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Abstract

This thesis presents two research topics, the �rst one being divided into two parts. In
the �rst part, we study an optimal control problem where the state equation is driven by a

normal martingale. We prove a su¢ cient stochastic maximum and we also show the relationship

between stochastic maximum principle and dynamic programming in which the control of the

jump size is essential and the corresponding Hamilton�Jacobi�Bellman (HJB) equation in this

case is a mixed second order partial di¤erential-di¤erence equation. As an application, we solve

explicitly a mean-variance portfolio selection problem. In the second part, we study a non smooth

version of the relationship between MP and DPP for systems driven by normal martingales in

the situation where the control domain is convex.

The second topic is to characterize sub-game perfect equilibrium strategy of a partially observed

optimal control problems for mean-�eld stochastic di¤erential equations (SDEs) with correlated

noises between systems and observations, which is time-inconsistent in the sense that it does not

admit the Bellman optimality principle.

Keys words. Normal martingales, structure equation, stochastic maximum principle, dy-

namic programming principle, time inconsistency, mean-�eld control problem, partial informa-

tion, mean-variance criterion, stochastic systems with jumps.
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Résumé

Cette thèse présente deux sujets de recherche, le premier étant divisé en deux parties.
Dans la première partie, nous étudions un problème de contrôle optimal où l�équation d�état

est gouvernée par une martingale normale. Nous démontrons le principe du maximum (con-

ditions su¢ santes d�optimalité) et nous montrons aussi la relation entre le principe maximum

stochastique et la programmation dynamique dans laquelle le contrôle de la taille du saut est

essentiel et l �équation de Hamilton - Jacobi - Bellman correspondante (HJB) dans ce cas est

une equation di¤érentielle partielle de deuxième ordre mixte. Comme exemple, nous résolvons

explicitement un problème de sélection de portefeuille de variance moyenne. Dans la deuxième

partie nous montrons aussi la relation entre la fonction de valeur et le processus adjoint qui est

liée à la solution de viscosité.

Le deuxième sujet est de caractériser la stratégie d�équilibre parfait du sous-jeu d�un problème de

contrôle optimal partiellement observé pour les équations di¤érentielles stochastiques de champ

moyen (EDS) avec des bruits corrélés entre les systèmes et les observations, ce qui est incohérent

dans le temps en ce sens qu�il n�admet pas le principe d�optimalité de Bellman.

Mots Clés. Martingales normales, équation de structure, principe du maximum, principe de

programmation dynamique, inconsistance, problème de contrôle de champ moyen, information

partielle, critère de variance moyenne, systèmes stochastiques avec sauts.
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Introduction

Introduction

The main objective of this thesis is to study two research topics about stochastic control
problems. For the �rst topic, we study an optimal control problem where the state equation is

governed by a normal martingale of the type

8><>: dY (t) = b (t; Y (t) ; u (t) ; � (t)) dt+ � (t; Y (t�) ; u (t) ; � (t)) dMu (t)

Y (0) = y;

where b and � are given deterministic functions,Mu is a martingale that satis�es the equation

[Mu] (t) = t+

Z t

0
u (s) dMu (s) ; t � 0:

The above equation is called Emery�s structure equation, [Mu] (�) denotes the quadratic variation

ofMu (�) : A control process that solves this problem is called optimal. Recently there has been

increasing interest in the study of this type of stochastic control problems where the system is

driven by normal martingales. In an optimal reinsurance and investment problems, the reserve

process of the insurance company is described by a stochastic di¤erential equation with jumps,

see for example [18, 47]. According to the parameter u, we have distinct normal martingales

satisfying Emery�s structure equation as follows: When u � 0;M (�) corresponds to the standard

model of Brownian motion, the case when u � � 2 R� = R�f0g corresponds to the compensated

poisson process and for u � �M (t�) corresponds to the Azéma martingale, etc. The freedom of

choice of coe¢ cients for the stochastic di¤erential equation giving rise to the normal martingale

means that for each u we have a model as rich as the standard model. The construction of

the solutions to structure equations are studied by many authors, see for example Émery [29]

in two-dimensional case (d = 2). In a multidimensional case, Buckdahn et al [18] proved the

existence of the solutions of the structure equations in a Wiener�Poisson space. Accordingly,

they establish the dynamic programming principle and obtain the corresponding new form of

HJB equation, which in this case is a mixed second-order partial di¤erential-di¤erence equation.

For more information about normal martingales and its applications, we refer to [5, 28, 48, 55].

Stochastic maximum principle for di¤usions (without jumps) were made by Kushner [43] and
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Introduction

Bismut [15]. Further progresses on the subject were subsequently given by Bensoussan [10],

Peng [50], see also Yong and Zhou [64] and the references therein. For di¤usions with jumps,

the stochastic maximum principle was given by Tang and Li [60], Kabanov [39] and Kohlmann

[41]. Framstad et al [32] formulated the stochastic maximum principle and applied it to a quad-

ratic portfolio optimization problem. Zhang et al [66] proved the su¢ cient maximum principle

where the state process is governed by a continuous-time Markov regime-switching jump-di¤usion

model.

The relationship between the maximum principle and the dynamic programming is essentially

the relationship between the solution of the adjoint equation, with the spatial gradient of the

value function evaluated along the optimal trajectory, see e.g. [64] in the classical case. For dif-

fusions with jumps, the relationship between the maximum principle and dynamic programming,

was given by Framstad et al. [32], [21] and [58]. For singular stochastic control, refer to Balahli

et al. [6], for stochastic recursive control, refer to Shi and Yu [57], and for stochastic di¤eren-

tial game, refer to Shi [56]. Within the framework of viscosity solution, Zhou [67] showed that

D1;�y V
�
t; �Y (t)

�
� f�p (t)g � D1;+y V

�
t; �Y (t)

�
; where D1;�y V

�
t; �Y (t)

�
and D1;+y V

�
t; �Y (t)

�
de-

note the �rst order sub- and super-jets of V at
�
t; �Y (t)

�
; respectively. Yong and Zhou [64] showed

that f�p (t)g � [�P (t) ;1) � D2;+y V
�
t; �Y (t)

�
and D2;�y V

�
t; �Y (t)

�
� f�p (t)g � (�1;�P (t)] ;

where D2;�y V
�
t; �Y (t)

�
and D2;+y V

�
t; �Y (t)

�
denote the second-order sub- and super-jets of V at�

t; �Y (t)
�
; and p; P are the �rst- and second-order adjoint processes, respectively.

For the second topic, we characterize sub-game perfect equilibrium strategy of a partially

observed optimal control problems for mean-�eld stochastic di¤erential equations (SDEs) with

correlated noises between systems and observations, which is time-inconsistent in the sense that it

does not admit the Bellman optimality principle. Peng [50] derived a general maximum principle

for a fully observed forward stochastic control system. It is well known that an optimal control

can be represented by an adjoint process which is the solution of a BSDE. In [2], [45], the

stochastic maximum principle is proved for mean-�eld stochastic control problem where both

the state dynamics and the cost functional are of a mean-�eld type. The mean-�eld coupling

makes the control problem time-inconsistent in the sense that the Bellman Principle is no longer

valid, which motivates the use of the stochastic maximum approach to solve this type of optimal

control problems instead of trying extensions of the dynamic programming principle.
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Introduction

In practice, the controllers usually cannot be able to observe the full information, but the par-

tial one with noise. For the forward stochastic control case, there are rich articles to study

partially observed optimization problems like Bensoussan [10], Baras, Elliott and Kohlmann [7],

Haussmann [37], Zhou [64], Li and Tang [60], etc.

Time-inconsistent stochastic control is a game-theoretic generalization of standard stochastic

control, based on the notion of Nash equilibrium, with well-known applications in �nance. It is

has a long history starting with [59] where a deterministic Ramsay problem is studied. Further

work which extend [59] are [54], [53], [52], [33]. Early �nancial mathematics papers in time-

inconsistent stochastic control include Ekeland and Lazrak [26] and Ekeland and Pirvu [27],

who study a classic time-inconsistent �nance problem in continuous time (optimal consumption

and investment under hyperbolic discounting). The work [12] extends the idea to the stochastic

framework where the controlled process is quit general Markov process. In addition, an extended

HJB equation is derived, along with a veri�cation argument that characterizes a Markov sub-

game perfect Nash equilibrium. Keeping the same game perspective Basak and Chabakauri [9]

obtained a time-consistent strategy to the dynamic mean�variance portfolio selection problem

in continuous-time setting. Böjrk et al [13] studied the mean-variance portfolio selection with

state dependent risk aversion.

In [24] the authors undertake a deep study of a class of dynamic decision problems of mean-�eld

type driven by Brownian motion with time-inconsistent cost functionals and derive a stochastic

maximum principle to characterize subgame perfect equilibrium points.

Let us brie�y describe the contents of this thesis:

In Chapter 1, we give some background on optimal control theory, we present strong and

weak formulations of stochastic optimal control problems and the existence of stochastic optimal

controls for both strong and weak formulation, then, we use the dynamic programming principle

and the stochastic maximum principle in the classical case where the system is governed by

Brownian motion for solving stochastic control problems, see, Yong and Zhou [64].

In Chapter 2, we prove a su¢ cient stochastic maximum principle for the optimal control of sys-

tems driven by normal martingales. We also show the relationship between stochastic maximum

principle and dynamic programming in which the control of the jump size is essential and the

3



Introduction

corresponding Hamilton�Jacobi�Bellman (HJB) equation in this case is a mixed second order

partial di¤erential-di¤erence equation. As an application, we solve explicitly a mean-variance

portfolio selection problem. The results obtained in this chapter, generalizes the well known

result concerning Brownian motion and Poisson random measure in [64], [32].

In Chapter 3, we present a nonsmooth version of the relationship between the stochastic max-

imum principle and the dynamic programming principle for stochastic control problems. The

state of the systems driven by normal martingales and the control domain is convex. By using

the concepts of sub and super-jets, all inclusions are derived from the value function and the

adjoint process.

In Chapter 4, we characterize sub-game perfect equilibrium strategy of a partially observed

optimal control problems for mean-�eld stochastic di¤erential equations (SDEs) with correlated

noises between systems and observations, which is time-inconsistent in the sense that it does not

admit the Bellman optimality principle.

Relevant Papers
The content of this thesis was the subject of the following papers:

1. F. Chighoub, I.E. Lakhdari, and J.T. Shi, �Relationship between Maximum Principle and

Dynamic Programming for Systems Driven by Normal Martingales�, Mathematics in En-

gineering, Science & Aerospace (MESA), 8 (2017), pp. 91-107

2. F. Chighoub, I.E. Lakhdari, Relationship between MP and DPP for systems driven by

normal martingales: viscosity solution. (Preprint).

3. F. Chighoub, I.E. Lakhdari, A Characterization of Sub-game Perfect Equilibria for SDEs

of Mean-Field Type Under Partial Information. (Preprint).
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Chapter 1

Stochastic Control Problem

1.1 Introduction

Optimal control is a branch of the control theory strictly related with optimization, for this

kind of problems the aim is to �nd a control strategy such that a certain optimality criterion

is achieved. This criterion is usually expressed by a cost, that is a functional depending on the

choice of the control input.

Two main approaches can be found in literature for dealing with optimal control problems:

the Stochastic Maximum Principle (SMP) and the Dynamic Programming Principle (DPP).

By the use of the Bellman�s Dynamic Programming Principle the study of optimal control prob-

lems can be linked with the solution of a particular class of nonlinear second-order partial dif-

ferential equations: the Hamilton-Jacobi-Bellman equations. It is well known that the HJB

equation does not necessarily admit smooth solution in general, we can give a meaning to this

EDP with a concept of weak solution called viscosity solution. On the other hand, the Stochastic

Maximum Principle is to derive a set of necessary and su¢ cient conditions that must be satis-

�ed by any optimal control, the basic idea is by perturbing an optimal control on a small time

interval of length ": Performing a Taylor expansion with respect to " and then sending " to zero

one obtains a variational inequality. By duality the maximum principle is obtained. It states

that any optimal control must solve the Hamiltonian system associated with the control prob-

lem. The Hamiltonian system involves a linear di¤erential equation, with terminal conditions,

called the adjoint equation. The relationship between the (SMP) and (DPP) is essentially the

5



Stochastic Control Problem

relationship between the solution of the HJB equation (the value function), and the solution of

the adjoint equation in the optimal state. More precisely, the solution of the adjoint process can

be expressed in terms of the derivatives of the value function.

This chapter will be organized as follows. In section 2, we present strong and weak formulations

of stochastic optimal control problems and the existence of stochastic optimal control for both

strong and weak formulation. In section 3, we study the dynamic programming principle . In

Section 4, we derive necessary as well as su¢ cient optimality conditions. Then, we prove that

the adjoint process is equal to the derivative of the value function evaluated at the optimal

trajectory.

1.2 Formulation of the problem

In this section we present two mathematical formulations strong and weak formulations of

stochastic optimal control problems.

1.2.1 Strong formulation

We consider a �ltered probability space
�

;F ; fFtgt�0 ;P

�
satisfying the usual conditions, on

witch we de�ne an m-dimensional standard Brownian motion B (�) ; denote by U the separable

metric space, and T 2 (0;1) being �xed. The state y(t) of a controlled di¤usion is described by

the following stochastic di¤erential equation

8><>:
dy (t) = b (t; y (t) ; u (t)) dt+ � (t; y (t) ; u (t)) dB (t)

y (0) = y;

(1.1)

where b : [0; T ] � Rn � U ! Rn; � : [0; T ] � Rn � U ! Rn�m; are given. The function u(�)

is called the control representing the action of the decision-makers (controllers). At any time

instant the controller knowledgeable about some information (as speci�ed by the information

�led fFtgt�0) of what has happened up to that moment, but not able to foretell what is going to

happen afterwards due to the uncertainty of the system (as a consequence, for any t the controller

cannot exercise his/her decision u(t) befor the time t really comes) witche can be expressed in

6



Stochastic Control Problem

mathematical term as " u(�) is fFtgt�0 adapted", the control u is taken from the set

U [0; T ] �=
n
u : [0; T ]� 
 �! U j u (�) is fFtgt�0 adapted

o
:

Consider the cost functional as follows

J (u (�)) = E
�Z T

0
f (t; y (t) ; u (t)) dt+ g (y (T ))

�
: (1.2)

De�nition 1.2.1 Let (
;F ;Ft;P) be given satisfying the usual conditions and let B (t) be a

given m-dimensional standard fFtgt�0-Brownian motion. A control u(�) called an admissible

control, and (y(�); u(�)) an admissible pair, if

1. u(�) 2 U [0; T ] :

2. y(�) is the unique solution of equation (1.1).

3. f (�; y (�) ; u (�)) 2 L1F (0; T;R) and g (y (T )) 2 L1F (
;R) :

We denote by Uad [0; T ] the set of all admissible controls. The stochastic control problem is to

�nd an optimal control bu(�) 2 Uad [0; T ] (if it ever exists), such that
J (bu (�)) = inf

u(�)2Usad[0;T ]
J (u (�)) ; (1.3)

where bu (�) is called an optimal control and the state control pair (by(�); bu(�)) are called an optimal
state process.

1.2.2 Weak formulation

In the strong formulation the �ltered probability space
�

;F ; fFtgt�0 ;P

�
on witch we de�ne

the Brownian motion B are all �xed. However in the weak formulation, where we consider them

as a parts of the control.

De�nition 1.2.2 � =
�

;F ; fFtgt�0 ;P; B (�) ; u(�)

�
is called a w-admissible control, and y (�) ; u (�)

a w-admissible pair if

7



Stochastic Control Problem

1.
�

;F ; fFtgt�0 ;P

�
is a �ltered probability space satisfying the usual conditions;

2. B (�) is an m-dimensional standard Brownian motion de�ned on
�

;F ; fFtgt�0 ;P

�
;

3. u (�) is an fFtgt�0-adapted process on (
;F ;P) taking values in U ;

4. y (�) is the unique solution of equation (1.1);

5. f (�; y (�) ; u (�)) 2 L1F (0; T;R) and g (y (T )) 2 L1F (
;R) :

The set of all admissible controls is denoted by Uwad [0; T ] : Our stochastic optimal control problem

under weak formulation is to �nd an optimal control bu(�) 2 Uwad [0; T ] (if it ever exists), such that
J (bu (�)) = inf

u(�)2Uwad[0;T ]
J (u (�)) : (1.4)

1.2.3 Existence of optimal control

In this subsection we are going to discuss the existence of optimal controls, we use the theory

that a lower semi-continuous function on a compact metric space reaches its minimum.

Existence under strong formulation

We are given a probability space
�

;F ; fFtgt�0 ;P

�
with R -valued standard Brownian motion

B. Consider the following linear controlled system

8><>:
dy (t) = [Ay (t) + Fu (t)] dt+ [Cy (t) +Du (t)] dB (t) ; t 2 [0; T ]

y (0) = y0;

(1.5)

where A;F;C;D are matrices. The state y (�) takes value in Rn, and the control u (�) is in

UL [0; T ] =
n
u (�) 2 L2F

�
0; T;Rk

�
j u (�) 2 U; a:e:t 2 [0; T ] ; P� a:s:

o
;

with U � Rk; The cost functional is

J (u (�)) = E
�Z T

0
f (t; y (t) ; u (t)) dt+ g (y (T ))

�
; (1.6)

with f : Rn � U �! R and g : Rn �! R:

Let us assume the following assumptions

8
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(H1) The set U � Rk is convex and closed, and the functions f and g are convex and for some

�;K > 0;

f (y; u) � � juj2 �K; g (y) � �K; 8 (y; u) 2 Rn � U:

(H2) The set U � Rk is convex and compact, and the functions f and g are convex.

The optimal control problem is to minimize (1.6) subject to (1.5) over UL [0; T ] :

Theorem 1.2.1 (Existence of optimal control) Under either (H1) and (H2), if the prob-

lem is �nite, then it admits an optimal control.

Proof. See Theorem 5.2 in [55].

Existence under weak formulation

Now we will study the existence of optimal control under weak formulation. We introduce the

standing assumptions

(H3) (U; d) is a compact metric space and T > 0,

(H4) The maps b; �; f and g are all continuous, and there exists a constant L > 0 such that for

� (t; y; u) = b (t; y; u) ; � (t; y; u) ; f (t; y; u) ; g (y) ;

8><>:
j� (t; y; u)� � (t; by; u)j � L jy � byj ;
� (t; 0; u) � L; 8t 2 [0; T ] ; y; by 2 Rn; u 2 U:

(H5) For every (t; y) 2 [0; T ]� Rn; the set

(b; ��|; f) (t; y; U)
�
=
n
(bi (t; yu)) ; (��

|)ij (t; y; u) ; f (t; y; u) j

u 2 U; i = 1; : : : ; n; j = 1; : : : ;mg

is convex in Rn+nm+1:

(H6) y (t) 2 Rn:

Theorem 1.2.2 (Existence of optimal control) Under the conditions (H3)-(H5), if the prob-

lem is �nite, then it admits an optimal control.

Proof. See Theorem 5.2 in [55].

9
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1.3 Dynamic programming principle (DPP)

In this section, we use the dynamic programming method for solving stochastic control problems.

We present the HJB equation and introduced the standard class of stochastic control problem,

the associated dynamic programming principle, and the resulting HJB equation describing the

local behavior of the value function of the control problem. Throughout this �rst introduction

to HJB equation the value function is assumed to be as smooth as required.

1.3.1 The Bellman principle

Let
�

;F ; fFtgt�T ;P

�
be a �ltered probability space satisfying the usual conditions. Let

B (t) be a Brownian motion valued in Rd:We denote by A the set of all progressively measurable

processes fu (t)gt�0 valued in U � Rk. The elements of A are called control processes.

We consider the following stochastic controlled system

8><>:
dy (t) = b (t; y (t) ; u (t)) dt+ � (t; y (t) ; u (t)) dB (t)

y (0) = y;

(1.7)

where b : [0; T ] � Rn � U ! Rn; � : [0; T ] � Rn � U ! Rn�d be two given functions satisfying,

for some constant M

jb (t; y (t) ; u (t))� b (t; x (t) ; u (t))j+ j� (t; y (t) ; u (t))� � (t; x (t) ; u (t))j �M jy � xj ; (1.8)

jb (t; y (t) ; u (t))j+ j� (t; y (t) ; u (t))j �M (1 + jy (t)j) : (1.9)

Under (1.8) and (1.9) the above equation has a unique solution y.

We de�ne the cost functional J : [0; T ]� Rn � U ! R; by

J (t; y; u) = Et;y
�Z T

t
f (s; y (s) ; u (s)) ds+ g (y (T ))

�
; (1.10)

where Et;y is the expectation operator conditional on y (t) = y; and f : [0; T ] � Rn � U �! R,

10
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g : Rn �! R, we assume that

jf (t; y; u)j+ jg (y)j �M
�
1 + jyj2

�
; (1.11)

for some constant M . The quadratic growth condition (1.11), ensure that J is well de�ned. The

purpose of this Section is to study the minimization problem

V (t; y) = inf
u2U

J (t; y; u) ; for (t; y) 2 [0; T ]� Rn; (1.12)

which is called the value function of the problem (1.7) and (1.10).

The dynamic programming is a fundamental principle in the theory of stochastic control, we

give a version of the stochastic Bellman�s principle of optimality. For mathematical treatments

of this problem , we refer the reader to Lions [44], Krylov [42], Yong and Zhou [64], Fleming and

Soner [30].

Theorem 1.3.1 Let (t; y) 2 [0; T ]� Rn be given. Then, for every h 2 [0; T � t] , we have

V (t; y) = inf
u2U

Et;y
�Z t+h

t
f (s; y (s) ; u (s)) ds+ V (t+ h; y (t+ h))

�
: (1.13)

Proof. Suppose that for h > 0, we given by bu (s) = bu (s; y) the optimal feedback control for the
problem (1.7) and (1.10) over the time interval [t; T ] starting at point y (t+ h) : i.e.

J (t+ h; y (t+ h) ; bu (t+ h)) = V (t+ h; y (t+ h)) ; P� a:s: (1.14)

Now, we consider

eu =
8><>:

u (s; y) ; t � s � t+ h

bu (s; y) ; t+ h � s � T;

for some control u: By de�nition of V (t; y), and using (1.10), we obtain

V (t; y) � J (t; y; eu)
= Et;y

�Z t+h

t
f (s; y (s) ; u (s)) ds+

Z T

t+h
f (s; y (s) ; bu (s)) ds+ g (y (T ))� :

11
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By the unicity of solution for the SDE (1.7), we have for s� t + h; yt+h;y
t;y(t+h) (s) = yt;y (s) ;

then

J (t; y; eu) = E�Z t+h

t
f (s; y (s) ; u (s)) ds

+

Z T

t+h
f
�
s; yt+h;y

t;y(t+h) (s) ; bu (s)� ds+ g �yt+h;yt;y(t+h) (T )��
= E

�Z t+h

t
f (s; y (s) ; u (s)) ds

+ E
Z T

t+h
f (s; y (s) ; bu (s)) ds+ g (y (T )) j yt;y (t+ h)�

= E
�Z t+h

t
f (s; y (s) ; u (s)) ds+ V

�
t+ h; yt;y (t+ h)

��
:

So we get

V (t; y) � E
�Z t+h

t
f (s; y (s) ; u (s)) ds+ V

�
t+ h; yt;y (t+ h)

��
; (1.15)

and the equality holds if eu = bu, which proves (1.13).
1.3.2 The Hamilton Jacobi Bellman equation

Now, we introduce the HJB equation by deriving it form the dynamic programming principle

under smoothness assumptions on the value function. Let G : [0; T ]�R�Rn �Rn�d into R; be

de�ned by

G (t; y; r; p; A) = b(t; y; u)|p+
1

2
tr [��| (t; y; u)A] + f (t; y; u) ; (1.16)

we also need to introduce the linear second order operator Lu associated to the controlled pro-

cesses y (t) ; t � 0, we consider the constant control u

Lu'(t; y) = b(t; y; u)|Dy'(t; y) +
1

2
tr [��| (t; y; u)Dyy ('(t; y))] ; (1.17)

where Dy; Dyy denote the gradient and the Hessian operator with respect to the y variable.

