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Résumé

D
e nos jours, la gestion du risque occupe une place de plus en plus import-

ante dans le monde socio-économique (commerce, industrie, agriculture,

�nance, assurance, sociologie, médecine, politique, sport, etc...). D�où la nécessité

de se doter de moyens permettant de contrôler un risque donné. On dé�nit alors

des quantités théoriques qu�on appelle mesures de risque et qu�on doit être en

mesure d�estimer convenablement. Il est évident que pour faire une estimation

précise, il faut trouver le modèle théorique le plus approprié aux données. Pour

cela, on fait appel à la théorie des valeurs extrêmes qui semble être le meilleur outil

permettant la modélisation des événements rares qui in�uencent grandement les

comportements des compagnies pour faire face aux risques dangereux encourus.

Le problème est donc d�estimer les di¤érents paramètres d�un modèle de valeurs

extrêmes pour pouvoir ensuite aborder l�estimation des mesures de risque.

Ces résultats seront appliqués particulièrement lors des événements hydrologiques

extrêmes, tels que les crues et les sécheresses, qui sont l�une des catastrophes

naturelles qui se produisent dans plusieurs parties du monde. Ils sont considérés

comme étant les risques naturels les plus coûteux en raison des conséquences

désastreuses qui se résument essentiellement en pertes en vies humaines et en

dégâts matériels. L�objectif principal de la présente étude est d�estimer les événe-

ments des crues de Oued Abiod pour des périodes de retour données à la station

hydrométrique de M�chouneche située près de Biskra, région semi-aride du Sud-

Est de l�Algérie. Cette situation est problématique à plusieurs égards, en raison

de l�existence d�un barrage vers l�aval, de la sédimentation et des fuites d�eau à

travers le barrage pendant les crues.

Une analyse fréquentielle complète est e¤ectuée sur une série des débits moyens

journaliers, par le biais d�outils statistiques classiques ainsi que de techniques ré-

centes. Les résultats obtenus montrent que la distribution de Pareto Généralisée

(GPD), pour laquelle les paramètres ont été estimés par la méthode du max-

imum de vraisemblance (ML), décrit mieux la série analysée. Cette étude indique

également aux décideurs l�importance de continuer à surveiller les données à cette

station.

Mots clés : Valeurs extrêmes; Débits de crues; Analyse fréquentielle; Distribu-

tion de Pareto généralisée; Distributions à queues lourdes; Quantiles extrêmes;

Evènements rares; Niveau de retour; Mesures de risque; Indice de queue
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Abstract

N
owadays, risk management plays a key role especially in socio-economic

world such as: commerce, industry, agriculture, �nance, insurance, soci-

ology, medicine, politics and sport, etc. Hence we need some tools in order to

control that risk. So we de�ne theoretical quantities that we call risk measures

and we will be able to estimate it appropriately. It is obvious that in order to

make a precise estimate, we must �nd the theoretical model most appropriate to

the data. This is done using extreme value theory, which seems to be the best

tool for modeling rare events that greatly in�uence the behavior of companies to

deal with dangerous risks. This study aims to estimate the various parameters of

a model of extreme values in order to be able to approach the estimation of the

risk measures.

Those results will be applied especially in extreme hydrological events such as

�oods, which are one of the natural disasters that occur in several parts of the

world. They are regarded as being the most costly natural risks in terms of

the disastrous consequences in human lives and in property damages. The main

objective of the present study is to estimate �ood events of Abiod wadi at given

return periods at the gauge station of M�chouneche, located closely to the city of

Biskra in a semiarid region of southern east of Algeria. This is a problematic issue

in several ways, because of the existence of a dam to the downstream, including

the �eld of the sedimentation and the water leaks through the dam during �oods.

A complete frequency analysis is performed on a series of observed daily aver-

age discharges, including classical statistical tools as well as recent techniques.

The obtained results show that the generalized Pareto distribution (GPD), for

which the parameters were estimated by the maximum likelihood (ML) method,

describes the analyzed series better. This study also indicates to the decision-

makers the importance to continue monitoring data at this station.

Keywords : Extreme values; Flood discharges; Frequency analysis; General-

ized Pareto distribution; Heavy-tailed distributions; High quantiles; Rare events;

Return levels; Risk measures; Tail index.
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Introduction 1

Introduction

T
he study of �oods is a subject which arouses more and more interest in

the �eld of water sciences. In spite of their low rainfall, the basins of the

arid and semiarid areas represent a hydroclimatic context where the overland �ow

phenomena are signi�cant and feed a network of very active wadis. The activity of

these wadis is far from being negligible from the �ood in terms of their frequency

and intensity. One observes on these rivers exceptional �ows, which sometimes,

surprise by their magnitude [40]. The Abiod wadi, in the area of Biskra, is a very

representative river of these basins. Moreover, the existence of Foum El Gherza

dam to the downstream for the irrigation of the palm plantations makes the area

more sensitive with regard to the �oods. The �ood events of the years 1963, 1966,

1971, 1976 and 1989 remain engraved in the memory of the inhabitants. The �ood

event of September 11�12, 2009, was one of the historic �oods in the Zibans area

[11]. It rains 80mm in 24h, while the annual total of Biskra City reaches 100mm.

The damage was 9790 palm trees, 164 �ooded houses, 744 destroyed greenhouses,

200 hectares of lost cultures. The last �ooding at the time of this drafting paper

is that produced in October 29, 2011. All the populations living downstream of

the Foum El Gherza dam were evacuated. The �oods mainly occur in September

and October and especially originate from exceptional storm events.

Describing and studying these situations could help in preventing or at least re-

ducing severe human and material losses. The strategy of prevention of �ood risk

should be founded on various actions such as risk quanti�cation. On this aspect,

various methodological approaches can contribute to this strategy, among which

�ood frequency analysis (FA). Frequency analysis of extreme hydrological events,

such as �oods and droughts, is one of the privileged tools by hydrologists for the

estimation of such extreme events and their return periods. The main objective

of FA approach is the estimation of the probability of exceedance P (X � xT ),

called hydrological risk, of an event xT corresponding to a return period T [26].

This process is accomplished by �tting a probability distribution F to large obser-

vations in a data set. Two approaches were developed in the context of extreme

value theory (EVT). The �rst one, usually based on the generalized extreme value

distribution (GEV), describes the limiting distribution of a suitably normalized
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annual maximum (AM), and the second uses the generalized Pareto distribu-

tion (GPD) to approximate the distribution of peaks over threshold (POT). For

more details regarding this theory and its applications, the reader is referred to

textbooks such as Embrechts et al. (1997) [47], Reiss and Thomas (1997) [103],

Beirlant et al. (2004) [8] and de Hann and Ferriera (2006) [57].

Many FA models should be tested to determine the best �t probability distri-

bution that describes the hydrological data at hand. Speci�c distributions are

recommended in some countries, such as the Log-normal (LN) distribution in

China (Bobée 1999) [15]. In the USA, the Log-Pearson type 3 distribution (LP3)

has been, since 1967 (National Research Council (NRC) 1988) [91], the o¢ cial

model to which data from all catchments are �tted for planning and insurance

purposes. By contrast, the UK endorsed the GEV distribution (Natural Environ-

ment Research Council 1975, 1999) [92, 93] up until 1999. The o¢ cial distribution

in this country is now the generalized logistic (GL), as for precipitation in the

USA (Willeke et al. 1995) [120]. There are several examples where a number

of alternative models have been evaluated for a particular country, for example

Kenya (Mutua 1994) [90], Bangladesh (Karim and Chowdhury 1995) [77], Turkey

(Bayaz¬t et al. 1997) [7] and Australia (Vogel et al. 1993) [116]. Nine distribu-

tions were used with data from 45 unregulated streams in Turkey by Haktanir

(1992) [59] who concluded that two-parameter Log-normal (LN2) and Gumbel

distributions were superior to other distributions. Recent research was conduc-

ted by Ellouze and Abida (2008) [46] in ten regions of Tunisia. They found that

the GEV and GL models provided better estimates of �oods than any of the

conventional regression methods, generally used for Tunisian �oods. Rasmussen

et al. (1994) [101] reveal that the POT procedure is more advantageous than the

AM in the case of short records. Lang et al. (1999) [84] develop a set of compre-

hensive practice-oriented guidelines for the use of the POT approach. Tanaka and

Takara (2002) [113] has examined several indices to investigate how to determine

the number of upper extremes rainfall best for the POT approach.

In the Algerian hydrological context, during the last two decades many authors

have used several approaches to study the associated risks. Recently, Hebal and

Remini (Hosking 1990) [66] studied �ood data from 53 gauge stations in northern

Algeria, between 1966 and 2008. They found that 50, 25 and 22% of the samples
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follow, respectively, the Gamma, Weibull and Halphen A distributions. Bouanani

(2005) [17] performed a regional �ood FA in the Tafna catchments and concluded

that the AM �ows �t better to asymmetric distributions such as LP3, Pearson

3 and Gamma. The FA was also used in the sediment context by Benkhaled et

al. (2014) [12] where the LN2 distribution was selected in the case of the same

station considered in the present study, i.e., M�chouneche gauge station on Abiod

wadi.

To our best knowledge, apart from Benkhaled et al. (2014) [12], the �ood FA

approach has not yet been performed on data collected at this station. The

primary aim of this thesis is to perform a FA to the Abiod wadi �ow data by the

POT approach, based on GPD approximation (Hosking and Wallis 1987) [67].

In methodological terms, all the steps constituting FA are performed from data

examination to risk assessment including hypotheses testing and model selection.

Due to the high importance of the latter and its impacts, more recent techniques

are employed to select the appropriate distribution that �ts better to the tail.

A relatively large number of known distributions �t well the center of the data,

whereas the focus in FA is on the distribution tail. To this end, tail classi�cation

and speci�c graphical tools are employed; see El Adlouni et al. (2008) [45] for

more technical details.

This thesis, which focuses on statistical aspects of one-dimensional EVT and its

applications in the �elds of hydrology, is organized as follows :

Part I : Preliminary Theory

Chapter 1 : Extreme Values. In this chapter, we provide an overview of the

essential de�nitions and results of EVT. We start by the asymptotic properties

of the sum of independent and identically distributed random variables, order

statistics and distributions of upper order statistics. Afterwards, we will be in-

terested in the result, �rst discovered by Fisher and Tippett and later proved in

complete generality by Gnedenko; on the �uctuations and asymptotic behavior of

the maximum Xn;n of a series of independent and identically distributed random

variables. A reminder on GEV and GPD approximations, domains of attraction

and regular variation functions is given as well.
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Chapter 2 : Tail Index and High Quantile Estimation. In this chapter,

we review existing approaches and methods for the estimation of the Extreme

Value Index (EVI) : Parametric approach and semi-parametric approach. We

also present in this chapter the di¤erent methods and algorithms for the determ-

ination of extreme order statistics as well as the estimation of extreme quantiles.

In the last section, we discuses risk measurement which is a great part of an or-

ganization�s overall risk management strategy. Risk measurement is a tool to used

to assess the probability of a bad event happening. It can be done by businesses

as part of disaster recovery planning and as part of the software development

lifecycle. The analysis usually involves assessing the expected impact of a bad

event such as a hurricane or tornado. Furthermore, risk analysis also involves an

assessment of the likelihood of that bad event occurring.

Part II : Main Results

Chapter 4. Complete Flood Frequency Analysis in Abiod Watershed

Biskra (Algeria). This chapter is designed to estimate �ood events of Abiod

wadi at given return periods at the gauge station of M�chouneche, located closely

to the city of Biskra in a semiarid region of southern east of Algeria. The study

area and the data set are brie�y described in section 1. Section 2 is devoted to

the FA methodology. The results of the study are presented and discussed in the

third section.
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Chapter 1. Extreme Values 7

W
hen we are interested in information about the extreme tail of a distribu-

tion, classical statistical tools can not be applied. To this end, extreme

values methods were constructed. In this chapter, we will present in a very clas-

sical way the extreme value theory, which is the counterpart of the Central Limit

Theorem (CLT) for sums. However, while the CLT is concerned with �uctuations

around the mean resulting from an aggregation process, the EVT provides results

on the asymptotic behavior of the extreme realizations (maxima and minima).

Indeed, our starting point will be the order statistics, they are an essential tool

in the theory of extreme values. A good reference for the theory and applications

of extreme values is the book of Embrechts et al. [47].

1.1 Basic Concepts

De�nition 1.1 (Distribution and survival functions).

If X is a random variable (rv) de�ned on a probability space (
;F ; P ) then, the
distribution and survival functions F and �F are respectively de�ned on R by

F (x) := P (X � x) ; (1.1)

and
�F (x) := 1� F (x) : (1.2)

�F is also called tail of distribution .

De�nition 1.2 (Sum and arithmetic mean).

Let X1; X2; � � � be a sequence of random variables (rv�s) that are independent and
identically distributed (iid) de�ned on the same probability space. For any integer

n � 1, we de�ne the sum and the corresponding arithmetic mean respectively by

Sn :=
nX
i=1

Xi; (1.3)

and
�Xn := Sn=n: (1.4)

1.1.1 Law of Large Numbers

The laws of large numbers indicate that as the number of randomly-drawn ob-

servations n in a sample increases, the statistical characteristics of the draw (the
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sample) closer to the statistical characteristics of the population. They are of two

types; Weak laws involving convergence in probability and strong laws relating

to almost safe convergence.

Theorem 1.1 (Law of large numbers).

Let (X1; X2; � � � ; Xn) be a sample of a rv X, with �nite expected value (E jXj <
1), then

Weak Law : �Xn
p! E (X) as n �!1;

Strong Law : �Xn
a:s:! E (X) as n �!1:

De�nition 1.3 (Empirical distribution function).

The empirical distribution function of a sample (X1; X2; � � � ; Xn) is de�ned by

Fn (x) :=
1

n

nX
i=1

1IfXi�xg; x 2 R; (1.5)

where 1IA denotes the indicator function of the set A.

The application of the strong law of large numbers on Fn (x) gives the following

result.

Corollary 1.1.

Fn (x)
a:s:! F (x) as n �!1; for every x 2 R:

The result of this corollary can be strengthened in the following fundamental

result in nonparametric statistics, known under the name of theorem Glivenko-

Cantelli.

Theorem 1.2 (Glivenko-Cantelli).

The convergence of Fn to F is almost surely uniform, i.e.

sup
x2R

jFn (x)� F (x)j a:s:! 0 as n �!1:

The proof of Theorems 1.1 and 1.2 could be found in any standard textbook of

probability theory such as [9, chapter 4, page 268]
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1.1.2 Central Limit Theorem

The CLT states that a sum of n rv�s independently drawn from a common dis-

tribution function F (x) with �nite variance, converge to the normal distribution

as n goes to in�nity.

Theorem 1.3 (CLT).

If X1; X2; � � � is a sequence of rv�s iid of mean � and �nite variance �2, then

(Sn � n�) =�
p
n

d! N (0; 1) as n �!1:

The proof of this Theorem could be found in any standard book of statistics (see

e.g., [106, page 66]).

1.2 Order Statistics

The extreme value theory is directly linked to that of order statistics. This section

gathers de�nitions and the results that we need throughout this thesis. For more

details, we refer to books ([2], [32] and [39]).

De�nition 1.4 (Order Statistics).

If the random variables X1; X2; � � � ; Xn are arranged in increasing order of mag-

nitude and then written as

X1;n � X2;n � � � � � Xn;n;

the random variable Xi;n is called the ith order statistics (i = 1; � � � ; n).

In the following we will assume that Xi are independent and identically distrib-

uted random variables from a continuous population with cumulative distribution

function (cdf) F and probability density function (pdf) f:

1.2.1 Distribution of An Order Statistics

The distribution function of the kth order statistics Xk;n, for 1 � k � n, denoted

by FXk;n is obtained as follows
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FXk;n (x) = P (Xk;n � x)

= P (at least k observations among Xi are � x)

= P

�
nP
i=1

1IfXi�xg � k

�
=

nX
i=k

�n
i

�
F i (x) [1� F (x)]n�i ; �1 < x < +1; (1.6)

since
nP
i=1

1IfXi�xg follows the binomial distribution ; Bin(n; F (x)).

The density function is then

fXk;n (x) =
1

B (k; n� k + 1)
F k�1 (x) f1� F (x)gn�k f (x) ; (1.7)

where

B (k; n� k + 1) =
n!

(k � 1)! (n� k)!
:

Particular cases of interest in the extreme value theory are

� The maximum, Xn;n, with distribution and density functions respectively

FXn;n (x) = P (Xn;n � x) = P fX1 � x; � � � ; Xn � xg

=
nY
i=1

P (X1 � x)

= fF (x)gn ;�1 < x < +1; (1.8)

and

fXn;n (x) = nF n�1(x)f (x) : (1.9)

� The minimum, X1;n, with distribution and density functions respectively

FX1;n (x) = P (X1;n � x) = 1� P (X1;n > x)

= 1� P fX1 > x; � � � ; Xn > xg

= 1�
�
�F (x)

	n
;�1 < x < +1; (1.10)

and

fX1;n (x) = n (1� F (x))n�1 f (x) : (1.11)
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� Let U1;n; � � � ; Un;n be the order statistics corresponding to n iid rv�s U1; � � � ; Un
from a uniform distribution in the unit interval (U (0; 1) distribution), then
the ith order statistics, Ui;n, follows a beta distribution with parameters i

and n� i+ 1, i.e., Ui;n � Be (i; n� i+ 1)

fUi;n (x) =
1

B (i; n� i+ 1)
xi�1 (1� x)n�i ; x 2 (0; 1) : (1.12)

As the uniform distribution on the unit interval is symmetric with respect

to 1=2, (that is U d
= 1� U)

Ui;n
d
= 1� Un�i+1;n:

The proof of those densities results could be found in the textbook [2, pages

10,12-14], or see e.g, [47, pages 183-184].

1.2.2 Joint Density of Two Order Statistics

It can be checked that the joint density of two order statistics (Xj;n; Xk;n) with

(1 � j < k � n) is

fXj;n;Xk;n(x; y) =
n!

(j � 1)! (k � j � 1)! (n� k)!

:F j�1 (x) fF (y)� F (x)gk�j�1 f1� F (y)gn�k f(x)f(y);

�1 < x < y < +1: (1.13)

In particular the joint density of the maximum and the minimum (X1;n; Xn;n) is

fX1;n;Xn;n(x; y) = n (n� 1) fF (y)� F (x)gn�2 f (x) f (y) ;�1 < x < y < +1:

(1.14)

1.2.3 Joint Density of All the Order Statistics

The joint density of all the order statistics is

fX1;n;X2;n;:::;Xn;n(x1; x2; : : : ; xn) = n!
nY
i=1

f (xi) ; �1 < x1 < � � � < xn < +1:

(1.15)

From this joint density we could have obtained, the density of a single order

statistics, or the joint density of two order statistics.

The detailed proof of the above joint densities could be found in the book of

Davis et Nagaraga [32].
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1.2.4 Some Properties of Order Statistics

First, we introduce the quantile function (or generalized inverse).

De�nition 1.5 (Quantile function).

Let F be a distribution function. The quantile function is

Q (s) = F (s) := inf fx 2 R : F (x) � sg ; 0 < s < 1: (1.16)

For any cdf F , the quantile function is non-decreasing and right-continuous. If

F is continuous, then Q is continuous. If F is strictly increasing, then Q is the

inverse function F�1. The most important property of the quantile function is :

Theorem 1.4 (Quantile transformation).

