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Symbols and Acronyms, Abada N.E.H 2022

Symbols and Acronyms

1. N : Set of Natural numbers.

2. R : Set of Real numbers.

3. R+ : Set of Non-negative real numbers.

4. a.e. almost everywhere

5. a.s. almost surely

6. càdlàg continu à droite, limite à gauche

7. càglàd continu à gauche, limite à droite

8. cf. compare (abbreviation of Latin confer )

9. e.g. for example (abbreviation of Latin exempli gratia)

10. i.e,. that is (abbreviation of Latin id est)

11. HJB The Hamilton-Jacobi-Bellman equation

12. SDE : Stochastic di¤erential equations.

13. BSDE : Backward stochastic di¤erential equation.

14. FBSDEs : Forward-backward stochastic di¤erential equations.

15. FBSDEJs : Forward-Backward stochastic di¤erential equations with jumps.

16. PDE : Partial di¤erential equation.

17. ODE : Ordinary di¤erential equation.

18.
@f

@x
; fx : The derivatives with respect to x:

19. P
dt : The product measure of P with the Lebesgue measure dt on [0; T ] :

20. E (�) ; E (� j G) Expectation ; conditional expectation

21. � (A) : ��algebra generated by A:

22. IA : Indicator function of the set A:
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23. FY : The �ltration generated by the process Y:

24. W (�); B(�) : Brownian motions

25. FB
t the natural �ltration generated by the brownian motion B(�),

26. F1 _ F2 denotes the �-�eld generated by F1 [ F2:

27. (
;F ;P) probability space

28. fFtgt�0 : �ltration

29.
�

;F ; fFtgt2[0;T ];P

�
�ltered probability space.

30. Lp(F) : the set of Rn-valued F�measurable random variables X such that

E( jXjp) <1:

31. LpG(
;Rn ) : the set of Rn-valued G�measurable random variables X such that

E( jXjp) <1:

32. LpF([0; T ] ;Rn) : the set of all (Ft)t�0-adapted Rn-valued processes X such that

E

Z T

0

jX(t)jp dt <1:

33. L1F ([0; T ] ;Rn) : the set of all (Ft)t�0-adapted Rn-valued processes X essentially

bounded processes.

34. (u(�); �(�)) : continous-singular control.

35. @�g : the derivatives with respect to measur �:

36. D�g(�0) : the Fréchet-derivative of g at �0 in the direction �:
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Résumé
Cette thèse de doctorat s�inscrit dans le cadre de la théorie de contrôle optimal stochas-

tique. Le thème central est l�optimisation stochastique a�n d�établir des conditions néces-

saires d�un contrôle optimal sous forme du principe du maximum stochastique de type de

Pontryagin.

D�une part, et plus précisement, nous étudions des problèmes de contrôle stochastique

optimal singulier partiellement observés de type mean-�eld (McKean-Vlasov) général avec

des corrélations entre le système et l�observation Y (�) : Dans ce travail, la variable de

contrôle (u (�) ; � (�)) a deux composantes, la première u (�) est absolument continue et la

seconde � (�) est une variation bornée, non décroissante continue à droite avec limit à

gauche (càdlàg).

Le système stochastique étudié est gouverné par une équation di¤érentielle stochastique

contrôlée de type Itô où les coe¢ cients de la dynamique dépendent du processus d�état

ainsi que de sa loi de probabilité Pxu;�(t) et de la variable de contrôle continue u (�) ; dé�nit

par :

8>>>>><>>>>>:
dxu;� (t) = f(t; xu;� (t) ;Pxu;�(t); u (t))dt+ �(t; xu;� (t) ;Pxu;�(t); u (t))dW (t)

+g(t; xu;� (t) ;Pxv;�(t); v (t))dfW (t) +G(t)d�(t);

xu;� (0) = x0; t 2 [0; T ] :

Nous supposons que le processus d�état xu;� (t) ne peut pas être observé directement, mais

les contrôleurs peuvent observer un processus de bruit associé Y (�), régit par l�équation

suivante : 8><>:
dY (t) = h(t; xu;� (t) ; u (t))dt+ dfW (t)

Y (0) = 0;

où fW (t) est un processus stochastique dépendant du contrôle u(�), et Y (�) le processus
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d�observation. On de�nit FY
t �martingale �u(t) qui est une solution de l�equation suivante :

8><>:
d�u(t) = �u(t)h (t; xu(t); u(t)) dY (t);

�u(0) = 1:

D�aprés le théorème de dérivation de Radon-Nikodym, cette martingale a permis de dé�nir

une nouvelle probabilité notée Pu, qui dépend de u (�) et donnée par :

dPu

dP

����
FYt

= �u(t).

La fonctionnelle de coût J(u(�); �(�)) peut s�écrire sous forme

J(u(�); �(�)) = E
�Z T

0

�u(t)l(t; xu;�(t);Pxu;�(t); u(t))dt+ �u(T ) (xu;�(T );Pxu;�(T ))

+

Z
[0;T ]

�u(t)M(t)d�(t)

�
:

Par l�utilisation des techniques variationnelles convexes classiques, nous établissons un

ensemble de conditions nécessaires de contrôle singulier optimal sous la forme du principe

du maximum. Notre résultat principal est prouvé en appliquant le théorème de Girsanov

et les dérivées par rapport à une mesure (ou la loi de probabilité) au sense de P. Lions.

D�autre part, nous établissons des conditions nécessaires du second-ordre pour un

contrôle stochastique mixed continu-singulier (u (�) ; � (�)), où le système est gouverné par

des systèmes di¤érentiels stochastiques contrôlés non linéaires. Le principe du maximum

ponctuel du second-ordre en termes de martingale par rapport à la variable de temps

est prouvé. Le domaine de contrôle est supposé convexe. Notons que dans ce travail que

les termes de dérivée et les termes de di¤usion des systèmes dépendent de la variable de

contrôle continue u (�). Notre résultat est prouvé en utilisant des techniques variationnelles

sous certaines conditions de convexité.

Cette thèse s�articule autour de trois chapitres :
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Le premier chapitre est essentiellement un rappel. Nous présentons quelques concepts et

résultats qui nous permettrons d�aborder notre travail ; tels que les processus stochastiques,

les �ltrations, l�espérance conditionnelle, les martingales, les formules d�Itô, les di¤érentes

méthodes de résolution d�un problème de contrôle optimal stochastiques (principe du

maximum stochastique 1 et le principe de la programmation dynamique2), ainsi que les

di¤érentes classes de contrôle stochastique, . . . etc.

Dans le deuxième chapitre, nous avons établi et prouvé les conditions nécessaires véri�ées

par un contrôle optimal stochastique partiellement observé, pour un système di¤érentiel

gouverné par des équations di¤érentielles stochastiques EDSs de type mean-�eld avec des

corrélations entre le système et l�observation. Les coe¢ cients de notre système dépendent

du processus d�état ainsi que de sa loi de probabilité. Le domaine de contrôle stochastique

est supposé convexe. La méthode utilisée est basée sur la dérivée par rapport à une mesure

de probabilité. Les résultats obtenus dans le chapitre §2, sont tous nouveaux et font l�objet

d�un premier article intitulé :

Nour El Houda Abada & Mokhtar Hafayed, & Shahlar Meherrem : On Par-

tially observed optimal singular control of McKean-Vlasov stochastic systems : maximum

principle approach, Mathematical Methods in the Applied Sciences, Wiley & Jonson 2022

, Math Meth Appl Sci. 2022 ;1-21.DOI : 10.1002/mma.8373.

Dans le troisième chapitre, nous avons obtenu les conditions nécessaires d�optimalité de

second-order sous forme d�un principe du maximum stochastique. Le système est gouverné

par des équations di¤érentielles stochastiques de la forme t 2 [0; T ]

8><>:
dxu;�(t) = f

�
t; xu;�(t); u(t)

�
dt+ �

�
t; xu;�(t); u(t)

�
dW (t) +G(t)d�(t);

xu;�(0) = x0:

1L.S. Pontryagin, V.G. Boltanski and R.V. Gamkrelidze (1962), The mathematical theory of optimal
processes. Intersciene N.Y.

2Bellman, R., Glicksberg, I., and Gross, O. On some variational problems occurring in the theory of
dynamic programming, Rend. Circ. Mat. Palermo (2), 3 (1954), 1-35.
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Le cout a minimizer est donné par

J (u(�); �(�)) = E
�
h(xu;�(T )) +

Z T

0

`(t; xu;�(t); u(t))dt +

Z
[0;T ]

M(t)d�(t)

�
:

Dans cette partie de notre travail, la variable de contrôle (u (�) ; � (�)) a deux composantes,

la première est absolument continue et la seconde est une variation bornée, non décrois-

sante continue à droite avec une limite à gauche (càdlàg). Nous établissons les conditions

nécessaires du second ordre pour un problème de contrôle continu-singulier optimal. Le

domaine de contrôle est nécessairement convexe. Un principe de maximum ponctuel du

second-ordre en termes de martingale par rapport à la variable de temps est démontré.

Des techniques variationnelles, certains théorèmes de Lebesgue sur les di¤érenciations,

les mesures et les intégrations, avec quelques estimations appropriées sont appliqués pour

etablir nos résultats. Notre problème de contrôle optimal fournit également un modèle

intéressant dans de nombreuses applications telles que l�économie et la �nance mathéma-

tique. Nos résultats prouvés géneralisent les résultats obtenus dans l�article : �Zhang H.&

Zhang X. : Pointwise second-order necessary conditions for stochastic optimal controls,

Part I : The case of convex control constraint, SIAM J. Control Optim. 53(4), 2267-2296

(2015)�, à une classe de problèmes de contrôle stochastique singulier (u(�); �(�)). Lorsque

les conditions nécessaires d�optimalité du premier ordre sont singulières dans un certain

sens, les conditions nécessaires du second ordre viendront naturellement. La nouveauté de

notre travail est que sous certaines hypothèses, nous fournissons des conditions nécessaires

ponctuelles du second-ordre qui sont nouvelles pour le cas du controle stochastique sin-

gulier (u(�); �(�)) : Le principe du maximum de second-ordre établi dans cet article peut

être utilisé pour choisir les contrôles candidats a�n qu�ils soient optimaux à partir de la

singularité de nos contrôles stochastiques. Habituellement, a�n de dériver le principe du

maximum de second ordre d�optimalité, il faut supposer que la condition du premier ordre

dégénère dans un certain sens. Les résultats obtenus dans le chapitre §3 sont tous nouveaux

et font l�objet d�un deuxième article intitulé :
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Nour El Houda Abada, Mokhtar Hafayed : Stochastic pointwise second-order

maximum principle for optimal continuous-singular control using variational approach,

International Journal Modelling Identi�cation and Control, accepté, 2022
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Abstract
This thesis is concerned with stochastic singular optimal control. The central theme is the

necessary conditions, in the form of the Pontryagin�s stochastic maximum for optimality.

Recently, the main purpose of this thesis is to derive a set of necessary conditions of

optimality in the form of Pontryagin maximum principle. The control variable is a pair

(u(�); �(�)) of measurable A1�A2-valued, F�adapted processes, where A1 is a closed convex

subset of Rm and A2 := [0;1)m such that �(�) is of bounded variation, nondecreasing

continuous on the right with left limits.

This thesis is structured around three chapters :

The �rst chapter is essentially a reminder. we presents some concepts and results that allow

us to prove our results, such as stochastic processes, conditional expectation, martingales,

Itô formulas, di¤erent methods of solving of optimal control (maximum principle 3 and

dynamical programming principle4) and class of stochastic control, ...etc.

Recently, in the second chapter of this thesis, we study partially observed optimal

stochastic singular control problems of general mean-�eld with correlated noises between

the system and the observation. The control variable has two components, the �rst being

absolutely continuous and the second is a bounded variation, non decreasing continuous on

the right with left limits. The dynamic system is governed by Itô-type controlled stochastic

di¤erential equation. The coe¢ cients of the dynamic depend on the state process as well

as of its probability law and the continuous control variable.

8>>>>><>>>>>:
dxv;� (t) = f(t; xv;� (t) ;Pxv;�(t); v (t))dt+ �(t; xv;� (t) ;Pxv;�(t); v (t))dW (t)

+g(t; xv;� (t) ;Pxv;�(t); v (t))dfW (t) +G(t)d�(t);

xv;� (0) = x0; t 2 [0; T ] ;

3L.S. Pontryagin, V.G. Boltanski and R.V. Gamkrelidze (1962), The mathematical theory of optimal
processes. Intersciene N.Y.

4Bellman, R., Glicksberg, I., and Gross, O. On some variational problems occurring in the theory of
dynamic programming, Rend. Circ. Mat. Palermo (2), 3 (1954), 1-35.

10



Abstract, Abada N.E.H 2022

where Pxv;� = P�
�
xv;�

��1
denotes the law of the random variable xv;� (�). We assume that

the state process xv;� (�) cannot be observed directly, but the controllers can observe a

related noisy process Y (�); which is governed by the following equation :

8><>:
dY (t) = h(t; xv;� (t) ; v (t))dt+ dfW (t)

Y (0) = 0;

We de�ne the FY
t �martingale �v(t) which is the solution of the equation

8><>:
d�v(t) = �v(t)h (t; xv(t); v(t)) dY (t);

�v(0) = 1:

This martingale allowed to de�ne a new probability, denoted by Pv on the space (
;F) ; to

emphasize the fact that it depend on the control v (�) : It is given by the Radon-Nikodym

derivative :
dPv

dP

����
FYt

= �v(t).

Hence, by Girsanov�s theorem and hypothesis (C1) and (C2), Pv is a new probability

measure of density �v(t). The process

fW (t) = Y (t)�
Z t

0

h(s; xv;� (s) ; v (s))ds;

is a standard Brownian motion independent of W (�) and x0 on the new probability space

(
;F ;Ft;Pv) :

By using Radon-Nikodym derivative, and the martingale property of �v(t), the cost func-
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tional can be written as

J(v(�); �(�)) = E
�Z T

0

�v(t)l(t; xv;�(t);Pxu;�(t); v(t))dt+ �v(T ) (xv;�(T );Pxv;�(T ))

+

Z
[0;T ]

�v(t)M(t)d�(t)

�
:

In terms of a classical convex variational techniques, we establish a set of necessary conti-

ditions of optimal singular control in the form of maximum principle. Our main result is

proved by applying Girsanov�s theorem and the derivatives with respect to probability law

in P.L. Lions�sense. To illustrate our theoretical result, we study partially observed linear

quadratic singular control problem of mean-�eld type. The results obtained in Chapter §2

are all new and are the subject of a �rst article entitled :

Nour El Houda Abada & Mokhtar Hafayed & Shahlar Meherrem : On Par-

tially observed optimal singular control of McKean-Vlasov stochastic systems : maximum

principle approach, Mathematical Methods in the Applied Sciences, Wiley & Jonson 2022,

DOI : 10.1002/mma.8373.

In the third chapter, we study stochastic singular optimal control problem. We esta-

blish a set of second-order necessary conditions for optimal continuous-singular stochastic

control, where the systems is governed by nonlinear controlled Itô stochastic di¤erential

systems.

8><>:
dxu;�(t) = f

�
t; xu;�(t); u(t)

�
dt+ �

�
t; xu;�(t); u(t)

�
dW (t) +G(t)d�(t);

xu;�(0) = x0:

The expected cost to be minimized over the class of admissible controls has the form

J (u(�); �(�)) = E
�
h(xu;�(T )) +

Z T

0

`(t; xu;�(t); u(t))dt +

Z
[0;T ]

M(t)d�(t)

�
:

Here the control variable is a pair (u(�); �(�)) of measurable A1 � A2-valued, F�adapted

12
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processes, where A1 is a closed convex subset of Rm and A2 := [0;1)m such that �(�) is

of bounded variation, nondecreasing continuous on the right with left limits. The process

xu;� (�) is the state variable valued in Rn associated to (u(�); �(�)) : This construction allows

us to de�ne integrals of the form
R
[0;T ]

G(t)d�(t) and
R
[0;T ]

M(t)d�(t).

The control process has two components, the �rst being absolutely continuous and the

second is a bounded variation, non decreasing continuous on the right with left limits.

Pointwise second order maximum principle in terms of the martingale with respect to the

time variable is proved. The control domain is assumed to be convex. In this chapter, the

continuous control variable enters into both the drift and the di¤usion terms of the control

systems. Variational techniques, some Lebesgue theorems in di¤erentiations, measure and

integrations, with some appropriate estimates are applied to derive our results.

Our continuous-singular control problem under studied provides also an interesting

models in many applications such as economics and mathematical �nance. This paper

extends the results obtained in �Zhang H., Zhang X. : Pointwise second-order necessary

conditions for stochastic optimal controls, Part I : The case of convex control constraint,

SIAM J. Control Optim. 53(4), 2267-2296 (2015)�to a class of continuous-singular sto-

chastic control problems.

The main novelty of our work is that under some assumptions, we provide pointwise

second-order necessary conditions which are new for the stochastic continuous-singular

case and are natural extension of their deterministic counterparts. When the �rst-order

necessary conditions of optimality are singular in some sense, the second-order necessary

conditions will come naturally. The second-order maximum principle established in this

chaptre can be used to choose the candidates from the singularity of our stochastic controls

for optimal ones. Usually, in order to derive the second-order maximum principle for

optimality, one needs to assume that the �rst-order condition degenerates in some sense.

The results obtained in Chapter §3 are all new and are the subject of a second article

entitled :

13
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Nour El Houda Abada , Mokhtar Hafayed : Stochastic pointwise second-order

maximum principle for optimal continuous-singular control using variational approach,

International Journal Modelling Identi�cation and Control, accepté, 2022
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Chapitre 1

Introduction

Optimal control theory can be described as the study of strategies to optimally in�uence

a system x with dynamics evolving over time according to a di¤erential equation. The

in�uence on the system is modeled as a vector of parameters, u, called the control. It is

allowed to take values in some set U , which is known as the action space. For a control to

be optimal, it should minimize a cost functional (or maximize a reward functional), which

depends on the whole trajectory of the system x and the control u over some time interval

[0; T ]. The in�mum of the cost functional is known as the value function (as a function of

the initial time and state). This minimization problem is in�nite dimensional, since we are

minimizing a functional over the space of functions u(t); t 2 [0; T ]. Optimal control theory

essentially consists of di¤erent methods of reducing the problem to a less transparent, but

more manageable problem.

1.1 Formulation of stochastic optimal control problem

It is well-known that control theory was founded by N. Wiener in 1948. After that, this

theory was greatly extended to various complicated settings and widely used in sciences

and technologies. Clearly, control means a suitable manner for people to change the dy-

namics of a system under consideration. Let
�

;F ; fFtgt2[0;T ];P

�
be a given �ltered pro-

15
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bability space.

1.1.1 Stochastic process

Let T be a nonempty index set and (
;F ;P) a probability space. A family fX(t) : t 2 Tg

of random variables from (
;F ;P) to Rn is called a stochastic process. For any w 2 
 the

map t 7! X (t; w) is called a sample path.

1.1.2 Natural �tration

Let X = (Xt; t � 0) a stochastic process de�ned on the probability space (
;F ;P).

The natural �ltration of X , denoted by FX
t , is de�ned by FX

t = � (Xs; 0 � s � t). Also,

we called the �ltaration generated by X.

1.1.3 Brownian motion

The stochastic process (W (t); t � 0) is a brownian motion (standard) i¤ :

1. P [W (0) = 0] = 1:

2. t! W (t; w) is continuous.P�p:s:

3. 8s � t,W (t)�W (s) is normally distributed ; center with variation (t� s) i.eW (t)�

W (s) � N (0; t� s).

4. 8n, 8 0 � t0 � t1 � ::: � tn, the variables
�
Wtn �Wtn�1 ; :::;Wt1�Wt0 ;Wt0

�
are

independents.The following result gives special case of the Itô formula for jump

di¤usions.

16
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1.1.4 Integration by parts formula

Suppose that the processes xi(t) are given by : for i = 1; 2; t 2 [0; T ] :

8><>:
dxi(t) = f (t; xi(t)) dt+ � (t; xi(t)) dW (t)

xi(0) = 0:

Then we get

E (x1(T )x2(T )) = E

�Z T

0

x1(t)dx2(t) +

Z T

0

x2(t)dx1(t)

�
+E

Z T

0

�| (t; x1(t))� (t; x2(t)) dt:

In this section, we present two mathematical formulations (strong and weak formulations)

of stochastic optimal control problems in the following two subsections, respectively.

