
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

MOHAMED KHIDER UNIVERSITY, BISKRA

FACULTY OF EXACT SCIENCES and SCIENCES of NATURE and LIFE

DEPARTMENT OF MATHEMATICS

Thesis Submitted in Partial Execution of the Requirements of the Degree of

DOCTOR OF SCIENCES

In the field of: Applied Mathematics

Option: Numerical Analysis and Optimization

Presented by:

OUAAR Fatima

Titled:

Application of Metaheuristics in Solving Initial Value Problems (IVPs).

A thesis Directed byKHELIL Naceur and Co-directed byBOUDJEMAA Redouane.

Examination Committee Members

Pr. MOKHTARI Zohir Profs Biskra University Chairman.

Pr. KHELIL Naceur Profs Biskra University Supervisor.

Dr. BOUDJEMAA Redouane MCA Blida1 University Co-Supervisor.

Dr. REZZOUG Imad MCA Oumelbouaghi University Examiner.

Dr. MERAD Ahcene MCA Oumelbouaghi University Examiner.

2020/2021.



 

 

 

 

 

         

 

 

 

 

 



 

 

 

 

… و في الصبر مشقة يعقبها فرح جميل   

…   ادائما ابدحمدا  ف الحمد لله   

: بسم الله الرحمن الرحيم   

"ف اصبر ان وعد الله حق و لا يستخفنك الذين لا يوقنون ” 
-06 الاية   -الروم    سورة                                

"لولا ان هدانا الله  لنهتديا كنا  الحمد لله الذي هدانا لهذا و م"  

-54 الاية   - عرا الا  سورة  



Dedication

To my Parents,

To my Husband, To my Children,

To my Brothers, Sisters and their Kids,

To all my Family,

To all Those who are Dear to Me.

i



Acknowledgements

The realization of this thesis is the culmination of a long academic career, often

laborious and during which, despite the pitfalls, I have always been driven by the desire

to finish, or rather to finish.

First, I thank God the Almighty for helping me to succeed in my quest and giving me

courage and patience to realize this work.

The accomplishment of this work could not have been achieved without the support and

collaboration of many people whom I wish to sincerely thank, words cannot thank them

enough, I would just extend profound thanks to:

First of all, I would like to express my deepest gratitude to my supervisors Profs.

KHELIL Naceur my thesis director and whose enthusiasm and generosity gave me

a taste for research. He is thanked for his patience, his unfailing availability to listen

to my questions and his help in finding the answers. For all these reasons, I thank him

warmly.

Also I am deeply grateful to my Co-supervisor Dr. BOUDJEMAA Redouane, for

his valuable support and scholarly advices throughout the entirety of my PhD studies. I

appreciate sincerely all the contributions of his time and inspirational expertise, and for

instilling in me a greater understanding of applied mathematics. Without his constructive

comments, patience and knowledge, this thesis would have not been possible. Thank you

for integrating me in the metaheuristics subject.

My thanks goes to the members of the jury for being patient and for having judged my

work which I hope to be fruitful. To begin withProfs. MOKHTARI Zohir, president of

the jury andDr. REZZOUG Imad andDr. MERAD Ahcen, examiners, I express to

them my deep gratitude. Really thank you for your interest in my work and for accepting

to review my thesis, for your insightful comments and encouragement, and for the hard

questions which incited me to enhance my research from different perspectives.

I would also express great gratitude toward my parents, whom supported me throughout

my university studies. They know how much they matter to me: Mom, Dad. They gave

me confidence when I needed it most, they allowed me to continue this work without ever

ii



giving up. For all this and so much more, I will never thank them enough. Your support

has been very valuable to me.

I would also like to thank my dear Brothers and Sisters, with whom I was able to

give myself a few discussions and adventures; to which I dedicate all these hours of work

devoted to my thesis at the expense of the time I should have spent in their company.

They remain my greatest source of motivation and those to whom I owe, in the first place,

the realization of this thesis.

I would also like to pass a special thanks to my little family: My husband and My

children for their encouragement and patience over the past few years. As for all the

emotional support, understanding, caring and never-ending confidence. I would definitely

not be where I am today without their efforts and I thank them deeply.

I would also like to say a word to all those with whom I have had the pleasure of collab-

orating: My friends and My comrades. This word, whatever the moments of tension,

and for all the moments of jubilation, joy or all the digressions:

Thank You

I have definitely forgotten other people. But I am sure they will forgive me and I am sure

they will share with me this moment of euphoria so much expected.

Fatima

iii



Summary

Title : Application of Metaheuristics in Solving Initial Value Problems (IVPs) .

Some differential equations admit analytic solutions given by explicit formulas.

However, in most other case only approximated solutions can be found. Several methods

are available in the literature to find approximate solutions to differential equations. Nu-

merical methods form an important part of solving IVP in ODE, most especially in cases

where there is no closed form of solutions.

The present dissertation focus the attention toward solving IVP by transforming it to

an optimization approach which can be solved through the application of non-standard

methods called Metaheuristic. By transforming the IVP into an optimization problem,

an objective function, which comprises both the IVP and initial conditions, is constructed

and its optimum solutions represents an approximative solution of the IVP.

The main contribution of the present thesis is divided in twofold. In the one hand, we

consider IVPs as an optimization problem when the search of the optimum solution is

performed by means of MAs including ABC, BA and FPA and a set of numerical meth-

ods including Euler methods, Runge–Kutta methods and predictor–corrector methods.

On the other hand, we propose a new MA called Fractional Lévy Flight Bat Algorithm

(FLFBA) (which is an improvement of the BA, based on velocity update through frac-

tional calculus and local search procedure based on a Lévy distribution random walk). We

illustrates its computational efficiency by comparing its performance with the previous

methodds in solving the bacterial population growth models ( both the logistic growth

model and the exponential growth model).

Key−Words :Initial Value Problem (IVP), Optimization problem, Exponential problem,

Logistic problem, FLFBA, Numerical methods, Metaheuristic algorithms.
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 ملخص
 

    .في حل مسائل القیمة الأولیة Metaheuristicتطبیق الخوارزمیات  :العنوان
  

 إلا أنه ،الصیغ الصریحة من خلالتحلیلیة بإیجاد حلول بعض المعادلات التفاضلیة  تسمح
ة عدحلول تقریبیة فقط، وفي هذا الإطار تتوفر الأدبیات على  إیجاد یتمالحالات  الكثیر منفي 

ا من حل تشكل الطرق العددیة جزءا مهم لول تقریبیة للمعادلات التفاضلیة، إذطرق لإیجاد ح
یوجد فیها وخاصة في الحالات التي لا  القیمة الأولیة في المعادلات التفاضلیة العادیة  مسائل

  .حلوللل صیغة صریحة
 منهج التعظیمالقیمة الأولیة من خلال تحویلها إلى  لسائمتركز الأطروحة الحالیة على حل 

 یتمأنه  بمعنى. Metaheuristicتسمى  عادیةن حله من خلال تطبیق طرق غیر یمك حیث
 من كل والتي تشمل موضوعیة، دالةإنشاء ب تعظیم،مسالة القیمة الأولیة إلى  لسائمتحویل 

 لسائملحلاً تقریبیًا  عظمىتمثل حلولها ال ثحی،  لها و الشروط الابتدائیةالقیمة الأولیة  ةلسام
  .القیمة الأولیة
 لسائم اعتباریركز الجزء الأول على  :ینجزئلرئیسیة للأطروحة إلى ا الإشكالیةتنقسم 

عن طریق خوارزمیات  عظمیتم إجراء البحث عن الحل الأ حیث عظیممشكلة تكالقیمة الأولیة 
Metaheuristic  الخفاشخوارزمیة مستعمرة النحل الاصطناعیة وخوارزمیة بما في ذلك 

أویلر  ةقیبما في ذلك طر  معروفةال وخوارزمیة تلقیح الأزهار و مجموعة من الطرق العددیة
 قتراحا من الاشكالیة الجزء الثانيیستعرض و . المصحح - التنبؤ  ةقیكوتا وطر  - رونج  ةقیوطر 

والتي تعد تحسینًا  )(Fractional Lévy Flight Bat Algorithmخوارزمیة جدیدة تسمى 
، استنادًا إلى تحدیث السرعة من خلال حساب التفاضل والتكامل الكسري  الخفاشخوارزمیة ل

الحسابیة من   فعالیتهانوضح . وإجراء البحث المحلي على أساس مسار عشوائي لتوزیع لیفي
نموذج كل من  فيفي حل نماذج النمو السكاني البكتیري  مع الطرق السابقة خلال مقارنة أدائها

  .نموذج النمو الأسيو النمو اللوجستي 
  

 لوجستیة، ، مشكلة أسیة، مشكلةالتعظیم، مشكلة ة القیمة الأولیة سالم :الكلمات المفتاحیة
 .Metaheuristic، طرق عددیة، خوارزمیات FLFBAخوارزمیة 
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General Introduction

Context and Motivations

C alculus, originally called infinitesimal calculus, is the mathematical study of continuous

change, it has two major branches, differential calculus and integral calculus; the former

concerns instantaneous rates of change, and the slopes of curves, while integral calculus

concerns accumulation of quantities, and areas under or between curves. These two

branches are related to each other by the fundamental theorem of calculus, and they

make use of the fundamental notions of convergence of infinite sequences and infinite

series to a well-defined limit. One important concept managed in Calculus is Derivatives

which measures the sensitivity to change of the function value (output value) with respect

to a change in its argument (input value). The process of finding a derivative is called

Differentiation.

In mathematics, a differential equation is an equation that relates one or more functions

and their derivatives. In applications, the functions generally represent physical quanti-

ties, the derivatives represent their rates of change, and the differential equation defines a

relationship between the two. Such relations are common. Mainly the study of differential

equations consists of the study of their solutions (the set of functions that satisfy each

equation), and of the properties of their solutions. The solution of a differential equation

is, in general, an equation expressing the functional dependence of one variable upon one

or more others; it ordinarily contains constant terms that are not present in the original

differential equations. It produces a function that can be used to predict the behaviour

of the original system, at least within certain constraint.

These mathematical entities allow scientists to understand a wide range of complex phe-
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nomena. Many fundamental laws of Physics and Chemistry can be formulated as differen-

tial equations. They model different problems in diverse scientific fields, such as Biology,

Economics or Engineering. Differential equations are mathematically studied from several

different perspectives, mostly concerned with their solution, i. e., the set of functions that

satisfy the initial differential equation. Only the simplest differential equations are solv-

able by explicit formulas. When dealing with complex differential equations, an analytic

solution becomes difficult to obtain and as a result numerical approximation is sought.

The most extended methods to solve differential equations make use of numerical analysis.

Several numerical methods have been dedicated to solving Ordinary Differential Equations

(ODEs) like Euler method [66], Runge-Kutta method [42], feed forward neural networks

[83] and spectral methods like Chebyshev method [70], Legendre methods [30] and opti-

mization algorithms [58, 14]. For that, the equation is discretized into a finite-dimensional

subspace. This can be done by a finite element, a finite difference, or a finite volume meth-

ods reducing the initial problem to the solution of an algebraic equation. Another class of

methods provides an approximation to the analytic solutions, such as the variational iter-

ation method (VIM) [16, 17], the homotopy analysis method (HAM) [23], the method of

bilaterally bounded (MBB) [50], and the Adomian double decomposition method (ADM)

[18, 4].

Generally, analytically solution for ODEs has some restrictions; the main restriction is

that the range of differential equations which should be solved by the analytical method

is restricted. Since, in most cases, where the boundary conditions of ODEs are known,

a numerical solution can be achieved by approximation methods [38]. There are a lot of

numerical methods which are introduced and developed to resolve the considered problem;

but, the cases such as fast convergence, reasonably stable and more accuracy are still been

researched [12, 48].

One approach to compensate this deficiency is to use the Metaheuristic Algorithms (MAs).

Despite there being a wide range of approximate methods for solving ODEs, there is a lack

of a proper approach that meets most of the engineering demands having unconventional

and nonlinear ODEs. It should be very interesting to solve linear and nonlinear ODEs

having arbitrary boundaries and/or initial values. Therefore, when analytical methods
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are not capable of solving differential equations or other types of equations in a logical

given time, approximation methods are considered as the best solver. Among approxi-

mation methods, MAs, devised by observing the phenomena occurring in nature, have

demonstrated their capabilities in finding near-optimal solutions to numerical real-valued

problems.

MAs perform a mixed of deterministic and stochastic search of the best solution to an

optimization problem; meta- means ‘beyond’ or ‘higher level’, heuristic means ‘to find’ or

‘to discover by trial and error’ and they generally perform better than simple heuristics.

It is worth pointing out that no agreed definitions of heuristics and metaheuristics exist

in the literature; some use ‘heuristics’ and ‘metaheuristics’ interchangeably. Almost all

MAs intend to be suitable for global optimization, it’s a way by trial and error to produce

acceptable solutions to a complex problem in a reasonably practical time. The complexity

of the problem of interest makes it impossible to search every possible solution or combi-

nation, the aim is to find good feasible solution in an acceptable timescale. The idea is

to have an efficient but practical algorithm that will work most the time and is able to

produce good quality solutions. Among the found quality solutions, it is expected some

of them are nearly optimal, though there is no guarantee for such optimality. In addition,

all MAs use certain tradeoff of randomization and local search, The main mechanism of

these methods is the collective behaviour that exists between candidate solutions, which

generates a simpler procedure to solve an optimization problem. By searching over a large

set of feasible solutions, with the help of its convergence speed and augmentation searched

variables number; MAs can often find good solutions with less computational effort than

algorithms, iterative methods, or simple heuristics [87].

In the last decades, they have been proposed various MAs to solve complex optimization

problems. Some examples are Particle Swarm Optimization (PSO) [41], the Genetic

Algorithms (GA) [29] and the Differential Evolution (DE) [78]. In the same context,

they have also been proposed novel alternatives like the Whale Optimization Algorithm

(WOA) [57], Crow Search Algorithm (CSA) [3], Stochastic Fractal Search (SFS) [75] or

the Artificial Bee Colony (ABC) [39]. All these algorithms have been applied to a wide

range of applications.
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Related Works

Nowadays, applications that use metaheuristic methods for finding approximate solution

of ODEs have increased considerably (e.g., GA [56, 29], PSO [50, 41, 5], genetic program-

ming [13]). However, these approaches for solving ODEs are different with each other in

terms of applied strategy and base approximate function. For instance, in [50], different

strategies named method of bilaterally bounded, has been employed using the PSO. Also,

the concept of Fourier series expansion has been used as a base approximate function for

finding the approximate solution of ODEs by setting a unit weight function [5]. However,

this assumption may not help in obtaining better results for all types of ODEs. Therefore,

a new weight function is proposed in [73].

In this thesis we have proposed a new method for solving Initial Value Problems (IVPs)

in ODEs based on Fractional Lévy Flight Bat Algorithm (FLFBA) that is a hybridized

algorithm which has the nicest characteristics of Bat Algorithm (BA), Lévy Flight (LF)

and the Fractional Calculus (FC).

The BA was introduced in 2010 as an alternative method for numerical optimization [88].

BA is based on the mechanism of echolocation in bats, it is a sonar that guides bat along

the fly. This behavior also helps bats in hunting, by using the echolocation they can

identify the preys in the dark.

The operators of the BA have a good balance between exploration and exploitation that

is desirable for MA. However, it has been proved that the performance of BA is good

only in problems with a reduced number of dimensions [91], [25]. In this sense, different

modifications have been proposed for improving the performance of BA. For example,

in [86] is proposed a BA using Differential Evolution (DE) operators and LF during

the optimization process. In 2017 it was published a directional BA [20], in which is

proposed directional echolocation to improve the exploration of BA. Another interesting

improvement was proposed in [25] where the BA is hybridized with DE. The standard

BA has also been modified using chaotic maps instead normal distribution to increase the

search capabilities of BA [71], [32]. There has also been introduced a modification of BA

that considers the GA and the Invasive Weed Optimization (IWO) [91].
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FC is an extension of classical mathematics it has been applied in fields like electronics,

signal processing, fractals, and chaos [24, 69, 51, 52]. It has also been applied to improve

the quality of the solution in modeling, curve fitting or pattern recognition [60]. In this

context, the FC is an excellent alternative to introduce concepts as memory (fractional

derivative) in different processes; such feature generates more realistic models that integer

based models [19]. Besides, the LF has been extensively used to improve different MA

[89, 9]. LF can be defined as random walks whose step lengths are not constant, and the

values are selected from a probability distribution. It has been demonstrated that LF

models the patterns of different species in wildlife [84].

Problematic

Mathematics or particularly applied mathematics is widely used in every engineering

fields. It is the background of every engineering domains. Together with physics, mathe-

matics has helped engineering develop. Without mathematics, engineering cannot become

so fascinating as it is now.

There is a huge variety of real-life problems optimized by using differential equations; this

field is taught as it is important to understand many engineering subjects such as fluid

mechanics, heat transfer, electric circuits and mechanics of materials,...etc. When we have

to find the optimal solution to a given problem under highly complex constraints.

An IVP is a differential equation:











y
′

= f(t, y)

y(t0) = y0

, (1)

where t is the independent variable and y = y(t) is the dependent variable, with f : Ω ⊂

R × R
n −→ R

n where Ω is an open set of R × R
n, together with a point in the domain

of f(t0, y0) ∈ Ω, called the initial condition. Finding the optimal solutions numerically

of an IVP is gotten with approximations: y(t0 + h), . . . , y(t0 + nh) where a = t0 and

h = (b− a)/n. For more precision of the solution, a very small step size h must be used

that includes a larger number of steps, thus more computing time which is not available
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in the useful numerical methods like Euler or Runge-Kutta methods [35], which may

approximate solutions of IVP and perhaps yield useful information, often insufficient in

the absence of exact, analytic solutions.

The main aim of our work (problematic) deals with finding a good approximation to IVP

by proposing a new MA to optimize numerically an IVP by avoiding the limitations of

the analytic solutions, the idea is to create from the conventional BA another MA called

FLFBA which is used to improve the convergence to an accurate solution compared to

other MAs.

The realization of such approach requires solving several problems:

In order to compensate traditional numerical method’s deficiency, new MA

inspired from BA called FLFBA is proposed?

That overcomes BA’s limitations and permits to optimize the IVP appeared in modeling

real life phenomena. This is the global problem when its answer is attached to the

resolution of the following sub-questions:

Since BA has nice proprieties, how can we develop a new MA inspired from

it?

This is the first contribution when we exploit the strong proprieties of LF and FC that

gives a modified version of LF called Fractional Lévy Flight (FLF) to enhance BA.

By using the FLF and DE, BA’s performance does it improved?

That is the second contribution. The FLFBA [6] aimed to improve the classical BA

and enhance its ability to escape from local optimum. It’s tested using several well-

known benchmark functions under many advanced nonparametric statistical tests when

it’s compared with other recent algorithms in terms of convergence and solution quality.

After testing the FLFBA [6], can we integrate it by optimizing real problems

envisaged by IVPs?

We consider the IVP in ODEs as an optimization problem. By selecting a specified

example which has an important role to describe real problem. The effectiveness of the

proposed algorithm is tested via a simulation study.
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Does the proposed algorithm lead to a better solution than the traditional

numerical methods or other metaheuristics?

FLFBA is a hybridized algorithm which inherits the best characteristics of BA and in-

troduces LF and FC to improve local search routine, global exploration and exploita-

tion of the search space. The performance of FLFBA is tested on IVP and compared

to well established numerical methods including Euler methods, Range-Kutta methods,

predictor-corrector method, as well as some other MAs like ABCA, BA, FPA.

Thesis Contribution and Objectives

There are the so-called ‘No free lunch theorems’, which can have significant implications in

the field of optimization [85]. One of the theorems states that if algorithm A outperforms

than algorithm B for some optimization functions, then B will be superior to A for other

functions. In other words, if averaged over all possible function space, both algorithms A

and B will perform, on average, equally well. That is to say, there is no universally better

algorithms which often involve modification or improvement when applied to a new set

of problems because efficiency of an algorithm not guarantee its success.

In this thesis we will present a modified version of the LF using FC that is called FLF,

which is the first contribution. The FLF and the DE are used to improve the performance

of the standard BA, that is the second contribution. The proposed algorithm is called

FLFBA, and it starts by generating a random population of bats positions. The objective

function is used to verify the quality of the solutions in the search space.