Assume the value function V 2 C ([0; T ] ;Rn), and f(�; �; u) be continuous in (t; y) for all �xed

12
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u 2 A, then we have by Itô�s formula

V (t+ h; y (t+ h)) = V (t; y) +

Z t+h

t

�
@V

@s
+ LuV

��
s; yt;y (s)

�
ds

+

Z t+h

t
DyV

�
s; yt;y (s)

�|
�
�
s; yt;y (s) ; u

�
dB (s) ;

by taking the expectation, we get

E (V (t+ h; y (t+ h))) = V (t; y) + E
�Z t+h

t

�
@V

@s
+ LuV

��
s; yt;y (s)

�
ds

�
;

then, we have by (1.15)

0 � E
�
1

h

Z t+h

t

��
@V

@s
+ LuV

��
s; yt;y (s)

�
+ f

�
s; yt;y (s) ; u

��
ds

�
:

We now send h to zero, we obtain

0 � @V

@t
(t; y) + LuV (t; y) + f (t; y; u) ;

this provides

� @V

@t
(t; y)� inf

u2U
[LuV (t; y) + f (t; y; u)] � 0: (1.18)

Now we shall assume that bu 2 U; and using the same procedure as above, we conclude that
� @V

@t
(t; y)� LbuV (t; y)� f (t; y; u) = 0; (1.19)

by (1.18), then the value function solves the HJB equation

� @V

@t
(t; y)� inf

u2U
[LuV (t; y) + f (t; y; u)] = 0; 8 (t; y) 2 [0; T ]� Rn: (1.20)

We give su¢ cient conditions which allow to conclude that the smooth solution of the HJB

equation coincides with the value functionm this is the so-called veri�cation result.

Theorem 1.3.2 Let W be a C1;2 ([0; T ] ;Rn)\C ([0; T ] ;Rn) function. Assume that f and g are

13
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quadratic growth, i.e. there is a constant M such that

jf (t; y; u)j+ jg (y)j �M
�
1 + jyj2

�
; for all (t; y; u) 2 [0; T ]� Rn � U:

(1) Suppose that W (T; �) � g; and

@W

@t
(t; y) +G (t; y;W (t; y) ; DyW (t; y) ; Dyy (W (t; y))) � 0; (1.21)

on [0; T ]� Rn, then W � V on [0; T ]� Rn:

(2) Assume further that W (T; �) = g; and there exists a minimizer bu (t; y) of
LuV (t; y) + f (t; y; u) ;

such that

0 =
@W

@t
(t; y) +G (t; y;W (t; y) ; DyW (t; y) ; Dyy (W (t; y)))

=
@W

@t
(t; y) + Lbu(t;y)W (t; y) + f (t; y; u) ; (1.22)

the stochastic di¤erential equation

dy (t) = b (t; y (t) ; bu (t; y)) dt+ � (t; y (t) ; bu (t; y)) dB (t) ; (1.23)

de�nes a unique solution y (t) for each given initial data y (t) = y; and the process bu (t; y) is a
well-de�ned control process in U: Then W = V; and bu is an optimal Markov control process.
Proof. The function W 2 C1;2 ([0; T ] ;Rn) \ C ([0; T ] ;Rn) ; then for all 0 � t � s � T; by Itô�s

Lemma we get

W
�
t; yt;y (r)

�
=

Z s

t

�
@W

@t
+ Lu(r)W

��
r; yt;y (r)

�
dr

+

Z s

t
DyW

�
r; yt;y (r)

�|
�
�
r; yt;y (r) ; u (r)

�
dB (r) ;

the process
Z s

t
DyW

�
r; yt;y (r)

�|
�
�
r; yt;y (r) ; u (r)

�
; is a martingale, then by taking expectation,

14
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it follows that

E
�
W
�
s; yt;y (s)

��
=W (t; y) + E

�Z s

t

�
@W

@t
+ Lu(r)W

��
r; yt;y (r)

�
dr

�
:

By (1.21), we get

@W

@t

�
r; yt;y (r)

�
+ Lu(r)W

�
r; yt;y (r)

�
+ f

�
r; yt;y (r) ; u (r)

�
� 0; 8u 2 A;

then

E
�
W
�
s; yt;y (s)

��
�W (t; y)� E

�Z s

t
f
�
r; yt;y (r) ; u (r)

�
dr

�
; 8u 2 A;

we now take the limit as s �! T; then by the fact that W (T ) � g we obtain

E
�
g
�
yt;y (T )

��
�W (t; y)� E

�Z s

t
f
�
r; yt;y (r) ; u (r)

�
dr

�
; 8u 2 A;

then W (t; y) � V (t; y) ; 8 (t; y) 2 [0; T ] � Rn: Statement (2) is proved by repeating the above

argument and observing that the control bu achieves equality at the crucial step (1.21).
We now state without proof an existence result for the HJB equation (1.20), together with the

terminal condition W (T; y) = g (y) :

Theorem 1.3.3 assume that

1. 9C > 0��|��| (t; y; u) � � C j�j2 ; for all (t; y; u) 2 [0; T ]� Rn � U;

2. U is compact,

3. b; � and f are in C1;2b ([0; T ] ;Rn) ;

4. g 2 C3b (Rn) ;

Then the HJB equation (1.20), with the terminal data V (T; y) = g (y) ; has a unique solution

V 2 C1;2b ([0; T ] ;Rn) :

Proof. See Fleming and Rischel [31].

We conclude this section by the celebrated Merton�s optimal management problem.
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Exemple 1.3.1 We consider a market with two securities, a bond whose price solves

8><>: dS0 (t) = rS0 (t) dt

S0 (0) = s:
(1.24)

and a stock whose price process satis�es the stochastic di¤erential equation

dS (t) = �S (t) dt+ �S (t) dB (t) : (1.25)

The market parameters � and � are, respectively, the mean rate of return and the volatility, it is

assumed that � > r > 0; and � > 0. The process B (t) is a standard Brownian motion de�ned on

a probability space (
;F ;P) The wealth process satis�es Y (s) = u0 (s)+u (s) ; with the amounters

u0 (s) and u (s) representing the current holdings in the bond and the stock accounts. The state

wealth equation is given by

dY (s) = rY (s) ds+ (�� r)u (s) ds+ �u (s) dB (s) : (1.26)

The wealth process must satisfy the state constraint

Y (s) � 0; a:e: t � s � T: (1.27)

The control u (s) ; is admissible if it is Fs -progressively measurable, it satis�es E
R T
t u2 (s) ds and

it is such that the state constraint (1.27) is satis�ed. We denote the set of admissible policies byeA. The value function is de�ned by
V (t; y) = supeA E

�
1


Y  (T ) =Y (t) = y

�
: (1.28)

Using stochastic analysis and under appropriate regularity and growth conditions on the value
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function, we get that V solves the associated HJB equation, for y � 0; and t 2 [0; T ] ;

V (t) + max
u

�
1

2
�2u2Vyy + (�� r)Vy

�
+ ryVy = 0;

V (T; y) =
1


y ; (1.29)

V (t; 0) = 0; t 2 [0; T ] :

The homogeneity of the utility function and the linearity of the state dynamics with respect to

both the wealth and the control portfolio process, suggest that the value function must be of the

form

V (t; y) =
1


yf (t) ; with f (T ) = 1: (1.30)

Using the above form in (1.29), and after some cancellations, one gets that f must satisfy the

�rst order equation 8><>: f
0
(t) + �f (t) = 0;

f (T ) = 1;

where

� = r +
(�� r)

2 (1� )�2 : (1.31)

Therefore,

V (t; y) =
1


y exp� (T � t) : (1.32)

Once the value function is determined, the optimal policy may be obtained in the so-called feedback

form as follows: �rst, we observe that the maximum of the quadratic term appearing in (1.29) is

achieved at the point

bu (t; y) = �(�� r)Vy (t; y)
�2Vyy (t; y)

; (1.33)

or, otherwise,

bu (t; y) = (�� r)
�2 (1� )y; (1.34)

where we used (1.32). Next, we recall classical Veri�cation results, which yield that the candidate

solution, given in (1.32) is indeed the value function and that, moreover, the policy bu (t; y) =

17
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(��r)
�2(1�)Y

� (t) ; is the optimal investment strategy. In the other words,

V (t; y) = E

�
1


Y � (T ) = Y � (t) = y

�
;

where Y � (s) solves

dY � (s) =

 
r +

(�� r)2

(1� )�2

!
Y � (s) ds+

(�� r)
(1� )�Y

� (s) dB (s) : (1.35)

The solution of the optimal state wealth equation is, for Y (t) = y;

Y � (s) = y exp

" 
r +

(�� r)2

(1� )�2 �
(�� r)2

2 (1� )2 �2

!
(s� t) + (�� r)

(1� )�B (s� t)
#
:

The Merton optimal strategy dictates that it is optimal tokeep a �xed proportion, namely (��r)
(1�)�2 ,

of the current total wealth invested in the stock account.

1.3.3 Viscosity solutions

It is well known that the HJB equation (1.20) does not necessarily admit smooth solution in

general. This makes the applicability of the classical veri�cation theorems very restrictive and

is a major de�ciency in dynamic programming theory. In recent years, the notion of viscosity

solutions was introduced by Crandall and Lions [35] for �rst-order equations, and by Lions [44]

for second-order equations. For a general overview of the theory we refer to the User�s Guide

by Crandall, Ishii and Lions [34] and the book by Fleming and Soner [30]. In this theory all the

derivatives involved are replaced by the so-called superdi¤erentials and subdi¤erentials, and the

solutions in the viscosity sense can be merely continuous functions. The existence and uniqueness

of viscosity solutions of the HJB equation can be guaranteed under very mild and reasonable

assumptions, which are satis�ed in the great majority of cases arising in optimal control problems.

For example, the value function turns out to be the unique viscosity solution of the HJB equation

(1.20).

De�nition 1.3.1 A function V 2 C ([0; T ]� Rn) is called a viscosity subsolution of (1.20), if

V (T; y) � g (y) ; 8y 2 Rn; and for any ' 2 C1;2 ([0; T ]� Rn) ; whenever V � ' attains a local
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maximum at (t; y) 2 [0; T ]� Rn; we have

� @'

@t
(t; y) + sup

u2U
G (t; y; u;�Dy' (t; y) ;�Dyy' (t; y)) � 0: (1.36)

A function V 2 C ([0; T ]� Rn) is called a viscosity supersolution of (1.20), if V (T; x) � g (y) ;

8y 2 Rn; and for any ' 2 C1;2 ([0; T ]� Rn) ; whenever V � ' attains a local minimum at

(t; y) 2 [0; T ]� Rn; we have

� @'

@t
(t; y) + sup

u2U
G (t; y; u;�Dy' (t; y) ;�Dyy' (t; y)) � 0: (1.37)

Further, if V 2 C ([0; T ]� Rn) is both a viscosity subsolution and viscosity supersolution of

(1.20), then it is called a viscosity solution of (1.20).

Theorem 1.3.4 Let (1.8) and (1.9) hold, then the value function V is a viscosity solution of

(1.20).

Proof. For any ' 2 C1;2 ([0; T ]� Rn) ; let V �' attains a local maximum at (t; x) 2 [0; T ]�Rn:

Fix a u 2 U; let y (t) be the state trajectory with the control u (t) = u: Then by the dynamic

programming principle, and Itô�s formula, we have for bs > s with bs� s > 0 small enough
0 � 1bs� sE (V (s; x)� ' (s; x)� V (bs; y (bs)) + ' (bs; y (bs)))
� 1bs� sE

 Z bs
s
f (t; y (t) ; u) dt+ ' (s; x) + ' (bs; y (bs))!

�!bs�!s �
@'

@t
(t; x)�G (t; x; u;�Dy' (t; y) ;�Dyy' (t; y)) :

This leads to

�@'
@t
(t; x)�G (t; x; u;�Dy' (t; x) ;�Dyy' (t; x)) � 0; 8u 2 U:

Hence

� @'

@t
(t; x) + sup

u2U
G (t; x; u;�Dy' (t; x) ;�Dyy' (t; x)) � 0; 8u 2 U: (1.38)
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On the other hand, if V � ' attains a local minimum at (t; x) 2 [0; T ]�Rn; then for any " > 0;

and bs > s with bs� s > 0 small enough, we can �nd a u (t) = u" (s) 2 U; such that

0 � E (V (s; x)� ' (s; x)� V (bs; y (bs)) + ' (bs; y (bs)))
� �" (bs� s) + E Z bs

s
f (t; y (t) ; u (t)) dt+ ' (bs; y (bs))� ' (s; y)! ;

dividing by (bs� s), and applying Itô�s formula to the process ' (t; y (t)) ; we get
�" � 1bs� sE

 Z bs
s
�@'
@t
(t; y (t)) +G (t; y (t) ; u;�Dy' (t; y (t)) ;�Dyy' (t; y (t))) dt

!

� 1bs� sE
 Z bs

s
�@'
@t
(t; y (t)) + sup

u2U
G (t; y (t) ; u;�Dy' (t; y (t)) ;�Dyy' (t; y (t))) dt

!

�!bs�!s �
@'

@t
(t; y (t)) + sup

u2U
G (t; x; u;�Dy' (t; x) ;�Dyy' (t; x)) : (1.39)

Combining (1.38), and (1.39), we conclude that V is a viscosity solution of the HJB equation

(1.20).

The following Theorem is devoted to a proof of uniqueness of the viscosity solution to the HJB

equation

Theorem 1.3.5 Let V;W 2 C1;2b ([0; T ]� Rn) : We suppose that V is a supersolution of (1.20),

with V (T; y) �W (T; y) for all y 2 Rn; then V (t; y) �W (t; y) ;8 (t; y) 2 [0; T ]� Rn:

Proof. Let, for (�;M;N) 2 R�+ � Rn�n � Rn�n, we de�ne

G (y;M) = �tr
h
A (y)A (y)>M

i
;

then, we obtain

G (x;N)�G (y;M) = tr
h
A (y)A (y)>M

i
� tr

h
A (x)A (x)>N

i
= tr

h
A (y)A (y)>M �A (x)A (x)>N

i
� 3� jA (y)�A (x)j2 ;
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because the matrix

C :=

� A (x)A (x)> A (x)A (y)>

A (y)A (x)> A (y)A (y)>

�
;

is a non negative matrix, we have

tr
h
A (y)A (y)>M �A (x)A (x)>N

i
= tr

264C� M 0

0 �N

�375
� 3�tr

264C� In �In

�In In

�375
� 3�tr

�
(A (y)�A (x))

�
A (y)> �A (x)

�>�
� 3� jA (y)�A (x)j2 : (1.40)

Now, we consider the function

F : Rn � Rn �! F (y; x) = V (y)�W (x)� 1

2"
jy � xj2 ;

with " > 0: Suppose that there exists a point (y; x) such that F attaints a maximum at (y; x) ;

then y �! F (y; x) attaints a maximum at x; hence

y �! V (y)� 1

2"
jy � xj2 ;

attaints a maximum at y. Moreover, y �! �F (y; x) attaints a minimum at y; then we have

y �!W (y)� 1

2"
jy � xj2 ;

attaints a minimum at x. By the de�nition of viscosity subsolution at point y, we obtain for V

with ' (y) = 1
2" jy � xj

2 ; we get

�@V
@t
(y) + sup

u2U

�
�b(y; u)

�
1

"
jy � xj

�
� 1
2
tr

�
��> ((y; u)

�
�1
"

��
� f ((y; u)

�
� 0:
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By the de�nition of viscosity subsolution at point x, we obtain for W with ' (y) = 1
2" jy � xj

2,

we get

�@W
@t

(x) + sup
u2U

�
�b(x; u)

�
1

"
jy � xj

�
� 1
2
tr

�
��> ((x; u)

�
�1
"

��
� f ((x; u)

�
� 0:

Hence

� @

@t
(V (y)�W (x))

� sup
u2A

�
jb(y; u)� b(x; u)j

�
1

"
jy � xj

�
+ jf ((y; u)� f ((x; u)j

+
1

2
tr

�
��> ((y; u)

�
�1
"

��
� tr

�
��> ((x; u)

�
�1
"

���
;

the functions b; f; ��> are Lipshitz on y uniformly on u then by (1.40), we get

@

@t
(V (y)�W (x))

�
�c
"
jy � xj2

�
+ c jy � xj+ 3�� jy � xj2 :

On the other hand, F (y; y) � F (y; x) ;8y 2 Rn:

V (y)�W (y) � V (y)�W (x)� 1

2"
jy � xj2

� V (y)�W (x) : (1.41)

Because F (y; x) � F (y; y), we get

V (y)�W (x)� 1

2"
jy � xj2 � V (y)�W (y) : (1.42)

Then

W (y)�W (x)� 1

2"
jy � xj2 � 0: (1.43)

Moreover, F (y; x) � F (x; x), then

V (y)� V (x)� 1

2"
jy � xj2 � 0; (1.44)
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this proves that
1

"
jy � xj2 � (V +W ) (y)� (V +W ) (x) ; (1.45)

where V;W are bonded, then 1
" jy � xj

2 � c; which means that

m (�) = sup fj(V +W ) (y)� (V +W ) (x)j ; jy � xj � �g : m (�) �!
��!0

0:

By (1.41), we get
1

"
jy � xj2 � m (jy � xj) ; (1.46)

under (1.44), on has
1

"
jy � xj2 � m

�
c
p
"
�
: (1.47)

Combining (1.45), (1.46) and (1.47), we obtain

@

@t
(V (y)�W (x)) � c

p
"+ �c"+m

�
c
p
"
�
:

Finally, by (1.41) on has

V (y)�W (x) � V (y)�W (x) �!
"�!0

0: for all y 2 Rn;

hence V (y) �W (x) :

De�nition 1.3.2 Let V 2 C ([0; T ]� Rn) ; the right superdi¤erential (resp., subdi¤erential) of

V at (t; y) 2 [0; T ]� Rn; denoted by D1;2;+
t;y V (t; y)

�
resp:;D1;2;�

t;y V (t; y)
�
, is a set de�ned by

D1;2;+
t;y V (t; y) =

8<:(p; q;Q) 2 R� Rn � Rn�n = lim
x�!y;s�!t;
s2[0;T ]

sup
I (s; x)

js� tj+ jx� yj2
� 0

9=; ;

D1;2;�
t;y V (t; y) =

8<:(p; q;Q) 2 R� Rn � Rn�n = lim
x�!y;s�!t;
s2[0;T ]

inf
I (s; x)

js� tj+ jx� yj2
� 0

9=; ;

where

I (s; x) = V (s; x)� V (t; y)� q (s� t)� hp; x� yi � 1
2
(x� y)> P (x� y) :
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De�nition 1.3.3 A function V 2 C ([0; T ]� Rn) is called a viscosity solution of the HJB equa-

tion (1.20) if

� p+ sup
u2U

G (t; y; u; q;Q) � 0; 8 (p; q;Q) 2 D1;2;+
t;y V (t; y) ;8 (t; y) 2 [0; T ]� Rn;

� p+ sup
u2U

G (t; y; u; q;Q) � 0; 8 (p; q;Q) 2 D1;2;�
t;y V (t; y) ;8 (t; y) 2 [0; T ]� Rn;

V (T; y) = g (y) ; 8y 2 Rn:

Lemma 1.3.1 The value function V satis�es

jV (t; y)� V (s; x)j � C
�
jt� sj

1
2 + jy � xj

�
:

Proof. See Yong and Zhou [64].

Corollary 1.3.1 We have

lim
(p;q;Q)2D1;2;+

t;y V (t;y)�U
f[p�G (t; y; u; q;Q)] � 0;8 (t; y) 2 [0; T ]� Rng : (1.48)

Proof. See Yong and Zhou [64].

Lemma 1.3.2 Let g 2 C [0; T ] : Suppose that there is � 2 L1 [0; T ] such that for su¢ ciently

small h > 0;
g (t+ h)� g (t)

h
� � (t) ; a:e:t 2 [0; T ] : (1.49)

Then

g (t)� g (0) �
Z t

0
lim

h�!0+

g (r + h)� g (r)
h

dr; 8t 2 [0; T ] : (1.50)

Proof. First �x t 2 [0; T ] : By (1.49) we can apply Fatou�s Lemma to get

Z t

0
lim

h�!0+

g (r + h)� g (r)
h

dr � lim
h�!0+

Z t

0

g (r + h)� g (r)
h

dr;

= lim
h�!0+

R h+t
h g (r) dr �

R t
0 g (r) dr

h

= g (t)� g (0) :
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This proves (1.50) 8t 2 [0; T ] ; �nally, the t = T case is obtained by continuity.

Theorem 1.3.6 Let W 2 C ([0; T ]� Rn) be a viscosity solution of the HJB equation (1.20),

then

(1) W (s; x) � J (s; x; u) for any (s; x) 2 [0; T ]� Rn and any u 2 U:

(2) Let (by; bu) be a given admissible pair for the problem (1.7)-(1.10). Suppose that there exists

�bp; bq; bQ� 2 L2F (s; T;R)� L2F (s; T;Rn)� L2F �s; T;Rn�d� ;
such that for a:e:t 2 [s; T ];

�bp (t) ; bq (t) ; bQ (t)� 2 D1;2;+
t;y W (t; by (t)) ; P� a:s:; (1.51)

and

� bp (t) +G�t; by (t) ; bu (t) ; bq (t) ; bQ (t)� = 0; P� a:s:; (1.52)

then (by (t) ; bu (t)) is an optimal pair for the problem (1.7)-(1.10).

Proof. Part (1) is trivial since W = V in view of the uniqueness of the viscosity solutions. We

prove only part (2) of the Theorem, set ' (t; by (t) ; bu (t)) = b' (t) ; ' = b; �; f; ect., to simplify

the notation. Fix t 2 [0; T ] such that (1.51) and (1.52) holds. Choose a test function � 2

C ([0; T ]� Rn) \ C1;2 ([0; T ]� Rn) as determined by
�bp (t) ; bq (t) ; bQ (t)� 2 D1;2;+

t;y W (t; by (t)) and
Lemma (1.3.1). Applying Ito�s formula to �; we have for any h > 0;

W (t+ h; by (t+ h))�W (t; by (t)) � � (t+ h; by (t+ h))� � (t; by (t))
= E

�Z t+h

t

�
�t (r; by (r)) + �y (r; by (r)) :bb (r) + 1

2
tr
�b� (r)> �yy (r; by (r)) :b� (r)�� dr� : (1.53)
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It is well known by the martingale property of stochastic integrals that there are constant C,

indepedent of t;such that

E jby (r)� by (t)j2 � C jr � tj ;8r � t; (1.54)

E

"
sup
s�r�T

jby (r)j�# � C (�) ; ; 8� � T: (1.55)

Hence, in view of Lemma (1.3.1), we have

sup
s�r�T

j�t (r; by (r))j2 � C2 sup
s�r�T

E

"
1 +

jby (r)� by (t)j2
r � t

#
� C: (1.56)

or

sup
s�r�T

E j�t (r; by (r))j �pC;
Moreover, by Lemma (1.3.2), assumption (1.8) and (1.9), one can show that

sup
s�r�T

E
�����y (r; by (r))bb (r) + 12 tr �b� (r)> :�yy (r; by (r)) :b� (r)�

���� � C:

It then follows from (1.54) that for su¢ ciently small h > 0;

E [W (t+ h; by (t+ h))�W (t; by (t))]
h

� C: (1.57)

Now we calculate, for any �xed N > 0;

1

h

Z t+h

t
E (�t (r; by (r))� bp (t)) dr = 1

h

Z t+h

t
E
�
(�t (r; by (r))� bp (t))1jby(r)�by(t)j>N jr�tj 12 � dr

+
1

h

Z t+h

t
E
�
(�t (r; by (r))� bp (t))1jby(r)�by(t)j�N jr�tj 12 � dr;

= I1 (N;h) + I2 (N;h) :

By virtue of (1.55) and (1.57), we have

I1 (N;h) �
1

h

Z t+h

t
E
h
(�t (r; by (r))� bp (t))2i 12 hP �jby (r)� by (t)j > N jr � tj

1
2

�i 1
2
dr

� C

N
�! 0 uniformly in h > 0 as N �!1:
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On the other hand, for �xed N > 0; we apply Lemma (1.3.2) to get

lim
h!0+

sup
t�r�t+h

�
(�t (r; by (r))� bp (t))1jby(r)�by(t)j�N jr�tj 12 � �! 0 as h! 0+; P� a:s.