1.1.5 Strong formulation

Let
�

;F ; fFtgt2[0;T ];P

�
be a given �ltered probability space satisfying the usual condi-

tion, on which an d-dimensional standard Brownian motion W (�) is de�ned, consider the

following controlled stochastic di¤erential equation :

8><>:
dx(t) = f(t; x(t); u(t))dt+ �(t; x(t); u(t))dW (t);

x(0) = x0 2 Rn;
(1.1)

where

f : [0; T ]� Rn � A �! Rn;

� : [0; T ]� Rn � A �! Rn�d;

and x(�) is the variable of state.
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The function u(�) is called the control representing the action of the decision-makers

(controller). At any time instant the controller has some information (as speci�ed by the

information �eld fFtgt2[0;T ]) of what has happened up to that moment, but not able to

foretell what is going to happen afterwards due to the uncertainty of the system (as a

consequence, for any t the controller cannot exercise his/her decision u(t) before the time

t really comes), This nonanticipative restriction in mathematical terms can be expressed

as "u(�) is fFtgt2[0;T ]�adapted".

The control u (�) is an element of the set

U [0; T ] = fu (�) : [0; T ]� 
 �! A such that u (�) is fFtgt2[0;T ] � adaptedg:

We introduce the cost functional as follows

J(u(�)) :
= E

�Z T

0

l(t; x(t); u(t))dt+ g(x(T ))

�
; (1.2)

where

l : [0; T ]� Rn � A �! R;

g : Rn �! R:

De�nition 1.1. Let
�

;F ; fFtgt2[0;T ];P

�
be given satisfying the usual conditions and let

W (t) be a given d-dimensional standard fFtgt2[0;T ]-Brownian motion.

A control u(�) is called an admissible control, and (x(�); u(�)) an admissible pair, if

i) u(�) 2 U [0; T ]; x(�) is the unique solution of equation (1.1) ;

ii) l(�; x(�); u(�)) 2 L1F ([0; T ] ;R) and g(x(T )) 2 L1FT (
;R) :

The set of all admissible controls is denoted by U ([0; T ]). Our stochastic optimal control

problem under strong formulation can be stated as follows :

Problem 1.1 Minimize (1.2) over U ([0; T ]) : The goal is to �nd u�(�) 2 U ([0; T ]) ; such

18
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that

J(u�(�)) = inf
u(�)2U([0;T ])

J(u(�)): (1.3)

For any u�(�) 2 U s ([0; T ]) satisfying (1.3) is called an strong optimal control. The cor-

responding state process x�(�) and the state control pair (x�(�); u�(�)) are called an strong

optimal state process and an strong optimal pair, respectively.

1.1.6 Weak formulation

In stochastic control problems, there exists for the optimal control problem another for-

mulation of a more mathematical aspect, it is the weak formulation of the stochastic

optimal control problem. Unlike in the strong formulation the �ltered probability space�

;F ; fFtgt2[0;T ];P

�
on which we de�ne the Brownian motion W (�) are all �xed, but it is

not the case in the weak formulation, where we consider them as a parts of the control.

De�nition 1.2.A 6-tuple
�

;F ; fFtgt2[0;T ];P;W (�) ; u (�)

�
is called weak-admissible control

and (x(�); u(�)) an weak admissible pair, if

Dé�nition 1.1.1 1.
�

;F ; fFtgt2[0;T ];P

�
is a �ltered probability space satisfying the usual

conditions ;

2. W (�) is an d-dimensional standard Brownian motion de�ned on
�

;F ; fFtgt2[0;T ];P

�
;

3. u(�) is an fFtgt2[0;T ]�adapted process on (
;F ;P) taking values in U ;

4. x(�) is the unique solution of equation (1.1),

5. l(�; x(�); u(�)) 2 L1F ([0; T ] ;R) and g(x(T )) 2 L1F (
;R) :

The set of all weak admissible controls is denoted by Uw ([0; T ]). Sometimes, might write

u(�)) 2 Uw ([0; T ]) instead of
�

;F ; fFtgt2[0;T ];P;W (�) ; u (�)

�
2 Uw ([0; T ]) :

Our stochastic optimal control problem under weak formulation can be formulated as

follows :
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Problem 1.2. The objective is to minimize the cost functional given by equation (1.2) over

the of admissible controls Uw ([0; T ]) :Namely, one seeks v�(�) =
�

;F ; fFtgt2[0;T ];P;W (�) ; u (�)

�
2

Uw ([0; T ]) such that

J(v�(�)) = inf
v(�)2Uw([0;T ])

J(v(�)):

1.2 Methods to solving optimal control problem

In optimal control problems, two major tools for studing optimal control are Pontryagin�s

maximum principle and Bellman�s dynamic programming method.

1.2.1 The Dynamic Programming (Bellman Principle)

We present an approach to solving optimal control problems, namely, the method of

dynamic programming. Dynamic programming, originated by R. Bellman (Bellman, R. :

Dynamic programming, Princeton Univ. Press., (1957 )) is a mathematical technique for

making a sequence of interrelated decisions, which can be applied to many optimization

problems (including optimal control problems). The basic idea of this method applied to

optimal controls is to consider a family of optimal control problems with di¤erent ini-

tial times and states, to establish relationships among these problems via the so-called

Hamilton-Jacobi-Bellman equation (HJB, for short), which is a nonlinear �rst-order (in

the deterministic case) or second-order (in the stochastic case) partial di¤erential equa-

tion. If the HJB equation is solvable (either analytically or numerically), then one can

obtain an optimal feedback control by taking the maximize/minimize of the Hamiltonian

or generalized Hamiltonian involved in the HJB equation. This is the so-called veri�cation

technique. Note that this approach actually gives solutions to the whole family of problems

(with di¤erent initial times and states).

Let (
;F ;P) be a probability space with �ltration fFtgt2[0;T ]; satisfying the usual

conditions, T > 0 a �nite time, and W a d-dimensional Brownian motion de�ned on the
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�ltered probability space
�

;F ;P; fFtgt2[0;T ]

�
:

The Bellman dynamic programming principle. We consider the following stochastic di¤e-

rential equation

dx(s) = f(s; x(s); u(s))ds+ �(s; x(s); u(s))dW (s); s 2 [0; T ] : (1.4)

The control u = u(s)0�s�T is a progressively measurable process valued in the control set

U , a subset of Rk, satis�es a square integrability condition. We denote by U ([t; T ]) the set

of control processes u.

Conditions. To ensure the existence of the solution to SDE-(1.4), the Borelian functions

f : [0; T ]� Rn � U �! Rn

� : [0; T ]� Rn � U �! Rn�d

satisfy the following conditions :

jf(t; x; u)� f(t; y; u)j+ j�(t; x; u)� �(t; y; u)j � C jx� yj ;

jf(t; x; u)j+ j�(t; x; u)j � C [1 + jxj] ;

for some constant C > 0. We de�ne the gain function as follows :

J(t; x; u) = E
hR T
t
l(s; x(s); u(s))ds+ g(x (T ))

i
; (1.5)

where

l : [0; T ]� Rn � U �! R;

g : Rn �! R;
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be given functions. We have to impose integrability conditions on f and g in order for

the above expectation to be well-de�ned, e.g. a lower boundedness or quadratic growth

condition. The objective is to maximize this gain function. We introduce the so-called

value function :

V (t; x) = sup
u2U([t;T ])

J(t; x; u); (1.6)

where x(t) = x is the initial state given at time t: For an initial state (t; x) ; we say that

u� 2 U ([t; T ]) is an optimal control if

V (t; x) = J(t; x; u�):

Theorem 1.1. Let (t; x) 2 [0; T ]� Rn be given. Then we have

V (t; x) = sup
u2U([t;T ])

E

�Z t+h

t

l(s; x(s); u(s))dt+ V (t+ h; x(t+ h))

�
; for t � t+ h � T:

(1.7)

Proof. The proof of the dynamic programming principle is technical and has been studied

by di¤erent methods, we refer the reader to Yong and Zhou [92].

The Hamilton-Jacobi-Bellman equation. The HJB equation is the in�nitesimal

version of the dynamic programming principle. It is formally derived by assuming that the

value function is C1;2 ([0; T ]� Rn) ; applying Itô�s formula to V (s; xt;x(s)) between s = t

and s = t+h, and then sending h to zero into (1.6). The classical HJB equation associated

to the stochastic control problem (1.6) is

�Vt(t; x)� sup
u2U

[LuV (t; x) + l(t; x; u)] = 0; on [0; T ]� Rn; (1.8)

where Lu is the second-order in�nitesimal generator associated to the di¤usion x with

control u

LuV = f(x; u):DxV +
1

2
tr (� (x; u)�| (x; u)D2

xV ) :
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This partial di¤erential equation (PDE) is often written also as :

�Vt(t; x)�H(t; x;DxV (t; x); D
2
xV (t; x)) = 0; 8(t; x) 2 [0; T ]� Rn; (1.9)

where for (t; x;	; Q) 2 [0; T ]�Rn�Rn�Sn (Sn is the set of symmetric n�n matrices) :

H(t; x;	; Q) = sup
u2U

�
f(t; x; u):	+

1

2
tr (��| (t; x; u)Q) + l(t; x; u)

�
: (1.10)

The function H is sometimes called Hamiltonian of the associated control problem, and

the PDE (1.8) or (1.9) is the dynamic programming or HJB equation.

There is also an a priori terminal condition :

V (T; x) = g(x); 8x 2 Rn;

which results from the very de�nition of the value function V .

The classical veri�cation approach The classical veri�cation approach consists in �nding

a smooth solution to the HJB equation, and to check that this candidate, under suitable

su¢ cient conditions, coincides with the value function. This result is usually called a

veri�cation theorem and provides as a byproduct an optimal control. It relies mainly on

Itô�s formula. The assertions of a veri�cation theorem may slightly vary from problem

to problem, depending on the required su¢ cient technical conditions. These conditions

should actually be adapted to the context of the considered problem. In the above context,

a veri�cation theorem is roughly stated as follows :

Theorem 1.2. LetW be a C1;2 function on [0; T ]�Rn and continuous in T , with suitable

growth condition. Suppose that for all (t; x) 2 [0; T ]�Rn, there exists u�(t; x) mesurable,

23



Introduction, Abada N.E.H 2022

valued in U such that W solves the HJB equation :

0 = �Wt(t; x)� sup
u2U

[LuW (t; x) + l(t; x; u)]

= �Wt(t; x)� Lu
�(t;x)W (t; x)� l(t; x; u�(t; x)); on [0; T ]� Rn;

together with the terminal condition W (T; �) = g on Rn; and the stochastic di¤erential

equation :

dx(s) = f(s; x(s); u�(s; x (s)))ds+ �(s; x(s); u�(s; x (s)))dW (t);

admits a unique solution x�, given an initial condition x(t) = x. Then, W = V and

u� (s; x�) is an optimal control for V (t; x).

A proof of this veri�cation theorem can be found in book, by Yong & Zhou [92].

1.2.2 The pontryagin type stochastic maximum principle

The pioneering works on the stochastic maximum principle were written by Kushner

[56, 57]. Since then there have been a lot of works on this subject, among them, in parti-

cular, those by Bensoussan [16], Peng [76], and so on. The stochastic maximum principle

gives some necessary conditions for optimality for a stochastic optimal control problem.

The original version of Pontryagin�s maximum principle was �rst introduced for determinis-

tic control problems in the 1960�s by Pontryagin et al. (Pontryagin,L.S., Boltyanski,V.G.,

Gamkrelidze, R.V., Mischenko, E.F. ) 1 as in classical calculus of variation. The basic idea

is to perturbe an optimal control and to use some sort of Taylor expansion of the state

trajectory around the optimal control, by sending the perturbation to zero, one obtains

some inequality, and by duality.

The deterministic maximum principle. As an illustration, we present here how the

1

Pontryagin,L.S., Boltyanski,V.G., Gamkrelidze,R.V., Mischenko, E.F. Mathematical Theory
of Optimal Processes, Wiley, New York, 1962.
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maximum principle for a deterministic control problem is derived. In this setting, the

state of the system is given by the ordinary di¤erential equation (ODE) of the form

8><>:
dx(t) = f(t; x(t); u(t))dt; t 2 [0; T ] ;

x(0) = x0;

(1.11)

where

f : [0; T ]� R�A �! R;

and the action spaceA is some subset of R: The objective is to minimize some cost function

of the form :

J(u (�)) =
R T
0
l(t; x(t); u(t)) + g(x (T )); (1.12)

where

l : [0; T ]� R�A �! R;

g : R �! R:

That is, the function l in�icts a running cost and the function g in�icts a terminal cost.

We now assume that there exists a control u�(t) which is optimal, i.e.

J(u� (�)) = inf
u
J(u (�)):

We denote by x�(t) the solution to (1.11) with the optimal control u�(t). We are going

to derive necessary conditions for optimality, for this we make small perturbation of the

optimal control. Therefore we introduce a so-called spike variation, i.e. a control which is
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equal to u� except on some small time interval :

u"(t) =

8><>:
v for � � " � t � �;

u�(t) otherwise.
(1.13)

We denote by x"(t) the solution to (1.11) with the control u"(t). We set that x�(t) and

x"(t) are equal up to t = � � " and that

x"(�)� x�(�) = (f(�; x"(�); v)� f(�; x�(�); u� (�)))"+ o (")

= (f(�; x�(�); v)� f(�; x�(�); u� (�)))"+ o (") ;

(1.14)

where the second equality holds since x"(�) � x�(�) is of order ": We look at the Taylor

expansion of the state with respect to ": Let

z(t) =
@

@"
x"(t) j"=0;

i.e. the Taylor expansion of x"(t) is

x"(t) = x� (t) + z(t)"+ o("): (1.15)

Then, by (1.14)

z (�) = f(�; x�(�); v)� f(�; x�(�); u� (�)): (1.16)

Moreover, we can derive the following di¤erential equation for z(t):

dz(t) =
@

@"
dx"(t) j"=0

=
@

@"
f(t; x"(t); u"(t))dt j"=0

= fx(t; x
"(t); u"(t))

@

@"
x"(t)dt j"=0

= fx(t; x
�(t); u�(t))z(t)dt;
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where fx denotes the derivative of f with respect to x. If we for the moment assume that

l = 0, the optimality of u�(t) leads to the inequality

0 � @

@"
J(u")

����
"=0

=
@

@"
g (x"(T )) j"=0

= gx (x
"(T ))

@

@"
x"(T ) j"=0

= gx (x
�(T )) z(T ):

We shall use duality to obtain a more explicit necessary condition from this. To this end

we introduce the adjoint equation :

8><>:
d	(t) = �fx(t; x�(t); u�(t))	(t)dt; t 2 [0; T ] ;

	(T ) = gx(x
�(T )):

Then it follows that

d(	(t)z(t)) = 0;

i.e. 	(t)z(t)) = constant. By the terminal condition for the adjoint equation we have

	(t)z(t) = gx(x
�(T ))z(T ) � 0; for all 0 � t � T:

In particular, by (1.16)

	(�) (f(�; x�(�); v)� f(�; x�(�); u� (�))) � 0:

Since � was chosen arbitrarily, this is equivalent to

	(t)f(t; x�(t); u�(t)) = inf
v2U
	(t)f(t; x�(t); v); for all 0 � t � T:

By repeating the calculations above for this two-dimensional system, one can derive the
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necessary condition

H(t; x�(t); u�(t);	(t)) = inf
v2U

H(t; x�(t); v;	(t)) for all 0 � t � T; (1.17)

where H is the so-called Hamiltonian (sometimes de�ned with a minus sign which turns

the minimum condition above into a maximum condition) :

H(x; u;	) = l(x; u) + 	f(x; u);

and the adjoint equation is given by

8><>:
d	(t) = �(lx(t; x�(t); u�(t)) + fx(t; x�(t); u�(t))	(t))dt;

	(T ) = gx(x
�(T )):

(1.18)

The minimum condition (1.17) together with the adjoint equation (1.18) speci�es the

Hamiltonian system for our control problem.

The stochastic maximum principle. Stochastic control is the extension of optimal control

to problems where it is of importance to take into account some uncertainty in the system.

One possibility is then to replace the di¤erential equation by an SDE :

dx(t) = f(t; x(t); u(t))dt+ �(t; x(t))dW (t); t 2 [0; T ] ; (1.19)

where f and � are deterministic functions and the last term is an Itô integral with respect

to a Brownian motion W de�ned on a probability space
�

;F ; fFtgt2[0;T ];P

�
:

More generally, the di¤usion coe¢ cient � may has an explicit dependence on the control :

t 2 [0; T ] :

dx(t) = f(t; x(t); u(t))dt+ �(t; x(t); u(t))dW (t); (1.20)

The cost function for the stochastic case is the expected value of the cost function (1.12),
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i.e. we want to minimize

J(u (�)) = E
�Z T

0

l(t; x(t); u(t)) + g(x (T ))

�
:

For the case (1.19) the adjoint equation is given by the following Backward SDE :

8>>>>><>>>>>:
�d	(t) = ffx(t; x�(t); u�(t))	(t) + �x(t; x

�(t))Q(t)

+(lx(t; x
�(t); u�(t))gdt�Q(t)dW (t);

	(T ) = gx(x
�(T )):

(1.21)

A solution to this backward SDE is a pair (	(t); Q(t)) which ful�lls (1.21). The Hamilto-

nian is

H(x; u;	(t); Q(t)) = l(t; x; u) + 	(t)f(t; x; u) +Q(t)�(t; x);

and the maximum principle reads for all 0 � t � T;

H(t; x�(t); u�(t);	(t); Q(t)) = inf
u2U

H(t; x�(t); u;	(t); Q(t)) P� a.s. (1.22)

Noting that there is also third case : if the state is given by (1.20) but the action

space A is assumed to be convex, it is possible to derive the maximum principle in a local

form. This is accomplished by using a convex perturbation of the control instead of a spike

variation, see Bensoussan 1983 [16]. The necessary condition for optimality is then given

by the following : for all 0 � t � T

E

Z T

0

Hu(t; x
�(t); u�(t);	�(t); Q�(t)) (u� u�(t)) dt � 0:

1.3 Control classes

Let (
;F ;Ft�0; P ) be a complete �ltred probability space.
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1. Admissible control An admissible control is Ft-adapted process u(t) with values in

a borelian A � Rn

U := fu(�) : [0; T ]� 
! A : u(t) is Ft-adaptedg : (1.23)

2. Optimal control The optimal control problem consists to minimize a cost functional

J(u) over the set of admissible control U . We say that the control u�(�) is an optimal

control if

J(u�(t)) � J(u(t)), for all u(�) 2 U :

3. Near-optimal control Let " > 0, a control u"(�) is a near-optimal control (or "-

optimal) if for all control u(�) 2 U we have

J(u"(t)) � J(u(t)) + ": (1.24)

See for some applications.

4. Singular control. An admissible control is a pair (u(�); �(�)) of measurable A1 �

A2�valued, Ft�adapted processes, such that �(�) is of bounded variation, non-decreasing

continuous on the left with right limits and �(0�) = 0: Since d�(t) may be singular with

respect to Lebesgue measure dt; we call �(�) the singular part of the control and the process

u(�) its absolutely continuous part.

5. Feedback control : We say that u (�) is a feedback control if u (�) depends on the

state variable X(�).

If FX
t the natural �ltration generated by the process X, then u (�) is a feedback control

if u (�) is FX
t �adapted.

6. Robust control. In the problems formulated above, the dynamics of the control

system is assumed to be known and �xed. Robust control theory is a method to measure

the performance changes of a control system with changing system parameters. This is

30



Introduction, Abada N.E.H 2022

of course important in engineering systems, and it has recently been used in �nance in

relation with the theory of risk measure.

Indeed, it is proved that a coherent risk measure for an uncertain payo¤ x(T ) at time

T is represented by :

�(�X(t)) = sup
Q2M

EQ(X(T ));

whereM is a set of absolutly continuous probability measures with respect to the original

probability P:

7. Partial observation control problem It is assumed so far that the controller com-

pletely observes the state system. In many real applications, he is only able to observe

partially the state via other variables (called observed variable) and there is noise in the

observation system. For example in �nancial models, one may observe the asset price but

not completely its rate of return and/or its volatility, and the portfolio investment is based

only on the asset price information. This may be formulated in a general form as follows :

we have a controlled (unobserved) process governed by the following SDE :

dx (t) = f (t; x (t) ; y(t); u (t)) dt+ � (t; x (t) ; y (t) ; u (t)) dW (t) ;

and y (t) an observation process de�ned by

dy (t) = h (t; x (t) ; u (t)) dW (t) ;

where B (t) is another Brownian motion, eventually correlated with W (t) : The control

u(t) is adapted with respect to the �ltration generated by the observation F Yt and the cost

functional to optimize is :

J (u (�)) = E
�
h (x (T ) ; y(T )) +

Z T

0

g (t; x (t) ; y(t); u (t)) dt

�
:
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8. Ergodic control Some stochastic systems may exhibit over a long period a stationary

behavior characterized by an invariant measure. This measure, if it does exists, is obtained

by the average of the states over a long time. An ergodic control problem consists in

optimizing over the long term some criterion taking into account this invariant measure.