Two different mechanisms are used in the FLFBA, and they are applied to different

sections of the population. The first operator considers two of the best solutions to

generate new position in the search space, around such position it is computed a new

individual using the LF. The second operator uses the FLF and DE to compute the

velocity to move each bat in the population.

The FLFBA is considered as a new hybrid metaheuristics method that combines between

proprieties of LF that can maximize the efficiency of resource searches and FC that gives

more improvement of the solution quality. This mixture gives more simplicity and flex-
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ibility to find local optimum and overcome the lacks found in the traditional BA and

keep its good performance in problems with a reduced number of dimensions. By using

several well-known benchmark functions and a set of recent algorithms , experimental

results and comparisons support the fact that FLFBA is improved regarding accuracy

and performance.

The importance of this thesis resides by considering IVPs as an optimization problem im-

plemented by means of FLFBA [6] in order to find numerical solutions for this problem,

the obtained results are compared by those of Explicit Euler, Midpoint method, Backward

Eulers), Range-Kutta 4th order (RK4) method, Heuns (RK2), Adams–Bashforth–Moulton

method (ABM) and those of ABCA, BA, FPA and the exact results of the studied ex-

amples. Comparisons are made in terms of solution quality under Matlab software by

plotting the numerical results together with the (true) analytical solution +.

Thesis Organization

The remaining chapters are organized as follows:

Part I : Preliminary Theory

That includes two chapters:

Chapter 1: Linear First Order IVP Section 2 is about the classification of differential

equations, Section 3 focus on the solution of differential equations, Section 4 gives some

basic definitions about IVP, existence and uniqueness of solutions. Section 5 deals with the

most used numerical methods to solve First-Order IVP like Euler method, Runge-Kutta

method, etc. Section 6 provides some real-life applications of IVP.

Chapter 2: Metaheuristics as Optimization Algorithms The main purpose of this

chapter is to provide an overview concerning metaheuristics. Therefore, the chapter is

organized as follows: Section 2 furnishs some essential descriptions about optimization

algorithms like the parameters of an optimization algorithm. Followed by Section 3 that

outlines some details about metaheuristics such as their definition, properties, classifica-

tion and applications of metaheuristics. Section 4 discusses some metheuristic methods

used to solve ODEs. Finally, some discussions are presented in Section 5.
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Part II : The Main Results

That contains two chapters:

Chapter 3: Fractional Lévy Flight Bat Algorithm (FLFBA) Section 2 analyzes the

related work such that the basic BA, fractional order, BA equations, Lévy Flight, DE

based location update formula. Section 3 presents the proposed FLFBA. Section 4 de-

scribes the experimental results based on the parameters settings, benchmark functions

and numerical results. Section 5 offers the results analysis supported by the study of dif-

ferent statistical tests: pairwise comparisons, multiple comparisons, post-hoc procedures.

Finally, Section 6 discusses the conclusions.

Chapter 4: Application of FLFBA in Optimizing IVP This chapter is organized

as follows. The formulation of the problem that gives the construction of the objective

function and its consistency study are revealed in Section 2. Section 3 provides explication

of the population growth models used as application examples in our study, while Section

4 is reserved to the numerical experiments and gives the different parameters setting

adopted for FLFBA, ABC, FPA and BA and the parameters adopted for IVP. Then we

expose the results that show how FLFBA can lead to a satisfactory result for solving IVP

by comparing its performance to a set of numerical methods and MA. The comments and

conclusion are made in Section 5.
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Chapter 1

First Order Initial Value Problems

1.1 Introduction

Many problems in natural sciences and engineering fields are formulated into a

scalar differential equation or a vector differential equation, that is, a system of differential

equations. In this chapter, we look into several methods of obtaining the numerical

solutions to ODEs in which all dependent variables (y) depend on a single independent

variable (t). ODEs are called an IVP if the values y(t0) of dependent variables are given

at the initial point t0 of the independent variable. The IVPs will be handled with several

methods including Euler method, Runge–Kutta method and predictor–corrector method.

1.2 Classification of Differential Equations

A differential equation is any equation involving derivatives of one or more dependent

variables with respect to one or more independent variables. There are many types

of differential equations, and a wide variety of solution techniques, even for equations

of the same type, let alone different types. We now introduce some terminology that

aids in classification of equations and, by extension, selection of solution techniques. The

reason is that the techniques for solving differential equations are common to these various

classification groups. And sometimes we can transform an equation of one type into an

equivalent equation of another type, so that we can use easier solution techniques. Here

then are some of the major classifications of differential equations [36] [67]:
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On this section we assume that x and y are functions of time, t :

x = x(t).

y = y(t).

And the derivatives are with respect to t:

dx

dt
= x́(t).

1.2.1 Partial vs. Ordinary

❼ An ordinary differential equation (or ODE) has a discrete (finite) set of variables i.e.

when the unknown function y depends on a single independent variable t, then only

ordinary derivatives appear in the differential equation. So the equation is called

an ODE. For example in the simple pendulum, there are two variables: angle and

angular velocity.

❼ A partial differential equation (or PDE) has an infinite set of variables which correspond

to all the positions on a line or a surface or a region of space i.e. when the unknown

function y depends on several independent variables r, s, t, etc., partial derivatives

appear in the differential equation. So the equation is called a Partial Differential

Equations (PDE). For example The heat equation:

∂u

∂t
= k2∂

2u

∂x2
,

where k is a constant, is an example of a partial differential equation, as its solution

u(x, t) is a function of two independent variables, and the equation includes partial

derivatives with respect to both variables.

❼ For an ODE, each variable has a distinct differential equation using ”ordinary” deriva-

tives. For a PDE, there is only one ”partial” differential equation for each dimension.

❼ Systems of Differential Equations: We may have two or more dependent variables

(unknown functions), then a system of equations is required. For example, predator-
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prey equations have the form:











dx/dt = ax− αxy

dy/dt = −cy + γxy
,

where x(t) and y(t) are the respective populations of prey and predator species.

The constants a, c, α, γ depend on the particular species being studied.

1.2.2 First Order, Second Order

The order of a differential equation is equal to the highest derivative in the equation.

The single-quote indicates differention. So x
′

is a first derivative, while x
′′

is a second

derivative.

x
′

= 1/x is first-order.

x
′′

= −x is second-order.

x
′′

+ 2x
′

+ x = 0 is second-order.

1.2.3 Linear vs. Nonlinear

An ordinary differential equation:

f
(

t, y, y
′

, y
′′

, y
′′′

, ..., y(n)
)

= 0,

is linear if f is linear in y and in its higher derivatives y
′

, y
′′

, y
′′′

, ... Thus the general linear

ODE has the form:

a0(t)y
(n) + a1(t)y

(n−1) + ...+ an(t)y = g(t).

A differential equation is linear if any linear combination of solutions of the equation is

also a solution of the equation i.e. linear just means that the variable in an equation

appears only with a power of one. A differential equation that is not linear is said to be

nonlinear. So x is linear but x2 is nonlinear. Also any function like cos(x) is nonlinear. In

math and physics, linear generally means ”simple” and non-linear means ”complicated”.

The theory for solving linear equations is very well developed because linear equations
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are simple enough to be solveable. Nonlinear equations are, in general, very difficult to

solve and are the subject of much on-going research, so in many cases one approximates a

nonlinear equation by a linear equation, called a linearization, that is more readily solved.

Linear ODE’s enjoy the following three properties:

1. y and all its derivatives are raised to power 1.

2. The coefficients of y and any of its derivatives are functions of t only.

3. No transcendental functions of y and/or its derivatives occur.

Here is a brief description of how to recognize a linear equation. Recall that the equation

for a line is:

y = mx+ b,

where m, b are constants (m is the slope, and b is the y − intercept). In a differential

equation, when the variables and their derivatives are only multiplied by constants, then

the equation is linear. The variables and their derivatives must always appear as a simple

first power. Here are some examples:

x
′′

+ x = 0 is linear.

x
′′

+ 2x
′

+ x = 0 is linear.

x
′

+ 1/x = 0 is non-linear because 1/x is not a first power.

x
′

+ x2 = 0 is non-linear becausex2 is not a first power.

x
′′

+ sin(x) = 0 is non-linear because sin(x) is not a first power.

xx
′

= 1 is non-linear because x
′

is not multiplied by a constant.

Similar rules apply to multiple variable problems:

x
′

+ y
′

= 0 is linear.

xy
′

= 1 is non-linear because y
′

is not multiplied by a constant.

Note, however, that an exception is made for the time variable t (the variable that we are

differentiating by). We can have any crazy non-linear function of t is not multiplied by a
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constant appear in the equation, but still have an equation that is linear in x .

x
′′

+ 2x
′

+ x = sin(t) is linear in x.

x
′

+ t2x = 0 is linear in x.

sin(t)x
′

+ cos(t)x = exp(t) is linear in x.

Also, a linear equation can have ”constant coefficients” or ”variable coefficients”. Here

are two second order linear ODEs:

y′′3 + y
′

+ 5y = 0 y′′ − 3ty
′

+ (cos t)y = 0

For nonlinear equations, different terminology is usually used: y
′

= ey is called ”au-

tonomous”, while y
′

= ety is called ”non-autonomous”.

1.2.4 Homogeneous vs. Non-homogeneous

This is another way of classifying differential equations. These fancy terms amount to the

following: whether there is a term involving only time, t (shown on the right hand side

in equations below).

x
′′

+ 2x
′

+ x = 0 is homogeneous.

x
′′

+ 2x
′

+ x = sin(t) is non-homogeneous.

x
′

+ t2x = 0 is homogeneous.

x
′

+ t2x = t+ t2 is non-homogeneous.

The non-homogeneous part of the equation is the term that involves only time. It usually

corresponds to a forcing term in the physical model. For example, in a driven pendulum

it would be the motor that is driving the pendulum.

1.3 Solutions to Differential Equations

A solution φ(t) to an ODE:

y(n)(t) = f
(

t, y, y
′

, y
′′

, y
′′′

, ..., y(n−1)
)

,
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satisfies the equation:

φ(n)(t) = f
(

t, φ, φ
′

, φ
′′

, φ
′′′

, ..., φ(n−1)
)

.

There are three important questions in the study of differential equations:

❼ Is there a solution? (Existence)

❼ If there is a solution, is it unique? (Uniqueness)

❼ If there is a solution, how do we find it? (Analytical Solution, Numerical Approxima-

tion, etc)

A differential equation of any type, in conjunction with any other information such as an

initial condition, is said to describe a well-posed problem if it satisfies three conditions,

known as Hadamard’s conditions for well-posedness:

❼ A solution of the problem exists.

❼ A solution of the problem is unique.

❼ The unique solution depends continuously on the problem data, which may include

initial values or coefficients of the differential equation. That is, a small change in

the data corresponds to a small change in the solution.

Unfortunately, problems can easily fail to be well-posed by not satisfying any of these

conditions. However, in this thesis we deal with IVP that are well-posed. Now here are

some rules of thumb for when we can solve the ODE (meaning we obtain a specific formula

for y(t), or at least an equation defining y(t) implicitly), and when we can’t:

1. All first and second order linear equations with constant coefficients can be solved.

2. All first order linear equations can be solved, at least in terms of an integral.

3. Second or higher order linear ODEs with variable coefficients usually cannot be

solved.

4. Third or higher order linear ODE with constant coefficients can be solved occasion-

ally. The difficulty in solving them is doing the algebra.
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5. First order nonlinear ODEs can sometimes be solved. For example, separation of

variables might work.

6. Second and higher order nonlinear ODE can rarely be solved.

1.4 Initial Value Problems (IVPs)

In the field of differential equations, an IVP (also called a Cauchy problem by some

authors) is an ordinary differential equation together with a specified value, called the

initial condition, of the unknown function at a given point in the domain of the solution.

In physics or other sciences, modeling a system frequently amounts to solving an IVP;

in this context, the differential initial value is an equation that is an evolution equation

specifying how, given initial conditions, the system will evolve with time.

1.4.1 Definition of IVP

An IVP is a differential equation











y
′

= f(t, y)

y(t0) = y0

, (1.1)

where t is the independent variable and y = y(t) is the dependent variable, with f : Ω ⊂

R×R
n −→ R

n where Ω is an open set of R×R
n, together with a point in the domain of

f(t0, y0) ∈ Ω, called the initial condition. A solution to an IVP is a function y that is a

solution to the differential equation and satisfies:

y(t0) = y0.

More generally, the unknown function y can take values on infinite dimensional spaces,

such as Banach spaces or spaces of distributions [36]. IVP are extended to higher orders

by treating the derivatives in the same way as an independent function, e.g.

y′′(t) = f(t, y(t), y
′

(t)).
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Most differential equations have more than one solution. For a first-order equation, the

general solution usually involves an arbitrary constant C, with one particular solution

corresponding to each value of C. What this means is that knowing a differential equation

that a function y(t) satisfies is not enough information to determine y(t). To find the

formula for y(t) precisely, we need one more piece of information, usually called an initial

condition. In general, we expect that every IVP has exactly one solution. We can find

this solution using the following procedure.

1. Find the general solution to the given differential equation, involving an arbitrary

constant C.

2. Substitute t = t0 and y = y0 to get an equation for C.

3. Solve for C and then substitute the answer back into the formula for y.

1.4.2 Existence and uniqueness of solutions

As a general rule, we expect any IVP of the form Eq. (1.1) to have a unique solution.

The following theorem gives specific conditions which guarantee that this hold.

Theorem 1.1 (Existence and uniqueness of solutions) Consider an IVP of the form

Eq. (1.1). If the function f(t, y) is continuously differentiable 1 for all values of t and y,

then this IVP has a unique solution.

Since this theorem is also known as the existence and uniqueness theorem for first order

ODEs, it guarantees both that the solution exists and that it is unique. The hypothesis

that the function f(t, y) is continuously differentiable is important for the theorem. In

fact, there are IVP that does not satisfy this hypothesis that has more than one solution.

For example, the IVP:










y
′

=
y

t′

y(0) = 0
,

has infinitely many different solutions, namely the lines y = Ct for all possible values of C.

The function f(t, y) in this case is y/t, which is not defined (and hence not continuously

1Here continuously differentiable means that both partial derivatives
∂f

∂t
and

∂f

∂y
exist and are con-

tinuous.
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differentiable) when t = 0. There is a nice geometric interpretation of the fundamental

theorem. As we have seen, the solutions to a differential equation can be viewed as a

family of solution curves in the ty − plane. From a geometric point of view an initial

condition y(a) = b is the same as a point (a, b) that the solution curve must pass through.

Thus, saying that the IVP (Eq. 1.1) has a unique solution is the same as saying that

the point (a, b) has exactly one solution curve passing through it. This leads us to the

following restatement of the fundamental theorem of ODEs.

Theorem 1.2 (Existence and uniqueness of solutions (Geometric Version)) Consider

a first-order differential equation of the form y
′

= f(t, y), where the function f(t, y) is

continuously differentiable. Then:

1. The solution curves for this differential equation completely fill the plane,

2. Solution curves for different solutions do not intersect.

Here statement (1) is the same as saying that every point (a, b) lies on at least one solution

curve, i.e. every initial condition gives at least one solution. Statement (2) is the same as

saying that no point (a, b) lies on more than one solution curve, i.e. every initial condition

has at most one solution.

1.5 Numerical Solutions of First-Order IVP

Some simple differential equations admit solutions given by explicit formulas. But in

the general case, only approximated solutions can be found. Several paradigms exist in

the literature to solve the equations. Figure (1.1) shows a possible taxonomy of existing

methods to solve differential equations [15, 44].

For most differential equations it is impossible to write down a solution formula using

elementary functions. Even when such a formula exists, it might be difficult to draw any

conclusions from it. Numerical methods are therefore an indispensable tool for studying

differential equations, especially when combined with qualitative methods. These notes

are meant to serve as a very brief introduction to numerical methods for ODEs. If you

wish to find out more, you can have a look in the list of references. We will ignore

many things related to the practical implementation of these methods on a computer. In
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Figure 1.1: Methods to solve differential equations.

particular, we will not discuss the speed of the various algorithms (roughly proportional to

the number of operations involved). We simply note that lowering the step size increases

the accuracy, but also the number of operations. Methods with high accuracy at relatively

large step sizes are therefore preferable. On the other hand, such methods usually involve

many computations in each step. We will also ignore round-of errors. Computers have

finite precision and it is therefore not possible in practice to make the error arbitrarily

small by shrinking the step size. Moreover, when the step size is very small, round-off

errors become dominant and the error analysis presented in these notes becomes invalid

[15, 35, 44].

1.5.1 Euler method

To illustrate the ideas, we consider Euler’s method. For simplicity, we shall assume that

the initial time is t0 = 0 and we will only be concerned with what happens for t ≥ 0. In

order to simplify the discussion, we will also concentrate on first-order equations. Many of

the results in the notes can however be generalized to systems and hence to higher-order

equations. We wish to solve the IVP in Eq. (1.1). In Euler’s method, we discretize time
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by setting tk = hk, k = 0, 1, 2, ..., and define an approximate solution by:

xk+1 = xk + hfk, (1.2)

where fk = f(tk, xk). When we wish to emphasize the dependence on the step size, we

write x
(h)
k . One way of motivating Euler’s method is to approximate the derivative with

a finite difference:

x́(t) ≈
x(t+ h)− x(t)

h
.

Solving for x(t+ h) gives:

x(t+ h) ≈ x(t) + hx́(t) = x(t) + hf(t, x(t)).

Here we assume that h > 0, so that x(t + h) can be computed from x(t). In many

cases, one considers Eq. (1.1) on a fixed time interval [0, T ]. It is then natural to choose

h = T/N for some integer N . By letting N → ∞ we can make h → 0. Eq. (1.2) defines

the approximate solution only at the discrete points tk. One can extend the approximate

solution to all t by using linear interpolation between tk and tk+1:

x(h)(t) =
t− tk

tk+1 − tk
(x

(h)
k+1 − xh

k) + x
(h)
k , t ∈ [tk, tk+1].

This is particularly useful if one wants to interpret the method geometrically. The exact

solution of the Eq. (1.1) is tangent to the direction field (1, f(t, x)) for all values of

t, whereas the approximate solution is a polygon in which the slopes are given by the

direction field at the points tk.

Error estimates and convergence: A minimal requirement of a numerical method is

that it converges to a solution of the associated IVP as the step size h → 0. We will

now show that this is the case for Euler’s method under reasonable assumptions on f .

We begin by defining two different ways of measuring the error between the numerical

solution and the exact solution [44, 74].

Definition 1.1 The local truncation error Tk+1 in step k + 1 is the difference between

xk+1 and x(tk+1), assuming that the numerical solution equals the exact solution at step
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k. In other words,

Tk+1 = x̃k+1 − x(tk+1),

where x̃k+1 = x(tk) + hf(tk, x(tk)).

The local truncation error is the error produced in one step of the method, assuming that

the input data is exact. When applying the method repeatedly, errors will accumulate.

Definition 1.2 The global truncation error Ek+1 = xk+1 − x(tk+1) in step k + 1 is the

difference between xk+1 and x(tk+1).

Throughout the following discussion, we assume that f and its derivatives are bounded in

the domain in which the exact and approximate solutions are defined. We let M denote

a generic constant depending on the maximum of f and its derivatives. The exact value

may vary from line to line.

Proposition 1.1 The local truncation error for Euler’s method satisfies |Tk+1| ≤ Mh2.

Using Landau notation, we can write this as Tk+1 = O(h2) as h → 0. In general, a method

satisfying Tk+1 = O(hp+1) is said to be of order p. The above proposition doesn’t really

tell us anything about the convergence of the approximate solution to the exact solution.

For this we need to estimate the global truncation error. We consider now a fixed time

interval [0, T ].

Proposition 1.2 The global truncation error for Euler’s method satisfies Ek+1 = O(h).

In fact, this estimate is uniform over [0, T ] :

E(h) := max
0≤k≤N

|Ek| = O(h), h = T/N.

In particular this means that the approximate solution converges to the exact solution as

h → 0.
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1.5.2 Implicit methods

In the derivation of Euler’s method we replaced the derivative with a forward difference

quotient. If one instead uses a backward difference quotient:

x́(t) ≈
x(t)− x(t− h)

h
, h > 0,

and solves for x(t) one obtains the backward Euler method:

xk+1 = xk + hfk+1. (1.3)

This is an example of an implicit method. Note that fk+1 depends on xk+1, so that xk+1

is only implicitly determined by xk. Only in rare cases is it possible to solve this equation

explicitly. Normally one has to solve it using some numerical method, e.g. using fixed

point iteration:

x
(j+1)
k+1 = xk + hf(tk+1, x

(j)
k+1), j = 0, 1, 2....