Let X be a rv with cdf F . Let U � U (0; 1). Then, the cdf of the rv Q (s) is F ,
or in other words

X
d
= Q (U) : (1.17)

Proposition 1.1 (Quantile transformation).

� Let X1;n; X2;n; � � � ; Xn;n be the order statistics of n iid observation from a rv X

with distribution function F . Consider the transformed rv Y = g(X), with

g a Borel measurable function. As the order is preserved by non-decreasing

function, we have

(Y1;n; Y2;n; � � � ; Yn;n)
d
= (g (X1;n) ; g (X2;n) ; � � � ; g (Xn;n)) ; (1.18)

for any non-decreasing function g.

� In particular, let (U1; � � � ; Un) be a sample from the standard uniform rv and

(U1;n; � � � ; Un;n) the corresponding ordered sample

(X1;n; � � � ; Xn;n)
d
= (Q (U1;n) ; � � � ; Q (Un;n)) (1.19)

� From (1.19), we have

Xi;n
d
= Q (Ui;n) ; i = 1; � � � ; n:

� When F is continuous, we have

F (Xi;n)
d
= Ui;n; i = 1; � � � ; n: (1.20)
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See [102], Theorem 1.2.5, page 17, for the proof.

Proposition 1.2 (Moments).

The mth (m = 1; 2; � � � ) moment of the ith (i = 1; � � � ; n) order statistics is

�
(m)
i;n = EXm

i;n =
1

B (i; n� i+ 1)

+1Z
�1

xm fF (x)gi�1 fF (x)gn�i f (x) dx

=
1

B (i; n� i+ 1)

1Z
0

fQ (s)gm si�1 (1� s)n�i ds: (1.21)

Proposition 1.3 (Markov property).

When the original iid variables X1; X2; � � � ; Xn are ordered, the corresponding

order statistics X1;n; X2;n; � � � ; Xn;n are no longer independent. When F is con-

tinuous, the dependence structure can be described by a Markov chain. In other

words, we have for i = 2; � � � ; n

P (Xi;n � x jX1;n = x1; � � � ; Xi�1;n = xi�1 ) := P (Xi;n � x jXi�1;n = xi�1 ) :

The proofs of these results are straightforward and could be found in [2, page 14,

Theorem 3.4.1 page 48].

1.2.5 Properties of Uniform and Exponential Spacings

The three following theorems (of which the proof can be found in the book [39]

(chapter 5)), give the properties of uniform and exponential spacings.

Let U1;n; � � � ; Un;n be the order statistics corresponding to n iid rv�s U1; � � � ; Un
from a uniform distribution in the unit interval. The statistics Si de�ned by

Si := Ui;n � Ui�1;n (i = 1; � � � ; n+ 1) ; (1.22)

where by convention U0;n = 0, Un+1;n = 1, are called the uniform spacings for

this sample.

Theorem 1.5.

(S1; � � � ; Sn) is uniformly distributed over the simplex

An :=

(
(x1; : : : ; xn) : xi � 0;

nX
i=1

xi � 1
)
: (1.23)
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Theorem 1.6 (Pyke, 1965, 1972 [98, 99] ).

Let E1; E2; � � � ; En+1 be a sequence of iid exponential rv�s, then

fS1; : : : ; Sn+1g
d
=

8>>>><>>>>:
E1

n+1X
i=1

Ei

;
E2

n+1X
i=1

Ei

; : : : ;
En+1
n+1X
i=1

Ei

9>>>>=>>>>; : (1.24)

Theorem 1.7 (Sukhatme, 1937 [112]).

Let E1;n; � � � ; En;n be the order statistics corresponding to a sequence of n iid rv�s
from a standard exponential distribution E1; E2; � � � ; En. If we de�ne E0;n = 0,

then the normalized exponential spacings

(n� i+ 1) (Ei;n � Ei�1;n) ; 1 � i � n;

are iid exponential random variables. Also

(E1;n; � � � ; En;n)
d
=

�
E1
n
;
E1
n
+

E2
n� 1 ; � � � ;

E1
n
+

E2
n� 1 + � � �+

En
1

�
: (1.25)

Theorem 1.8 (Malmquist, 1950 [87]).

Let U1;n; � � � ; Un;n be the order statistics of U1; � � � ; Un, a sequence of iid uniform
[0; 1] random variables. Then, if Un+1;n = 1(�

Ui;n
Ui+1;n

�i
; 1 � i � n

)
d
= fUi; 1 � i � ng ; (1.26)

1.3 Limit Distributions and Domains of Attraction

When modeling the maxima (or minima) of a random variables, extreme value

theory plays the same fundamental role as the Central Limit theorem plays when

modeling the sum of random variables. In both cases, the theory tells us what the

limiting distributions are. Generally there are two approaches can be considered

in identifying extremes in real data.

The �rst, called block maxima approach, consists of dividing the series into non-

overlapping blocks of the same length and choosing the maximum from each

block and �tting the GEV to the set of block. The assumption that the extreme

observations are iid is viable in this case. But the choice of block size can be
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critical. The choice amounts to a trade-o¤ between bias and variance : blocks

that are too small mean that approximation by the limit model is likely to be

poor, leading to bias in estimation and extrapolation ; large blocks generate few

block maxima, leading to large estimation variance. Pragmatic considerations

often lead to the adoption of blocks of length one year (Annual Maxima).

The second approach consists of choosing a given threshold (high enough) and

considering the extreme observations exceeding this threshold. This approach

based on the GPD approximation is called the peaks-over-threshold (POT) ap-

proach. The choice of the threshold is also subject to a trade-o¤between variance

and bias. By increasing the number of observations for the series of maxima (a

lower threshold), some observations from the centre of the distribution are in-

troduced in the series, and the index of tail is more precise (less variance) but

biased. On the other hand, choosing a high threshold reduces the bias but makes

the estimator more volatile (fewer observations). The problem of dependent ob-

servations is also present. Detailed and technical introduction can be found in

de Haan and Ferreira (2006) [57], Embrechts et al. (1997) [47] and Coles (2001)

[28].

The main analytic tool of EVT is the theory of regularly varying functions. So,

before proceeding to the presentation of extreme value theory, we provide an

introduction to concepts such as regularly varying functions, among others, which

are commonly used in EVT and are necessary for a better comprehension of the

logic and of the results of this theory.

1.3.1 Regular Variation

The concept of regular variation is widely used in EVT to describe the deviation

from pure power laws. Regular variation of the tails of a distribution appears

as a condition in various theoretical results of probability theory, so in domain

of attraction. In this section, we summarize some of the main results of regular

variation theory. An encyclopedic treatment of regular variation can be found in

Bingham et al [14].
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De�nition 1.6 (Regularly varying functions).

A positive, Lebesgue measurable function h on (0;1) is regularly varying at in-
�nity of index � 2 R, we write h 2 R�, i¤

lim
t!1

h (tx)

h (t)
= x�, for all x > 0: (1.27)

When � = 0, function h is said to be slowly varying at in�nity.

Proposition 1.4 (Regular and slow variations).

Any regularly varying function h can be decomposed as

h (x) := x�L (x) ; (1.28)

with L is called slowly varying function.

Notice that a slowly varying function is essentially a regularly varying function

with index 0. Typical examples are positive constants or functions converging to

a positive constant, logarithms and iterated logarithms.

The three foundation stones of the theory of regular variation are the Karamata

representation theorem, the uniform convergence theorem and the characteriza-

tion theorem, which identi�es the crucial concept of the index of regular variation.

Theorem 1.9 (Karamata representation).

If h 2 R� for some � 2 R, then

h (x) = c (x) exp

8<:
xZ
A

r (t)

t
dt

9=; ; x � A (1.29)

for some A > 0, where c and r are measurable functions, such that c (x)! c0 2
(0;1) and r (x)! � as x!1. The converse implication also holds.

Proof. See Resnik [104, Corollary 2.1, page 29].

Proposition 1.5.

From the representation theorem we may conclude that for regularly varying h

with index � 6= 0, as x!1;

h (x)!
(
1 if � > 0;

0 if � < 0:
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The proof of this proposition is detailed in Resnik [104, Proposition 2.6, page 32].

Theorem 1.10 (Uniform convergence). If h 2 R� (in the case � > 0, assuming

h bounded on each interval (0; x] ; x > 0), then for 0 < a � b <1 relation (1.27)

holds uniformly in x

(a) on each [a; b] if � = 0;

(b) on each (0; b] if � > 0;

(c) on each [a;1) if � < 0:

Proof. See e.g. Bingham et al [14, Theorem 1.5.2, page 22].

The following result of Karamata is also very useful, since it is often used in proofs

of theorems of extreme value theory. It says that integrals of regularly varying

functions are again regularly varying functions, or more precisely, one can take

the slowly varying function out of the integral.

Theorem 1.11 (Karamata, 1933).

Let l be a slowly function, bounded in [x0;1) for some x0 � 0. Then

1) for � > �1
xZ
x0

t�l (t) dt � (�+ 1)�1 x�+1L (x) , as x!1;

2) for � < �1
1Z
x

t�l (t) dt � � (�+ 1)�1 x�+1L (x) , as x!1:

Corollary 1.2.

The conclusions of Karamata�s theorem can alternatively be formulated as follows.

Suppose h 2 R� and h is locally bounded on [x0;1) for some x0 � 0. Then

(a) for � > �1

lim
x!1

Z x

x0

h (t) dt

xh (x)
=

1

�+ 1
;
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(b) for � < �1

lim
x!1

Z 1
x

h (t) dt

xh (x)
= � 1

�+ 1
:

The following result is crucial for the di¤erentiation of regularly varying functions.

Theorem 1.12 (Monotone density).

Let K (x) =
Z x

0

k (y) dy (or
Z 1

x

k (y) dy) where k is ultimately monotone (i.e. u

is monotone on (A;1) for some A > 0). If

K (x) � cx�L (x) ; x!1;

with c � 0, � 2 R and l 2 R0 then

k (x) � c�x��1L (x) ; x!1:

For c = 0 the above relations are interpreted as

K (x) = o (x�L (x)) and uk (x) = o
�
x��1L (x)

�
:

De�nition 1.7 (Regularly varying rv and distribution).

A non-negative rv X and its distribution are said to be regularly varying with

index � � 0 if the right distribution tail �F 2 R��:

Proposition 1.6 (Regularly varying distributions).

Assume that F is a continuous cdf (with pdf f) such that F (x) < 1 for all x � 0:

(a) Suppose for some � > 0, lim
x!1

xf (x) = �F (x) = �, then f 2 R�(1+�) and
consequently �F (x) 2 R��:

(b) Suppose f 2 R�(1+�) for some � > 0, then lim
x!1

xf (x) = �F (x) = �. The

latter statement also holds if �F 2 R�� for some � > 0 and f is ultimately
monotone.

(c) Suppose X is a regularly varying non-negative rv with index � > 0. Then

EXp < 1 if p < �;

EXp = 1 if p > �:

Doctorat Thesis



Chapter 1. Extreme Values 19

(d) Suppose �F 2 R�� for some � > 0, p � �

lim
x!1

xp �F (x)Z x

0

ypdF (y)

=
p� �

�
:

The converse also holds in the case that p > �. If p = � one can only

conclude that �F (x) = o (x��L (x)) for some L 2 R0.

Now, we return to the main topic of this chapter, which is the presentation of

extreme value theory.

1.3.2 GEV Approximation

Result (1.8) is of no immediate interest, since it simply says that for any �xed

x for which F (x) < 1, we have P (Xn;n � x) ! 0 (see e.g. Coles (2001) [28]).

In the EVT we are interested in the limiting distribution of normalized maxima.

The mathematical foundation is the class of extreme value limits laws origin-

ally derived by Fisher and Tippett (1928) [48] and Gnedenko (1943) [50] and

summarized in the following theorem, which plays a key role in EVT.

Theorem 1.13 ((Fisher and Tippet, 1928) [48], (Gnedenko, 1943) [50]).

Let X1; X2; : : : ; Xn be a sequence of iid rv�s. If there exist sequences of constants

an > 0 and bn 2 R and some non-degenerate distribution function H (i.e., some

distribution function which does not put all its mass at a single point), such that

a�1n (Xn;n � bn)
d! H; as n!1; (1.30)

then H belongs to one of the following three standard extreme value distributions

Gumbel : � (x) := exp (�e�x) ; x 2 R:

Fréchet : �� (x) :=

(
0; x � 0
exp (�x��) ; x > 0

and � > 0:

Weibull : 	� (x) :=

(
exp (� (�x)�) ; x � 0
1; x > 0

and � > 0:

Sketches of proofs, extensions, choice of normalizing constants, and applications,

can be found in Embrechts et al. (1997) [47, page 122], Kotz and Nadarajah

(2000) [80], and Coles (2001) [28].

In the �gure below, we give a visual inspection of the form of the limiting df�s.
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Figure 1.1. Density and Distributions of extreme value distributions

In accordance with von Mises (1936) [117] and Jenkinson (1955) [73], we can

obtain a one-parameter representation of the three standard distributions. This

representation is known as the standard generalized extreme value(GEV) distri-

bution.

De�nition 1.8 (GEV Distribution).

The standard GEV distribution is given by

H (x) :=

8<: exp
�
� (1 + x)�1=

�
for  6= 0; 1 + x > 0;

exp (� exp (�x)) for  = 0; x 2 R:
(1.31)

where the parameter  is called "shape parameter", though it is often referred to

as "extreme value index" (EVI) or "tail index" of F .

The corresponding pdf h is de�ned by

h (x) :=

(
H (x) (1 + x)�1=�1 if  6= 0; 1 + x > 0;
exp (�x� exp (�x)) if  = 0; x 2 R:

(1.32)

The related location-scale family H;�;� can be introduced by replacing the argu-

ment x above by (x� �) =� for � 2 R; � > 0 ; that is H;�;� (x) := H

�
x� �

�

�
.
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One can derive the correspondence between the GEV distribution and the three

standard extreme value df�s. Speci�cally

� (x) = H0 (x) ; x 2 R:
�� (x) = H1=� (� (x� 1)) ; x > 0:

	� (x) = H�1=� (� (x+ 1)) ; x < 0:

In other words, a parametric family fH;  2 Rg is introduced. It provides a
unifying representation for the three types of limit distributions.

H =

8>><>>:
	�1= if  < 0;

� if  = 0;

�1= if  > 0:

In order to explore the necessary conditions for the existence of a limiting distri-

bution function H, it is useful to adopt a systematic approach towards the set

of df.�s whose maxima have the same limiting df. So, we introduce the notion of

maximum domains of attraction.

1.3.3 Maximum Domains of Attraction

The fact that the extreme value distribution functions are continuous on R, from
(1.8), the relation (1.30), for some  2 R, is equivalent to

lim
n!1

P

�
Xn;n � bn

an
� x

�
= lim

n!1
F n (anx+ bn) = H (x) ; x 2 R: (1.33)

De�nition 1.9 (Domain of attraction).

If (1.33) holds for some normalizing constants an > 0, bn 2 R and non-degenerate
distribution function H, we say that the rv X and its distribution function F

belong to the domain of attraction of the extreme value distribution H, and we

write F 2 D (H).

General Characterization

In practice, it is often more convenient, not to work on the cdf F itself, but on

the tail function.
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De�nition 1.10 (Tail quantile function).

The tail quantile function is de�ned by

U (t) := Q (1� 1=t) =
�
1= �F

� 
(t) ; 1 < t <1; (1.34)

where Q is the quantile function of the cdf F de�ned in (1.16).

De�nition 1.11 (Upper endpoint).

The upper (or right) endpoint of the cdf F is de�ned as follows

xF := sup fx 2 R : F (x) < 1g � 1: (1.35)

Proposition 1.7 (Limit of Xn;n).

Xn;n
a:s! xF as n!1:

Proposition 1.8 (Caracterization of D (H)).
The df F 2 D (H), with normalizing constants an > 0 and bn 2 R, i¤

n �F (anx+ bn)! � logH (x) as n!1: (1.36)

When H (x) = 0, the limit is interpreted as 1.

Proposition 1.9.

F 2 D (H) i¤, for all x > 0, with (1 + x) > 0;

lim
t!xF

�F (t+ xb (t))
�F (t)

=

(
(1 + x)�1= if  6= 0;
exp (�x) if  = 0;

(1.37)

where b (x) is a positive measurable function.

Theorem 1.14.

The df F with right endpoint xF � 1 belongs to the maximum domain of attrac-

tion of H (F 2 D (H)) i¤, for x; y > 0; and y 6= 1

lim
s!1

U (sx)� U (s)

U (sy)� U (s)
= lim

s!1

U (sx)� U (s)

a (s)

a (s)

U (sy)� U (s)
(1.38)

=

8><>:
x � 1
y � 1 if  6= 0;
log x

log y
if  = 0:

Doctorat Thesis



Chapter 1. Extreme Values 23

Theorem 1.15 (Caracterization of D (�)).
The df F 2 D (�),  > 0, i¤

�F (x) = x�L (x) ; (1.39)

for some slowly varying function L.

Every F 2 D (�) has an in�nite right endpoint xF = +1. Essentially, D (�)
embrace all the distribution with right tails regularly varying with index � (e.g.
Pareto, Cauchy, Student and Burr distribution). These df�s are called Pareto-

type or heavy-tailed distributions. In this case, the normalizing constants can be

chosen as an = U (n) = Q (1� 1=n) and bn = 0. Hence

a�1n Xn;n
d! � as n!1:

Proof. See Embrechts et al [47, Theorem 3.3.7, page 131].

Theorem 1.16 (Caracterization of D (	)).
The df F 2 D (	),  < 0 i¤ xF < +1 and

�F
�
xF � x�1

�
= x�L (x) ; (1.40)

for some slowly varying function L. In this case, the normalizing constants can

be chosen as an = xF � U (n) = xF �Q (1� 1=n) and bn = xF . Hence

a�1n (Xn;n � xF )
d! 	 as n!1:

The proof of Theorem 1.16 is similar to that of the preceding theorem, see Em-

brechts et al [47, Theorem 3.3.12] for the reciprocal one.

The uniform, beta, inverse of Pareto belong to the domain of attraction ofWeibull.

The Gumbel�s domain of attraction is more di¢ cult to treat, since there is no dir-

ect linkage between the tail and the regular variation notion such as the domains

of attraction of Fréchet and Weibull. We will �nd the extensions of the regu-

lar variation that take into account a complete characterization of D (	). The
Gumbel class contains the exponential, normal, lognormal, gamma and classical

Weibull distributions.

Doctorat Thesis



Chapter 1. Extreme Values 24

De�nition 1.12 (von Mises function).

The df F is called a von Mises function with auxiliary function a if there exists

some z < xF such that

�F (x) := c exp

�
�
Z x

z

1

a (t)
dt

�
; z < x < xF ; (1.41)

where c > 0 is some positive constant, and a is a positive absolutely continuous

function (with respect to Lebesgue measure) with density �a satisfying

lim
x!xF

�a (x) = 0:

As an example of the von Mises function, the exponential distribution function

with parameter �, �F (x) = e��x, the auxiliary function is a (x) = 1=�:

Proposition 1.10 (von Mises function�s properties).

Let F be a von Mises function with auxiliary function a. Then

(a) F is absolutely continuous on (z; xF ) with positive pdf f . The auxiliary func-

tion can be chosen as a (x) = �F (x) =f (x) :

(b) If xF =1, then �F 2 R�1 and

lim
x!xF

xf (x)
�F (x)

=1: (1.42)

(c) If xF <1, then �F (xF � x�1) 2 R�1 and

lim
x!xF

(xF � x) f (x)
�F (x)

=1: (1.43)

Theorem 1.17 (von Mises Conditions).