(See Pham [75], Borkar [18]). The cost functional is given by

lim sup
T!+1

1

T
E

Z T

0

f(x(t); u(t))dt:

9. Random horizon In classicla problem, the time horizon is �xed until a deterministic

terminal time T . In some real applications, the time horizon may be random, the cost

functional is given by the following :

J (u (�)) = E
�
h (x (�)) +

Z �

0

g (t; x (t) ; y(t); u (t)) dt

�
;

where � s a �nite random time.

10. Relaxed control The idea is then to compactify the space of controls U by exten-

ding the de�nition of controls to include the space of probability measures on U . The

set of relaxed controls �t (du) dt, where �t is a probability measure, is the closure un-

der weak* topology of the measures �u(t)(du)dt corresponding to usual, or strict, controls.

This notion of relaxed control is introduced for deterministic optimal control problems

in Young (Young, L.C. Lectures on the calculus of variations and optimal control theory,

W.B. Saunders Co., 1969.) (See Borkar [18]).

11. Impulsive control. Impulse control : Here one is allowed to reset the trajectory at

stopping times �i from X�i� (the value immediately before i) to a new (non-anticipative)

value X�i, resp., with an associated cost M
�
X�i� ; X�i

�
: The aim of the controller is to
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minimizes the cost functional :

E

Z T

0

exp

�
�
Z t

0

C(X(s); u(s))ds

�
K(X(t); u(t))

+
X
�i<T

exp

�
�
Z �i

0

C(X(s); u(s))ds

�
M(X� ; X�i�)

+ exp

�
�
Z �i

0

C(X(s); u(s))ds

�
h(X(T )):

In this model, we should assume that M(X� ; X�i�) > � for some � > 0 to avoid in�nitely

many jumps in a �nite time interval. Some recent examples and applications on control

classes can be found in [18], [51], [75] and [92].
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Chapitre 2

Partially observed optimal singular

control of McKean-Vlasov stochastic

systems

2.1 Introduction

2.1.1 Singular optimal control problems

Stochastic singular control problems have received considerable attention in the litera-

ture. The �rst version of maximum principle for stochastic singular control problem was

obtained by Cadenillas and Haussmann [19]. Stochastic maximum principle where the sin-

gular part has a linear form was proved by Dufour and Miller [24]. Su¢ cient conditions

for existence of optimal singular control and the connection between the singular control

and optimal stopping problems have been investigated by Dufour and Miller [25]. Neces-

sary conditions for general optimal singular stochastic control problems have been derived

by Dufour and Miller [26]. Maximum principle for optimal stochastic singular stochastic

control was investigated by many authors. Under partial-information, optimal singular

control problem for mean-�eld stochastic di¤erential equations driven by Teugels martin-
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gales measures has been studied in Hafayed et al. [48]. Necessary and su¢ cient conditions

for near-optimal McKean-Vlasov stochastic singular control have been studied in [33]. The

�rst-order local maximum principle for singular optimal control for mean-�eld SDEs has

been derived in Hafayed [39]. Maximum principle for optimal singular control problem for

general controlled nonlinear McKean-Vlasov SDEs has been obtained by Hafayed et al [32].

A class of solvable singular stochastic control problems have been studied in Alvarez [6].

Singular stochastic control problem for linear di¤usions and optimal stopping have been

derived by Alvarez [4]. An extensive list of references to the stochastic singular control

problem, called also intervention control, in which the optimal control has both absolutely

continuous and singular components, with some applications in �nance and economics can

be found in [33, 55, 69]. Some recent examples on singular stochastic control have been

investigated by Shreve [80].

2.1.2 Partially observed stochastic control problem

With the development of nonlinear �ltering theory, partially observed stochastic control

problem has been one of the most important and well established topics in control theory.

Maximum principle for partially observed control problems have received much attention

and became a powerful tool in many recent �elds, such as mathematical �nance, optimal

control, etc. From the viewpoint of reality, many situations, full information is not always

available to controllers, but the partial one with noise, see e.g , Fleming [29], Bensous-

san [16], Baras, Elliott and Kohlmann, [9] and the references therein for the explanation.

The necessary conditions of optimality for forward-backward stochastic control systems

with correlated state and observation noise have been obtained by Wang, Wu and Xiong

[83]. A class of linear-quadratic optimal control problem of forward-backward stochastic

di¤erential equations with partial information has been studied by Wang, Wu and Xiong

[84]. General maximum principles for partially observed risk-sensitive optimal control pro-

blems with some applications to �nance have been studied by Wang andWu [85]. Recently,
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maximum principle for mean-�eld optimal stochastic control with partial-information has

been discussed in Wang, Zhang, and Zhang [86]. An optimal control problem for systems

governed by mean-�eld forward-backward stochastic di¤erential equation with noisy ob-

servation has been studied by Wang, Xiao and Xing [87]. In a recent paper [88], Wang and

Wu established a maximum principle for mean-�eld stochastic control system, where the

state is partially observed via a noisy process. Risk sensitive mean-�eld type control pro-

blem under partial observation has been studied by Djehiche and Tempine [23]. Partially

observed optimal control problem for forward-backward stochastic systems with jump has

been investugated by Wang, Shi and Meng [89].

McKean-Vlasov dynamics are Itô�s stochastic di¤erential equations (SDEs), where the

coe¢ cients of the state equation depend on the state of the solution process as well as of its

probability law. This kind of equations was studied by Kac [58] as a stochastic model for

the Vlasov-Kinetic equation of plasma and the study of which was initiated by McKean [65]

to provide a rigorous treatment of special nonlinear partial di¤erential equations. Optimal

control problems for McKean-Vlasov SDEs have been investigated by many authors, for

example, Buckdahn, Li and Ma, [14] proved the necessary conditions for general mean-�eld

systems by applying second order derivatives with respect to measures. Maximum principle

for optimal control of McKean-Vlasov forward-backward stochastic di¤erential equations

(FBSDEs) with Lévy process via the di¤erentiability with respect to probability law has

been proved by Meherrem and Hafayed [67]. Necessary and su¢ cient optimality condi-

tions of optimal singular control problem for general Mckean-Vlasov di¤erential equations

have been discussed by Hafayed et al., [50]. Maximum principle for stochastic continuous-

singular control of McKean-Vlasov type systems, where the control domain is not assumed

convex has been proved by Guenane et al., [31]. Necessary conditions for optimal partially

observed control problems of general controlled mean-�eld di¤erential systems have been

established by Lakhdari, Miloudi and Hafayed [59]. Necessary conditions for partially ob-

served optimal control of general McKean-Vlasov dynamics with Poisson jumps have been
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studied in Miloudi et al [68]. A necessary condition for mean-�eld type stochastic di¤eren-

tial equations with correlated state and observation noises have been obtained in Zhang

[52].

In this chaptre, we establish a set of necessary conditions in the form of stochastic

maximum principle for partially observed optimal singular control problems of McKean-

Vlasov type. The stochastic system under consideration is governed by Itô stochastic

di¤erential equation of general McKean-Vlasov type, with correlated noises between the

system and the observation allowing both classical and singular control. The coe¢ cients

of our McKean-Vlasov dynamic depend nonlinearly on both the state process as well as

of its probability law. The derivatives with respect to probability measure in P.L Lions�

sense and the associate Itô-formula are applied to derive our main results. Since the control

domain is assumed to be convex, the proof of our partially observed maximum principle

based on convex perturbation for both continuous and singular parts of the control process,

and Girsanov�s theorem.

Our general McKean-Vlasov partially observed singular control problem occur natu-

rally in the probabilistic analysis of �nancial optimization problems. Moreover, the changes

of probability measure are the cornerstone of the rational pricing of derivatives and are

used for converting actual probabilities into those of the risk-neutral probabilities.

Our class of partially observed singular control problem is strongly motivated by the

recent study of the McKean-Vlasov games and recently play an important role in di¤erent

�elds of economics and �nance with an intervention controls. As an illustration, by ap-

plying our partially observed maximum principle, McKean-Vlasov type linear quadratic

singular control problem is discussed, where the partially observed optimal singular control

is established explicitly in feedback form.

This chapter is organized as follows. Sect. 2 begins with a formulation of the partially

observed singular stochastic control problem. We give the notations and de�nitions of

the derivatives with respect to probability measure and assumptions used throughout
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the paper. In Sect. 3, we prove the necessary conditions of optimality which are our main

results. A linear quatratic control problem of this kind of partially observed control problem

is also given in Sect. 4. At the end of this chapter, some discussions with concluding remarks

and future developments are presented in the last Section.

2.2 Assumptions and statement of the control pro-

blem

Let us formulate the optimal mixed control. Let T be a �xed strictly positive real num-

ber and (
;F ;F;P) be a complete �ltered probability space satisfying the usual conditions

in which one-dimentional Brownian motion W (t) = fW (t) : 0 � t � Tg and W (0) = 0 is

de�ned, where F = (FW
t )t2[0;T ] is the natural �ltration generated by W (�);

FW
t = � fW (s) : s 2 [0; t]g

augmented by all the P-null sets.

Let A1 be a closed convex and bounded subset of R and A2 := ([0;+1)) : LetA1 ([0; T ])

be the class of B([0; T ])
F measurable, F�adapted processes u(�) : [0; T ]�
! A1 and

A2 ([0; T ]) is the class of B([0; T ])
F-measurable, F�adapted processes �(�) : [0; T ]�
!

A2.

We give here the precise de�nition of the complete observed continuous-singular control.

De�nition 2.1. An admissible continuous-singular control is a pair (u(�); �(�)) of mea-

surable A1�A2�valued, FW�adapted processes, such that the process �(�) : [0; T ]�
!

A2 is of bounded variation, non-decreasing continuous on the right with left limits and

�(0�) = 0:Moreover, E(j�(T )j2) <1:

Notation. Throughout what follows, N denotes the totality of P-null sets. We denote

by h�; �i (resp. j � j) the scalar product (resp., norm), E (�) denotes the expectation on
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(
;F ;Ft;P) : Moreover, we denote by

1. L2 ([0; T ] ;Rn) the space ofRn-valued deterministic function � (�) ; such that
R T
0
j�(t)j2 dt <

+1:

2. L2 (Ft;Rn) the space ofRn-valuedFt-measurable random variableX; such thatE
�
jXj2

�
<

+1:

3. L2F ([0; T ] ;Rn) the space ofRn-valuedFt-adapted processesX; such thatE
R T
0
jX(t)j2 dt <

+1:

4. L2
�
F ;Rd

�
is the Hilbert space with inner product (X; Y )2 =E[X:Y ] ; X; Y 2 L2

�
F ;Rd

�
and the norm kXk22 = (X;X)2 :

5. �2
�
Rd
�
the space of all probability measures � on

�
Rd;B

�
Rd
��
with �nite second

moment, i.e,
R
Rd jxj

2 � (dx) < +1; endowed with the following 2-Wasserstein metric, for

�; � 2 �2
�
Rd
�
;

W2(�; �) = inf

�Z
Rd
jx� yj2 � (dx; dy)

� 1
2

; (2.1)

where � 2 �2
�
R2d
�
; �
�
�;Rd

�
= �; and �

�
Rd; �

�
= �:

2.2.1 Di¤erentiability with respect to probability measures

Now, we recall brie�y the main results of the di¤erentiability with respect to probability

measures, which have been studied by P.L Lions [61]. The main idea is to identify a

distribution � 2 �2
�
Rd
�
with a random variables # 2 L2

�
F ;Rd

�
so that � = P#: To be

more precise, we assume that probability space (
;F ;Ft;P) is rich enough in the sense

that for every � 2 �2
�
Rd
�
; there is a random variable # 2 L2

�
F ;Rd

�
such that � = P#,

see Buckdahn, Li and Ma [13].

De�nition 2.2 (Lift function) Let f be a given function such that f : �2
�
Rd
�
! R: We

de�ne the lift function ef : L2 �F ;Rd�! R such that

ef (X) := f � PX = f (PX) ; X 2 L2(F ;Rd):
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Clearly, the lift function ef of f , depends only on the law of Z 2 L2 �F ;Rd� and is inde-
pendent of the choice of the representative Z:

De�nition 2.3 A function f : �2
�
Rd
�
! R is said to be di¤erentiable at �0 2 �2

�
Rd
�

if there exists #0 2 L2
�
F ;Rd

�
with �0 = P#0 such that its lift function ef is Fréchet

di¤erentiable at #0. More precisely, there exists a continuous linear functional D ef (#0) :
L2
�
F ;Rd

�
! R such that

ef (#0 + �)� ef (#0) = DD ef (#0) ; �E+O (k�k2) = D�f (�0) +O (k�k2) ; (2.2)

where h�; �i is the dual product on L2(F ;Rd); and we will refer to D�f (�0) as the Fréchet

derivative of f at �0 in the direction �. In this case, for �0 = P#0 we have

D�f (�0) =
D
D ef (#0) ; �E = d

dt
ef (#0 + t�)

����
t=0

:

By applying the Riesz�representation theorem, there is a unique random variable z0 2

L2
�
F ;Rd

�
such that

D
D ef (#0) ; �E = (z0; �)2 =E[(z0; �)2] ; where � 2 L2 �F ;Rd� : It was

shown, see the works of Buckdahn Li and Ma [13] and Lions [61] that there exists a Boral

function ' [�0] : Rd ! Rd; depending only on the law �0 = P#0 but not on the particular

choice of the representative #0 such that z0 = ' [�0] (#0) :

Thus, we can write (2.2) as 8# 2 L2(F ;Rd):

f (P#)� f (P#0) = (' [�0] (#0) ; #� #0)2 +O (k#� #0k2) :

We denote

@�f (P#0 ; x) = ' [�0] (x) ; x 2 Rd:

Moreover, we have the following identities

D ef (#0) = z0 = ' [�0] (#0) = @�f (P#0 ; #0) ;
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and

D�f (P#0) = h@�f (P#0 ; #0) ; �i ;

where � = #�#0:We note that for each � 2 �2
�
Rd
�
; @�f (P#; �) = ' [P#] (�) is only de�ned

in a P# (dx)-a:E sense, where � = P#:

De�nition 2.4 (Space of di¤erentiable functions in �2
�
Rd
�
:) We say that the function

f 2 C1;1b
�
�2
�
Rd
��
if for all # 2 L2

�
F ;Rd

�
; there exists a P#-modi�cation of @�f (P#; �)

such that @�f : �2
�
Rd
�
�Rd ! Rd is bounded and Lipchitz continuous. That is for some

C > 0, it holds that

(i) j@�f (�; x)j � C; 8� 2 �2
�
Rd
�
; 8x 2 Rd;

(ii) j@�f (�1; x1)� @�f (�2; x2)j � C (W2(�1; �2) + jx1 � x2j) ;8�1; �2 2 �2
�
Rd
�
;8x1; x2 2

Rd:

We would like to point out that the version of @�f (P#; �) ; # 2 L2
�
F ;Rd

�
indicated in

in the above de�nition is unique (see Remark 2.2 in Buckdahn, Li and Ma [13] for more

information).

Let (b
; bF ; bFt; bP) be a copy of the probability space (
;F ;Ft;P) : For any pair of random
variable (#; �) 2 L2

�
F ;Rd

�
�L2

�
F ;Rd

�
; we let (b#; b�) be an independent copy of (#; �) de�-

ned on (b
; bF ; bFt; bP):We consider the product probability space (
�b
;F
 bF ;Ft
 bFt;P
bP)
and setting (b#; b�)(W;cW ) = (#(W ); �(cW )) for any (W;cW ) 2 
� b
: Let (bu (t) ; bx (t)) be an
independent copy of (u (t) ; x (t)) so that Px(t)=bPbx(t):
Throughout this chapter, we denote by bE the expectation under probability measurebP and PX = P�X�1 denotes the law of the random variable X:

2.2.2 Partially observed optimal control Model

In this chaptre, we study partially observed optimal stochastic singular control pro-

blem of general Mckean-Vlasov type with correlated noises between the system and the

observation. The control variable has two components, the �rst being absolutely conti-
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nuous and the second is a bounded variation, non decreasing continuous on the right with

left limits. The dynamic system is governed by Itô-type controlled stochastic di¤erential

equation. The coe¢ cients of the dynamic depend on the state process as well as of its pro-

bability law and the continuous control variable. In terms of a classical convex variational

techniques, we establish a set of necessary contiditions of optimal singular control in the

form of maximum principle. Our main result is proved by applying Girsanov�s theorem

and the derivatives with respect to probability law in P.L. Lions�sense. To illustrate our

theoretical result, we study partially observed linear quadratic singular control problem

of McKean-Vlasov type.

We consider the partially observed optimal stochastic singular control problem for

systems governed by nonlinear controlled McKean-Vlasov stochastic di¤erential equations

(SDEs) with correlated noisy between the system and the observation, allowing both

classical and singular control of the form : t 2 [0; T ]

8>>>>><>>>>>:
dxv;� (t) = f(t; xv;� (t) ;Pxv;�(t); v (t))dt+ �(t; xv;� (t) ;Pxv;�(t); v (t))dW (t)

+g(t; xv;� (t) ;Pxv;�(t); v (t))dfW (t) +G(t)d�(t);

xv;� (0) = x0; t 2 [0; T ] ;

(2.3)

where Pxv;� = P�
�
xv;�

��1
denotes the law of the random variable xv;� (�). The coe¢ cients

f : [0; T ] � Rn � �2
�
Rd
�
� A1 ! Rn; � : [0; T ] � Rn � �2

�
Rd
�
� A1 ! Rn�d; g : [0; T ] �

Rn � �2
�
Rd
�
� A1 ! Rn�d; and G (�) : [0; T ]� 
! R are given functions.

We assume that the state process xv;� (�) cannot be observed directly, but the controllers

can observe a related noisy process Y (�); which is governed by the following equation :

8><>:
dY (t) = h(t; xv;� (t) ; v (t))dt+ dfW (t)

Y (0) = 0;

(2.4)

where h : [0; T ]�Rn�A1 ! Rr andfW (�) is a stochastic process depending on the control
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v(�); and Y (�) the observation process.

We give here the precise de�nition of the partially observed continuous-singular control.

2.2.3 Partially observed continuous-singular control

Throughout this chapter FY
t is the natural �ltration generated by Y (�);

FY
t = � fY (s) : s 2 [0; t]g :

De�nition 2.5. Let AY1 ([0; T ]) be the class of B([0; T ])
F measurable, FY
t �adapted

processes u(�) : [0; T ]� 
! A1 satis�es

sup
t2[0;T ]

E(ju(t)j2) <1

and AY2 ([0; T ]) is the class of B([0; T ]) 
 F-measurable, FY
t �adapted processes �(�) :

[0; T ]� 
! A2 such that �(�) is of bounded variation, non-decreasing continuous on the

right with left limits (càdlàg) and �(0�) = 0: Moreover, E( j�(T )j2) <1:

Denote by AY1 �AY2 ([0; T ]) the set of B ([0; T ])
F-measurable and FY
t -adapted stochastic

processes valued in A1�A2. Any (u(�); �(�)) 2 A1�A2 ([0; T ]) is called partially observed

admissible control. Notice that the jumps of a singular control �(�) at any jumping time

�j denote by ��(�j) := �(�j)� �(�j�):

We should note that since d�(t) may be singular with respect to Lebesgue measure dt;

we call �(�) the singular part of the control variable and the process u(�) its absolutely

continuous part.

Our partially observed optimal singular control problem is to minimize the cost func-
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tional

J(v (�) ; �(�)) = Ev

�Z T

0

l(t; xv;�(t);Pxv;�(t); v(t))dt+  (xv;�(T );Pxu;�(T )) (2.5)

+

Z
[0;T ]

M(t)d�(t)

�
:

Here, l : [0; T ]�Rn��2 (R)�A1 ! R;  : Rn��2 (R)! R andM : [0; T ]�
! ([0;1)) :

Moreove, Ev (�) stands for the mathematical expectation on (
;F ;Ft;Pv) given by

Ev(X) = EPv(X) =

Z



X(w)dPv(w):

The partially observed stochastic optimal control problem considered in this paper is to

�nd a couple of FY
t �adapted processes (u�(�); ��(�)) 2 AY1 �AY2 ([0; T ]) such that

J (u�(�); ��(�)) = inf
(u(�);�(�))2AY1 �AY2 ([0;T ])

J (u(�); �(�)) : (2.6)

Any partially observed admissible control (u�(�); ��(�)) 2 AY1 �AY2 ([0; T ]) satisfying (2.6)

is called an optimal control. The corresponding state x�(�) = xu
�;��(�) is called an partially

observed optimal state, and (x�(�); u�(�); ��(�)) is called an optimal solution of the partially

observed control problem (2.3)-(2.5).

In this chapter, the following hypothesis will be in force throughout this paper.