Under suitable conditions on h and x
(0)
k+1, this will converge to a solution xk+1 as j → ∞.

Doing many iterations is, however, computationally costly. Nevertheless, implicit methods

are sometimes used since they generally have better stability properties than explicit meth-

ods. Implicit methods are particularly useful when combined with an explicit method to

calculate the starting value x
(0)
k+1. One then obtains a so-called predictor-corrector method.

The implicit method ‘corrects’ the explicit method (the ‘predictor’). It is then often

enough to do a small number of fixed point iterations.

1.5.3 Higher-order methods

A natural way of interpreting Euler’s method, which lends itself well to generalizations,

is to regard it as an approximation of integrals. If we integrate the differential equation

between t and t+ h, we find that [15, 74]:

x(t+ h) = x(t) +

∫ t+h

t

f(s, x(s))ds.
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Figure 1.2: The trapezoidal rule.

This integral can be approximated by:

∫ t+h

t

f(s, x(s))ds = f(τ, x(τ))h+O(h2),

where τ ∈ [t, t+h] is arbitrary. The choice τ = t results in the explicit Euler method, while

τ = t+ h gives the implicit one. In order to obtain better methods, one can approximate

the integral in other ways. The trapezoidal rule [15, 35]:

∫ b

a

g(x)dx ≈
b− a

2
(g(a) + g(b)),

suggests the scheme:

xk+1 = xk +
h

2
(fk + fk+1),

known simply as the trapezoidal method (see Figure 1.2). This is an implicit scheme.

When f is independent of x, the scheme coincides with the trapezoidal rule. If we replace

xk+1 in fk+1 by the approximate value xk + hfk, we obtain the explicit method

xk+1 = xk +
h

2
(fk + f(tk+1, xk + hfk)),

known as Heun’s method. One can show that both of these methods are second order

(with E(h) = O(h2)). The trapezoidal method and Heun’s method are examples of

Runge-Kutta methods. The general form of a Runge-Kutta method is:

xk+1 = xk + h

p
∑

i=1

biri,
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where

ri = f

(

tk + cih, xk + h

p
∑

i=1

aijrj

)

, i = 1, 2, ..., p,

with certain conditions on the coefficients bi, ci and aij. The method is explicit if aij = 0

for i ≤ j and otherwise implicit. The most famous example of a Runge-Kutta method is

probably the following fourth-order version: 2.

xk+1 = xk +
h

6
(r1 + 2r2 + 2r3 + r4),

where

r1 = fk, r2 = f
(

tk +
h
2
, xk +

h
2
r1
)

,

r3 = f
(

tk +
h
2
, xk +

h
2
r2
)

, r4 = f(tk + h, xk + hr3).

We will not discuss how one arrives at these precise values. We simply note that if f is

independent of x, the method coincides with Simpson’s rule for approximating integrals

3:
∫ b

a

g(x)dx ≈
b− a

6

(

g(a) + 4g

(

a+ b

2

)

+ g(b)

)

.

The equation is x́ = x with x(0) = 1. The number of steps is 2k for k = 0, 1, ..., 13 and

the interval of integration [0, 1]. The global error EN is plotted for each N . Note that this

means that we are comparing at the fixed time t = 1. The scale is double logarithmic.

This makes sense since we expect that:

EN = c.hp = c.N−p,

where p is the order of the method. Hence,

logEN = log c− p logN

gives a straight line with slope (−p). Note that the Runge-Kutta method starts to behave

strangely when EN ≈ 10−15. This is due to round-off errors. The exact limit depends on

2This is usually what is meant if someone says ‘Runge-Kutta’ without further qualification.

3Simpson’s rule is obtained by approximating the integrand with a second-degree polynomial.
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the fact that we are using double precision.

1.5.4 Multistep methods

The methods discussed so far have all been one-step methods, meaning that xk+1 is cal-

culated only using xk, without taking into account the previous values x0, x1, ..., xk−1. The

idea behind multistep methods is to also use these previous values. A linear multistep method

has the form [7, 74]:

xk+1 =

p−1
∑

i=0

ajxk−j + h

p−1
∑

i=−1

bjfk−j, k = p, ..., N − 1. (1.4)

If we assume that (ap−1, bp−1) 6= (0, 0) this is a p − step method. The method is explicit

if b−1 = 0 (so that fk+1 doesn’t appear), otherwise it is implicit. Eq.(1.4) is a difference

equation. Except for special functions f , it is difficult to say anything general about the

solution of the difference equation. As we will see in the examples below, the difference

equation may have properties which differ a lot from the differential equation it is supposed

to approximate. So far we haven’t said anything about how to choose the coefficients aj

and bj. A first basic requirement is that the difference equation should be consistent with

the differential equation. This basically means that Eq. (1.4) approximates Eq. (1.1) and

not some other equation. The precise definition is that Tk/h → 0 as h → 0. It is possible

to translate this into a condition on the coefficients, but we will not go into details here.

The examples that we consider are consistent. If we approximate x́(t) with the symmetric

difference:

x(t+ h)− x(t− h)

2h
,

we are led to the two-step recursion formula:

xk+1 = xk−1 + 2hfk, k = 1, ..., N − 1.

This is the midpoint method. The recursion formula requires two initial values x0 and

x1. One can show that the local truncation error is O(h3) and that the global error is

O(h2). In particular, the method is consistent. Even though the exact solution converges
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to 0, the approximate solution grows without bound 4. Note that this is a property of

the numerical method rather than the differential equation. In fact, it results from the

fact that we approximate a first-order differential equation with a second-order difference

equation. Fortunately, not all multistep methods are unstable.

Example 1.1 The Adams-Bashforth methods are a famous family of multistep methods.

There is one method for each value of p ≥ 1. For p = 1, it’s simply Euler’s method. For

p = 2, the method takes the form:

xk+1 = xk +
h

2
(3fk − fk−1),

and in general it has the form:

xk+1 = xk + h

p−1
∑

i=1

bjfk−j,

for some coefficients bj.

1.6 Real-life applications of IVP

These are a variety of applications of first order differential equations to real world systems:

1. Cooling/Warming Law: the mathematical formulation of Newton’s empirical law of

cooling of an object in given by the linear first-order differential equation.

2. Population Growth and Decay: dN(t)/dt = kN(t) where N(t) denotes population

at time t and k is a constant of proportionality, serves as a model for population.

3. Radio Active Decay and Carbon Dating: a radioactive substance decomposes at a

rate proportional to its mass. This rate is called the decay rate. If m(t) represents

the mass of a substance at any time, then the decay rate dm/dt is proportional to

m(t). Let us recall that the half-life of a substance is the amount of time for it to

decay to one half of its initial mass.

4In fact, there are many examples where the instability prevents the approximate solution from con-
verging to the exact solution, even though the method is consistent.
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Equation Expression

Newton second law F = d(mv)
dt

Wave ∂2u
∂2t2

= c2∇2u

Laplace ∇2ϕ = 0

Heat ∂u
∂t

= α∇2u

Poisson ∇2ϕ = f

Malthusian growth model dx
dt

= kx

Verhust d
dx
f(x) = f(x).(1− f(x))

Table 1.1: Some famous differential equations in physics, engineering, biology and eco-
nomics.

4. Series Circuits: There are many applications of differential equations indeed like the

resistive capacitive circuits can be analyzed using 1st order equations. This helps us

to find charges stored in capacitors and current in circuit at any time t.

5. There are wide application of ODE in recent times:

(a) Cancer/AIDS growth and chemotherapy modeling

(b) Epidemic disease modeling e.g. dengue, HFMD, malaria. . .

(c) Rumor/malware models in social electronic network and Security/Terrorism

related models

To conclude this section, some famous differential equations are enumerated in Table

(1.1), they are related to physics, engineering, biology and economics.
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Metaheuristics As Optimization

Algorithms

2.1 Introduction

Real-world optimization problems are often very challenging to solve, and many

applications have to deal with hard problems. To solve such problems, optimization tools

have to be used, though there is no guarantee that the optimal solution can be obtained.

In fact, for complex problems, there are no efficient algorithms at all. As a result, many

problems have to be solved by trial and errors using various optimization techniques.

In addition, new algorithms have been developed to see if they can cope with these

challenging optimization problems. Among these new algorithms, many metaheuristics,

have gained popularity due to their high efficiency [8, 87].

2.2 Optimization

It is no exaggeration to say that optimization is everywhere, from engineering design to

business planning and from the routing of the Internet to holiday planning. In almost all

these activities, we are trying to achieve certain objectives or to optimize something such

as profit, quality and time. As resources, time and money are always limited in real-world

applications, we have to find solutions to optimally use these valuable resources under

various constraints. Mathematical optimization or programming is the study of such
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planning and design problems using mathematical tools. Nowadays, computer simulations

become an indispensable tool for solving such optimization problems with various efficient

search algorithms [87].

2.2.1 Definition

Mathematically speaking, it is possible to write most optimization problems in the generic

form [11]:

minimize
x∈ℜn

fi (x) , (i = 1, 2, ...,M) ,

subject to hj(x) = 0, (j = 1, 2, ..., J),

gk(x) ≤ 0, (k = 1, 2, ..., K),

where fi(x), hj(x) and gk(x) are functions of the design vector:

x = (x1, x2, ..., xn)
T .

Here the components xi of x are called design or decision variables, and they can be real

continuous, discrete or the mixed of these two. The functions fi(x) where i = 1, 2, ...,M

are called the objective functions or simply cost functions, and in the case of M = 1,

there is only a single objective. The space spanned by the decision variables is called the

design space or search space ℜn, while the space formed by the objective function values

is called the solution space or response space. The equalities for hj and inequalities for gk

are called constraints. It is worth pointing out that we can also write the inequalities in

the other way ≥ 0, and we can also formulate the objectives as a maximization problem.

In a rare but extreme case where there is no objective at all, there are only constraints.

Such a problem is called a feasibility problem because any feasible solution is an optimal

solution [87].

Optimization problems can be classified according to the number of objectives into two

categories:

❼ Single objective optimization: if M = 1.

❼ Multiobjective optimization: if M > 1, is also referred to as multicriteria or even multi-

attributes optimization in the literature. In real-world problems, most optimization
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Figure 2.1: Optimization methods.

tasks are multiobjective.

Similarly, we can also classify optimization in terms of number of constraints J +K:

❼ Unconstrained optimization problem: if there is no constraint at all J = K = 0.

❼ Equality-constrained problem: if K = 0 and J ≥ 1.

❼ Inequality-constrained problem: if J = 0 and K ≥ 1. It is worth pointing out that

in some formulations in the optimization literature, equalities are not explicitly

included, and only inequalities are included. This is because an equality can be

written as two inequalities. For example h(x) = 0 is equivalent to h(x) ≤ 0 and

h(x) ≥ 0.

We can also use the actual function of the objective functions forms for classification:

❼ Linearly constrained problem: if the constraints hj and gk are all linear.

❼ Linear programming problem: if both the constraints and the objective functions are

all linear, here ‘programming’ has nothing to do with computing programming, it

means planning and/or optimization.

❼ Nonlinear optimization problem: if all fi, hj and gk are nonlinear.

2.2.2 Search for optimality

After an optimization problem is formulated correctly, the main task is to find the optimal

solutions by some solution procedure using the right mathematical techniques. The most

likely scenario is that we will do a random walk. Such random walk is a main characteristic
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of modern search algorithms, so the whole path is a trajectory-based search. Alternatively,

we can use the so-called swarm intelligence as we see in almost all modern metaheuristic

algorithms, we try to use the best solutions or agents, and randomize (or replace) the

not-so-good ones, while evaluating each individual’s competence (fitness) in combination

with the system history (use of memory). With such a balance, we intend to design better

and efficient optimization algorithms [79, 27].

Classification of optimization algorithm can be carried out in many ways. A simple way is

to look at the nature of the algorithm, and this divides the algorithms into two categories

(see Figure 2.2) [87]:

❼ Deterministic algorithms: they follow a rigorous procedure, and its path and values of

both design variables and the functions are repeatable

❼ Stochastic algorithms: they always have some randomness. Genetic algorithms are a

good example, the strings or solutions in the population will be different each time

you run a program since the algorithms use some pseudo-random numbers, though

the final results may be no big difference, but the paths of each individual are not

exactly repeatable.

❼ Mixture, or a hybrid algorithm, of deterministic and stochastic algorithms: The basic

idea is to use the deterministic algorithm, but start with different initial points.

However, since there is a random component in this hybrid algorithm, we often

classify it as a type of stochastic algorithm in the optimization literature.

2.2.3 Optimization algorithms

Definition 2.1 An optimization algorithm (see Figure 2.1) is essentially an iterative

procedure, starting with some initial guess point/solution with an aim to reach a better

solution or ideally the optimal solution to a problem of interest.

This process of search for optimality is generic, though the details of the process can vary

from algorithm to algorithm. Traditional algorithms such as Newton-Raphson methods

use a deterministic trajectory-based method, while modern nature-inspired algorithms

often are population-based algorithms that use multiple agents. In essence, these multiple
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Figure 2.2: Classification of algorithms.

agents form an iterative, dynamic system which should have some attractors or stable

states. On the other hand, the same system can be considered as a set of Markov chains

so that they will converge toward some stable probability distribution [77, 79].

2.2.4 Parameters of an Optimization Algorithm

1. Initial approximation: To initialize the algorithm, it is necessary to have an

initial approximation to the solution x0. (Starting point). The choice of a good

initial approximation conditions the convergence or not to the solution.

2. Number of iterations: An optimization algorithm uses a recursive process, cal-

culates a new approximation (iteration) to the actual solution until the convergence

criteria are reached. In programming, it’s a rehearsal loop where the new approxi-

mation is constructed from previous approximations.

3. Convergence speed: When we talk about convergence close to a solution, we talk

about the speed with which terms of iterations are approaching its limit.

lim
n−→∞

|xn+1 − ξ|

|xn − ξ|q
= µ,with µ > 0 and q is the convergence order.

In general, the orders of convergence are linear (q = 1), quadratic (q = 2), cubic

(q = 3), quartic (q = 4)..., etc. An optimization method with a convergence order
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superior arrives at the solution with few iterations. Choosing a method with a high

convergence is important for problems of a certain size or with multiple settings. For

example, for a quadratic convergence, we can say that the number of correct digits

are double (at least) at each computation step. Or say under another form, the error

decreases quadratically at each iteration. If an algorithm does not converge, that

does not mean that there is no solution. There exists no universal algorithm whose

convergence is guaranteed, in general it depends on the choice of the initialization

x0 and the properties of the function (continuity, differentiability).

4. Stopping criterion: Criteria to stop the calculation process. There are several

criteria for stopping. Most used:

(a) Maximum number of iterations Nmax.

(b) ‖f (xn)‖ < ε1 function value.

(c) ‖xn+1 − xn‖ < ε2 difference between two successive approximations. Where

ε1, ε2 ∈ R are the tolerances and are chosen according to the type of problem.

In general, these are negligible values (εi ≈ 10−4 − 10−6) [87].

2.3 Metaheuristics

2.3.1 Definition of metaheuristics

In computer science and mathematical optimization, a metaheuristic is a higher-level

procedure or heuristic designed to find, generate, or select a heuristic (partial search

algorithm) that may provide a sufficiently good solution to an optimization problem,

especially with incomplete or imperfect information or limited computation capacity [11].

Metaheuristics sample a set of solutions which is too large to be completely sampled.

Metaheuristics may make few assumptions about the optimization problem being solved,

and so they may be usable for a variety of problems [8, 77].

Compared to optimization algorithms and iterative methods, metaheuristics do not guar-

antee that a globally optimal solution can be found on some class of problems [10]. Many

metaheuristics implement some form of stochastic optimization, so that the solution found
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is dependent on the set of random variables generated. In combinatorial optimization, by

searching over a large set of feasible solutions, metaheuristics can often find good solutions

with less computational effort than optimization algorithms, iterative methods, or simple

heuristics. As such, they are useful approaches for optimization problems [8, 11].

Several books and survey papers have been published on the subject [87, 79, 27]. Most

literature on metaheuristics is experimental in nature, describing empirical results based

on computer experiments with the algorithms. But some formal theoretical results are

also available, often on convergence and the possibility of finding the global optimum [11].

Many metaheuristic methods have been published with claims of novelty and practical

efficacy. While the field also features high-quality research, many of the publications

have been of poor quality; flaws include vagueness, lack of conceptual elaboration, poor

experiments, and ignorance of previous literature.

2.3.2 Properties of metaheuristics

These are properties that characterize most metaheuristics [10]:

❼ Metaheuristics are strategies that guide the search process.

❼ The goal is to efficiently explore the search space in order to find near–optimal

solutions.

❼ Techniques which constitute metaheuristic algorithms range from simple local search

procedures to complex learning processes.

❼ Metaheuristic algorithms are approximate and usually non-deterministic.

❼ Metaheuristics are not problem-specific.

2.3.3 Classification of metaheuristics

There are a wide variety of metaheuristics and a number of properties with respect to

how classify them [10, 11]:
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Figure 2.3: Classification of metaheuristic algorithms.

Local search vs. global search

One approach is to characterize the type of search strategy. One type of search strategy

is an improvement on simple local search algorithms. Many metaheuristic ideas were pro-

posed to improve local search heuristics in order to find better solutions. Such metaheuris-

tics include simulated annealing, tabu search, iterated local search, variable neighborhood

search. These metaheuristics can both be classified as local search-based or global search

metaheuristics. Other global search metaheuristic that are not local search-based are

usually population-based metaheuristics. Such metaheuristics include ant colony opti-

mization, evolutionary computation, particle swarm optimization, and genetic algorithms

[10].

Single-solution vs. Population-based

Another classification dimension is single solution vs. population-based searches. Sin-

gle solution approaches focus on modifying and improving a single candidate solution;

single solution metaheuristics include simulated annealing, iterated local search, variable

neighborhood search, and guided local search [10, 79].

Population-based approaches maintain and improve multiple candidate solutions, often
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Figure 2.4: Swarm intelligence

(a) Bee’s swarm (b) Bird’s swarm (c) Ant’s swarm

using population characteristics to guide the search; population based metaheuristics

include evolutionary computation, genetic algorithms, and particle swarm optimization.

Another category of metaheuristics is Swarm intelligence which is a collective behavior of

decentralized, self-organized agents in a population or swarm. Ant colony optimization,

particle swarm optimization, social cognitive optimization, penguins search optimization

algorithm and artificial bee colony algorithms are examples of this category [33, 21, 79]

(Figure 2.4).

Hybridization and Mimetic algorithms

A hybrid metaheuristic is one which combines a metaheuristic with other optimization ap-

proaches, such as algorithms from mathematical programming, constraint programming,

and machine learning. Both components of a hybrid metaheuristic may run concurrently

and exchange information to guide the search. On the other hand, mimetic algorithms

[39] represents the synergy of evolutionary or any population-based approach with sepa-

rate individual learning or local improvement procedures for problem search. An example

of mimetic algorithm is the use of a local search algorithm instead of a basic mutation

operator in evolutionary algorithms (see Figure 2.5).

Nature-inspired metaheuristics

A very active area of research is the design of nature-inspired metaheuristics. Many

recent metaheuristics, especially evolutionary computation-based algorithms, are inspired

by natural systems. Nature acts as a source of concepts, mechanisms and principles for

designing of artificial computing systems to deal with complex computational problems
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Figure 2.5: Hybrid metaheuristic algorithms.

[33]. Such metaheuristics include simulated annealing, evolutionary algorithms, ant colony

optimization and particle swarm optimization. A large number of more recent metaphor-

inspired metaheuristics have started to attract criticism in the research community for

hiding their lack of novelty behind an elaborate metaphor.

2.3.4 Applications of Metaheuristics

In solving optimization problems, traditional optimization methods such as gradient-

based methods may not be able to cope with high non-linearity and multi-modality.

Metaheuristic algorithms tend to produce better results for highly nonlinear problems:

1. Metaheuristics are used for combinatorial optimization in which an optimal solu-

tion is sought over a discrete search space. An example problem is the traveling

salesman problem where the search space of candidate solutions grows faster than

exponentially as the size of the problem increases, which makes an exhaustive search

for the optimal solution infeasible.

