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Abstract

In this thesis, we propose a new estimator for improve boundary e¤ects in kernel estimator

of the heavy-tailed distribution function specially the Pareto-type distributions and its bias,

variance and mean squared error are determined. Kernel methods are widely used in many

research areas in statistics. However, kernel estimators su¤er from boundary e¤ects when

the support of the function to be estimated has �nite end points. Boundary e¤ects seriously

a¤ect the overall performance of the estimator. To remove the boundary e¤ects, a variety

of methods have been developed in the literature, the most widely used is the re�ection, the

transformation ... In this thesis, we introduce a new method of boundary correction when

estimating the heavy-tailed distribution function. Our technique is kind of a generalized

re�ection method involving re�ecting a transformation of the observed data by modi�ed

Champernowne distribution function.
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Résumé

Dans cette thèse, nous proposons un nouveau estimateur pour améliorer les e¤ets de bord

dans l�estimateur à noyau de la fonction de distribution à queue lourde spécialement les

distributions de type Pareto, son biais, variance et l�erreur quadratique moyenne de cette

estimateur sont déterminées. Les méthodes du noyau sont largement utilisées dans de

nombreux domaines de recherche en statistiques. Cependant, les estimateurs à noyau

sou¤rent des problèmes d�e¤ets aux bords de leur support. Les e¤ets de bord a¤ectent

sérieusement la performance globale de l�estimateur. Pour corrigé ces e¤ets de bord, une

variété de méthodes ont été développées dans la littérature, la plus utilisée est la ré�exion,

la transformation ... Dans cette thèse, nous introduisons une nouvelle méthode de correc-

tion de l�e¤et de bord lors de l�estimation de la fonction de distribution à queue lourde.

Notre technique est en quelque sorte une méthode de ré�exion généralisée impliquant une

transformation des données observées par une fonction de distribution de Champernowne

modi�ée.

iv



Contents

Dédicace i

Remerciements ii

Abstract iii

Résumé iv

Table of Contents v

Liste des �gures vii

Liste des tableaux viii

Introduction 1

1 Nonparametric distribution estimation 6

1.1 Empirical distribution function . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Properties of EDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Kernel method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Kernel distribution function estimator . . . . . . . . . . . . . . . . 11

2 Heavy-tailed distribution 18

2.1 Heavy-tailed distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



Table des matières

2.1.1 Examples of heavy-tailed distributions . . . . . . . . . . . . . . . . 21

2.2 Classes of heavy-tailed distributions . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Regularity varying distribution functions . . . . . . . . . . . . . . . 23

2.2.2 Subexponential distribution functions . . . . . . . . . . . . . . . . . 25

3 Transformation in kernel density estimation for heavy-tailed distribu-

tions 29

3.1 Kernel density estimator and boundary e¤ects . . . . . . . . . . . . . . . . 30

3.2 Methods for removing boundary e¤ects . . . . . . . . . . . . . . . . . . . . 32

3.3 Champernowne distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Modi�ed Champernowne distribution . . . . . . . . . . . . . . . . . 36

3.4 Density estimation using Champernowne transformation . . . . . . . . . . 39

3.4.1 Asymptotic theory for the transformation kernel density estimator . 42

4 A modi�ed Champernowne transformation to improve boundary e¤ect

in kernel distribution estimation 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Boundary kernel distribution estimator . . . . . . . . . . . . . . . . . . . . 49

4.3 The proposed estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Conclusion 66

Bibliographie 66

Abbreviation sand Notations 74

vi



List of Figures

1.1 Rate of kernels : Gaussian, Epanechnikov, Biweight and Triweight . . . . . 11

3.1 Boundary e¤ect in kernel density estimation . . . . . . . . . . . . . . . . . 32

3.2 Modi�ed Champernowne distribution function, (M = 3;� = 0:5) . c = 0

dashed line and c = 2 solid line. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Modi�ed Champernowne distribution function, (M = 3;� = 2) . c = 0

dashed line and c = 2 solid line. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Usual kernel estimator and Champernowne transformation estimator. . . . 45

vii



List of Tables

1.1 Some kernel functions. I(.) denotes the indicator function. . . . . . . . . . 11

2.1 Regularly varying distribution functions . . . . . . . . . . . . . . . . . . . 25

2.2 Subexponential distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Distributions used in the simulation studies. . . . . . . . . . . . . . . . . . 55