Thus we conclude by the dominated convergence theorem that

lim
h!0+

I2 (N;h) �! 0; as h! 0+; for each �xed N:

Therefore, we have proved that

lim
h!0+

1

h

Z t+h

t
E (�t (r; by (r))) dr �! E [bp (t)] : (1.58)

Similarly (in fact, more easily),we can show that

lim
h!0+

1

h

Z t+h

t
E
h
�y (r; by (r)) :bb (r)i dr = E h�y (t; by (t)) :bb (t)i ;

= E
hbq (t) :bb (t)i ; (1.59)

and

lim
h!0+

1

h

Z t+h

t
E
�
1

2
tr
�
�̂ (r)t :�yy (r; x̂r) :�̂ (r)

��
dr = E

�
1

2
tr
�b� (t)> :�yy (t; by (t)) :b� (t)��

= E
�
1

2
tr
�b� (t)> : bQ (t) :b� (t)�� :

Consequently (1.54) gives

lim
h!0+

E [W (t+ h; by (t+ h))�W (t; by (t))]
h

� E
�bp (t) + bq (t) :bb (t) + 1

2
tr
�b� (t)> : bQ (t) :b� (t)��

= �E [bg (t)] ; (1.60)

where the last equality is due to (1.53). Noting (1.58) and applying Lemma (1.3.1) to the

g (t) = E [W (t; by (t))] we arrive at
E [W (T; by (T ))�W (s; x)] �

Z T

s
E [bg (t)] dt; (1.61)

27



Stochastic Control Problem

which leads to W (s; x) � J (s; x; bu) : It follows that (by; bu) is an optimal pair for (1.7) and (1.10).

Remark 1.3.1 In view of Corollary (1.3.1), the condition (1.53) impllies that
�bp (t) ; bq (t) ; bQ (t) ; bu (t)�

achieves the in�mum of p � G (t; by (t) ; u; q;Q) over D1;2;+
t;y W (t; by (t)) � U . Meanwhile, it also

shows that (1.52) is equivalent to

bp (t) � G
�
t; by (t) ; bu (t) ; bp (t) ; bq (t) ; bQ (t)� : (1.62)

Remark 1.3.2 The condition (1.53) implies that

max
u2U

G
�
t; by (t) ; u; bp (t) ; bq (t) ; bQ (t)� = G

�
t; by (t) ; bu (t) ; bp (t) ; bq (t) ; bQ (t)� : (1.63)

This easily seen by recalling the fact that V is the viscosity solution of (1.20),hence

�bp (t) + sup
u2U

G
�
t; by (t) ; u; bp (t) ; bq (t) ; bQ (t)� � 0;

which yields (1.63) under (1.53).
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1.4 Stochastic maximum principle (SMP)

The stochastic maximum principle is an important result in stochastic optimal control. The basic

idea is to derive a set of necessary and su¢ cient conditions that must be satis�ed by any optimal

control. The �rst version of the (SMP) was extensively established in the 1970s by Bismut [14],

Kushner [43], and Haussmann [37], under the condition that there is no control on the di¤usion

coe¢ cient. Haussman [36], developed a powerful form of Stochastic Maximum Principle for the

feedback class of controls by Girsanov�s transformation, and applied it to solve some problems

in stochastic control.

There is interest in applying the stochastic maximum principle in �nance. The �rst use of

the stochastic maximum principle in �nance is probably due to Cadenillas and Karatzas [19].

Some attention has been paid to applying the stochastic maximum principle to mean-variance

portfolio selection problems (see, for example, Yong and Zhou [64] and Zhou and Yin [65]), where

the problem was formulated as a stochastic linear-quadratic problem.

1.4.1 Problem formulation and assumptions

In all what follows, we are given a probability space
�

;F ; fFtgt�T ;P

�
such that F0 contains

the P-null sets, FT = F for an arbitrarily �xed time horizon T , and fFtgt�T satis�es the usual

conditions. We assume that fFtgt�T is generated by a d-dimensional standard Brownian motion

B: We denote by U the set of all admissible controls. Any element y 2 Rn will be identi�ed to

a column vector with n components, and the norm jyj =
��x1��+ :::+ jxnj : The scalar product of

any two vectors y and x on Rn is denoted by yx or
Pn
i=1y

ixi: For a function h; we denote by hy

(resp. hyy) the gradient or Jacobian (resp. the Hessian) of h with respect to the variable y:

De�nition 1.4.1 An admissible control is a measurable, adapted processes u : [0; T ] � 
 ! U ,

such that E
hR T
0 u (s) ds

i
<1:

Consider the following stochastic controlled system

8><>: dy (t) = b (t; y (t) ; u (t)) dt+ � (t; y (t) ; u (t)) dB (t)

y (0) = y;
(1.64)
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where b : [0; T ]� Rn � U ! Rn; � : [0; T ]� Rn � U ! Rn�d; are given.

Suppose we are given a performance functional J (u) of the form

J (u) = E
�Z T

0
f (t; y (t) ; u (t)) dt+ g (y (T ))

�
; (1.65)

where f : [0; T ]� Rn � U1 ! R; g : Rn ! R:

The stochastic control problem is to �nd an optimal control bu 2 U such that
J (bu) = inf

u2U
J (u) ; (1.66)

Let us make the following assumptions about the coe¢ cients b; �; f; and g:

(H1) The maps b; �; and f are continuously di¤erentiable with respect to (y; u); and g is con-

tinuously di¤erentiable in y.

(H2) The derivatives by; bu; �y; �u; fy; fu; and gy are continuous in (y; u) and uniformly bounded.

(H3) b; �; f are bounded by K1 (1 + jyj+ juj) ; and g is bounded by K1 (1 + jyj) ; for some K1 >

0:

1.4.2 The stochastic maximum principle

Now, de�ne the Hamiltonian H : [0; T ]� Rn � U � Rn � Rn�d �! R; by

H (t; y; u; p; q) = f (t; y; u) + pb (t; y; u) +
Pn
j=1q

j�j (t; y; u) ; (1.67)

where qj and �j for j = 1; ::; n; denote the jth column of the matrix q and �; respectively.

Let bu be an optimal control and by denote the corresponding optimal trajectory. Then, we consider
a pair (p; q) of square integrable adapted processes associated to bu; with values in Rn � Rn�d
such that 8><>: dp (t) = �Hy(t; by (t) ; bu (t) ; p (t) ; q (t))dt+ q (t) dB (t) ;

p (T ) = gy (by (T )) : (1.68)
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1.4.3 Necessary conditions of optimality

The purpose of this subsection is to �nd optimality necessary conditions satis�ed by an

optimal control, assuming that the solution exists. The idea is to use convex perturbation for the

optimal control, jointly with some estimations of the state trajectory and performance functional,

and by sending the perturbations to zero, one obtains some inequality, then by completing with

martingale representation theorem�s the maximum principle is expressed in terms of an adjoint

process.

We can state the stochastic maximum principle in a stronger form.

Theorem 1.4.1 (Necessary conditions of optimality) Let bu be an optimal control minim-
izing the performance functional J over U ; and let by be the corresponding optimal trajectory,
then there exists an adapted processes (p; q) 2 L2 (([0; T ] ;Rn))�L2

��
[0; T ] ;Rn�d

��
which is the

unique solution of the BSDE (1.68); such that for all v 2 U

Hu (t; by (t) ; bu (t) ; p (t) ; q (t)) (vt � bu (t)) � 0; P� a:s:

In order to give the proof of theorem 1.4.1, it is convenient to present the following.

1.4.4 Variational equation

Let v 2 U be such that (bu+ v) 2 U ; the convexity condition of the control domain ensure that,
for " 2 (0; 1) the control (bu+ "v) is also in U : We denote by y" the solution of the SDE (1.64)
correspond to the control (bu+ "v), then by standard arguments from stochastic calculus, it is

easy to check the following convergence result.

Lemma 1.4.1 Under assumption (H1) we have

lim
"!0

E

"
sup
t2[0;T ]

jy" (t)� by (t)j2# = 0: (1.69)
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Proof. From assumption (H1), we get by using the Burkholder-Davis-Gundy inequality

E

"
sup
t2[0;T ]

jy" (t)� by (t)j2# � K

Z t

0
E

"
sup
�2[0;s]

jy" (r)� by (r)j2# ds
+K"2

 Z t

0
E

"
sup
r2[0;s]

jv (r)j2
#
ds

!
: (1.70)

From de�nition 1.4.1; and Gronwall�s lemma, the result follows immediately by letting " go to

zero.

We de�ne the process z (t) = zbu;v (t) by
8>>>>><>>>>>:

dz (t) = fby (t; bz (t) ; bu (t)) z (t) + bu (t; by (t) ; bu (t)) v (t)g dt
+

dP
j=1

n
�jy (t; by (t) ; bu (t)) z (t) + �ju (t; by (t) ; bu (t)) v (t)o dBj (t) ;

z (0) = 0:

(1.71)

From (H2) and de�nition 1.4.1, one can �nd a unique solution z which solves the variational

equation (1.71); and the following estimation holds.

Lemma 1.4.2 Under assumption (H1) ; it holds that

lim
"!0

E
����y" (t)� by (t)"

� z (t)
����2 = 0: (1.72)

Proof. Let

�" (t) =
y" (t)� by (t)

"
� z (t) :

Denoting y�;" (t) = by (t) + �" (�" (t) + z (t)) ; and u�;" (t) = bu (t) + �"v (t) ; for notational con-

venience. Then we have immediately that �" (0) = 0 and �" (t) ful�lls the following SDE

d�" (t) =

�
1

"
(b (t; y�;" (t) ; u�;" (t))� b (t; by (t) ; bu (t)))

� (by (t; by (t) ; bu (t)) z (t) + bu (t; by (t) ; bu (t)) v (t))g dt
+

�
1

"
(� (t; y�;" (t) ; u�;" (t))� � (t; by (t) ; bu (t)))

� (�y (t; by (t) ; bu (t)) z (t) + �u (t; by (t) ; bu (t)) v (t))g dB (t)
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Since the derivatives of the coe¢ cients are bounded, and from de�nition 1.4.1; it is easy to verify

by Gronwall�s inequality that

E j�" (t)j2 � KE
Z t

0

����Z 1

0
by (s; y

�;" (s) ; u�;" (s)) �" (s) d�

����2 ds+KE j�" (t)j2
+KE

Z t

0

����Z 1

0
�y (s; y

�;" (s) ; u�;" (s)) �" (s) d�

����2 ds;
where �" (t) is given by

�" (t) = �
Z t

0
by (s; by (s) ; bu (s)) z (s) ds

�
Z t

0
�y (s; by (s) ; bu (s)) z (s) dB (s)

�
Z t

0
bv (s; by (s) ; bu (s)) v (s) ds

�
Z t

0
�v (s; by (s) ; bu (s)) v (s) dB (s)

+

Z t

0

Z 1

0
by (s; y

�;" (s) ; u�;" (s)) z (s) d�ds

+

Z t

0

Z 1

0
bv (s; y

�;" (s) ; u�;" (s)) v (s) d�ds

+

Z t

0

Z 1

0
�y (s; y

�;" (s) ; u�;" (s)) z (s) d�dB (s)

+

Z t

0

Z 1

0
�v (s; y

�;" (s) ; u�;" (s)) v (s) d�dB (s) :

Since by; �y are bounded, then

E j�" (t)j2 �ME
Z t

0
j�" (s)j2 ds+ME j�" (t)j2 ;

where M is a generic constant depending on the constant K and T: We conclude from lemma

1.4.2 that lim
"!0

�" (t) = 0: Hence (1.72) follows from Gronwall lemma and by letting " go to 0:
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1.4.5 Variational inequality

Let � be the fundamental solution of the linear matrix equation, for 0 � s < t � T

8>><>>:
d�s;t = by (t; by (t) ; bu (t))�s;tdt+ dP

j=1
�jy (t; by (t) ; bu (t))�s;tdBj (t) ;

�s;s = Id;

where Id is the n � n identity matrix, this equation is linear with bounded coe¢ cients, then it

admits a unique strong solution.

From Itô�s formula we can easily check that d (�s;t	s;t) = 0; and �s;s	s;s = Id; where 	 is the

solution of the following equation

8>>>>>>><>>>>>>>:

d	s;t = �	s;t

(
by (t; by (t) ; bu (t))� dP

j=1
�jy (t; by (t) ; bu (t))�jy (t; by (t) ; bu (t))) dt

�
dP
j=1
	s;t�

j
y (t; by (t) ; bu (t)) dBj (t) ;

	s;s = Id;

so 	 = ��1, if s = 0 we simply write �0;t = �t; and 	0;t = 	t: By integrating by part formula

we can see that, the solution of (1.71) is given by z (t) = �t�t; where �t is the solution of the

stochastic di¤erential equation

8>>>>>>><>>>>>>>:

d�t = 	t

(
bu (t; by (t) ; bu (t)) v (t)� dP

j=1
�jy (t; by (t) ; bu (t))�ju (t; by (t) ; bu (t)) v (t)) dt

+
dP
j=1
	t�

j
u (t; x?t ; u

?
t ) v (t) dB

j (t) ;

�0 = 0:

Let us introduce the following convex perturbation of the optimal control bu by
u" = bu+ "v; (1.73)

for any v 2 U , and " 2 (0; 1) : Since bu is an optimal control, then "�1 (J (u")� J (bu)) � 0: Thus
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a necessary condition for optimality is that

lim
"!0

"�1 (J (u")� J (bu)) � 0: (1.74)

The rest is devoted to the computation of the above limit. We shall see that the expression (1.74)

leads to a precise description of the optimal control bu in terms of the adjoint process: First, it is
easy to prove the following lemma

Lemma 1.4.3 Under assumptions (H1) ; we have

I = lim
"!0

"�1 (J (u")� J (bu))
= E

�Z T

0
ffy (s; by (s) ; bu (s)) z (s) + fu (s; by (s) ; bu (s)) v (s)g ds+ gy (by (T )) z (T )� : (1.75)

Proof. We use the same notations as in the proof of lemma 1.4.2. First, we have

"�1 (J (u")� J (bu))
= E

�Z T

0

Z 1

0
ffy (s; y�;" (s) ; u�;" (s)) z (s) + fu (s; y�;" (s) ; u�;" (s)) v (s)g d�ds

+

Z 1

0
gy (y

�;" (T )) z (T ) d�

�
+ �" (t) ;

where

�" (t) = E
�Z T

0

Z 1

0
fy (s; y

�;" (s) ; u�;" (s)) �" (s) d�ds+

Z 1

0
gy (y

�;" (T )) �" (T ) d�

�
:

By using the lemma 1.4.2, and since the derivatives fy; fu; and gy are bounded, we have

lim
"!0

�" (t) = 0. Then, the result follows by letting " go to 0 in the above equality.

Substituting by z (t) = �t�t in (1.75); this leads to

I = E
�Z T

0
ffy (s; by (s) ; bu (s))�s�s + fu (s; by (s) ; bu (s)) v (s)g ds+ gy (by (T ))�T �T� :
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Consider the right continuous version of the square integrable martingale

M (t) := E
�Z T

0
fy (s; by (s) ; bu (s))�sds+ gy (by (T ))�T jFt� :

By the representation theorem, there exist Q =
�
Q1; ::; Qd

�
where Qj 2 L2; for j = 1; :::; d;

M (t) = E
�Z T

0
fy (s; by (s) ; bu (s))�sds+ gy (by (T ))�T�+ dX

j=1

Z t

0
Qj (s) dBj (s) :

We introduce some more notation, write by (t) = M (t) �
R t
0 fy (s; by (s) ; bu (s))�sds: The adjoint

variable is the processes de�ned by

8><>: p (t) = by (t)	t;
qj (t) = Qj (t)	t � p (t)�jy (t; by (t) ; bu (t)) ; for j = 1; :::; d: (1.76)

Theorem 1.4.2 Under assumptions (H1) ; we have

I = E

"Z T

0

(
fu (s; by (s) ; bu (s)) + p (s) bu (s; by (s) ; bu (s)) + dP

j=1
qj�ju (s; by (s) ; bu (s))

)#
:

Proof. From the integration by part formula, and by using the de�nition of p (t) ; qj (t) for

j = 1; ::; d; we easily check that

E [y (T ) � (T )] = E

"Z T

0

(
p (t) bu (s; by (s) ; bu (s)) + dP

j=1
qj (s)�ju (s; by (s) ; bu (s))) v (t) dt

�
Z T

0
fy (s; by (s) ; bu (s)) �t�tdt:

(1.77)

Also we have

I = E
�
y (T ) � (T ) +

Z T

0
fy (s; by (s) ; bu (s))�t�tdt+ Z T

0
fu (s; by (s) ; bu (s)) v (t) dt� ; (1.78)

substituting (1.77) in (1.78), This completes the proof.
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1.4.6 Su¢ cient conditions of optimality

Theorem 1.4.3 Let bu be an admissible control, we denote by the associated controlled state
process, and let (p; q) be a solution to the corresponding BSDE (1.68): Let us assume that

H (t; y; u; p (t) ; q (t)) ; and (y) are concave functions. Moreover suppose that for all t 2 [0; T ],

H (t; by (t) ; bu (t) ; p (t) ; q (t)) = inf
u2U

H (t; by (t) ; u (t) ; p (t) ; q (t)) : (1.79)

Then bu is an optimal control:
Proof. We consider the di¤erence

J (bu)� J (u) = E �Z T

0
(f (t; by (t) ; bu (t))� f (t; y (t) ; u (t))) dt�

+ E [g (by (T ))� g (y (T ))] :
Since g is concave, we get

E [g (by (T ))� g (y (T ))] � E [(by (T )� y (T )) gy (by (T ))]
= E [(by (T )� y (T )) p (T )]
= E

�Z T

0
(by (t)� y (t)) dp (t) + Z T

0
p (t) d (by (t)� y (t))�

+ E

"Z T

0

nP
j=1

�
�j (t; by (t) ; bu (t))� �j (t; y (t) ; u (t))� qj (t) dt# ;

with

E
�Z T

0
(by (t)� y (t)) dp (t)� = E �Z T

0
(by (t)� y (t)) (�Hy (t; by (t) ; bu (t) ; p (t) ; q (t))) dt�

+ E
�Z T

0
(by (t)� y (t)) q (t) dB (t)� ;
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and

E
�Z T

0
p (t) d (by (t)� y (t))� = E �Z T

0
p (t) (b (t; by (t) ; bu (t))� b (t; y (t) ; u (t))) dt�

+ E
�Z T

0
p (t) (� (t; by (t) ; bu (t))� � (t; y (t) ; u (t))) dB (t)� :

On the other hand, the process

E
�Z T

0
fp (t) (� (t; by (t) ; bu (t))� � (t; y (t) ; u (t)) + (by (t)� y (t)) q (t))g dB (t)�

is a continuous local martingale for all 0 < t � T; by the fact that (p; q) 2 L2 (([0; T ] ;Rn)) �

L2
��
[0; T ] ;Rn�d

��
; we deduce that the stochastic integrals with respect to the local martingales

have zero expectation. By the concavity of the Hamiltonian H, we get

E [g (by (T ))� g (y (T ))] � �E �Z T

0
(H (t; by (t) ; bu (t) ; p (t) ; q (t))�H (t; y (t) ; u (t) ; p (t) ; q (t))) dt�

+ E
�Z T

0
p (t) (b (t; by (t) ; bu (t))� b (t; y (t) ; u (t))) dt�

+ E
�Z T

0
(� (t; by (t) ; bu (t))� � (t; y (t) ; u (t))) q (t) dt� :

By the de�nition of the Hamiltonian H, we obtain

J (bu)� J (u) � 0;
then bu is an optimal control.
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1.5 Relation to dynamic programming principle

In this section, we come back to the control problem studied in the section 1.3. We recall a

veri�cation theorem, which is useful to compute optimal controls. Then we show that the adjoint

process de�ned in Section 1.4, as the unique solution to the BSDE (1.68), can be expressed as

the gradient of the value function, which solves the HJB variational inequality.