Let F be an absolutely continuous df with density f

(a) If

lim
x!1

xf (x)
�F (x)

=  > 0; (1.44)

then F 2 D (�)

(b) Assume that the density function f is positive on some �nite interval (z; xF ),

with xF <1. If
lim
x!x�F

(xF � x) f (x)
�F (x)

=  > 0; (1.45)

then F 2 D (	).
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(c) Let F be a df with right endpoint xF � 1, such that for z < xF , F has the

representation

�F (x) = c (x) exp

�
�
Z x

z

g (t)

a (t)
dt

�
; z < x < xF ; (1.46)

where g and c are some positive functions, such that c (x)! c > 0, g (x)!
1 as x ! xF , and a (x) is a positive, absolutely continuous function (with

respect to Lebesgue measure) with density �a having lim
x!xF

�a (x) = 0, then

F 2 D (�) : In this case, we can choose bn = Q (1� 1=n) and an = a (bn)

as normalizing constants. A possible choice for a is

a (x) =

Z xF

x

�F (t)
�F (x)

dt; x < xF : (1.47)

The function a (x) is usually called mean-excess function, de�ned below as

(1.49).

The proof of the last result can be found in [104, Proposition 1.4 and Corollory

1.7].

1.3.4 GPD Approximation

Let X1; X2; :::be a sequence of iid rv�s, having marginal df F . Modeling only

block maxima can be a wasteful approach to extreme value analysis if one block

happens to contain more extreme events than another. Let u be a real "su¢ ciently

large" and less than the end point (u < xF ), called the threshold. It is natural to

regard as extreme events those of the Xi that exceed some high threshold u. The

second result of the EVT, introduced by de Haan (1993) [56], involves estimating

the conditional distribution of the excess over a given threshold. The method of

excesses is based on an approximation of excesses distribution over the threshold

u of the real rv X, i.e. the conditional distribution of the positive real random

variable X � u given that X > u.

De�nition 1.13 (Distribution and mean of excess).

Let X be a random variable with a distribution function F . The distribution of

excess over the threshold (u < xF ) is de�ned as

Fu (y) := P (X � u � y jX > u) = 1�
�F (u+ y)
�F (u)

; 0 < y < xF � u; (1.48)
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and the corresponding mean

e (u) := E (X � u jX > u) ; u < xF ; (1.49)

which is also expressed in the form

e (u) =
1
�F (u)

Z xF

u

�F (x) dx; u < xF :

Note that the function h (u) = F (u) e (u) is di¤erentiable and
h0 (u)

h (u)
= �1=e (u),

from where z < x < xF

�F (x) =
e (z)

e (x)
exp

�
�
Z x

z

du

e (u)

�
: (1.50)

The necessary and su¢ cient condition (proposition 1.9), so that F 2 D (H),

admits a probabilistic interpretation since

�F (t+ xb (t))
�F (t)

= P

�
X � t

b (t)
> x jX > t

�
= 1� Fu (b (u)x) ; (1.51)

for some positive function b. Therefore

lim
t!xF

P

�
X � t

b (t)
> x jX > t

�
=

(
(1 + x)�1= if  6= 0;
exp (�x) if  = 0;

(1.52)

For any x, with 1 + x > 0. This limit motivates the de�nition of the essential

distribution to the modeling of excesses. Once the threshold is estimated, the

conditional distribution Fu is approximated by a Generalized Pareto Distribution

(GPD).

De�nition 1.14 (Standard GPD).

The standard Generalized Pareto Distribution is de�ned, for  2 R, by

G (x) :=

(
1� (1 + x)�1= if  6= 0;
1� exp (�x) if  = 0;

(1.53)

where x 2 R+ if  � 0, and x 2 [0;�1=[ if  < 0:

The standard GPD can be extended to a more general family, by replacing the

argument x by (x� �) =�, where � 2 R and � > 0 are respectively the location
and scale parameters. The standard GPD corresponds to the case � = 0 and

� = 1. The GPD with null location parameter and arbitrary scale parameter

� > 0 plays an important role in statistical analysis of extreme events, this

speci�c family is de�ned as follows.
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De�nition 1.15 (Generalized Pareto Distribution).

The distribution function of the GPD is given by

G;� (x) =

8<: 1�
�
1 +

x

�

��1=
if  6= 0;

1� exp (�x=�) if  = 0;
(1.54)

where

x 2 D (; �) =
(
[0;1) if  � 0;
[0;��=] if  < 0:

In the �gure below, we give a visual inspection of the form of the GPD for di¤erent

values of .

Figure 1.2. Density and Distribution of Generalized Pareto Distribution for

di¤erent values of .

Theorem 1.18 (GPD Properties).

(a) Assume that X is a rv having generalized Pareto distribution with parameters

 2 R and � > 0. Then EX < 1 i¤  < 1. In this case, the mean excess

function is linear. More precisely, for u < xF

e (u) =
� + u

1� 
; � + u > 0:

If  < 1=r with r 2 N, then

EXr =
r� (�1 � r)

r+1� (1 + �1)
r!;
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where � (:) stands for the gamma function, � (t) :=

+1Z
0

xt�1e�xdx; t � 0:

(b) Assume that N is a rv having Poisson distribution of parameter � > 0

(N � P (�)) independent of an iid sequence (Xn)n� having a GPD with

parameter  2 R and � > 0. Then

P (MN � x) = exp

�
��
�
1 + 

x

�

��1=�
= H;�; (x) ;

where Mn = max (X1; � � � ; XN), � = ��1 (� � 1) and  = ��:

For the proof of these properties, one can refer e.g. to the textbook of Embrechts

et al [47]

A famous limit result by Pickands [97] and Balkema and de Hann [6], captured

in the following theorem, show that the GPD is the natural limiting distribution

for excesses over a high threshold.

Theorem 1.19 ([97], [6]).

For every  2 R and some positive measurable function � (:)

lim
u!xF

sup
0<y<xF�u

��Fu (y)�G;�(u) (y)
�� = 0: (1.55)

i¤ F 2 D (H),  2 R:

Thus, for any distribution F belonging to the maximum domain of attraction of

an extreme value distribution, the excess distribution Fu converges uniformly to

generalized Pareto distribution as the threshold u is raised.

The proof of the Theorem1.19 must be found in Embrechts et al [47].

Exemple 1.1 (Standard exponential distribution).

If X1; X2; � � � is a sequence of independent standard exponential variables with
distribution F (x) = 1� e�x for x > 0. Then, by direct calculation

Fu (x) = 1�
e�(u+x)

e�u
= 1� e�x for x > 0:

This corresponds to  = 0 and � = 1 in (1.54).
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Exemple 1.2 (Standard Fréchet distribution).

If X1; X2; � � � is a sequence of independent standard Fréchet variables with distri-
bution F (x) = exp (�1=x) for x > 0. Hence

Fu (x) =
1� e�1=(u+x)

1� e�1=u
� 1� 1= (u+ x)

1=u
= 1�

�
1 +

x

u

��1
as u!1.

This corresponds to  = 1 and � (u) = u in (1.54).

Exemple 1.3 (Standard uniform distribution).

If X1; X2; � � � are a sequence of independent uniform U(0; 1) variables with dis-
tribution F (x) = x for 0 < x < 1. Then

Fu (x) =
1� (u+ x)

1� u
= 1�

�
1 +

�x
1� u

�
:

This corresponds to  = �1 and � (u) = 1� u in (1.54).
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E
stimating parameters constitutes an important task in extreme values the-

ory, since it is a starting point for statistical inference about extreme values

of a population. In particular, the extreme value index (EVI) or tail index, meas-

ures the right tail�s weight of the df F , allowing us to describe the behavior of

the extreme values of a population. With the estimated EVI, it is possible to

estimate other parameters of extreme events like the extreme quantile, the return

period and the probability of exceedance of a hight threshold. There are two

approaches : a parametric approach and a semi-parametric approach. The para-

metric approach for modeling extremes is based on the assumption that the data

series corresponds to a sample of iid rv�s according to one of the extremes distri-

butions. In this case standard estimation methods are applied for the parameters

estimation such as; The maximum likelihood (ML) method and the Probability

Weighted Moments (PWM) method. In practice, this approach is considered in

the case of the AM series (Gumbel 1958) [54]. The other approach, linked to

the notion of maximum domain of attractions discussed in section 1.3.3. Indeed,

estimation methods based on this approach aim to estimate only the EVI since

it is this parameter that determines the shape of the tail distribution. In the lit-

erature of EVT there are several semi-parametric techniques for estimating this

index. In this chapter we include the Pickands estimator, the Hill estimator, the

moment estimator, the kernel-type estimator and the QQ-estimator.

2.1 Parameters Estimation Procedures of the GEV Dis-

tribution

Again let us consider the GEV distribution of the of maximum whose analytical

expression is given by the following system

H� (x) :=

8>>><>>>:
exp

(
�
�
1 + 

x� �

�

��1=)
if  6= 0; 1 + x� �

�
> 0;

exp

�
� exp�

�
x� �

�

��
if  = 0; x 2 R;

(2.1)

where � := (; �; �) 2 	 � R2 � R+:

The probability density function of the GEV is obtained by taking the derivative
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of the function H� (x) with respect to x

h� (x) =

8>><>>:
1

�

�
1 + 

�
x� �

�

���1=�1
H� (x) if  6= 0; 1 + x� �

�
> 0;

1

�
exp

�
�x� �

�
� exp

�
�x� �

�

��
if  = 0; x 2 R:

(2.2)

2.1.1 Parametric Approach

Several estimation methods for the GEV distribution parameters are available in

the literature. In this section, we will focus on the most popular ; the Maximum

Likelihood (ML) method and the Probability Weighted Moments (PWM).

Maximum Likelihood (ML) method

The �rst method that remains the most popular and which under certain condi-

tions is the most e¤ective is the maximum likelihood (ML) method. It consists

in choosing � as an estimator of the value that maximizes the likelihood or the

log-likelihood function over an appropriate parameter space 	.

Under the assumption that (X1; X2; � � � ; Xn) are independent variables having

the GEV distribution, the likelihood function for the GEV parameters is

L (�;X1; � � � ; Xn) :=
nY
i=1

h� (Xi) 1If1+(Xi��)=�>0g: (2.3)

It is equivalent but often easier to mathematically process the log-likelihood func-

tion instead of the likelihood function itself. The log-likelihood function is given

by

l (�;X1; � � � ; Xn) := logL (�;X1; � � � ; Xn) : (2.4)

Therefore

l (�;X1; � � � ; Xn) =

nX
i=1

log h� (Xi) 1If1+(Xi��)=�>0g

= �n log � �
�
1


+ 1

� nX
i=1

log

�
1 + 

Xi � �

�

�

�
nX
i=1

�
1 + 

Xi � �

�

��1=
; (2.5)

Doctorat Thesis



Chapter 2. Estimation of Tail Index, High Quantiles and Risk Measures 34

which must be maximum, provided that 1 +  (Xi � �) =� > 0, for i = 1; � � � ; n.

The maximum likelihood estimator (ML) is then

�̂n = �̂n (X1; � � � ; Xn) := argmax
�2	

l (�;X1; � � � ; Xn) : (2.6)

In addition, if l (�;X1; � � � ; Xn) admits partial derivatives with respect to ; �

and � (resp.), then the ML estimator is often obtained by solving the following

equations

@l (�;X1; � � � ; Xn)

@�
= 0; � = (; �; �) : (2.7)

The case where  = 0 require separate treatment using the Gumbel limit of the

GEV distribution. This leads to the log-likelihood function

l (�;X1; � � � ; Xn) = �n log � �
nX
i=1

exp

�
�Xi � �

�

�
�

nX
i=1

Xi � �

�
: (2.8)

By di¤erentiating this function relative to the two parameters � and � (resp.),

we obtain the system of equations to be solved according to8>>><>>>:
n�

nX
i=1

exp

�
�Xi � �

�

�
= 0;

n+

nX
i=1

Xi � �

�

�
exp

�
�Xi � �

�

�
� 1
�
= 0:

(2.9)

However, there is no explicit analytical solution to these nonlinear maximization

equations. Thus, for any given dataset numerical procedures and optimization

algorithms are used to maximize the likelihood function. Then the calculation of

the estimators does not pose serious problems. On the other hand, nothing guar-

antees their regularities (asymptotically e¢ cient and normal estimators). Smith

[109] shows that it is enough that  > �1=2 so that the regularity conditions of
the ML estimator are ful�lled (for more details, see Castillo, Hadi, Balakrishnan,

Sarabia [21]).

Probability Weighted Moment Method (PWM)

The probability weighted moments (PWM) method is also very popular for �tting

the GEV distribution to the dataset. This method is a generalization of the

moments method, but with an increasing weight for tail observations [69]. In
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general, the PWM of a rv X with df F , presented by Greenwood, Landwehr,

Matalas and Wallis [51], are given by the following quantities

Mp;r;s := E [Xp fF (X)gr f1� F (X)gs] ; (2.10)

where p, r and s are real numbers. PWM are likely to be most useful when the

inverse of the distribution can be written in a closed form, so we can write

Mp;r;s =

1Z
0

fF gp F r f1� Fgs dF; (2.11)

and this is often the most convenient way of evaluating these moments. The

speci�c case of estimation by the PWM method, for the GEV distribution, is

studied intensively in Hosking, Wallis and wood [69]. In the case where  6= 0,
setting p = 1, r = 0; 1; 2; ::: and s = 0, they would render for the GEV distribution

M1;r;0 := E [X fF (X)gr] =
1Z
0

H � (y) y
rdy; (2.12)

where r 2 N and for 0 < y < 1;

H � (y) =

8<: �� �



�
1� (� log y)�

�
if  6= 0;

�� � log (� log y) if  = 0:
(2.13)

Therefore, the PWM for the GEV distribution become

M1;r;0 =
1

r + 1

�
�� �


[1� (r + 1) � (1� )]

�
; for  < 1: (2.14)

Let (X1; X2; : : : ; Xn) be a sample of n iid rv�s of GEV, with the associated order

statistics X1;n � X2;n � � � � � Xn;n. The PWM estimator of � is obtained

solving the following system of equations resulting from the equation (2.14), with

r = 0; 1; 2

M1;0;0 = �� �


(1� � (1� )) ; (2.15)

2M1;1;0 �M1;0;0 =
�


� (1� ) (2 � 1) ; (2.16)

3M1;2;0 �M1;0;0

2M1;1;0 �M1;0;0

=
3 � 1
2 � 1 : (2.17)
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After replacingM1;r;0 by its unbiased estimator (see Landwehr, Matalas and Wal-

lis [83]), given by

M̂1;r;0 :=
1

n

nX
j=1

 
rY
l=1

(j � l)

(n� l)

!
Xj;n; (2.18)

or by the consistent estimator which is asymptotically equivalent

~M1;r;0 :=
1

n

nX
j=1

�
j

n+ 1

�r
Xj;n: (2.19)

we obtain the PWM estimator, (̂; �̂; �̂). Note that to obtain ̂, the equation

(2.17) has to be solved numerically. Then, the equation (2.16) can be solved to

obtain �̂

�̂ =
̂
�
2M̂1;1;0 � M̂1;0;0

�
� (1� ̂) (2̂ � 1) : (2.20)

At the end, given ̂, �̂ can be obtained from equation (2.15)

�̂ = M̂1;0;0 +
�̂

̂
(1� � (1� ̂)) : (2.21)

For more details, see e.g. Beirlant et al [8] and Hosking et al (1985) [69].

2.1.2 Semi-Parametric Approach

The semi-parametric approach uses only the characterization of the maximum

domain of attraction of the GEV distribution. This approach does not assume

the knowledge of the whole distribution but only focus on the distribution tails

and the behaviour of extreme values. The case  > 0 has got more interest

because datasets in most real-life applications, exhibit heavy tails.

In this section, we present some di¤erent estimators of the EVI, all based on

the order statistics X1;n � X2;n � � � � � Xk;n, obtained from the initial series,

considering the k highest values, the idea is to have k ! 1 as n ! 1, but
without taking too many values of the sample, which leads to impose k=n ! 0

as n!1.

Incidentally, this implies that the question of the optimal choice of k will arise.

Indeed, it is essential to calculate these estimators on the tails of distribution.

Choosing a k that is too high creates the risk of taking values that are not extreme,

conversely, a sub-sample that is too small does not allow the estimators to reach

their level of stability. This sensitive point is discussed in section 2.3 below.
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Pickands�Estimator

The Pickands estimator was introduced in 1975 by Pickands in [97]. It is de�ned

by the statistics

̂Pk(n) :=
1

log 2
log

�
Xn�k(n)+1;n �Xn�2k(n)+1;n

Xn�2k(n)+1;n �Xn�4k(n)+1;n

�
: (2.22)

We shall give weak consistency and asymptotic properties of ̂Pk(n).

Theorem 2.1 (Weak Consistency of ̂Pk(n)).

Let (Xn)n�1 be a sequence of iid rv�s with df F 2 D (H) with  2 R. Then as
k (n)!1 and k (n) =n! 0

̂Pk(n)
p!  as n!1:

Proof.

One deduces from the theorem 1.14 (formula (1.38)) that for  2 R, we have with
the choice of t = 2s, x = 2 and y = 1=2;

lim
t!1

U (t)� U (t=2)

U (t=2)� U (t=4)
= 2:

Furthermore, by using the increasing of U which results from the increasing of

F , one obtains

lim
t!1

U (t)� U (tc1 (t))

U (tc1 (t))� U (tc2 (t))
= 2: (2.23)

as soon as lim
t!1

c1 (t) = 1=2 and lim
t!1

c2 (t) = 1=4. The basic idea now consists of

constructing an empirical estimators for U (t).

To that e¤ect, let (k (n))n�1 be a sequence of integers such that 0 � k (n) � n=4,

lim
n!1

k (n) =1 and lim
n!1

k (n)

n
= 0 (we write k for k(n)), let V1;n � � � � � Vn;n be

the order statistics from an iid sample with common standard Pareto df FV (x) =

1� x�1 for x � 1.

It is not di¢ cult to see that the sequences�
k

n
Vn�k+1;n

�
n�1

;

�
2k

n
Vn�2k+1;n

�
n�1

and
�
4k

n
Vn�4k+1;n

�
n�1

converge in probability to 1 as n ! 1. In particular, we have the following
convergences in probability

Vn�k+1;n !
n!1

1;
Vn�2k+1;n
Vn�k+1;n

!
n!1

1=2; and
Vn�4k+1;n
Vn�k+1;n

!
n!1

1=4:
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Combining this with 2.23, it is therefore deduced that the following convergence

takes place in probability

U (Vn�k+1;n)� U (Vn�2k+1;n)

U (Vn�2k+1;n)� U (Vn�4k+1;n)
!
n!1

2:

It remains to determine the distribution of (U (V1;n) ; � � � ; U (Vn;n)). Note that if
x � 1, then U (x) = F (FV (x)). So, we have

(U (V1;n) ; � � � ; U (Vn;n)) = (F (FV (V1;n)) ; � � � ; F (FV (Vn;n))) ;

One can deduce from the growth of F that (FV (V1;n)) ; : : : ; (FV (Vn;n)) has the

same distribution that the order statistics of n independent uniform rv�s over

[0; 1] . From the proposition 1.1 we can deduce that the random vector

F (FV (V1;n)) ; : : : ; F
 (FV (Vn;n))

has the same distribution that(X1;n; : : : ; Xn;n), the order statistics of a sample of

n independent rv�s with the df F . So the rv

U (Vn�k+1;n)� U (Vn�2k+1;n)

U (Vn�2k+1;n)� U (Vn�4k+1;n)
d
=

Xn�k+1;n �Xn�2k+1;n

Xn�2k+1;n �Xn�4k+1;n
:

Thus this quantity converges in distribution to 2 as n ! 1. Since the log-
arithmic function is continuous on R�+, we deduce that the Pickands�estimator
converges in distribution to . As  is constant, one also has the convergence in

probability.

