 

lower SNR (3,81 dB). In addition ,  almost all wavelets have the  same  time of reconstruct-

ing signal. A result in soft thresholding under using random noise, Maximum SNR is at 

sym16. while in the case of hard thresholding, Sym12 has the  maximum SNR than others. 

 

                                             Figure (4.1): Original Signal and its Spectrogram   
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Figure (4.2) :the representation of the original and the denoised PS signal with its  spectrogram  
using sym 16 and sym12  in case of soft  and hard thresholding respectively 
 
 
Table 4.2: Results for PS signal by application of symlet wavelet 

Level 5 decomposition with  addition of  7.7956 dB noise 

Wavelet Additive White Gaussian noise Random noise 
Soft thresholding Hard thresholding Soft thresholding Hard thresholding 

 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

Sym1 0.043 18,05 7,43 0.037 17,21 7,64 0.036 2,5 15,87 0.03 2,39 16,20 

Sym2 0.038 14,49 8,54 0.037 11,66 9,33 0.038 1,7 17,60 0.03 1,21 19,15 

Sym4 0.038 21,12 9,63 0.037 8,57 10,66 0.039 1,1 19,46 0.03 1,01 19,93 

Sym6 0.039 13,96 10,34 0.038 7,98 10,97 0.039 1,1 19,55 0.03 0,94 20,22 

Sym8 0.040 10,24 10,52 0.038 8,12 10,90 0.039 1,1 19,40 0.039 0,92 20,32 

Sym10 0.039 14,15 10,51 0.039 7,90 11,02 0.039 1,1 19,27 0.039 0,99 20,03 

Sym12 0.039 17,33 7,94 0.039 12,22 9,12 0.039 1,1 19,45 0.039 0,98 20,06 

Sym14 0.039 14,76 8,35 0.038 12,43 9,05 0.039 1,0 19,76 0.039 0,96 20,16 

Sym16 0.039 14,15 8,53 0.039 11,85 9,26 0.039 1,0 19,85 0.039 0,96 20,14 

 
From Table 4.2 , hard thresholding for AWGN, sym1, sym4 and sym2 takes lower time for 

reconstruction.while sym10, sym12 and sym16 have  the same  time for reconstruction. 

Sym10 has maximum SNR (11.02 dB) than others. in soft thresholding , Sym8 has the  best 

SNR value  but it takes more time. Sym1 gives high value of time  for  reconstruction. For 

random noise, 8 sym takes more time in hard thresholding and  sym 16 is the  better but 

takes more time. SNR is very less  at sym1 as compared to others. sym1 takes lower time for 

reconstruction of signal . Sym16 has maximum SNR than others in thresholding function. 
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Figure (4.3) : the representation of the original and the denoised period of PS signal with  its spec-

trogram after denoising  under using sym 16 and sym 8 and random noise in case of soft  and hard 

thresholding  respectively 

 
Table 4.3: Results for PS signal by application of symlet wavelet 

Level 5 decomposition with  addition of  15  dB noise 

Wavelet Additive White Gaussian noise Random noise 

Soft thresholding Hard thresholding Soft thresholding Hard thresholding 
 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

 
Time 

 
Ks 

 
SNR 

Sym1 0.036 41,14 3,85 0.036 33,11 4,799 0.036 2,3 16,30 0.072 2,26 16,44 

Sym2 0.038 19,65 7,06 0.038 21,3 7,94 0.038 1,3 18,70 0.037 1,190 19,24 

Sym4 0.039 16,67 7,78 0.038 15,35 8,13 0.038 0,9 20,25 0.038 0,89 20,45 

Sym6 0.039 14,27 8,45 0.039 15,61 8,06 0.038 0,8 20,73 0.038 0,90 20,43 

Sym8 0.039 22,97 6,38 0.045 16,03 7,94 0.039 1,1 19,30 0.042 0,96 20,14 

Sym10 0.039 19,96 6,99 0.040 14,99 8,23 0.039 0,7 21,01 0.039 0,83 20,76 

Sym12 0.039 17,53 7,56 0.040 15,17 8,18 0.038 1,2 19,14 0.039 0,90 20,43 

Sym14 0.040 18,26 7,38 0.039 15,30 8,15 0.039 0,7 21,03 0.039 0,90 20,45 

Sym16 0.041 13,65 8,64 0.039 15,24 8,16 0.039 1,1 19,49 0.041 0,87 20,57 

 
From the results shown in Table 4.3, in hard thresholding results for AWGN of 15 dB,  the 

Sym10 takes maximum SNR value than other wavelets. While  soft thresholding, Sym16 

gives highest SNR but takes more time for signal reconstruction.  On  the other hand , Sym1 

wavelet has least SNR with lower reconstruction time for hard and soft thresholding. For 
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Random noise, Sym14 gives highest SNR in soft thresholding while sym 10 has maximum 

SNR value than other in hard thresholding. 