4.2 Bias, Var and AMSE Values Over the Boundary Region for sample size

n=50. Results are re-scaled by the factor 0.001. . . . . . . . . . . . . . . . 64

4.3 Bias, Var and AMSE Values Over the Boundary Region for sample size

n=200. Results are re-scaled by the factor 0.001. . . . . . . . . . . . . . . . 64

4.4 Bais, Var and AMSE Values Over the Boundary Region for sample size

n=400. Results are re-scaled by the factor 0.001. . . . . . . . . . . . . . . . 65

4.5 AIMSE Values Over the Boundary Region. Results are re-scaled by the

factor 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



Introduction

In the area of statistic, estimation of the unknown distribution function F (x); of apopulation is important. Other statistical methods that are dependent on knowledge

of the distribution function include hypothesis testing and con�dence interval estimation.

Existing methods to estimate on unknown distribution function from data can be classi�ed

into two groups, namely : parametric and nonparametric methods. Parametric methods

are dependent on assumption that the functional form of the distribution function is

speci�ed. If it is known that the data are normally distributed with unknown mean and

variance, the unknown parameters can be estimated from the data and the distribution

function is then completely determined. If the assumption of normality cannot be made,

then the parametric method of estimation cannot be used and a nonparametric method

of estimation must be implemented. Here we consider only nonparametric estimators.

Nonparametric kernel smoothing belongs to a general category of techniques for non-

parametric estimations including : density, distribution, regression, quantiles, ... These

estimators are now popular and in wide use with great success in statistical applications.

Early results on kernel density estimation are due to Rosenblatt (1956) [51] and Parzen

(1962) [47]. Good references in this area are Silverman (1986) [55], and Wand and Jones

(1995) [61], and the form kernel regression estimator has been proposed by Nadaraya

(1964) [46] and Watson (1964) [63]. While results in a kernel distribution estimator is in-

troduced by authors such as Nadaraya (1964) [45] or Watson and Leadbetter (1964) [62].

Such an estimator arises as an integral of the Parzen-Rosenblatt kernel density estimator.
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Introduction

Kernel estimates may su¤er from boundary e¤ects. This type of boundary e¤ect for ker-

nel estimators of curves with compact supports is well-known in regression and density

function estimation frameworks. In the density estimation context, a various boundary

bias correction methods have been proposed. Schuster (1999) [54] and Cline and Hart

(1991) [14] considered the re�ection method, which is most suitable for densities with zero

derivatives near the boundaries. Boundary kernel method and local polynomial method

are more general without restrictions on the shape of densities. Local polynomial method

can be seen as a special case of boundary kernel method and draws much attention due

to its good theoretical properties. Though early versions of these methods might produce

negative estimates or in�ate variance near the boundaries, remedies and re�nements have

been proposed, see Müller (1991) [43], Jones (1993) [31], Jones and Foster (1996) [32],

Cheng (1997) [11], Zhang and Karunamuni (1998; 2000) [67]; [69] and Karunamuni and

Alberts (2005) [34]. Cowling and Hall (1996) [15] proposed a pseudo-data method that es-

timates density functions based on the original data plus pseudo-data generated by linear

interpolation of order statistics. Zhang et al. (1999) [68] combined the pseudo-data, trans-

formation and re�ection methods. In the regression function estimation context, Gasser

and Müller (1979) [25] identi�ed the unsatisfactory behavior of the Nadaraya Watson re-

gression estimator for points in the boundary region. They proposed optimal boundary

kernels but did not give any formulas. However, Gasser and Müller (1979) [25] and Müller

(1988) [44] suggested multiplying the truncated kernel at the boundary zone or region by a

linear function. Rice (1984) [50] proposed another approach using a generalized jackknife.

Schuster (1985) [53] introduced a re�ection technique for density estimation. Eubank and

Speckman (1991) [20] presented a method for removing boundary e¤ects using a bias re-

duction theorem. Kheireddine et al. (2015) [36] produce a General method of boundary

correction in kernel regression estimation, we combine the transformation and re�ection

boundary correction methods.