Hypothesis (C1) The maps f; �; g; l : [0; T ]�R��2 (R)�A1 ! R and  : R��2 (R)! R

are measurable in all variables. Moreover, f(t; �; �; v); �(t; �; �; v); g(t; �; �; v); l(t; �; �; v) 2

C1;1b (R� �2 (R) ;R) and  (�; �) 2 C1;1b (R� �2 (R) ;R) for all v 2 A1:

Hypothesis (C2) The functions ' (x; �) = f(t; x; �; v); �(t; x; �; v); g(t; x; �; v); l(t; x; �; v);

 (x; �) satis�es the following properties.

(1) For �xed x 2 R and � 2 �2 (R) ; the function ' (�; �) 2 C1b (R) and ' (x; �) 2

C1;1b (�2
�
Rd
�
;R):
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(2) The functions f; �; c and l are continuously di¤erentiable with respect to control

variable v, and all their derivatives are continuous and bounded. All the derivatives 'x and

@�'; for ' = f; �; g; l;  are bounded and Lipschitz continuous, with Lipschitz constants

independent of v 2 A1:

(3) The function h is continuously di¤erentiable in x and continuous in v, its derivatives

and h are all uniformly bounded such that

E

�
exp

�
1

2

Z t

0

��h(s; xv;�(s); v(s))��2 ds�� <1: (2.7)

Hypothesis (C3) The functions G (�) : [0; T ]� 
! R; and M (�) : [0; T ]� 
! R+ are

continuous and bounded.

Clearly, hypothesis (C3) allows us to de�ne integrals of the form

Z
[0;T ]

G(t)d�(t) and
Z
[0;T ]

M(t)d�(t):

Moreover, under hypothesis (C1), (C2), (C3) and for any (v (�) ; �(�)) 2 AY1 �AY2 ([0; T ]) ;

the McKean-Vlasov system (2.3) admits a unique strong solution, and the cost functional

(2.5) is well de�ned on AY1 �AY2 ([0; T ]) :

We de�ne the FY
t �martingale �v(t) which is the solution of the equation

8><>:
d�v(t) = �v(t)h (t; xv(t); v(t)) dY (t);

�v(0) = 1:

(2.8)

This martingale allowed to de�ne a new probability, denoted by Pv on the space (
;F) ; to

emphasize the fact that it depend on the control v (�) : It is given by the Radon-Nikodym

derivative :
dPv

dP

����
FYt

= �v(t). (2.9)
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From the linear equatiion (2.8), and by a simple computation, we can get

�v(t) = exp

�Z t

0

h(s; xv;�(s); v(s))dY (s)� 1
2

Z t

0

��h(s; xv;�(s); v(s))��2 ds� : (2.10)

We note that Ev(X) refers to the expected value of X with respect to the probabilily law

Pv. Moreover, since dPv = �v(t)dP, we have

Ev(X) := EPv(X)

=

Z



X(w)dPv(w)

=

Z



X(w)�v(t)dP(w)

= EP(�
v(t)X)

= E(�v(t)X):

Note that the condition in (2.7) is called �conditions of Novikov� and equation (2.10)

is called �exponential of Doléan-Dade�. Such changes of probability measure (2.9) are

the cornerstone of the rational pricing of derivatives and are used for converting actual

probabilities into those of the risk-neutral probabilities.

By applying Itô�s formula, we can prove that

sup
t2[0;T ]

E (j�v(t)jn) < +1; n > 1:

Hence, by Girsanov�s theorem and hypothesis (C1) and (C2), Pv is a new probability

measure of density �v(t). The process

fW (t) = Y (t)�
Z t

0

h(s; xv;� (s) ; v (s))ds;

is a standard Brownian motion independent of W (�) and x0 on the new probability space

(
;F ;Ft;Pv) :
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By using Radon-Nikodym derivative (2.9), and the martingale property of �v(t), the cost

functional (2.5) can be written as

J(v(�); �(�)) = E
�Z T

0

�v(t)l(t; xv;�(t);Pxu;�(t); v(t))dt+ �v(T ) (xv;�(T );Pxv;�(T )) (2.11)

+

Z
[0;T ]

�v(t)M(t)d�(t)

�
:

So deduce that the �rst original optimization problem is equivalent to minimizing (2.11)

over (v(�); �(�)) 2 AY1 �AY2 ([0; T ]) ; subject to (2.3)-(2.8).

2.3 Necessary conditions for optimal partially obser-

ved singular control

Our aim in this section is to establish the necessary conditions of optimality in the

form of stochastic maximum principle for our partially observed singular optimal control

problem. Our main result is derived by applying the di¤erentiability with respect to pro-

bability measure and Girsanov�s theorem.

In our study, since the control domain is assumed to be convex, the proof of our par-

tially observed maximum principle based on convex perturbation for both continuous and

singular parts of the control process.

Hamiltonian. We de�ne the Hamiltonian function

H : [0; T ]� R� �2 (R)� A1 � R� R� R� R� R! R;

associated with our control problem by

H(t; x; �; v; p; q; q; k) = l(t; x; �; v) + f(t; x; �; v)p+ �(t; x; �; v)q

+ g(t; x; �; v)q + h (t; x; v) k: (2.12)
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Adjoint equation. We introduce the adjoint equations involved in the stochastic maximum

principle for our singular McKean-Vlasov control problem. The adjoint equation turns

out to be a linear McKean-Vlasov BSDE. So for any (u(�); �(�)) 2 AY1 � AY2 and the

corresponding state trajectory x(t) = xu;�(t), we consider the following adjoint equation :

8><>:
�dy(t) = l(t)dt� z (t) dW (t)� k (t) dfW (t) ;

y(T ) =  (x(T );Px(T ));
(2.13)

and 8>>>>>>>>>>><>>>>>>>>>>>:

�dp (t) =
n
fx (t) p (t) + bE(@� bf (t) bp (t)) + �x (t) q (t) + bE(@�b� (t) bq (t))

+gx (t) q (t) + bE(@�bg (t)bq (t)) + lx (t) + bE(@�bl (t)) + hx (t) k(t)o dt
�q(t)dW (t)� q(t)dfW (t);

p(T ) =  x(x (T ) ;Px(T )) + bE �@� (bx (T ) ;Px(T );x(T ))� :
(2.14)

Clearly, under hypothesis (C1) and (C2), it is easy to prove that Eqs (2.13) and (2.14)

admits a unique strong solution. Since the coe¢ cients G (�) and M (�) are not related to

x(�); then the adjoint process (p (�) ; q (�) ; q(�); k (�)) are independent to singular control

�(�).

The main result of this paper is stated in the following theorem.

Theorem3.1 (Maximum principle) Let hypothesis (C1), (C2) and (C3) hold. Let (u�(�); ��(�); x�(�))

be the optimal solution of the control problem (2.3)-(2.5). Then there exists (p (�) ; q (�) ; q(�); k (�))

solution of (2.14), such that for any (u; �) 2 A1 � A2, we have

Eu
�
Hu(t; x

�(t);Px�(t); u� (t) ; p (t) ; q (t) ; q (t) ; k (t)) (u (t)� u� (t)) j FY
t

�
+Eu

�Z
[0;T ]

(M(t) +G(t)p(t))d (� � ��) (t) j FY
t

�
� 0:

P�a:s:; a:e:t 2 [0; T ] ;

(2.15)

48



Chaptre 2, Partially observed optimal singular control, Abada N.E.H 2022

where the Hamiltonian function H is de�ned by (2.12):

To prove our main result, the approach that we use is based on a double perturbation

of the optimal control. This perturbation is described as follows :

Let (u(�); �(�)) 2 AY1 � AY2 ([0; T ]) ; be any given admissible control. Let " 2 (0; 1), and

write

u"(�) = u�(�) + "v(�) where v(�) = u(�)� u�(�); (2.16)

and

�"(t) = ��(t) + "�(t) where �(t) = �(t)� ��(t); (2.17)

where " a su¢ ciently small " > 0.

Here the admissible control (u"(�); �"(�)) is the so called convex perturbation of (u�(�); ��(�))

de�ned as follows : t 2 [0; T ]

(u"(t); �"(t)) = (u�(t); ��(t)) + " [(u(t); �(t))� (u�(t); ��(t))] ;

In this chapter, we denote by x"(�) = xu
";�"(�) the solution of (2.3) associated with

(u"(�); �"(�)) and by �"(�) the solution of (2.8) corresponding to u"(�):

Hereinafter, we use the following short-hand notations :

' (t) = '
�
t; x�(t);Px�(t); u�(t)

�
; h (t) = h (t; x�(t); u�(t)) ;

'" (t) = '(t; x"(t);Px"(t); u"(t)); h" (t) = h (t; x"(t); u"(t)) ;

where ' := f; �; g; l as well as their partial derivatives with respect to x and v. Also, we

denote for ' = f; �; g; l :

@�' (t) = @�'
�
t; x(t);Px(t); u(t); bx(t)� ;

@�b' (t) = @�'
�
t; bx (t) ;Pbx(t); bu (t) ; x(t)� :
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Under hypothesis (C1), (C2) and (C3), Eqs (2.22) and (2.21) which are a linear SDEs

with bounded coe¢ cients, admits a unique adapted solutions p (�) and �1 (�), respectively.

In order to prove our main result in Theorem 3.1, we need the following results which

we have to translate to our partially observed singular problem.

Lemma 3.2 Let hypothesis (C1), (C2) and (C3) hold. Then, we have

lim
"!0
E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
= 0:

Proof Applying standard estimates and Burkholder-Davis-Gundy inequality, we have

E( sup
t2[0;T ]

jx"(s)� x�(s)j2)

� E
Z t

0

��f �s; x"(s); Px"(s); u"(s)�� f
�
s; x�(s); Px�(s); u

�(s)
���2 ds

+E

Z t

0

��� �s; x"(s); Px"(s); u"(s)�� �
�
s; x�(s); Px�(s); u

�(s)
���2 ds

+E

Z t

0

��g �s; x"(s); Px"(s); u"(s)�� g
�
s; x�(s); Px�(s); u

�(s)
���2 ds

+

����Z
[0;t]

G(s)d (�" � ��) (s)

����2 ;
Applying hypothesis (C1), (C2), (C3) and from to the Lipschitz conditions on the coe¢ -

cients f; � and g with respect to x; � and u, we get

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
� CTE

Z t

0

h
jx"(s)� x�(s)j2 +

��B2 �Px"(s);Px�(s)���2i ds
+ CT "

2E

Z t

0

ju"(s)� u�(s)j2 ds (2.18)

+ CT "
2E j�"(T )� ��(T )j2 ;
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from the de�nition of Wasserstein metric W2 (�; �), we have

W2

�
Px"(t);Px�(t)

�
= inf

n�
E jex"(t)� ex(t)j2� 12 , for all ex"(�); ex(�) 2 L2 �F ;Rd� ;
with Px"(t) = Pex"(t) and Px�(t) = Pfx�(t)

o
�
�
E jx"(t)� x�(t)j2

� 1
2 : (2.19)

By De�nition 2.5 , then from (2.18) and (2.19), we obtain

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
� CTE

Z t

0

sup
r2[0;s]

jx"(r)� x�(r)j2 ds+ CT "
2:

By applying Gronwall�s inequality, the desired result follows immediately by letting " go

to zero. �

Let Z(t) and �1(t) be the solutions of the following linear SDEs8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

dZ(t) =
h
fx (t)Z(t) + bE h@�f (t) bZ (t)i+ fu(t)(u(t)� u�(t))

i
dt

+
h
�x(t)Z(t) + bE h@�� (t) bZ (t)i+ �u(t)(u(t)� u�(t))

i
dW (t)

+
h
gx(t)Z(t) + bE h@�g (t) bZ (t)i+ gu (t) (u(t)� u�(t))

i
dfW (t)

+G(t)d (� � ��) (t);

Z(0) = 0;

(2.20)

and 8><>: d�1(t) = [�1(t)h(t) + �(t)hx(t)Z(t) + �(t)hv(t)v(t)] dY (t);

�1(0) = 0:
(2.21)
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If we put v (�) = u (�)� u�(t); and � = � � �� thus we can write Eq-(2.20) in the form

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

dZ(t) =
h
fx (t)Z(t) + bE h@�f (t) bZ (t)i+ fv(t)v (t)

i
dt

+
h
�x(t)Z(t) + bE h@�� (t) bZ (t)i+ �v(t)v(t)

i
dW (t)

+
h
gx(t)Z(t) + bE h@�g (t) bZ (t)i+ gv (t) v (t)

i
dfW (t)

+G(t)d�(t);

Z(0) = 0;

(2.22)

Lemma 3.3 Suppose that hypothesis (C1), (C2) and (C3) hold. Then, we have

lim
"!0
E

"
sup
0�t�T

����1" [x"(t)� x�(t)]�Z(t)
����2
#
= 0: (2.23)

Proof Under hypothesis (C1), (C2) and (C3), Eqs (2.22) and (2.21) which are a li-

near SDEs with bounded coe¢ cients, admits a unique adapted solutions Z (�) and �1 (�),

respectively.

We put

�"(t) =
x" (t)� x� (t)

"
�Z(t); t 2 [0; T ] :

To simplify, we will use the following notations, for ' = f; �; g and l :

'�;"x (t) = 'x
�
t; x�;" (t) ;Px"(t); v"(t)

�
;

@�;"� ' (t) = @�'(s; x
"(t);Pbx�;"(t); v"(t); bx(t));

and

x�;" (t) = x� (t) + �" (�" (t) + Z (t)) ;

bx�;" (t) = x�(t) + �"(b�"(t) + bZ (t));
v�;" (t) = u� (t) + �"v (t) :
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Since D�f (�0) =
D
D ef (#0) ; �E = d

dt
ef (#0 + t�)

���
t=0
, we have the following form of the

Taylor expansion

f (P#0+�)� f (P#0) = D�f (P#0) +R (�) ;

where R (�) is of order O (k�k2) with O (k�k2)! 0 for � 2 L2
�
F ;Rd

�
:

�"(t) =
1

"

Z t

0

[f "(s)� f(s)] ds+
1

"

Z t

0

[�"(s)� �(s)] dW (s)

+
1

"

Z t

0

[c"(s)� c(s)] d eB (s) + 1
"

Z
[0;t]

G(s)d (�" � ��) (s);

�
Z t

0

h
fx(s)Z (s) + bE h@�f(s) bZ(s)i+ fv(s)v(s)

i
ds

�
Z t

0

h
�x(s)Z(s) + bE h@��(s) bZ(s)i+ �v(s)v(s)

i
dW (s)

�
Z t

0

h
gx(s)Z(s) + bE h@�g(s) bZ(s)i+ gv(s)v(s)

i
dfW (s)

�
Z
[0;t]

G(s)d (� � ��) (s):

We decompose 1
"

R t
0

�
f(s; x"(s);Px"(s); u"(s))� f(s; x�(s);Px�(s); u�(s))

�
ds into the follo-

wing parts

1

"

Z t

0

�
f(s; x"(s);Px"(s); u"(s))� f(s; x�(s);Px�(s); u�(s))

�
ds

=
1

"

Z t

0

�
f(s; x"(s);Px"(s); u"(s))� f(s; x�(s);Px"(s); u"(s))

�
ds

+
1

"

Z t

0

�
f(s; x�(s);Px"(s); u"(s))� f(s; x�(s);Px�(s); u"(s))

�
ds

+
1

"

Z t

0

�
f(s; x�(s);Px�(s); u"(s))� f(s; x�(s);Px�(s); u�(s))

�
ds:

We notice that

Z t

0

�
f "(s)� f(s; x�(s);Px"(s); u"(s))

�
ds = "

Z t

0

Z 1

0

[f�;"x (s) (�"(s) + Z(s))] d�ds;Z t

0

�
f "(s)� f(s; x� (s) ;Px"(s); u�(s)

�
ds = "

Z t

0

Z 1

0

bE h@�;"� f (s) (b�"(s) + bZ (s))i d�ds;
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and

Z t

0

�
f
�
s; x�(s);Px�(s); u"(s)

�
� f (s)

�
ds = "

Z t

0

Z 1

0

�
fv
�
s; x(s);Px(s); v�;" (s)

�
v(s)

�
d�ds:

By the similar method, the analogue relations hold for the coe¢ cients � and g. Moreover,

from (2.17), we have

1

"

Z
[0;t]

G(s)d (�" � ��) (s)�
Z
[0;t]

G(s)d (� � ��) (s) = 0:

Therefore, we obtain

E

"
sup
s2[0;t]

j�"(s)j2
#
= CtE

�Z t

0

Z 1

0

jf�;"x (s) �" (s)j2 d�ds

+

Z t

0

Z 1

0

bE ��@�;"� f (s) b�" (s)��2 d�ds
+

Z t

0

Z 1

0

j��;"x (s) �" (s)j2 d�ds

+

Z t

0

Z 1

0

bE ��@�;"� �(s)b�" (s)��2 d�ds
+

Z t

0

Z 1

0

jg�;"x (s) �" (s)j2 d�ds

+

Z t

0

Z 1

0

bE ��@�;"� g(s)b�" (s))��2 d�ds
+ CtE

"
sup
s2[0;t]

j
"(s)j2
#
;
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where


"(t) =

Z t

0

Z 1

0

[f�;"x (s)� fx (s)]Z(s)d�ds

+

Z t

0

Z 1

0

bE h�@�;"� f (s)� @�f(s)
� bZ(s)i d�ds

+

Z t

0

Z 1

0

�
fv
�
s; x(s);Px(s); v�;" (s)

�
� fv (s)

�
v(s)d�ds

+

Z t

0

Z 1

0

[��;"x (s)� �x (s)]Z(s)d�dW (s)

+

Z t

0

Z 1

0

bE h�@�;"� �(s)� @��(s)
� bZ(s)i d�dW (s)

+

Z t

0

Z 1

0

�
�v
�
s; x(s);Px(s); v�;" (s)

�
� �v (s)

�
v(s)d�dW (s)

+

Z t

0

Z 1

0

[g�;"x (s)� gx (s)]Z(s)d�dfW (s)
+

Z t

0

Z 1

0

bE h�@�;"� g(s)� @�g (s)
� bZ(s)i d�dfW (s)

+

Z t

0

Z 1

0

�
gv
�
s; x (s) ;Px(s); v�;" (s)

�
� gv (s)

�
v(s)d�dfW (s):

Now, the derivatives of f; � and g with respect to (x; �; v) are Lipschitz continuous in

(x; �; v), we get

lim
"!0
E

"
sup
s2[0;T ]

j
"(s)j2
#
= 0:

Since the derivatives of the coe¢ cients f; �; g and 
 are bounded with respect to (x; �; v),

we have

E( sup
s2[0;t]

j�"(s)j2) � Ct

"
E

Z t

0

j�"(s)j2 ds+E( sup
s2[0;t]

j
"(s)j2)
#
:

Finally, by applying Gronwall�s Lemma, then by putting t = T and letting " go to 0, the

proof of Lemma 3.3 is complete. �

Now, we introduce the following lemma which play an important role in computing

the variational inequality for the cost functional (2.11) subject to (2.3) and (2.8).
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Lemma 3.4. Let hypothesis (C1) and (C2) hold. Then, we have

lim
"!0

sup
0�t�T

E

����1" [�"(t)� �(t)]� �1(t)

����2 = 0: (2.24)

Proof. From (2.8) and (2.21), we have

�(t) + "�1(t) = �(0) +

Z t

0

�(s)h(s)dY (s)

+ "

Z t

0

[�1 (s)h (s) + �(s)hx (s)Z (s) + �(s)hv (s) v (s)] dY (s)

= �(0) + "

Z t

0

�1(s)h(s)dY (s)

+

Z t

0

� (s)h(s; x (s) + "Z (s) ; u (s) + "v (s))dY (s)

� "

Z t

0

�(s)A"(s)dY (s);

where

A"(s) = Z(s)
Z 1

0

[hx(s; x(s) + �"Z(s); u(s) + �"v(s))� hx(s)]Z(s)d�

+ v(s)

Z 1

0

[hv(s; x(s) + �"Z(s); u(s) + �"v(s))� hv(s)] v(s)d�:
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Then, we have

�"(t)� �(t)� "�1(t)

=

Z t

0

�" (s)h" (t) dY (s)� "

Z t

0

�1(s)h(s)dY (s)

�
Z t

0

�(s)h (s; x (s) + "Z (s) ; u (s) + "v (s)) dY (s) + "

Z t

0

�(s)A" (s) dY (s)

=

Z t

0

(�" (s)� � (s)� "�1 (s))h
" (s) dY (s)

+

Z t

0

(� (s) + "�1 (s)) [h
"(s)� h (s; x(s) + "Z (s) ; u (s) + "v (s))]dY (s)

+ "

Z t

0

�1 (s)h(s; x (s) + "Z (s) ; u (s) + "v (s))dY (s)