.  

 
  Figure (4.4) :the presentation of the original and the denoised period of PS signal with its spectro-
gram  under using sym 14 and sym10  and  random noise in the case of soft  and hard thresholding 
respectivly 
 
     From figure (4.3) and (4.4)  , it is observed that denoised signal is  approximately identi-

cal to original signal when using  sym 14 , sym 16 in case  soft  thresholding. In this 

study,Our algorithm provides two parameters, the mother wavelet and the level of decom-

position. In this context; the different tests are carried out to evaluate our algorithm, all of 

Symlet and Daubechies wavelet families are used. The proposed algorithm is tested many 

times on data recorded from a wave file (*.wav) of different categories of patients. The re-

sults of the algorithm in Figure (4.5) is presented under simulation for four types of heart 

sound signals, which are corrupted by additive noise. 
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Figure (4.5). the comparison between  SNRs and SNRd results under different parameter decompo-

sition levels and Orders ,while SNRs1 and SNRd1 under  varying decomposition levels and optimal 

order of  wavelet through using Symlet and Daubechies wavelet to four PCG signals (SG, WS, SAS, 

SC2) 
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Figure (4.5) shows that SNRs1 and SNRd1 vectors are increasing with the increased DL, 

then they become approximately stable once DL ≥ 7; this is due to the intensity of noise 

present in the detail components that has reduced through the increasing of decomposition 

level, because the amount of noise usually contains higher frequencies than low frequencies. 

While in DL ≥ 7, the influence of noise is very slight but statistical properties of the trans-

formed signals are changed under varying levels of decomposition. Here, the successive DL 

loss progressively more high frequency information. It can be observed that the stability 

level of SNRs1 is slightly greater than the stability level of SNRd1. this implies that Symlet 

wavelet has shown superiority compared to Daubechies wavelet. The experimental results in 

a table (4.4) and (4.5 ) shown that the SNR values provide high denoising results, while 

MSE doesn‟t always give the most accurate estimate possible of signal denoising. In the oth-

er hand, we find that the number of maximum SNR matrix is always unique. 

 

Table 4.4. comparison between Symlet and Daubechies wavelet for the selectivity of the 

order and the optimal DL under simulations of PCGsignals. 

 

 SW signal 

Fs:22257 

Hz 

SG signal  

Fs:8000 

Hz 

SAS signal 

Fs:22050Hz 

EC2signal 

Fs:22050Hz 

maximum 

value thresh-

old SNR 

Max SNRd 16.1634 14.4265 14.8894 15.7454 

Max SNRs 16.1686 14.5268 14.9418 15.7524 

Number of  maximum SNRs 

values (L) 

1 1 1 1 

Number of  maximum SNRd 

values (L) 

1 1 1 1 

Optimal level of Wavelet  (sym) 5 5 5 5 

Optimal order of  Wavelet (sym )     8 15 16 16 

Optimal level of Wavelet  (db)  5 5 5 5 

Optimal order of Wavelet (db) 10 16 14 11 

frame length of signal (N) 79680 69421 221858 143312 

Approximation  max (DL) = 

log2(N) 

16 16 18 17 
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Table 4.5. results obtained for the MSE, the SNR vector and coefficient correlation (Corr) 

by using the Symlet and Daubechies wavelet from 4PCG signals. 