2. Additionally, multidimensional combinatorial problems, including most design prob-

lems in engineering [80, 26] such as form-finding and behavior-finding, suffer from

the curse of dimensionality, which also makes them infeasible for exhaustive search

or analytical methods.

3. Metaheuristics are also widely used for job shop scheduling and job selection prob-

lems [92].

4. Popular metaheuristics for combinatorial problems include simulated annealing by

Kirkpatrick et al.[45], genetic algorithms by Holland et al. [34], scatter search and
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Algorithm Inspiration

Genetic algorithm Darwinian evolution in nature

Simulated annealing Annealing process of materials

Ant colony optimization Behavior of ants foraging

Bee algorithm Behavior of bees

Particle swarm optimization Swarming behavior of birds and fish

Tabu search Human memory

Harmony search Musical performance

Big Bang big crunch Evolution of the universe

Firefly algorithm Flashing characteristic of fireflies

Cuckoo search Brood parasitic behavior of cuckoo species

Charged system search Electrostatic and Newtonian mechanic laws

Bat algorithm Echolocation characteristic of bats

Eagle strategy Foraging behavior of eagles

Flower pollination Pollination of flowering plants

Ray optimization Refraction of light

Table 2.1: Metaheuristic algorithms and inspirations.

tabu search by Glover [27]. Literature review on metaheuristic optimization [87],

suggested that it was Fred Glover who coined the word metaheuristics [28].

Each metaheuristic algorithm can have different inspiration from the nature and special

rules according to the process of the natural systems. Detailed information about several

metaheuristic algorithms can be found in the literature [87, 79]. Inspiration and pioneer

papers of several metaheuristic algorithms are given in Table (2.1).

2.4 Metheuristic Methods for ODEs

In this section we present a review of some existing papers trying to solve ODEs with

MAs which have some advantages regarding set-up of the problem, storing requirements,

interpolation properties, etc. Table (2.2) presents a summary of this papers. It shows the

year, the main equations solved, how the candidate solutions are built or expressed, the

optimization algorithm and whether if a local search is used or not.

2.5 Conclusion

Metaheuristics can be an efficient way to produce acceptable solutions by trial and error

to a complex problem in a reasonably practical time. The complexity of the problem of
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Year Equation Solution expression MA Local Search Paper

1998 ODEs and PDEs ANN BFGS No [49]

2005 ODEs Gram-Schmidt basis functions GP No [46]

2006 ODEs and PDEs Symbolic expressions GE No [82]

2009 ODEs and PDEs ANN GE BFGS [83]

2009 1st order diff Eq ANN PSO No [43]

2010 Simple linear ODEs Symbolic expressions CGP No [72]

2013 ODEs Fourier series PSO No [5]

Table 2.2: Some papers about solving ODEs with MAs.

interest makes it impossible to search every possible solution or combination, the aim is

to find good feasible solution in an acceptable time scale. There is no guarantee that the

best solutions can be found, and we even do not know whether an algorithm will work

and why if it does work. The idea is to have an efficient and practical algorithm that

will work most of the time and is able to produce good quality solutions. Among the

found quality solutions, it can be expected that some of them are nearly optimal, though

there is no guarantee for such optimality. But for solving the real world problems, we

often have to use both modeling and optimization because modeling makes the objective

functions are evaluated using the correct mathematical/numerical model of the problem

of interest, while optimization can achieve the optimal settings of design parameters.
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The Main Results
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Chapter 3

Fractional Lévy Flight Bat

Algorithm (FLFBA)

3.1 Introduction

Bat Algorithm (BA) is considered as one of the most well-known metaheuristic

algorithms used in optimization problems, which consists of an iterative learning process

inspired by bats echolocation behavior in search of preys. More especially, it consists of a

number of bats that collectively move on the search space in search of the global optimum.

In this thesis we propose the Fractional Lévy Flight Bat Algorithm (FLFBA), which is an

improvement of the classical BA algorithm, based on velocity update through fractional

calculus and a local search procedure based on an Lévy distribution random walk to

enhance the ability of the algorithm to escape from local optimum. The FLFBA is tested

using several well-known benchmark functions and the convergence of the algorithm is

compared to other recent algorithms [6].

3.2 Related works

3.2.1 Basic bat algorithm

The bat-inspired algorithm, which mimics the echolocation navigation system in detecting

and pursuing their preys, was first proposed by Xin-She Yang in 2010 [88]. By emitting
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Figure 3.1: Echolocation behavior of bats.

loud sound pulses, the echoes that bounce back from different surrounding objects help

bats identify not only their size but also their exact distances when flying in darkness.

Bats emit from 10 to 20 ultrasonic sound burst a second with constant frequency (25

KHz to 150 KHz) but as they get closer to their preys they are increased to up to 200

pulses per second. Emitted pulses are as loud as 110 dB but as they get closer to their

preys they become quieter. The algorithm is based on the following three idealized rules

[90]:

1. Bats use echolocation to measure distance as well as differentiate between food/prey

and background barriers (Figure 3.1);

2. Bats fly randomly with velocity vi from position xi using a frequency fmin, varying

wavelength λ and loudness A0 to search for prey. Based on their proximity to target,

bats can automatically adjust the wavelength (or frequency) of their emitted pulses

and adjust the rate of pulse emission r ∈ [0, 1];

3. Although the loudness can vary in many ways, it is assumed that loudness varies

from a large pre-defined (positive) value A0 to a minimum constant value Amin.

Initiation

An initial randomly distributed population of N virtual bats is generated with initial

positions produced within a preset D-dimensional search space as follows:

x0
ij = xmin + (xmax − xmin) ∗ rand. (3.1)
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where i ∈ [1, · · · , N ] , j ∈ [1, · · · , D] and rand is a random vector with uniformly dis-

tributed elements generated in the range [0, 1]. The vectors xmax and xmin contain the

upper and lower boundaries in each dimension j, respectively. The initial velocities v0i are

generally set to zero.

Generation of New Solutions

Bats navigate by selecting new directions to optimal solutions through the combination

of their own and other bats best experience. At each iteration t, a new solution xt+1
i and

velocities vt+1
i are updated as follows:

fi = fmin + (fmax − fmin)β, (3.2)

vt+1
i = vti + (xt

i − xg)fi, (3.3)

xt+1
i = xt

i + vt+1
i , (3.4)

Where β ∈ [0, 1] is uniformly distributed random vector and fmin, fmax are the minimum/

maximum frequency of emitted pulse by the bats. The value xg represents the best global

location found so far which is obtained by comparing all the solutions of all N bats at

iteration t.

Local Search

After new solutions are generated, a random walk based local search is invoked by a ith

bat on the condition that its pulse emission rate ri is smaller than a random number. The

old position xold is modified to obtain a new position xnew by,

if (rand > ri) then, xnew = xold + ǫĀt, (3.5)

where ǫ ∈ [−1, 1] is a random number and Āt = 〈At
i〉 is the average loudness of all bats

at time steps t.
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Solutions and parameters update

As indicated in [88], BA can be considered as a balanced combination of a classical PSO

and the intensive local search controlled by both loudness and pulse emission rate. As

the bat approaches the prey, it decreases its loudness while increasing the rate of pulse

emission. For simplicity, the algorithm starts with an initial set loudness A0 which is

reduced at each iteration until it reaches a Amin near zero which represents a bat catching

its prey. The bat is guided toward an optimal solution on the basis of the following two

design equations,

If(rand < At
i) and f(xt+1

i ) < f(xt
i)

.

At+1
i = αAt

i, (3.6)

rt+1
i = r0i [1− exp(−γt)] , (3.7)

Where α and γ are constants. The value α, which is similar to a cooling factor of the

simulated annealing cooling schedule [45], lies between 0 and 1 while γ is greater than

0. The value At+1
i represent an updated value of the loudness At

i of bat i at time step

t. As the time step t tends toward infinity, the rate of pulse emission converges to the

initial rate of pulse emission r0i whereas the average loudness of the bat approaches zero

expressed as follows,

At
i → 0, rti → r0i , as t → ∞. (3.8)

3.2.2 Fractional-order calculus

Definition 3.1 The Riemann-Liouville fractional derivative of an order α > 0 of a con-

tinuous function x : (0,+∞) → R is given by:

RLDα
0+x(t) =

1

Γ(m− α)

dm

dtm

∫ t

0

x(s)

(t− s)α−m+1
ds, (3.9)

where Γ(x) is the gamma function, m− 1 ≤ α < m, and the right-hand side is point-wise

defined on (0,+∞).
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Definition 3.2 Starting with the assumption that a function x(s) satisfies some smooth

condition for a finite interval (0, t), the Grüwald-Letnikov fractional derivative definition,

which is based on finite difference, with respect to a fractional coefficient α ∈ R in an

equidistant grid in [0, t] such that:

0 = s0 < s1 < · · · < si = (i+ 1)h < · · · < sn+1 = t = (n+ 1)h,

is given by:

RLDα
0+x(t) = lim

h→0

1

hα
∆α

hx(t) =
1

hα
∆α

hx(t) +O(h), (3.10)

where

1

hα
∆α

hx(t) =
1

hα






x(sn+1) +

n+1
∑

i=1

(−1)i







α

i






x(sn+1−i)






, (3.11)

Dαx(t) = lim
h→0

[

1

hα

+∞
∑

k=0

(−1)kΓ(α + 1)x(t− kh)

Γ(k + 1)Γ(α− k + 1)

]

. (3.12)

3.2.3 Bat algorithm modified equations

Following the same principles and steps as in [19], the bat algorithm is described both in

discrete and continuous form. In discrete form, the general bat algorithm is given by:

v[t+ 1] = v[t] + (x[t]− xg[t])f, (3.13)

x[t+ 1] = x[t] + v[t+ 1],

and in continuous form by:

v′[t] = v[t] + (x[t]− xg[t])f, (3.14)

x′[t] = v[t].
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The derivatives in Eq.(3.14) can be rewritten as fractional derivatives in the following

form:

GLDα
0+v[t] = v[t] + (x[t]− xg[t])f, (3.15)

GLDα
0+x[t] = v[t].

As a result, Eq.(3.15) is rewritten in a form which allows simple numerical computations:

v[tn+1] = hα {v[tn] + (x[tn]− xg[tn])f} −
n+1
∑

k=1

skv[tn+1 − kh], (3.16)

x[tn+1] = hαv[tn+1]−
n+1
∑

k=1

skv[tn+1 − kh],

where the coefficients sk are computed in a recursive scheme as follows:

s0 = 1, (3.17)

sk =

(

1−
α + 1

k

)

sk−1, k > 0,

and 0 = t0 < · · · < ti = ih < · · · < tn+1 = (n+ 1)h = T .

3.2.4 Lévy flight

It is shown in previous studies that different animals and insects follow an Lévy flight

behavior in their search for preys or when flying in swarms. The process is defined as a

non-Gaussian stochastic random walk kind in which the random step lengths are based

on an Lévy distribution (Figure 3.2). For the BA a new location x′
i corresponding to a

ith bat is derived by combining a Lévy flight to its old position xi as follows:

x′
i = xi + υ ⊕ Levy(λ). (3.18)

Where υ is a random step size, λ is an Lévy flight distribution parameter and ⊕ indi-

cates an entry-wise multiplication. The step size ζ is computed using the Mantegna [54]
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Figure 3.2: Example of an Lévy flight trajectory with α = 1.5.

algorithm such that,

ζ = υ ⊕ Levy(λ) ∼ 0.01
u

|v|1/β
(xi − xopt). (3.19)

where u and v are obtained from:

u ∼ N(0, σ2
u), σu =

(

Γ(1 + β) sin(πβ/2)

βΓ[(1 + β)/2]2(β−1)/2

)1/β

(3.20)

, v ∼ N(0, σ2
v), σv = 1,

and Γ is the Gamma function defined as:

Γ(y) =

∫

zy−1e−ydt. (3.21)

3.2.5 DE-based location update formula

In order to overcome the entrapment of the BA on local optimum due to a location update

equation which is based only on a global best solution. In [91], it is proposed an improved

version based on DE. They provide a formula which allows a better search ability at both

local and global levels through the following equation:

vt+1
i = ωtvti + fiζ1(x

t
i − xg) + fiζ2(x

t
i − xt

q), (3.22)

ζ1 + ζ2 = 1,

ζ1 = 1 + (ζinit − 1)
(T − t)n

T n
,
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where xt
q is a randomly selected solution from the population and ζ1 and ζ2 are learning

factors in the range [0, 1]. The ζ1 is computed based on a relation between an initial ζinit,

the maximum number of iterations T , the actual iteration number t, and a nonlinear index

n. This modification allows an exploitation in one hand by guiding the velocity update

toward the global best xg and, on the other hand, an exploration based on a third term

that is based on a random position xt
q. The balance between exploration and exploitation

is governed by the changes in the term ζ1.

3.3 Fractional Lévy Flight Bat Algorithm

Even though BA has the advantage of simplicity and flexibility, just like any other meta-

heuristics method it still lacks the mechanism of escaping local optimum. The idea is to

design an algorithm capable of adjusting itself to the fitness functions landscape making

it more robust and applicable to any sort of optimization problem. A sophisticated bat

algorithm based on fractional calculus, differential evolution and Lévy flight is developed

in this section. The algorithm starts by generating a population of N random locations

using Eq. 3.1 and assigning values to the initial velocity vector. The objective function is

then evaluated at each position of the initial population and the first global best solution

is selected. At each generation and for each bat in the population an update process of the

positions is divided, with an equal probability of 50%, between two different mechanisms.

The first mechanism starts by producing a new location using the difference between

two randomly selected best local solutions multiplied by a random value ε drawn from a

uniform distribution and then added to the ith local best solution as in the following:

s = ξ(xl
q − xl

p) (3.23)

xn = xl
i + s.

The fitness function is then evaluated at this new solution and then compared with func-

tion value at the ith local best solution. If the new location xn produces a better result

than xl
i then xl

i = xn. An updated solution xt+1
i is obtained in the neighborhood of the
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corresponding best local solution xl
i through an Lévy flight search as follows,

xt+1
i = xl

i + 0.01
u

|v|1/β
|x̄l − xt

i|, (3.24)

where x̄l is the mean value of the vector of local best solutions. This will assign half of the

population in a local search around the selected local best solution which should result in

a better exploration procedure. As for the second half of the population, a combination

of ED and fractional calculus velocity update equation is utilized. The velocity term is

computed based on a fractional differential formula where:

νt
i =

o
∑

k=0

skv
t−k
i , (3.25)

where sk is obtained using Eq.(3.17) and o is the order of the fractional derivative which is

selected randomly between the integers 1 and 10. The above process tries to mimics to a

certain degree a continuous time random walk where for each individual of the population

a different learning period is selected based on the order o of Eq.(3.25). The velocity term

computed in Eq.(3.25) is combined with an exploration and exploitation term, through a

DE approach, to obtain the updated velocity vector corresponding to each individual of

the population by using the following formula:

vt+1
i = ωtνt

i + fiζ1(x
g − xt

i) + fiζ2(x
l
i − xt

q), (3.26)

where ωt is an inertia weight, fi is the frequency, xg is the global best location, xl
i is

the corresponding local best solution, and xt
q is a randomly selected solution from the

population such that q 6= i. The new proposed formula contains several important factors,

such as information from previous generations and a combination of exploitation around

the global best and an exploration with respect to local best, which should result in a

better and consistent convergence of the algorithm. The new computed velocity vector is

then added to the actual corresponding location vector as in Eq.(3.4). Once the second

half of the population locations are updated, a local search routine, based on the one

proposed by [55], is applied to solutions which pulse emission ri is below a randomly
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generated value in the interval [0, 1]. The proposed local search is combined with an Lévy

flight pattern around the global best solution as indicated below:

rA = 0.01
u

|v|1/β
|Ai − Ā| (3.27)

xt+1
i = xg(1 + rA),

where Ai is the i
th related loudness value and Ā is the mean value of the loudness vector.

The local best bats are updated and if ∃xl
i, F (xl

i) < F (xg), i = 1, · · · , n and the associated

loudness value Ai is greater than a random number ε ∈ [0, 1] then xg = xl
i. This is then

followed by a reduction in the corresponding ith loudness Ai and an increase in the pulse

emission ri as presented in Eq.(3.6) and Eq.(3.7). The pseudo-code of the modified bat

algorithm is presented in Algorithm (1).

3.4 Experimental Results

3.4.1 Parameters settings

The parameters settings of the CS, FDPSO, NBA, ACO, MFO, SFLA and FLFBA are

provided in Table (3.1). The maximum number of iterations was set to 50 times the

dimension such as for D = 10 it is 500, for D = 20 it is 1000 and finally for D = 40

it is 2000. The search space in all algorithms is restricted to the interval [−5, 5]D since

the majority of the benchmark functions has the global optimum solution inside the

interval [−4, 4]D or drawn uniformly from this compact. For a better analysis of the

results, each optimization procedure was repeated 50 times overall the functions in the

three dimensions. It should be noted that the inconsistent results obtained for F5 in

all dimensions were omitted due to a probable bug in the downloaded benchmark source

code. The proposed algorithm is evaluated for performance using 24 CEC2015 benchmark

functions [68] (see Table (B.1).
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Algorithm 1 Pseudo code of FLFBA

N : the number of individuals (bats) in a single population
MIter: the maximum number of iterations
G: the frequency of renewing a section of the population
Pa: The portion of the population to be renewed
α, γ, fmax, fmin, A0, r0: classical BA parameters
t = 0; Initialize the population using Eq.(3.1)
Initialize velocity vector and local best solutions
Compute fitness and select best solution
while t < MIter do

f t = r(fmax − fmin) + fmin

Update ωt, ξt1 and ξt2
for j = 1, . . . , n do

if ε < 0.5 then
Select two random best local bats
Generate a new bat xn using Eq.(3.23)
if F (xn) < F (xl

j) then
xl
j = xn

end if
xt
j = xl

j + λ|x̄l − xt−1
j |

else
Compute vti ⊲ Using Eq.(3.25), Eq.(3.22)
xt
j = xt−1

j + vtj
end if
if ε > rj then

Do a local search using Eq.(3.27)
end if
Evaluate F (xt

j)
Update local best solution
if F (xl

j) < F (xg) and ε < Ai then
xg = xl

j

Update Aj and rj using Eq.(3.6) and Eq.(3.7)
end if

end for
t = t+ 1

end while
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Table 3.1: Parameters settings

Parameters CS
FDPSO

NBA ACO MFO SFLA
FLFBA

Population size N 30 30 30 30 30 30 30
Loudness A0 − − [1, 2] − − − [1, 2]
Pulse emission r0 − − [0, 1] − − − [0, 1]
Frequency [fmin, fmax] − − [0, 1.5] − − − [0, 2]

ρ, γ − −
0.99,
0.9

− − −
0.99,
0.9

Probability habitat
selection P

− −
[0.5, 0.9]

− − − −

Compensation rates
Doppler echoes C

− −
[0.1, 0.9]

− − − −

Contraction-expansion
coefficient θ

− − [0.5, 1] − − − −

Inertia weight ω − 0.9
[0.4, 0.9]

− − −
[0.2, 0.9]

fractional coefficient α − 0.632 − − − − 0.632
Cognitive and social
components

− 1.5, 1.5 − − − − −

Search counter / Max
Iterations

− 15 − − − 5 −

Number of swarms
[min, n, max]

− [1, 2, 3] − − − − −

Discovery rate / Step-size 0.25 − − 2 − − −
Deviation-Distance Ratio − − − 1 − − −
Intensification Factor − − − 0.5 − − −
Memeplex/ Sample Size − − − 40 − 5 −
Offspring Number − − − − − 3 −

3.4.2 Results Analysis

In Table (B.2) the average computational time of the selected algorithms using 50 different

trials for each benchmark function computed using three variables dimensions, 10−D/20−

D/40 − D, is presented. The first observation is the large computational time of both

SFLA followed by FDPSO and, for some benchmark functions, CS algorithms which is

more than 4 times that of NBA and MFO algorithms. The second observation is the

similar performance of ACO and FLFBA time-wise.

To analyze the performance of stochastic algorithms based on computational intelligence

we avoid using the parametric tests because the independence, normality, and homo-

scedasticity assumptions cannot be satisfied, for that reason nonparametric statistical

procedures are very practical in this case [22]. In this section we deal with multiple

comparisons class of non-parametric analysis and post-hoc procedures to evaluate the

performance of FLFBA with respect to remaining five algorithms. Moreover, this analysis

helps verify if the proposed FLFBA can significantly improve the accuracy in comparison

53
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with other methods.