� "

Z t

0

�1 (s)h(s)dY (s) + "

Z t

0

�(s)A" (s) dY (s)

By simple computations, we obtain

�"(t)� �(t)� "�1(t)

=

Z t

0

(�" (s)� � (s)� "�1 (s))h
" (s) dY (s)

+

Z t

0

(�(s) + "�1(s))B
"
1(s)dY (s) + "

Z t

0

�1(s)B
"
2(s)dY (s)

+ "

Z t

0

�(s)A"(s)dY (s);

where

B"
1(s) = h" (s)� h (s; x (s) + "Z (s) ; u (s) + "v (s)) ;

B"
2(s) = h(s; x (s) + "Z (s) ; u (s) + "v (s))� h(s):
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Note that

B"
1(s) =

Z 1

0

[hx(s; x (s) + "Z (s) + �(x" (s)� x (s)� "Z (s)); v" (s))]

� (x" (s)� x (s)� "Z (s))d�:

By Lemma 3.3 , we have

E

Z t

0

j(�(s) + "�1(s))B
"
1(s)j

2 ds � C""
2; (2.25)

where C" nonnegative constant such that C" ! 0 as "! 0:

Moreover, it is easy to see that

sup
0�t�T

E

�
"

Z t

0

�(s)A"(s)dY (s)

�2
� C""

2; (2.26)

and

sup
0�t�T

E

�
"

Z t

0

�1(s)B
"
2(s)dY (s)

�2
� C""

2: (2.27)

From (2.25); (2.26) and (2.27), we get

E j(�"(t)� �(t))� "�1(t)j2

� C

�Z t

0

E j(�" (s)� � (s))� "�1(s)j2 +E
Z t

0

j(� (s) + "�1 (s))B
"
1(s)j

2 ds

+ sup
0�s�t

E

�
"

Z t

0

�(s)A"(s)dY (s)

�2
+ sup
0�s�t

E

�
"

Z t

0

�1(s)B
"
2(s)dY (s)

�2#

� C

Z t

0

E j�"(s)� �(s)� "�1(s)j2 ds+ C""
2:

Finally, by using Gronwall�s inequality, the proof of Lemma 3.4 is complete. �
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Lemma 3.5. Let hypothesis (C1), (C2) and (C3) hold. Then, we have

0 � E
Z T

0

h
�1 (t) l(t) + � (t) lx(t)Z (t) + �(t)bE [@�l(t)]Z(t) + �(t)lv(t)v(t)

i
dt

+E
�
�1 (T ) (x

� (T ) ;Px�(T ))
�
+E

�
� (T ) x(x

� (T ) ;Px�(T ))Z (T )
�

+E
h
� (T ) bE �@� (x� (T ) ;Px�(T ); bx (T ))�Z (T )i (2.28)

+E

Z
[0;T ]

� (t)M(t)d (� � ��) (t):

Proof. From (2.6), we have

0 � 1

"
[J (v" (t) ; �"(t))� J (u� (t) ; ��(t))]

=
1

"
[J (v" (t) ; �"(t))� J (u� (t) ; �"(t))] (2.29)

+
1

"
[J (u�; �"(t))� J (u� (t) ; ��(t))] ;

From (2.5), we get

1

"
[J (v" (t) ; �"(t))� J (u� (t) ; �"(t))]

=
1

"
E

Z T

0

[�"(t)l"(t)� �(t)l(t)] dt (2.30)

+
1

"
E
�
�" (T ) (x" (T ) ;Px"(T ))� � (T ) (x (T ) ;Px(T ))

�
;

and

1

"
[J (u�; �"(t))� J (u� (t) ; ��(t))] (2.31)

=
1

"

�
E

Z
[0;T ]

�(t)M(t)d�"(t)�
Z
[0;T ]

�(t)M(t)d��(t)

�
:
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By applying Taylor expansion, Lemma 3.3 and Lemma 3.4 , we obtain

lim
"!0

1

"
E
�
�" (T ) (x" (T ) ;Px"(T ))� � (T ) (x (T ) ;Px(T ))

�
= E

�
�1(T ) (x(T );Px(T )) + �(T ) x(x(T );Px(T ))Z (T )

�
(2.32)

+E
h
� (T ) bE �@� (x(T );Px(T ); bx(T ))�Z (T )i ;

and

lim
"!0

1

"
E

Z T

0

[�"(t)l"(t)� �(t)l(t)] dt

= E

Z T

0

h
�1(t)l(t) + �(t)lx(t)Z(t) + �(t)bE [@�l (t)] bZ(t) + �(t)lv(t)v(t)

i
dt: (2.33)

From (2.17), and since �"(t)� ��(t) = "(�(t)� ��(t)); we get

lim
"!0

1

"

�
E

Z
[0;T ]

�(t)M(t)d�"(t)�
Z
[0;T ]

�(t)M(t)d��(t)

�
= lim

"!0

1

"

�
E

Z
[0;T ]

�(t)M(t)d(�" � ��)(t)

�
= lim
"!0

1

"

�
E

Z
[0;T ]

"�(t)M(t)d(� � ��)(t)

�
(2.34)

= E

Z
[0;T ]

�(t)M(t)d(� � ��)(t):

Finally, by substituting (2.30), (2.31), (2.32), (2.33) and (2.34) into (2.29), the desired

result (2.28) ful�lled immediately. This achieve the proof of Lemma 3.5. �

Note that 8>><>>:
de�(t) = (hx(t)Z(t) + hv(t)v(t)) dfW (t);
e�(0) = 0; (2.35)

where e�(t) = �1(t)
�(t)

:

Lemma 3.6 Let p(�) and Z (�) be the solutions of (2.14) and (2.22) respectively. Then we
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have

Eu [p (T )Z (T )] = Eu

Z T

0

p (t) fv(t)v(t)dt+E
u

Z T

0

q(t)�v(t)v(t)dt

+Eu

Z T

0

q(t)gv(t)v(t)dt�Eu

Z T

0

Z (t) (lx (t) + bE(@�bl (t)))dt
+Eu

Z T

0

p(t)G(t)d(� � ��)(t); (2.36)

and

Eu [y (T ) e� (T )] = Eu

Z T

0

k (t) [hx(t)Z(t) + hv(t)v(t)] dt:

�Eu

Z T

0

e� (t) l(t)dt: (2.37)

Proof. By applying Itô�s formula to p (t)Z (t) and taking expectation, with Z(0) = 0; we

obtain

Eu [p (T )Z (T )] = Eu

Z T

0

p (t) dZ (t) +Eu

Z T

0

Z (t) dp (t)

+Eu

Z T

0

q(t)
h
�x(t)Z(t) + bE h@��(t) bZ(t)i+ �v(t)v(t

i
dt

+Eu

Z T

0

q(t)
h
gx(t)Z(t) + bE h@�g(t) bZ(t)i+ gv(t)v(t)

i
dt

= I1+I2+I3+I4: (2.38)
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First, from equation (2.22), we obtain

I1 = Eu

Z T

0

p (t) dZ (t)

= Eu

Z T

0

p (t)
h
fx(t)Z(t) + bE h@�f(t) bZ(t)i+ fv(t)v(t)

i
dt

+Eu

Z T

0

p(t)G(t)d(� � ��)(t)

= Eu

Z T

0

p (t) fx(t)Z(t)dt+Eu

Z T

0

p (t) bE h@�f(t) bZ(t)i dt (2.39)

+Eu

Z T

0

p (t) fv(t)v(t)dt+E
u

Z T

0

p(t)G(t)d(� � ��)(t):

We proceed to estimate I2; From equation (2.14), we have

I2 = Eu

Z T

0

Z (t) dp (t)

= �Eu

Z T

0

Z (t)
h
fx (t) p (t) + bE �@� bf (t) bp (t)�+ �x (t) q(t) + bE (@�b� (t) bq(t))

+gx (t) q(t) + bE �@�bg (t)bq(t)�+ lx (t) + bE �@�bl (t)�+ hx (t) k(t)
i
dt:

By simple computation, we get

I2 = �Eu

Z T

0

Z (t) fx (t) p (t) dt�Eu

Z T

0

Z (t) bE(@� bf (t) bp(t))dt
�Eu

Z T

0

Z (t)�x (t) q(t)dt�Eu

Z T

0

Z (t) bE(@�b� (t) bq(t))dt
�Eu

Z T

0

Z (t) gx (t) q(t)dt�Eu

Z T

0

Z (t) bE(@�bg (t)bq(t))dt (2.40)

�Eu

Z T

0

Z (t) lx (t) dt�Eu

Z T

0

Z (t) bE(@�bl (t))dt
�Eu

Z T

0

Z (t)hx (t) k(t)dt:
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Similarly, we obtain

I3 = Eu

Z T

0

q(t)�x(t)Z(t)dt+Eu

Z T

0

q(t)bE(@��(t) bZ(t))dt (2.41)

+Eu

Z T

0

q(t)�v(t)v(t)dt;

and

I4 = Eu

Z T

0

q(t)gx(t)Z(t)dt +Eu

Z T

0

q(t)bE(@�g(t) bZ(t))dt (2.42)

+Eu

Z T

0

q(t)gv(t)v(t)dt:

Thus desired result (2.36) follows immediately by substituting (2.39), (2.40), (2.41) and

(2.42) into (2.38) with the helps of Fubini�s theorem.

Now, by applying Itô�s formula to y (t) e� (t) and taking expectation, we get
Eu [y (T ) e� (T )] = Eu

Z T

0

y (t) de� (t) +Eu

Z T

0

e� (t) dy (t)
+Eu

Z T

0

k (t) (hx(t)Z (t) + hv(t)v(t)) dt (2.43)

= J1 + J2 + J3:

From (2.35), we have

J1 = Eu

Z T

0

y (t) de� (t)
= Eu

Z T

0

y (t) (hx(t)Z(t) + hv(t)v(t)) dfW (t); (2.44)

which is a martingale with zero expectation. Moreover, by a simple computations, we get

J2 = Eu

Z T

0

e� (t) dy (t) = �Eu

Z T

0

e� (t) l(t)dt; (2.45)
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and

J3 = Eu

Z T

0

k (t) [hx(t)Z(t) + hv(t)v(t)] dt: (2.46)

Finally, substituting (2.44), (2.45), (2.46), into (2.43), the desired result (2.37) ful�lled.

This completes the proof of Lemma 3.6. �

Proof of Theorem 3.1. Since p (T ) =  x(x (T ) ;Px(T ))+ bE �@� (bx (T ) ;Px(T );x(T ))� and
y (T ) =  x(x (T ) ;Px(T )); then from Lemma 3.5, we have

0 � E
Z T

0

h
�1 (t) l(t) + � (t) lx(t)Z (t) + �(t)bE [@�l(t)]Z(t) + �(t)lv(t)v(t)

i
dt

+E [�1 (T ) y(T )] +E [� (T ) p (T )Z (T )]

+E

Z
[0;T ]

� (t)M(t)d (� � ��) (t): (2.47)

Substituting (2.36) and (2.37) of Lemma 3.6 into (2.47), and since

E [�1 (T ) y(T )] = E [� (T ) e� (T ) y(T )] = Eu [y (T ) e� (T )] ;
E [� (T ) p (T )Z (T )] = Eu [p (T )Z (T )] ;

E

Z
[0;T ]

� (t)M(t)d (� � ��) (t) = Eu

Z
[0;T ]

M(t)d (� � ��) (t);

we get,

0 � E
Z T

0

�(t) [p (t) fv(t) + q (t)�v(t) + q (t) gv(t) +K(t)hv (t) + lv(t)] v(t)dt

+E

Z
[0;T ]

� (t) (M(t) + p(t)G(t))d (� � ��) (t):

This completes the proof of Theorem 3.1. �
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2.4 Partially observedMcKean-Vlasov singular linear

quadratic control problem

In this section, to illustrate our theoretical results we study partially observed optimal

singular control problem for Mckean-Vlasov linear quadratic control problem, where the

stochastic system is described by linear McKean-Vlasov stochastic di¤erential equations

with correlated noisy between the system and the observation.and the cost is described by

a quadratic function. By applying our stochastic maximum principle established in Sect.

3 and classical �ltering theory, we obtain an explicit expression of the optimal control

represented in feedback form involving both controlled state process as well as its law

represented by its expectation, via the solutions of ordinary di¤erential equations (ODEs).

Consider the following partially observed control system

8>>>>><>>>>>:
dxv;� (t) = f

�
t; xv;� (t) ;Pxv;�(t); v (t)

�
dt+ �

�
t; xv;� (t) ;Pxv;�(t); v (t)

�
dW (t)

+g
�
t; xv;� (t) ;Pxv;�(t); v (t)

�
dfW (t) +G(t)d�(t);

xv;� (0) = x0; t 2 [0; T ] ;

(2.48)

where the coe¢ cients are given by

f
�
t; xv (t) ;Pxv(t); v (t)

�
= A1 (t)x (t) + A2 (t)E (x (t)) + A3(t)v (t) ;

�
�
t; xv (t) ;Pxv(t); v (t)

�
= A4 (t) ;

h(t; xv (t) ; v (t)) = A5 (t) ;

 (x (t) ;Px(t)) = N(t)x2 (t)

g � 0;

with an observation 8><>:
dY (t) = A5 (t) dt+ dfW (t) ;

Y (0) = 0;

(2.49)
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and the quadratic cost functional J (�; �) has the form

J (v (�) ; � (�)) = Eu

�Z T

0

� (t) v2 (t) dt+N(T )x2 (T )

�
: (2.50)

Here, the coe¢ cients A1 (�) ; A2 (�) ; A3 (�) ; A4 (�) ; A5 (�) ; � (�) and N (�) are bounded

continuous deterministic functions and N(T ) � 0. For any (v (�) ; � (�)) 2 AY1 �AY2 ([0; T ]),

equations (2.48) and (2.49) have a unique solutions respectively. Our goal is to �nd an

explicit optimal observed control to minimize the cost functional J (v (�) ; � (�)) over AY1 �

AY2 ([0; T ]), subject to (2.48) and (2.49). From (2.12) the Hamiltonian function H :

H(t; x; v; p; q; q) = [A1 (t)x (t) + A2 (t)E [x (t)] + A3 (t) v (t)] p (t) + A4 (t) q (t) (2.51)

+ A5 (t) k(t) + � (t) v2 (t) ;

From (2.51), then by a simple computational, we have

Hv(t; x; u; p; q; q) = A3 (t) p(t) + 2�(t)u(t):

By applying Theorem 3.1 , and from the linearity of the conditional expectation, the

optimal observed control satis�es the following expression

bu (t) = �A3 (t)
2� (t)

E
�
p (t) j FY

t

�
; (2.52)

E
�
p (t) j FY

t

�
is conditional expectation of p (t) with respect to FY

t ; and (p (�) ; q (�) ; q (�))

is the solution of the following BSDE

8>>>>>><>>>>>>:

�dp (t) = [A1 (t) p (t) + A2 (t)E [p (t)]] dt

�q(t)dW (t)� q(t)dfW (t);
p (T ) = 2N(T )x (T ) :

(2.53)
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We note that the conditional expectationE
�
p (t) j FY

t

�
is a random process,FY

t �measurable

for any t 2 [0; T ] :

The �ltering estimates for optimal trajectories. We obtain the explicit expression of the

optimal observed control in (2.52) via the �ltering method with some proprieties of condi-

tional expectation E
�
� j FY

t

�
. From Liptser and Shiryayev [62, Theorems 8.1], Wang et

al., [86, Theorem 3.1], and since fW (�) is FY
t �measurables, fW (�) is independant toW (�) ;

we obtain the following �ltering equations :

8>>>>>><>>>>>>:

dbx (t) = hA1 (t) bx (t) + A2 (t)E [bx (t)]� A23(t)

2�(t)
bp (t)i dt

�dbp (t) = [A1 (t) bp (t) + A2 (t)E [bp (t)]] dt� bq (t) dfW (t) ;

bx (0) = x0; bp (T ) = 2N(T )bx (T ) ; bq (t) = 0;
(2.54)

where bz (t) =Eu
�
z (t) j FY

t

�
is the �ltering estimate of the random state process z (t)

depending on the observable �ltration FY
t ; for z = x; p; q. Moreover, the random process

Eu
�
z (t) j FY

t

�
is FY

t �measurable for any t 2 [0; T ] ; such that

Z
A

Eu
�
z (t) j FY

t

�
(w) dPu (w) =

Z
A

z (t) dPu (w) ; 8A 2 FY
t :

Now, for this purpose and to solve the above equation (2.54), noting the terminal condition

of (2.54), we conjecture the observed adjoint process bp (�) of the form
bp (t) = '1 (t) bx (t) + '2 (t)E [bx (t)] ; (2.55)

where '1 (�) and '2 (�) are deterministic di¤erential functions. Now, we derive equation
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(2.55) by comparing it with equation (2.54), we obtain

� [A1 (t) ('1 (t) bx (t) + '2 (t)E [bx (t)]) + A2 (t)E ['1 (t) bx (t) + '2 (t)E [bx (t)]]]
= _'1 (t) bx (t) + _'2 (t)E [bx (t)]
+ '1 (t)

�
A1 (t) bx (t) + A2 (t)E [bx (t)]� A23 (t)

2� (t)
('1 (t) bx (t) + '2 (t)E [bx (t)])�

+ '2 (t)

�
(A1 (t) + A2 (t))E [bx (t)]� A23 (t)

2� (t)
E ['1 (t) bx (t) + '2 (t)E [bx (t)]]� : (2.56)

By comparing the coe¢ cients of bx (t) and E[bx (t)] in equation (2.56), we have the following
ordinary di¤erential equations (ODEs) :

8>><>>:
_'1 (t) + 2A1 (t)'1 (t)� A23(t)

2�(t)
'21 (t) = 0;

'1 (T ) = 2N(T );

(2.57)

and 8>>>>>><>>>>>>:

_'2 (t) + 2 (A1 (t) + A2 (t))'2 (t) + 2A2 (t)'1 (t)

� A23(t)

�(t)
'1 (t)'2 (t)� A23(t)

2�(t)
'22 (t) = 0;

'2 (T ) = 0:

(2.58)

Note that equations (2.57) and (2.58) are Bernoulli type equation and Riccati type equa-

tion respectively.

To solve (2.57) and (2.58), we can use the similar method in [59, Sect. 4]. Then, the

optimal continuous control for the problem (2.50) is given in the feedback form

bu (t) = bu (t; bx(t)) = �A3 (t)
2� (t)

['1 (t) bx (t) + '2 (t)E [bx (t)]]; (2.59)

where '1 (�) ; and '2 (�) determined by (2.57) and (2.58) respectively.
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Let ��(�) satis�es the maximum condition (2.52), we get : for any �(�) 2 AY2 ([0; T ]) :

Eu

�Z
[0;T ]

(M(t) +G(t)p(t))d��(t) j FY
t

�
(2.60)

� Eu

�Z
[0;T ]

(M(t) +G(t)p(t))d�(t) j FY
t

�
:

Now, we de�ne a set U � [0; T ]� 
 such that

U = f(t; w) 2 [0; T ]� 
 :M(t) +G(t)bp(t) > 0g ; (2.61)

where bp(t) is the adjoint process corresponding to optimal observed control bu(�): Let �(�) 2
AY2 ([0; T ]) such that

d�(t) =

8><>:
0 : if (t; w) 2 U;

db�(t) : if (t; w) 2 U; (2.62)

where U is the complement of the set U. We denote by 1U (�; �) the indicator function of

U. Then from (2.15), we obtain

0 � Eu

Z
[0;T ]

(M(t) +G(t)bp(t))d(�(t)� b�(t))
= Eu

Z
[0;T ]

(M(t) +G(t)bp(t))1U(t; w)d(� � b�)(t)
+Eu

Z
[0;T ]

(M(t) +G(t)bp(t))1U(t; w)d(� � b�)(t):
From (2.62), and since

Eu

Z
[0;T ]

(M(t) +G(t)bp(t))1U(t; w)d(� � b�)(t) = 0;
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we have

0 � Eu

Z
[0;T ]

(M(t) +G(t)bp(t))d(�(t)� b�(t))
= Eu

Z
[0;T ]

(M(t) +G(t)bp(t))1U(t; w)d(�b�)(t)
= �Eu

Z
[0;T ]

(M(t) +G(t)bp(t))1U(t; w)db�(t):
This shows that b�(�) satis�es for any t 2 [0; T ] :

Eu

Z
[0;T ]

(M(t) +G(t)bp(t))1U(t; w)db�(t) = 0:
From (2.61) and (2.62), we can easy shows that the optimal observed singular control b�(�)
has the form : b�(t) = �(t) +

Z t

0

1U(s; w)ds; t 2 [0; T ] :

Finally, we give the explicit optimal observed continuous-singular in feedback form by :

bu (t; bx(t)) = �A3 (t)
2� (t)

['1 (t) bx (t) + '2 (t)E [bx (t)]];
b�(t) = �(t) +

Z t

0

1U(s; w)ds; t 2 [0; T ]

where '1(�) and '2(�) are given by (2.57), (2.58) respectively. This completes the proof.�
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Chapitre 3

Pointwise second-order stochastic

maximum principle for optimal

continuous-singular control

3.1 Introduction

In this chapter, we study a stochastic optimization problem. We establish a second-

order necessary conditions for optimal continuous-singular stochastic control, where the

systems is governed by nonlinear controlled Itô stochastic di¤erential systems. The control

process has two components, the �rst being absolutely continuous and the second is a boun-

ded variation, non decreasing continuous on the right with left limits. Pointwise second

order maximum principle in terms of the martingale with respect to the time variable is

proved. The control domain is assumed to be convex.