Let yt;y (s) be the solution of the controlled SDE (1:7) for s � t; with initial value y (t) = y: We

put the problem in a Markovian framework. Since our objective is to maximize this functional,

the value function of the control problem becomes

V (t; x) = sup
u2U

J (t; y; u) :

The in�nitesimal generator Lu; associated with (1:7) ; acting on functions '; coincides on C2b (Rn;R)

with partial di¤erential operator Lu given by

Lu'(t; y) =
nP
i=1
bi (t; y; u)

@'

@yi
(t; y) +

1

2

nP
i;j=1

aij (t; y; u)
@2'

@yi@yj
(t; y) ;

where aij =
dP
h=1

�
�ih�jh

�
denotes the generic term of the symmetric matrix ��|:

Theorem 1.5.1 Let V be a classical solution of (1:20). Assume that V 2 C1;3 ([0; T ]� Rn) ;

and there exists bu 2 U : Then the solution of the BSDE (1:68) is given by

8><>:
p (t) = Vy (t; by (t)) ;
q (t) = Vyy (t; by (t))� (t; by (t) ; bu (t)) :

Proof. Using Itô�s formula to
@V

@yk
(�; by (�)), we obtain

@V

@yk
(T; by (T ))� @V

@yk
(0; by (0)) = Z T

0

�
@2V

@t@yk
(t; by) + nP

i=1
bi (t; by (t) ; bu (t)) @2V

@yk@yi
(t; by (t))

+
1

2

nP
i;j=1

aij (t)

�
@3V

@yk@yi@yj
(t; by (t))�) dt

+

Z T

0

nP
j=1

@2V

@yk@yi
(t; by)�i (t; by (t) ; bu (t)) dB (t) :
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On the other hand, de�ne

L (t; y; u) = @V

@t
(t; y) +

nP
i=1
bi (t; y; u)

@V

@yi
(t; y) +

1

2

nP
i;j=1

aij (t; y; u)
@2V

@yi@yj
(t; y) + f (t; y; u) :

If we di¤erentiate L (t; y; u) with respect to yk; and evaluate the result at (y; u) = (by (t) ; bu (t)) ;
we deduce

@2V

@t@yk
(t; by (t)) + nP

i=1
bi (t; by (t) ; bu (t)) @2V

@yk@yi
(t; by (t))

+
1

2

nP
i;j=1

aij (t; by (t) ; bu (t)) @3V

@yk@yi@yj
(t; by (t))

= �
nP
i=1

@bi

@yk
(t; by (t) ; bu (t)) @V

@yi
(t; by (t))� @f

@yk
(t; by (t) ; bu (t))

� 1
2

nP
i;j=1

@aij

@yk
(t; by (t) ; bu (t)) @2V

@yi@yj
(t; by (t)) :

Then

d

�
@V

@yk
(t; by (t))� = �� nP

i=1

@bi

@yk
(t; by (t) ; bu (t)) @V

@yi
(t; by (t)) + @f

@xk
(t; by (t) ; bu (t))

+
1

2

nP
i;j=1

@aij

@yk
(t; by (t) ; bu (t)) @2V

@yi@yj
(t; by (t))) dt

+
nP
i=1

@2V

@yk@yi
(t; by (t))�i (t; by (t) ; bu (t)) dB (t) :

Clearly,

1

2

nP
i;j=1

@aij

@yk
(t; by (t) ; bu (t)) @2V

@yi@yj
(t; by (t))

=
1

2

nP
i;j=1

@

@yk

�
dP
h=1

�ih (t)�jh (t)

�
@2V

@yi@yj
(t; by (t))

=
nP
j=1

dP
h=1

�
nP
i=1
�ih (t; by (t) ; bu (t)) @2V

@yi@yj
(t; by (t))� @�ih

@yk
(t; by (t) ; bu (t)) :

Now, from (1:67) we have

@H

@yk
(t; y; u; p; q) =

nP
i=1

@bi

@yk
(t; y; u) pi +

dP
h=1

nP
i=1

@�ih

@yk
(t; y; u) qih +

@f

@yk
(t; y; u) :
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The kth coordinate pk (t) of the adjoint process p (t) satis�es

8><>:
dpk (t) = �@H

@yk
(t; by (t) ; bu (t) ; p (t) ; q (t)) dt+ qkt dB (t) ; for t 2 [0; T ] ;

pk (T ) =
@g

@yk
(by (T )) ;

with qkt dBt =
Pd
h=1 q

kh
t dBht . Hence, the uniqueness of the solution of the above equation given

by

pk (t) =
@V

@yk
(t; by (t)) ;

qkh (t) =
nP
i=1

@2V

@yk@yi
(t; by (t))�ih (t; by (t) ; bu (t)) :
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Chapter 2

Relationship Between Maximum

Principle and Dynamic Programming

for Systems Driven by Normal

Martingales

In this chapter we study a class of stochastic control problems of the type

8><>: dY (t) = b (t; Y (t) ; u (t) ; � (t)) dt+ � (t; Y (t�) ; u (t) ; � (t)) dMu (t)

Y (0) = y;
(2.1)

where b and � are given deterministic functions, y is the initial state, Mu is a martingale that

satis�es the equation

[Mu] (t) = t+

Z t

0
u (s) dMu (s) ; t � 0: (2.2)

The above equation is called Emery�s structure equation, [Mu] (�) denotes the quadratic variation

ofMu (�) ; and u (�) is some predictable process which controls exactly the jumps ofMu (�). Let

U1 and U2 be two non-empty compact sets in R, and set U = U1 � U2. The control variable is a

suitable process pair (u; �) where u : [0; T ]� 
! U1 � R; � : [0; T ]� 
! U2 � R.
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The cost functional to be minimized over the class of admissible controls has the form

J (u; �) = E
�Z T

0
f (t; Y (t) ; u (t) ; � (t)) dt+ g (Y (T ))

�
: (2.3)

This chapter is organized as follows. In section 2, we formulate the problem and give the notations

which are needed throughout this work. In section 3, we prove a su¢ cient stochastic maximum

principle. Section 4 is devoted for the study of the relationship between the stochastic maximum

principle and the dynamic programming principle and we show that the solution of the adjoint

equation coincides with the derivative of the value function. In the last section, we apply the

su¢ cient stochastic maximum principle to the mean-variance portfolio selection problem.

2.1 Assumptions and problem formulation

In this section, we present the basic notation to be used throughout the paper.

Let
�

;F ; (Ft)t�T ;P

�
be a �ltered probability space, satisfying the usual conditions. Any

element y 2 Rn will be identi�ed to a column vector with n components. Denote by A> the

transpose of any vector or matrix A: For a function h; we denote by hy the gradient or Jacobian

of h with respect to the variable y: Let T be a �xed strictly positive real number, U1 and U2 be

two nonempty compact sets in R, set U = U1 � U2.

We shall denoteM2
0

�
(Ft)0�t�T ;R

�
to be the space of all R-valued, square integrable martingales

M (�) de�ned on
�

;F ; (Ft)0�t�T ; P

�
such thatM (0) = 0:

De�nition 2.1.1 Return to [28] that a martingaleM (�) 2M2
0

�
(Ft)0�t�T ;R

�
is called normal

if hMi (t) = t. Here hMi (�) is the conditional quadratic variation process of M (�), or the

compensator of the bracket process [M] (�). Since the processes [M] (�) and hMi (�) di¤er by a

martingale, ifM (�) also has the "representation property" then it is readily seen that there exists

an (Ft)-predictable process u (�) such that

d [Mu] (t) = dt+ u (t) dMu (t) ; 8t � 0:

In the above [Mu] (�) denotes the quadratic variation of Mu (�) and u (�) is some predictable

process representing the jump size of the process Mu (�). The continuous and the pure jump
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part of the martingaleMu (�), denoted byMu;c (�) andMu;d (�) ; satisfy respectively

dMu;c (t) = 1fu(t)=0gdMu (t) and dMu;d (t) = 1fu(t) 6=0gdMu (t) ; 8t � 0:

The state Y (t) ; for t 2 [0; T ] of a controlled di¤usion is described by the following stochastic

di¤erential equation

8><>: dY (t) = b (t; Y (t) ; u (t) ; � (t)) dt+ � (t; Y (t�) ; u (t) ; � (t)) dMu (t)

y (0) = y;
(2.4)

where b : [0; T ] � Rn � U ! Rn; � : [0; T ] � Rn � U ! Rn; are given. The process Mu (�) 2

M2
0

�
(Ft)0�t�T ;R

�
is a solution to the following structure equation driven by the process u (�)

[Mu] (t) = t+

Z t

0
u (s) dMu (s) t � 0:

Noting that the jump of the state Y (�) at any jumping time t is de�ned by

�Y (t) :=

8><>: � (t; Y (t�) ; u (t))�Mu (t) ifMu has a jump at t;

0 otherwise,

where

�Mu (t) =Mu (t)�Mu (t�) = u (t) :

Finally, we recall that

[Mu] (t) =
X
0<s�t

(�Mu (s))2 + hMu;ci (t) :

De�nition 2.1.2 An admissible control is a pair of measurable, adapted processes (u (�) ; � (�)) 2

U , where, u : [0; T ]� 
! U1 � R; � : [0; T ]� 
! U2 � R, such that

E
�Z T

0

n
ju (s)j2 + j� (s)j2

o
ds

�
<1:

We denote by U = U1 � U2 the set of all admissible controls. Here U1 (resp. U2) represents the

set of the admissible controls u (�) (resp. � (�)).
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Consider a performance criterion wich has the form

J (u (�) ; � (�)) = E
�Z T

0
f (t; Y (t) ; u (t) ; � (t)) dt+ g (Y (T ))

�
: (2.5)

Here f : [0; T ] � Rn � U ! R; g : Rn ! R are measurable functions. The stochastic control

problem is to �nd an optimal control (û (�) ; �̂ (�)) 2 U such that

J (û (�) ; �̂ (�)) = inf
(u(�);�(�))2U

J (u (�) ; � (�)) : (2.6)

Let us assume the following conditions

(H1) The maps b; �; f and g are continuously di¤erentiable with respect to (y; u; �) :

(H2) All the derivatives of b; �; f and g are continuous and uniformly bounded.

(H3) b; �; f are bounded by K (1 + jyj+ juj+ j�j) ; and g is bounded by K
�
1 + jyj2

�
; for some

K > 0:

2.2 Su¢ cient stochastic maximum principle

Here we state and prove the su¢ cient stochastic maximum principle where we apply it in section

5, to solve the mean-variance portfolio selection problem.

We de�ne the Hamiltonian function H : [0; T ]� Rn � U � Rn � Rn ! R by

H (t; y; u; �; p; q) = f (t; y; u; �) + b> (t; y; u; �) p+ tr
�
�> (t; y; u; �) q

�
; (2.7)

where tr(A) denotes the trace of the matrix A. The adjoint equation is given in terms of the

derivative of the Hamiltonian as8><>: dp (t) = �Hy (t; Y (t) ; u (t) ; � (t) ; p (t) ; q (t)) dt+ q (t) dMu (t) ;

p (T ) = gy (Y (T )) :
(2.8)

Theorem 2.2.1 Let (û (�) ; �̂ (�)) be an admissible control and Ŷ (�) the associated controlled

state process. Let (p (�) ; q (�)) be the unique solution of the adjoint equation (2:8). Suppose that
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the Hamiltonian H is convex in (y; u; �) ; and the terminal cost function g is convex in y. Under

the conditions (H1)�(H3), an admissible control (û (�) ; �̂ (�)) is optimal if the following condition

holds

H
�
t; Ŷ (t) ; û (t) ; �̂ (t) ; p (t) ; q (t)

�
= inf
(u;�)2U

H
�
t; Ŷ (t) ; u; �; p (t) ; q (t)

�
: (2.9)

Proof. Let (u (�) ; � (�)) be an arbitrary admissible pair, denoting for any t 2 [0; T ] by

��
�
t; Ŷ (t)

�
= �

�
t; Ŷ (t) ; û (t) ; �̂ (t)

�
� � (t; Y (t) ; u (t) ; � (t)) ; for � = b; f; �;

and

�H (t) = H
�
t; Ŷ (t) ; û (t) ; �̂ (t) ; p (t) ; q (t)

�
�H (t; Y (t) ; u (t) ; � (t) ; p (t) ; q (t)) :

Then

J (û; �̂)� J (u; �) = E
�Z T

0
�f (t) dt+

�
g
�
Ŷ (T )

�
� g (Y (T ))

��
: (2.10)

By convexity of the Hamiltonian and (2:9) it yields

E
�Z T

0
�H (t) dt

�
� E

�Z T

0

�
Ŷ (t)� Y (t)

�>
Hy

�
t; Ŷ (t) ; û (t) ; �̂ (t) ; p (t) ; q (t)

�
dt

�
: (2.11)

Since g is convex, we get

E
h
g
�
Ŷ (T )

�
� g (Y (T ))

i
� E

��
Ŷ (T )� Y (T )

�>
gy

�
Ŷ (T )

��
;

= E
��
Ŷ (T )� Y (T )

�>
p (T )

�
: (2.12)

Using the integration by parts formula, we obtain by taking the expectations

E
��
Ŷ (T )� Y (T )

�>
p (T )

�
= E

�Z T

0

�
Ŷ (t)� Y (t)

�>
dp (t) +

Z T

0
p> (t) d

�
Ŷ (t)� Y (t)

�
+

Z T

0
d
h
Ŷ � Y; p

i
(t)

�
: (2.13)

where [Ŷ � Y; p] (�) stands for the quadratic covariation of Ŷ (�)� Y (�) and p (�) ; also called the
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bracket process. We refer to Protter [55] for more detail in this topic. Noting that

E
�Z T

0
d
h
Ŷ � Y; p

i
(t)

�
= E

�Z T

0
tr

��
��
�
t; Ŷ (t�)

��>
q (t)

�
d
h
Mû (t)

i�
;

= E
�Z T

0
tr

��
��
�
t; Ŷ (t�)

��>
q (t)

��
dt+ dMû (t)

��
;

Then we get

E
��
Ŷ (T )� Y (T )

�>
p (T )

�
= E

�Z T

0

��
Ŷ (t)� Y (t)

�> �
�Hy

�
t; Ŷ (t) ; û (t) ; �̂ (t) ; p (t) ; q (t)

��
+ p> (t)

�
�b
�
t; Ŷ (t)

��
+ tr

��
��
�
t; Ŷ (t�)

��>
q (t)

��
dt

+

Z T

0

�
p (t)

�
��
�
t; Ŷ (t�)

��>
+ tr

��
��
�
t; Ŷ (t�)

��>
q (t)

�
+
�
Ŷ (t)� Y (t)

�>
q (t)

�
dMû (t)

�
: (2.14)

Noting that the process

Z T

0

�
p (t)

�
��
�
t; Ŷ (t�)

��>
+ tr

��
��
�
t; Ŷ (t�)

��>
q (t)

�
+
�
Ŷ (t)� Y (t)

�>
q (t)

�
dMû (t) ;

is a martingale with zero expectation, then substitute (2:14) into the inequality (2:12) ; we obtain

by (2:11)

E
h
g
�
Ŷ (T )

�
� g (Y (T ))

i
� E

�Z T

0

�
��Ĥ (t) + p> (t)

�
�b
�
t; Ŷ (t)

��
+ tr

��
��
�
t; Ŷ (t)

��>
q (t)

��
dt

�
:

On the other hand, by the de�nition of the Hamiltonian, on has

E
�Z T

0
�f (t) dt

�
= E

�Z T

0

�
�Ĥ (t)� p> (t)

�
�b
�
t; Ŷ (t)

��
� tr

��
��
�
t; Ŷ (t)

��>
q (t)

��
dt

�
:

Adding the above inequalities up, we obtain J (û (�) ; �̂ (�)) � J (u (�) ; � (�)) � 0; which means
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that (û (�) ; �̂ (�)) is an optimal control for the problem (2:6).

2.3 Relation to dynamic programming

In this section, we recall a veri�cation theorem, which is useful to compute optimal controls.

Then we show that the adjoint process de�ned in Section 3, as the unique solution to the BSDE

(2:8), can be expressed in terms of the derivatives of the value function, which solves the HJB

equation.

Let Y (s) = Y t;y (s) be the solution of the controlled SDE (2:4) for s � t; with initial value Y (t) =

y: To put the problem in a Markovian framework so that we can apply dynamic programming

principle, we de�ne the performance criterion

J (t; y; u; �) = E
�Z T

t
f (s; Y (s) ; u (s) ; � (s)) ds+ g (Y (T )) jY (t) = y

�
: (2.15)

Since our objective is to minimize this functional, we de�ne the value function of the control

problem as follows

V (t; y) = inf
(u;�)2U

J (t; y; u; �) : (2.16)

Following [18] we introduce the in�nitesimal generator L(u;�), associated with (2:4) acting on

functions ' in C2b (R
n;R) by

L(u;�)' (t; y)

=
nP
i=1
bi (t; y; u; �)

@'

@yi
(t; y)

+
1

2

nP
i;j=1

1fu=0g
@2'

@yi@yj
(t; y)

nP
l=1

�i (t; y; u; �)�j (t; y; u; �)

+
nP
j=1
1fu 6=0g

�
' (t; y + u� (t; y; u; �))� ' (t; y)� u @'

@yj
�j (t; y; u; �)

�
(u)�2 ;

where �i (t; y; u; �) denotes the i�th component of the vector �: From the standard dynamic

programming principle (see, for example, [18]), the following Hamilton�Jacobi�Bellman equation
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holds

@W

@t
(t; y) + inf

(u;�)

n
L(u;�)W (t; y) + f (t; y; u; �)

o
= 0; 8 (t; y) 2 [0; T ]� Rn; (2.17)

with the terminal condition

W (T; y) = g (y) ; 8y 2 Rn; (2.18)

We start with the de�nition of classical solutions of (2:17) :

De�nition 2.3.1 Let us consider a function W 2 C1;2 ([0; T ]� Rn), we say that W is a classical

solution of (2:17) if

@W

@t
(t; y) + inf

(u;�)

n
L(u;�)W (t; y) + f (t; y; u; �)

o
= 0; 8 (t; y) 2 [0; T ]� Rn;

and the terminal condition (4.18) holds.

Theorem 2.3.1 (Veri�cation theorem) Let W be a classical solution of (2:17) with the ter-

minal condition (2:18) ; and satisfying a quadratic growth condition, i.e. there exists a constant

C such that jW (t; y)j � C (1 + jyj2) : Then, for all (t; y) 2 [0; T ]� Rn and (u; �) 2 U

W (t; y) � J (u;�) (t; y) : (2.19)

Furthermore, if there exists (û (�) ; �̂ (�)) 2 U such that

(û (t) ; �̂ (t)) 2 argmin
(u;�)

n
L(u;�)W (t; Y (t)) + f (t; Y (t) ; u (t) ; � (t))

o
; (2.20)

Then it follows that W (t; y) = J (t; y; û; �̂) :

Proof. Since W 2 C1;2 ([0; T ]� Rn) ; then for 0 � t � s � T; from Itô�s formula to W (�; Y (�)),
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see for example [55], we obtain

W (s; Y (s)) =W (t; y) +

Z s

t

@W

@t
(r; Y (r)) dr

+
nP
i=1

Z s

t

@W

@yi
(r; Y (r)) dY i (r)

+
1

2

nP
i;j=1

Z s

t

@2W

@yi@yj
(r; Y (r))

�
�i (r)�j (r)

�
dr

+
P

t�r�s

�
W (r; Y (r))�W (r; Y (r�))�

nP
i=1

@W

@yi
(r; Y (r�))�Y i (r)

�
; (2.21)

where

�Y i (r) = Y i (r)� Y i (r�) = �i (r�)�Mu (r) ; for i = 1 � � � ; n: (2.22)

On the other hand, we can rewrite the last sum of (2.21) as

P
t�r�s

�
W (r; Y (r))�W (r; Y (r�))�

nP
i=1

@W

@yi
(r; Y (r�))�Y i (r)

�
=

P
t�r�s

1fu(r) 6=0g

�
W (r; Y (r�) + � (r�)u (r))�W (r; Y (r�))

�
nP
i=1

@W

@yi
(r; Y (r�))�i (r�)u (t)

� �
�Y i (r)

�2
(u (r))2

;

=
nP
i=1

Z s

t
1fu(r) 6=0g

�
W (r; Y (r�) + � (r�)u (r))�W (r; Y (r�))

� @W

@yi
(r; Y (r�))�i (r�)u (r)

�
1fu(r) 6=0gdr + u (r) dY

i (r)

u (r)2
;

then we get

W (s; Y (s)) =W (t; y) +

Z s

t

�
@W

@t
(r; Y (r)) + L(u;�)W (r; Y (r))

�
dr

+

Z s

t

nP
j=1

�
1fu(r)=0g

@W

@yj
(r; Y (r))�j (r)

+1fu(r) 6=0g (W (r; Y (r�) + � (r�)u (r))�W (t; Y (r�)))u (r)�1
o
dMu (r) :
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Furthermore, the process

Z s

t

nP
j=1

�
1fu(r)=0g

@W

@yj
(r; Y (r))�j (r)

+1fu(r) 6=0g (W (r; Y (r�) + � (r�)u (r))�W (r; Y (r�)))u (r)�1
o
dMu (r) ;

is a martingale, so its expected value is zero. Taking the expectation, we get

E [W (s; Y (s))] =W (t; y) + E
�Z s

t

�
@W

@t
(r; Y (r)) + L(u;�)W (r; Y (r))

�
dr

�
:

Using (2:17), we get

@W

@t
(t; Y (t)) + L(u;�)W (t; Y (t)) + f (t; y; u; �) � 0; 8 (u; �) 2 U ,

then

E [W (T; Y (T ))] �W (t; y)� E
�Z T

t
f (r; Y (r) ; u (r) ; � (r)) dr

�
:

Apply the above argument to (û; �̂) 2 U , and take the limit as s �! T , then by (2:3) ; (2:4) and

(2:20) we get

W (t; y) = E
�Z T

t
f
�
r; Ŷ (r) ; û (r) ; �̂ (r)

�
dr + g

�
Ŷ (T )

��
:

Now we present a theorem which establishes the relationship between the stochastic maximum

principle and the dynamic programming principle. Throughout the rest of this section we denote

the vector functions
�
t; Ŷ (t) ; û (t) ; �̂ (t)

�
and

�
t; Ŷ (t�) ; û (t) ; �̂ (t)

�
by (t) and (t�) ; respect-

ively.

Theorem 2.3.2 Let W be a classical solution of (2:17), with the terminal condition (2:18).

Assume that W 2 C1;3 ([0; T ]� Rn) ; and there exists (û; �̂) 2 U such that the condition (2:20)
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is satis�ed. Then the solution of the BSDE (2:8) is given by

pk (t) =
@W

@yk

�
t; Ŷ (t)

�
; (2.23)

qk (t) = 1fû(t)=0g
nP
j=1

@2W

@yk@yj

�
t; Ŷ (t)

�
�j (t)

+ 1fû(t) 6=0g

�
@W

@yk

�
t; Ŷ (t�) + û (t)� (t�)

�
� @W

@yk

�
t; Ŷ (t�)

��
û (t)�1 : (2.24)

Proof. Using Itô�s formula to
@W

@yk

�
�; Ŷ (�)

�
, see e.g. [18], we obtain

@W

@yk

�
T; Ŷ (T )

�
=
@W

@yk

�
0; Ŷ (0)

�
+

Z T

0

�
@2W

@t@yk

�
t; Ŷ (t)

�
+

nP
i=1
bi (t)

@2W

@yk@yi

�
t; Ŷ (t)

�
+
1

2
1fû(t)=0g

nP
i;j=1

�
@3W

@yk@yi@yj

�
t; Ŷ (t)

�
�i (t)�j (t)

�
+ 1fû(t) 6=0g

�
@W

@yk

�
t; Ŷ (t�) + � (t�) û (t)

�
� @W

@yk

�
t; Ŷ (t�)

�
�

nP
j=1

@2W

@yk@yj

�
t; Ŷ (t�)

�
�j (t�) û (t)

!
û (t)�2

)
dt

+

Z T

0

(
1fû(t)=0g

nP
j=1

@2W

@yk@yj

�
t; Ŷ (t)

�
�j (t)

+ 1fû(t) 6=0g

�
@W

@yk

�
t; Ŷ (t�) + � (t�) û (t)

�
(2.25)

� @W

@yk

�
t; Ŷ (t�)

��
û (t)�1

�
dMû (t) :

On the other hand, de�ne

A (t; y; u; �)

=
@W

@t
(t; y) +

nP
i=1
bi (t)

@W

@yi
(t; y) + f (t; y; u; �)

+
1

2
1fu=0g

nP
i;j=1

@2W

@yi@yj
(t; y)

nP
l=1

�j (t; y; u; �)�i (t; y; u; �)

+
nP
j=1
1fu 6=0g

�
W (t; y + u� (t; y; u; �))�W (t; y)� u@W

@yj
�j (t; y; u; �)

�
u�2: (2.26)

Di¤erentiate A (t; y; u; �) with respect to yk, and evaluate the result at (y; u; �) =
�
Ŷ; û; �̂

�
; we
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get

0 =
@f

@yk
(t) +

@2W

@t@yk

�
t; Ŷ (t)

�
+

nP
i=1
bi (t)

@2W

@yk@yi

�
t; Ŷ (t)

�
+
1

2

nP
i;j=1

1fû(t)=0g
@3W

@yk@yi@yj

�
t; Ŷ (t)

�
�j (t)�i (t)

+
nP
j=1
1fû(t) 6=0g

�
@W

@yk

�
t; Ŷ (t�) + � (t�) û (t)

�
� @W

@yk

�
t; Ŷ (t�)

�
� û (t)

@2W

@yk@yj

�
t; Ŷ (t�)

�
�j (t�)

�
û (t)�2

+
nP
i=1

@bi

@yk
(t)

@W

@yi

�
t; Ŷ (t)

�
+
1

2

nP
i;j=1

1fû(t)=0g
@

@yk
�j (t)�i (t)

@2W

@yi@yj

�
t; Ŷ (t)

�
+

nP
j=1
1fû(t) 6=0g

�
@W

@yj

�
t; Ŷ (t�) + � (t�) û (t)

�
� @W

@yj

�
t; Ŷ (t�)

�� @�j

@yk
(t�) û (t)�1 : (2.27)

Finally, substituting (2:27) into (2:25) we get

d

�
@W

@yk

�
t; Ŷ (t)

��
= �

�
nP
i=1

@bi

@yk
(t)

@W

@yi

�
t; Ŷ (t)

�
+
1

2

nP
i;j=1

1fû(t)=0g
@

@yk
�
�j (t)�i (t)

� @2W

@yi@yj

�
t; Ŷ (t)

�
+

nP
j=1
1fû(t) 6=0g

�
@W

@yj

�
t; Ŷ (t�) + � (t�) û (t)

�
� @W

@yj

�
t; Ŷ (t�)

�� @�j

@yk
(t�) û (t)�1 + @f

@yk
(t)

�
dt

+

(
nP
j=1
1fû(t)=0g

@2W

@yk@yj

�
t; Ŷ (t)

�
�j (t)

+ 1fû(t) 6=0g

�
@W

@yk

�
t; Ŷ (t�) + � (t�) û (t)

�
� @W

@yk

�
t; Ŷ (t�)

��
û (t)�1

�
dMû (t) :

(2.28)
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Note that

1

2

nP
i;j=1

@

@yk
�
�i (t)�j (t)

� @2W

@yi@yj

�
t; Ŷ (t)

�
=
1

2

nP
i;j=1

�
@�j

@yk
(t)�i (t) + �j (t)

@�i

@yk
(t)

�
@2W

@yk@yi

�
t; Ŷ (t)

�
=

nP
i;j=1

�i (t)

�
@2W

@yi@yj

�
t; Ŷ (t)

�� @�j

@yk
(t) : (2.29)

On the other hand, from (2:8) ; we can rewrite the k�th coordinate of the adjoint process as

8><>:
dpk (t) = �@H

@yk

�
t; Ŷ (t) ; û (t) ; �̂ (t) ; p (t) ; q (t)

�
dt+ qk (t) dMû (t)

pk (T ) =
@g

@yk

�
Ŷ (T )

�
:

(2.30)

From the de�nition of the Hamiltonian H by (2:7) we have

@H

@yk
(t; y; u; �; p; q) =

@f

@yk
(t; y; u; �) +

nP
i=1

@bi

@yk
(t; y; u; �) pi +

nP
i=1

@�i

@yk
(t) qi:

Therefore, the uniqueness of the solution of (2:30) and the relations (2:28) and (2:29) allow us

to get (2:23) and (2:24).