Kernel distribution estimators are not consistent near the boundary of its support. In
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Introduction

other words, these e¤ects seriously a¤ect the performance of these estimators and these

require good precision. A similar correction used in density estimation would be made for

improve the theoretical performance of the usual kernel distribution function estimator at

the boundary points. In this thesis we develop a new kernel estimator of the distribution

function for heavy-tailed distributions based on the modi�ed Champernowne transforma-

tion. We will concentrate not to estimate the distribution of X based on the samples

X1; :::; Xn but to estimate the distribution of Y based on the samples Y1; :::; Yn where

Yi = T (Xi).

Buch-Larsen et al. (2005) [7] suggested to choose T so that T (X) is close to the uniform

distribution. They proposed a kernel estimator of the density of heavy-tailed distributions

based on a transformation of set of the original data with a modi�ed Champernowne

distribution that is a heavy-tailed Pareto-type, see Champernowne (1936; 1952) [8]; [10],

and applied to transformed data. The kernel estimator for heavy-tailed distributions has

been studied by several authors Bolancé et al. (2003) [6], Clements et al. (2003) [13]

and Buch-Larsen et al. (2005) [7] propose di¤erent families of parametric transformation

that they all make the transformed distribution more symmetric than the original, which

in many applications are generally highly asymmetric right. Sayah et al. (2010) [52]

produce a kernel quantile estimator for heavy-tailed distributions using a modi�cation of

the Champernowne distribution.

Our thesis is organized in 4 chapters.

� Chapter 1; is an introduction to the nonparametric estimation of the distribution func-

tion, a common problem in statistics is that of estimating a density f or a distribution

function F from a sample of real random variables X1; :::; Xn independent and with the

same unknown distribution. The functions f and F , as the characteristic function, com-

pletely describe the probability distribution of the observations and to know a convenient

3



Introduction

estimation can solve many statistical problems. The traditional estimator of the distrib-

ution function F is the empirical distribution function which is de�ned by

Fn(x) =
1

n

nX
i=1

I(Xi � x):

This estimator is an unbiased estimator and consist of F (x). Another estimator of F is

the kernel estimator bFn which is de�ned by
bFn(x) = 1

n

nX
i=1

K

�
x�Xi

b

�
;

where K(x) =
R x
�1 k(t)dt and k is a kernel function and b is the smoothing parameter.

The asymptotic properties of bFn was initiated by Nadaraya (1964) [45] and continued in
a series of papers among which we mention Winter (1973; 1979) [64]; [65], Yamato (1973)

[66], Reiss (1981) [49]:

� Chapter 2, we focused on the presentation of the concept of heavy-tailed distributions

and di¤erent classes of this type of distributions, an important classes of heavy-tailed

distributions are that subexponential distribution and the regularity varying distribution

with index � > 0. A distribution has a heavy tailed if and only if its kurtosis is higher

than the normal distribution that is equal to 3. There are others de�nitions so that

a distribution is heavy-tailed that is the distributions which the exponential moment is

in�nite.

� Chapter 3; describes the transformation in kernel density estimation. Let X1; :::; Xn

a random sample of independent and identically distributed observations of a random

variable with density function f; then the kernel density estimator at point x is

f̂n(x) =
1

nb

nX
i=1

k

�
x�Xi

b

�
;

4



Introduction

where b is the bandwidth or smoothing parameter, and k is the kernel function, usually

it is a symmetric density function bounded and centred at zero. Silverman (1986) [55]

or Wand and Jones (1995) [61] provide an extensive review of classical kernel estimation.

For heavy-tailed distributions, the kernel density estimation has been studied by several

authors : Buch-Larsen et al. (2005) [7], Clements et al. (2003) [13] and Bolancé et al.

(2003) [6]. They have all proposed estimators based on a transformation of the original

variable. The transformation method proposed initially by Wand et al. (1991) is very

suitable for asymmetrical variables, it was based on the shifted power transformation

family. Some alternative transformations such as the one based on a generalization of the

Champernowne distribution it is preferable to other transformation density estimation

approaches for distributions that are Pareto-like in the tail.