In this chapter, the continuous control variable enters into both the drift and the di¤u-

sion coe¢ cients of the control systems. Our result is proved by using a classical variational

techniques, stochastic calculs under some convexity conditions.
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Throughout this thesis, (
;F ;F; P ) be a complete �ltered probability space, on which

a d-dimensional Brownian motion W (�) is de�ned such that F = fFtg0�t�T is the natural

�ltration generated by W (�) augmented by all the P -null sets. In this work, we study

pointwise optimal stochastic singular control problem for systems governed by nonlinear

controlled stochastic di¤erential equations (SDEs) allowing both classical and singular

control of the form : t 2 [0; T ]

8><>:
dxu;�(t) = f

�
t; xu;�(t); u(t)

�
dt+ �

�
t; xu;�(t); u(t)

�
dW (t) +G(t)d�(t);

xu;�(0) = x0:

(3.1)

The expected cost to be minimized over the class of admissible controls has the form

J (u(�); �(�)) = E
�
h(xu;�(T )) +

Z T

0

`(t; xu;�(t); u(t))dt +

Z
[0;T ]

M(t)d�(t)

�
: (3.2)

Here the control variable is a pair (u(�); �(�)) of measurable A1 � A2-valued, F�adapted

processes, where A1 is a closed convex subset of Rm and A2 := [0;1)m such that �(�) is

of bounded variation, nondecreasing continuous on the right with left limits. The process

xu;� (�) is the state variable valued in Rn associated to (u(�); �(�)) : This construction allows

us to de�ne integrals of the form
R
[0;T ]

G(t)d�(t) and
R
[0;T ]

M(t)d�(t).

The maps

f : [0; T ]� Rn�A1! Rn;

� : [0; T ]� Rn�A1!Mn�d(R);

` : [0; T ]� Rn � A1! R;

h : Rn ! R;

G : [0; T ]� 
! R

M : [0; T ]� 
! [0;1)m
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are given functions.

Denote by A1 �A2 ([0; T ]) the set of B ([0; T ])
F-measurable and F-adapted stochastic

processes valued in A1 � A2. Any (u(�); �(�)) 2 A1 � A2 ([0; T ]) is called an admissible

control.

The stochastic optimal control problem considered in this paper is to �nd a couple of

adapted processes (u�(�); ��(�)) 2 A1 �A2 ([0; T ]) such that

J (u�(�); ��(�)) = inf
(u(�);�(�))2A1�A2([0;T ])

J (u(�); �(�)) : (3.3)

Any admissible control (u�(�); ��(�)) 2 A1�A2 ([0; T ]) satisfying (3.3) is called an optimal

control. The corresponding state x�(�) is called an optimal state, and (x�(�); u�(�); ��(�)) is

called an optimal solution of the control problem (3.1)-(3.3).

Stochastic control problems in which the systems are governed by a nonlinear controlled

Itô stochastic di¤erential equation have been studied extensively in the last two decades,

both by the dynamic programming method and by the Pontryagin maximum principle.

Maximum principle is a powerful tool to investigate optimal stochastic control problems.

Stochastic singular control problems have received considerable attention in the literature.

The �rst version of maximum principle for singular stochastic control problem has been

derived by Cadenillas and Haussmann [19]. Su¢ cient conditions for existence of optimal

singular control and the connection between the singular control and optimal stopping pro-

blems have been investigated by Dufour and Miller [25]. Necessary conditions for general

optimal singular stochastic control problems have been derived by Dufour and Miller [26].

Maximum principle for optimal stochastic singular stochastic control was investigated by

many authors. Under partial-information, optimal singular control problem for mean-�eld

stochastic di¤erential equations driven by Teugels martingales measures has been stu-

died in Hafayed et al. [48]. Necessary and su¢ cient conditions for near-optimal mean-�eld

stochastic singular control have been established in [33]. The �rst-order local maximum
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principle for singular optimal control for mean-�eld SDEs has been derived in Hafayed [39].

Maximum principle for optimal singular control problem for general controlled nonlinear

McKean-Vlasov SDEs has been obtained by Hafayed et al [32]. A class of solvable singular

stochastic control problems have been studied in Alvarez [6]. Singular stochastic control

problem for linear di¤usions and optimal stopping have been derived by Alvarez [4]. A

various maximum principles for optimal regular control with applications to �nance can

be found in Wang and Wu [85], and the book by Zhou and Yong [92]. An extensive list

of references to the stochastic singular control problem, called also intervention control,

in which the optimal control has both absolutely continuous and singular components,

with some applications to �nance and economics can be found in [33, 55, 69, 73]. Some

examples on singular stochastic control have been obtained in Shreve [80].

A pointwise second-order maximum principle for stochastic optimal controls was esta-

blished by Zhang and Zhang [95] where both drift and di¤usion terms may contain the

control variable, and the control domain is assumed to be convex. The method was further

developed in Zhang and Zhang [96] to derive a general pointwise second-order maximum

principle, where the control domain is not assumed to be convex. First and second-order

necessary conditions for stochastic optimal controls have been studied by Frankowska et

al. [30] and Bonnans, Silva [17]. A second-order maximum principle for singular optimal

control for SDEs with uncontrolled di¤usion coe¢ cient has been obtained by Tang [81].

Second-order maximum principle for optimal control with recursive utilities has been ob-

tained by Dong and Meng [27]. A second-order necessary conditions for singular optimal

controls with recursive utilities of stochastic delay systems have been proved by Huo and

Meng [53]. Second-order necessary conditions for singular optimal controls with recursive

utilities of mean-�eld control systems have been investigated in Huo and Meng [54].

In this work, we establish second-order necessary conditions for optimal continuous-

singular control problem. The control region is necessary convex. A pointwise second-

order maximum principle in terms of the martingale with respect to the time variable
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is proved. Variational techniques, some Lebesgue theorems in di¤erentiations, measure

and integrations, with some appropriate estimates are applied to derive our results. Our

continuous-singular control problem under studied provides also an interesting models in

many applications such as economics and mathematical �nance.

This work extends the results obtained in Zhang and Zhang [95] to a class of continuous-

singular stochastic control problems. The main novelty of our work is that under some

assumptions, we provide pointwise second-order necessary conditions which are new for

the stochastic continuous-singular case and are natural extension of their deterministic

counterparts. When the �rst-order necessary conditions of optimality are singular in some

sense, the second-order necessary conditions will come naturally. The second-order maxi-

mum principle established in this paper can be used to choose the candidates from the

singularity of our stochastic controls for optimal ones.

Usually, in order to derive the second-order maximum principle for optimality, one

needs to assume that the �rst-order condition degenerates in some sense. In our class of

second-order stochastic control problem, there are two types of singularity :

1. A singularity in the control variable ; where the control variable has two components

(u(�); �(�)), the �rst u(�) being absolutely continuous and the second �(�) is singular. This

singularity come since d�(t) may be singular with respect to Lebesgue measure dt: More

precisely �(�) is of bounded variation, non-decreasing continuous on the right with left

limits (see De�nition 2.1).

2. Following the ideas considered in [27, 53, 54, 95, 96], and in order to derive a

second-order necessary conditions, one needs to assume that the �rst order condition

degenerates in some sense. So we de�ne a new type of singularity ; in the classical sense

for the continuous control part and in maximum principle sense for the singular part of

the control, (see De�nition 2.2).

Organization : The rest of the chapter is organized as follows. The formulation of the

mixed control problem, and basic notations are given in Section 2. In Sections 3 and 4, we
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prove our main results. The �nal section concludes the chapter and outlines some of the

possible future developments.

3.2 Assumptions and Problem Statement

Let us formulate the optimal mixed control. Let T be a �xed strictly positive real num-

ber and (
;F ;F; P ) be a complete �ltered probability space satisfying the usual conditions

in which one-dimentional Brownian motion W (t) = fW (t) : 0 � t � Tg and W (0) = 0 is

de�ned, where F = fFtgt2[0;T ] is the natural �ltration generated by W (�); augmented by

all the P -null sets.

Let A1 be a closed convex and bounded subset of R and A2 := [0;1)m : Let A1 ([0; T ])

be the class of B([0; T ])
F measurable, F�adapted processes u(�) : [0; T ]�
! A1 and

A2 ([0; T ]) is the class of B([0; T ])
F-measurable, F�adapted processes �(�) : [0; T ]�
!

A2.

We give here the precise de�nition of the continuous-singular control.

De�nition 2.1. An admissible continuous-singular control is a pair (u(�); �(�)) of mea-

surable A1 � A2�valued, F�adapted processes, such that �(�) is of bounded variation,

non-decreasing continuous on the right with left limits and �(0�) = 0: Moreover,

E

"
sup
t2[0;T ]

ju(t)j2 + j�(T )j2
#
<1:

Notice that the jumps of a singular control �(�) at any jumping time �j denote by

��(�j) := �(�j)� �(�j�):

We should note that since d�(t) may be singular with respect to Lebesgue measure dt;

we call �(�) the singular part of the control and the process u(�) its absolutely continuous

part.
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Notations. In this subsection, we introduce some notation which will be used in what

follows. We denote by B(F ) : the Borel ���eld of a metric space F . Let ' : [0; T ]�Rn �

A1 ! Rd be a given function. We denote by 'x (t; x; u) and 'u (t; x; u) respectively, the

�rst-order partial derivatives of ' with respect to x and u at (t; x; u), by '(x;u)2 (t; x; u)

the Hessian of ' with respect to (x; u) at (t; x; u) and by 'xx (t; x; u) ; 'xu (t; x; u) ; and

'uu (t; x; u) the second-order partial derivatives of ' at (t; x; u) :We denote A1�A2 ([0; T ])

the set of all admissible controls. We denote by L2F ([0; T ] ;R) : the space of R-valued,

B([0; T ])
F-measurable, F-adapted processes  such that

k kL2F([0;T ];R) :=
�
E

�Z T

0

j (t)j2 dt
�� 1

2

<1:

Assumptions. Usually, one has to impose more regularity on the data for the second-

order necessary conditions than that for the �rst-order ones. The following assumptions

will be in force throughout this paper.

Assumption (H1) The functions f; �; g and h satisfy the following conditions : for any

(x; u) 2 Rn �A1, the function f (�; x; u) : [0; T ]�
! Rn and � (�; x; u) : [0; T ]�
! Rn

are B([0; T ])
F measurable and F�adapted. The functions f (t; �; �) : Rn�A1 ! Rn and

� (t; �; �) : Rn � A1 ! Rn are continuously di¤erentiable up to the second order, and all

their partial derivatives are uniformly bounded. There exists a constant C > 0 such that

for a.e. (t; w) 2 [0; T ]� 
 and for any x; y 2 Rn and u; v 2 A1;

jf (t; 0; u)j+ j� (t; 0; u)j � C;

jf (t; x; u)� f (t; y; u)j+ j� (t; x; u)� � (t; y; u)j � C jx� yj ;���f(x;u)2 (t; x; u)� f(x;u)2 (t; y; v)
��� � C (jx� yj+ ju� vj) ;����(x;u)2 (t; x; u)� �(x;u)2 (t; y; v)
��� � C (jx� yj+ ju� vj) :

Assumption (H2) For any (x; u) 2 Rn�A1, the function ` (�; x; u) : [0; T ]�
! R is

B([0; T ])
F measurable and F�adapted, and the random variable h(x) is FT -measurable.
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For a.e. (t; !) 2 [0; T ] � 
, the functions `(t; �; �) : Rn � A1 ! R and h(�) : Rn ! R are

continuously di¤erentiable up to the second order, and for any x; y 2 Rn and u; v 2 A1;

j`(t; x; u)j � C(1 + jxj2 + juj2);

j`x(t; x; u)j+ j`u(t; x; u)j � C(1 + jxj+ juj);���`(x;u)2 (t; x; u)� `(x;u)2 (t; y; v)
��� � C (jx� yj+ ju� vj) ;

j`xx(t; x; u)j+ j`xu(t; x; u)j+ j`uu(t; x; u)j � C;

and

jh(x)j � C(1 + jxj2); jhx(x)j � C(1 + jxj);

jhxx(x)j � C; jhxx(x)� hxx(y)j � C jx� yj :

Assumption (H3) The functions G (�) : [0; T ]�
! R; and M (�) : [0; T ]�
! R+

are continuous and bounded.

We note that the nonlinear controlled stochastic di¤erential equation (??) occur naturally

in the probabilistic analysis of �nancial optimization problems, see [6, 55, 69, 73] and the

references cited therein. Under assumptions (H1), (H2) and (H3), Eq-(3.1) has a unique

strong solution. By standard arguments it is easy to show that for any k > 0, it holds that

E( sup
t2[0;T ]

��xu;�(t)��k) < Ck;

where Ck is a constant depending only on k: Moreover, the cost functional (3.2) is well

de�ned on A1 �A2 ([0; T ]) :

Remark 2.1 In order not to over complicate the already notational heavy presenta-

tion of this paper, in what follows we shall assume all processes are one-dimensional. We

should note that the higher dimensional cases can be argued along the same lines without

substantial di¢ culties, except for even heavier notations.
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We de�ne the Hamiltonian

H (t; x; p; q) := f (t; x; u) p+ � (t; x; u) q � `(t; x; u); (3.4)

where (t; x; u; p; q) 2 [0; T ]�R�A1�R�R. We introduce respectively the following two

adjoint equations :

8><>:
dp(t) = � [fx(t)p(t) + �x(t)q(t)� `x(t)] dt + q(t)dW (t);

p(T ) = �hx (x� (T )) ;
(3.5)

and 8>>>>><>>>>>:
dP (t) = � [2fx(t)P (t) + 2�x(t)Q(t) + �x(t)

2P (t) +Hxx(t)]dt

+Q(t)dW (t);

P (T ) = �hxx (x� (T )) ;

(3.6)

where

Hxx(t) = Hxx(t; x(t); u(t); p(t); q(t)) = fxx (t; x; u) p(t) + �xx (t; x; u) q(t)� `xx(t; x; u):

It is easy to prove that under assumptions (H1)-(H2), the BSDEs (3.5) and (3.6) admits

a unique strong F�adapted solution (p(t); q(t)) and (P (t); Q(t)) respectively,

p(t) = �hxx (x� (T ))�
Z T

t

[fx(s)p(s) + �x(s)q(s)� `x(s)] ds +

Z T

t

q(s)dW (s);

and

P (t) = �hxx (x� (T ))�
Z T

t

�
2fx(s)P (s) + 2�x(s)Q(s) + �x(s)

2P (s) +Hxx(s)]ds

+

Z T

t

Q(s)dW (s);
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which satis�es

E

"
sup
t2[0;T ]

jp(t)j2 +
Z T

0

jq(t)j2 dt
#
<1;

E

"
sup
t2[0;T ]

jP (t)j2 +
Z T

0

jQ(t)j2 dt
#
<1:

Remark 2.2 Since the coe¢ cients G (�) andM (�) are not related to x(�); then the adjoint

process (p (�) ; q (�)) and (P (�) ; Q (�)) are independent to singular control �(�), and it is

readily seen that the adjoint equations (3.5) and (3.6) coincides with [95, Eqs-(3.5), (3.6)].

Also, we de�ne

K (t; x; u; p; q; P;Q) := Hxu (t; x; u; p; q) + fu (t; x; u)P (t) (3.7)

+ �u (t; x; u)Q(t) + �u (t; x; u)P (t)�x (t; x; u) ;

where (t; x; u; p; q; P;Q) 2 [0; T ]� Rn � A1 � Rn � Rn � Rn�n � Rn�n; and

Hxu (t; x; u; p; q) = fxu (t; x; u) p(t) + �xu (t; x; u) q(t)� `xu(t; x; u):

In this chapter, we denote

K (t) = K(t; x�(t); u�(t); p(t); q(t); P (t); Q(t)); t 2 [0; T ] : (3.8)

Note that the new functionK (�) is not a¤ected by the singular control � (�). This is because

the adjoint process (p(�); q(�)) and (P (�); Q(�)) are not related to � (�) : The main reason is

that the coe¢ cients G (�) andM (�) not related to x (�) : It is worth mentioning that if G (�)

and M (�) depend to x (�) everything changes and this is an open problem left unsolved.

We de�ne a new type of singularity in the classical sense for the continuous control

part and in Pontryging-type maximum principle sense for the singular part of the control.

De�nition 2.2We call (u�(�); ��(�)) 2 A1�A2 ([0; T ]) a singular if the pair (u�(�); ��(�))
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satis�es 8>>>>><>>>>>:
Hu(t; x�(t); u�(t); p�(t); q�(t)) = 0; a:s: a:e:t 2 [0; T ] ;

Huu(t; x�(t); u�(t); p�(t); q�(t)) + P�(t)�u (t; x�(t); u�(t))
2 = 0;

a:s: a:e: t 2 [0; T ] ;

(3.9)

E

Z
[0;T ]

(M(t)� p�(t)G(t)) d�(t) = E

Z
[0;T ]

(M(t)� p�(t)G(t)) d��(t); (3.10)

for any � (�) 2 A2 ([0; T ]) : Here x�(t) = xu�;��(t) is the state with respect to (u�(�); ��(�))

and (p�(�); q�(�)), (p�(�); q�(�)) are the adjoint processes given respectively by (3.5) and

(3.6) associated to (u�(�); ��(�)). If (u�(�); ��(�)) is also optimal, satis�es (3.5), then we call

it a singular optimal control.

Other type of singularity have been studied by some authors. Singularity in classical

sense has been considered in [54, De�nition 2.4] and [95, De�nition 3.3], singularity in

Pontyagin-type maximum principle sense has been investigated in [96, De�nition 3.2] and

partially singular control in classical sense in [30, De�nition 4.1].

3.3 Second-order maximum principle in integral form

In this section, our aim is to establish second-order necessary conditions in integral form

for optimality satis�ed by an optimal mixed control, where the system evolves according

to nonlinear controlled SDEs. We are now ready to state the main theorem of the paper.

Theorem 3.1 (Second-order necessary condition). Let assumptions (H1), (H2) and

(H3) hold. If (u� (�) ; ��(�)) is an optimal stochastic control that satisfy (3.9), then we have

E

Z T

0

K(t)Y (t)(u (t)� u� (t))dt+E

Z
[0;T ]

Y (t)P (t)G(t)d(� � ��) (t) � 0; (3.11)

E

Z
[0;T ]

(M(t)� p(t)G(t)) If(w;t)2
�[0;T ]:(M(t)�p(t)G(t))�0gd�
�(t) = 0: (3.12)
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for any (u (�) ; � (�)) 2 A1 �A2 ([0; T ]) ; where K(t) is given by equation (3.7).

To prove our main result, the approach that we use is based on a double perturbation

of the optimal continuous-singular control. This perturbation is described as follows :

Let (x�(�); u�(�); ��(�)) be an optimal solution and (u(�); �(�)) 2 A1 � A2 ([0; T ]) be any

given admissible control. Let " 2 (0; 1), and write

u"(�) = u�(�) + "v(�) where v(�) = u(�)� u�(�); (3.13)

and

�"(t) = ��(t) + " (�(t)� ��(t)) where �(t) = �(t)� ��(t): (3.14)

where " a su¢ ciently small " > 0. Denote by x" = xu
";�" the state of (3.1) with respect to

(u"(�); �"(�)), and put 4x(�) = x"(�)� x�(�).