Theorem 2.2 (Asymptotic properties of ̂Pk(n)).

Suppose that F 2 D (H),  2 R, k !1 and k=n! 0 as n!1:

(a) Strong consistency : If k= log log n!1 as n!1, then

̂Pk(n)
a:s:!  as n!1:

(b) Asymptotic normality : Suppose that U has a positive derivatives U 0and that

�t1�U 0 (t) (with either choice of sign) is �-varying at in�nity with auxiliary
function a.

If k (n) = o (n=g (n)) (n!1), where g (t) := t3�2 (U 0 (t) =a (t))2, then

p
k
�
̂Pk(n) � 

� d! N
�
0; �2

�
as n!1;
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where

�2 :=

�
2 (22+1 + 1)

f2 (2 � 1) log 2g2
:

We refer to Pickands [97] and Dekkers & de Haan (1989) [36] for proofs.

Figure 2.1. Pickands estimator, with a con�dence interval level of 95%, for the

EVI of the standard uniform distribution ( = �1) based on 100 samples of 3000
observations.

Hill�s Estimator

After the Pickands�estimator, Hill (1975) [65] introduced another estimator for

, but is restricted to the case of heavy tails df which belong to Fréchet maximum

domain of attraction. This most popular estimator is de�ned for  > 0 by the

statistics

̂Hk(n) :=
1

k (n)� 1

nX
i=n�k(n)+2

logXi;n � logXn�k(n)+1;n: (2.24)

Or still

̂Hk(n) :=
1

k (n)

k(n)X
i=1

logXn�i+1;n � logXn�k(n);n: (2.25)

Throughout this section, we assume that  > 0. In order to construct the Hill

estimator, let us start from a preliminary result on the slowly varying functions

Doctorat Thesis



Chapter 2. Estimation of Tail Index, High Quantiles and Risk Measures 40

Lemma 2.1.

Let L be a slowly varying function. So we have : for all � > 0, L (x) = � (x�) in
+1 and

1Z
x

t���1L (t) dt � 1

�
x��L (x) in +1:

Proof.

The proof is based on the representation formula (1.29). Let � > 0, there exists x0,

M > 0 such that for x � x0, we have r (x) � �=2 and c (x) exp

x0Z
z

r (u)

u
du � M .

One can deduce that for x � x0, we have

L (x) �M exp

xZ
x0

�

2u
du � �M

�
x

x0

��=2
:

We obtain L (x) = � (x�) in +1.

Let u � 1. The function hx (u) =
�
L (ux)

L (x)
� 1
�
u���1 is increased in absolute

value by

0@1 + c(ux)

c(x)
exp

24uxZ
x

r(u)

u
du

351Au���1:

Using the convergences of c and r, one deduce that for x � x0, the function

jhx(s)j is increased by the function

g(u) = u���1

0@1 + A exp
24uxZ

x

r(u)

u
du

351A � �Au�
�
2
�1;

whereA and �A are constants that do not depend on u. The function g is integrable

on [1;1[, moreover we have lim
x!1

�
L(ux)

L(x)
� 1
�
u���1 = 0, since L is a slowly

varying function . By the dominated convergence theorem, we deduce that

lim
x!1

1Z
1

�
L(ux)

L(x)
� 1
�
u���1du = 0:

This implies that lim
x!1

1Z
1

L(ux)

L(x)
u���1du =

1

�
and by change of variable v = ux,

lim
x!1

1

x��L (x)

1Z
x

v���vL (v) dv =
1

�
:
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One obtain the last property of the lemma.

Lemma 2.2.

Let F 2 D (��) : We have

1
�F (t)

E
�
(logX � log t) 1I(X>t)

�
!
t!1

1

�
= :

Proof.

We can deduce from the de�nition of the slowly varying functions and the theorem

1.15 that F 2 D (��), where � = 1=, i¤ lim
t!1

�F (tx)
�F (t)

= x�� for all x > 0. Let us

suppose for simplicity that the df of X has the df f . By integrating by parts, we

have for t > 1

E [(logX � log t)]

=

+1Z
t

(log x� log t) f (x) dx =
�
� �F (x) (log x� log t)

�+1
t

+

1Z
t

�F (x)

x
dx:

In general, the left-hand side and the right one are equal.

The lemma 2.1 gives �F (x) = x��L (x) = � (x��+�) with �� + � < 0: The right-

hand side of the equation above reduces to

+1Z
t

�F (x)

x
dx =

+1Z
t

x���1L (x) dx:

We have from the second part of the lemma 2.1

+1Z
t

�F (x)

x
dx =

+1Z
t

x���1L (x) dx � 1

�
t��L (t) =

1

�
�F (t) :

Thus, we deduce the lemma.

It is now necessary to �nd an estimator of �F (t) = E
�
1IfX>tg

�
and an estimator

of E
�
(logX � log t) 1I(X>t)

�
:

The strong law of large numbers ensures that
1

n

nP
i=1

1I fX > tg converge a.s. to
�F (t).

Doctorat Thesis



Chapter 2. Estimation of Tail Index, High Quantiles and Risk Measures 42

It remains to replace t by a quantity which tends to +1 with n. As for the

Pickands�estimator, it is natural to replace t by Xn�k(n)+1;n, where the sequence

(k (n))n�1 satis�es the following assumptions :

k (n) ! +1, and k (n) =n ! 0 as n ! 1. This last condition ensures that,
from the proposition 1.9 and the theorem 1.15, that Xn�k(n)+1;n diverges a.s. to

in�nity.

To lighten the notation, let k (n) = k. If we assume that F is continuous, the

order statistic is strictly increasing a.s. and we have for �F (Xn�k+1;n)

�Fn (Xn�k+1;n) =
1

n

nX
i=1

1I fXi > Xn�k+1;ng =
k � 1
n

:

The strong law of large numbers ensures that
1

n

nP
i=1

(logXi � log t) 1IfXi>tg con-

verge a.s. to g (t) = E
�
(logX � log t) 1I(X>t)

�
. Replace again t by Xn�k+1;n, we

get as an estimate of g (Xn�k+1;n)

1

n

nX
i=1

(logXi � logXn�k+1;n) 1IfXi>Xn�k+1;ng

=
1

n

 
nX

i=n�k+2

logXi;n � (k � 1) logXn�k+1;n

!
:

Hence, we have
1

k � 1

nX
i=n�k+2

logXi;n � logXn�k+1;n;

which is a good candidate for the estimation of . It is customary to replace k�1
with k except in the last term, which does not change the asymptotic result.

Before stating the results on the asymptotic behavior of Hill�s estimator, we must

impose the second order conditions of regular varying function with a reminder of

the �rst order conditions of regular varying function for heavy-tailed distributions.

Proposition 2.1 (First order conditions of regular variation ).

The following assertions are equivalent :

(a) F heavy tailed

F 2 D
�
�1=

�
;  > 0: (2.26)
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(b) �F regularly varying at 1 with index �1=

lim
t!1

1� F (tx)

1� F (t)
= x�1=; x > 0: (2.27)

(c) Q (1� s) regularly varying at 0 with index �

lim
s!0

Q (1� sx)

Q (1� s)
= x�; x > 0: (2.28)

(d) U regularly varying at 1 with index 

lim
t!1

U (tx)

U (t)
= x; x > 0: (2.29)

In a semi-parametric approach, a �rst order condition is in general not su¢ cient

to study properties of tail parameters�estimators, in particular asymptotic nor-

mality. In that case a second order condition is required. The most common one

are the following.

De�nition 2.1 (Second order conditions of regular variation).

The tail of the df F , �F 2 D (��) ; � = 1=;  > 0, is said to satisfy the second

order condition of a regular variation at in�nity if one of the following (equivalent)

conditions is satis�ed :

(a) There exist some parameter � � 0, and a function A� satis�ed lim
t!1

A� (t) = 0

and not changing sign near 1, such that for all x > 0

lim
t!1

(1� F (tx) =1� F (t))� x��

A� (t)
= x��

x� � 1
�

: (2.30)

(b) There exist some parameter� � 0, and a function A�� satis�ed lim
t!1

A� (t) = 0

and not changing sign near 0, such that for all x > 0

lim
s!0

(Q (1� sx) =Q (1� s))� x�

A�� (t)
= x�

x� � 1
�

: (2.31)

(c) There exist some parameter � � 0, and a function A� satis�ed lim
t!1

A� (t) = 0

and not changing sign near 1, such that for all x > 0

lim
t!1

(U (tx) =U (t))� x

A (t)
= x

x� � 1
�

(2.32)
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if � = 0, x� � 1=� is interpreted as log x:

� is a second order parameter controlling the speed of convergence of the �rst

order condition.

A, A� and A�� are regularly varying functions with A� (t) = A
�
1= �F (t)

�
and

A�� (s) = A (1=s). Their role is to control the speed of convergence in (2.32),

(2.30) and (2.31) (resp.). The relations above may be reformulated respectively

lim
t!1

log (1� F (tx))� log (1� F (t)) + � log x

A� (t)
=
x� � 1
�

; (2.33)

lim
s!0

logQ (1� sx)� logQ (1� s) +  log x

A�� (t)
=
x� � 1
�

; (2.34)

and

lim
t!1

logU (tx)� logU (t)�  log x

A (t)
=
x� � 1
�

: (2.35)

For more details on this issue, we refer to [14] ; [55] ; [49] and [57].

As an example of heavy-tailed distributions satisfying the second-order hypo-

thesis, we have the so called Hall�s model.

Hall�s Class of Distribution Functions

A whole class of distribution functions where the index  is of positive, and who

is frequently used when one studies the extreme values distributions. This class

is given in [61] and it is mentioned by "Hall�s model". The df of this class are

de�ned to satisfy

�F (x) = cx�1=
�
1 + dx�= + o

�
x�=

��
as x!1; (2.36)

where  > 0; � � 0; c > 0 and d 2 Rn f0g. Therefore, satis�ed quantile and tail
quantile functions (resp.).

Q (1� s) = cs�
�
1 + dc�s�� + o

�
s��
��
as s!1; (2.37)

and

U (t) = ct (1 + dc�t� + o (t�)) as t!1:

A simple calculation shows that in the Hall�s model the functions A (t) and A� (t)

are equivalent to d�c�t� and d�ct�= as t ! 1, considering that the function
A�� (t) is equivalent to d�c�s�� as s!1:
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Theorem 2.3 (Asymptotic properties of ̂Hk(n)).

Suppose that F 2 D
�
H1=

�
with  > 0. Then as n!1, k !1 and k=n! 0

(a) Weak Consistency :

̂Hk(n)
p!  as n!1:

(b) Strong consistency : If k= log log n!1 as n!1, then

̂Hk(n)
a:s:!  as n!1:

(b) Asymptotic normality : Suppose that the df F satis�es the second order con-

dition (2.32). Then

p
k
�
̂Hk(n) � 

� d! N
�

�

1� �
; 2
�
as n!1;

provided k = k (n)
p
kA (n=k)! � as n!1.

This last result allows to calculate con�dence intervals for . For example, at a

con�dence level of (1� �)%, we have for � = 0

 2
"
̂Hk(n) � q1��=2

̂Hk(n)p
k (n)

; ̂Hk(n) + q1��=2
̂Hk(n)p
k (n)

#
;

where q1��=2 is the quantile of order (1� �=2) of a standard normal distribution.

It was Mason who proved the weak consistency in [86], the strong consistency was

proved in [35] by Deheuvels, Häusler and Mason, and the asymptotic normality

was established in several papers such as, e.g. [30] ; [33] and [58].

Moment Estimator

Dekkers, Einmahl and de Haan (1989) [36] have developed as an extension of the

Hill�s estimator to the moment estimator which is valid whatever the sign of the

index  not only for  > 0 and which is de�ned as follows

̂Mk(n) := H
(1)
k(n) + 1�

1

2

0B@1�
�
H
(1)
k(n)

�2
H
(2)
k(n)

1CA
�1

; (2.38)
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Figure 2.2. Hill estimator, with a con�dence interval level of 95%, for the

EVI of the standard Pareto distribution ( = 1) based on 100 samples of 3000

observations.

where

H
(r)
k(n) :=

1

k (n)

k(n)X
i=1

�
logXn�i+1;n � logXn�k(n);n

�r
; r = 1; 2: (2.39)

As the moment estimator is an extension of the Hill estimator, it satis�es the

asymptotic proprieties as well. The weak and strong consistency of this estimator

was proved by its creators Dekkers et al (1989) [36].
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Theorem 2.4 (Asymptotic properties of ̂Mk(n)).

Suppose that F 2 D (H),  2 R, k !1 and k=n! 0 as n!1:

(a) Weak consistency :

̂Mk(n)
P!  as n!1:

(b) Strong consistency :

̂Mk(n)
a:s:!  as n!1:

(c) Asymptotic normality : (see Theorem 3.1 and corollary 3.2 of [36])

p
k
�
̂Mk(n) � 

� d! N
�
0; �2

�
as n!1,

where

�2 :=

8<: 1 + 2;  � 0;

(1 + 2) (1� 2)
�
4� 81� 2

1� 3 +
(5� 11) (1� 2)
(1� 3) (1� 4)

�
;  < 0:

Figure 2.3. Estimator of the Moments, with a con�dence interval level of 95%,

for the EVI of the Gumbel distribution ( = 0) based on 100 samples of 3000

observations.
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Kernel Type Estimator

In 1985, Deuhevels, Csörgo and Mason [29] introduced a kernel-type estimator,

de�ned as follows

̂CDMn;h :=

 
n�1X
i=1

i

nh
K

�
i

nh

�
(logXn�i+1;n � logXn�i;n)

! Z 1=h

0

K (u) du

!�1
;

(2.40)

where h > 0 is called the smoothing parameter (or window) and fK (u) : u � 0g
is a kernel function satisfying the following conditions

(CK1) K (u) � 0 for u 2 (0;1) ;

(CK2) K non-increasing and continues right on (0;1) ;

(CK3)

Z 1
0

K (u) du = 1;

(CK4)

Z 1
0

u�1=2K (u) du <1:

Under these conditions, the authors in [29] proved the consistency and the asymp-

totic normality of this estimator.

According to the choice of the kernel K and the smoothing parameter h, di¤erent

estimators can result, the best known being the Hill estimator ̂Hk(n), corresponding

to the particular case, K (u) = 1I(0;1) and h = k=n.

This class of estimators is valid only for  > 0. A more general class of kernel

estimators for  2 R is given by Groeneboom, Lopuhaä and de Wolf (2003)

(GLW) [52]

̂GLWn;h := ̂
(pos)
n;h � 1 +

q̂
(2)
n;h

q̂
(1)
n;h

; (2.41)
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where

̂
(pos)
n;h : =

n�1X
i=1

i

n
Kh

�
i

n

�
(logXn�i+1;n � logXn�i;n) ; (2.42)

q̂
(1)
n;h : =

n�1X
i=1

�
i

n

��
Kh

�
i

n

�
(logXn�i+1;n � logXn�i;n) ; (2.43)

q̂
(2)
n;h : =

n�1X
i=1

d

du

�
u�+1Kh (u)

�
u=i=n

(logXn�i+1;n � logXn�i;n) ; (2.44)

with Kh (u) = K (u=h)h�1 and � > 0. Here, the kernel function K satisfying the

following conditions

(CK1) K (u) = 0 for x =2 [0; 1) and K (u) � 0 for x 2 [0; 1) ;

(CK2) K is twice di¤erentiable on [0; 1[ ;

(CK3) K (1) = �K (1) = 0;

(CK4)

Z 1

0

K (u) du = 1;

(CK5) For everything � > 1=2,
Z 1

0

u��1K (u) du 6= 0:

Note that the �rst term of (2.41) is the kernel type estimator (almost surely)

̂CDMn;h . This estimator
�
̂GLWn;h

�
is based on von Mises conditions

lim
t!xF

d

dt

�
�F (t) =F 0 (t)

�
= ; (2.45)

where xF := sup fx : F (x) < 1g � 1 is the set of upper limit points of F . The

consistency of the estimator ̂GLWn;h is given by the following theorem (see Theorem

3.1 in [52]).

Theorem 2.5 (Weak consistency of ̂GLWn;h ).

Suppose that F 2 D (H),  2 R. Let us �x � > 0 arbitrary, and either the

kernel K satis�es the conditions (CK1)-(CK5). If h = hn; h # 0 and nh ! 1
as n!1, then

̂GLWn;h
P!  as n!1:
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Suppose that Q is di¤erentiable, let us recall (2.45), it is convenient to write

� (s) := �s d
ds
logQ (1� s) ; 0 < s < 1: (2.46)

To obtain the asymptotic normality of this estimator, we require the following

additional assumptions on the distribution F

(CP1) If  � 0, then � (s)!  as s # 0;

(CP2) If  < 0, for a constant c > 0; s� (s)! �c as s # 0;

(CP3) If  = 0, for all s > 0, � (hs) =� (h)! 1 as h # 0.

Consider the deterministic equivalent of (GLW )
n;h


(GLW )
h := 

(CDM)
h � 1 + q

(2)
h

q
(1)
h

; (2.47)

with


(CDM)
h :=

1R
0

logQ (1� hs) d (sK (s)) ; (2.48)

and

q
(i)
h := h��1

1Z
0

logQ (1� hs) dK(i) (s) ; i = 1; 2; (2.49)

where

K(1) (s) := s�K (s) and K(2) (s) := d
�
s�+1K (s)

�
=ds: (2.50)

In the following, we use the following notation

x _ y := max (x; y) and x ^ y := min (x; y) ; for all (x; y) 2 R2:

Moreover, for  2 R, we put

+ :=  _ 0 and � :=  ^ 0:

For any function K satisfying the conditions (CK2),
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~K (s) : =

1Z
s

t�1d (tK (t)) ; s 2 (0; 1] ; (2.51)

~K(i) (s) : =

1Z
s

t�1�(^0)dK(i) (t) ; s 2 (0; 1] ; i = 1; 2; (2.52)

and

�K (s) := + ~K (s) + a1 ~K
(2) (s)� a2 ~K

(1) (s) ; s 2 (0; 1] ; (2.53)

where

a1 :=

0@ 1Z
0

t�1�(^0)K(1) (t) dt

1A�1 and a2 =: (1 + ( ^ 0)) a1:
The asymptotic normality of ̂GLWn;h is given by the following Theorem.

Theorem 2.6 (Asymptotic normality of ̂GLWn;h ).