Remark 2.3.1 The two basic examples of structural equations are obtained by taking a constant

process u in (2.2).

1) Consider the case where (u � 0), we can write the equation (2.2) as [M;M] (t) = t; and shows

that [M;M] (�) is continuous, hence also M (�). Being a continuous martingale with quadratic

variation t, M (�) is a Brownian motion. In this case the classical result on the relationship

between SMP and DPP is proved by Bensoussan [10].

2) The case where u � � 2 R� 4= Rnf0g, the equation (2.2) is now [M;M] (t) = t+� (M (t)�M (0)) ;

in whichM (t) = �(N
�
t=�2

�
� t=�2), where N (�) is a standard Poisson process. In this case the

relationship between the SMP and DPP was reported in Framstad et al. [32] where the systems

is driven by a Brownian motion and Poisson random measure.
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2.4 Application to mean-variance portfolio selection problem

Remark 2.4.1 In this section, we use the stochastic maximum principle to solve the mean-

variance portfolio selection problem where the system is governed by normal martingales.

We consider a market with a risky asset and a risk free bank account. The risk-free asset price

S0(t) at time t 2 [0; T ] evolves according to

dS0 (t) = � (t)S0 (t) dt; S0(0) = 1: (2.31)

Following [25], we assume that the risky asset price S1(t) at time t evolves according to the

equation

dS1(t) = � (t�)S1(t)dMu (t) ; (2.32)

where � (�) and � (�) are deterministic functions. In what follows, we denote by � (t) the amount

of money invested in the risky asset at time t: The processM (�) is a one-dimensional martingale

that satis�es the following structure equation

[Mu] (t) = t+

Z t

0
udMu (s) 8t 2 [0; T ] ;

where u 2 R: The wealth process Y (�) corresponding to the portfolio � (�) is described by

8><>: dY (t) = (� (t) (Y (t)� � (t))) dt+ � (t�)� (t) dMu (t) ;

Y (0) = y0:
(2.33)

The objective is to �nd an admissible portfolio � (�) such that the expected terminal wealth

satis�es E (y (T )) = d; for some d 2 R while the risk measured by the variance of the terminal

wealth

V ar [y (T )] := E (y (T )� E (y (T )))2 = E (y (T )� d)2

is minimized. Finding such a portfolio � (�) is referred to as the mean-variance portfolio selection

problem. In particular, we formulate the mean-variance portfolio selection problem as follows.

De�nition 2.4.1 The mean-variance portfolio selection is the following constrained stochastic
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optimization problem, parameterized by d 2 R

8>>>>>>><>>>>>>>:

minimize JMV (y0; � (�)) := Ey0
�
(y (T )� d)2

�

subject to

8>>>><>>>>:
E [y (T )] = d;

� (�) 2 U ;

(Y (�) ; � (�)) satisfy (2:33) ;

(2.34)

where Ey0 is the expectation with respect to the probability measure

Py0 := P(.jY (0) = y0):

Note that the mean-variance problem (2:34) is a dynamic optimization problem with a constraint

E (y (T )) = d. Here we apply the Lagrange multiplier technique to handle this constraint. De�ne

JMV (y0; � (�) ; �) := Ey0
�
(Y (T )� d)2

�
+ 2�Ey0 ((Y (T )� d)) :

In this way the mean-variance problem (2:34) can be solved via the following stochastic optimal

control problem (for every �xed �)

8><>: minimize JMV (y0; � (�) ; �) = Ey0
�
(Y (T )� (d� �))2

�
� �2

subject to � (�) 2 U and (Y (t) ; � (�)) satisfy (2:32) :
(2.35)

Clearly this problem has the same optimal strategy as the following optimization problem

8><>: minimize JMV (y0; � (�) ; #) = Ey0
�
(Y (T )� #)2

�
subject to � (�) 2 U and (Y (�) ; � (�)) satisfy (2:33)

(2.36)

where we let # = d� �: Thus the above optimal control problem turns out to be a quadratic loss

minimization problem and we shall solve it using the stochastic maximum principle.
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2.4.1 Quadratic loss minimization problem

We start by writing down the Hamiltonian for this system

H (t; y; u; �; p; q) = � (t) (Y (t)� � (t)) p+ � (t)� (t) q:

Therefore, the adjoint equation (2:8) becomes

8><>: dp (t) = �� (t) p (t) dt+ q (t) dMu (t) ; 0 � t < T;

p (T ) = 2 (Y (T )� #) ;
(2.37)

We seek the solution (p (�) ; q (�)) to (2:37) : We try a process p (�) of the following form

p (t) = � (t)Y (t) +  (t) ; 8t 2 [0; T ] ; (2.38)

where � (�) and  (�) are deterministic functions with � (T ) = 2 and  (T ) = �2#:

Applying Itô�s formula on p (�) to get

dp (t) =
n
�
0
(t)Y (t) + � (t) � (t) (Y (t)� � (t)) +  0

(t)
o
dt

+
�
1fu=0g� (t)� (t)� (t) + 1fu 6=0g� (t)� (t)� (t)

	
dMu (t) : (2.39)

Comparing the coe¢ cients with (2:37) ; we obtain

�� (t)� (t)Y (t)� � (t) (t) = �
0
(t)Y (t) + � (t) � (t) (Y (t)� � (t)) +  0

(t) ; (2.40)

q (t) = � (t)� (t)� (t) : (2.41)

Since H is a linear expression in � (�), that yields

� � (t) p (t) + � (t) q (t) = 0: (2.42)

Substituting (2:38) and (2:41) into (2:42), we get

�̂ (t) =
� (t)

�2 (t)

�
 (t)

� (t)
+ Ŷ (t)

�
; 8t 2 [0; T ] : (2.43)
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Therefore, inserting (2:43) into (2:40), we obtain

�
0
(t) + (2� (t)� � (t))� (t) = 0; � (T ) = 2; (2.44)

 
0
(t) + (� (t)� � (t)) (t) = 0;  (T ) = �2#; (2.45)

where

� (t) =
�2 (t)

�2 (t)
: (2.46)

Then the solutions to these system of di¤erential equations are

� (t) = 2 exp

�Z T

t
(� (s)� 2� (s)) ds

�
; 8t 2 [0; T ] ; (2.47)

 (t) = �2# exp
�Z T

t
(� (s)� � (s)) ds

�
; 8t 2 [0; T ] : (2.48)

In order to solve the original mean-variance problem, we need to determine the value function

V (t; y) of the quadratic loss minimization problem, which is de�ned by

V (t; y) := inf
�2U

E
h
(Y (T )� #)2 jY (t) = y0

i
:

From the relationship between p(�) and the value function V
�
�; Ŷ (�)

�
(see Theorem 2.3.2) and

the expression of p(�) in (2:38); we get

V
�
t; Ŷ (t)

�
=
1

2
� (t)

�
Ŷ (t)

�2
+  (t) Ŷ (t) + k (t) ; V (T; y0) = (y0 � #)2 ; (2.49)

where k(�) is function must be deterministic. From the bondary conditions in (2:44) and (2:45);

it is easy to see

k (T ) = #2: (2.50)
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Using Itô�s formula to V
�
t; Ŷ (t)

�
; 8t 2 [0; T ] ; we get

dV
�
t; Ŷ (t)

�
=

�
1

2
�
0
(t)
�
Ŷ (t�)

�2
+  

0
(t) Ŷ (t�) + �k (t)

+
�
� (t) Ŷ (t�) +  (t)

� h�
� (t)

�
Ŷ (t�)� �̂ (t)

��i
+
1

2
1fu=0g� (t) �̂ (t)

2 �2 (t)

+
1

2
1fu 6=0g � (t) �̂ (t)

2 �2 (t)
o
dt

+
n�
1fu=0g

�
� (t) Ŷ (t) +  (t)

�
�̂ (t)� (t)

+ 1fu 6=0g

�
� (t) Ŷ (t�)� (t) �̂ (t)u+ 1

2
� (t) �̂ (t)2 �2 (t)u2

+  (t)� (t) �̂ (t)u
�
u�1

o
dMu (t) : (2.51)

Noting that � (�) and  (�) are solutions to the di¤erential equations (2:47) and (2:48); we can

rewrite (2:50) as

dV
�
t; Ŷ (t)

�
=

�
�k (t)� 1

2

 2 (t)

� (t)
� (t)

�
dt

+
n�
1fu=0g

�
� (t) Ŷ (t) +  (t)

�
�̂ (t)� (t)

+ 1fu 6=0g

�
� (t) Ŷ (t�)� (t) �̂ (t)u+ 1

2
� (t) �̂ (t)2 �2 (t)u2

+  (t)� (t) �̂ (t)u
�
u�1

o
dMu (t) : (2.52)

Since �̂ (�) is the optimal strategy the value function V
�
�; Ŷ (�)

�
should be a martingale. To

ensure the martingale property of V
�
�; Ŷ (�)

�
the dt part must be equal to 0, that is

�k (t)� 1
2

 2 (t)

� (t)
� (t) = 0; 8t 2 [0; T ] : (2.53)

Combining the terminal boundary condition (2:50) and the standard procedure to the Feyman�

Kac representation of a system of di¤erential equations, we have the following expression for

k (�)

k (t) = #2
�
1� E

�Z T

t
� (s)

 2 (s)

� (s)
ds

��
; 8t 2 [0; T ] : (2.54)

The above analysis yields the following theorem for the quadratic loss minimization problem
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(2:36):

Theorem 2.4.1 The optimal strategy for the quadratic loss minimization problem (2:36) is given

by

�̂ (t) =
� (t)

�2 (t)

�
 (t)

� (t)
+ Ŷ (t�)

�
; 8t 2 [0; T ] ;

and the corresponding optimal value function is given by

V
�
t; Ŷ (t)

�
=
1

2
� (t)

�
Ŷ (t)

�2
+  (t) Ŷ (t) + k (t) ; 8t 2 [0; T ] ;

where � (t),  (t) ; and k (t) are given by (2:47), (2:48), and (2:54), respectively.

2.4.2 The solution of the mean-variance problem

Denote by VMV (0; y0) and VMV L(0; y0) the optimal value functions for problem (2:34) and prob-

lem (2:35), respectively. Observing the relationship between the control problem (2:34) and the

control problem (2:35) and the solution of the control problem (2:35) established in the previous

subsection, we have the following result

VMV L(0; y0) = V (0; y0)� �2

=
1

2
� (0) y20 +  (0) y0 + k (0)� �2:

Write

~� (t) :=
1

2
� (t) ;

~ (t) := � (t)
2#

= �  (t)

2 (d� �) ;

~k (t) :=
k (t)

#2
= �  (t)

(d� �)2
:

Then, we can rewrite VMV L(0; y0) as

VMV L(0; y0) = ~� (t) y
2
0 � 2 (d� �) ~ (t) y0 + (d� �)

2 ~k (t)� �2:

Note that JMV (y0; �(:)) is strictly convex in �(:) and the constraint function E [Y (t)]�d is a¢ ne
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in �(:): Therefore, we can apply the well-known Lagrange duality theorem (see Luenberger [11,

Theorem 1, p. 224]) to obtain that

VMV (0; y0) = sup
�2R

VMV L(0; y0):

Observing that VMV L(0; y0) is a quadratic function in � and the quadratic coe¢ cient is equal to

~k (0)� 1 = �E
�Z T

t
�� (s)  

2 (s)

� (s)
ds

�
< 0;

so VMV L(0; y0) attains its maximum at the point

�� = d+
d� ~ (0) y0
~k (0)� 1

:

Substituting �� into VMV L(0; y0), we obtain the maximum value as follows

sup
�2R

VMV L(0; y0) =
~k (0)

1� ~k (0)

"
d�

~ (0)
~k (0)

y0

#2
+
~� (0) ~k (0)� ~ 2 (0)

~k (0)
y20:

That is,

VMV (0; y0) =
~k (0)

1� ~k (0)

"
d�

~ (0)
~k (0)

y0

#2
+
~� (0) ~k (0)� ~ 2 (0)

~k (0)
y20:

The above analysis yields the following theorem.

Theorem 2.4.2 The e¢ cient portfolio of the mean-variance problem (2:34) corresponding to

the expected terminal value d, as a function of time t, the wealth level y, is

�̂ (t; y) =

"
y � (d� ��)

~ (t)
~� (t)

#
� (t)

�2 (t)
;

where

�� = d+
d� ~ (0) y0
~k (0)� 1

:

Furthermore, the e¢ cient frontier (or optimal value function) for the mean-variance problem
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(2:34) is

V arŶ (T ) = VMV (0; y0)

=
~k (0)

1� ~k (0)

"
d�

~ (0)
~k (0)

y0

#2
+
~� (0) ~k (0)� ~ 2 (0)

~k (0)
y20;

where ~� (t), ~ (t), and ~k (t) are given by

~� (t) = E
�
exp

�Z T

t
(� (s)� 2� (s)) ds

��
;

~ (t) = E
�
exp

�Z T

t
(� (s)� � (s)) ds

��
;

~k (t) = 1� E
�Z T

t
� (s)

 2 (s)

� (s)
ds

�
:
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Chapter 3

Relationship Between MP and DPP

for Systems Driven by Normal

Martingales: viscosity solution

In this chapter, we present a nonsmooth version of the relationship between the stochastic

maximum principle and the dynamic programming principle for stochastic control problems

where the state of the systems driven by normal martingales and the control domain is convex.

By using the concepts of sub and super-jets, all inclusions are derived from the value function

and the adjoint process.

3.1 Problem statement and preliminaries

Let
�

;F ; (Ft)t�T ;P

�
be a �ltered probability space, satisfying the usual conditions. Any

element y 2 Rn will be identi�ed to a column vector with n components. Denote by A> the

transpose of any vector or matrix A: For a function h; we denote by hy the gradient or Jacobian

of h with respect to the variable y: Let T be a �xed strictly positive real number, U1 and U2

be two nonempty compact sets in R, set U = U1 � U2. For a given s 2 [0; T ] ; we denote by

U [s; T ] the set of (Ft)t�T adapted processes. We shall denoteM2
0

�
(Ft)0�t�T ;R

�
to be the space

of all R-valued, square integrable martingalesM (�) de�ned on
�

;F ; (Ft)0�t�T ; P

�
such that

M (0) = 0:
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De�nition 3.1.1 Return to [28] that a martingaleM (�) 2M2
0

�
(Ft)0�t�T ;R

�
is called normal

if hMi (t) = t. Here hMi (�) is the conditional quadratic variation process of M (�), or the

compensator of the bracket process [M] (�). Since the processes [M] (�) and hMi (�) di¤er by a

martingale, ifM (�) also has the "representation property" then it is readily seen that there exists

an (Ft)-predictable process u (�) such that

d [Mu] (t) = dt+ u (t) dMu (t) ; 8t � 0:

In the above [Mu] (�) denotes the quadratic variation of Mu (�) and u (�) is some predictable

process representing the jump size of the process Mu (�). The continuous and the pure jump

part of the martingaleMu (�), denoted byMu;c (�) andMu;d (�) ; satisfy respectively

dMu;c (t) = 1fu(t)=0gdMu (t) and dMu;d (t) = 1fu(t) 6=0gdMu (t) ; 8t � 0:

For any initial time and state (s; y) 2 [0; T ] � Rn; suppose that the state Y s;y;u;� (�) 2 Rn of a

controlled di¤usion is described by the following stochastic di¤erential equation

8><>:
dY s;y;u;� (t) = b (t; Y s;y;u;�; u (t) ; � (t)) dt+ � (t; Y s;y;u;� (t�) ; u (t) ; � (t)) dMu (t)

Y s;x;u;� (s) = y;

(3.1)

where b : [0; T ]� Rn � U ! Rn; � : [0; T ]� Rn � U ! Rn; are given functions.

The processMu (�) 2M2
0

�
(Ft)0�t�T ;R

�
is a solution to the following structure equation driven

by the process u (�)

[Mu] (t) = t+

Z t

0
u (s) dMu (s) t � 0:

Noting that the jump of the state Y (�) at any jumping time t is de�ned by

�Y (t) :=

8><>: � (t; Y (t�) ; u (t))�Mu (t) ifMu has a jump at t;

0 otherwise,

where

�Mu (t) =Mu (t)�Mu (t�) = u (t) :
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Finally, we recall that

[Mu] (t) =
X
0<s�t

(�Mu (s))2 + hMu;ci (t) :

De�nition 3.1.2 An admissible control is a pair of measurable, adapted processes (u (�) ; � (�)) 2

U , where, u : [0; T ]� 
! U1 � R; � : [0; T ]� 
! U2 � R, such that

E
�Z T

0

n
ju (s)j2 + j� (s)j2

o
ds

�
<1:

We denote by U = U1 � U2 the set of all admissible controls. Here U1 (resp. U2) represents the

set of the admissible controls u (�) (resp. � (�)).

We consider the cost functional

J (s; y; u (�) ; � (�)) = E
�Z T

s
f (t; Y s;y;u;� (t) ; u (t) ; � (t)) dt+ g (Y s;y;u;� (T ))

�
; (3.2)

where f : [0; T ]� Rn � U ! R; g : Rn ! R are given functions.

For any t 2 [0; T ] and y; by 2 Rn, we make the following assumptions
(H1) b; � are uniformly continuous in (t; y; u; �). There exists a constant C > 0, such that

8><>:
jb (t; y; u; �)� b (t; by; u; �)j+ j� (t; y; u; �)� � (t; by; u; �)j � C (jy � byj) ;
jb (t; y; u; �)j+ j� (t; y; u; �)j � C (1 + jyj) :

(H2) f; g are uniformly continuous in (t; y; u; �). There exists a constant C > 0, such that

8><>:
jf (t; y; u; �)� f (t; by; u; �)j+ jg (y)� g (by)j � C (jy � byj) ;
jf (t; y; u; �)j+ jg (y)j � C (1 + jyj) :

(H3) b; �; f; g are continuously di¤erentiable in y and the partial derivatives are uniformly bounded.

There exists a constant C > 0, such that

jby (t; y; u; �)� by (t; by; u; �)j+ j�y (t; y; u; �)� �y (t; by; u; �)j � C (jy � byj) ;
jfy (t; y; u; �)j+ jgy (y)j � C (1 + jyj) :
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Remark 3.1.1 Under assumption (H1)�(H3) and for any (u (�) ; � (�)) 2 U [s; T ], SDE (3:1)

has a unique solution Y s;y;u;� (�) ; see Buckdahn, Ma and Rainer [18]:

The objective of the optimality problem, is to minimize (3:2) subject to (3:1) over U [s; T ] : Any

admissible control �u (�) ; �� (�) that achieves the minimum is called an optimal control, and it

implies an associated optimal state evolution �Y s;y;�u;�� (�) from (3:1) :

We de�ne the value function V : [0; T ]� Rn �! R as

8><>:
V (s; y) := inf

(u(:);�(:))2U [s;T ]
J (s; y; u (�) ; � (�)) ; 8 (s; y) 2 [0; T ]� Rn;

V (T; y) = g (y) :

(3.3)

We introduce the following generalized Hamilton-Jacobi-Bellman (HJB) equation

8><>:
�vt (t; y)� inf

(u;�)2U
G (t; y; u; �;�v (t; y) ;�vy (t; y) ;�vyy (t; y)) = 0;

v (T; y) = g (y) ; (t; y) 2 [0; T ]� Rn;
(3.4)

where the generalized Hamiltonian function G associated with a function ' 2 C1;2 ([0; T ]� Rn)

is de�ned as

G (t; y; u; �; ' (t; y) ; 'y (t; y) ; 'yy (t; y))

=
nP
i=1
bi (t; y; u; �)

@'

@yi
(t; y)� f (t; y; u; �)

+
1

2

nP
i;j=1

1fu=0g
@2'

@yi@yj
(t; y)

nP
l=1

�i (t; y; u; �)�j (t; y; u; �)

+
nP
j=1
1fu 6=0g

�
' (t; y + u� (t; y; u; �))� ' (t; y)� u @'

@yj
�j (t; y; u; �)

�
(u)�2 ; (3.5)

where �i (t; y; u; �) denotes the i�th component of the vector �:

Remark 3.1.2 In this case the HJB equation takes a new form which we shall name as a

mixed second-order partial di¤erential-di¤erence equation(PDDE in short), see Buckdahn, Ma

and Rainer [18]:
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Lemma 3.1.1 Let (H1)�(H2) hold. Then for any t 2 [0; T ] and y; �y 2 Rn; we have

8><>:
jV (t; y)� V (t; �y)j � C jy � �yj ;

jV (t; y)j � C (1 + jyj) :
(3.6)

Note that such a second-order PDDE has not been studied systematically in the literature. We

begin by introducing the notion of viscosity solution, following the approach by Barles, Buckdahn

and Pardoux in [8].

Now we introduce the de�nition of the viscosity solution for HJB equation (3:4)

De�nition 3.1.3 (i)A continuous function v : [0; T ]�Rn �! R is called a viscosity subsolution

of the partial di¤erential-di¤erence equation (3:4) if

v (T; y) � g (y) ; 8y 2 Rn;

and for any ' 2 C1;2 ([0; T ]� Rn) such that v�' attains a local maximum at (t; y) 2 [0; T ]�Rn,

it holds that

� 't (t; y)� inf
(u;�)2 �U

G� (t; y; u; �;�v (t; y) ;�'y (t; y) ;�'yy (t; y)) � 0: (3.7)

(ii)A continuous function v : [0; T ] � Rn �! R is called a viscosity supersolution of the PDDE

(3:4) if

v (T; y) � g (y) ; 8y 2 Rn;

and for any ' 2 C1;2 ([0; T ]� Rn) such that v�' attains a local minimum at (t; y) 2 [0; T ]�Rn,

it holds that

� 't (t; y)� inf
(u;�)2 �U

G� (t; y; u; �;�v (t; y) ;�'y (t; y) ;�'yy (t; y)) � 0; (3.8)
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for all su¢ ciently small � > 0; where

G� (t; y; u; �;�v (t; y) ;�'y (t; y) ;�'yy (t; y))

:=
nP
i=1
bi (t; y; u; �)

@'

@yi
(t; y) +

1

2

nP
i;j=1

1fu=0g
@2'

@yi@yj
(t; y)

nP
l=1

�i (t; y; u; �)�j (t; y; u; �)

+
nP
j=1
1f0<juj��g

�
' (t; y + u� (t; y; u; �))� ' (t; y)� u @'

@yj
�j (t; y; u; �)

�
(u)�2

+
nP
j=1
1fjuj>�g

�
v (t; y + u� (t; y; u; �))� v (t; y)� u @'

@yj
�j (t; y; u; �)

�
(u)�2 � f (t; y; u; �) ;

(3.9)

(iii) A function v is called a viscosity solution of (3:4) if it is both a viscosity subsolution and a

supersolution of (3:4).