For simplicity, we let for ' = f; �; g :

'x(t) = 'x (t; x
�(t); u�(t)) ;

'u (t) = 'u (t; x
�(t); u�(t))

'xu(t) = 'xu (t; x
�(t); u�(t)) ;

'xx(t) = 'xx (t; x
�(t); u�(t)) ;

'uu(t) = 'uu (t; x
�(t); u�(t))

We introduce the following two variational equations : t 2 [0; T ]

8>>>>>>>><>>>>>>>>:

dY (t) = [fx(t)Y (t) + fu(t)v(t)] dt

+ [�x(t)Y (t) + �u(t)v(t)] dW (t)

+G(t)d�(t);

Y (0) = 0:

(3.15)
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Here Y (�) is called the �rst-order variational process, which is depend explicitly to singular

control. Since the coe¢ cients fx; �x; fu; �u and G are bounded, then the linear stochastic

di¤erential equation (3.15) admits a unique F-adapted strong solution such that

Y (t) =

Z t

0

[fx(s)Y (s) + fu(s)v(s)] ds+

Z t

0

[�x(s)Y (s) + �u(s)v(s)] dW (s)

+

Z
[0;t]

G(s)d�(s);

which satis�es the following estimate

E( sup
t2[0;T ]

jY (t)jk) � Ck: (3.16)

Second-order variational equation :

8>>>>><>>>>>:
dZ (t) = [fx(t)Z(t) + fxx(t)Y (t)

2 + 2fxu(t)v(t)Y (t) + fuu(t)v(t)
2] dt

+ [�x(t)Z(t) + �xx(t)Y (t)
2 + 2�xu(t)v(t)Y (t) + �uu(t)v(t)

2] dW (t) ;

Z(0) = 0:

(3.17)

Here the process Z (�) is called the second-order variational process. Moreover, similar to

[95, Proposition 3.1], equation (3.17) admits a unique F-adapted strong solution

Z (t) =

Z t

0

�
fx(s)Z(s) + fxx(s)Y (s)

2 + 2fxu(s)v(s)Y (s) + fuu(s)v(s)
2
�
ds

+

Z t

0

�
�x(t)Z(s) + �xx(s)Y (s)

2 + 2�xu(s)v(s)Y (s) + �uu(s)v(s)
2
�
dW (s) :

such that : for any k � 1 we have

E( sup
t2[0;T ]

jZ(t)jk) � Ck: (3.18)
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We note that unless speci�ed, for each k 2 R+, we denote by Ck > 0 a generic positive

constant depending only on k, which may vary from line to line.

We shall establish some fundamental estimates that will play the crucial roles in our

discussion.

Proposition 3.1 Let assumptions (H1), (H2) and (H3) hold. Then, for any k � 1 the

following estimates hold :

E( sup
t2[0;T ]

jx"(t)� x�(t)j2k) � Ck"
2k; (3.19)

E

"
sup
t2[0;T ]

jx"(t)� x�(t)� "Y (t)j2k
#
� Ck"

4k; (3.20)

E

"
sup
t2[0;T ]

����x"(t)� x�(t)� "Y (t)� "2

2
Z(t)

����2k
#
� Ck"

6k: (3.21)

Proof. Let x�(�) and x"(�) be the trajectory of (3.1) corresponding to u�(�) and u"(�)

resp. Let Y (�) and Z(�) be the solution of �rst and second order adjoint equations (3.15)-

(3.17) corresponding to u�(�).

Proof of (3.19) : Let k = 1: By a simple computation, we have

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
� CE

"
sup
0�t�T

����Z t

0

[f (s; x"(s); u"(s))� f (s; x�(s); u�(s))] ds

����2
#

+ CE

"
sup
0�t�T

����Z t

0

[� (s; x"(s); u"(s))� � (s; x�(s); u�(s))] dW (s)

����2
#

+ CE

����Z
[0;t]

G(s)d (�" � ��) (s)

����2 ;
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by Burkholder-Davis-Gundy inequality, we get

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
� CE

Z t

0

jf (s; x"(s); u"(s))� f (s; x�(s); u�(s))j2 ds

+ CE

Z t

0

j� (s; x"(s); u"(s))� � (s; x�(s); u�(s))j2 ds

+ CE

����Z
[0;t]

G(s)d (�" � ��) (s)

����2 ;
by assumption (H1) and the Lipschitz conditions on the coe¢ cients f; � with respect to

x; �; we get

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
� CTE

Z t

0

sup
�2[0;s]

jx"(�)� x�(�)j2 ds

+ CE

����Z
[0;t]

G(s)d (�" � ��) (s)

����2 ;
by assumption (H3), and since �"(t)� ��(t) = " (�(t)� ��(t)) ; we deduce

E( sup
0�t�T

jx"(t)� x�(t)j2) � CTE

Z t

0

sup
�2[0;s]

jx"(�)� x�(�)j2 ds+ CT "
2;

by applying Gronwall�s Lemma, the desired result follows. Similar for k > 1:

Proof of (3.20) : From (3.1) and (3.15) we have

jx"(t)� x�(t)� "Y (t)j2k

=

����Z t

0

[f (s; x"(s); u"(s))� f (s; x�(s); u�(s))� " [fx(s)Y (s) + fu(s)v(s)]]ds

+

Z t

0

[� (s; x"(s); u"(s))� � (s; x�(s); u�(s))� " [�x(s)Y (s) + �u(s)v(s)]]dW (s)

+

Z
[0;t]

G(s)d (�" � ��) (s)� "

Z
[0;t]

G(s)d�(s)

����2k :
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Since �(t) = �(t)� ��(t); then a straightforward calculation shows that

Z
[0;t]

G(s)d (�" � ��) (s)� "

Z
[0;t]

G(s)d�(s) = 0;

the rest of the proof is very close to Bensoussan [15, Lemma 4.1, page 26], we omit the

details.

Proof of (3.21) : From (3.1), (3.15) and (3.17), then by a straightforward calculation,

we obtain

����x"(t)� x�(t)� "Y (t)� "2

2
Z(t)

����2k
=

����Z t

0

[f (s; x"(s); u"(s))� f (s; x�(s); u�(s))� " [fx(s)Y (s) + fu(s)v(s)]

� "2

2

�
fx(s)Z(s) + fxx(s)Y (s)

2 + 2fxu(s)Y (s)v(s) + fuu(s)v(s)
2
�
]ds

+

Z t

0

[� (s; x"(s); u"(s))� � (s; x�(s); u�(s))� " [�x(s)Y (s) + �u(s)v(s)] (3.22)

� "2

2

�
�x(s)Z(s) + �xx(s)Y (s)

2 + 2�xu(s)Y (s)v(s)

+ �uu(s)v(s)
2
�
]dW (s)

��2k :
Since the right hand side of (3.22) is independent to singular control � (�), the rest of the

proof is similar to Zhang and Zhang [95, Proposition 3.1], then the desired result (3.21) is

ful�lled. This completes the proof of Proposition 3.1. �

To prove the main theorem we need the following technical Lemmas.

Lemma 3.1 Let (p; q) and (P;Q) be the solution to the adjoint equation (3.5) and

(3.6) respectively. Let Y and Z be the solutions to the �rst and second order variational

equations (3.15) and (3.17), respectively associated to (u�(�); ��(�)). Then the following
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duality relations hold :

E [hx(x
� (T ))Y (T )] (3.23)

= �E
Z T

0

[p (t) fu (t) v (t) + q(t)�u (t) v (t) + `x(t)Y (t)] dt

�E
Z
[0;T ]

p(t)G(t)d�(t);

E [hx(x
� (T ))Z (T )]

= �E [p (T )Z (T )]

= �E
Z T

0

�
p (t) fxx (t)Y

2 (t) + 2p (t) fxx (t)Y
2 (t)

+ p (t) fuu (t) v
2 (t) + q(t)�xx (t)Y

2 (t) (3.24)

+ 2q(t)�xu (t) v (t)Y (t) + q(t)�uu (t) v
2 (t)

+ `x(t)Z (t)] dt;

and

E
�
hxx(x

� (T ))Y 2 (T )
�

= �E
Z T

0

[2P (t)Y (t) fu (t) v (t) + 2P (t)�x (t)Y (t)�u (t) v (t)

+ P (t)�2u (t) v
2 (t) + 2Q (t)�u (t) v (t)Y (t)� Hxx (t)Y

2 (t)
�
dt (3.25)

�E
Z
[0;T ]

2Y (t)P (t)G(t)d�(t):

Proof.
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Proof of (3.23). By Itô�s formula to p (T )Y (T ) ; we have

E [p (T )Y (T )]�E [p (0)Y (0)] (3.26)

= E

Z T

0

p(t)dY (t) +E

Z T

0

Y (t)dp(t) +E

Z T

0

q(t)(�x(t)Y (t) + �u(t)v(t))dt

= I1 + I2 + I3:

From (3.15), we get

I1 = E

Z T

0

p(t)dY (t) (3.27)

= E

Z T

0

p(t) [fx(t)Y (t) + fu(t)v(t)] dt+E

Z
[0;T ]

p(t)G(t)d�(t);

and from (3.5), we get

I2 = E

Z T

0

Y (t)dp(t) (3.28)

= �E
Z T

0

Y (t) [p(t)fx(t) + q(t)�x(t)� `x(t)] dt:

Similarly, we have

I3 = E

Z T

0

q(t) [�x(t)Y (t) + �u(t)v(t)] dt: (3.29)

Substituting (3.27), (3.28), and (3.29) into (3.26), with the fact that Y (0) = 0; we get

E [p (T )Y (T )]

= E

Z T

0

[p (t) fu (t) v (t) + q(t)�u (t) v (t) + `x(t)Y (t)] dt

+E

Z
[0;T ]

p(t)G(t)d�(t):
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Since p(T ) = �hx (x� (T )) ; we get

E [hx(x
� (T ))Y (T )]

= �E [p (T )Y (T )]

= �E
Z T

0

[p (t) fu (t) v (t) + q(t)�u (t) v (t) + `x(t)Y (t)] dt

�E
Z
[0;T ]

p(t)G(t)d�(t);

then the desired result (3.23) is ful�lled

Proof of (3.24). By applying Itô�s formula to p (T )Z (T ) ; we have

E [p (T )Z (T )]�E [p (0)Z (0)]

= E

Z T

0

p(t)dZ(t) +E

Z T

0

Z(t)dp(t)

+E

Z T

0

q(t)
�
�x(t)Z(t) + �xx(t)Y

2(t) + 2�xu(t)Y (t)v(t) (3.30)

+ �uu(t)v
2(t)

�
dt

= J1 + J2 + J3:

From (3.17), we have

J1 = E

Z T

0

p(t)dZ(t)

= E

Z T

0

p(t)
�
fx(t)Z(t) + fxx(t)Y

2(t) + 2fxu(t)Y (t)v(t) (3.31)

+ fuu(t)v
2(t)

�
dt:
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From (3.5), it is easy to show that

J2 = E

Z T

0

Z(t)dp(t)

= �E
Z T

0

Z(t) [p(t)fx(t) + q(t)�x(t)� `x(t)] dt; (3.32)

and similarly, we get

J3 = E

Z T

0

q(t)
�
�x(t)Z(t) + �xx(t)Y

2(t) + 2�xu(t)Y (t)v(t) (3.33)

+ �uu(t)v
2(t)

�
dt:

Combining (3.31), (3.32), and (3.33) into (3.30), with the fact that Z(0) = 0; we get

E [p (T )Z (T )]

= E

Z T

0

�
p (t) fxx (t)Y

2 (t) + 2p (t) fxu (t)Y (t) v(t)

+ p (t) fuu (t) v
2 (t) + q(t)�xx (t)Y

2 (t)

+ 2q(t)�xu (t)Y (t) v (t) + q(t)�uu (t) v
2 (t)

+ `x(t)Z (t)] dt;

this completes the proof of (3.24).

Proof of (3.25). By Itô�s formula to P (t)Y 2 (t) ; we have

E
�
P (T )Y 2 (T )

�
�E

�
P (0)Y 2 (0)

�
= E

Z T

0

P (t)Y (t)dY (t) +E

Z T

0

Y (t)d(P (t)Y (t)) (3.34)

+E

Z T

0

[P (t)(�x(t)Y (t) + �u(t)v(t)) + Y (t)Q(t)] [�x(t)Y (t) + �u(t)v(t)] dt

= A1 + A2 + A3:
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A1 = E

Z T

0

P (t)Y (t)dY (t)

= E

Z T

0

P (t)Y (t) [fx(t)Y (t) + fu(t)v(t)] dt (3.35)

+E

Z
[0;T ]

P (t)Y (t)G(t)d�(t):

Analogously, we can have a similar estimate for A2:We again use Itô�s formula, we have

A2 = E

Z T

0

Y (t)d(P (t)Y (t))

= E

Z T

0

Y (t)P (t)dY (t) +E

Z T

0

Y 2(t)dP (t)

+E

Z T

0

Y (t) [Q(t) (�x(t)Y (t) + �u(t)v(t))] dt

= E

Z T

0

Y (t)P (t) [fx(t)Y (t) + fu(t)v(t)] dt+E

Z T

0

Y (t)P (t)G(t)d�(t)

�E
Z T

0

Y 2(t) [fx(t)P (t) + P (t)fx(t) + �x(t)P (t)�x(t) + �x(t)Q(t)

+ Q(t)�x(t) +Hxx(t)] dt

+E

Z T

0

Y (t) [Q(t) (�x(t)Y (t) + �u(t)v(t))] dt:

By simple computations, we obtain

A2 = E

Z T

0

Y (t)P (t) [fu(t)v(t)] dt+E

Z T

0

Y (t)P (t)G(t)d�(t)

�E
Z T

0

Y 2(t)
�
fx(t)P (t) + �2x(t)P (t) + �x(t)Q(t) +Hxx(t)] dt (3.36)

+E

Z T

0

Y (t)Q(t)�u(t)v(t)dt:

and it is easy to show that

A3 = E

Z T

0

[P (t)�x(t)Y (t) + P (t)�u(t)v(t) + Y (t)Q(t)] [�x(t)Y (t) + �u(t)v(t)] dt: (3.37)
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Now, by substituting (3.35), (3.36), and (3.37) into (3.34), with the fact that Y (0) = 0;

we get

E
�
P (T )Y 2 (T )

�
= E

Z T

0

[P (t) fu (t)Y (t) v (t) + P (t) fu (t)Y (t) v (t)

+ P (t)�x (t)�u (t)Y (t) v (t) + P (t)�u (t)�x (t)Y (t) v (t) (3.38)

+ P (t)�2u (t) v
2 (t) +Q (t)�u (t)Y (t) v (t)

+ Q (t)Y (t)�u (t) v (t)�Hxx (t)Y
2 (t)

�
dt

+E

Z
[0;T ]

2Y (t)P (t)G(t)d�(t):

Finally, since P (T ) = �hxx(x� (T )); then the desired result (3.25) is ful�lled, which com-

pletes the proof of Lemma 3.1 �

To prove the main theorem we need the following technical result.

Proposition 3.2 Let assumptions (H1), (H2) and (H3) hold. Then, the following

variational equality holds : for any (u(�); �(�)) 2 A1 �A2 ([0; T ]) ;

J (u" (�) ; �"(�))� J (u� (�) ; ��(�)) (3.39)

= �E
Z T

0

�
"Hu(t)v(t) +

"2

2
Huu(t)v

2(t)

+
"2

2
P (t)�2u(t)v

2(t) + "2K (t)Y (t)v(t)
�
dt

+ "E

Z
[0;T ]

(M(t)� p(t)G(t)) d�(t)

� "2E

Z
[0;T ]

Y (t)P (t)G(t)d�(t) + o
�
"2
�
;
�
"! 0+

�
:

where Hu(t) = Hu(t; x
�; u�; p; q) and Huu(t) = Huu(t; x

�; u�; p; q); with v(�) = u(�) � u�(�)

and �(�) = �(�)� ��(�):
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Proof. From (3.2), we have

J (u" (�) ; �"(�))� J (u� (�) ; ��(�))

= E [h(x"(T )� h(x�(T )]

+E

Z T

0

[`(t; x"(t); u"(t))� `(t; x�(t); u�(t))] dt (3.40)

+E

Z
[0;T ]

M(t)d(�" � ��)(t):

Applying Taylor-Young�s formula for the function ` (t; �; �), we get

`(t; x"(t); u"(t))� `(t; x�(t); u�(t))

= `x(t; x
�(t); u�(t)) (x"(t)� x�(t))

+ `u(t; x
�(t); u�(t)) (u"(t)� u�(t)) (3.41)

+
1

2

�
`xx(t; x

�(t); u�(t)) (x"(t)� x�(t))2 + `uu(t; x
�(t); u�(t)) (u"(t)� u�(t))2

+ 2`xu(t; x
�(t); u�(t)) (x"(t)� x�(t)) (u"(t)� u�(t))] :

Substituting (3.41) into (3.40), we obtain

J (u" (�) ; �"(�))� J (u� (�) ; ��(�)) (3.42)

= E

Z T

0

�
`x(t)�x (t) + "`u(t)v(t) +

1

2
`xx(t)�x (t)

2

+ "`xu(t)�x (t) v(t) +
"2

2
`uu(t)v

2(t)

�
dt

+E

�
hx(x

� (T ))�x (T ) +
1

2
hxx (x

� (T )) �x (T )2
�

+E

Z
[0;T ]

M(t)d (�" � ��) (t) + o
�
"2
�
;
�
"! 0+

�
:
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From Proposition 3.1 and since �"(t)� ��(t) = " (�(t)� ��(t)) = "�(t); we deduce

J (u" (�) ; �"(�))� J (u� (�) ; ��(�))

= E

Z T

0

�
"`x(t)Y (t) +

"2

2
`x(t)Z (t) + "`u(t)v (t)

+
"2

2

�
`xx(t)Y

2 (t) + 2`xu(t)Y (t) v (t) + `uu(t)v
2 (t)

��
dt (3.43)

+E

�
"hx(x

� (T ))Y (T ) +
"2

2
hx (x

� (T ))Z (T ) +
"2

2
hxx (x

� (T ))Y 2 (T )

�
+E

Z
[0;T ]

"M(t)d�(t) + o
�
"2
�
:
�
"! 0+

�
:

Substituting (3.23), (3.24), and (3.25) into (3.43), we obtain

J (u" (�) ; �"(�))� J (u� (�) ; ��(�))

= �E
Z T

0

[" (p (t) fu (t) v (t) + q(t)�u (t) v (t) + `u(t)v (t))

+
"2

2

�
p (t) fuu (t) v

2 (t) + q(t)�uu (t) v
2 (t)

� `uu(t)v
2 (t)

�
+
"2

2
P (t)�2u (t) v

2 (t)

+ "2 (p (t) fxu (t)Y (t) v (t) + q(t)�xu (t)Y (t) v (t)

� `xu(t)Y (t) v (t) + fu(t)P (t)Y (t) v (t)

+ �u (t)�x (t)P (t)Y (t) v (t) + �u (t)Q(t)Y (t) v (t))] dt

+ "E

Z
[0;T ]

(M(t)� p(t)G(t)) d�(t)� "2E

Z
[0;T ]

Y (t)P (t)G(t)d�(t)

+ o
�
"2
�
;
�
"! 0+

�
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From (3.4), and (3.7), we get

J (u" (�) ; �"(�))� J (u� (�) ; ��(�))

= �E
Z T

0

�
"Hu(t)v (t) +

"2

2
Huu(t)v

2 (t)

+
"2

2
P (t)�2u (t) v

2 (t) + "2K(t)Y (t)v(t)
�
dt

+ "E

Z
[0;T ]

(M(t)� p(t)G(t)) d�(t)� "2E

Z
[0;T ]

Y (t)P (t)G(t)d�(t) + o
�
"2
�
;

�
"! 0+

�
:

Thus, we �nish the proof of Proposition 3.2 �

Proof of Theorem 3.1 From Proposition 3.2, we have

1

"2
[J (u" (�) ; �"(�))� J (u� (�) ; ��(�))]

= �E
Z T

0

�
1

"
Hu(t)v(t) +

1

2

�
Huu(t) + P (t)�2u(t)

�
v2(t) +K (t)Y (t)v(t)

�
dt

+
1

"
E

Z
[0;T ]

(M(t)� p(t)G(t)) d�(t) (3.44)

�E
Z
[0;T ]

Y (t)P (t)G(t)d�(t) + o
�
"2
�
;
�
"! 0+

�
:

Applying (3.3) and De�nition 2.2, we shows that

0 � lim
"!0

1

"2
[J (u" (�) ; �"(�))� J (u� (�) ; ��(�))] (3.45)

= �E
Z T

0

K(t)Y (t)v(t)dt�E
Z
[0;T ]

Y (t)P (t)G(t)d�(t);

then the desired result (3.11) is ful�lled.

Now let us turn to prove (3.12). From the singularity in (3.9) holds for any � (�) 2

A2 ([0; T ]).