Suppose that F 2 D (H) for  2 R, and assume that (CP1)�(CP3) are satis�ed.
Let us �x � > 1=2 arbitrary, and let K be a kernel satisfying the conditions

(CK1) � (CK5). If h = hn; h # 0 and (nh)�� log n = O
�
(nh)�1=2

�
as n ! 1,

we have

(nh)1=2
�
̂GLWn;h � GLWh

� d! N
�
0; �2

�
�K
��
as n!1;

with

�2
�
�K
�
=

1R
0

�
�K (s)

�2
ds: (2.54)

Let S be the set of Strassen (see Strassen [111]) which consists of any absolutely
continuous functions f de�ned on [0; 1] such that

f (0) = 0 and

1Z
0

(f 0 (s))
2
ds � 1;

where f 0 is the derivative of f in the sense of Lebesgue. The following notation

is used hereafter

ln := log log (max (n; 3)) ; n = 1; 2; � � � (2.55)
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For the description of the almost sure behavior of the estimator ̂GLWn;h we �rst

give the properties of the statistics q̂(i)n;h; i = 1; 2, then the estimator ̂CDMn;h (for

more details, see Necir [94]).

Theorem 2.7.

Suppose that F 2 D (H) for  2 R, and assume that (CP1)�(CP3) are satis�ed.
Let us �x � > 1=2 arbitrary, and let K be a kernel satisfying the conditions

(CK1) � (CK5). If h = hn; h # 0 and nh=ln ! 1 as n ! 1, with probability
1, the sequences n

(nh)1=2 h1��l�1=2n

h
q̂
(i)
n;h � q

(i)
h

io
n�1

; i = 1; 2

are relatively compact on R. The sets corresponding to the endpoints are equal to

�
�
K(i)

�
:=

8<:21=2+
1Z
0

s�1�
�
f (s) dK(i) (s) ; f 2 S

9=; ; i = 1; 2; (2.56)

where K(i) (:), i = 1; 2 is that in (2.50).

The following corollary gives a functional law of the iterated logarithm for q̂(i)n;h; i =

1; 2:

Corollary 2.1 (Functional law of the iterated logarithm for the statistics q̂(i)n;h).

Under the assumptions of Theorem 2.7, with probability 1

lim sup
n!1

� (nh)1=2 h1��l�1=2n

h
q̂
(i)
n;h � q

(i)
h

i
= 21=2�

�
K(i)

�
; i = 1; 2;

where

�
�
�
K(i)

��2
:=
�
+
�2 1Z

0

1Z
0

min (s; t) s�1�
�
t�1�

�
dK(i) (s) dK(i) (t) : (2.57)

The following corollary gives the almost sure behavior of the kernel estimator of

the extreme value index ̂CDMn;h

Corollary 2.2 (Strong consistency of ̂CDMn;h ).

Suppose that F 2 D (H) with  > 0, and that (CP1) � (CP3) are satis�ed.
Let K be a kernel satisfying conditions (CK1) ; (CK2) and (CK5). If h = hn

satis�es h # 0 and nh=ln !1 as n!1, with probability n!1

lim sup
n!1

� (nh)1=2 l�1=2n

�
̂CDMn;h � CDMh

�
= 21=2~� (K) ;
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where h
~� (K)

i2
:=
�
+
�2 1Z

0

1Z
0

min (s; t) s�1t�1d (sK (s)) : (2.58)

In addition

̂CDMn;h
a:s:! + as n!1:

Theorem 2.8 (Functional law of the iterated logarithm for the estimator ̂GLWn;h ).

Suppose that F 2 D (H) for  2 R, and assume that (CP1)�(CP3) are satis�ed.
Let us �x � > 1=2 arbitrary, and let K be a kernel satisfying the conditions

(CK1) � (CK5). If h = hn; h # 0 and nh=ln ! 1 as n ! 1, with probability
1, the sequence n

(nh)1=2 l�1=2n

�
̂GLWn;h � GLWh

�o
n�1

;

is relatively compact on. The corresponding set of endpoints is equal to



�
�K
�
:=

8<:21=2
1Z
0

�K (s) df (s) ; f 2 S

9=; ; (2.59)

where �K (s) is that in (2.53).

Theorem 2.9 (Strong consistency of ̂GLWn;h ).

Under the assumption of the theorem 2.8, we have with probability 1

lim sup�
n!1

(nh)1=2 l�1=2n

�
̂GLWn;h � GLWh

�
= 21=2�

�
�K
�
;

where �
�
�K
�
is that in (2.54). Furthermore

̂GLWn;h
a:s:!  as n!1:

2.2 POT Model Estimation Procedure

Let (X1; X2; � � � ; Xn) be the original random sample of the rvX with df F . Given

a value of the threshold u, let Nu be the number of exceedance of this sample. We

get then, a sample of Nu excesses, denoted by Yj = Xi�u jXi > u for i = 1; � � �n
and j = 1; � � � ; Nu. Suppose that the excess are iid with the GPD function. The

density function g;� of G;� (x) is then

g;� (x) :=

8<:
1

�

�
1 + 

x

�

��1=�1
if  6= 0

e�x=� if  = 0
; � > 0: (2.60)
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In this Section, the parametric estimation of the GPD parameters  and � will

be also performed by both two methods : the Maximum Likelihood Estimation

(ML) and the Probability Weighted Moments (PWM).

2.2.1 Maximum Likelihood Method (ML)

For  6= 0, the log-likelihood function, for a given random sample (y1; � � � ; yNu)
with GPD, can be obtained by

l;� (y1; � � � ; yNu) := �Nu log � �
�
1


+ 1

� NuX
i=1

log
�
1 +



�
yi

�
; (2.61)

where 1 + 
�
yi > 0; i = 1; � � � ; Nu.

For  = 0, the log-likelihood function reduce to the following expression

l0;� (y1; � � � ; yNu) := �Nu log � �
1

�

NuX
i=1

yi; (2.62)

Taking partial derivatives of the function (2.61) with respect to  and � (resp.)

the ML estimators
�
̂Nu ; �̂Nu

�
follows then8>><>>:
1

Nu

NuP
i=1

log
�
1 + ̂

yi
�̂

�
= ̂;

1

Nu

NuP
i=1

yi=�̂

1 + ̂yi=�̂
=

1

1 + ̂
;

(2.63)

This method has the advantage of having good asymptotic properties, but has

the disadvantage of proposing non-explicit estimators, a solution of a system of

two equations with two unknowns. The latter, however, is solved by numerical

algorithms.

Smith [110] shows the asymptotic normality of the ML estimators, provided  >

�1=2. Speci�cally we have

p
Nu

 
̂Nu � 

�̂Nu=�Nu � 1

!
d! N2

 
0; (1 + )

 
1 +  �1
�1 2

!!
as Nu !1;

with N2 (�;
P
) stands to the bivariate normal distribution with mean vector

� and covariance matrix
P
. With this result, con�dence intervals for the ML

estimators are easily constructed.
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2.2.2 Probability Weighted Moment Method (PWM)

Similarly to the estimation of the GEV distribution (see section 2.1.1), Hosking

and Wallis [67] also suggest the use of PWM estimators for GPD. Recalling the

de�nition of PWM estimators in 2.10, we consider for the GPD, Mp;r;s, with

p = 1; r = 0; s 2 N, yielding

M1;0;s := E
�
X �Gs

;� (X)
�
=

�

(s+ 1) (s+ 1� )
for  < 1; (2.64)

where X is a rv with df G;�. For s = 0; 1, we obtain

 = 2� M1;0;0

M1;0;0 � 2M1;0;1

and � =
2M1;0;0M1;0;1

M1;0;0 � 2M1;0;1

:

As for the case of a GEV distribution, we can replace M1;0;s, for s = 0; 1, by its

empirical estimators

M̂1;0;s :=
1

Nu

NuX
j=1

 
sY
l=1

(Nu � j � l + 1)

(Nu � l)

!
Yj;n; (2.65)

yields the PWM estimators ̂ and �̂ of the GPD parameters.

2.2.3 Estimating Distribution Tails

Once the GPD parameters are estimated by one of the above methods. Such a

formulation is given by the following equality

�F (x) = �Fu (x� u) �F (u) ; u < x < xF : (2.66)

In order to obtain an estimate for the tail �F (x), the estimators of the conditional

tail �Fu (x� u) and �F (u) are needed. After, we compute the estimates of the

GPD parameters and by virtue of (1.48), the conditional tail �Fu of F can be

estimated by

b�F u (x� u) := �Ĝu;�̂u (x� u) =

�
1 + ̂u

x� u

�̂u

��1=̂u
; u < x < xF ; (2.67)

as well as �F (u) is estimated by the empirical probability of exceedance

b�F (u) := �Fn (u) =
1

n

nX
i=1

1IfX>ug =
Nu

n
; u < xF : (2.68)

Putting all this together, the distribution tail estimator is therefore

b�F (x) := Nu

n

�
1 + ̂u

x� u

�̂u

��1=̂u
; u < x < xF : (2.69)
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2.3 Optimal Sample Fraction Selection

The results concerning the estimators of the EVI stated above are asymptotic,

they are obtained when k = k(n)!1 and k=n! 0, as n �!1 (i.e. k must be

large enough, but not too large : it must increase moderately as the sample size

increases). An important issue in semi-parametric approaches is the consideration

of k, which represents on the one hand the quantity of data which one extracts

from a sample of size n for the estimation of the EVI and on the other hand the

value of the threshold u from which one can use the estimator (2.94). In practice,

the choice of k (n) is crucial for the semi-parametric estimators to have desirable

properties.

For a sample of given size n, if k is su¢ ciently high, the number of order statistics

used increases, allowing a decrease of the estimators�variance but resulting in a

larger bias. On the other hand, if k is su¢ ciently low, we stay close to the

sample maximum and few order statistics will be used, resulting in estimators

with large variances. It is therefore necessary to make a compromise between

bias and variance to obtain the optimal value kopt of k (and in an equivalent way

the optimal value uopt of u). Several methods have been proposed, we present in

this section most of them.

2.3.1 Graphical Method

One of the most used methods in practice is the Hill plot. This is a heuristic

approach. Given a sample of size n, we plot the Hill estimator for di¤erent

choices of k, i.e. the graph��
k; ̂Hk(n)

�
: k = 2; � � � ; n

	
; (2.70)

and retains the value kopt that correspond to a reasonable horizontal plot, is

considered for an elective value of the estimator ̂Hk(n).

2.3.2 Minimization of the Asymptotic Mean Square Error

An important criterion, very popular among statisticians and used in most of

the articles, is choosing k in order to minimize the Asymptotic Mean Squared

Error (AMSE). However, this criterion is mainly dependent on the second order
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assumptions about the underlying df F . The value kopt can be determined when

the analytical form of F is known (or estimated by the bootstrapping methods).

For an arbitrary estimator of ̂k(n), we de�ne the AMSE as follows:

AMSE
�
̂k(n)

�
:= E1

�
(̂n � )2

�
= AV ar (̂n) + ABias2 (̂n) ; (2.71)

where E1 denotes the asymptotic mean value, AV ar and ABias stands for

Asymptotic Variance and Asymptotic Bias, resp. Then the idea is to choose

an optimal sequence kopt (n) which minimizes the AMSE. It is therefore to choose

kopt := argmin
k

AMSE
�
̂k(n)

�
;

2.3.3 Adaptive Procedures

In the literature, several adaptive methods were developed which we review brie�y

for the choice of the number of extreme order statistics of k, for special classes of

distributions.

Hall and Welsh Approach

Hall and Welsh [62] have shown that if the cdf F satis�es the Hall condition

2.36, then the asymptotic mean square error (AMSE) of the Hill estimator ̂Hk(n)
is minimal for

kopt �
 
c2� (1 + �)2

2d2�3

!1=(2�+1)
n2�=(2�+1) as n!1; (2.72)

However, this result can not be used directly to determine the optimal number of

order statistics because the parameters �; c and d are unknown. Hall and Welsh

[62] constructed a consistent estimator for kopt

k̂opt :=
h
�̂n2�̂=(2�̂+1)

i
; (2.73)

where

�̂ :=

�����log
�����
�
̂Hk(n) (t1)

��1 � �̂Hk(n) (s)��1�
̂Hk(n) (t2)

��1 � �̂Hk(n) (s)��1
����� = log

�
t1
t2

������ ; (2.74)

and

�̂ :=

�����(2�̂)�1=2
�
n

t1

��̂ �̂Hk(n) (t1)��1 � �̂Hk(n) (t3)��1
̂Hk(n) (s)

�����
2=(2�̂+1)

; (2.75)
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in the sense that
k̂opt
kopt

P! 1 as n ! 1, with ti = [n� i ] ; i = 1; 2 and s = [n�] for

some 0 < 2� (1� � 1) < � < 2�= (2�+ 1) < � 1 < � 2 < 1; [x] denotes here the

largest integer less than or equal to x.

Bootstrap Approach

A new resampling procedure to select the number of extreme order statistics,

through the mean squared error of the Hill estimator, is proposed. For this pur-

pose, the usual bootstrap does not work properly, especially because it seriously

underestimates bias. To circumvent this problem, Hall [60] proposes to use res-

amples of smaller size than the original one and linking the bootstrap estimates

for the optimal subsample fraction to kopt for the full sample. However, in order

to establish this link, Hall�s method requires that � = 1, which puts a serious

restriction on the tail behavior of the data.

Recently, the idea of subsample bootstrapping is taken up in a broader method

by Danielsson et al [31]. They used a combination of the subsample bootstrap-

ping estimates for the di¤erence of two estimators based on bootstrap samples of

di¤erent order to obtain a convergent estimator of the optimal number of order

statistics that requires no restrictions on �. Draisma, de Haan and Peng [41]

have developed a method based on a double bootstrap. They are concerned with

the more general case  2 R, and their results relate to Pickands and moments
estimators.

Sequential Approach

Drees and Kaufmann [42] present a sequential approach to select the optimal

sample fraction. From a law of the iterated logarithm, they construct "stopping

times" for the sequence of Hill estimators that are asymptotically equivalent to

a deterministic sequence

~k (r) := min

�
k 2 f2; � � � ; ng : max

2�i�k
i1=2

��̂Hk(n) (i)� ̂Hk(n) (k)
�� > r

�
; (2.76)

where r = rn constitute a sequence which is of higher order than (log log n)
1=2

and of lower order than n1=2. In comparison with other procedures, the in�uence

of a wrong speci�cation of the parameter � in this method does not seem to be a
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major problem. The sequential procedure give the best results even when setting

� = 1. The Drees and Kaufmann method can be described by the following

algorithm :

Step 1 : For r = 2:5�n0:25� ̂k(n) with an initial estimate ̂k(n) := ̂Hk(n) (2
p
n) :

Step 2 : Compute the "stopping time"

~k (r) := min

�
k 2 f1; � � � ; n� 1g

����max1�i�k

p
i
��̂Hk(n) (i)� ̂Hk(n) (k)

�� > r

�
:

Step 3 : Similarly, compute ~k
�
r�
�
for � = 0:7:

Step 4 : Calculate

k̂opt :=

266413 �2 �̂Hk(n)�2�
0B@ ~k

�
r�
��

~k (r)
��
1CA
1=(1��)

3775 ;
where [x] denotes the largest integer less than or equal to x. For more details on

this approach, we refer to [42], [95] et [8]

Cheng and Peng Approach

The asymptotic normality of Hill�s estimator is used to construct con�dence in-

tervals for the EVI  of a cdf F belonging to Hall�s class. Indeed, we have the

following proposition (see, e.g. Hall, 1982 [61])

Proposition 2.2.

Suppose that (2.36) is satis�ed and k !1, k=n! 0. Then

p
k
�
̂Hk(n) � 

� d! N
�
0; 2

�
as n!1; (2.77)

i¤ k = o
�
n�2�=(1�2�)

�
:

Thus, for 0 < � < 1 the one-sided and two-sided intervals of con�dence level

(1� �) for the EVI  are (resp.)

I1 (�) :=

 
0; ̂Hk(n) + z�

̂Hk(n)p
k

!
; (2.78)
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and

I2 (�) :=

 
̂Hk(n) � z�=2

̂Hk(n)p
k
; ̂Hk(n) + z�=2

̂Hk(n)p
k

!
; (2.79)

where z! (0 < ! < 1) is the (1� !)-quantile of the standard normal distribution,

de�ned by P (N (0; 1) � z!) = 1� !: It is shown in Cheng and Peng (2001) [25]

that, as k !1 and k=n! 0, the corresponding coverage probabilities are

P ( 2 I1 (�)) =

1� �� � (z�)

�
1 + 2z2�

3
p
k

� �dc�

(1� �)

p
k
�n
k

���
+ o

�
1p
k
+
p
k
�n
k

���
;
(2.80)

and

P ( 2 I2 (�)) = 1� �+ o

�
1p
k
+
p
k
�n
k

���
; (2.81)

with � (:) is the density of the standard normal distribution.

By minimizing the absolute coverage error for I1 (�), Cheng and Peng (2001) [25]

propose an optimal sample fraction

kopt :=

8>>>><>>>>:

 
(1 + 2z2�) (1� �)1=(1��)

�3dc�� (1� 2�)

!1=(1��)
n��=(1��) if d > 0;�

(1 + 2z2�) (1� �)

3dc��

�1=(1��)
n��=(1��) if d < 0;

(2.82)

Notice that it is readily veri�ed that k = o
�
n�2�=(1�2�)

�
in the proposition 2.2.

Since kopt depends on quantities characterizing the unknown cdf F , Cheng and

Peng [25] introduce a plug-in estimate

k̂opt :=

8>>>><>>>>:

 
1 + 2z2�

3�̂ (1� 2�̂)

!1=(1��̂)
n��̂=(1+�̂) if �̂ > 0;�

1 + 2z2�

�3�̂

�1=(1��̂)
n��̂=(1��̂) if �̂ < 0:

(2.83)

where

�̂ := � (log 2)�1 log

0B@
�������
H
(2)
k(n)

�
n=
�
2
p
log n

��
� 2

h
H
(1)
k(n)

�
n=
�
2
p
log n

��i2
H
(2)
k(n)

�
n=
p
log n

�
� 2

h
H
(1)
k(n)

�
n=
p
log n

�i2
�������
1CA ;

(2.84)
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and

�̂ := (1� �̂) (log n)��̂=2
H
(2)
k(n)

�
n=
p
log n

�
� 2

n
H
(1)
k(n)

�
n=
p
log n

�o2
�2�̂

h
H
(1)
k(n)

�
n=
p
log n

�i2 ; (2.85)

with H(r)
k(n) is given by equation (2.39).

Reiss and Thomas Approach

Reiss and Thomas [103, page 137] have proposed a heuristic method very simple

to implement. It is enough to choose automatically for kopt as the value k that

minimizes

1

k

X
i�k

i� ĵn (i)�med (̂n (1) ; � � � ̂n (k))j ; 0 � � � 1=2; (2.86)

where ̂n (i) is an estimator of  based on the i largest values of a sample of size

n and med (̂n (1) ; � � � ̂n (k)) denotes the median of ̂n (1) ; � � � ̂n (k).

Reiss and Thomas have also suggested minimizing the following modi�cation

1

k � 1
X
i<k

i� (̂n (i)� ̂n (k))
2 ; 0 � � � 1=2: (2.87)

For a discussion on the choice of �, one refers to paper of Neves and Fraga Alves

[95].

2.3.4 Threshold Selection

The choice of the threshold u is still an unsolved problem and in the literature of

the POT method, not so much attention has been given to this issue. It remains

equivalent to that of the number k The choice of such a threshold is subject

to a trade-o¤ between high values of u (too few exceedance), where the bias of

the estimators is smaller, and low values of u (too many exceedance), where the

variance is smaller.