 SW signal 

Fs:22257 

Hz 

SG signal 

Fs:8000 

Hz 

SAS signal 

Fs:22050Hz 

EC2 signal 

Fs:22050Hz 

Saturated  

point 

SNRs1 by Decibel 

(dB) 

12.6241 10.4477 9.8487 12.9764 

Level (DL) 8 7 8 8 

saturated 

point 

SNRd1 by Decibel 

(dB) 

12.3104 9.79697 9.68954 12.5896 

Level (DL) 8 7 8 7 

MSEs 9.6072e-04 9.6992e-04 0.0025 7.4976e-04 

MSEd  9.6187e-04 9.9257e-04 0.0025 7.5098e-04 

Corr Coef (PCG, dPCG) (sym) 0.9881  0.9819 0.9838      0.9869 

Corr Coef (PCG, dPCG) (db) 0.9881 0.9817 0.9838      0.9869 

Note that MSEs and MSEd does not always related to perceived quality of reconstructed signals of wavelet 
 

 

4.3 The evaluation of results by Correlation coefficient 

According to table 4.5,The proposed method provides high denoising results (Corr> 0.98), 

since the best denoising is found through DL (5) as presented in Figure (4.6). Hence, the 

results are always situated in the maximum value of the SNR curve, which coincides perfect-

ly with the highest correlation coefficient in most PCG signals. After level (5), there is a 

decrease in the correlation, but the results are always situated in high denoising part. The 

increasing of decomposition levels does not perturb the denoising quality  after(DL≥7) be-

cause noise is extremely small and indistinguishable. In this test, the correlation coefficients 

are substantially low (Corr = 0.87) around level (1) and it provides a low denoising quality. 

In general, it can be observed that the increasing of decomposition level gives an increasing 

in denoising quality as presented in Figure (4.6), and the best denoising is found in the level 

(5). 
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Figure (4.6). presentation of moving correlation coefficient under different decomposition levels of 

Symlet and Daubechies wavelet for signals (SW, 22257 Hz), (SG, 8000Hz), (SAS, 22050H z) and 

(EC2, 22050 H z). 

It can be observed that the proposed algorithm preserves the main characteristic of the sig-

nal, and removes correctly the majority of noise by using Symlet wavelet as it is seen in Fig-

ure (4.7). The algorithm gives us the best results for retrieving the peaks of signals accurate-

ly that were submerged in the noise without distortion of the reconstructed signal. 
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Figure (4.7). original signal, noisy signal and denoised signal for different pathological cases of 

PCG signals SW, SG, SAS, and EC2), where the signal amplitude is in arbitrary units (mv) 

4.4 The evaluation of results by coherence 

From Figure (4.8) and (4.9), the performance of the wavelet is evaluated using coherence 

analysis under varying SNR and DL. In the most cases of PCG signals, very low DL 

(around 1, 2) gives in poor performance, since the coherence decreased dramatically and the 

reason behind that is initial DL like 1, 2 contain just noise; and hence the initial DL of wave-

let can be used to eliminate a large part of noise. When DL takes a value (5), it achieves the 

highest SNR value with high coherence, and this means that the level (5) is an optimal value. 

Notably, when the DL is increased beyond 7, becames the SNR stable and the amount of 

coherence does not change. Here, we show that the influence of noise is constant and very 
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slight. Overall, results obtained in both qualitatively and quantitatively showed that the al-

gorithm enables us to select the best level and the best mother wavelet. 

 

 

Figure (4.8). presentation of SNR and coherence between  the clean and denoised PCGs by using 

Symlet wavelet through different values of DL 
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Figure (4.9). presentation of SNR and coherence between the clean and denoised PCGs by using 

Daubechies wavelet through different values of DL 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency (normalized)

C
o
h
 o

f 
(S

n
 c

le
a
n
,D

e
n
o
is

e
d
)

 

 

level=1

level=2

level=3

level=4

level=5

level=6

level=7

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

level

S
N

R
 o

f 
d
e
n
o
is

e
d
 P

C
G

s
 (

d
B

)

EC2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency (normalized)

C
o
h
 o

f 
(S

n
 c

le
a
n
,D

e
n
o
is

e
d
)

 

 

level=1

level=2

level=3

level=4

level=5

level=6

level=7

0 2 4 6 8 10 12 14 16
0

5

10

15

level

S
N

R
 o

f 
d
e
n
o
is

e
d
 P

C
G

s
 (

d
B

)

SG

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency (normalized)

C
o
h
 o

f 
(S

n
 c

le
a
n
,D

e
n
o
is

e
d
)

 

 

level=1

level=2

level=3

level=4

level=5

level=6

level=7

0 2 4 6 8 10 12 14 16
0

5

10

15

20

level

S
N

R
 o

f 
d
e
n
o
is

e
d
 P

C
G

s
 (

d
B

)