E

Z
[0;T ]

(M(t)� p(t)G(t)) d(� � ��)(t) = 0:
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Let � (�) 2 A2 ([0; T ]) be de�ned by

d�(t) =

8><>:
0 if (M(t)� p(t)G(t)) � 0;

d��(t) if (M(t)� p(t)G(t)) < 0;

(3.46)

Let N a set be de�ned by

N = f(t; w) 2 [0; T ]� 
 : (M(t)� p(t)G(t)) � 0g :

This means that

d�(t) = INd�(t) + IN cd�(t) (3.47)

= If(t;w)2[0;T ]�
:(M(t)�p(t)G(t))<0g(t)d�
�(t):

By a simple computations, it is easy to see that �(�) is in A2 ([0; T ]) : Moreover, we have

0 = E

Z
[0;T ]

(M(t)� p(t)G(t)) d(� � ��)(t)

= E

Z
[0;T ]

(M(t)� p(t)G(t)) If(t;w)2[0;T ]�
:(M(t)�p(t)G(t))<0gd(�
� � ��)(t);

+E

Z
[0;T ]

(M(t)� p(t)G(t)) If(t;w)2[0;T ]�
:(M(t)�p(t)G(t))�0gd(���)(t);

then we conclude that

E

Z
[0;T ]

(M(t)� p(t)G(t)) IN (t)d�
�(t) = 0: (3.48)

This completes the proof of Theorem 3.1. �

Theorem 3.2. Let assumptions (H1), (H2) and (H3) hold. If (u� (�) ; ��(�)) is an optimal

continuous-singular stochastic control that satisfy (3.9), then for any u (�) 2 A1 ([0; T ]) and
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for any � (�) 2 A2 ([0; T ]) we have

E

Z T

0

K(t)Y (t)(u (t)� u� (t))dt � 0; (3.49)

E

Z
[0;T ]

Y (t)P (t)G(t)d�� (t) � E
Z
[0;T ]

Y (t)P (t)G(t)d� (t) ; (3.50)

where K(�) is given by equation (3.7) and Y (�) is the solution of the �rst variational

equation (3.15)

Proof The inequality (3.11) is valid for every (u (�) ; � (�)) 2 A1 � A2 ([0; T ]) : If we

choose � = �� in inequality (3.11), we see that for every measurable F�adapted process

u (�) : [0; T ]� 
! A1, the inequality

E

Z T

0

K(t)Y (t)(u (t)� u� (t))dt � 0:

holds. Then the desired result (3.49) is ful�lled.

Further, if instead we choose u = u�(t) in inequality (3.11), we see that for every

measurable F�adapted process � (�) : [0; T ]�
! A2.satis�esDe�nition 2.1, the inequality

E

Z
[0;T ]

Y (t)P (t)G(t)d(� � ��) (t) � 0: (3.51)

holds. The desired result (3.50) follows immediately from (3.51), which completes the proof

of Theorem 4.2. �

3.4 Pointwise second-order necessary condition in terms

of martingale

Our purpose in this section is to establish a pointwise second-order necessary conditions

for optimal controls. Note that the solution Y (�) to the �rst variational equation (3.15)

appears in the integral-type second-order condition (3.11).
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Lemma 4.1 The �rst variational equation (3.15) admits a unique strong solution Y (�),

which is represented by the following stochastic di¤erential equation :

Y (t) = � (t)

�Z t

0

	(s) [fu(s)� �x(s)�u(s)] v(s)ds

+

Z t

0

	(s)�u(s)v(s)dW (s) +

Z
[0;t]

	(s)G(s)d�(s)

�
; (3.52)

where � (t) is a de�ned by the following linear stochastic di¤erential equation :

8><>:
d� (t) = fx(t)� (t) dt+ �x(t)� (t) dW (s)

� (0) = 1:

(3.53)

and 	(t) its inverse.

Proof. Equation (3.15) is linear with bounded coe¢ cients, then it admits a unique

strong solution. Moreover, this solution is invertible and its inverse 	(t) = ��1 (t) given

by the following equation :

8><>:
d	(t) = [�2x(t)	(t)� fx(t)	(t)] dt� [�x(t)	(t)] dW (t)

	 (0) = 1:

(3.54)

By applying Itô�s formula to 	(t)Y (t) we get

d [	(t)Y (t)] = Y (t) d	(t) + 	(t)dY (t) + d h	(t); Y (t)i ; (3.55)

= I1 + I2 + I3;
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where

I1 = Y (t) d	(t) (3.56)

=
�
Y (t)�2x(t)	(t)� Y (t) fx(t)	(t)

�
dt

� Y (t)�x(t)	(t)dW (t);

By simple computations, we obtain

I2 = 	(t)dY (t)

= [	(t)fx(t)Y (t) + 	(t)fu(t)v(t)] dt

+ [	(t)�x(t)Y (t) + 	(t)�u(t)v(t)] dW (t) (3.57)

+	(t)G(t)d�(t);

and

I3 = d h	(t); Y (t)i (3.58)

= � [�x(t)	(t)] [�x(t)Y (t) + �u(t)v(t)] dt

Substituting (3.56), (3.57), and (3.58) into (3.55), we get

	(t)Y (t)�	(0)Y (0)

=

Z t

0

	(s) [fu(s)� �x(s)�u(s)] v(s)ds

+

Z t

0

	(s)�u(s)v(s)dW (s) +

Z
[0;t]

	(s)G(s)d�(s);

Since Y (0) = 0; and 	�1(t) = � (t) then the desired result (3.52) is ful�lled. Thus, we

�nish the proof of Lemma 4.1 �

We need the following simple lemma, proved in [95, Lemma 3.8] by applying martingale
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representation theorem.

Lemma 4.2 Let (H1)-(H2) hold. Then K (�) 2 L2F ([0; T ] ;R) and for any v 2 A1, there

exists a �v (�; t) 2 L2F ([0; t] ;R) such that

K(t)(v � u�(t)) = E [K(t)(v � u�(t))] +

Z t

0

�v (s; t) dW (s) (3.59)

a:e: t 2 [0; T ]; P � a:s:

We note that, for every k � 1 it follows from the Burkholder-Davis-Gundy and Hölder�s

inequalities that there exists a constant Ck independent of t such that

sup
t2[0;T ]

E

"�Z t

0

j�v (s; t)j2 ds
� k

2

#
� Ck:

In this section, our aim is to prove pointwise second-order maximum principle form for

optimality. The following theorem constitutes the second main contribution of the paper

Theorem 4.1. Let assumptions (H1), (H2) and (H3) hold. If (u� (�) ; ��(�)) is an optimal

continuous-singular stochastic control that satisfy (3.9), then for any (v; �) 2 A1 � A2 it

holds that

0 � E
�
K (�) fu(�)(v � u�(�))2

+ [(K (�) + P (�)(fu(�)))G(�)(v � u�(�))�(�)] (3.60)

+
�
P (�)G2(�)�2 (�)

��
+D+� (K (�)�u(�) (v � u�(�))2)

a:e: � 2 [0; T ] :

E

Z
[0;T ]

(M(t)� p(t)G(t)) If(w;t)2
�[0;T ]:(M(t)�p(t)G(t))�0gd�
�(t) = 0; (3.61)
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where K(t) is given by equation (3.7) and D+� (K (�)�u(�) (v � u�(�))2) is given by

D+� (K (�)�u(�) (v � u�(�))2)

= 2 lim
�!0+

sup
1

�2
E

Z �+�

�

Z t

�

[� (�)	 (s)�u(s)�v(s; t)(v � u�(s))] dsdt:

Here � (�) is given by (3.53), 	(�) is given by (3.54) and �v(�; �) is de�ned by (3.59).

Proof. In order to establish a pointwise second-order necessary condition from the

integral one (3.11), we need to choose the following needle variation for the optimal control

(u� (�) ; ��(�)) by the form :

(u(t); �(t)) =

8><>:
(v; ��(t) + ��(t)); t 2 E�

(u�(t); ��(t) + ��(t)); t 2 [0; T ] j E�:

(3.62)

For any (v; �) 2 A1 � A2, � 2 [0; T ), and � 2 (0; T � �), let E� = [�; � + �), and de�ne

u(�) as that in (3.62). Then v(�) = u(�)� u�(�) = (v � u�(�)) IE�(�).

We note that from Lemma 4.1, we can rewrite equation (3.52) in the form

Y (t) = � (t)

Z t

0

	(s) [fu(s)� �x(s)�u(s)] v(s)ds+ �(t)

Z t

0

	(s)�u(s)v(s)dW (s)

+ � (t)

Z
[0;t]

	(s)G(s)d�(s);

= y1(t) + � (t)

Z
[0;t]

	(s)G(s)d�(s): (3.63)

where y1(t) is de�ned as in [95, Eq-(3.21)] by the following equation :

y1(t) = � (t)

Z t

0

	(s) [fu(s)� �x(s)�u(s)] v(s)ds

+ �(t)

Z t

0

	(s)�u(s)v(s)dW (s):
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Substituting v(�) = (v � �u(�))IE�
(�) and (3.63) into (3.11), we have

0 � 1

�2
E

Z �+�

�

K (t) y1(t)(v � u�(t))dt

+
1

�2
E

Z �+�

�

K (t) � (t) (v � u�(t))

Z
[�;t]

	(s)G(s)d�(s)dt

+
1

�2
E

Z
[�;�+�]

Y (t)P (t)G(t)d(� � ��) (t) (3.64)

= I1 (�) + I2 (�) + I3 (�) ;

where

I1 (�) =
1

�2
E

Z �+�

�

K (t) y1(t)(v � u�(t))dt; (3.65)

I2 (�) =
1

�2
E

Z �+�

�

K (t) � (t) (v � u�(t))

Z
[�;t]

	(s)G(s)d�(s)dt; (3.66)

I3 (�) =
1

�2
E

Z
[�;�+�]

Y (t)P (t)G(t)d(� � ��) (t) : (3.67)

Estimate of (3.65). Using the similar arguments developed in [95, Theorem 3.10], we

obtain

lim sup
�!0+

I1 (�) =
1

2
E
�
K (�) fu(�)(v � u�(�))2

�
(3.68)

+
1

2
D+� (K (�)�u(�) (v � u�(�))2):

where

D+� (K (�)�u(�) (v � u�(�))2) (3.69)

= 2 lim
�!0+

sup
1

�2
E

Z �+�

�

Z t

�

[� (�)	 (s)�u(s)�v(s; t)(v � u�(s))] dsdt:

We note that by the Martingale Representation Theorem in Lemma 4.2, we only know

that �v(�; t) 2 L2F ([0; t] ;R) for any v 2 A1, and hence, for each � 2 [0; T ], the function
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't (�)

't (s) = E [� (�)	 (s)�u(s)(v � u�(s))�v(s; t)] ; s 2 [0; t] ; t 2 [0; T ] ;

is in L1F ([0; t] ;R). See [95] for more details of integrals
R �+�
�

R t
�
't (s) dsdt; and its superior

limit lim�!0+
1
�2

R �+�
�

R t
�
't (s) dsdt:

Estimate of (3.66). From [95, Lemma 4.1] and Dominate Convergence Theorem, we have

lim
�!0+

I2 (�) = lim
�!0+

1

�2
E

Z �+�

�

K (t) � (t) (v � u�(t))

Z
[�;t]

	(s)G(s)d�(s)dt (3.70)

=
1

2
E [K (�)G(�)(v � u�(�))�(�)] :

Estimate of (3.67). Now, let us turn to estimate I3 (�). From (3.63), we have

I3 (�) =
1

�2
E

Z
[�;�+�]

Y (t)P (t)G(t)d(� � ��) (t)

= I13 (�) + I23 (�) + I33 (�) ; (3.71)

where

I13 (�) =
1

�2
E

Z
[�;�+�]

�(t)

�Z t

�

	(s)�u(s)(v � u�(t))dW (s)

�
P (t)G(t)d� (t) (3.72)

I23 (�) =
1

�2
E

Z
[�;�+�]

�(t)

�Z t

�

	(s) [fu(s)� �x(s)�u(s)] (v � u�(t))ds

�
(3.73)

� P (t)G(t)d� (t)

I33 (�) =
1

�2
E

Z
[�;�+�]

�(t)

�Z t

�

	(s)G(s)d�(s)

�
P (t)G(t)d� (t) : (3.74)

Estimate of (3.72). From [95, Eq-(3.21)] and (3.53), we have

�(t) = �(�) +

Z t

�

�(s)fx(s)ds+

Z t

�

�(s)fx(s)dW (s): (3.75)
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Substituting (3.75) into (3.72), we obtain

I13 (�) =
1

�2
E

Z
[�;�+�]

�(t)

�Z t

�

	(s)�u(s)(v � u�(s))dW (s)

�
P (t)G(t)d� (t) (3.76)

= I1;13 (�) + I1;23 (�) + I1;33 (�) ;

where

I1;13 (�) =
1

�2
E

Z
[�;�+�]

�(�)

�Z t

�

	(s)�u(s)(v � u�(s))dW (s)

�
P (t)G(t)d� (t)

I1;23 (�) =
1

�2
E

Z
[�;�+�]

�Z t

�

�(s)fx(s)ds

�
�
�Z t

�

	(s)�u(s)(v � u�(s))dW (s)

�
P (t)G(t)d� (t)

I1;33 (�) =
1

�2
E

Z
[�;�+�]

�Z t

�

�(s)�x(s)dW (s)

�
�
�Z t

�

	(s)�u(s)(v � u�(s))dW (s)

�
P (t)G(t)d� (t)

By [95, Eq-(3.23)], we have

lim sup
�!0+

I1;13 (�) = lim sup
�!0+

1

�2
E

Z
[�;�+�]

�Z t

�

�(�)	(s)�u(s)(v � u�(s))dW (s)

�
(3.77)

� P (t)G(t)d� (t)

= 0:

Applying as in [95, p 2288], with the helps of Cuachy Schwartz inequality, we can prove

that

lim sup
�!0+

I1;23 (�) = lim sup
�!0+

1

�2
E

Z
[�;�+�]

�Z t

�

�(s)fx(s)ds

�
�
�Z t

�

	(s)�u(s)(v � u�(s))dW (s)

�
P (t)G(t)d� (t) (3.78)

= 0:
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By [95, Lemma 4.1 and Eq-(4.10)], and Dominate convergence theorem, we have

lim
�!0+

I1;33 (�) = lim
�!0+

1

�2
E

Z
[�;�+�]

�Z t

�

�(s)�x(s)dW (s)

�
�
�Z t

�

	(s)�u(s)(v � u�(s))dW (s)

�
P (t)G(t)d� (t) (3.79)

= lim
�!0+

1

�2

Z
[�;�+�]

E

�Z t

�

�x(s)�u(s)(v � u�(s))ds

�
P (t)G(t)d� (t)

=
1

2
E [P (�)G(�)�x(�)�u(�)(v � u�(�))�(�)] :

Substituting (3.77), (3.78), (3.79) into (3.76), we obtain

lim
�!0+

I13 (�) =
1

2
E [P (�)G(�)�u(�)�x(�)(v � u�(�))�(�)] : (3.80)

Estimate of (3.73). We proceed to estimate the second term I23 (�) : By Lemma 4.1 in [95],

we have

lim
�!0+

I23 (�) = lim
�!0+

1

�2
E

Z
[�;�+�]

�(t)P (t)G(t) (3.81)

�
�Z t

�

	(s) [fu(s)� �x(s)�u(s)] (v � u�(t))ds

�
d� (t)

=
1

2
E [P (�)G(�) [fu(�)� �x(�)�u(�)] (v � u�(�))�(�)] :

Estimate of (3.74). Applying [95, Lemma 4.1, Eq (3.21)], we obtain

lim
�!0+

I33 (�) = lim
�!0+

1

�2
E

Z
[�;�+�]

�(t)P (t)G(t)

�Z t

�

	(s)G(s)d�(s)

�
d� (t) (3.82)

=
1

2
E
�
P (�)G2(�)�2 (�)

�
:
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By substituting (3.80), (3.81), (3.82) into (3.71), we have

lim
�!0+

I3 (�) =
1

2
E [P (�)G(�)(fu(�) + �u(�))(v � u�(�))�(�)] (3.83)

+
1

2
E
�
P (�)G2(�)�2 (�)

�
:

Now, by substituting (3.68), (3.70), (3.83) into (3.64), we have

0 � 1

2
E
�
K (�) fu(�)(v � u�(�))2

�
+
1

2
E [(K (�) + P (�)(fu(�))G(�)(v � u�(�))�(�)]

+
1

2
E
�
P (�)G2(�)�2 (�)

�
+
1

2
D+� (K (�)�u(�) (v � u�(�))2);

where 1
2
D+� (K (�)�u(�) (v � u�(�))2) is given by (3.69). This completes the proof of Theo-

rem 4.1 �

Example. We show that a singular control via De�nition 2.2 does not necessary

optimal. Let A1 = [�1; 1] and A2 = [0;+1) : Consider the following SDEs :8><>:
dxu;�(t) = u(t)dt+ u(t)dW (t) + d�(t);

xu;�(0) = 0:

(3.84)

The expected cost to be minimized has the form :

J (u(�); �(�)) = 1

2
E

Z 1

0

ju(t)j2 dt� 1
2
E
��xu;�(1)��2 +E (�(1)) : (3.85)

Note that Eq-(3.84) has a unique strong solution xu;�(�) given by t 2 [0; 1] ; �(0) = 0:

xu;�(t) =

Z t

0

u(s)ds+

Z t

0

u(s)dW (s) + �(t):
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The Hamiltonian function (3.4) gets the form

H(t; x; u; p; q) = p(t)u(t) + q(t)u(t)� 1
2
u2(t):

Let (u�(�); ��(�)) = (0; 0), then the corresponding trajectory is x�(t) = xu�;��(t) = 0: The

corresponding adjoint processes are de�ned by the following adjoint equations :

8><>:
dp�(t) = q�(t)dW (t); t 2 [0; 1] :

p�(1) = 0;

(3.86)

and 8><>:
dP�(t) = Q�(t)dW (t); t 2 [0; 1] :

P�(1) = 1:

(3.87)

By a simple computations, the BSDEs (3.86) and (3.87) admits a unique strong F�adapted

solution (p�(t); q�(t)) = (0; 0) and (p�(t); q�(t)) = (1; 0) :

By a simple computations, we have

Hu(t; x; u; p; q) = p(t) + q(t)� u(t);

Huu(t; x; u; p; q) = �1

�u (t; x(t); u(t)) = 1

M(t) = 1;

G(t) = 1;

then the admissible control (u�(�); ��(�)) = (0; 0) satis�es (3.9) and (3.10). Now, applying

De�nition 2.2, the control (u�(�); ��(�)) 2 A1�A2 ([0; 1]) is a singular control. Noting that

J(u�(�); ��(�)) = J(0; 0) = 0:

However, if we choose u(t) = 1 2 [�1; 1] and �(t) = 0 2 [0;+1) ; and by a simple
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computation, we have

J(1; 0) = �1
2
< J(0; 0) = 0:

This implied that the control (u�(�); ��(�)) = (0; 0) is not optimal for the control problem

(3.84)-(3.85).
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Conclusion, perspectives
and future Developments

In this thesis, we establish a set of necessary conditions of optimal stochastic for dif-

ferent stochastic models. More precisely, in the second chapter, we have developed a neces-

sary conditions for partially observed singular stochastic optimal control problem, where

the controlled state dynamics is in�uenced by unobserved uncertainties. The system is

governed by general McKean-Vlasov di¤erential equations. By transforming the partial

observation problem to a related problem with full information, a stochastic maximum

principle for optimal singular control has been established via the derivative with respect

to probability measure in P.Lions�sense. The main feature of these results is to explicitly

solve some new mathematical �nance problems such as general conditional mean-variance

portfolio selection problem in incomplete market.

Apparently, there are many problems left unsolved :

1. One possible problem is to establish some optimality conditions (or near-optimality)

for partially observed singular stochastic optimal control for systems governed forward-

backward stochastic di¤erential equations of general McKean-Vlasov type with some

recent applications.

2. The partially observed singular control in the case when the control domain is not

necessarily convex.

3. It would be quite interesting to derive a general maximum principle for partially

observed optimal control for fully coupled forward-backward stochastic di¤erential

equations FBSEDs following Yong�s maximum principle.
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In the third chapter, pointwise second-order necessary conditions, in the form of Pon-

tryagin maximum principal for optimal stochastic singular control have been established.

The control dynamic system was governed by nonlinear controlled stochastic di¤erential

equation. In our class of control problem, we have studied two types of singularity, the

predictable ones which come from the singular control part and the second ones which

come from the irregularity in some senses.

We note that if the coe¢ cients G(t) =M(t) = 0 our results coincides with second-order

maximum principle developed in [95, Theorem 3.5]. Apparently, there are many problems

left unsolved such as :

1. The case when the control domain is not assumed to be convex (general action

space).

2. One possible problem is to study the second-order maximum principle for optimal

singular control for McKean-Vlasov stochastic di¤erential equations.

3. Another challenging problem left unsolved is to derive a various second-order maxi-

mum principles in the case where the coe¢ cients G and M depend on the state of

the solution process xu;� (�) :

4. It would be quite interesting to establish second order maximum principle for systems

governed by forward-backward stochastic di¤erential equations with some applica-

tions.

We plane to study these interesting problems in forthcoming papers.
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