For this purpose, Davison and Smith [34] suggest the use of the plot of the mean-

excess function (mef), called mef-plot, de�ned as follow.
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De�nition 2.2 (mef-plot).

The mef-plot is given by

f(u; en (u)) ; X1;n < u < Xn;ng ; (2.88)

where en (u) is the empirical estimator of the mef de�ned in (1.49)

en (u) :=
1

�Fn (u)

Z 1
u

�Fn (x) =
1

Nu

nX
i=1

(Xi � u) 1IfXi>ug; (2.89)

with Nu the number of observations exceeding u.

Therefore, we have to check the linearity of the plot above and choose u such

that en (x) is approximately linear for x � u. In other words, the threshold u is

chosen at the point to the right of which a rough linear pattern appears in the

plot. Thus, the slope of the plot leads to a quick estimate of : in particular,

an increasing plot indicates  > 0, a decreasing plot indicates  < 0, and one of

roughly constant slope indicates that  is near 0.

Another procedure consists in choosing the (k + 1)th largest observation Xn�k;n

as a threshold, the problem becomes a matter of which value of k to take as an

optimal choice.

2.4 Estimating High Quantiles

High quantile estimation plays an important role in the context of risk manage-

ment where it is crucial to evaluate adequately the risk of a great loss what occurs

very rarely.

For 0 < p < 1, the (1� p)-quantile denoted by xp, of the continuous strictly

increasing df F , is de�ned as the solution of equation

F (xp) = 1� p:

If p is �xed, then an estimator of xp is the empirical quantile X(n�[pn];n). The

problem is to estimate the (1� p)-quantile, when p is close to 0. As we use

asymptotic theory, p must depend on the sample size n (i.e. p := pn). So we are

looking for an estimator of xpn when npn has a limit c as n ! 1. We say that
the (1� pn)-quantile is within the sample if c > 1, and that the (1� pn)-quantile

is outside the data if c < 1. We refer to [89].
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2.4.1 GEV Distribution Based Estimators

Motivated by Theorem 1.13, the GEV provides a model for the distribution of ex-

tremes of a series of independent observations X1; X2; � � � . Data are blocked into
sequences of observations of equal length n, for some large value of n, generating

a series of block maxima, Mn;1; :::;Mn;m, say, to which the GEV distribution can

be �tted. Often the blocks are chosen to correspond to a time period of length one

year, in which case n is the number of observations in a year and the block maxima

are annual maxima. The extreme quantiles estimators
�
x̂p = H 

�̂
(1� p)

�
of the

annual maximal distribution (i.e. the (1� p)-quantiles) can be then obtained by
inverting the distribution function H� given by (2.1) and replacing � = (; �; �)

by �̂ = (̂; �̂; �̂) either obtained by the ML or PWM estimators. That

x̂p :=

8<: �̂� �̂

̂

�
1� (� log (1� p))�̂

�
if  6= 0;

�̂� �̂ log (� log (1� p)) if  = 0:
(2.90)

In the case where  < 0, the endpoint is �nite and it can be estimated by

x̂F := �̂� �̂

̂
: (2.91)

In common terminology, x̂p is the return level associated with the return period

T = 1=p, since to a reasonable degree of accuracy, the level x̂p is expected to be

exceeded on average once every 1=p years. More precisely, x̂p is exceeded by the

annual maximum in any particular year with probability p, for more details see

e.g. coles (2001) [28].

Case where F belongs to the Domain of Attraction of H�

Using relation (1.36) with large threshold u = anx+bn, we obtain a tail estimator

of the form b�F (u) = 1

n

 
1 + ̂

u� b̂n
ân

!�1=̂
; (2.92)

wherê, ân and b̂n are appropriate estimates (based on the k upper order statist-

ics) of the tail index , and the normalizing constants an and bn (resp.). In the

case where the extreme quantiles are within the data (i.e. p � 1=n). It can be

estimated by

x̂p := ân
(np)�̂ � 1

̂
+ b̂n: (2.93)
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The normalizing constants ân and b̂n have a very large variance, because they are

based on high quantiles of X. To solve this problem (Dekkers and de Haan [37];

Dekkers et al. [36]) propose to use the larger values k of the sample to estimate

the tail of the distribution. For x su¢ ciently large

b�F (u) = k

n

 
1 + ̂

u� b̂n=k
ân=k

!�1=̂
; (2.94)

We thus deduce the most typical case where the extreme quantiles are outside

the data (i.e. p < 1=n)

x̂p := ân=k
(np=k)�̂ � 1

̂
+ b̂n=k: (2.95)

When  < 0, the end point is �nite and it can be estimated by

x̂F := b̂n=k �
ân=k
̂
: (2.96)

The extreme quantile estimators associated to the semi parametric estimators

that we present are written in this form. It is therefore necessary to give estimates

for the normalizing constants an=k and bn=k:

The estimator of the (1� p)-quantile linked to Pickands�estimator is of the fol-

lowing form

x̂Pp := Xn�k+1;n +
(np=k)�̂

P
k(n) � 1

1� 2�̂
P
k(n)

(Xn�k+1;n �Xn�2k+1;n) : (2.97)

where ân=k =
̂Pk(n)

1�2
�̂P

k(n)
(Xn�k+1;n �Xn�2k+1;n) and b̂n=k = Xn�k+1;n. The asymp-

totic properties of this estimator are discussed in Dekkers & de Haan (1989) [37].

When  < 0, the endpoint is �nite. It can be estimated by

x̂PF := Xn�k+1;n +
(Xn�k+1;n �Xn�2k+1;n)

2�̂
P
k(n) � 1

: (2.98)

For the Fréchet class ( > 0), the classical Weissman type estimator of the (1� p)-

quantile takes on the following form

x̂Wp := Xn�k;n

�
k

np

�̂Hk(n)
; (2.99)

where ̂Hk(n) is the Hill�s estimator and b̂n=k = ân=k=̂
H
k(n) = Xn�k;n.
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The quantile of order (1� p) on the basis of the moment estimator is

x̂Mp := Xn�k;n +

�np
k

��̂Mk(n) � 1
̂Mk(n)

Xn�k;nM
(1)
k(n)

�
�
̂Mk(n)

� ; (2.100)

where M (1)
k(n) is equal to H

(1)
k(n) de�ned by (2.39) and

�
�
̂Mk(n)

�
:=

8<: 1;  � 0;
1

1� 
 < 0:

(2.101)

In that case ân=k =
Xn�k;nM

(1)
k(n)

�
�
̂Mk(n)

� and b̂n=k = Xn�k;n.

As  < 0, the endpoint is �nite and it can be estimated by

x̂MF := Xn�k;n +
�
1� 1=̂Mk(n)

�
Xn�k;nM

(1)
k(n): (2.102)

2.4.2 Estimators Based on the POT Models

For �xed threshold u, an estimator of quantiles xp > u is obtained by inverting

the expression of the tail estimate formula (2.69)

x̂p := u+
�̂u
̂u

 �
Nu

np

�̂u
� 1
!
; p <

Nu

n
; (2.103)

with �̂u and ̂u, the estimators of the parameters of the GPD and Nu the number

of excesses.

This expression can be found, e.g. in Davison and Smith (1990) [34] and Em-

brechts et al. (1997) [47]

The endpoint of the distribution, as  < 0, is also estimated by

x̂F := u� �̂u
̂u
: (2.104)

The threshold u is often chosen equal to one of the order statistics X1;n � X2;n �
� � � � Xn;n. If one chooses as a threshold u = Xn�k;n the (k + 1)th largest

observation, then Nu = k and the high order quantile estimator is rewritten as

follows

x̂(POT )p := Xn�k;n +
�̂(POT )

̂(POT )

 �
k

np

�̂(POT )
� 1
!
; p <

k

n
; (2.105)
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where ̂(POT ), �̂(POT ) are the resulting estimators of  and � (resp.).

The endpoint is therefore estimated by

x̂
(POT )
F := Xn�k;n +

�̂(POT )

̂(POT )
: (2.106)

2.5 Risk Measurement

Assessing the probability of rare and extreme events is an important issue in the

risk management of portfolios. Extreme value theory provides the solid funda-

mentals needed for the statistical modelling of such events and the computation

of extreme risk measures. These section is devoted to the theoretical description

of risk and the risk measures. We �rst present a theoretical framework within

which we de�ne the concept of coherence. We than refer to some risk measures

such as the Value-at-Risk, Expected Shortfall and the return level,etc.

Since 1997 the paper of Artzner et al [3] risk measurement, and hence risk meas-

ures, have gained enormously in interest under economist, bank regulators and

mathematicians, giving rise to a new theory. A good reference for the Risk theory

is the book of Denuit et al [38] and Kaas et al [75], see also [20].

2.5.1 De�nitions

De�nition 2.3 (Risk).

Risk is the future net worth of a position

At the beginning risk measurement was mainly focussed on the mathematical

properties which re�ect the underlying economical meaning, however in the last

years the statistical properties have become of increasing interest. Nowadays it

is obvious to all working with risk, be it in practice or theory, that the procedure

of risk measurement in fact involves two steps.

1) Estimating the loss distribution of the position.

2) Constructing a risk measure that summarizes the risk of the position.

The position�s loss distribution in practice is generally unknown, and therefore

must be estimated from data. The estimation is essentially done by backtesting.
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Recall that backtesting is the procedure of periodically comparing the forecasted

risk measure with realized values in the �nancial market. Each one of the steps

above should be regarded as equally important. Because risk measurement is of

great practical importance, risk measures should be formalized with the regula-

tions of the practical world in mind. For this reason risk measures are mostly

considered to be single valued. Taking a risk to be a single value can be problem-

atic however, for instance a single number does not give any information about

which risk within the position is problematic. But this is only the case when a

risk is found to be unacceptable, than the portfolio should be rebalanced. If on

the other hand the risk is found to be acceptable, these sort of problems do not

play any part. Thus in this setting taking a single valued risk measure is justi�ed.

Since risks are modelled as non-negative random variables rv�s, measuring risk is

equivalent to establishing a correspondence between the space of rv�s and non-

negative real numbers R+. The real number denoting a general risk measure
associated with the risk X will henceforth be denoted as � (X). Thus, a risk

measure is nothing but a functional that assigns a non-negative real number to a

risk.

It is essential to understand which aspect of the riskiness associated with the

uncertain outcome the risk measure attempts to quantify. No risk measure can

grasp the whole picture of the danger inherent in some real-life situation, but

each of them will focus on a particular aspect of the risk. There is a paral-

lel with mathematical statistics, where characteristics of distributions may have

quite di¤erent meanings and uses � for example, the mean to measure central

tendency, the variance to measure spread, the skewness to re�ect asymmetry and

the peakedness to measure the thickness of the tails.

In this section, we will concentrate on risk measures that measure upper tails of

distribution functions. We are now ready to state the de�nition of a risk measure.

De�nition 2.4 (Risk measure).

A risk measure is de�ned as a functional � mapping a risk X from the set of

random variables namely losses or payments, to the set of non-negative real num-

bers, possibly in�nite, representing the extra cash which has to be added to make

it acceptable.
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The idea is that � quanti�es the riskiness of X : large values of � (X) tell us that

the risk is dangerous. Speci�cally, if X is a possible loss of some portfolio over a

time horizon, we interpret � (X) as the amount of capital that should be added as

a bu¤er to this portfolio so that it becomes acceptable to an internal or external

risk controller. In such a case, � (X) is the risk capital of the portfolio. Such risk

measures are used for determining provisions and capital requirements in order

to avoid insolvency.

2.5.2 Premium Calculation Principles

Risk measures are in many respects akin to actuarial premium calculation prin-

ciples. For an insurance company exposed to a liability X, a premium calculation

principle � gives the minimum amount � (X) that the insurer must raise from the

insured in order that it is in the insurer�s interest to proceed with the contract.

Premium principles are thus prominent examples of possible risk measures. Their

characteristic is that the number resulting from their application to some insur-

ance riskX is a candidate for the premium associated with the contract providing

coverage against X.

Premium principles are the most common risk measures in actuarial science.

Although there is a consensus (at least if everyone agrees on the risk distribution)

about the net premium (which is the expected claim amount), there are many

ways to add a loading to it to get the gross premium. The safety loading added

to the expected claim cost by the company re�ects the danger associated to the

risk borne by the insurer. Premium calculation principles are thus closely related

to risk measures. Indeed, those principles have to express the insurer�s feelings

about the risk he bears. The premium for a less attractive risk should exceed the

premium for a more attractive risk. Therefore, a premium calculation principle

is a particular case of a risk measure.

Proprieties of Premium Calculation Principle

The risk measures have to satisfy certain axioms, such as those discussed in this

section. The choice of a premium principle depends heavily on the importance

attached to such properties. There is no premium principle that is uniformly

best.
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First, we present some notation that we use throughout this section. Let X denote
the set of non-negative rv�s on the probability space (
; F; P ) ; this our collection

of insurance-loss random variables, also called insurance risks. Let X; Y; Z;etc.

denote typical members of X . Finally, let � denote the premium principle or

function, from X to the set of non-negative real numbers.

1. Independence

� [X] depends only on the df of X, namely SX , in which

SX (t) = P f! 2 
 : X (!) > tg : (2.107)

That is, the premium depends only on the tail probabilities of X: This property

states that the premium depends only on the monetary loss of the insurable

event and the probability that a given monetary loss occurs, not the cause of the

monetary loss.

2. Risk loading

Loading for risk is desirable because one generally requires a premium rule to

charge at least the expected payout of the risk X, namely E (X), in exchange for
insuring the risk. Otherwise, the insurer will lose money on average.

� (X) � E (X) for all X 2 X : (2.108)

3. No unjusti�ed risk loading

If a risk X is identically equal to a constant c � 0 (almost everywhere), then

� (X) = c: (2.109)

In contrast to Property 2, if we know for certain (with probability 1) that the

insurance payout is c, then we have no reason to charge a risk loading because

there is no uncertainty as to the payout.

4. Maximal loss

� (X) � max (X) , for all X 2 X : (2.110)
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5. Translation invariance

� (X + a) = � (X) + a, for any X 2 X and for any a � 0: (2.111)

If we increase a risk X by a �xed amount a, then Property 5 states that the

premium for X + a should be the premium for X increased by that �xed amount

a. Otherwise, translation invariance suggests that adding safe capital to a �nan-

cial position, decreases the riskiness of the position by the same amount. This

property again suggests the idea of risk measure as capital requirement, as � (X)

represents the amount of money that, added to the �nancial position X, make it

marginally acceptable.

6. Positive homogeneity

� (�X) = �� (X) , for all X 2 X and all � � 0: (2.112)

Positive homogeneity implies that the risk of a payo¤ increases linearly with the

size of the investment. Simply states that increase the position size of a portfolio

will raise its risk proportionally. Thus, it re�ects the possible situation where no

netting or diversi�cation occurs. In particular, a government or an exchange does

not prevent many �rms or investors from all taking the same position. It also

implies the normalization property, that is � (0) = � (0Y ) = 0� (Y ) = 0, which is

usually considered a natural condition to require.

Together with the translation invariance and monotonicity requirements, normal-

ization allows propriety 3. Indeed, for a �xed capital X = c, then � (X) = � (c) =

� (0 + c) = � (0) + c = 0 + c = c:

Holding some safely invested capital is of course not risky and c is the maximal

amount of capital that can be withdrawn maintaining the position acceptable.

In most of the situations normalization is required even if positive homogeneity

does not hold.

7. Additivity

This Property is a stronger form of Property 6. One can use a similar no-arbitrage

argument to justify the additivity property

� (X + Y ) = � (X) + � (Y ) , for all X; Y 2 X : (2.113)
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8. Subadditivity

� (X + Y ) � � (X) + � (Y ) , for all X;Y 2 X : (2.114)

The subadditivity property requires that adding two positions together should

decrease the total risk. One example that is consistent with this logic is that, if

an individual wishes to take the risk X+Y , opening two accounts separately will

not help him save margin requirement of an exchange.

9. Superadditivity

� (X + Y ) � � (X) + � (Y ) , for all X;Y 2 X : (2.115)

Superadditivity might be a reasonable property of a premium principle if there

are surplus constraints that require that an insurer charge a greater risk load for

insuring larger risks.

10. Additivity for independent risks

� (X + Y ) = � (X) + � (Y ) ; (2.116)

for all X; Y 2 X such that X and Y are independent. Some actuaries might

feel that Property 7 is too strong and that the no-arbitrage argument only ap-

plies to risks that are independent. They, thereby, avoid the problem of surplus

constraints for dependent risks.

Next, we consider properties of premium rules that require that they preserve

common ordering of risks.

11. Additivity for comonotonic risks

� (X + Y ) = � (X) + � (Y ) ; (2.117)

for all X; Y 2 X such that X and Y are comonotonic (see comonotonicity).

Additivity for comonotonic risks is desirable because if one adopts subadditivity

as a general rule, then it is unreasonable to have � (X + Y ) < � (X) + � (Y )

because neither risk is a hedge against the other, that is, they move together. If

a premium principle is additive for comonotonic risks, then is it layer additive.

Note that Property 11 implies Property 6, if � additionally satis�es a continuity

condition.
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12. Monotonicity

If X and Y are two losses such that X � Y , then � (X) � � (Y )

13. Preserves �rst stochastic dominance (FSD) ordering

If SX (t) � SY (t) for all t � 0, then � (X) � � (Y ).

14. Preserves stop-loss (SL)ordering

If E (X � d)+ � E (Y � d)+ for all d � 0, then � (X) � � (Y )

Property 1, together with Property 12, imply Property 13. Also, if � preserves

SL ordering, then � preserves FSD ordering because stop-loss ordering is weaker.

These orderings are commonly used in actuarial science to order risks (partially)

because they represent the common ordering of groups of decision makers. Finally,

we present a technical property that is useful in characterizing certain premium

principles.

15. Continuity

Let X 2 X ; then, lim
a!0+

� (max (X � a; 0)) = � (X), and lim
a!1

� (min (X; a)) =

� (X) :

Concept of Coherence

Several authors have selected some of these conditions to form a set of require-

ments that any risk measure should satisfy. The �rst class of risk measures which

was introduced by Artzner et al [3] is the coherent risk measures. And was con-

structed to possess all mathematical properties to properly re�ect the economy.

And hence it takes the second step within the risk measurement procedure into

account. A risk measure is called coherent if it satis�es the following axioms.

De�nition 2.5 (Coherence).

A risk measure � that is translative, positive homogeneous, subadditive and mono-

tone is called coherent.

While the coherent risk measure provides a standard for constructing meaningful

measure of risks, it is not su¢ ciently restrictive to specify a unique risk measure.

Instead, it characterizes a large class of risk measure. Otherwise, It is worth
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mentioning that coherence is de�ned with respect to a set of axioms, and no set

is universally accepted. Modifying the set of axioms regarded as desirable leads

to other �coherent�risk measures.

2.5.3 Some premium principles

The following premium principles are frequently encountered. For more details,

we refer to Young (2004) [122] and Bühlmann (1970) [18].

a. Net Premium Principle

This premium principle does not load for risk. It is the �rst premium principle

that many actuaries learn. It is widely applied in the literature because actuar-

ies often assume that risk is essentially non-existent if the insurer sells enough

identically distributed and independent policies.

� (X) = E (X)

This premium also known as the equivalence principle; it is su¢ cient for a risk

neutral insurer only.

b. Expected Value Premium Principle (level �)

This premium principle builds on principle a, the Net Premium Principle, by

including a proportional risk load. It is almost always used in life insurance and

in risk theory. This principle is easy to understand and to explain to policyholders.