The Friedman test aims to distinguish significant differences between two or more al-

gorithms. Its null hypothesis designates sameness of medians between the populations

when the alternative hypothesis is given as the reversal of the null hypothesis, its statistic

distributed according to the chi-square distribution with (k− 1) degrees of freedom. The

Friedman Aligned Ranks test is used when the number of compared algorithms is small.

The statistical test is evaluated through a chi-square distribution with (k − 1) degrees of

freedom. The Quade test considered as an alternative test of Friedman by means of the

difficulty considerations. In this sense, the rankings computed on each problem could be

scaled depending on the differences observed in the algorithm’s performances, finding, as

a consequence, a weighted ranking analysis of the results sample. It’s distributed accord-

ing to the Fisher distribution with (k− 1) and (k− 1)(n− 1) degrees of freedom where k

is the number of the tested algorithms and n is the number of problems considered.

Table (B.3) provides the average rankings of the algorithms achieved by the Friedman,

Friedman Aligned, and Quade tests for D− 10, D− 20 and D− 40. Results indicate that

SFLA achieves the best average rank by all three tests in all the dimensions while FLFBA

was 5th in both 10 and 20 dimensions and finally NBA scored last. A different order of

performance is obtained in the D − 40 case where FLFBA was 4th and ACO came last.

Our experimental study shows that the Friedman and Friedman Aligned Ranks are both

distributed according chi-square distribution with 6 degrees of freedom, while the Quade

test is distributed according to F-distribution with 6 and 138 degrees of freedom. The

Friedman statistic shows an (F = 41.5312, p-value = 2.2757E−7) for the 10−D cases, an

(F = 52.4285, p-value = 1.5810E − 9) for the 20−D cases and finally an (F = 80.2857,

p-value= 4.7076E − 11) for the 40 − D cases. Iman and Davenport test indicates for

the D − 10 an (F = 9.3220, p-value = 1.4116E − 8), for D − 20 (F = 13.1684, p-value

= 9.4150E − 12) and for D − 40 (F = 28.9820, p-value = 2.9043E − 22) proposing the

existence of significant differences between the tested algorithms.

Contrast Estimation based on medians used to estimate the difference between the pre-

sentations of two algorithms in view of all pairwise comparisons. It is particularly helpful

to estimate by how far an algorithm outperforms another one. The importance of this
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test can be summarized as the estimation of dissimilarity between medians of samples of

results. It is important to note that this test cannot give a probability of error related to

the refusal of the null hypothesis of equality. In our experimental study, we can calculate

the set of estimators of medians directly from the average error results.

Table (B.4) shows the estimations computed for each algorithm in the D − 10, D − 20

and D − 40 cases respectively. Focusing our attention in the rows of the tables, we can

underline the performance of FSLA as the best performing algorithm because it have the

max number of negative related estimators (attain very low error rates considering median

estimators) followed by CS algorithm while FLFBA was 4th in both the D − 20/D − 40

cases.

3.4.3 Post-hoc Procedures

Since the Friedman, Iman-Davenport, Friedman Aligned, and Quade tests can just detect

significant differences over the complete multiple comparisons, which makes it incapable

to create accurate comparisons between some of the considered algorithms then we can

progress with a post-hoc procedure that permit us to establish which algorithms are

significantly better/worse.

Tables (B.5) (B.6) and (B.7) show the Holm/ Hochberg/ Hommel, Holland, Rom, Finner

and Li procedures for all six algorithms in the D−10, D−20 and D−40 cases respectively

for alpha = 0.05.

In order to better show the differences between the three tests and their respective approx-

imations for obtaining the p-value (also named unadjusted p-values), of every hypothesis,

we will compute the unadjusted p-values for the selected algorithms. Numerous dissim-

ilarities can be clarified; Friedman test shows a lower power than the Friedman Aligned

test (the unadjusted p-values are considerably lower). Within a multiple comparison tests

the p-values are not appropriate because it does not consider the remaining comparisons

going to the family, it just represents the probability error of a certain comparison.

Adjusted p-values can treat this problem. They are suitable to be employed since they

offer more information in a statistical analysis. They assume the accumulated family error,

also they can be evaluated directly with every selected significance level α. Therefore,
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Tables (B.8), (B.9) and (B.10)) show the p-values obtained, using the ranks computed by

the Friedman, Friedman Aligned, and Quade tests, respectively for the 8 considered post

hoc procedures for the D − 10, D − 20 and D − 40 cases respectively.

The Friedman test illustrates a significant performance of FSLA over the remaining al-

gorithms while the Friedman Aligned test validate its improvement for each post-hoc

procedure considered except Bonferroni-Dunn which fails to emphasize the significant

differences between them. It should be noted that NBA and MFO are interchangeably

omitted from the results due to their worst scores. The Finner and Li tests have the

lowest p-values in the comparisons displaying the most powerful behavior. Finally, the

Quade test also confirms the order of the three first performing algorithms, i.e. FSLA,

CS and FDPSO, and indicates different positions between FLFBA and ACO. This result

support the conclusion that FSLA performed better than the remaining algorithms while

FLFBA had an intermediate position in the scores tables.

3.5 Conclusion

This chapter introduces a hybrid version of BA that is called FLFBA. The proposed al-

gorithm is based on FC and LF techniques with DE strategies for solving optimization

problems. FLFBA has been validated using several benchmarks functions and compared

to five algorithms that are CS, FDPSO, SFLA, ACO, MFO and NBA. Several nonpara-

metric statistical tests using an average of the difference between the computed optimal

fitness function value and the true global optimum function value were conducted in order

to analyze the performance of the FLFBA algorithm.

FLFBA showed a distinguished performance in comparison to MFO and NBA but failed

to provide similar or better results than FSLA, CS, and FDPSO. Also studies on the time

taken to perform the iterations for each algorithm indicate that the FLFBA was in most

of the cases much faster than FSLA, CS and FDPSO, but slower than NBA and MFO.

As shown with our experiments FLFBA uses a balanced combination of the advantages

of the successful proprieties of FC, LF and DE which provides a superior performance

than the NBA algorithms in terms of accuracy and efficiency.
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Chapter 4

Application of FLFBA in Optimizing

IVP

4.1 Introduction

To illustrate the FLFBA’s performance and to demonstrate its computationally

efficiency, we select - as a studied problem - the bacterial population growth models that

are the logistic growth and the exponential growth models by taking a uniform step size

h.

The main motivation in the selection of the application examples comes from the great

importance of the exponential equation in modeling any phenomena where a quantity is

allowed to undergo unrestrained growth, while the logistic differential equations [81] are

an ODE whose solution is a logistic function, they are useful in various other fields as well,

as they often provide significantly more practical models than exponential ones which fail

to take into account constraints that prevent indefinite growth, and logistic functions

correct this error. They are also useful in a variety of other contexts, including machine

learning, chess ratings, cancer treatment (i.e. modeling tumor growth), economics, and

even in studying language adoption. The logistic function is shown to be the solution of

the Riccati equation, some second-order nonlinear ODEs and many third-order nonlinear

ODEs [47].

In this chapter, the IVP is formulated as an optimization problem [61, 62, 63, 64, 65] it will

be solved with FLFBA compared to several methods including Euler’s methods (Explicit
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Euler, Midpoint method and Backward Eulers), Runge–Kutta methods (RK4, Heuns

(RK2)) and predictor–corrector methods (Adams–Bashforth–Moulton method (ABM)).

Then FLFBA is compared with three MAs that are: Artificial Bee Colony Algorithm

(ABCA) inspired by the behavior of honey bees [59, 40], Bat Algorithm (BA) simulates

the echolocation behavior of bats [88] and Flower Pollination Algorithm (FPA) inspired

by the flower pollination process of flowering plants [90] to examine which algorithm find

the best numerical solutions with the best effectiveness for the studied problem. All

computations were performed on an MSWindow 2007 professional operating system in

the Matlab environment version R2013a compiler on Intel Duo Core 2.20 GHz. PC.

4.2 Problem Formulation

We consider the general Cauchy problem as in Eq. (1.1):











ý = f(x, y)

y(t0) = y0

,

where t is the independent variable and y = y(t) is the dependent variable. By using the

classical assumption:

f : [t0 − T, t0 + T ]× [y0 − Y, y0 + Y ] → R,

is continuous and satisfies the Lipschitz condition:

|f(t, y1)− f(t, y2)| ≤ L |y1 − y2| ,

it results there exists a single solution y. There are many methods used to find the

solution, but, in practice, we always solve the problem by using numerical methods, like

Runge-Kutta or Euler methods but these classical mathematical tools are not very precise.

The main goal of this thesis is to underline the possibility of using a different method,

based on metaheuristic algorithms like FLFBA.
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4.2.1 Objective Function

Finding the values of the unknown function y = y(t), y : [a, b] → R , according to a finite

set of equidistant values of the independent variable t0 = a < t1 < ... < tn = b, ti =

a+ ih, h =
b− a

n
. We denote by yi = y (ti) , i = 1...n the values of the unknown function

y, in accordance with the given division. Thus, the vector (y1, y2, ..., yn) is an admissible

solution. We will consider the population as being a subset of admissible solutions. Given

an instant t, we denote the population by Y (t). One individual y = (y1, y2, ..., yn) is

characterized by the values yi. The individuals in a natural population are, more or less,

adapted. Thus, in order to simulate natural selection, we will select, in each stage, only

one subset of individuals, namely those who are best adapted. The surplus of individuals

is eliminated, taking into account the decreasing values of the objective function. In

order to evaluate each individual, we will use the following approximate formula (finite

difference formula) for the derivative:

ý (ti) ≈
yi − yi−1

h
,

∣

∣

∣

∣

ý (ti)−
yi − yi−1

h

∣

∣

∣

∣

≤ const.h.

Consequently, the discrete form of the Cauchy problem will be:

yi − yi−1

h
= f (ti, yi) , i = 1...n. (4.1)

The above system is, generally, nonlinear. Finding the vector (y1, y2, ..., yn) which satisfies

the above conditions is our goal. Of course, for an admissible solution, we do not have

the equality in Eq. (4.1) and, consequently, we have to consider the error formula:

(

yi − yi−1

h
− f (ti, yi)

)2

.

The objective function associated to an individual y = (y1, y2, ..., yn) will be:

F (y) =
n
∑

i=1

(

yi − yi−1

h
− f (ti, yi)

)2

. (4.2)
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An individual from Y (t) will be better adapted if it implies a smaller value of the function

F . Each individual may suffer some modifications, which may be hazardous, we will

consider that yi ± ε is a mutation for yi.

4.2.2 Consistency

We denote by ut the best adapted individual in the population, at the instance t, i.e.

the individual in the population which has the minimum value of the function F . In [53]

it’s already stated that the sequence (ut)t≥0 converges, its limit being the solution of the

optimization problem inf F . While the solution is the limit of a convergent sequence, by

applying the optimization algorithms, the following assertion is true:

For ε > 0 , there is a (y1, y2, ..., yn) such that:

F (y) =
n
∑

i=1

(

yi − yi−1

h
− f (ti, yi)

)2

< ε,

it results there is a y = (y1, y2, ..., yn) such that:

∣

∣

∣

∣

yi − yi−1

h
− f(ti,yi)

∣

∣

∣

∣

< h,

taking into account the approximation of the derivative, we have:

|ý (ti)− f(ti,yi)| ≤

∣

∣

∣

∣

ý (ti)−
yi − yi−1

h

∣

∣

∣

∣

+

∣

∣

∣

∣

yi − yi−1

h
− f(ti,yi)

∣

∣

∣

∣

< Ch,

when C denotes a positive constant. The last relation shows that the final value y =

(y1, y2, ..., yn) is an approximate solution of the Cauchy problem, for small values of h.

4.3 Population Growth Models

In this section we explain briefly the two population growth models:
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4.3.1 Exponential growth

Suppose that P (t) describes the quantity of a population at time t. For example, P (t)

could be the number of milligrams of bacteria in a particular beaker for a biology ex-

periment at a time t. A model of population growth tells plausible rules for how such a

population changes over time. The simplest model of population growth is the exponential

model, which assumes that there is a constant parameter r, called the growth parameter,

such that:

Ṕ (t) = rP (t),

holds for all time t. This differential equation it self might be called the exponential

differential equation, because its solution is:

P (t) = P0e
rt, (4.3)

where P0 = P (0) is the initial population. One noticeable feature of the exponential

model is that, when r is positive, the population always grows larger and larger without

any finite limit. This kind of growth may be a good model for a new population of

bacteria in a beaker, but it does not hold for a long time. It is easy to see that the

equation would imply a population of bacteria that ultimately outgrew the beaker and

even outgrew the planet earth, since the mass of the bacteria would ultimately exceed the

mass of the earth. Such a model is therefore absurd to model a system for long periods of

time. The fundamental difficulty is that the exponential differential equation ignores the

fact that there are limits to resources needed for the population to grow. It ignores the

needs for food, oxygen, and space; and it ignores the accumulation of waste products that

inevitably arise. The logistic curve gives a much better general formula for population

growth over a long period of time than does exponential growth.

4.3.2 Logistic growth

An alternative model was proposed by Verhulst in 1836 [81] to allow for the fact that there

are limits to growth in all known biological systems. He proposed what is now called the

logistic differential equation. The equation involves two positive parameters. The first
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parameter r is again called the growth parameter and plays a role similar to that of r

in the exponential differential equation. The second parameter K is called the carrying

capacity. The logistic differential equation is written:

Ṕ (t) = rP (t)[
K − P (t)

K
].

Equivalently, in terms of the d notation, the logistic differential equation is:

dP

dt
= rP [

K − P (t)

K
].

Note that when P (t) is very small, then P (t)/K is close to 0, so the entire factor [K−P (t)
K

]

is close to 1 and the equation itself is then close to Ṕ (t) = rP (t); we then expect that the

population grows approximately at an exponential rate when the population is small. On

the other hand, if P (t) gets to be nearK, then P (t)/K will be approximately 1, so [K−P (t)
K

]

will be approximately 0, and the logistic differential equation will then say approximately

Ṕ (t) = rP (t)0 = 0. The growth rate will be essentially 0, so the population will not grow

significantly more. The solution of the logistic differential equation is:

P (t) =
P0K

P0 + (K − P0)e−rt
, (4.4)

where P0 = P (0) is the initial population. This formula is the logistic formula. It tells

the equation for the logistic curve.

4.4 Numerical Experiments

The implementation of any numerical method could turn difficult because it is necessary

to take into account several issues as the discretization order, the algorithm stability, the

convergence speed, how to fulfill the boundary conditions, etc. In the methods described

in this thesis, the original problem is transformed into an optimization one according to

Eq. (4.2). For making a quantitative comparison, this section is devoted to compare the

FLFBA with other algorithms, such as other metaheuristic approaches or more tradi-

tional numerical methods, two ordinary differential equations (linear and nonlinear IVP)
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have been solved with traditional numerical methods (see Table 4.3) and metaheuristic

algorithms (see Table 4.6).

4.4.1 Application example

Consider a bacterial population growth problem, when the initial population is 3milligrams

(mg) of bacteria, the carrying capacity is K = 100 mg, and the growth parameter is

r = 0.2 hour−1. We want to find the solutions of the differential equations satisfied by

this population by means of FLFBA, ABCA, BA, FPA and more traditional numerical

methods and comparing between their performances.

Problem 4.1 Exponential growth model The exponential growth model is considered

as a linear first order IVP, hence based on Eq. (4.3) the exponential differential equation

is given by

P (t) = 3e0.2t.

Problem 4.2 Logistic growth model The logistic differential equation related to our

example is considered as a Bernoulli differential equation (and also a separable nonlinear

first order IVP), solving it using either approach gives the solution as in Eq. (4.4)

P (t) =
(3)(100)

3 + (100− 3)e−0.2t
=

300

3 + 97e−0.2t

.

4.4.2 Parameters adopted to solve IVP

FLFBA, ABCA, BA and FPA are an optimization instrument. Then, the essential dif-

ferential equation is converting into discretization form Eq. (4.2). The difference formula

is used to convert differential equation into discretizations form when the derivative term

is replaced in the discretized form by a difference quotient for approximations. The IVP

related parameters are as follows:

1. The number of interior nodes (n = 9).
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Parameters Value

Dimension of the search variables (dim) 10
Maximal number of generations (iterations) (M) 100
Population size (pop) 30
The maximal and minimal pulse rate (r0Max, r0Min) (1, 0)
The maximal and minimal frequency (freqDMax, freqDMin) (2, 0)
The maximal and minimal loudness (AMax,AMin) (2, 0)
gamma 0.9
alpha 0.99
The maximal and minimal inertia weight (wMax,wMin) (0.9, 0.2)

Table 4.1: Parameters adopted to generate FLFBA.

2. The initial condition in our examples is considered by 3 milligrams (mg) of bacteria

and the interval between which the differential equation is t ∈ [0, 50].

3. The interval of the IVP is equally partitioned into (n+ 1) equidistant subintervals

with the length h = (b− a)/n + 1. Since t ∈ [0, 50] in our example, hence the step

size h = 5.

4. The number of generations is set to 100 and the population size is set to 30 for all

MAs used in this study.

5. For a better analysis of the results, a Monte Carlo simulation is performed (i.e. we

run the program several times for the same testing problem) so each optimization

procedure was repeated 50 times for all MAs and in all dimensions.

6. The objective function:

F (y1, y2, ..., y10) =
10
∑

j=1

(yj−yj−1

h
− f (tj−1, yj−1)

)2
=

10
∑

j=1

(yj−yj−1

h
− yj−1

)2

.

Table (4.1) indicates the different parameters used to generate FLFBA [6]. Table (4.2)

gives the parameters adopted to generate BA, FPA and ABCA (for more details about

these three algorithms see [88], [90] and [59] respectively).
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Parameters BA FBA ABCA

Dimension of the search variables (d) 10 10 10
Number of generations (N) 100 100 100
Population size (n) 30 30 30
Loudness (constant or decreasing) (A) 0.5 / /

Pulse rate (constant or decreasing) (r) 0.5 / /

Probabibility switch (p) / 0.8 /

Table 4.2: Parameters adopted to generate BA, FPA and ABCA.

4.4.3 Comparison of FLFBA with numerical methods

In this subsection, we look into several methods of obtaining the numerical solutions to

ordinary differential equations (ODEs) in which all dependent variables (x) depend on a

single independent variable (t).

The IVPs will be handled with several methods including Euler’s methods (Explicit Euler,

Midpoint method and Backward Eulers), Runge–Kutta methods (RK4, Heuns (RK2)) and

predictor–corrector methods (Adams–Bashforth–Moulton method(ABM)). In Matlab we

plot the numerical results together with the (true) analytical solution. The results are

depicted in Figure (4.1) and listed in Table (4.3).

Comparison of exact results with those of numerical methods and FLFBA show that the

RK4 method is better than Heun’s method and ABM’s method, while Euler’s method is

the worst in terms of accuracy with the same step-size, while the FLFBA approach gives

the best solution since it does not depend on the type of differential equation i. e., is

based on velocity update through fractional calculus and a local search procedure based

on an Lévy distribution random walk. The absolute error of the proposed methods are

made in the Table ((4.4)) and summarized via Figure (4.2).

Starting with the Euler method, since it is easy to understand and simple to program.