� Chapter 4, in this chapter we present our result which is the estimation of heavy-tailed

distributions based on a re�ection method involving re�ecting a transformation and using

the modi�ed Champernowne transformation which is introduced in the work of Buch-

Larcen et al. (2005) [7] in the case of density estimation for heavy-tails distributions, the

new approach based on the modi�ed Champernowne distribution is the preferable method,

because it has a good performance in most of the investigated situations.

5



Chapter 1

Nonparametric distribution

estimation

Nonparametric methods are becoming increasingly popular in statistical analysis

of economic problems. In most cases, this is caused by the lack of information,

especially historical data, about the economic variable being analysed. Smoothing meth-

ods concerning functions, such as density or distribution function, play a special role in a

nonparametric analysis of economic phenomena. Knowledge of density function or distri-

bution function, or their estimates, allows one to characterize the random variable more

completely. It is true that one can often switch from an estimator of f to an estimator

of F by integration and an estimator of F to an estimator of f by derivation. However

one feature is noteworthy : it is the existence the empirical distribution function Fn. Es-

timation of functional characteristics of random variables can be carried out using kernel

methods. Nonparametric kernel distribution estimation is now popular and in wide use

with great success in statistical applications.
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Chapter 1. Nonparametric distribution estimation

1.1 Empirical distribution function

The best known and simplest nonparametric estimator of distribution function is the

empirical distribution function (EDF). Let X1; :::; Xn be independent and identically dis-

tributed (iid) copies of the random variable (rv) X with unknown continuous distribution

function (df) F (x) = P (X � x); then the estimator of F , from X1; :::; Xn, is the EDF Fn

de�ned at some points x by

Fn(x) =
1

n

nX
i=1

I(Xi � x); (1.1)

where

I(Xi � x) =

8><>: 1 if Xi � x

0 if Xi > x:

The EDF is most conveniently de�ned in terms of the order statistics of a sample. Suppose

that the n sample observations are distinct and arranged in increasing order so that X(1)

is the smallest and the X(n) is the largest. A formal de�nition of the EDF Fn(x) is

Fn(x) =

8>>>><>>>>:
0 if x < X(1)
i

n
if X(i) � x < X(i+1)

1 if x � X(n):

1.1.1 Properties of EDF

Using properties of the binomial distribution. Note that I(Xi � x) are independent

Bernoulli random variables such that

I(Xi � x) =

8><>: 1; with probability F (x)

0; with probability 1� F (x).

Thus nFn(x), is a binomial random variable (n trials, probability F (x) of success) and so

7



Chapter 1. Nonparametric distribution estimation

� Bias

E (Fn(x)) =
1

n

nX
i=1

P (Xi � x) = F (x):

� Variance

V ar (Fn(x)) =
1

n2

nX
i=1

V ar (I(Xi � x))

=
1

n
V ar (I(Xi � x))

=
F (x) (1� F (x))

n
! 0
n!1

:

� Mean Square Error (MSE)

MSE (Fn(x)) = E
�
(Fn(x)� F (x))2

�
= Bias2 + V ariance

= V ar (Fn(x)) ! 0
n!1

:

Thus as an estimator of F (x), Fn(x) is unbiased and its variance tends to 0 as

n!1:

� Convergence in probability

Fn(x) !
n!1

F (x):

For any �xed real value x, Fn(x) is a consistent estimator of F (x), or, in other words,

Fn(x) converges to F (x) in probability. The convergence in probability is for

each value of x individually, whereas sometimes we are interested in all values of x,

collectively.

� Glivenko-Cantelli Theorem

An even stronger proof of convergence is given by theGlivenko-Cantelli Theorem,

the states that F can be approximatet by Fn in an uniform manner for large sample

8



Chapter 1. Nonparametric distribution estimation

sizes such that

P

�
lim
n!1

sup
x2R

jFn(x)� F (x)j = 0
�
= 1:

� Inequality of Dvoretsky-Kiefer-Wolfowitz

For any " > 0, and n 2 N;

P

�
sup
x2R

jFn(x)� F (x)j > "
�
� 2e�2n"2 :

Another useful property of the EDF is its asymptotic normality, given in the following

theorem.