� (X) = (1 + �)E (X) ; � > 0:

c. Variance Premium Principle (level �)

The premium principle also builds on the Net Premium Principle by including a

risk load that is proportional to the variance of the risk. Bühlmann (1970) [18,

chapter 4] studied this premium principle in detail.

� (X) = E (X) + �V ar (X) ; � > 0:
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d. Standard Deviation Premium Principle (level �)

� (X) = E (X) + �
p
V ar (X); � > 0:

The loading is proportional to the standard deviation of X. The loss can be

written as

� (X)�X =
p
V ar (X)

 
�� X � E (X)p

V ar (X)

!
:

or the loss is equal to the loading parameter minus a rv with mean value 0 and

variance 1.

e. Exponential Premium Principle

This premium principle arises from the principle of equivalent utility when the

utility function is exponential.

� (X) =
1

�
log (E (exp (�X))) ; for some � > 0:

f. Esscher Premium Principle

� (X) =
E (X exp (�Z))
E (exp (�Z))

;

for some � > 0 and for some rv Z. Bühlmann (1980) [19] derived this premium

principle when he studied risk exchanges.

g. Principle of Equivalent Utility

� (X) solves the equation

u (w) = E (u (w �X + �)) ;

where u is an increasing, concave utility of wealth (of the insurer), and w is the

initial wealth (of the insurer).

h. Proportional Hazards Premium Principle

� (X) =

1Z
0

(SX (x))
� dx;

where � > 0 is called a risk index or distortion parameter. This parameter controls

the amount of the risk loading included in the premium for given riskiness of the

loss variable X. Wang (1996) [118] studied the many nice properties of this

premium principle.
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i. Distortion Risk Premium Principle

� (X) =

1Z
0

g (SX (x)) dx;

where g is an increasing function that maps [0; 1] into [0; 1]. The function g is

called a distortion and g(SX(x)) is called a distorted (tail) probability.

Distortion risk premium principle have their origin in Yaari�s (1987) [121] dual

theory of choice under risk that consists in measuring the risks by applying a

distortion function g on the df F . The net premium principle and proportional

hazards premium principle are a special case of distortion risk premium principle

with the distortions g given by g (s) = s and g (s) = s� (resp.). See Wang (1996)

[118] for other distortions.

2.5.4 Risk Measures

The essential technical tools to quantify risks are risk measures. Some of the most

frequent questions concerning risk management in application involve extreme

quantile estimation. This corresponds to the determination of the value a given

variable exceeds with a given (low) probability. A typical example of such tail

related risk measures is the Value-at-Risk (VaR) calculation. Other less frequently

used measures are the expected shortfall and the return level.

Value-at-Risk

The last decade has seen a growing interest in quantiles of probability distribu-

tions on the part of practitioners. Since quantiles have a simple interpretation in

terms of over- or undershoot probabilities they have found their way into current

risk management practice in the form of the concept of value-at-risk abbreviated

VaR. This concept was introduced to answer the following question: how much

can we expect to lose in one day, week, year, ... with a given probability? In

today�s �nancial world, VaR has become the benchmark risk measure: its import-

ance is unquestioned since regulators accept this model as the basis for setting

capital requirements for market risk exposure.

VaR risk measure was developed in the 1990�s as a response to �nancial disasters.

Although developed in the 1990�s, the methodology behind VaR is not new, it
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can be traced back to 1952 to the basic mean-variance framework of Markow-

itz. Moreover, the VaR principle was used in actuarial sciences long before it

was reinvented for investment banking. Although,within actuarial sciences the

more common phrase was the quantile risk measure as opposed to Value-at-Risk.

This risk measure has the advantage of being relatively easy to evaluate and to

understand. This made it very popular from the practitioner point. Informally,

VaR can be de�ned as the worst loss over a target horizon such that with a pre-

speci�ed probability that the actual loss will be higher. The formal mathematical

de�nition is the following :

De�nition 2.6 (Value-at-Risk).

Given a risk X and a probability level p 2 (0; 1), the corresponding VaR is a high
quantile of the distribution of risk, typically the 95th or 99th percentile. That is

V aRp := F �x (p) ; (2.118)

where F � is the generalized inverse of the df F of a certain risk X.

It is worth mentioning that VaR�s always exist and are expressed in the proper

unit of measure, namely in lost money. Since VaR is de�ned with the help of the

quantile function F , all their properties immediately apply to VaR. We will often

resort to the following equivalence relation, which holds for all

V aRp � x() p � Fx (x) (2.119)

VaR fails to be subadditive (except in some very special cases, such as when the

Xi are multivariate normal). Thus, in general, VaR has the surprising property

that the VaR of a sum may be higher than the sum of the VaR�s. In such a case,

diversi�cation will lead to more risk being reported. Consider two independent

Pareto risks of parameter 1; X and Y : Show that the inequality

V aRp (X) + V aRp (Y ) < V aRp (X + Y ) (2.120)

holds for any p; so that VaR cannot be subadditive in this simple case. A possible

harmful aspect of the lack of subadditivity is that a decentralized risk manage-

ment system may fail because VaR�s calculated for individual portfolios may not

be summed to produce an upper bound for the VaR of the combined portfolio.
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Tail Value-at-Risk

A single VaR at a predetermined level p does not give any information about

the thickness of the upper tail of the distribution function. This is a considerable

shortcoming since in practice a regulator is not only concerned with the frequency

of default, but also with the severity of default. Also shareholders and manage-

ment should be concerned with the question �how bad is bad?�when they want to

evaluate the risks at hand in a consistent way. Therefore, one often uses another

risk measure, which is called the tail value-at-risk (TVaR) and de�ned next.

De�nition 2.7 (Tail Value-at-Risk).

Given a risk X and a probability level p, the corresponding TVaR, is de�ned as

TV aRp =
1

1� p

1Z
p

V aR�d�; 0 < p < 1: (2.121)

We thus see that TV aRp can be viewed as the �arithmetic average�of the VaR�s

of X, from p on.

Conditional Tail Expectation

The conditional tail expectation (CTE) represents the conditional expected loss

given that the loss exceeds its VaR.

De�nition 2.8 (Conditional Tail Expectation).

For a riskX, the Conditional Tail Expectation (CTE) at probability level p 2 (0; 1)
is de�ned as

CTEp = E (X jX > V aRp ) : (2.122)

So the CTE is the �average loss in the worst 100(1�p)% cases�. Writing d = V aRp

we have a critical loss threshold corresponding to some con�dence level p, CTEp
provides a cushion against the mean

value of losses exceeding the critical threshold d.

Doctorat Thesis



Chapter 2. Estimation of Tail Index, High Quantiles and Risk Measures 78

Conditional VaR

An alternative to CTE is the conditional VaR (or CVaR). The CVaR is the

expected value of the losses exceeding VaR.

CV aRp = E (X � V aRp jX > V aRp ) (2.123)

= CTEp � V aRp

It is easy to see that CVaR is related to the mean-excess function through

CV aRp = eX (V aRp) : (2.124)

Therefore, evaluating the mef at quantiles yields CVaR.

Expected Shortfall

Artzner et al.(1997 [3],1999 [4]) show that the VaR has various theoretical de-

�ciencies as a measure of risk. They conclude that the VaR is not a coherent

measure of risk as it fails to be subadditive in general. On the other hand, VaR

gives only a lower limit of the losses that occur with a given frequency, but tell us

nothing about the potential size of the loss given that a loss exceeding this lower

bound has occurred. These authors propose the use of the so-called expected

shortfall or tail conditional expectation instead. The expected shortfall measures

the expected loss given that the loss l exceeds VaR. In particular, this risk meas-

ure gives some information about the size of the potential losses given that a loss

bigger than VaR has occurred. Expected shortfall is a coherent measure of risk

as de�ned by Artzner et al. (1999) [4]. Commonly speaking, the ES addresses

the important question: "given that we will have a bad day, how bad do we expect

it to be"?. Formally, the expected shortfall for risk X and high con�dence level

p is de�ned as follows:

De�nition 2.9 (Expected shortfall).

The ES of a loss X is the expected value of the losses in excess of the VaR. That

is

ESp := E
�
(X � V aRp)+

�
: (2.125)

where p is as in de�nition 2.6.

The ES is the stop-loss premium with retention V aRp.
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Return Level

De�nition 2.10 (Return level).

If H� is the distribution of the maximum observed over successive non overlapping

periods of equal length, the return level

Rm = Rm (l) := H � (1� 1=m) ;m � 1; (2.126)

is the expected level to be exceeded in one out of m periods of length l.

The return level can be used as a measure of the maximum loss of a portfolio, a

rather more conservative measure than the Value-at-Risk.

2.5.5 Relationships Between Risk Measures

The following relation holds between the �rst three risk measures de�ned above.

Proposition 2.3.

For any p 2 (0; 1), the following identities are valid :

TV aRp = V aRp +
1

1� p
ESp (2.127)

CTEp = V aRp +
1

�FX (V aRp)
ESp (2.128)

CV aRp =
ESp

�FX (V aRp)
: (2.129)

Proof. See Denuit et al [38].

Corollary 2.3.

Note that if FX is continuous then by combining (2.127) and (2.128) we �nd

CTEp = TV aRp; p 2 (0; 1) ; (2.130)

so that CTE and TVaR coincide for all p in this special case. In general, however,

we only have

TV aRp = CTEp +

�
1

1� p
� 1
�FX (V aRp)

�
ESp: (2.131)

Since the quantity between the brackets can be di¤erent from 0 for some values of

p, TVaR and CTE are not always equal.
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2.5.6 Estimating Risk Measures

In 2003, empirical estimation of risk measures and relative quantities have pro-

posed by Jones and Zitikis [74]. Kaiser and Brazauskas [76] proposed the con�d-

ence interval estimation of various risk measures in the case where the variance

is �nite as : Proportional Hazards Transform (PHT), Wang Transform (WT),

Value-at-Risk (VaR), and Conditional Tail Expectation (CTE).

Since the risk measures above are actually high quantiles (or function of a high

quantile for the ES), their estimations are straightforward applications of the res-

ults of Section 2.4. Consequently, all the properties of extreme quantile estimators

are inherited.

Any quantile estimator seen in Section 2.4 can be used to estimate the VaR with,

however, a preference for the POT based estimator of relation.

Proposition 2.4 (Estimating VaRp).

For n � 1, let (X1; : : : ; Xn) be a sample from a loss X. If u is a �xed threshold

and Nu the number of observations exceeding u, then V aRp is estimated by

[V aRp := u+
�̂u
̂u

 �
Nu

np

�̂u
� 1
!
; 0 < p < 1; (2.132)

where ̂u and �̂u are the estimates of the parameters of the �tted GPD.

For the estimation of the ES, notice that it is related to the VaR by

ESp = V aRp + E (X � V aRp jX > V aRp ) : (2.133)

If Y := X � u denotes the excess over threshold u, then

ESp = V aRp + E (Y � z jY > z ) ; (2.134)

for z := V aRp � u. The second term of the right hand side is the mef of Y over

threshold z: Assuming that Y has a GPD with parameters  < 1 and � > 0, then

by property (a) of Proposition 1.18 we have

E (Y � z jY > z ) =
� +  (z)

1� 
; � +  (z) > 0: (2.135)

This leads to

ESp = V aRp +
� +  (V aRp � u)

1� 
: (2.136)
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Substituting [V aRp, ̂u and ̂u and �̂u for V aRp,  and � respectively, yields the

following estimate for the ES.

De�nition 2.11 (Mean-excess function).

Given a non-negative rv X, the associated mean-excess function (mef) is de�ned

as

eX (x) = E [X � x jX > x ] ; x > 0 (2.137)

Proposition 2.5 (Estimating ESp).

cESp := [V aRp

1� ̂u
+
�̂u � ̂u
1� ̂u

(2.138)

Finally, to estimate the return level, it su¢ ces to substitute 1=m for p in relation

(2.90).

Proposition 2.6.

R̂m :=

8<: �̂� �̂

̂

�
1� (� log (1� 1=m))�̂

�
if  6= 0;

�̂� �̂ log (� log (1� 1=m)) if  = 0;
(2.139)

where ̂, �̂ and �̂ are estimates of the parameters of the parameters of the GEV

distribution H�.
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E
xtreme hydrological events, such as �oods and droughts, are one of the nat-

ural disasters that occur in several parts of the world. They are regarded

as being the most costly natural risks in terms of the disastrous consequences

in human lives and in property damages. In this chapter we will estimate �ood

events of Abiod wadi at given return periods at the gauge station of M�chouneche,

located closely to the city of Biskra in a semiarid region of southern east of Al-

geria. This is a problematic issue in several ways, because of the existence of a

dam to the downstream, including the �eld of the sedimentation and the water

leaks through the dam during �oods. The considered data series is new. A com-

plete frequency analysis (FA) is performed on a series of observed daily average

discharges, including classical statistical tools as well as recent techniques. It is

noteworthy that the content of this chapter consists in the work that I jointly

made with Professors Meraghni, Benkhaled, Chebana and Necir, and which was

published in 2016 in Natural Hazards journal [10].

3.1 Study Area and Data

In this section, we present the region where the site of interest is located, followed

by a description of the available data.

3.1.1 Study Area

The Abiod wadi watershed, with an area of 1300 km2, is located in the Aurès

massif in the southern east of Algeria in North Africa (Figure 3.1). It is part

of the endorheic watershed Chott Melghir. The wadi length is 85 km from its

origin in the Chelia (2326 m high) and Ichemoul (2100 m high) mountains. After

crossing Tighanimine, the wadi gradually �ows into the canyons of Ghou� and

M�chouneche gorges and then opens a path to the plain until the Saharian gorge

Foum El Gherza. The valley of the wadi is mainly composed of sedimentary

rocks, comprising alternating limestone, marl, soft sediments (sandstones, con-

glomerates) and some evaporates (gypsum) dated of Paleogene.
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Figure 3.1. Geographical location of the Abiod wadi watershed
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The watershed is characterized by its asymmetry, a mountainous area in the north

to over 2000 m (Chelia) and another low area in the south (El Habel 295 m).

The relief is rugged with slopes ranging between 12:5 and 25% for half of the

area, and from 3 to 12:5% for another 40% of the area. Land cover is a mix of

rocky outcrops, highly eroded soil, sparse vegetation, a few forests, crops, gardens

and pastures (Hamel 2009) [63]. In the orographic and hydrographic points of

view, Abiod wadi is characterized by two distinct climatic regions: the Aurès,

where rainfall averages 450 mm=year, and the Sahara plain with mean rainfall

100 � 150 mm=year. The climate of Abiod wadi watershed is thus semiarid

to arid. Along Abiod wadi to the Foum El Gherza dam, there are six rainfall

stations, and one hydrometric station is located 18 km upstream of the dam, as

shown in Figure 3.1, which was damaged during the �oods of 1994�1995 and it

is not operational since.

The choice of this station was made on the basis of climatic context of the study

area. It is the only station on the studied basin, and it is rather representative

of the whole southeast region in Algeria, which is arid to semiarid. Also, the size

of the series used shows the interest of the FA application.

3.1.2 Data Description

The data set used in this study is provided by the National Agency of Hydraulics

Resources (ANRH) of Biskra, and it is the �rst time to be considered and studied.

It consists of the daily average discharges Q1; : : : ; QN (with N = 8034), collected

at the gauge station of M�chouneche over 22 years from 1972 to 1994.

Note that the IACWD Bulletin 17B (1982) [70] suggests that at least 10 years

of record is necessary to warrant a statistical analysis. For instance, Tramblay

et al. (2008) [115] used a minimum of 10 years of daily data. The short data

size can a¤ect the choice of distributions, the quantile estimations, particularly

those corresponding to large return periods and the extent of con�dence intervals.

The size of the used data in the present study is relatively large, to perform a

frequency analysis (FA), as in a number of similar studies (Chebana et al. 2009)

[23].
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3.2 Methodology

In this section, after de�ning the type of series to be analyzed, namely the POT

series, we brie�y present the required elements to perform a hydrological FA. The

latter is a statistical approach of prediction commonly used in hydrology to relate

the magnitude of extreme events to a probability of their occurrence (Chow et

al. 1988) [26]. It allows, for the selected station, to estimate the �ood quantiles

of given return periods. In general, FA involves four main steps

1. characterization of the data and determination of the usual statistical in-

dicators, such as the mean, the standard deviation (SD), the coe¢ cients of

skewness (Cs), kurtosis (Ck) and variation (Cv) and detection of outliers,

2. checking the basic hypotheses of FA, i.e., homogeneity, stationarity and

independence, applicability on the studied data set,

3. �tting of probability distributions, estimation of the associated parameters

and selection of the best model to represent the data and

4. risk assessment based on quantiles or return periods (e.g., Bobée and Ashkar

1991 [16]; Chebana and Ouarda 2011 [22]; Haktanir 1992 [59]; Rao and

Hamed 2000 [100]).

3.2.1 Peaks Over Threshold Series

The data to be extracted and then used in this approach consist in the obser-

vations that exceed a selected relatively high threshold u. Let Q represent the

daily average discharge and denoted by Nu is the number of discharges exceeding

u. Then, the sample of excesses is de�ned as

fEj := Qij � u s:t: Qij > u ; j = 1; : : : Nug: (3.1)

In this approach, the selection of an appropriate threshold is crucial. This ap-

proach is useful and has some advantages compared to the AM one, even though

the latter is widely used. It is of particular interest in situations where the AM

could not perform well especially in situation with little extreme data or the

extracted extremes by AM cannot be considered as extremes in a physical or

hydrological meaning.
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GPD Approximation

Statistically, the distribution of the POT series E1; : : : ; ENu can be determined

by making use of the GPD which is a cdf G;� de�ned, for x 2 S(; �) := [0;1)
if  � 0 and [0;��=) if  < 0, by

G;�(x) :=

8<: 1�
�
1 + 

x

�

��1


if  6= 0;

1� exp (�x=�) if  = 0;
(3.2)

where  2 R and � > 0 are, respectively, shape and scale parameters (Hosking

and Wallis 1997) [68].

Let Fu(x) := P (Q � u � xjQ > u) denote the excess cdf of Q over a given

threshold u . Then, we have the following result

lim
u�!qF

sup
0<x<qF�u

��Fu (x)�G;�(u) (x)
�� = 0; (3.3)

where qF is the right end point of the cdf F . This result, due to Balkema and de

Haan (1974) [6] and Pickands (1975) [97], is one of the most useful concepts in

statistical methods for extremes. It says that for large threshold u , the excess

cdf Fu is likely to be well approximated by a GPD.

Threshold Selection

In order to obtain the asymptotic result in (3.3), the threshold u should be large

enough which has as a consequence a satisfactory GPD approximation. The

choice of the threshold is a crucial issue in the POT procedure. Indeed, selecting

a threshold that is too low results in a large bias in the estimation, whereas taking

one that is too high yields a big variance (Embrechts et al. 1997, Sects. 6.4 and

6.5) [47]. Hence, a compromise between bias and variance is to be found. To this

end, one can minimize the asymptotic mean squared error, which is composed by

the bias and variance. Furthermore, several graphical procedures are available

to select u, such as the mean residual life (MRL), threshold choice (TC) and

dispersion index (DI) plots. On the other hand, the choice of u can be based on

physical considerations, e.g., by identifying the �ood level of the river of interest.

For a survey of the main selection procedures, see, e.g., the paper of Lang et al.