Even though its low accuracy keeps it from being widely used for solving ODEs, it gives

us a clue to the basic concept of numerical solution for a differential equation simply

and clearly. The error of Heun’s method is O(h2) (proportional to h2), while the error

of Euler’s method is O(h). Although Heun’s method is a little better than the Euler

method, it is still not accurate enough for most real-world problems. The global error of

the midpoint method is of order O(h2). Thus, while more computationally intensive than
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i xi Exact Expl Euler RK4 Heuns Midpoint Back Euler ABM FLFBA

Problem 1
0 0 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3 0000
1 5 8.0000 6.0000 8.0000 8.0000 8.0000 6.0000 8.1250 8.0000
2 10 22.000 12.000 22.000 19.000 19.000 12.000 22.005 22 000
3 15 60.000 24.000 60.000 47.000 47.000 24.000 59.597 60.000
4 20 164.00 48.000 161.00 117.00 117.00 48.000 160.08 167.00
5 25 445.00 96.000 437.00 293.00 293.00 96.000 429.57 453.00
6 30 1210.0 192.00 1184.0 732.00 732.00 192.00 1152.8 1236.0
7 35 3290.0 384.00 3207.0 1831.0 1831.0 384.00 3093.7 3319.0
8 40 8943.0 768.00 8684.0 4578.0 4578.0 768.00 8302.7 8977.0
9 45 24309 1536.0 23520 11444 11444 1536.0 22282 24346
10 50 66079 3072.0 63700 28610 28610 3072.0 59798 66120

Problem 2
0 0 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000
1 5 7.75510 5.91000 7.73340 7.23540 7.25650 5.91000 7.73330 7.75550
2 10 18.6017 11.4707 18.5208 16.5923 16.7499 11.4707 18.5207 18.6044
3 15 38.3174 21.6257 38.1583 34.0973 34.8446 21.6257 38.1584 38.3231
4 20 62.8060 38.5746 62.6348 57.6171 59.6999 38.5746 62.5191 62.8112
5 25 82.1112 62.2692 81.9715 77.1952 79.9782 62.2692 83.0479 82.1157
6 30 92.5800 85.7639 92.4564 88.4623 90.5498 85.7639 94.1325 92.5845
7 35 97.1360 97.9733 97.0456 94.2223 95.4540 97.9733 96.7510 97.1384
8 40 98.9270 99.9589 98.8735 97.1106 97.7738 99.9589 97.3996 98.9275
9 45 99.6026 100.000 99.5749 98.5553 98.8988 100.0000 99.4568 99.6024
10 50 99.8534 100.000 99.8402 99.2776 99.4523 100.0000 100.493 99.6024

Table 4.3: Comparison of FLFBA with numerical methods.

Figure 4.1: Solution of bacterial growth problems by numerical methods vs. FLFBA.

(a) Problem 1 (b) Problem 2
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i xi Expl Euler RK4 Heuns Midpoint Back Euler ABM FLFBA

Problem 1
0 0 00.000 00.000 00.000 00.000 00.000 00.000 00.000
1 5 02.000 00.000 00.000 00.000 02.000 01.000 00.000
2 10 10.000 00.000 03.000 03.000 10.000 00.000 00.000
3 15 36.000 00.000 13.000 13.000 36.000 04.000 00.000
4 20 116.00 03.000 47.000 47.000 116.00 39.000 03.000
5 25 349.00 08.000 152.00 152.00 349.00 154.00 08.000
6 30 1018.0 26.000 478.00 478.00 1018.0 572.00 26.000
7 35 2906.0 83.000 1459.0 1459.0 2906.0 196.20 29.000
8 40 8175.0 259.00 4365.0 4365.0 8175.0 640.30 34.000
9 45 22773 789.00 12865 12865 22773 202.71 37.000
10 50 63007 2379.0 37469 37469 63007 628.14 41.000

Problem 2
0 0 00.0000 0.0000 0.0000 0.0000 00.0000 0.0000 0.0000
1 5 01.8451 0.0217 0.5197 0.4986 01.8451 0.0218 0.0004
2 10 07.1310 0.0809 2.0094 1.8518 07.1310 0.0810 0.0027
3 15 16.6917 0.1591 4.2201 3.4728 16.6917 0.1590 0.0057
4 20 24.2314 0.1712 5.1889 3.1061 24.2314 0.2869 0.0052
5 25 19.8420 0.1397 4.9160 2.1330 19.8420 0.9367 0.0045
6 30 06.8161 0.1236 4.1177 2.0302 06.8161 1.5525 0.0045
7 35 00.8373 0.0904 2.9137 1.6820 00.8373 0.3850 0.0024
8 40 01.0319 0.0535 1.8164 1.1532 01.0319 1.5274 0.0005
9 45 00.3974 0.0277 1.0473 0.7038 00.3974 0.1458 0.0002
10 50 00.1466 0.0132 0.5758 0.4011 00.1466 0.6396 0.0002

Table 4.4: Absolute error between exact solution and different methods.

Figure 4.2: Plot of the error between exact solution and different methods.

(a) Problem 1 (b) Problem 2
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Expl Euler RK4 Heuns Midpoint Back Eulers ABM FLFBA

Problem 1 63019.6056 2391.1697 37481.3761 37481.3761 63019.6056 6294.4 33

Problem 2 24.2366 0.17644 5.1942 3.4785 24.2366 1.5480 0.000

Table 4.5: Maximum error of ode45 vs. differrent numerical methods with step size h=
5.

Figure 4.3: Plot of absolute error between ode45 routine and different methods.

(a) Problem 1 (b) Problem 2

Euler’s method, the midpoint method’s error generally decreases faster as h → 0. The

fourth-order Runge–Kutta (RK4) method having a truncation error of O(h4) is one of

the most widely used methods for solving differential equations The Adams–Bashforth–

Moulton (ABM) scheme needs only two function evaluations (calls) per iteration, while

having a truncation error of O(h5).

From Table (4.5) and Figure (4.3) that show the maximum error of MATLAB built-in

routine ”ode 45” compared with different numerical methods and FLFBA approach with

step size h = 5, we can see that the predictor–corrector methods such as the ABM method

gives a better numerical solution with less error and shorter computation time (see Table

(4.8)) than the MATLAB built-in routine “ode45”, as well as the FLFBA (but, a general

conclusion should not be deduced just from one example).

4.4.4 Comparison of FLFBA with metaheuristic algorithms

In this subsection, the IVP is formulated as an optimization problem (Eq. 4.2) solved

with three metaheuristics that are: ABCA inspired by the behavior of honey bees, BA

simulates the echolocation behavior of bats and FPA inspired by the flower pollination
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i xi Exact BA FPA ABCA FLFBA

Problem 1
0 0 03.000 06.000 04.000 11.000 03.000
1 5 08.000 15.000 12.000 20.000 08.000
2 10 22.000 33.000 29.000 39.000 22.000
3 15 60.000 75.000 69.000 83.000 60.000
4 20 164.00 183.00 166.00 193.00 167.00
5 25 445.00 457.00 452.00 456.00 453.00
6 30 1210.0 1238.0 1215.0 1246.0 1236.0
7 35 3290.0 3323.0 3319.0 3330.0 3319.0
8 40 8943.0 8982.0 8951.0 8988.0 8977.0
9 45 24309 24352 24346 24355 24346
10 50 66079 61260 66120 66130 66120

Problem 2
0 0 03.0000 03.0015 03.0010 03.0021 03.0000
1 5 07.7551 00.7559 00.7556 00.7561 07.7555
2 10 18.6017 18.6063 18.6063 18.6063 18.6044
3 15 38.3174 38.3258 38.3249 38.3278 38.3231
4 20 62.8060 62.8159 62.8149 62.8179 62.8112
5 25 82.1112 82.1228 82.1208 82.1237 82.1157
6 30 92.5800 92.5927 92.5909 92.5936 92.5845
7 35 97.1360 97.1493 97.1477 97.1501 97.1384
8 40 98.9270 98.9412 98.9397 98.9423 98.9275
9 45 99.6026 99.6180 99.6160 99.6187 99.6024
10 50 99.8534 99.8697 99.8675 99.8708 99.6024

Table 4.6: Comparison of FLFBA with MAs.

process of flowering plants as well as the FLFBA, by focusing on the performance of these

three algorithms compared to FLFBA’s performance to examine which one finds the best

numerical solutions with the best effectiveness for the studied problems. The obtained

results, the comparison of the proposed algorithms to the exact solution are shown in

Table (4.6) and summarized via Figure (4.4.)

After a comparison between the exact solution and the algorithms outcomes of the chosen

examples; the results found that FLFBA is very adequately precise than ABCA, BA and

FPA in both exponential and logistic growth models since it possesses the smallest error.

The absolute error of the proposed algorithms are made in the Table (4.7) and summarized

via Figure (4.5).

The comparison between the performances of BA, FPA, ABCA and FLFBA face to the

exact results confirm that FLFBA is better because it has a very close curve to the
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Figure 4.4: Solution of bacterial growth problems by ABCA, FBA, BA and FLFBA.

(a) Problem 1 (b) Problem 2

i xi BA FPA ABCA FLFBA

Problem 1
0 0 03.000 01.000 08.000 00.000
1 5 07.000 04.000 12.000 00.000
2 10 11.000 07.000 17.000 00.000
3 15 15.000 09.000 23.000 00.000
4 20 19.000 12.000 29.000 03.000
5 25 22.000 17.000 31.000 08.000
6 30 28.000 25.000 36.000 26.000
7 35 33.000 29.000 40.000 29.000
8 40 39.000 35.000 45.000 34.000
9 45 43.000 37.000 46.000 37.000
10 50 47.000 41.000 51.000 41.000

Problem 2
0 0 0.0015 0.0010 0.0021 0.0000
1 5 0.0008 0.0005 0.0010 0.0004
2 10 0.0046 0.0046 0.0046 0.0027
3 15 0.0084 0.0075 0.0104 0.0057
4 20 0.0099 0.0089 0.0119 0.0052
5 25 0.0116 0.0096 0.0125 0.0045
6 30 0.0127 0.0109 0.0136 0.0045
7 35 0.0133 0.0117 0.0141 0.0024
8 40 0.0142 0.0127 0.0153 0.0005
9 45 0.0154 0.0134 0.0161 0.0002
10 50 0.0163 0.0141 0.0174 0.0002

Table 4.7: Absolute error between the exact solution and MAs.
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Figure 4.5: Plot of absolute error of bacterial growth problems between the exact solution
and MAs.

(a) Problem 1 (b) Problem 2

exact curve contrary to the other methods. In both representations of the absolute error

(tabular and graphical), FLFBA method offers a very negligible absolute error compared

to the other methods.

4.4.5 Time taken for the algorithms

The major factors to be considered in evaluating/comparing different numerical methods

is the accuracy of the numerical solution and its computation time. Table (4.8) shows

the time taken for the different studied algorithms. In this comparison, we can say that

in some cases the MAs can achieve a more accurate solution using less time consuming

than the numerical methods because of in the MAs the solutions obtained are coded in a

more compact way requiring significantly less amount of memory.

It is important to note that the evaluation/comparison of numerical methods is not so

simple because their performances may depend on the characteristic of the problem at

hand. It should also be noted that there are other factors to be considered, such as

stability, versatility, proof against runtime errors, and so on.

4.5 Conclusion

Throughout this chapter, application of standard ABCA, BA, FPA, some numerical meth-

ods for solving IVP compared to FLFBA is discussed when they are used as a tool for

optimize numerically the IVPs arising in environmental field that is differential equations
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Algorithm Problem 1 Problem 2

Expl Euler 41×10−4 s 38×10−4 s

Rk4 70×10−4 s 21×10−4 s

Heuns 57×10−4 s 23×10−4 s

Midpoint 52×10−4 s 24×10−4 s

Back Eulers 51×10−4 s 23×10−4 s

ABM 51×10−4 s 23×10−4 s

FLFBA 32×10−4 s 21×10−4 s

FPA 34×10−4 s 21×10−4 s

BA 34×10−4 s 22×10−4 s

ABCA 35×10−4 s 23×10−4 s

Table 4.8: Time taken for the algorithms.

describing the growth phenomena of such population in both exponential and logistic

cases with an initial population via a chosen example.

In the exponential growth problem, results show a population growing always faster with-

out any bond. In reality this model is unrealistic because environments impose limitations

to population growth. A more accurate model postulates that the relative growth rate Ṕ
P

decreases when P approaches the carrying capacity K of the environment.

But in the case of logistic growth problem, results show the logistic curve. Note that it

has roughly the shape of an elongated S (and it is in fact sometimes called the S−shaped

curve). The population initially grows slowly but steadily. Then the growth speeds up

and the curve moves more steeply upward. As the population gets closer to the carrying

capacity K = 100, the growth slows and the curve gets more horizontal again. In fact the

population never appears to reach the carrying capacity, but instead seems to approach

it as an asymptote.

After a comparison between the exact solutions and the algorithms outcomes; FLFBA

was found exponentially better than the other methods by giving accurate solutions with

smallest amount error.
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In terms of this research work we can detect that the current trend is to use nature-

inspired MA to tackle such difficult problems, and it has been shown that metaheuristics

are surprisingly very efficient. For this reason, the literature of metaheuristics has ex-

panded tremendously in the last two decades [90, 79]. Up to now, researchers have only

used a very limited characteristics inspired by nature, and there is room for more algo-

rithm development. Optimization is paramount in many applications such as engineering

and industrial designs. Obviously, the aims of optimization can be anything (to minimize

the energy consumption, to maximize the profit, output, performance and efficiency, etc).

There are many reasons for such popularity. From the algorithm analysis point of view,

these algorithms tend to be:

1. Flexible, highly adaptable, and yet easy to implement.

2. Algorithmic procedures are quite simple and flexible, and yet efficient in practice.

3. The high efficiency of these algorithms makes it possible to apply them to a wide

range of problems in diverse applications.

4. Their multiple agents interact and exchange information, following simple rules,

show complex and self-organized behavior.

4.6 Bilan of contributions

The echolocation conduct of bats is the principle motivation behind the idea of creating

and presenting a BA hybridization that is FLFBA based in FC and LF techniques with

DE strategies for solving optimization problems. FLFBA [6] has been validated using

several benchmarks functions distributed via four sets: Set of separable functions, set of
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low or moderate conditioning problems, set of high conditioning and unimodal functions,

set of multimodal functions with adequate global structure and the set of multimodal

functions with weak global structure.

In order to prove the efficacy of the proposed algorithms, a series of experiments was

conducted hence the results were compared with a variety of well-known and recent algo-

rithms that are CS, FDPSO, SFLA, ACO, MFO and NBA.

With respect to the outcomes got from every each benchmark function and each test in

each studied case. The FLFBA giving significantly improved result on its results as it

mentioned in the majority of the cases obviously superior to the thought about algorithms

by means of almost used tests. Besides the FLFBA achieved a similar good performance in

some cases but failed to give comparable or preferable outcomes over the other algorithms

in other few cases.

Regarding to the results obtained after studying the time taken to perform the iterations

for each algorithm indicate that the FLFBA was in most of the cases much faster than

FSLA, CS and FDPSO, but slower than NBA and MFO.

As shown with our experiments FLFBA uses a balanced combination of the advantages

of the successful proprieties of FC, LF and DE while the basic BA employ the advantages

inspired by the fantastic behavior of echolocation of bats which make the FLFBA much

superior to other algorithms in terms of accuracy and efficiency. According to the simu-

lations, results, analyses, discussions, and conclusions, it can be expressed that FLFBA

have merits among the current optimization algorithms in the literature and worth ap-

plying to different problems as it is done in this thesis when we have applied the FLFBA

to solve approximately an IVP, by selecting a specified example and after a comparison

between the exact solutions, the algorithm outcomes, ABCA, BA, FPA and some nu-

merical methods including Euler methods, Range-Kutta methods and predictor-corrector

method results; FLFBA was found exponentially better by offering accurate solutions

with smallest amount error.

74



General Conclusion

4.7 Perspectives

FLFBA is an efficient optimization algorithm with a promising wide range of applications.

It is important pointing out that the current results are mainly for the hybridization of

the standard BA by using FLF and DE. It will be useful if further research can focus on

the extension of the proposed methodology to optimize IVP by other variants of FLFBA.

Ultimately, it can be expected that the proposed problem can be optimized by other

MA as well. Based on the obtained results during this study, FLFBA having remarkable

ability to solve a wide range of problems and highly nonlinear problems efficiently, it

works well with complicated problems.

In future, there are deep studies on FLFBA that will give promising results such as the

use of more diverse test function sets, more extensive comparison studies with wider range

of existing algorithms; hence these comparisons will expose the qualities and limitations

of all the algorithms. A further research on FLFBA that will improve the algorithm such

as the parameter tuning, parameter control, speedup of coverage, using of more diverse

parameters, more extensive comparison studies with more open sort of algorithms. . . , etc.

Furthermore, FLFBA should be tested in solving real problems with unknown search

spaces to prove the effectiveness of these algorithms in practice. This researches make it

possible to apply it to a wide range of problems in diverse applications and offer some

advantages to FLFBA for some applications such as image compression, multi-objective

optimization, and graph coloring. Furthermore, it is possible to extend the FLFBA to a

discrete version so that it can solve combinatorial optimization problems as well as the

proposition of binary versions of FLFBA which could be precious contributions. Despite

the fact that FLFBA may be considered to optimize many engineering and industrial

problems. All these extensions will be very useful. We hope that this thesis will inspire

more active research in metaheuristics in the near future.
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Appendix A

What is MATLAB?

MATLAB is a high-performance language for technical computing. It integrates computa-

tion, visualization, and programming in an easy-to-use environment where problems and

solutions are expressed in familiar mathematical notation. Typical uses include [2, 31]:

❼ Math and computation

❼ Algorithm development

❼ Modeling, simulation, and prototyping

❼ Data analysis, exploration and visualization

❼ Scientific and engineering graphics

❼ Application development, including Graphical User Interface building

MATLAB is an interactive system whose basic data element is an array that does not

require dimensioning. This allows you to solve many technical computing problems, es-

Figure A.1: Matlab icon.
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pecially those with matrix and vector formulations, in a fraction of the time it would take

to write a program in a scalar non-interactive language such as C or Fortran.

The Name MATLAB stands for matrix laboratory. MATLAB was originally written

to provide easy access to matrix software developed by the LINPACK and EISPACK

projects, which together represent the state-of-the-art in software for matrix computation.

MATLAB has evolved over a period of years with input from many users.

In university environments, it is the standard instructional tool for introductory and ad-

vanced courses in mathematics, engineering, and science. In industry, MATLAB is the tool

of choice for high-productivity research, development, and analysis. MATLAB features

a family of application-specific solutions called toolboxes. Very important to most users

of MATLAB, toolboxes allow you to learn and apply specialized technology. Toolboxes

are comprehensive collections of MATLAB functions (M-les) that extend the MATLAB

environment to solve particular classes of problems. Areas in which toolboxes are avail-

able include signal processing, control systems, neural networks, fuzzy logic, wavelets,

simulation, and many others.
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FLFBA tables

B.1 Benchmark functions

B.2 Multiple comparison tests tables
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Table B.1: Benchmark functions

Category Name Information gained

Separable
functions

Sphere function [F1]
What is the optimal convergence rate of an
algorithm?

Ellipsoidal function [F2]
Is symmetry (c.t. F1) and separability (c.t.
F10) exploited

Rastrigin function [F3] What is the effect of multi-modality?
Büche-Rastrigin function [F4] What is the effects of asymmetry (c.t. F3)?

Linear slope [F5]
Can the search go outside the initial convex
hull of solutions into the domain boundary?
Can the step size be increased accordingly?

Functions
with low or
moderate
conditioning

Attractive Sector function [F6]
What is the effect of highly asymmetric
landscape (c.t. F1)?

Step Ellipsoidal function [F7] Does the search gets stuck on plateaus?
Rosenbrock function, original
[F8]

Can the search follow a long path with D − 1
changes in the direction?

Rosenbrock function rotated
[F9]

Can the search follow a long path with D − 1
changes in the direction without exploiting
partial separability (c.t. F8)?

Functions
with high
conditioning
and
unimodal

Ellipsoidal function [F10] What is the effect of rotation (c.t. F2)?
Discus function [F11] What is the effect of constraints (c.t. F10)?

Bent cigar function [F12]
Can the search continuously change its
search direction?

Sharp ridge function [F13]
What is the effect of non-smoothness,
non-differentiable ridge (c.t. F12)?

Different powers function [F14] What is the effect of missing self-similarity?

Multimodal
functions
with
adequate
global
structure

Rastrigin function [F15]
What is the effect of non-separability for a
highly multimodal function (c.t. F3)?

Weierstrass function [F16]
Does ruggedness or a repetitive landscape
deter the search behavior (c.t. F17)?

Schaffers F7 function [F17]
What is the effect of multimodality on a less
regular function (c.t. F15)?

Schaffers F7, moderately
ill-conditioned [F18]

What is the effect of ill-conditioning (c.t.
F17)?

Composite
Griewank-Rosenbrock F8F2
[F19]

What is the effect of high signal-to-noise
ratio (c.t. F7)?

Multimodal
functions
with weak
global
structure

Schwefel function [F20]
What is the effect of a weak global structure
(c.t. F17)?

Gallagher’s Gaussian 101-me
peaks function [F21]

Is the search effective without any global
structure?

Gallagher’s Gaussian 21-hi
peaks function [F22]

What is the effect of higher condition (c.t.
F21)?

Katsuura function [F23]
What is the effect of regular local structure
on the global search?