Remark 3.1.3 We note that the last two second-order di¤erence quotients in (3.9) are designed

to take away the possible singularity at u = 0 when V is not smooth. Such an idea was also used

by Barles, Buckdahn and Pardoux in [8].

Remark 3.1.4 In the general theory of viscosity solutions one can often replace the local max-

imum and/or minimum in the de�nition above by the global ones.

Lemma 3.1.2 In De�nition 3.2 one can consider only those test functions ' 2 C1;2 ([0; T ]� Rn)

such that v � ' achieves a global maximum (for a viscosity subsolution) and a global minimum

(for a viscosity supersolution), respectively, at (t; y).

Furthermore, the operator G� (t; y; u; �;�v (t; y) ;�'y (t; y) ;�'yy (t; y)) can be replaced by

G (t; y; u; �;�' (t; y) ;�'y (t; y) ;�'yy (t; y)) de�ned by (3.5).

Theorem 3.1.1 (Uniqueness of the viscosity solution) Assume (H1)�(H2)�(H3), and if

there exists a compact set U1 2 R such that

(i) 0 =2 U1;

(ii) U = U1 or U = f0g [ U1:

Then the value function V : [0; T ]�Rn �! R de�ned by (3.3) is the unique viscosity solution of

(3.4) among all bounded, continuous functions.
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Proof. The proof is adapted from the proof of Theorem 6.2, see Barles, Buckdahn and Pardoux

in [8].

De�ne the usual Hamiltonian function H : [0; T ]� Rn � U � Rn � Rn by

H (t; y; u; �; p; q) = f (t; y; u; �) + b> (t; y; u; �) p+ tr
�
�> (t; y; u; �) q

�
: (3.10)

Associated with an optimal process
�
�Y s;y;�u;�� (:) ; �u (:) ; �� (:)

�
; we introduce the adjoint equation

8><>:
dp (t) = �Hy

�
t; �Y s;y;�u;�� (t) ; �u (t) ; �� (t) ; p (t) ; q (t)

�
dt� q (t)M�u (t) ;

p (T ) = �gy
�
�Y s;y;�u;�� (T )

�
; t 2 [0; T ] :

(3.11)

Note that under (H1)�(H2) and (H3), the linear BSDE (3.11) admits a unique solution

(p (:) ; q (:)) which is called the adjoint process pair.

Theorem 3.1.2 (Su¢ cient condition of optimality) Let (�u (�) ; �� (�)) be an admissible con-

trol and �Y s;y;�u;�� (�) the associated controlled state process. Let (p (�) ; q (�)) be the unique solution

of the adjoint equation (3:11). Suppose that the Hamiltonian H is convex in (y; u; �) ; and the

terminal cost function g is convex in y. Under the conditions (H1)�(H2) and (H3), an admissible

control (�u (�) ; �� (�)) is optimal if the following condition holds

H
�
t; �Y s;y;�u;�� (t) ; �u (t) ; �� (t) ; p (t) ; q (t)

�
= inf
(u;�)2U

H
�
t; �Y s;y;�u;�� (t) ; �u (t) ; �� (t) ; p (t) ; q (t)

�
:

(3.12)

Remark 3.1.5 Notice that theorem 3.1.1 is proved by Chighoub, Lakhdari and Shi in [22].

3.2 Main result

Let us recall the notions of the �rst-order super- and sub-jets in the spatial variable y, see [23],

[64]. Given v 2 C ([0; T ]� Rn), and (t; ŷ) 2 [0; T ]� Rn, we de�ne the �rst-order super-jet by

D1;+y v (t; by) := fp 2 Rn jv (t; y) � v (t; by) + p (y � by) + o (jy � byj) ; as y �! byg : (3.13)
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Similarly, we consider the �rst-order sub-jet of v by

D1;�y v (t; by) := fp 2 Rn jv (t; y) � v (t; by) + p (y � by) + o (jy � byj) ; as y �! byg (3.14)

The following result shows that the adjoint process p and the value function V relate to each

other within the framework of the superjet and the subjet in the state variable y along an optimal

trajectory.

Theorem 3.2.1 Let (H1)�(H2)�(H3) hold and (t; y) 2 [0; T ] � Rn be �xed. Suppose that

(�u (t) ; �� (t)) is an optimal control for problem (3:3) ; and �Y s;y;�u;�� (�) is the corresponding optimal

state. Let (p (�) ; q (�)) be the adjoint process. Then

D1;�y V
�
t; �Y s;y;�u;�� (t)

�
� f�p (t)g � D1;+y V

�
t; �Y s;y;�u;�� (t)

�
; 8t 2 [s; T ] ; P�a:s: (3.15)

where V (�; �) is the value function de�ned by (3:3) :

Proof. For simplicity, we introduce the following notations

�b (t) = b
�
t; �Y s;y;�u;�� (t) ; �u (t) ; �� (t)

�
; �� (t�) = �

�
t; �Y s;y;�u;�� (t�) ; �u (t) ; �� (t)

�
;

�f (t) = f
�
t; �Y s;y;�u;�� (t) ; �u (t) ; �� (t)

�
; for all t 2 [0; T ]; (u; �) 2 U;

and similar notations used for all their derivatives.

Fix a t 2 [s; T ]. For any y1 2 Rn, denote by Y t;y1;�u;�� (t) the solution of the following SDE

Y t;y
1;u;� (r) = y1 +

Z r

t
b
�
r; Y t;y

1;u;� (r) ; u (r) ; � (r)
�
dr

+

Z r

t
�
�
r; Y t;y

1;u;� (r�) ; u (r) ; � (r)
�
dMu (r) :

(3.16)

It is clear that (3.16) can be regarded as an SDE on
�

;F ; (Fsr )r�s ;P (: jFst ) (!)

�
for P�a:s:!;

where P (: jFst ) (!) is the regular conditional probability given Fst de�ned on (
;F), see pp.

12�16 of Ikeda and Watanabe [38]:
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For any t � r � T , set X (r) := Y t;y
1;�u;�� (r)� �Y t;y;�u;�� (r) ; we have for any integer k � 1,

E

"
sup
t�r�T

jX (r)j2k jFst

#
� C

��y1 � �Y s;y;�u;�� (t)
��2k ; P�a:s: (3.17)

The above inequality can be proved by a routine successive approximation argument, see Theorem

6.3, Chapter1, Yong and Zhou [64].

Now we write the equation for the processX (�) as

8><>:
dX (r) =

�
�by (r)X (r) + "1 (r)

	
dr + f��y (r�)X (r) + "2 (r)g dM�u (r) ;

X (t) = y1 � �Y s;y;�u;�� (t) ;

(3.18)

where 8>><>>:
"1 (r) :=

Z 1

0

�
by
�
r; �Y s;y;�u;�� (r) + �X (r) ; �u (r) ; �� (r)

�
� �by (r)

�
X (r) d�;

"2 (r) :=

Z 1

0

�
�y
�
r; �Y s;y;�u;�� (r) + �X (r) ; �u (r) ; �� (r)

�
� ��y (r�)

�
X (r) d�:

(3.19)

For any k � 1, there exists a deterministic continuous and increasing function � : [0;1)! [0;1),

independent of y1 2 Rn, with �(r)
r as r ! 0, such that

8>><>>:
E
�Z T

t
j"1 (r)j2k dr jFst

�
� �

��y1 � �Y s;y;�u;�� (t)
��2k ; P�a:s:

E
�Z T

t
j"2 (r)j2k dr jFst

�
� �

��y1 � �Y s;y;�u;�� (t)
��2k ; P�a:s:

(3.20)

Applying Itô�s formula to hX (�) ; p (�)i , noting (3.11), we get

E
�Z T

t
h �fy (r) ; X (r)idr + hgy

�
�Y s;y;�u;�� (T )

�
; X (T )i jFst

�
= h�p (t) ; X (t)i+ E

�Z T

t
[h"1 (r) ; p (r)i+ h"2 (r) ; q (r)i] dr jFst

�
; P�a:s: (3.21)
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Noting (3.20), since E

"
sup
t�r�T

jp (r)j2k dr jFst

#
< 1; E

"
sup
t�r�T

jq (r)j2k dr jFst

#
< 1; it follows

that

E
�Z T

t
h"1 (r) ; p (r)idr jFst

�
� E

"
sup
t�r�T

p (r)

Z T

t
"1 (r) dr jFst

#

�
 
E

"
sup
t�r�T

jp (r)j2 jFst

#! 1
2 �
E
�Z T

t
"1 (r) dr jFst

�� 1
2

� o
��y1 � �Y s;y;�u;�� (t)

�� ;
and

E
�Z T

t
h"2 (r) ; q (r)idr jFst

�
� E

"
sup
t�r�T

q (r)

Z T

t
"2 (r) dr jFst

#

�
 
E

"
sup
t�r�T

jq (r)j2 jFst

#! 1
2 �
E
�Z T

t
"2 (r) dr jFst

�� 1
2

� o
��y1 � �Y s;y;�u;�� (t)

�� :
Thus, we have

E
�Z T

t
h �fy (r) ; X (r)idr + hgy

�
�Y s;y;�u;�� (T )

�
; X (T )i jFst

�
= h�p (t) ; X (t)i+ o

��y1 � �Y s;y;�u;�� (t)
�� ; P�a:s: (3.22)

Let us call a y1 2 Rn rational if all its coordinates are rational numbers. Since the set of all

rational y1 2 Rn is countable, we may �nd a subset 
0 � 
 with P (
0) = 1 such that for any

!0 2 
0;

8><>:
V
�
t; �Y s;y;�u;�� (t; !0)

�
= E

�Z T

s

�f (r) dr + g
�
�Y s;y;�u;�� (T )

�
jFst

�
(!0) ;

(3.17)-(3.20)-(3.22), are satis�ed for any rational y1, and �u(�); ��(�)j[t;T ] 2 U [t; T ]:
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Let !0 2 
0 be �xed, then for any rational y1 2 Rn; noting (3.20), we have

V
�
t; y1

�
� V

�
t; �Y s;y;�u;�� (t; !0)

�
= E

�Z T

t

h
f
�
r; Y t;y

1;�u;�� (r) ; �u (r) ; �� (r)
�
� �f (r)

i
dr

+ g
�
Y t;y

1;�u;�� (T )
�
� g

�
�Y s;y;�u;�� (T )

�
jFst

o
(!0)

= E
�Z T

t



�fy (r) ; X (r)

�
dr +



gy
�
�Y s;y;�u;�� (T )

�
; X (T )

�
jFst

�
(!0)

+ o
���y1 � �Y s;y;�u;�� (t; !0)

��� : (3.23)

By (3.22), we have

V
�
t; y1

�
� V

�
t; �Y s;y;�u;�� (t; !0)

�
� �hp (t; !0) ; X (t; !0)i+ o

���y1 � �Y s;y;�u;�� (t; !0)
��� (3.24)

Note that the term o
���y1 � �Y s;y;�u;�� (t; !0)

��� in the above depends only on the size of ��y1 � �Y s;y;�u;�� (t; !0)
�� ;

and it is independent of y1. Therefore, by the continuity of V (t; �), we see that (3.24) holds for

all y1 2 Rn, which by de�nition (3.1) proves

f�p (t)g 2 D1;+y V
�
t; �Y s;y;�u;�� (t)

�
; 8t 2 [s; T ] ; P�a:s: (3.25)

Let us now show f�p (t)g � D1;�y V (t; �ys;x;�u;�� (t)) : Fix an ! 2 
 such that (3.24) holds for any

y1 2 Rn: For any � 2 D1;�y V (t; �ys;x;�u;�� (t)), by de�nition (3.2) we have

0 � lim
y1�! �Y s;y;�u;��(t)

(
V
�
t; y1

�
� V

�
t; �Y s;y;�u;�� (t)

���y1 � �Y s;y;�u;�� (t)
�� �



�; y1 � �Y s;y;�u;�� (t)

���y1 � �Y s;y;�u;�� (t)
��
)

� lim
y1�! �Y s;y;�u;��(t)



�p (t)� �; y1 � �Y s;y;�u;�� (t)

���y1 � �Y s;y;�u;�� (t)
�� :

Then, it is necessary that

� = �p (t) ; 8t 2 [s; T ]; P�a:s:
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solution

Remark 3.2.1 It is interesting to note that if V is di¤erentiable with respect to y, then (3.15)

reduces to

�p (t) = Vy
�
t; �Y s;y;�u;�� (t)

�
; P�a:s:
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Chapter 4

A Characterization of Sub-game

Perfect Equilibria for SDEs of

Mean-Field Type Under Partial

Information

In this chapter, we characterize sub-game perfect equilibrium strategy of a partially observed

optimal control problems for mean-�eld stochastic di¤erential equations (SDEs) with correlated

noises between systems and observations, which is time-inconsistent.

4.1 Notation and statement of the problem

Let T > 0 be a �xed time horizon and (
;F ;F;P) be a given �ltered probability space on which

there are de�ned two independent standard one-dimensional Brownian motion W (:) and Y (:) :

Let fFwt g and
�
FYt
	
be the natural �ltration generated by W (:) and Y (:) respectively. Set

F : = fFs; 0 � s � Tg and FY : =
�
FYt ; 0 � s � T

	
; where, Ft = Fwt 
 FYt ; F = FT : For a

function f , we denote by fx (resp., fxx) the gradient or Jacobian (resp., the Hessian) of f with

respect to the variable X, and by j:j the norm of an Euclidean space; by IA the indicator function

of a set A.
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An admissible strategy v is an FY -adapted process with values in a non-empty subset U of R

and satis�es sup
0�s�T

E jv (s)jm <1 for m = 1; 2 : : : : The set of all admissible strategies over [0; T ]

is denoted by Uad.

For each admissible strategy v 2 Uad, we consider the dynamics given by the following SDE of

mean-�eld type with correlated noises between systems and observations de�ned on (
;F ;F;P) ;

8>>>>>>>>>><>>>>>>>>>>:

dXv (s) = b (s;Xv (s) ;E [Xv (s)] ; v (s)) ds

+ � (s;Xv (s) ;E [Xv (s)] ; v (s)) dW (s)

+ b� (s;Xv (s) ;E [Xv (s)] ; v (s)) dcW (s) ; 0 < s � T;

Xv (0) = x0 (2 R) :

(4.1)

Suppose Xv (s) can not be directly observed, while we can observe a related process Y (:), which

is governed by 8><>:
dY (s) = h (s;X (s)) ds+ dcW (s) ;

Y (0) = 0; s � 0;
(4.2)

where h : [0; T ]� R! R; and cW (:) is a stochastic process depending on v (:) :

Throughout what follows we shall assume the following.

(H1) The functions b; �; b�; f : [0; T ] � R � R � U ! R, h : [0; T ] � R ! R, � : R � R ! R are

twice continuously di¤erentiable in (x; bx). Moreover, b; �; b�; f and all their derivatives up
to second order with respect to (x; bx) are continuous in (x; bx; v) and bounded.

Now, putting (4.2) into (4.1), we get

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dXv (s) = b (s;Xv (s) ;E [Xv (s)] ; v (s)) ds

� b� (s;Xv (s) ;E [Xv (s)] ; v (s))h (s;Xv (s)) ds

+ � (s;Xv (s) ;E [Xv (s)] ; v (s)) dW (s) ;

+ b� (s;Xv (s) ;E [Xv (s)] ; v (s)) dY (s)

Xv (0) = x0 (2 R) :

(4.3)
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For any v (:) 2 Uad; and under assumptions (H1), the SDE (4.3) admits a unique solution. De�ne

dPv = Zv(t)dP, with

Z (s) = exp

�Z s

0
h (t;Xv (t)) dY (t)� 1

2

Z s

0
h2 (t;Xv (t)) dt

�
:

Using Itô�s formula, we know that Z
v
(:) is the solution of

8><>:
dZv(s) = Zv(s)h (s;Xv (s)) dY (s) ;

Zv(0) = 1:

(4.4)

From the boundedness of h, we know Novikov condition E
�
exp

�
1
2

R s
0 h

2 (t;Xv (t)) dt
�	

<1 nat-

urally succeeds. Thus, by Girsanov�s theorem, Pv is a new probability measure and
�
W (:) ;cW (:)

�
is a two-dimensional standard Brownian motion de�ned on (
;F ;F;Pv).

We introduce the following cost functional

J (t; x; v) = Ev
�Z T

t
f
�
s;Xv;t;x (s) ;E

�
Xv;t;x (s)

�
; v (s)

�
ds+ �

�
Xv;t;x (T ) ;E

�
Xv;t;x (T )

���
;

(4.5)

where Ev denotes mathematical expectation in the probability space (
;F ;F;Pv), According to

Bayes�formula, (4.5) can be rewritten as

J (t; x; v) = E
�Z T

t
Zv;t;x(s)f

�
s;Xv;t;x (s) ;E

�
Xv;t;x (s)

�
; v (s)

�
ds

+ Zv;t;x(T )�
�
Xv;t;x (T ) ;E

�
Xv;t;x (T )

���
: (4.6)

Equation (4.6) associated with the state process Xv;t;x, parameterized by (t; x) 2 [0; T ] � R,
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whose the dynamics is given by the SDE

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dXv;t;x (s) = b
�
s;Xv;t;x (s) ;E

�
Xv;t;x (s)

�
; v (s)

�
ds

� b� �s;Xv;t;x (s) ;E
�
Xv;t;x (s)

�
; v (s)

�
h
�
s;Xv;t;x (s)

�
ds

+ �
�
s;Xv;t;x (s) ;E

�
Xv;t;x (s)

�
; v (s)

�
dW (s)

+ b� �s;Xv;t;x (s) ;E
�
Xv;t;x (s)

�
; v (s)

�
dY (s) ;

Xv;t;x (t) = x (2 R) ; t < s � T:

(4.7)

The dependence of (4.6)�(4.7) on the term E
�
Xv;t;x (s)

�
makes the system (4.6)�(4.7) time-

inconsistent in the sense that the Bellman Principle for optimality does not hold, i.e., the t-

optimal strategy u (t; x; :) which minimizes J (t; x; :) may not be optimal after t: The restriction

of u (t; x; :) on
h
t
0
; T
i
does not minimize J

�
t
0
; x

0
; v
�
for some t > t

0
when the state process is

steered to x
0
by u:

De�ne the admissible strategy u" as the �local� spike variation of a given admissible strategy

u 2 Uad over the set [t; t+ "] ;

u"(s) =

8><>: v (s) ; s 2 [t; t+ "] ;

u(s); s 2 [t; T ] n[t; t+ "] :

De�nition 4.1.1 The admissible strategy u is a sub-game perfect equilibrium for the system

(4.6)�(4.7) if

lim
"#0

J (t; x; u)� J (t; x; u")
"

� 0; (4.8)

for all v 2 Uad; x 2 R and a:e: t 2 [0; T ]. The corresponding equilibrium dynamics solves the

SDE 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

dXu (s) = b (s;Xu (s) ;E [Xu (s)] ; u (s)) ds

� b� (s;Xu (s) ;E [Xu (s)] ; u (s))h (s;Xu (s)) ds

+ � (s;Xu (s) ;E [Xu (s)] ; u (s)) dW (s)

+ b� (s;Xu (s) ;E [Xu (s)] ; u (s)) dY (s) ;

Xu (0) = x0:

(4.9)
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For brevity, sometimes we simply call u an equilibrium point when there is no ambiguity.

Our objective in this study is to characterize sub-game perfect equilibria for the system

(4.10)�(4.11) for the more general case where player t has a random variable � 2 L2 (
;Ft;Pv;R)

as a state in terms of stochastic maximum principle criterion.

For a given admissible strategy v 2 Uad; if player t has � 2 L2 (
;Ft;Pv;R) as its state, the

dynamics is given by the SDE

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dXv;t;� (s) = b
�
s;Xv;t;� (s) ;E

�
Xv;t;� (s)

�
; v (s)

�
ds

� b� �s;Xv;t;� (s) ;E
�
Xv;t;� (s)

�
; v (s)

�
h
�
s;Xv;t;� (s)

�
ds

+ �
�
s;Xv;t;� (s) ;E

�
Xv;t;� (s)

�
; v (s)

�
dW (s)

+ b� �s;Xv;t;� (s) ;E
�
Xv;t;� (s)

�
; v (s)

�
dY (s) ;

Xv;t;� (t) = �;

(4.10)

and the associated cost functional

J (t; �; v) = E
�Z T

t
Zv;t;�(s)f

�
s;Xv;t;� (s) ;E

h
Xv;t;� (s)

i
; v (s)

�
ds

+ Zv;t;�(T )�
�
Xv;t;� (T ) ;E

h
Xv;t;� (T )

i�i
: (4.11)

In view of Karatzas and Sherve ([40], pp. 289-290), under (H1), for any v 2 Uad; the SDE (4.10)

admits a unique strong solution. Moreover, there exists a constant C > 0 which depends only

on the bounds of b; �; b� and their �rst derivatives x; bx, such that, for any t 2 [0; T ], v 2 Uad and
�; �

0 2 L2 (
;Ft;Pv;R), we also have the following estimates, P� a:s.

E

"
sup
t�s�T

���Xv;t;�(s)
���2 j Ft# � C

�
1 + j�j2 + E

h
j�j2
i�
;

E

"
sup
t�s�T

���Xv;t;�(s)�Xv;t;�
0
(s)
���2 j Ft# � C

����� � �0���2 + E ����� � �0���2�� :
Moreover, the performance functional (4.11) is well de�ned and �nite.

Remark 4.1.1 De�nitions 4.1.1 can be accordingly generalized by replacing (t; x) by (t; �) and
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the inequality condition takes the form

lim
"#0

J (t; �; u (�))� J (t; �; u" (�))
"

� 0; (4.12)

for all v 2 Uad; � 2 L2 (
;Ft;Pv;R) and a:e:t 2 [0; T ].

To simplify our notation, we will denote by Xt;� = Xv;t;� the solution of the SDE (4.10), associ-

ated with the strategy u.