(1999) [84].
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3.2.2 Exploratory Data Analysis

The �rst step allows to check the data quality and to screen the data to avoid

outlier e¤ects. It also permits to obtain prior information, e.g., the shape, regard-

ing the distribution to be selected. The presence of outliers in the data can have

an important e¤ect and causes di¢ culties when �tting a distribution (Ashkar

and Ouarda 1993) [5] especially on the distribution upper part. The Grubbs and

Beck (1972) [53] statistical test, based on the assumption of normality data, is

designed to detect low and high outliers. In the case where the original data

are not normal, they should be appropriately transformed. According to Section

1.8.3 in Rao and Hamed (2000) [100], this test is based on the following quantities

xH := exp (�x+ kns) ; (3.4)

xL := exp (�x� kns) ; (3.5)

where �x and s are, respectively, the mean and standard deviation of the nat-

ural logarithms of the sample, and kn is the Grubbs�Beck statistic tabulated for

various sample sizes and signi�cance levels by Grubbs and Beck (1972) [53]. For

instance, at the 10% signi�cance level, the following approximation is used

kn := �3:62201 + 6:28446n1=4 � 2:49835n1=2 + 0:491436n3=4 � 0:037911n; (3.6)

where n is the sample size.

The observations greater than xH are considered to be high outliers, while those

less than xL are taken as low outliers.

3.2.3 Testing Independence, Stationarity and Homogeneity

Three basic assumptions are required to correctly apply FA of extreme hydro-

logical events, namely independence, stationarity and homogeneity of the data

(Bobée and Ashkar 1991) [16]. To verify these assumptions, three tests are widely

used in the literature. The Wald-Wolfowitz test is employed for the independ-

ence, the homogeneity test of Wilcoxon is applied to check whether the data come

from the same distribution or not, and the Mann-Kendall test allows to verify

stationarity of the data, i.e., the series does not present a trend over time. These
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three tests have the advantage of being nonparametric and are widely used in

hydrological FA. In other words, they do not require any prior knowledge on the

distribution of the data.

3.2.4 Parameter Estimation and Model Selection

The choice of the appropriate model is one of the most important issues in FA. In

practice, the distribution of hydroclimatic series is not known. Using the �tted

probability distribution, it is possible to predict the probability of exceedance for

a speci�ed magnitude, i.e., quantile, or the magnitude associated with a speci�c

exceedance probability. To estimate the parameters associated with the appropri-

ate probability distribution, popular techniques are used in hydrology, including

the methods of maximum likelihood (ML) (e.g., Clarke 1994 [27]; Natural Envir-

onment Research Council 1975 [92]), moments (MM) and probability weighted

moments (PWM) (e.g., Chebana et al. 2010 [24]; Hosking et al. 1985 [69]). The

latter is equivalent to the L-moment method which is widely used in hydrological

FA (Hosking 1990) [66].

The choice of the adequate distribution is determined on the basis of numer-

ous classical and recent statistical tools, including graphical representations (In-

stitute of Hydrology 1999 [72]; Natural Environment Research Council 1975

[92]) and goodness-of-�t tests such as the tests of Pearson (Chi-squared, Chi2),

Kolmogorov-Smirnov (KS), Cramer-vonMises and the normality-speci�c Shapiro-

Wilk (SW) test. Due to the importance of the distribution impact in FA, these

tools should be exploited. This point is widely studied in the literature (Ben-

khaled et al. 2014 [12]; Ehsanzadeh et al. 2010 [43]; El Adlouni et al. 2008 [45];

Hebal and Remini 2011 [64]; Hosking and Wallis 1997 [68]; Koutsoyiannis 2003

[81]; Ouarda et al. 1994 [96]).

Nonetheless, the decision procedures mentioned above are not perfectly suited for

extreme value distributions, because they are not sensitive enough to deviations

in the tails. Several transformations have been proposed to overcome the limit-

ations of the aforementioned tests (Khamis 1997 [78]; Laio 2004 [82]; Liao and

Shimokawa 1999 [85]). In our application, where we focus on the upper tail of

the distribution, we perform the Anderson-Darling k-sample test (k = 2) imple-

mented in the adk package of the statistical software R. This procedure is used
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to test the null hypothesis that k samples come from one common continuous

distribution. In our case, the �rst sample of size 42 is the considered POT series

and the second one consists in values generated from the GPD model. For more

details on this test, we refer to Scholz and Stephens (1987) [107].

The probability distributions that are appropriate for hydrology data are those

with heavy tails. A number of them are listed, e.g., in Kite (1988) [79], Rao

and Hamed (2000) [100] and Salas and Smith (1980) [105]. In order to select

the appropriate distribution among those which passed the goodness-of-�t tests,

one or more criteria are required. To this end, one can consider the Akaike

and Bayesian information criterion (AIC, BIC), respectively, proposed by Akaike

(1974) [1] and Schwartz (1978) [108]. They are given by

AIC := �2 lnL+ 2k; (3.7)

BIC := �2 lnL+ 2k lnm; (3.8)

where L is the likelihood function, k the number of parameters and m the sample

size. The best �t is the one associated with the smallest criterion AIC or BIC

values (Ehsanzadeh et al. 2010 [43]; Hebal and Remini 2011 [64]; Rao and Hamed

2000 [100]).

3.2.5 Quantile Estimation

Once the appropriate distribution is selected, the quantiles and return periods

can be evaluated. The quantile estimation for various recurrence intervals is the

main goal in hydrological practice. The notion of return period for hydrological

extreme events is commonly used in FA, where the objective is to obtain reliable

estimates of the quantiles corresponding to given return periods of scienti�c rel-

evance or government standard requirements (Rao and Hamed 2000) [100]. In the

FA context, the uncertainty decreases with the sample size, whereas it increases

with the return period when estimating quantiles.

In many environmental applications, the sample size is rarely su¢ cient to enable

good extreme quantiles estimations. Usually, a quantile of return period T can

be reliably estimated from a data record of length n if T < n. However, in many
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cases, this condition is rarely satis�ed-since typically n < 50 for hydrological

applications based on annual data (Hosking and Wallis 1997) [68].

3.3 Results and Discussion

The application of the presented methodology in Section 3.2 to the data described

in Section 3.1 leads to the following results, obtained by means of the packages

stats, evir and POT of the statistical software R (Ihaka and Gentleman 1996) [71]

and also by using the HYFRAN-PLUS software, El Adlouni and Bobée (2010)

[44].

3.3.1 Exploratory Analysis and Outlier Detection

From Figure 3.2, it appears that the whole daily data series varies from a min-

imum value of 0 m3=s corresponding to many dry days to a maximum value of

78:57 m3=s recorded on September 21, 1989. The average �ow of 0:39 m3=s is a

relatively low in comparison with other tributary wadis of Chott Melghir like El

Hai wadi and Djamorrah wadi (Mebarki 2005) [88]. The standard deviation of

2:48 m3=s yields a coe¢ cient of variation equal to 6:39.

Figure 3.2. Time series plot of the daily average discharge at M�chouneche

station covering the period 01/09/1972�31/08/1994
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The boxplot in Figure 3.3 clearly shows the existence of extreme values. Indeed,

the median (0:10 m3=s) is close to both 25th and 75th percentiles (0:04 and

0:20 m3=s ). In addition to this graphical consideration, the values of skewness

and kurtosis (20:51 and 498:59m3=s , respectively) eliminate the Gaussian model.

In particular, the very large value of the kurtosis indicates longer and fatter

distribution tails, urging us to focus on heavy-tailed models.

Figure 3.3. Boxplot of daily average discharge at M�chouneche station

From Figure 3.2, we observe high inter-annual and the short sample size (resulting

from selection AM) which leads to selecting low discharges during the driest

years, whereas some interesting discharges were not selected during the years

where several �oods have occurred. This explains the non relevance of the AM

approach for Abiod wadi data analysis and suggests that the POT approach would

be more appropriate and would lead to a more homogeneous sample of extreme

discharges. This method starts with the selection of a convenient threshold and

then the consideration of the observations that exceed this threshold.

In order to detect outliers, the quantities xH and xL are found to be 508:31 and

0:08, respectively. Since there is no value greater than xH and nor less than

xL, we conclude that, at the signi�cant level of 10%, no outlier exist among the

excesses. Since it is di¢ cult to use the outlier detection test with the analysis of
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extremes and due to the lack of regional weather data, the signi�cance level to

10% is considered.

Threshold Selection

In this study, we adopt one of the available graphical tools, namely the TC-

plot. From Figure 3.4, we can choose a threshold value u = 5:6 m3=s, which

results in an excess series of size 58. However, as recommended by many authors

(Beran and Nozdryn-Plotnicki 1977 [13]; Lang et al. 1999 [84]; Todorovic and

Zelenhasic 1970 [114]), this data set must be reduced in order to avoid the e¤ects

of dependence. We eliminated the peaks being obviously part of the same �ood,

and in order to keep the character of �ood seasonality, we retain three peaks per

year over the recorded period. Thus, the length of the data series becomes 42.

Figure 3.5 shows the distribution of these excesses, and Table 3.1 summarizes

their elementary statistics.

Figure 3.4. Graphical results of threshold selection applied for daily average

discharge of Abiod wadi at M�chouneche station (TC-plot), vertical line corres-

ponding to the threshold
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Size 42 Observations

Minimum 0:02 (m3=s)

Qu1 (25th percentile) 3:36 (m3=s)

Median 7:83 (m3=s)

Average 15:72 (m3=s)

Qu2 (75th percentile) 19:92 (m3=s)

SD 19:70 (m3=s)

Maximum 72:97 (m3=s)

Cs 1:62

Ck 4:48

Table 3.1. Statistics summary of excess data set.

The positive skewness coe¢ cient Cs = 1:62 reveals that the data are right-skewed

relative to the mean excess, as shown in Figure. 3.5a. In Figure. 3.5a, the data

are arranged by classes, of length 10 m3=s each, with the associated frequencies.

It can be seen that some values are more frequent than others and that the

majority of excesses have a low value varying between 0 and 10 m3=s. Figure

3.5b, where the data are arranged according to the months of appearance, shows

that the peaks generally occur in the fall season.
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a) b)

c)

Figure 3.5. Distribution of excess series at M�chouneche station a histogram by

�ow classes, b histogram by month and c boxplot
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3.3.2 Testing the Basic FA Assumptions

The results of the required hypothesis testing on the considered data are given in

Table 3.2. Applying Wilcoxon, Kendall and Wald-Wolfowitz tests, respectively,

we conclude that the homogeneity, stationarity and independence of the excesses

are accepted at any of the standard signi�cance levels (1; 5 and 10%).Note that

for the homogeneity test, we split the data in two sub-series 1972�1981 and 1982�

1994 (any other subdivision led to the same conclusion). The homogeneity is also

shown in Figure. 3.5a where there is only one mode (the highest frequency).

Tests Statistic value p-values

Stationarity (Kendall) 0:48 0:63

Independence (Wald�Wolfowitz) 0:94 0:35

Homogeneity (Wilcoxon) 0:79 0:43

Table 3.2. Stationarity, independence and homogeneity tests results.

3.3.3 Model Fitting

To �t a statistical distribution, we consider three commonly used estimation

methods of the GPD parameters (ML, MM and PWM). Then, we perform the

Anderson-Darling test to check the goodness of �t of the model. The results

are summarized in Table 3.3. In view of the large p-values, we deduce that the

GPD can be accepted as an appropriate model for the excess at any standard

signi�cance level (for instance 5%).

Estimation

method
Scale Shape

Statistic value

(Anderson�Darling)
p-values AIC BIC

ML 10.19 0.39 -0.55 0.49 315.68 326.63

MM 12.86 0.18 -0.83 0.58 316.61 327.56

PWM 10.10 0.36 -0.86 0.59 315.72 326.68

Table 3.3. GPD parameter estimation, Anderson�Darling goodness-of-�t test

and information criterion results.

To discriminate between the obtained models, we use the AIC and BIC criteria.

The last two columns of Table 3.3 as well as Figure 3.6b favor the GPD of the
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ML �tting method. We illustrate the goodness of �t of the excesses to this model

in Figure. 3.6a. Furthermore, this ML-based will be used for quantile estimation

in the following section.

Note that the ML and PWM results are very similar, whereas those of the MM

results are slightly di¤erent, but remain in the same range.

3.3.4 Quantile Estimation

The estimation of extreme quantiles for di¤erent return periods should take into

consideration the record period and the right tail of the distribution. The formally

gauged record represents a relatively small sample of a much larger population of

�ood events. Thus, the extrapolation for long return periods is less accurate. In

the M�chouneche station, only the following return periods were considered for

the estimation of quantiles: 2, 5, 10, 20 and 50 years as presented in Table 3.4.

The return period of the strongest stream �ow in the 1972�1994 period, equal to

78:57 m3=s, is estimated by means of Pareto�s �tted model to be 30:62 years.

Return period (years) Estimated quantile (m3=s)

2 8:11

5 22:80

10 37:96

20 57:82

50 93:82

Table 3.4. Estimated quantiles of excess �ows from the ML-based GPD.
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a)

b) c)

Figure 3.6. Best-�tted distributions of excess �ows at M�chouneche station a

distributions, b) qq plot of ML-based GPD and c) return level plot (95% con�d-

ence interval)

The con�dence interval is a way to assess the uncertainty in the estimation of the

distribution parameters and quantiles. For the GPD, the con�dence bounds are

obtained through asymptotic results (Hosking and Wallis 1997). In the present

case study, one can see from Figure 3.6c that the GPD agrees with the obser-

vations for return levels less than 30 but not beyond even though they are all
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included in the con�dence interval. This is probably due to the small number of

peaks over the chosen threshold. Therefore, it is important to consider this distri-

bution with care with return periods greater than 30 years. This point indicates

the issue of the quantity of the required data in this station for better estimation

of high return periods.
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Conclusion

T
he study of the Algerian wadis �oods remains a quasi-unknown �eld as

only some very speci�c indications are given in the Algerian hydrological

directories. The present study is carried out in southern east of Algeria with

new data series, in the context of FA. Mean daily discharges data recorded at

the gauging station of M�chouneche in Abiod wadi, near Biskra, are available and

considered in this study. Due to the high inter-annual variability of the data as

well as to the relatively short record length, the AM approach is not adapted to

this analysis. Hence, in this work, we considered a more appropriate procedure,

namely the POT methodology.

Extreme values theory o¤ers interesting conclusions when applied to the hydrolo-

gical world. A presentation of this methodology has been made. The purpose of

this thesis is to provide a suitable model for the excesses over a chosen threshold.

This allows to estimate extreme �ood events of given return periods. A complete

FA was applied including appropriate tools, commonly used in hydrology. The

issue of threshold selection was dealt by means of a graphical tool. Several �tting

methods have led to di¤erent GPD models, and according to the results, the ML-

based distribution was adopted. Because of the short record length, only return

periods of 2, 5, 10, 20 and 50 years were considered. It was found that most of the

extracted data corresponded to frequent events. In the present case study, the

GPD distribution provided good estimates of return periods less than 30 years,

but for higher values, the estimation is not acceptable and it is associated with

high uncertainty (large con�dence interval).

As a conclusion, we should emphasize that, in addition to the quality of data and

sample size, the right GPD model heavily depends on the threshold which has to

be very suitably chosen. To improve the �ood FA at this site, future studies should

focus on the importance of data monitoring. This issue is of primary importance

as accurate data are very crucial and constitute the basis to any right conclusion

that will be especially bene�cial for local government and decision-makers.
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Despite the weaknesses that it might have, this study has the merit of being the

�rst of its kind to be performed in this area. It also opens interesting perspectives

for future works and studies in the region, among which we can mention the

regional frequency analysis and the multivariate frequency analysis. In the latter,

one may apply the multivariate extreme value theory together with the copula tool

to analyze the �oods with respect to peaks, duration and volume simultaneously.
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Abbreviations and Notations

Abbreviations Explanation

or Notations

j:j absolute value

AIC Akaike Information Criterion
a:s:! almost safte convergence

AM annual maximum
�Xn arithmitic mean

Sn arithmetic sum

BIC Bayesian Information Criterion

B (:; :) beta function, de�ned by

B(p; q) :=
1R
0

tp�1 (1� t)q�1 dt; p; q > 0; for a; b > 0

B (:; :) beta distribution

Bin(n; p) binomial distribution with succes probability p

CLT Central Limit Theorem

Chi2 Chi-squared test

Cs Coe¢ cients of skewness

Ck Coe¢ cients of kurtosis

Cv Coe¢ cients of variation�n
i

�
combination

p! convergence in probability
d! convergence in distribution

cdf cumulative distribution function

df or df�s distribution function (s)

F distribution function

Xk;n distribution function of the kth order statistics

D (H) domain of attraction of H

Fn empirical distribution function

Ûn empirical tail function
d
= equality in distribution
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EVI Extreme Value Index

EVT Extreme Value Theory

E (X) expectation of X

ES expected shortfall

e.g. for example

�� Fréchet distribution

FA frequency analysis

GEV Generalized Extreme Value

F generalized inverse of F

GPD Generalized Pareto distribution

� Gumbel distribution

i¤ if and only if

iid independent and identically distributed

1IA indicator function of a set A

inf A in�mum of a set A

i.e. in other words

n integer greater than 1

fXj;n;Xk;n joint density of two order statistics Xj;n and Xk;n

KS Kolmogorov-Smirnov test

l;� (x1; � � � ; xNu) log-likelihood function

ML Maximum Likelihood

L (�;X1; � � � ; Xn) Maximum likelihood function

Xn;n maximum of X1; X2; : : : ; Xn

� mean of a rv

MM method of moments

X1;n minimum of X1; X2; � � � ; Xn

N natural numbers

x observation from X

U1;n; U2;n; � � � ; Un;n order statistics corresponding to U1; U2; � � � ; Un
Vi;n order statistics corresponding to a sample of rv�s

of standard Pareto distribution

E1;n; � � � ; En;n order statistics corresponding to a sequence of n iid rv�s

(X1;n; � � � ; Xn;n) order statistics of n iid observations from a rv X

� := (; �; �) parameters of the GEV distribution

	 parameter space of the GEV distribution
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POT Peaks Over Threshold

fXk;n probability distribution function of Xk;n

f probability density function

h probability density function of the GEV

h� (x) probability density function of the GEV

with parameter �

Mp;r;s Probability Weighted Moment

pdf probability distribution function

(
;F ; P ) probability space

PWM Probability Weighted Moment

Q quantile function

xp quantile of order p

rv or rv�s random variable (s)

R real number

h (t) regularly varying functions

R� regularly varying functions

Rm return level

T return period

� risk measure

X rv

U1; U2; � � � ; Un rv�s from a uniform distribution on [0; 1]

V rv under Fréchet distribution

G rv under Gumbel distribution

W rv under Weibull distribution

V1; V2; : : : ; Vn sequence of rv�s under standard Pareto distribution

An simplex

supA supremum of a set A

E1; E2; � � � ; En+1 standard exponential distribution

(X1; X2; : : : ; Xn) sequence of iid rv�s

SD standard deviation

H standard generalized extreme value distribution

s.t. such that

SW Shapiro-Wilk

N (0; 1) standard Gaussian distribution

L slowly varying function

u threshold
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TC threshold choice
�F tail distribution

Vn uniform quantile function

Si;n uniform spacing

xF upper endpoint

Gn uniform empirical distribution

VaR Value-at-Risk

	� Weibull distribution
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