Lunacek bi-Rastrigin function
[F24]

Can the search behavior is local on the global
scale but global on a local scale?
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Table B.3: Average Rankings of the algorithms

Algo-
rithm

Friedman
Aligned
Friedman

Quade

D− 10 CASES

CS 4.9792 109.4375 5.02167
FDPSO 4.5625 102.9792 4.5716
NBA 2.2291 51.1041 2.1183
ACO 3.8125 80.8125 3.8066
MFO 3.1875 63.0625 2.9116
SFLA 5.666 112.3334 5.9183
FLFBA 3.5624 71.7708 3.6516

D− 20 CASES

CS 5.0416 107.8333 5.0633
FDPSO 4.6667 95.8333 4.6733
NBA 2.4583 62.9166 2.380
ACO 3.75 81.9583 3.7066
MFO 2.5000 46.3333 2.0466
SFLA 5.9583 110.9166 6.4366
FLFBA 3.625 85.7083 3.6933

D− 40 CASES

CS 5.29166 107.9166 5.2866
FDPSO 5.2083 98.6249 5.1233
NBA 2.9166 74.3333 2.71
ACO 2.0 57.6666 2.1433
MFO 2.3333 47.5416 1.9100
SFLA 6.125 108.875 6.4866
FLFBA 4.1245 96.5416 4.339

B.3 Post-hoc procedures tables

104



Appendix B: FLFBA tables

Table B.4: Contrast Estimation

D− 10 CASES

CS FDPSO NBA ACO MFO SFLA FLFBA

CS 0 -0.9582 -7.124 -2.193 -4.534 1.631 -2.774
FDPSO 0.9582 0 -6.165 -1.235 -3.576 2.589 -1.815
NBA 7.124 6.165 0 4.931 2.589 8.754 4.350
ACO 2.193 1.235 -4.931 0 -2.341 3.823 -0.5806
MFO 4.534 3.576 -2.589 2.341 0 6.165 1.761
SFLA -1.631 -2.589 -8.754 -3.823 -6.165 0 -4.404
FLFBA 2.774 1.815 -4.350 0.5806 -1.761 4.404 0

D− 20 CASES

CS FDPSO NBA ACO MFO SFLA FLFBA

CS 0.000 -5.059 -19.68 -7.410 -28.00 9.945 -9.221
FDPSO 5.059 0.000 -14.62 -2.350 -22.94 15.00 -4.161
NBA 19.68 14.62 0.000 12.27 -8.321 29.62 10.46
ACO 7.410 2.350 -12.27 0.000 -20.59 17.35 -1.811
MFO 28.00 22.94 8.321 20.59 0.000 37.95 18.78
SFLA -9.945 -15.00 -29.62 -17.35 -37.95 0.000 -19.17
FLFBA 9.221 4.161 -10.46 1.811 -18.78 19.17 0.000

D− 40 CASES

CS FDPSO NBA ACO MFO SFLA FLFBA

CS 0.000 -34.32 -86.68 -177.6 -157.2 42.20 -32.72
FDPSO 34.32 0.000 -52.36 -143.3 -122.9 76.52 1.598
NBA 86.68 52.36 0.000 -90.97 -70.56 128.9 53.96
ACO 177.6 143.3 90.97 0.000 20.41 219.8 144.9
MFO 157.2 122.9 70.56 -20.41 0.000 199.4 124.5
SFLA -42.20 -76.52 -128.9 -219.8 -199.4 0.000 -74.92
FLFBA 32.72 -1.598 -53.96 -144.9 -124.5 74.92 0.000
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Table B.5: Holm -Hochberg - Hommel (H-H-H)/ Holland / Rom / Finner / Li Table for
α = 0.05 in D − 10

i algorithm z = R0−Ri

SE
p H-H-H Holland Rom Finner Li

FRIEDMAN
6 SFLA 5.5122 3.5425E-8 0.0083 0.00851 0.0087 0.0085 0.0461
5 CS 4.4098 1.0346E-5 0.01 0.0102 0.0105 0.0169 0.0461
4 FDPSO 3.7416 1.8281E-4 0.0125 0.0127 0.0131 0.0253 0.0461
3 ACO 2.5389 0.0111 0.01666 0.0169 0.0166 0.0336 0.0461
2 FLFBA 2.1380 0.0325 0.025 0.0253 0.025 0.0418 0.0461
1 MFO 1.5367 0.1243 0.05 0.05 0.05 0.05 0.05

ALIGNED FRIEDMAN
6 SFLA 4.360 1.2973E-5 0.0083 0.0085 0.0087 0.0085 0.0318
5 CS 4.1543 3.2625E-5 0.01 0.0102 0.0105 0.0169 0.0318
4 FDPSO 3.6943 2.2042E-4 0.0125 0.0127 0.0131 0.0253 0.0318
3 ACO 2.1157 0.0343 0.0166 0.0169 0.0166 0.0336 0.0318
2 FLFBA 1.4718 0.1410 0.025 0.0253 0.025 0.04184 0.0318
1 MFO 0.8516 0.3944 0.05 0.05 0.05 0.05 0.05

QUADE
6 SFLA 3.0777 0.002 0.0083 0.0085 0.0087 0.0085 0.0252
5 CS 2.3514 0.0186 0.01 0.0102 0.0105 0.0169 0.0252
4 FDPSO 1.9870 0.0469 0.0125 0.0127 0.0131 0.0253 0.0252
3 ACO 1.3674 0.1714 0.0166 0.0169 0.0166 0.0336 0.0252
2 FLFBA 1.2418 0.2142 0.025 0.0253 0.025 0.0419 0.0252
1 MFO 0.6425 0.5205 0.05 0.05 0.05 0.05 0.05
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Table B.6: Holm -Hochberg - Hommel (H-H-H)/ Holland/ Rom / Finner / Li Table for
α = 0.05 in D − 20

i algorithm z = R0−Ri

SE
p H-H-H Holland Rom Finner Li

FRIEDMAN
6 SFLA 5.6124 1.9944E-8 0.0083 0.0085 0.0087 0.0085 0.0028
5 CS 4.1425 3.4346E-5 0.01 0.0102 0.0105 0.0169 0.0028
4 FDPSO 3.5412 3.9829E-4 0.0125 0.0127 0.0131 0.0253 0.0028
3 ACO 2.07127 0.0383 0.0166 0.0169 0.0166 0.0336 0.0028
2 FLFBA 1.8708 0.0613 0.025 0.0253 0.025 0.0418 0.0028
1 MFO 0.0668 0.9467 0.05 0.05 0.05 0.05 0.05

ALIGNED FRIEDMAN
6 SFLA 4.5994 4.2365E-6 0.0083 0.0085 0.0087 0.0085 0.0401
5 CS 4.3798 1.1876E-5 0.01 0.0102 0.0105 0.0169 0.0401
4 FDPSO 3.5252 4.2310E-4 0.0125 0.0127 0.0131 0.0253 0.0401
3 FLFBA 2.8041 0.0050 0.0166 0.0169 0.0166 0.0336 0.0401
2 ACO 2.5371 0.0111 0.025 0.0253 0.025 0.0418 0.0401
1 NBA 1.1810 0.2375 0.05 0.05 0.05 0.05 0.05

QUADE
6 SFLA 3.5555 3.7716E-4 0.0083 0.0085 0.0087 0.0085 0.0112
5 CS 2.4432 0.0145 0.01 0.0102 0.0101 0.0169 0.0112
4 FDPSO 2.1274 0.0333 0.0125 0.0127 0.0131 0.0253 0.0112
3 ACO 1.3444 0.1787 0.0166 0.0169 0.0166 0.0336 0.0112
2 FLFBA 1.3336 0.1823 0.025 0.0253 0.025 0.0418 0.0112
1 NBA 0.2699 0.7871 0.05 0.05 0.05 0.05 0.05
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Table B.7: Holm -Hochberg - Hommel (H-H-H)/ Holland/ Rom / Finner / Li Table for
α = 0.05 in D − 40

i algorithm z = R0−Ri

SE
p H-H-H Holland Rom Finner Li

FRIEDMAN
6 SFLA 6.6147 3.7226E-11 0.0083 0.0085 0.0087 0.0085 0.0214
5 CS 5.2784 1.3030E-7 0.01 0.0102 0.0105 0.0169 0.0214
4 FDPSO 5.1447 2.6783E-7 0.0125 0.0127 0.0131 0.0253 0.0214
3 FLFBA 3.4075 6.5541E-4 0.0166 0.0169 0.0166 0.0336 0.0214
2 NBA 1.4699 0.1415 0.025 0.0253 0.025 0.0418 0.0214
1 MFO 0.5345 0.5929 0.05 0.05 0.05 0.05 0.05

ALIGNED FRIEDMAN
6 SFLA 4.3679 1.2540E-5 0.0083 0.0085 0.0087 0.0085 0.0278
5 CS 4.2997 1.7101E-5 0.01 0.0102 0.0105 0.0169 0.0278
4 FDPSO 3.6379 2.7476E-4 0.0125 0.0127 0.0131 0.0253 0.0278
3 FLFBA 3.4896 4.8369E-4 0.01666 0.0169 0.0166 0.0336 0.0278
2 NBA 1.9080 0.05638 0.025 0.0253 0.025 0.0418 0.0278
1 ACO 0.7210 0.4708 0.05 0.05 0.05 0.05 0.05

QUADE
6 SFLA 3.7067 2.0993E-4 0.0083 0.0085 0.0087 0.0085 0.0078
5 CS 2.7348 0.0062 0.01 0.0102 0.0105 0.0169 0.0078
4 FDPSO 2.6025 0.0092 0.0125 0.0127 0.0131 0.0253 0.0078
3 FLFBA 1.9681 0.04905 0.0166 0.0169 0.0166 0.0336 0.0078
2 NBA 0.6479 0.5170 0.025 0.0253 0.025 0.0418 0.0078
1 ACO 0.1889 0.8501 0.05 0.05 0.05 0.05 0.05
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Table B.8: Adjusted p-values (FRIEDMAN / ALIGNED FRIEDMAN / QUADE) in
D − 10

FRIEDMAN

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 3.5424E-8 2.1254E-7 2.1254E-7 2.1254E-7 2.1254E-7
2 CS 1.0346E-5 6.2076E-5 5.1730E-5 5.1730E-5 5.1730E-5
3 FDPSO 1.8281E-4 0.0010 7.3124E-4 7.3124E-4 7.3124E-4
4 ACO 0.0111 0.0667 0.03335 0.03335 0.03335
5 FLFBA 0.0325 0.1950 0.0650 0.0650 0.0650
6 MFO 0.1243 0.7461 0.1243 0.1243 0.1243

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 3.5424E-8 2.1254E-7 2.0210E-7 2.1254E-7 4.0455E-8
2 CS 1.0346E-5 5.1729E-5 4.9195E-5 3.1038E-5 1.1815E-5
3 FDPSO 1.8281E-4 7.3104E-4 6.9725E-4 3.6558E-4 2.0872E-4
4 ACO 0.0111 0.0329 0.0333 0.0166 0.0125
5 FLFBA 0.0325 0.0639 0.0650 0.0388 0.0357
6 MFO 0.1243 0.1243 0.1243 0.1243 0.1243

ALIGNED FRIEDMAN

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 1.2973E-5 7.7840E-5 7.7840E-5 7.7840E-5 7.7840E-5
2 CS 3.2625E-5 1.9575E-4 1.6312E-4 1.6312E-4 1.63125E-4
3 FDPSO 2.2042E-4 0.0013 8.8170E-4 8.8170E-4 8.8170E-4
4 ACO 0.0343 0.2062 0.1031 0.1031 0.1031
5 FLFBA 0.1410 0.8464 0.2821 0.2821 0.2821
6 MFO 0.3944 2.3664 0.3944 0.3944 0.3944

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 1.2973E-5 7.7837E-5 7.4013E-5 7.7837E-5 2.1422E-5
2 CS 3.2625E-5 1.6311E-4 1.5513E-4 9.7873E-5 5.3871E-5
3 FDPSO 2.2042E-4 8.8141E-4 8.4071E-4 4.4080E-4 3.6385E-4
4 ACO 0.0343 0.0995 0.1031 0.0511 0.0537
5 FLFBA 0.1410 0.2622 0.2821 0.1668 0.1889
6 MFO 0.3944 0.3944 0.3944 0.3944 0.3944

QUADE

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 0.0020 0.0125 0.0125 0.0125 0.0125
2 CS 0.0186 0.1121 0.0934 0.0934 0.0934
3 FDPSO 0.0469 0.2815 0.1876 0.1876 0.1876
4 ACO 0.1714 1.0289 0.5144 0.4285 0.3429
5 FLFBA 0.2142 1.2856 0.5144 0.4285 0.4285
6 MFO 0.5205 3.1231 0.5205 0.5205 0.5205

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 0.0020 0.0124 0.0119 0.0124 0.0043
2 CS 0.0186 0.0900 0.0889 0.0550 0.0375
3 FDPSO 0.0469 0.1748 0.1789 0.0916 0.0891
4 ACO 0.1714 0.4312 0.4285 0.2458 0.2634
5 FLFBA 0.2142 0.4312 0.4285 0.2512 0.3088
6 MFO 0.5205 0.5205 0.5205 0.5205 0.5205
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Table B.9: Adjusted p-values (FRIEDMAN / ALIGNED FRIEDMAN / QUADE) in
D − 20

FRIEDMAN

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 1.9944E-8 1.1966E-7 1.1966E-7 1.1966E-7 1.1966E-7
2 CS 3.4346E-5 2.0607E-4 1.7173E-4 1.7173E-4 1.7173E-4
3 FDPSO 3.9829E-4 0.0023 0.0015 0.0015 0.0015
4 ACO 0.0383 0.2299 0.1149 0.1149 0.0920
5 FLFBA 0.0613 0.3682 0.1227 0.1227 0.1227
6 MFO 0.9467 5.6803 0.9467 0.9467 0.9467

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 1.9944E-8 1.1966E-7 1.1378E-7 1.1966E-7 3.7438E-7
2 CS 3.4346E-5 1.7172E-4 1.6331E-4 1.0303E-4 6.4433E-4
3 FDPSO 3.9829E-4 0.0015 0.0015 7.9642E-4 0.0074
4 ACO 0.03833 0.1106 0.1149 0.0569 0.4184
5 FLFBA 0.0613 0.1189 0.1227 0.0731 0.5353
6 MFO 0.9467 0.9467 0.9467 0.9467 0.9467

ALIGNED FRIEDMAN

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 4.2365E-6 2.5419E-5 2.5419E-5 2.5419E-5 2.5419E-5
2 CS 1.1876E-5 7.1259E-5 5.9382E-5 5.9382E-5 5.9382E-5
3 FDPSO 4.2310E-4 0.0025 0.0016 0.0016 0.0016
4 FLFBA 0.0050 0.0302 0.0151 0.0151 0.0151
5 ACO 0.0111 0.0670 0.0223 0.0223 0.0223
6 NBA 0.2375 1.4255 0.2375 0.2375 0.2375

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 4.2365E-6 2.5419E-5 2.4169E-5 2.5419E-5 5.5568E-6
2 CS 1.1876E-5 5.9381E-5 5.6472E-5 3.56295E-5 1.5577E-5
3 FDPSO 4.2310E-4 0.0016 0.0016 8.4602E-4 5.5465E-4
4 FLFBA 0.0050 0.0150 0.0151 0.0075 0.0065
5 ACO 0.0111 0.0222 0.0223 0.0133 0.0144
6 NBA 0.2375 0.2375 0.2375 0.2375 0.2375

QUADE

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 3.7716E-4 0.0022 0.0022 0.0022 0.0022
2 CS 0.0145 0.0873 0.0727 0.0727 0.0727
3 FDPSO 0.0333 0.2003 0.1335 0.1335 0.1335
4 ACO 0.1787 1.0727 0.5363 0.3646 0.3575
5 FLFBA 0.1823 1.0938 0.5363 0.3646 0.3646
6 NBA 0.7871 4.7230 0.7871 0.7871 0.7871

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 3.7716E-4 0.0022 0.0021 0.0022 0.0017
2 CS 0.0145 0.0706 0.0692 0.0430 0.0640
3 FDPSO 0.0333 0.1270 0.1273 0.0656 0.1356
4 ACO 0.1787 0.4461 0.3646 0.2558 0.4565
5 FLFBA 0.1823 0.4461 0.3646 0.2558 0.4613
6 NBA 0.7871 0.7871 0.7871 0.7871 0.7871
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Table B.10: Adjusted p-values (FRIEDMAN / ALIGNED FRIEDMAN / QUADE) in
D − 40

FRIEDMAN

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 3.7226E-11 2.2335E-10 2.2335E-10 2.2335E-10 2.2335E-10
2 CS 1.3030E-7 7.8185E-7 6.5154E-7 6.5154E-7 6.5154E-7
3 FDPSO 2.6783E-7 1.6070E-6 1.0713E-6 1.0713E-6 1.0713E-6
4 FLFBA 6.5541E-4 0.0039 0.0019 0.0019 0.0019
5 NBA 0.1415 0.8494 0.2831 0.2831 0.2831
6 MFO 0.5929 3.5578 0.5929 0.5929 0.5929

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 3.7226E-11 2.2335E-10 2.1237E-10 2.2335E-10 9.1461E-11
2 CS 1.3030E-7 6.5154E-7 6.1961E-7 3.9092E-7 3.2015E-7
3 FDPSO 2.6783E-7 1.0713E-6 1.0215E-6 5.3567E-7 6.5804E-7
4 FLFBA 6.5541E-4 0.0019 0.0019 9.8296E-4 0.0016
5 NBA 0.1415 0.2631 0.2831 0.1673 0.2580
6 MFO 0.5929 0.5929 0.5929 0.5929 0.5929

ALIGNED FRIEDMAN

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 1.2540E-5 7.5243E-5 7.5243E-5 7.5243E-5 6.2702E-5
2 CS 1.7101E-5 1.0260E-4 8.5506E-5 8.5506E-5 8.5506E-5
3 FDPSO 2.7476E-4 0.0016 0.0010 0.0010 9.6738E-4
4 FLFBA 4.8369E-4 0.0029 0.0014 0.0014 0.0014
5 NBA 0.0563 0.3383 0.1127 0.1127 0.1127
6 ACO 0.4708 2.8251 0.4708 0.4708 0.4708

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 1.2540E-5 7.5241E-5 7.1544E-5 7.5241E-5 2.3699E-5
2 CS 1.7101E-5 8.5503E-5 8.1315E-5 7.5241E-5 3.2318E-5
3 FDPSO 2.7476E-4 0.0010 0.0010 5.4945E-4 5.1900E-4
4 FLFBA 4.8369E-4 0.0014 0.0014 7.2544E-4 9.1328E-4
5 NBA 0.0563 0.1095 0.1127 0.0672 0.0963
6 ACO 0.4708 0.4708 0.4708 0.4708 0.4708

QUADE

i algorithm unadjusted p pBonf pHolm pHoch pHomm

1 SFLA 2.0993E-4 0.0012 0.0012 0.0012 0.0012
2 CS 0.0062 0.0374 0.0312 0.0312 0.0249
3 FDPSO 0.0092 0.0555 0.0370 0.0370 0.0370
4 FLFBA 0.0490 0.2943 0.1471 0.1471 0.1471
5 NBA 0.5170 3.1021 1.0340 0.8501 0.8501
6 ACO 0.8501 5.1006 1.0340 0.8501 0.8501

i algorithm unadjusted p pHoll pRom pFinn pLi

1 SFLA 2.0993E-4 0.0012 0.0011 0.0012 0.0013
2 CS 0.0062 0.0308 0.0296 0.0186 0.0399
3 FDPSO 0.0092 0.0365 0.0352 0.0186 0.0581
4 FLFBA 0.0490 0.1400 0.1471 0.0726 0.2465
5 NBA 0.5170 0.7667 0.8501 0.5824 0.7752
6 ACO 0.8501 0.8501 0.8501 0.8501 0.8501
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Statistical tests

C.1 Multiple comparison tests

Generally pairwise comparisons, which are statistical method requiring only that the

observations in a pair is ordered, is not influenced by any external factor, whereas in a

multiple comparison, the set of the chosen algorithms can determine the results of the

analysis [22]. Therefore, a pairwise comparison test, such as Wilcoxon’s rank sum test,

should not be used to conduct various comparisons involving a set of algorithms, because

the Family-Wise Error Rate (FWER), is not controlled [1].