For  = b; �; b�; f respectively, we de�ne
8>>>>>><>>>>>>:

� (s) = 
�
s;Xt;� (s) ;E

�
Xt;� (s)

�
; v
�
� 

�
s;Xt;� (s) ;E

�
Xt;� (s)

�
; u (s)

�
;

x (s) =
@
@x

�
s;Xt;� (s) ;E

�
Xt;� (s)

�
; u (s)

�
; bx (s) = @

@bx �s;Xt;� (s) ;E
�
Xt;� (s)

�
; u (s)

�
;

xx (s) =
@2
@x2

�
s;Xt;� (s) ;E

�
Xt;� (s)

�
; u (s)

�
; xbx (s) = @2

@x@bx �s;Xt;� (s) ;E
�
Xt;� (s)

�
; u (s)

�
:

For h and �; we de�ne

8>>>>>><>>>>>>:

� (T ) = �
�
Xt;� (T ) ;E

�
Xt;� (T )

��
; �x (T ) = �x

�
Xt;� (T ) ;E

�
Xt;� (T )

��
;

�xx (T ) = �xx
�
Xt;� (T ) ;E

�
Xt;� (T )

��
; h (s) = h

�
s;Xt;� (s)

�
;

hx (s) = hx
�
s;Xt;� (s)

�
; hxx (s) = hxx

�
s;Xt;� (s)

�
:

The Hamiltonian function H is de�ned by

H
�
s;Xt;� (s) ; u (s) ; pt;� (s) ; qt;� (s) ; bqt;� (s) ; b	t;� (s)�

= (b (s)) pt;� (s) + � (s) qt;� (s) + b� (s) bqt;� (s) + h (s) b	t;� (s) + f (s) :
4.2 Adjoint equations and the stochastic maximum principle

In this section, we introduce the variational equations and adjoint equations involved in the SMP

which characterize the equilibrium points u 2 Uad of our problem.
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Let S"1(:); S
"
2(:) be the solutions of the �rst and second variational equations8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dS"1(s) = f(bx (s)� b�x (s)h (s)� b� (s)hx (s))S"1(s)
+ (bbx (s)� b�bx (s)h (s))E [S"1(s)] + (�b (s)� �b� (s)h (s)) I[t;t+"](s)	 ds
+
�
�x (s)S

"
1(s) + �bx (s)E [S"1(s)] + �� (s) I[t;t+"](s)	 dW (s)

+
�b�x (s)S"1(s) + b�bx (s)E [S"1(s)] + �b� (s) I[t;t+"](s)	 dY (s);

S"1(t) = 0:

(4.13)

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

dS"2(s) = f(bx (s)� b�x (s)h (s)� b� (s)hx (s))S"2(s) + (bbx (s)� b�bx (s)h (s))E [S"2(s)]
+ 1

2 (bxx (s)� b�xx (s)h (s)� 2b�x (s)hx (s)� b� (s)hxx (s)) (S"1(s))2
+ � (bx (s)� b�x (s)h (s)� b� (s)hx (s))S"1(s)I[t;t+"](s)	 ds
+
n
�x (s)S

"
2(s) + �bx (s)E [S"2(s)] + 1

2�xx (s) (S
"
1(s))

2 + ��x (s)S
"
1(s)I[t;t+"](s)

	
dW (s)

+ fb�x (s)S"2(s) + b�bx (s)E [S"2(s)] + 1
2b�xx (s) (S"1(s))2 + �b�x (s)S"1(s)I[t;t+"](s)o dY (s);

S"2(t) = 0:

(4.14)

Lemma 4.2.1 Let (H1) hold, then we have the following estimates, where X";t;�(:) is the solution

of the state equation (4.10) corresponding to the admissible strategy u"(:),

E

"
sup
s2[t;T ]

jS"1(s)j
2k

#
� C"k;

E

"
sup
s2[t;T ]

jS"2(s)j
2k

#
� C"2k;

E

"
sup
s2[t;T ]

��X";t;�(s)�Xt;�(s)
��2k# � C"k;

E

"
sup
s2[t;T ]

��X";t;�(s)�Xt;�(s)� S"1(s)
��2k# � C"2k;
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and for some function ~� : (0;1)! (0;1), such that lim"!0 ~�k (") = 0; we get

E

"
sup
s2[t;T ]

���X";t;�(s)�Xt;�(s)� S"1(s)� S"2(s)
���2k# � "2k ~�k (") :

Now, we introduce the following variational equations

8><>:
dZt;�1 (s) = Zt;�1 (s)h(s) + Z

t;�(s)hx (s)S
"
1(s)dY (s) ;

Zt;�1 (t) = �;

(4.15)

and 8>>>>><>>>>>:
dZt;�2 (s) =

n
Zt;�2 (s)h (s) + Z

t;�(s)hx (s)S
"
2(s) + Z

t;�
1 (s)hx (s)S

"
1(s)

+
1

2
Zt;�(s)hxx (s) (S

"
1(s))

2

�
dY (s) ;

Zt;�2 (t) = �;

(4.16)

where Zt;�1 (:); Z
t;�
2 (:) are the solutions of (4.15), (4.16) respectively.

Lemma 4.2.2 Let (H1) hold, then we have the following estimates, where, Z";t;�(:) is the solu-

tions of the observation equation (4.4) corresponding to the admissible strategy u"(:),

E

"
sup
s2[t;T ]

���Zt;�1 (s)���2k
#
� C"k;

E

"
sup
s2[t;T ]

���Z";t;�(s)� Zt;�(s)� Zt;�1 (s)���2k
#
� C"2k;

and for some function ~� : (0;1)! (0;1), such that lim"!0 ~�k (") = 0; we get

E

"
sup
s2[t;T ]

���Z";t;�(s)� Zt;�(s)� Zt;�1 (s)� Zt;�2 (s)���2k
#
� "2k ~�k (") :

We consider the following adjoint equation

8><>:
�d�t;� (s) = f (s) ds�	t;�(s)dW (s)� b	t;�(s)dcW (s) ;

�t;x (T ) = � (T ) :

(4.17)

Under (H1); (4.17) admit unique solution. The �rst-order adjoint equation is the following linear

backward SDE of mean-�eld type parameterized by (t; �) 2 [0; T ]�L2 (
;Ft;Pv;R) ; satis�ed by
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the processes
�
pt;� (s) ; qt;� (s) ; bqt;� (s)� ; s 2 [t; T ] ;

8>>>>>>>>>><>>>>>>>>>>:

�dpt;� (s) =
n
(bx (s)� b� (s)hx (s)) pt;�(s) + �x (s) qt;� (s) + b�x (s) bqt;� (s) + hx (s) b	t;�(s)

+ fx (s) + E
�
(bbx (s)) pt;�(s)� + E ��bx (s) qt;�(s) + b�bx (s) bqt;�(s) + fbx (s)�	 ds

� qt;� (s) dW (s)� bqt;� (s) dcW (s) ;

pt;x (T ) = �x (T ) + E [�bx (T )] :
(4.18)

Under Assumption (H1); equation (4.18) admits a unique F-adapted solution
�
pt;� (s) ; qt;� (s) ; bqt;� (s)�.

Moreover, there exists a constant C > 0 such that, for all t 2 [0; T ] and
�
�; �

0
�
�L2 (
;Ft;Pv;R),

we have the following estimate, P� a:s:;

E

"
sup
s2[t;T ]

���pt;� (s)���2 + Z T

t

����qt;� (s)���2 + ���bqt;� (s)���2� ds j Ft# � C
�
1 + j�j2 + E

�
�2
��
: (4.19)

The second order adjoint equation is the following linear backward SDE parameterized by (t; �) 2

[0; T ]� L2 (
;Ft;Pv;R)

8>>>>>>>>>><>>>>>>>>>>:

�dP t;� (s) =
n
2 (bx (s)� b� (s)hx (s))P t;� (s) + (�x (s))2 P t;� (s) ;

+ b�x (s)2 P t;� (s) + 2�x (s)Qt;� (s) + 2b�x (s) bQt;� (s) +Ht;�
xx (s)

o
ds

�Qt;� (s) dW (s)� bQt;� (s) dcW (s)

P t;� (T ) = �xx (T ) ;

(4.20)

where

Ht;�
xx (s) = bxx (s) p

t;�(s) + �xx (s) q
t;�(s) + b�xx (s) bqt;�(s) + hxx (s) b	t;�(s) + fxx(s):

Under (H1); it is easy to check that (4.20) admit unique F-adapted solution
�
P t;� (s) ; Qt;� (s) ; bQt;� (s)�

satis�es the following estimate: There exists a constan C > 0 such that, for all t 2 [0; T ] and
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�
�; �

0
�
� L2 (
;Ft;Pv;R),

E

"
sup
s2[t;T ]

���P t;� (s)���2 + Z T

t

����Qt;� (s)���2 + ��� bQt;� (s)���2� ds j Ft# � C
�
1 + j�j2 + E

�
�2
��
: P�a:s:;

(4.21)

Moreover, on the premise that the system (4.1) is with full information, these adjoint equations

are di¤erent from those classical ones in in Buckdahn et al. [17] due to the appearance of cW (:).

Theorem 4.2.1 (Characterization of equilibrium strategies) Let assumptions (H1) hold.

Then u(:) is an equilibrium strategy for the system (4.10)-(4.11), if and only tf there are pairs of

F-adapted solution (p; q; bq) and �P;Q; bQ� which satisfy (4.18)-(4.19) and (4.18)-(4.19), respect-
ively, and for which

Eu
hn
H
�
t; �; v; pt;�; qt;�; bqt;�; b	t;���H �t; �; u; pt;�; qt;�; bqt;�; b	t;��

+
1

2
P t;� (t) [� (t; �;E [�] ; v)� � (t; �;E [�] ; u (t))]2

+
1

2
P t;� (t) [b� (t; �;E [�] ; v)� b� (t; �;E [�] ; u (t))]2� j FYt � � 0; (4.22)

for all v 2 Uad; � 2 L2 (
;Ft;Pv;R) a:e: t 2 [0; T ] ; Pv � a:s; :

Proof. We put �t;�1 (:) = Zt;�1 (:)
�
Zt;�(:)

��1
and �t;�2 (:) = Zt;�2 (:)

�
Zt;�(:)

��1
:

Then, by Itô�s formula we obtain

8><>:
d�t;�1 (s) = hx (s)S

"
1(s)d

cW (s) ;

�t;�1 (t) = �;

and 8><>:
d�t;�2 (s) =

n
hx (s)S

"
2(s) + �

t;�
1 (s)hx (s)S

"
1(s) +

1
2hxx (s) (S

"
1(s))

2
o
dcW (s) ;

�t;�2 (t) = �:
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By (4.11), Taylor�s expansion, and lemma 4.2.2, we have

0 � J (t; �; u")� J (t; �; u)

= E
�Z T

t

n
Zt;�(s)

h
fx (s)

�
S";t;�1 (s) + S";t;�2 (s)

�
+ fbx (s)E h�S";t;�1 (s) + S";t;�2 (s)

�i
+
1

2
fxx (s)

�
S";t;�1 (s)

�2
+ �f (s) I[t;t+"] (s)

�
+
�
Zt;�1 (s) + Z

t;�
2 (s)

�
l (s)

�
ds

�
+ E

h
Zt;�(T )

h
�x (T )

�
S";t;�1 (T ) + S";t;�2 (T )

�
+ �bx (T )�S";t;�1 (T ) + S";t;�2 (T )

�i
+
1

2
�xx(T )

�
S";t;�1 (T )

�2�
+
�
Zt;�1 (T ) + Z

t;�
2 (T )

�
� (T )

�
+ o(")

= Eu
�Z T

t

n
fx (s)

�
S";t;�1 (s) + S";t;�2 (s)

�
+ fbx (s)E h�S";t;�1 (s) + S";t;�2 (s)

�i
+
1

2
fxx (s)

�
S";t;�1 (s)

�2
+ �f(s)I[t;t+"] (s) +

�
�t;�1 (s) + �

t;�
2 (s)

�
f (s)

�
ds

�
+ Eu

h
�x (T )

�
S";t;�1 (T ) + S";t;�2 (T )

�
+ �bx (T )E h�S";t;�1 (T ) + S";t;�2 (T )

�i
+
1

2
�xx(T )

�
S";t;�1 (T )

�2�
+
�
�t;�1 (T ) + �

t;�
2 (T )

�
� (T )

�
+ o("): (4.23)

Applying Itô�s formula to pt;� (:)
�
S";t;�1 (:) + S";t;�2 (:)

�
;

pt;�(T )
�
S";t;�1 (T ) + S";t;�2 (T )

�
=

Z T

t
pt;�(s)d

�
S";t;�1 (s) + S";t;�2 (s)

�
+

Z T

t

�
S";t;�1 (s) + S";t;�2 (s)

�
dpt;�(s)

+

Z T

t
qt;�(s)

�
�x (s)S

";t;�
1 (s) + �bx (s)E hS";t;�1 (s)

i
+ �� (s) I[t;t+"](s)

�
ds

+

Z T

t
qt;�(s)

�
�x (s)S

";t;�
2 (s) + �bx (s)E hS";t;�2 (s)

i�
ds

+

Z T

t
qt;�(s)

�
1

2
�xx (s)

�
S";t;�1 (s)

�2
+ ��x (s)S

";t;�
1 (s)I[t;t+"](s)

�
ds

+

Z T

t
bqt;�(s)�b�x (s)S";t;�1 (s) + b�bx (s)E hS";t;�1 (s)

i
+ �b� (s) I[t;t+"](s)� ds

+

Z T

t
bqt;�(s)�b�x (s)S";t;�2 (s) + b�bx (s)E hS";t;�2 (s)

i�
ds

+

Z T

t
bqt;�(s)�1

2
b�xx (s)�S";t;�1 (s)

�2
+ �b�x (s)S";t;�1 (s)I[t;t+"](s)

�
ds+M (s) ; (4.24)
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where M (s) is a zero-mean martingale. By taking expectations we are left with

Eu
h
pt;�(T )

�
S";t;�1 (T ) + S";t;�2 (T )

�i
= Eu

�Z T

t

n
� (fx (s) + E [fbx (s)])�S";t;�1 (s) + S";t;�2 (s)

�
+ r1(s)

o
ds

�
+ Eu

�Z T

t

n�
pt;�(s)�b (s) + qt;�(s)�� (s) + bqt;�(s)�b� (s)� I[t;t+"] (s)o ds�

+ Eu
�Z T

t

�
1

2

�
bxx (s) p

t;�(s) + �xx (s) q
t;�(s) + b�xx (s) bqt;�(s)��S";t;�1 (s)

�2�
ds

�
; (4.25)

where

r1 (s) = pt;�(s)

�
�b�x (s)hx (s)� 1

2
b� (s)hxx (s)�S";t;�1 (s)

�2�
+ pt;�(s)

h
�bx (s)S

";t;�
1 (s)I[t;t+"] (s)� �b� (s)hx (s)S";t;�1 (s)I[t;t+"] (s)

i
+
h
qt;�(s)��x (s) + bqt;�(s)�b�x (s)iS";t;�1 (s)I[t;t+"] (s) :

Then, applying Itô�s formula to �t;� (:)
�
�t;�1 (:) + �

t;�
2 (:)

�
and taking conditional expectations,

we have

Eu
h�
�t;�1 (T ) + �

t;�
2 (T )

�
� (T ))

i
= Eu

�Z T

t

n
�
�
�t;�1 (s) + �

t;�
2 (s)

�
f (s) + b	t;�(s)hx (s) (S"1(s) + S"2(s)) ds

+ b	t;�(s)�1
2
hxx (s) (S

"
1(s))

2

�
+ r2 (s)

�
ds

�
; (4.26)

where

r2 (s) = hx (s) b	t;�(s)�1 (s)S"1(s):
According to lemma 4.2.1 and 4.2.2, we get

Eu
�Z T

t
jr1 (s) + r2 (s)j ds

�
= o("2):
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Substituting (4.25) and (4.26) into (4.23), we obtain

J (t; �; u")� J (t; �; u) = Eu
�Z T

t

�
1

2
Ht;�
xx (s) (S

"
1(s))

2 + �Ht;� (s) I[t;t+"] (s)

�
ds

+
1

2
�t;�xx (T ) (S

"
1(T ))

2

�
+ o("): (4.27)

Here

�Ht;� (s) = pt;�(s)�b (s) + qt;�(s)�� (s) + bqt;�(s)�b� (s) + �f (s) :
On the other hand note that Kt;� (:) = S"1(:)

2 satis�es

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dKt;� (s) =
n�
2bx (s)� 2b� (s)hx (s) + (�x (s))2 + (b�x (s))2�Kt;�(s) + �t;�1 (s)

+
�
(�� (s))2 + (�b� (s))2� I[t;t+"] (s) + �t;�2 (s)

o
ds

+
�
2�x (s)Kt;�(s) + 2S"1(s)

�
�bx (s)E [S"1(s)] + �� (s) I[t;t+"] (s)�	 dW (s);

+
�
2b�x (s)Kt;�(s) + 2S"1(s) �b�bx (s)E [S"1(s)] + �b� (s) I[t;t+"] (s)�	 dcW (s)

Kt;� (t) = �;

with

�t;�1 (s) = (2bbx (s) + 2�x (s)�bx (s) + 2b�x (s) b�bx (s))S"1(s)E [S"1(s)]
+
�
(�bx (s))2 + (b�bx (s))2� (E [S"1(s)])2 ;

and

�t;�2 (s) = (2�b (s) + 2�x (s) �� (s) + 2b�x (s) b� (s))S"1(s)I[t;t+"] (s)
+ (2�bx (s) �� (s) + 2b�bx (s) �b� (s))E [S"1(s)] I[t;t+"] (s) :

Noting that

Eu
�Z T

t

���P t;� (s)n�t;�1 (s) + �t;�2 (s)
o��� ds� = o(")

Then, by applying Itô�s formula to P t;� (:)Kt;�(:) and taking expectation, we get from the estim-
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ates of lemma 4.2.1, we deduce

Eu
h
�xx (T ) (S

"
1(T ))

2
i

= Eu
�Z T

t

n
�Ht;�

xx (s) (S
"
1(s))

2 + P t;� (s)
�
(�� (s))2 + (�b� (s))2� I[t;t+"] (s)o ds�+ o("): (4.28)

Combining (4.27) and (4.28) yields

J (t; �; u")� J (t; �; u)

= Eu
�Z T

t

�
�Ht;� (s) +

1

2
P t;� (s)

�
(�� (s))2 + (�b� (s))2�� I[t;t+"] (s) ds�+ o("); (4.29)

Dividing both sides of (4.29) by " and then passing to the limit " # 0, in view of Assumption

(H1), (4.19) and (4.21), we obtain

0 � Eu
�
�Ht;� (s) +

1

2
P t;� (s)

�
(�� (s))2 + (�b� (s))2�� :
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4.3 An application to linear-quadratic control problem

It is well known that LQ control is one of the most important classes of optimal control, due

to its wide theoretical and practical viewpoints, and the related Riccati equations have played

an important role within the framework of the investigation concerning this problem. To this

end, we can note the following advantages. First, solutions of LQ problems exhibit elegant

properties due to their simple and nice structures. For example, many nonlinear problems can

be approximated by LQ problems: Second; several problems in �nance and economic can be

modeled by LQ control problems, for example the mean-variance portfolio selection problem

[64], and the stochastic di¤erential recursive utility with linear generator [61]: Backward and

forward�backward LQ stochastic control problems can be seen in [11], [16], [20], [51].

In this section, we will characterize the equilibrium control in general LQ control problem, and

identify it in special case including that, the mean-variance portfolio selection mixed with a

recursive utility functional optimization problem.

We consider the following controlled SDE

8>>>><>>>>:
dXt;�;v (s) =

�
� (s)Xt;�;v (s) + e� (s)E �Xt;�;v (s)

�
+ � (s) v (s) + e� (s)� ds

+ � (s) dW (s) ; t < s � T;

Xt;�;v (t) = �:

(4.30)

We assume that the cost functional to be minimized; takes the form

J (t; �; u (�)) = E
�Z T

t

�
A (s)Xt;�;v (s)2 + eA (s)E hXt;�;v (s)

i2
+B (s) v (s)2

�
ds

+ DXt;� (T )2 + eDE hXt;�;v (T )
i2�

; (4.31)

subject to the state equation (4:30) and the observation equation given by

8><>: dY (s) =
�
h1 (s)X

t;�;v (s) + h2 (s)
�
ds+ dcW (s) ; 0 < s � T;

Y (0) = 0:
(4.32)

We denote by U the set of admissible controls u valued in R: Throughout this section we assume all

parameters in the equations (4:30) ; (4:32) and the cost functional are bounded and deterministic
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functions, such that � (�) is di¤erent to zero.

In this case the Hamiltonian reduces to

H
�
s;X;E [X] ; v; p; q; bq; b	�

=
�
� (s)X + e� (s)E [X] + � (s) v + e� (s)� p+ � (s) q

+ (h1 (s)X (s) + h2 (s)) b	+ 1
2

�
A (s)X2 + eA (s)E [X]2 +B (s) v2� :

Let u (�) be an equilibrium control; we denote the corresponding trajectory byXt;�;u (�) = Xt;� (�) :

We introduce the adjoint equations involved in the stochastic maximum principle which charac-

terize the open-loop Nash equilibrium controls of the problem (4:31). In this case the �rst order

adjoint process pt;� (�) is given by

8>>>>>>>><>>>>>>>>:

dpt;� (s) = �
�
� (s)pt;� (s) + e� (s)E �pt;� (s)�+ h (s) b	(s)
+
1

2

�
A (s)Xt;� (s) + eA (s)E �Xt;� (s)

���
ds

+ qt;� (s) dW (s) + bqt;� (s) dcW (s) ;

pt;� (T ) = DXt;� (T ) + eDE �Xt;� (T )
�
;

(4.33)

and the second order adjoint process is

8><>: dP t;� (s) = �
�
2� (s)P t;� (s) +A (s)

	
ds+Qt;� (s) dB (s) + bQt;� (s) d bB (s) ;

P t;� (T ) = D:
(4.34)

8><>: dP t;� (s) = �
�
2� (s)P t;� (s) +A (s)

	
ds;

P t;� (T ) = D:

If u (�) is an equilibrium control, it follows from the theorem (4:2:1) that

u (t) = �B (t)�1 � (t)E
h
pt;� (t) j FY (t)

i
: (4.35)

As in the classical LQ control problem, we attempt to look for a linear open-loop equilibrium

control, then we need �rst to give an explicit representation of the process E
�
pt;� (�) j FY (t)

�
,
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noting that

8>>>>>><>>>>>>:

dE
�
Xt;� (s)

�
=
�
(� (s) + e� (s))E �Xt;� (s)

�
� �2 (s)B (s)�1 E

�
ps;� (s)

�
+ e� (s)� ds;

dE
�
pt;� (s)

�
= �

��
A (s) + eA (s)�E �Xt;� (s)

�
+ (� (s) + e� (s))E �pt;� (s)�� ds;

E
�
Xt;� (t)

�
= E [�] = �; E

�
pt;� (T )

�
=
�
D + eD�E �Xt;� (T )

�
:

(4.36)

Due to the terminal condition in (4:36), we try a solution for the second equation in (4:36) of

the form

E
h
pt;� (s)

i
= � (s)E

h
Xt;� (s)

i
+  (s) ; (4.37)

for the deterministic and di¤erentiable functions � (�) and  (�) such that � (T ) = D + eD and

 (T ) = 0: Applying the chain rule for (4:37) ; we get

dE
h
pt;� (s)

i
= � (s) dE

h
Xt;� (s)

i
+ E

h
Xt;� (s)

i
d� (s) + _ (s) ds;

= _� (s)E
h
Xt;� (s)

i
+ (� (s) + e� (s))E hXt;� (s)

i
� (s)

+
�e� (s)� �2 (s)B (s)�1 E hpt;� (s)i�� (s) + _ (s) ;

form the representation (4:37) we obtain by simple computations

dE
h
pt;� (s)

i
=
�
_� (s) + (� (s) + e� (s))� (s)�E hXt;� (s)

i
� �2 (s)B (s)�1 � (s)2 �

+ e� (s)� (s) + _ (s)� �2 (s)B (s)�1 � (s) (s) : (4.38)

By comparing the coe¢ cients with the second equation in (4:36) we �nd that � (�) and  (�)

should solve the following system of ODEs

8>>>>>>>>><>>>>>>>>>:

_� (s) = �2 (� (s) + e� (s))� (s)� �A (s) + eA (s)� ;
_ (s) = �

�
(� (s) + e� (s))� �2 (s)B (s)�1 � (s)� (s)
+ �2 (s)B (s)�1 � (s)2 �� e� (s)� (s) ;

� (T ) = D + eD;  (T ) = 0:
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If we replace by the values of E
�
pt;� (t)

�
into the �rst equation of (4:36) we obtain 8s 2 [t; T ]

8><>:
dE
�
Xt;� (s)

�
=
�
(� (s) + e� (s))E �Xt;� (s)

�
� �2 (s)B (s)�1 (� (s)�+  (s)) + e� (s)� ds;