SW

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency (normalized)

C
o
h
 o

f 
(S

n
 c

le
a
n
,D

e
n
o
is

e
d
)

 

 

level=1

level=2

level=3

level=4

level=5

level=6

level=7

0 2 4 6 8 10 12 14 16 18
0

5

10

15

level

S
N

R
 o

f 
d
e
n
o
is

e
d
 P

C
G

s
 (

d
B

)

SAS



Chapter 4                                        Experimental Results and Performance Evaluation 
 
 
 

72 

 

Therefore, we can conclude that proposed method preserves the main characteristic of the 

signal with the highest SNR value when the decomposition level is five. This method is used 

for denoising of heart sound signals that are highly corrupted by noise, and the most im-

portant feature of the denoised signal obtained through our method is that it can be used for 

accurate diagnostics of  cardiovascular diseases. Finally, Table (4.6) shows a comparison 

between our proposed algorithm results with the previous study results to see the efficiency 

of the proposed work. 

 
Table 4.6. Comparison between our proposed algorithm results with the previously pro-
posed results 
 

Autheur SNR (dB) Correlation 

(Corr) 

Mother wavelet DL 

Xiefeng Cheng and Zheng 

Zhang   [70] 

10.6385 0.9570 Db5 5 

Tahar Omari                                  

[71] 

- 0.973 db37 6 

Abhishek et al.                              

[72] 

2.7233 and 2.723 - Coif and Sym6 3 and 4 

Abhishek et al.                             

[73] 

7.6556 - Db2 4 

Dawid and Redlarski                    

[74] 

13 - Coif5 10 

Mohammed Nabih Ali                  

[75] 

15.4307 and 

15.6019 

- Discrete Meyer 

and Db10 

4 

Abhishek Misal  and G. R. 

Sinha       [76] 

12.1663 - Sym2 6 

P.G. Student and Narendra 

B              [77] 

14.9138 - db10 5 

Feng et al.                                    

[78] 

15.3  - Coif wavelet 

family 

8 

Our proposed method 16.1634 and 

16.1686 

0.9881 

0.9881 

Db5 and sym8 5 
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4.5 Conclusion  

     In this work, we presented a new approach to determine the optimal decomposition level 

and the best mother wavelet in PCG denoising operation. The proposed method is based on 

the term SNR, which plays a crucial role in simulating the decomposition levels and orders 

of Daubechies and Symlet wavelet families. The optimal level and the optimal order can be 

determined by the maximum value of SNR matrix, which is always unique. In most PCG 

signals, we found that the maximum SNR coincides perfectly with the highest correlation 

coefficient and with the highest level of coherence. Furthermore, the proposed method can 

provide high precision and quality and giving us information that is not issued by other 

methods.   According to the results, we see that Symlet wavelet gives slightly better results 

compared to Daubechies wavelet. Finally, we believe that our method is suitable for analyz-

ing biomedical signal processing, and it can be realizable in real-time processing.  

.  
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        Noises are a main problem in the analysis of the PCG signal. Since, random noises that 

have their frequency components fall in the energy band of the PCG signal are the major 

problem.  Wavelet is a theoretically powerful in denoising method, but its effectiveness is 

influenced by the issue of choosing of the decomposition level (DL) and order of filter when 

applied in various engineering applications. Hence, in this work, we presented a new ap-

proach to determine the optimal decomposition level and the best mother wavelet in PCG 

denoising operation.  The proposed method is based on the term SNR, which plays a crucial 

role in simulating the decomposition levels and orders of Daubechies and Symlet wavelet 

families. The optimal level and the optimal order can be determined by the maximum value 

of SNR matrix, which is always unique.   In most PCG signals, we found that the maximum 

SNR coincides perfectly with the highest correlation coefficient and the highest level of co-

herence. Furthermore, the proposed method can provide high quality and giving us infor-

mation that is not issued by other methods. it is shown that our approach is able to effective-

ly denoise and especially retrieve the signal peaks accurately. According to the results, we 

see that Symlet wavelet gives slightly better results from Daubechies wavelet.  Finally, we 

believe that our method is suitable for analyzing biomedical signal processing, and it can be 

realizable in real-time processing. In future research, we intend to generalize our algorithm 

to determine the most suitable parameters for real-time signals. Also, we aim to develop a 

hardware implementation to perform the proposed algorithm. 
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