Multiple comparison procedures are designed to allow fixing the FWER before performing

the analysis and take into account all the influences that can exist within the set of results

for each algorithm. In this part three well- known multiple comparison tests are presented

which are: The Friedman test, the Friedman Aligned Ranks test and the Quade test

that should be employed in order to distinguish whether significant differences happen

between inspected algorithms. Additionally, these tests rank the algorithms from the best

performing to the least fortunate one.

The Friedman test is a nonparametric complement of the parametric two-way analysis

of variance. The objective of this test is to verify whether there are noteworthy contrasts

among the selected algorithms. This test decides the ranks of the algorithms for every

individual information and balances the average rank of algorithms. The null hypothesis

expresses that all the algorithms execute unvaryingly so their ranks should be the same.

By means of this hypothesis the Friedman statistic is distributed via a chi-square distri-
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bution with (k − 1) degrees of freedom, when n and k are sufficiently enormous (n > 10

and k > 5).

Since the Friedman test is just allowed for intra-set examinations which may be consid-

ered as a drawback especially if there is a little number of compared algorithms because

in this case the inter-set comparisons cannot be significant so the Friedman Aligned

Ranks test is used. In this technique the average execution given by all algorithms over

individual data sets is equal to the location value. At that point, the distinction between

the performance accomplished by an algorithm and the location value is registered. This

progression is rehashed for every combination of algorithms and data sets. So acquired

contrasts are considered as aligned observations and carry on their characteristics regard-

ing to the data set and the combination of algorithms to which they belong. Then they

are positioned from

1 to kn with respect to one another and the ranks assigned to the aligned observations.

The test statistic is evaluated through a chi-square distribution with (k − 1) degrees of

freedom [22].

The Iman and Davenports test are metric derived from the Friedmans statistic given

that this last metric produces a conservative undesirable effect. Iman and Davenport

proved that Friedmans chi-square distribution is conventional and developed an improved

statistic which is distributed via the F-distribution with (k−1) and (k−1)(n−1) degrees

of freedom [1].

The third test for multivariate comparisons is the Quade test, it’s considered as an

elective trial of Friedman by means of the difficulty contemplations. Toward the starting

the Quade test has an analogous process to Friedman tests, establishes the ranks of the

algorithms for every individual data set. After that, utilizing the original standards of

algorithms performance, ranks are allowed to the data sets depending on the size of the

sample range for each data set (the sample range is the difference between the biggest

and the littlest perceptions for a given data set). Therefore we get n sample ranges, one

for every datum set. The data set with the littlest range acquires the rank of 1, the

following gets rank 2, and so on. If there should be an occurrence of ties average ranks

are allocated. Lastly, the data set rank is increased by the distinction among the rank for
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this data set and the average rank over all data sets. The final formula for Quade test

statistics is distributed according to the F-distribution with (k − 1) and (k − 1)(n − 1)

degrees of freedom where k is the number of the tested algorithms and n is the number

of the considered problems. Both, the Frideman Aligned Rank test and the Quade test,

can be used under the same circumstances as the Friedman test. The differences in power

between them are unknown, but users are encouraged to use these tests when the number

of algorithms to be compared is low [1].

The Contrast Estimation of medians is a strategy to appraise the contrasts between

numerous algorithms. This technique is entirely suggested able in the event that we ex-

pect that the global performance is reflected by the extents of the distinctions between

the performances of the algorithms. It can be utilized to gage the contrast involving the

performance of two algorithms. It supposes that the expected contrasts linking algorithms

performances are the equivalent crosswise problems. Consequently, the execution of al-

gorithms is reflected by the magnitudes of the differences between them in each domain.

The enthusiasm of this test lies in evaluating the contrast between medians of samples

of results taking into account all pairwise comparisons. The test acquires a quantita-

tive contrast processed through medians between two algorithms over several problems.

These estimators can be comprehended as a progressed performance measure. Despite

the fact that this test can’t furnish a probability of error related with the dismissal of

the null hypothesis of equality, it is particularly helpful to assess by how far an algorithm

outperforms another one.

C.2 Post-hoc procedures

If the statistical significance is rejected; at that point the scientist may continue to achieve

Post-hoc procedures to point out which pair of algorithms varies fundamentally. A Post-

hoc procedures in multiple comparison tests are focused on the comparison between a

control method, which is usually the proposed method, and a set of algorithms used in

the empirical study. Particularly when consider that Friedman, ImanDavenport, Fried-

man Aligned, and Quade tests can simply significant differences in excess of the complete

multiple comparison. This negative aspect makes it inadequate to make precise com-
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parisons between the selected algorithms. Then, the utilization of a Post-hoc test can

prompt acquiring a p-value decides the level of dismissal of every speculation that grant

to set up which algorithms are significantly better or worse. This type of comparison

involves a control method, defined as the most interesting algorithm for the researcher of

the experimental study, which its performance will be contrasted in a 1 × n comparison

against other algorithms selected in the study. Three classical Post-hoc procedures have

been used in multiple comparisons tests and also valid in n × n comparisons that are

Bonferroni-Dunn, Holm and Hochberg also Hommel, Rom, Finner tests can be suitable

[22].

Bonferroni-Dunn test: It’s a one-step procedure using a single step in the adjustment

of the value, it controls the FWER by dividing the value of by the number of comparisons

performed (k − 1) where k is the number of treated algorithms. The test is the simplest

procedure in 1×n but has little efficiency when it comes to results. For this reason other

procedures such as Holms or Hochbergs are preferred.

Holms method: It’s a step-down procedure, adjusting the value of a step down manner,

it’s considered as a best-performing test and strongly recommended in rigorous compari-

son. Holms procedure can always be considered better and more powerful than Bonferroni

Dunns one, because it appropriately controls the FWER.

Holland: It’s a step down procedures also adjusts the value of a step-down manner, as

Holms method does.

Hochbergs method: It’s a step up procedures by adjusting the value of in a step up

way. It works by comparing the largest p-value with α, the next largest with α/2, the

next with α/3, and so forth until it finds a hypothesis it can reject. All hypotheses with

smaller p-values are then rejected as well. The Hochbergs method is more powerful than

Holms although it may under some circumstances exceed the FWER and can reject more

hypothesis than the Holms method. The differences reported between the two procedures

in practice are rather small. It is recommended to use this test together with the Holms

method.

Hommel: Its a step up procedures, more complicated to compute and understand.

Rom: It’s a step up procedures considered as an improvement of the Hochbergs proce-
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dure.

Hochberg, Finner and Li are more recommended Post-hoc test to be used due to

their trade-o between simplicity and power. The power of the Li test which is a two-

step rejection procedure is highly influenced by the first p-value of the family. When the

p-value is lower than 0.5, the test will perform very well [22] [1].

C.3 Unadjusted p-values

To demonstrate the contrasts between the three tests and their individual approximations

for getting the p-value (additionally named unadjusted p-values), of each speculation,

we will compute the unadjusted p-values for the considered algorithms as it provides

information about whether a statistical hypothesis test is significant or not, and it also

indicates something about how significant the difference is. The smaller the p-value means

the stronger the evidence against the null hypothesis.

Many distinctions can be elucidated; Friedman test demonstrates a lower control than

the Friedman Aligned test (the unadjusted p-values are extensively lower). In a multiple

comparison tests the p-values are not suitable because it does not reflect on the rest of

comparisons going to the family, it simply symbolizes the probability error of a certain

comparison. One way to solve this problem is to report Adjusted P-Values (APVs) which

takes into account that multiple tests are conducted. APVs care for this issue. They

are appropriate to be utilized as they present more information in a statistical analysis.

They assume the total family error, also they can be compared directly with any chosen

significance level. The use of APVs is very counsel due to the fact that they provide more

information in a statistical analysis [1].
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FLFBA matlab code

% Main programs

function [bestX,FunMin,time] = FLFBA_OPT(FUN, DIM, ftarget, maxfunevals)

% Display help

%help NBA.m

% set the default parameters

tic;

M = maxfunevals;

pop = 30;

dim = DIM;

gama = 0.9; %0.9

alpha = 0.99; %0.99

r0Max = 1; %1

r0Min = 0; %0

AMax = 2; %2

AMin = 0; %0.5

freqDMax = 2; %2

freqDMin = 0; %0.1

%pa = 0.25; %0.25

wMax = 0.9; %0.9

wMin = 0.2; %0.2

xsi_init = 0.6; %0.6
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n = 2; %2

% set the parameters

lb= -5 * ones(1,dim ); % Lower bounds

ub= 5 * ones(1,dim ); % Upper bounds

alfa=0.632;

beta=3/2;

sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)));

Vhist = zeros(10,pop,dim);

vLb = 0.6 * lb; %0.8

vUb = 0.6 * ub; %0.8

r = rand( pop, 1 ) .* 0.2 + 0;

r0 = rand( pop, 1 ) .* ( r0Max - r0Min ) + r0Min;

A = rand( pop, 1 ) .* ( AMax - AMin ) + AMin;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Initialization

for i = 1 : pop

x( i, : ) = lb + (ub - lb) .* rand( 1, dim ); %#ok<*AGROW>

v( i, : ) = rand( 1, dim );

fit( i ) = feval(FUN,x(i,:)’);

end

pFit = fit; % The individual’s best fitness value

pX = x; % The individual’s best position corresponding to the pFit

[ fMin, bestIndex ] = min( fit ); % fMin denotes the global optimum

% bestX denotes the position corresponding to fMin

bestX = x( bestIndex, : );

Vhist(1,:,:)= v;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Start the iteration.

for iteration = 1 : M

%%%%%%%%%%%%%%%%%%%%%% iterative parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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freqD = rand( pop, dim ) .* ( freqDMax - freqDMin ) + freqDMin;

w = (wMax - wMin) * ( M - iteration )/(1.0 * M) + wMin; %Inertia weight

xsi1 = 1 + ((xsi_init-1)*((M-iteration)/M)^n);

xsi2 = 1-xsi1;

meanA = mean( A );

meanP = mean(pX);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i = 1 : pop

if rand < 0.5 %0.5

q1 = randi([1 pop]);

q2 = randi([1 pop]);

X1 = pX(q1,:);

X2 = pX(q2,:);

newX=kill_bat(pX(i,:),X1,X2);

[pX(i,:),pFit(i)]=select_bat(FUN,pX(i,:),newX,pFit(i));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L\’{e}vy flight %%%%%%%%%%%%%%%%%%%%%%%%%%%%

u=randn(1,dim)*sigma;

VV=randn(1,dim);

step=u./abs(VV).^(1/beta);

stepsize = 0.01*step.*randn(1,dim); %0.01

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x( i, : ) = pX(i,:) + stepsize .* ... %pX(i,:)

abs(meanP - x(i,:)); % change first x to pX

else

t1 = randi([1 10]);

q = randi([1 pop]);

while q== i

q = randi([1 pop]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fractional derivative %%%%%%%%%%%%%%%%%%%
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Vh = reshape(Vhist(:,i,:),10,dim);

vout = Frac_Diff_Der(alfa,Vh,t1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

v(i,:) = w.* vout + freqD(i,:) .* xsi1 .*(bestX-x(i,:))+freqD(i,:).* xsi2

v(i,:) = Bounds(v(i,:),vLb,vUb);

x(i,:) = x(i,:) + v(i,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

% Local search

if rand > r(i)

%%%%%%%%%%%%%%%%%%%%%%%% another L\’{e}vy flight %%%%%%%%%%%%%%%%%%%%%%%%%

u=randn(1,dim)*sigma;

VV=randn(1,dim);

step=u./abs(VV).^(1/beta);

stepsize = 0.01*step;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

randnValueA = stepsize .*randn(1,dim).*(abs(A(i)-meanA)+realmin);

x(i,:) = bestX .* (1+randnValueA);

end

x(i,:) = Bounds(x(i,:),lb,ub);

fit(i) = feval(FUN,x(i,:)’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Update the individual’s best fitness value and the global best one

for i = 1 : pop

if fit( i ) < pFit( i )

pFit( i ) = fit( i );

pX( i, : ) = x( i, : );

end

if( pFit( i ) < fMin && rand < A(i) )
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fMin = pFit( i );

bestX = pX( i, : );

A(i) = A(i) * alpha;

r(i) = r0(i) * ( 1 - exp( -gama * iteration ) );

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%newx=remove_bats(pX,lb,ub,pa);

%[pX,pFit]=get_best_bats(FUN,pX,newx,pFit);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Vhist(2:10,:,:) = Vhist(1:9,:,:);

Vhist(1,:,:) = v;

fbest = fMin; %#ok<NASGU>

FunMin(iteration) = fMin;

if feval(FUN, ’fbest’) < ftarget % COCO-task achieved

break; % (works also for noisy functions)

end

end

time = toc;

% End of the main program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The following functions are associated with the main program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Application of simple limits/bounds

function s = Bounds( s, Lb, Ub)

% Apply the lower bound vector

temp = s;

I = temp < Lb;

temp(I) = Lb(I);

% Apply the upper bound vector
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J = temp > Ub;

temp(J) = Ub(J);

% Update this new move

s = temp;

%%%%%%%%%%%%%%%%%%%%%%%%%%% from CS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function [X,fits]=get_best_bats(FUN,X,newX,fits)

% % Evaluating all new solutions

%

% for j=1:size(X,1)

% fnew=feval(FUN,newX(j,:)’);

% if fnew<=fits(j)

% fits(j)=fnew;

% X(j,:)=newX(j,:);

% end

% end

% function newX=remove_bats(X,Lb,Ub,pa)

% % A fraction of worse nests are discovered with a probability pa

% n=size(X,1);

% % Discovered or not -- a status vector

% K=rand(size(X))>pa;

% stepsize=rand*(X(randperm(n),:)-X(randperm(n),:));

% newX=X+stepsize.*K;

% for j=1:size(newX,1)

% s=newX(j,:);

% newX(j,:)=Bounds(s,Lb,Ub);

% end

function [X,fits]=select_bat(FUN,X,newX,fits)

% Evaluating all new solutions

fnew=feval(FUN,newX’);

if fnew<=fits

148



Appendix D: FLFBA matlab code

fits =fnew;

X=newX;

end

function newX=kill_bat(X,X1,X2)

% A fraction of worse nests are discovered with a probability pa

stepsize=rand*(X1-X2);

newX=X+stepsize;
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Background

In this Appendix, the three MAs used in the present thesis are described: ABCA, BA,

and FPA.

E.1 Artificial Bee Colony Algorithm (ABCA)

ABCA is an evolutionary algorithm for global search with multi-dimensions. It is consid-

ered as one of the famous algorithms of swarm intelligence. It was defined by Karaboga

(2005) [59, 40].

Actionable, it depends on the foraging behavior of honey bee swarm on finding food source

”nectar”. This Algorithm is categorized into three groups; employed bees, onlookers and

scouts. The half of this swarm are called the employed bees that have found a food source

for exploiting.

After it returns to the hive and share the information about the nectar by dancing in

the dance area with other bees who is known as onlookers that are considered the other

half, where they are waiting in the hive to receive that information. After finishing

a food source the employed bee send one of these bees to carry out a random search,

which called ”Scout.” The position of a food source represents a possible solution of the

optimization problem and the nectar amount of a food source corresponds to the fitness

of the associated solution. Now, we use ABCA to optimize the following function:

F (Yi) = F (y1,i, y2,i, ..., yj,i, ..., yd,i) =
d
∑

j=1

(

yj,i − yj−1,i

h
− f (xj−1,i, yj−1,i)

)2

(E.1)
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Where yj,i ∈ [yj,min; yj,max] , i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., d} , n is the number of em-

ployed bees, d is the dimension of the solution space. The main steps of the algorithm

are given below [59]:

Step 1: Initialize the initial swarm Yi = (y1,i, y2,i, ..., yj,i, ..., yd,i) by using equation

yj,i = yj,min + rand[0; 1] ∗ (yj,max − yj,min) (E.2)

Calculate F (Yi) by using equation (E.2) and the fitness (fiti) of each food source

by using equation

fiti =











1
1+F (Yi)

if (F (Yi) ≥ 0)

1 + abs(F (Yi)) if (F (Yi) < 0)
(E.3)

Step 2: ( Move the employed bees)

Calculate the new solution y∗j,i by using equation

y∗j,i = yj,i + rand[−1; 1] ∗ (yj,i − yj,k), (E.4)

Where i 6= k and i, k ∈ {1, 2, ..., d} , j, k are selected randomly and yj,k is a neighbor

bee of yj,i. Calculate F (Y ∗
i ) by using equation (E.1) and its fitness (fiti) by using

equation (E.3), after that we compare this fitness with its old one. If the new food

source fitness has equal or better than the old fitness, the old one is replaced by the

new one. Otherwise, the old one is retained.

Step 3: ( Move the onlookers)

Calculate The probability pi of selecting the food source i by

pi =
fiti
d
∑

j=1

fitj

(E.5)

For improving the solution Yi we use the main operations of Step 2.

164



Appendix E: Background

Step 4: (Move the Scouts) If the fitness values of the employed bees are not improved

by a continuous predetermined number of iterations, which is called (Limit) those

food sources are abandoned, and these employed bees become the scouts, and by

using equation (E.2) generate a new solution for the employed bee.

Step 5: If the termination condition is met, the stop and the best food source is memo-

rized; otherwise the algorithm returns to Step 2.

E.2 Bat Algorithm (BA)

BA was introduced by Xin-SheYang in 2010 [88]. It simulates the echolocation behavior

of micro bats. It is based on three important rules.

1. For sensing distance, bat uses its echolocation capacity. It also uses echolocation to

differentiate between food and prey and background barriers even in the darkness.

2. Bats used to fly randomly with some characteristics like a velocity, fixed frequency

and loudness to search for a prey.

3. It also features the variations in the loudness from a large loudness to minimum

loudness.

Bats find the prey using varying wavelength and loudness while their frequency, position

and velocity remains fixed. They can adjust their frequencies according to pulse emitted

and pulse rate. The algorithm starts with initialization of population of bats. Each bat is

assigned a starting position which is an initial solution. The pulse rate and the loudness

are defined randomly. Every bat will move from local solutions to global best solutions

after every iteration. The values of pulse emission and loudness are updated if a bat finds

a better solution after moving. This process is continued till the termination criteria is

satisfied. The solution so achieved is the final best solution. The main steps of BA are

showed below:
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Pseudo code of the bat algorithm (BA).

Objective function f(x), x = (x1, ..., xd)
T

initialize the bat population xi (i = 1, 2, ..., n) and vi

Define pulse frequency fi at xi

Initialize pulse rates ri and the loudness Ai

while (t < Max number of iterations)

Generate new solutions by adjusting frequency,

and updating velocities and locations/solutions

if (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected best solution

end if

Generate a new solution by flying randomly

if (rand < Ai & f(xi) < f(x∗))

Accept the new solutions

Increase riand reduce A

end if

Rank the bats and find the current best x∗

end while

Postprocess results and visualization

E.3 Flower Pollination Algorithm (FPA)

Flower pollination algorithm is the latest bio-inspired algorithm proposed by Xin-She

Yang in 2012 [90]. It is inspired by fertilization (pollination) process of flowers.

In FPA, abiotic and self-pollination are considered for local pollination while biotic and

cross-pollination is considered for the global pollination between the flower plants. The

algorithm maintains a balance between local and global pollination. Yang assumed that

each plant can have only one flower and each flower can have only one pollen grain for

the purpose of optimizing the benchmark functions.

The process of pollination is done by pollinators such as flies, insects or wind. Thus, each
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flower (or pollen) can be considered as a potential solution of an objective function. The

objective function finds the best flower, which is capable of doing maximum pollination.

The process continues unless stopping criteria is met. The main steps of FPA, or simply

the flower algorithm are illustrated below:

Pseudo code of the (FPA).

Objective min or max f(x), x = (x1, x2, ..., xd)

Initialize a population of n flowers/pollen gametes with random solution

Find the best solution g∗in the initial population

Define a switch probability p ∈ [0, 1]

while (t< MaxGeneration)

for i = 1 : n (all n flowers in the population)

if rand < p,

Draw a (d-dimensional) step vector L which obeys an Lévy distribution

Global pollination via xt+1
i = xt

i+L(g∗−xt
i)

else

Draw ǫ from a uniform distribution in [0, 1]

Randomly choose j and k among all the solutions

Do local pollination via xt+1
i = xt

i+ǫ(xt
j−xt

k)

end if

Evaluate new solutions

If new solutions are better, update them in the population

end for

Find the current best solution g∗

end while
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