Theorem 1.1.1 As n!1, the limiting probability distribution of the standardized Fn(x)

is standard normal, or p
n (Fn(x)� F (x))p
F (x)(1� F (x))

L! N(0; 1):

Despite the good statistical of Fn, the empirical distribution function is a step function,

one could prefer in many applications a rather smooth estimate see Azzalini (1981) [3]:

1.2 Kernel method

The kernel method originated from the idea of Rosenblatt (1956) [51] and Parzen (1962)

[47] dedicated to density estimation. The distribution function F (x) is naturally estimated

by the EDF (1:1) : It might seem natural to estimate the density f(x) as the derivative

of Fn(x); d
dx
Fn(x): But this estimator would be a set of mass point, not a density, and

as such is not a useful estimate of f(x): Instead, consider a discrete derivative. For some

small b > 0, let

f̂n(x) =
Fn(x+ b)� Fn(x� b)

2b
:

9



Chapter 1. Nonparametric distribution estimation

We can write this as

f̂n(x) =
1

2nb

nX
i=1

I (x� b � Xi � x+ b)

=
1

2nb

nX
i=1

I

�
jXi � xj

b
� 1
�
;

f̂n(x) is a special case of what is called a Rosenblatt-Parzen kernel density estimator is as

follows (see Wand and Jones (1995) [61]; Silverman (1986) [55]):

f̂n(x) =
1

nb

nX
i=1

k

�
x�Xi

b

�
;

where X1; :::; Xn be independent random variables identically distributed which are drawn

from a continuous distribution F (x) with density function f(x), n is the sample size and

b := bn (b! 0 and nb!1) is the smoothing parameter, called the bandwidth, which

controls the smoothness of the estimator, k(:) is the weighting function called the kernel

function. When k(:) is symmetric and unimodal function and the following conditions are

ful�lled:

1: k(t) � 0; 8t 2 R:

2:

Z 1

�1
k(t)dt = 1; hence k is a density function.

3:

Z 1

�1
tk(t)dt = 0:

4: 0 <

Z 1

�1
t2k(t)dt <1:

The order of a kernel, �; is de�ned as the order of the �rst non-zero moment

�j (k) =

Z 1

�1
tjk(t)dt:

The order of a symmetric kernel is always even. Symmetric non-negative kernels are

second-order kernels.

10



Chapter 1. Nonparametric distribution estimation

A kernel is higher-order kernel if � > 2: These kernels will have negative parts and are not

probability densities. We refer to Hansen (2009) [29] for more details.

Some popular kernels functions used in the literature are the following (see Silverman

(1986) [55])

Kernel k(t)

Gaussian 1p
2�
e�t

2=2; for t 2 R

Epanechnikov
3

4

�
1� t2

�
I (jtj � 1)

Quartic or Biweight
15

16

�
1� t2

�2
I(jtj � 1)

Triangular or Triweight
35

32

�
1� t2

�3
I (jtj � 1)

Table 1.1: Some kernel functions. I(.) denotes the indicator function.

Figure 1.1: Rate of kernels : Gaussian, Epanechnikov, Biweight and Triweight .

1.2.1 Kernel distribution function estimator

Let X1; :::; Xn denote independent identically distributed random variables with an un-

known density f(:) function and distribution function F (:); which we wish to estimate.

11



Chapter 1. Nonparametric distribution estimation

The density estimator can be integrated to obtain a nonparametric alternative to bFn(x)
for smooth distribution function that said the kernel distribution function estimator bFn(x)
that was proposed by Nadaraya (1964) [45] and is de�ned by

bFn(x) = Z x

�1
f̂n(t)dt (1.2)

=
1

n

nX
i=1

K

�
x�Xi

b

�
;

where the function K is de�ned from a kernel k as

K(x) =

Z x

�1
k(t)dt:

Assume that k is symmetric, and has a compact support [�1; 1]. Let

�i =

Z 1

�1
tik(t)dt; i = 1; 2; 3; 4:

In fact, �1 = �3 = 0 since k is symmetric, then the properties of function K(x) are the

following (see Baszczyńska,. (2016) [4]):