E
�
Xt;� (t)

�
= �;

(4.39)

which can explicity computed. It follows from Liptser and Shiryayev [46] (see also Xiong [63])

that the �ltering process

�
�Xt;� (�) ; �pt;� (�)

�
=
�
E
h
Xt;� (�) j FY (t)

i
;E
h
pt;� (�) j FY (t)

i�
; 8t 2 [0; T ] ;

with respect to the observations Y (�) up to time t; is the solution of the following FBSDE system

8s 2 [t; T ]

8>>>>>><>>>>>>:

d �Xt;� (s) =
�
� (s) �Xt;� (s)�B (s)�1 � (s)2 �ps;� (s) + �1 (s)

�
ds+�(s)h1 (s) dW (s) ;

d�pt;� (s) = �
�
A (s) �Xt;� (s) + � (s) �pt;� (s) + �2 (s)

�
ds+Q

t;�
dW (s) ;

�Xt;� (t) = �; �pt;� (T ) = D �Xt;� (T ) + eDE �Xt;� (T )
�
;

(4.40)

where �1 (�) and �2 (�) are given by

�1 (s) = � (s)E
h
Xt;� (s)

i
+ � (s) ;

and

�2 (s) = A (s)E
h
Xt;� (T )

i
+ � (s)E

h
pt;� (s)

i
;

the function �(�) is given by

8><>:
_� (s) = 2� (s)� (s)��(s)2 h1 (s)2 + � (s)2 = 0;

�(0) = � (0) ;
(4.41)

and W (�) is a standard Brownian motion with value in R given by

dW (s) = dY 0 (s)� h1 (s)Xt;�;0 (s) ds; (4.42)
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where Xt;�;0 (�) is the solution of the following SDE

8><>:
dXt;�;0 (s) =

�
� (s)Xt;�;0 (s) + e� (s)E �Xt;�;0 (s)

�
+ e� (s)� ds+ � (s) dW (s) ; 8s 2 [t; T ] ;

Xt;�;0 (t) = �;

(4.43)

and Y 0 (�) is the solution of the SDE

8><>:
dY (s) =

�
h1 (s)X

t;�;0 (s) + h2 (s)
�
ds+ dcW (s) ; 8s 2 [0; T ] ;

Y (0) = 0:

(4.44)

Similarly, to characterize an explicite solution for (4:40) we let

�pt;� (s) = � (s) �Xt;� (s) + 	 (s) ; 8s 2 [t; T ] ; (4.45)

for two deterministic and di¤erentiable functions � (�) and 	(�) such that � (T ) = D and 	(T ) =eDE �Xt;� (T )
�
: It follows from Itô�s formula that

d�pt;� (s) = � (s) d �Xt;� (s) + �Xt;� (s) _� (s) ds+ _	 (s) ds;

= �(s)
�
� (s) �Xt;� (s)�B (s)�1 � (s)2 ps;� (s) + �1 (s)

�
ds

+ �Xt;� (s) _� (s) ds+ _	 (s) ds+�(s)� (s)h1 (s) dW (s) :

A simple computation show that

d�pt;� (s) =
��
_� (s) + � (s)� (s)

�
�Xt;� (s)�B (s)�1 � (s)2� (s)2 �

�� (s)B (s)�1 � (s)2	(s) + � (s) � (s) + _	 (s)

�
ds

+�(s)� (s)h1 (s) dW (s) :
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By comparing with the BSDE in (4:40) we get

8>>>>>>>>><>>>>>>>>>:

_� (s) = �2� (s) � (s)�A (s) ;

_	 (s) = �
�
� (s)� � (s)B (s)�1 � (s)2

�
	(s)

+B (s)�1 � (s)2� (s)2 �� � (s) �1 (s)� �2 (s) ;

� (T ) = D; 	(T ) = eDE �Xt;� (T )
�
:

Substituting (4:45) in (4:35) we get 8t 2 [0; T ]

u (t) = �B (t)�1 � (t)
�
� (t) �Xt;� (t) + 	 (t)

�
;

= �B (t)�1 � (t) (� (t)�+	(t)) :

The corresponding equilibrium dynamics solves the following SDE

8>>>><>>>>:
dX0;x (t) =

�
� (t)X0;x (t) + e� (t)E �X0;x (t)

�
�B (t)�1 � (t)2 (� (t)�+	(t)) + e� (t)� dt;

+ � (t) dW (t) ; 0 � t � T;

X0;x (0) = x:

(4.46)
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4.4 Extension to Mean-Field Game Models

In this section, we extend the SMP approach to an N -player stochastic di¤erential game of mean-

�eld type where the ith player would like to �nd a strategy to optimize her own cost functional

regardless of the other players�cost functionals.

Let X = (X1; :::; XN ) describe the states of the N players and v = (v1; :::; vN ) 2 �Ni=1Ui[0; T ]

be the ensemble of all the individual admissible strategies. Each vi takes values in a non-empty

subset Ui of R, and the class of admissible strategies is given by

Ui[0; T ] = fvi : [0; T ]� 
! Ui; vi is F-adapted and square integrableg : (4.47)

To simplify the analysis, we consider a population of uniform agents so that Ui = U and they

have the same initial state Xi(0) = x0 at time 0 for all i 2 f1; :::; Ng. In this case, the N sets

Ui[0; T ] are identical and equal to Uad. Let the dynamics be given by the following SDE

dXi (s) = b (s;Xi (s) ;E [Xi (s)] ; vi (s)) ds+ � (s;Xi (s) ;E [Xi (s)]) dWi (s)

+ b� (s;Xi (s) ;E [Xi (s)]) dcWi (s) ;

(4.48)

where the strategy vi does not enter the di¤usion coe¢ cient � and b�. Speci�cally as follows, we
assume that the state process Xi (:) is not completely observable, instead, it is partially observed

through the related process Yi (:), which is governed by the following equation

8><>:
dYi (s) = h (s;Xi (s)) ds+ dcWi (s) ;

Y (0) = 0; s � 0:

For notational simplicity, we do not explicitly indicate the dependence of the state on the control

by writingXvi
i (s). We take F to be the natural �ltration of theN -dimensional standard Brownian

motion (W1; :::;WN ) augmented by P-null sets of F .

Denote

(v�i; �) := (v1; :::; vi�1; �; vi+1; :::; vN ); i = 1; :::; N:
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Then, the ith player selects vi 2 Uad to evaluate her cost functional

� ! J i;N (t; xi; v�i;�) := J i;N (t; xi; v1; :::; vi�1; �; vi+1; :::; vN );

where

J i;N (t; xi; v) = E
�Z T

t
Zt;xii (s)f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; X(�i)(s); vi(s)

�
ds

+ Zt;xii (T ) �
�
Xt;xi
i (T );E[Xt;xi

i (T )]; X(�i)(T )
�i
: (4.49)

The associated dynamics, parameterized by (t; xi), is

8>>>>>>>>>><>>>>>>>>>>:

dXt;xi
i (s) = b(s;Xt;xi

i (s);E[Xt;xi
i (s)]; vi(s))ds

+ �
�
s;Xt;xi

i (s);E[Xt;xi
i (s)]

�
dWi(s)

+ b� �s;Xt;xi
i (s);E[Xt;xi

i (s)]
�
dcWi (s) ; t < s � T;

Xt;xi(t) = xi:

(4.50)

The ith player interacts with others through the mean-�eld coupling term

X(�i) =
1

N � 1

NX
k 6=i

Xk; i 2 f1; :::; Ng;

which models the aggregate impact of all other players.

Note that the ith player assesses her cost functional over [t; T ] seen from her local stateXi(t) = xi

and she knows only the initial states of all other players at time 0, (Xk(0) = x0; k 6= i). Thus the

game may be cast as a decision problem where each player has incomplete state information about

other players. The development of a solution framework in terms of a certain exact equilibrium

notion is challenging. Our objective is to address this incomplete state information issue and

design a set of individual strategies which has a meaningful interpretation. This will be achieved

by using the so-called consistent mean-�eld approximation.

For a large N , even if each player has full state information of the system, the exact character-

ization of the equilibrium points, based on the SMP, will have high complexity since each player

96



A Characterization of Sub-game Perfect Equilibria for SDEs of Mean-Field Type Under Partial
Information

leads to a variational inequality for the underlying Hamiltonian similar to (4.22) which is further

coupled with the state processes of all other players. Therefore, we should rely on the mean-�eld

approximation of our system.

We note that J i;N depends on not only vi, but also all other players�strategies v�i through the

mean-�eld coupling term X(�i). This suggests that we extend De�nition 4.1.1 to the N -player

case as follows.

De�nition 4.4.1 The admissible strategy u = (u1; :::; uN ) is a �N -sub-game perfect equilibrium

point for N players in the system (4.48)�(4.49) if for every i 2 f1; :::; Ng,

lim
"#0

J i;N (t; xi; u)� J i;N (t; xi; u�i; u"i )
"

� O(�N ); (4.51)

for each given vi 2 Ui[0; T ]; xi 2 R and a.e. t 2 [0; T ], where u"i is the spike variation of the

strategy ui of the ithplayer using vi and 0 � �N ! 0 as N !1:

The error term O(�N ) is due to the mean-�eld approximation to be introduced below for designing

u.

4.4.1 The local limiting decision problem

Let X(�i) be approximated by a deterministic function �X(s) on [0; T ]. Denote the cost functional

�J i(t; xi; vi) = E
�Z T

t
Zt;xii (s)f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; �X(s); vi(s)

�
ds

+ Zt;xii (T ) �
�
Xt;xi
i (T );E[Xt;xi

i (T )]; �X(T )
�i
; (4.52)

which is intended as an approximation of J i;N . Note that once �X is assumed �xed, �J i is a¤ected

only by vi. The introduction of �X as a �xed function of time is based on the freezing idea in

mean-�eld games. The reason is that X(�i) =
1

N � 1

NX
k 6=i

Xk is generated by many negligibly

small players, and therefore, a given player has little in�uence on it.

The strategy selection of the ith player is based on �nding a sub-game perfect equilibrium for

�J i to which the method based on the Stochastic Maximum Principle [Peng [50]] can be applied

under the following conditions:
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Assumption 2

(i) The functions b(s; x; bx; v); �(s; x; bx); f(s; x; bx;w; v); �(x; bx;w) are bounded.
(ii) The functions b; � are di¤erentiable with respect to (x; bx). The derivatives are Lipschitz

continuous in (x; bx) and bounded.
(iii) The functions f; � are di¤erentiable with respect to (x; bx;w), and their derivatives are

continuous in (x; bx;w; v) and (x; bx;w), respectively, and bounded.
To simplify our notation, we will denote by

bt;xi (s) = b
�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; ui

�
; �t;xi (s) = �

�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]

�
;

b�t;xi (s) = b� �s; bXt;xi
i (s);E[ bXt;xi

i (s)]
�
; f t;xi (s) = f

�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; �X(s); ui

�
;

ht;xi (s) = h
�
s; bXt;xi

i (s)
�
:

Let ui 2 Uad be a sub-game perfect equilibrium point for (4.50) and (4.52) and denote the

associated backward SDE8>>>>>>>>>><>>>>>>>>>>:

�dpt;xi (s) = �
n�
bt;xix (s)� b�t;xix ht;xi (s)

�
pt;xi(s) + �t;xix (s) qt;xi (s) + b�t;xix (s) bqt;xi (s)

+ ht;xix (s) b	t;xi(s) + f t;xix (s) + E
h�
bt;xibx (s)

�
pt;xi(s) + �t;xibx (s) qt;xi(s)

i
+ E

hb�t;xibx (s) bqt;xi(s) + f t;xibx (s)
io

ds+ qt;xi (s) dWi (s) + bqt;xi (s) dcWi (s) ;

pt;xi (T ) = �t;xix (T ) + E
h
�t;xibx (T )

i
;

(4.53)

where

Ht;xi
x (s) =

�
bt;xix (s)� b�t;xix ht;xi (s)

�
pt;xi (s) + �t;xix (s) qt;xi (s) + b�t;xix (s) bqt;xi (s)

+ ht;xix (s) b	t;xi(s)� fx(s; bXt;xi
i (s);E[ bXt;xi

i (s)]; �X(s); ui);
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and

Ht;xibx (s) =
�
bt;xibx (s)� b�t;xibx ht;xi (s)

�
pt;xi (s) + �t;xibx (s) qt;xi (s) + b�t;xibx (s) bqt;xi (s)

+ fbx(s; bXt;xi
i (s);E[ bXt;xi

i (s)]; �X(s); ui);

for which

H
�
t; xi; v; p

t;xi(t); qt;xi(t); bqt;xi(t); b	t;xi(t)��H �t; xi; ui (t) ; pt;xi(t); qt;xi(t); bqt;xi(t); b	t;xi(t)� � 0
8v 2 U; xi 2 R; a:e:t 2 [0; T ]; P� a:s:

(4.54)

The closed-loop equilibrium state associated to ui of the ith player is given by

d bXi(s) = b(s; bXi(s);E[ bXi(s)]; ui(s))ds+ �(s; bXi(s);E[ bXi(s)])dWi(s)

+ b�(s; bXi(s);E[ bXi(s)])dcWi(s): (4.55)

We call ui a decentralized strategy in that it has sample path dependence only on its local

Brownian motion Wi and cW . The processes fuk; 1 � k � Ng are independent. Further, we

impose

Assumption 3 All the processes fuk; 1 � k � Ng have the same law.

This restriction ensures that f bXi; 1 � i � Ng are i.i.d. random processes. Since each ui is

obtained as a process adapted to the �ltration generated by Wi and cW , it can be represented as
a non-anticipative functional bF (fWi(s)gs�t) of Wi and bF (fcWi(s)gs�t) of cWi. For a given �X , if

non-uniqueness of ui arises, we stipulate that the same functional bF is used by all players applying
their respective Brownian motions so that all the individual control processes have the same law.

This means some coordination is necessary for the strategy selection under non-uniqueness. By

the law of large numbers, the consistency condition on �X reads

�X(s) = E[ bX1(s)];8s 2 [0; T ]: (4.56)

A question of central interest is how to characterize the performance of the set of strategies
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u = (u1; :::; uN ) when they are implemented and assessed according to the original cost function-

als fJ i;N ; 1 � i � Ng. An answer is provided in the following theorem for which the proof is

displayed in the next section. This is the second main result of the chapter.

Theorem 4.4.1 Under Assumptions 2 and 3, suppose there exists a solution to (4.53), (4.55)

and (4.56). Then we have

J i;N (t; xi; u)� J i;N (t; xi; u�i; u"i ) = �J i(t; xi; ui)� �J i(t; xi; u
"
i ) +O

�
"p

N � 1

�
: (4.57)

Moreover, u = (u1; :::; uN ) 2 �Ni=1U [0; T ] is a �N -sub-game perfect equilibrium for the system

(4.48), (4.49) where �N �
Cp
N
and C depends only on (b; �; f; �; T ).

If there exists a unique solution ( �X;u) to (4.53), (4.55) and (4.56), each player can locally

construct its strategy. When there are multiple solutions, the players need to coordinate to

choose the same �X and further ensure that fui; 1 � i � Ng have the same law.

4.5 Proof of Theorem 4.4.1

This section is devoted to the proof of Theorem 4.4.1. We �rst establish some performance

estimates which will be used to conclude the proof of the theorem.

4.5.1 The performance estimate

We have

J i;N (t; xi; u) = Et;xi

�Z T

t

bZt;xii (s)f
�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; bX(�i)(s); ui(s)

�
ds

+ bZt;xii (T )�
� bXt;xi

i (T );E[ bXt;xi
i (T )]; bX(�i)(T )

�i
:

Now we �x i 2 f1; :::; Ng and change ui to u"i when all other players apply u�i, where

u"i =

8><>: vi(s); s 2 [t; t+ "] ;

ui(s); s 2 [t; T ] n[t; t+ "] ;
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and vi 2 Uad. We have

J i;N (t; xi; u�i; u
"
i ) = E

�Z T

t
Zt;xii (s)f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; bX(�i)(s); u"i (s)

�
ds

+ Zt;xii (T )�
�
Xt;xi
i (T );E[Xt;xi

i (T )]; bX(�i)(T )
�i
; (4.58)

where Xt;xi
i is the solution of (4.50) with admissible strategy u"i . The following estimates will be

frequently used in the sequel.

Lemma 4.5.1 For the ith player, let Xi and bXi be the state processes corresponding to u"i and
vi, respectively. Then

E

"
sup
t�s�T

���Xt;xi
i (s)� bXt;xi

i (s)
���2# � C"2;

where C does not depend on (t; xi).

Proof. The proof can be performed in two steps as in that of Lemma 1 in [24]. So we do not

repeat it here.

Lemma 4.5.2 We have

E

"
sup
0�s�T

��� bXi(s)���2# � CE
���� bXi(0)���2 + 1� :

Proof. We write

bXi(s) = bXi(0) + Z s

0
b
�
�; bXi(�);E[ bXi(�)]; ui(�)� ds

+

Z s

0
�
�
�; bXi(�);E[ bXi(�)]� dWi(�)

+

Z s

0
b� ��; bXi(�);E[ bXi(�)]� dcWi(�): (4.59)
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Then, by Burkholder-Davis-Gundy�s inequality, we have

E

"
sup
0�s�T

��� bXi(s)���2# � C

 
E
��� bXi(0)���2 + E �Z T

0

���b�s; bXi(s);E[ bXi(s)]; ui(s)�����2!

+ CE
Z T

0

���� �s; bXi(s);E[ bXi(s)]����2 ds
+ CE

Z T

0

���b� �s; bXi(s);E[ bXi(s)]����2 ds:
By the Lipschitz condition on b; � and b�, we further obtain

E

"
sup
0�s�T

��� bXi(s)���2# � C

0@E ��� bXi(0)���2 + 1 + Z T

0
E

"
sup
0���s

��� bXi(s)���2#2
1A ;

which combined with Gronwall�s lemma yields the desired estimate.

Corollary 4.5.1 We have, for N � 2,

sup
0�s�T

E
���� bX(�i)

i (s)�X(s)
���2� � C

N � 1 ;

where C does not depend on N .

Proof. Thanks to Assumption 3, bX1; : : : bXN are i.i.d. processes. The estimate follows from

Lemma 4.5.2.
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4.5.2 Proof of Theorem 4.4.1

We estimate the cost di¤erence

J i;N (t; xi; u)� J i;N (t; xi; u�i; u"i )

= E
�Z T

t

nbZt;xii (s)f
�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; bX(�i)(s); ui(s)

�
� Zt;xii (s)f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; bX(�i)(s); u"i (s)

�o
ds
i

+ E
h bZt;xii (T )�

� bXt;xi
i (T );E[ bXt;xi

i (T )]; bX(�i)(T )
�
� Zt;xii (T )�

�
Xt;xi
i (T );E[Xt;xi

i (T )]; bX(�i)(T )
�i

= E
�Z T

t

bZt;xii (s)
n
f
�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; bX(�i)(s); ui(s)

�
� f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; bX(�i)(s); u"i (s)

�o
ds
i

+ E
h bZt;xii (T )

�
�
� bXt;xi

i (T );E[ bXt;xi
i (T )]; bX(�i)(T )

�
� �

�
Xt;xi
i (T );E[Xt;xi

i (T )]; bX(�i)(T )
��i

+ E
�Z T

t

� bZt;xii (s)� Zt;xii (s)
�
f
�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; bX(�i)(s); u"i (s)

�
ds

+
� bZt;xii (T )� Zt;xii (T )

�
�
�
Xt;xi
i (T );E[Xt;xi

i (T )]; bX(�i)(T )
�i
:

By Girsanov�s theorem, we obtain

J i;N (t; xi; u)� J i;N (t; xi; u�i; u"i )

= Eu
�Z T

t

n
f
�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; bX(�i)(s); ui(s)

�
� f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; bX(�i)(s); u"i (s)

�o
ds
i

+ Eu
h�
�
� bXt;xi

i (T );E[ bXt;xi
i (T )]; bX(�i)(T )

�
� �

�
Xt;xi
i (T );E[Xt;xi

i (T )]; bX(�i)(T )
��i

+ E
�Z T

t

� bZt;xii (s)� Zt;xii (s)
�
f
�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; bX(�i)(s); u"i (s)

�
ds

+
� bZt;xii (T )� Zt;xii (T )

�
�
�
Xt;xi
i (T );E[Xt;xi

i (T )]; bX(�i)(T )
�i
;
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then, we can write

J i;N (t; xi; u)� J i;N (t; xi; u�i; u"i )

= Eu
�Z T

t

n
f
�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; �X(s); ui(s)

�
� f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; �X(s); u"i (s)

�o
ds
i

+ Eu
h�
�
�
s; bXt;xi

i (T );E[ bXt;xi
i (T )]; �X(T )

�
� �

�
Xt;xi
i (T );E[Xt;xi

i (T )]; �X(T )
��i

+ E
�Z T

t
I1ds+ I2

�
+ Eu

�Z T

t
I3ds+ I4

�
;

where

I1 =
� bZt;xii (s)� Zt;xii (s)

�
f
�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; bX(�i)(s); u"i (s)

�
;

I2 =
� bZt;xii (T )� Zt;xii (T )

�
�
�
Xt;xi
i (T );E[Xt;xi

i (T )]; bX(�i)(T )
�
;

I3 =
�
f
�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; bX(�i)(s); ui(s)

�
� f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; bX(�i)(s); u"i (s)

��
�
�
f
�
s; bXt;xi

i (s);E[ bXt;xi
i (s)]; �X(s); ui(s)

�
� f

�
s;Xt;xi

i (s);E[Xt;xi
i (s)]; �X(s); u"i (s)

��
;

I4 =
�
�
� bXt;xi

i (T );E[ bXt;xi
i (T )]; bX(�i)(T )

�
� �

�
Xt;xi
i (T );E[Xt;xi

i (T )]; bX(�i)(T )
��

�
�
�
� bXt;xi

i (T );E[ bXt;xi
i (T )]; �X(T )

�
� �

�
Xt;xi
i (T );E[Xt;xi

i (T )]; �X(T )
��

:

The cost di¤erence satis�es

J i;N (t; xi; u)� J i;N (t; xi; u�i; u"i ) = �J i(t; xi; ui)� �J i(t; xi; u
"
i )

+ E
�Z T

t
I1ds+ I2

�
+ Eu

�Z T

t
I3ds+ I4

�
:

We proceed to estimate E
�Z T

t
I1ds+ I2

�
and Eu

�Z T

t
I3ds+ I4

�
:

Lemma 4.5.3 We have ����Eu �Z T

t
I3ds+ I4

����� � C"p
N � 1

:

Proof. The proof is similar with that of Lemma 3 in [24].

Remark 4.5.1 The process E
�Z T

t
I1ds+ I2

�
have zero expectation. The proof is similar with
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that of Lemma 2.2 in [62].
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Conclusion

In this thesis, we have investigated about two stochastic optimal control problems which, in

various ways. In the �rst one, we have studied a su¢ cient stochastic maximum and we also show

the relationship between stochastic maximum principle and dynamic programming in which the

control of the jump size is essential and the corresponding Hamilton�Jacobi�Bellman (HJB)

equation in this case is a mixed second order partial di¤erential-di¤erence equation. On the

other hand we have studied the non smooth version of the relationship between MP and DPP

for systems driven by normal martingales where the control domain is convex.

The second one, we have studied the characterize sub-game perfect equilibrium strategy of a par-

tially observed optimal control problems for mean-�eld stochastic di¤erential equations (SDEs)

with correlated noises between systems and observations, which is time-inconsistent in the sense

that it does not admit the Bellman optimality principle.

Following this study, several perspectives are considered. It would be interesting to use the

optimal control problem where the state equation is driven by a normal martingale

� A second order maximum principle for systems driven by a normal martingale.

� The non smooth version of the relationship between MP and DPP for systems driven by

normal martingales where the control domain is not convex.
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