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Z 1

�1
K2(x)dx �

Z 1

�1
K(x)dx = 1;Z 1

�1
K(x)k(x)dx =

1

2
;Z 1

�1
xiK(x)dx =

1

i+ 1
(1� �i+1) ; i = 0; 1; 2; 3; 4:Z 1

�1
xK(x)k(x)dx =

1

2

�
1�

Z 1

�1
K2(x)dx

�
:

Function K(x) is a cumulative distribution function because k(x) is a probability density

function. For example, when the kernel function is Epanechnikov kernel, the function

12



Chapter 1. Nonparametric distribution estimation

K(x) has the form:

K(x) =

8>>>><>>>>:
0 for x � �1;

�1
4
x3 +

3

4
x+

1

2
for jxj � 1;

1 for x � 1:

In order to compare the kernel distribution function estimator (1:2) to the EDF (1:1),

expression for the aforementioned estimator will now be derived, see Van Graan (1983)

[59]. To obtain V ar
� bFn(x)� note that (under certain conditions on F and K)

V ar
� bFn(x)� = 1

n
V ar

�
K

�
x�Xi

b

��
=
1

n

"
E

(�
K

�
x�Xi

b

��2)
�
�
E

�
K

�
x�Xi

b

���2#
:

Now

E

�
K

�
x�Xi

b

��
=

Z 1

�1
K

�
x� y
b

�
dF (y):

=

Z x�b

�1
1:f(y)dy +

Z x+b

x�b
K

�
x� y
b

�
f(y)dy +

Z 1

x+b

0:f(y)dy;

using the substitution
x� y
b

= t and a Taylor series expansion it follows that

E

�
K

�
x�Xi

b

��
= F (x� b) +

Z 1

�1
bK(t)f(x� bt)dt

= F (x)� bf(x) + 1
2
b2f 0(x) + o(b2)

+

Z 1

�1
bK(t)

�
f(x)� btf 0(x) + 1

2
b2t2f 00(x) + o(b2)

�
dt

= F (x) +
1

2
b2f 0(x)�2(k) + o(b

2);

13



Chapter 1. Nonparametric distribution estimation

where

�2(k) =

Z 1

�1
t2k(t)dt:

Using a similar approach as above an expression forE

(�
K

�
x�Xi

b

��2)
can be obtained

E

(�
K

�
x�Xi

b

��2)
=

Z 1

�1

�
K

�
x� y
b

��2
f(y)dy

=

Z x�b

�1
1:f(y)dy +

Z x+b

x�b
K2

�
x� y
b

�
f(y)dy:

= F (x� b) +
Z 1

�1
bK2(t)f(x� bt)dt

Using the property K (t) = 1�K (�t), and Taylor series expansion we obtain

E

(�
K

�
x�Xi

b

��2)
= F (x� b) +

Z 1

�1
b (1�K(�t))2 f(x� bt)dt

= F (x� b) +
Z 1

�1
bf(x� bt)dt+

Z 1

�1
bK2(�t)f(x� bt)dt

� 2
Z 1

�1
bK(�t)f(x� bt)dt

= F (x� b)� F (x� b) + F (x+ b) +
Z 1

�1
bK2(t) ff(x) + o (1)g dt

� 2
Z 1

�1
bK(t) ff(x) + o (1)g dt

= F (x) + bf(x) + bf(x)

Z 1

�1
K2(t)dt� 2bf(x)

Z 1

�1
K(t)dt+ o (b)

= F (x) + bf(x)� 2bf(x) + bf(x)
Z 1

�1
K2(t)dt+ o (b)

= F (x)� bf(x) + bf(x)
Z 1

�1
K2(t)dt+ o (b) :

14



Chapter 1. Nonparametric distribution estimation

Expression for V ar
� bFn(x)� can be computed as

V ar
� bFn(x)� = 1

n

�
F (x)� bf(x) + bf(x)

Z 1

�1
K2(t)dt+ o (b)

�
�
F (x) +

1

2
b2f 0(x)�2(k) + o(b

2)

�2#

=
1

n
F (x) (1� F (x)) + b

n
f(x)

�Z 1

�1
K2(t)dt� 1

�
+ o

�
b

n

�
=
1

n
F (x) (1� F (x))� b

n
f(x)

�
2

Z 1

�1
tK (t) k(t)dt

�
+ o

�
b

n

�
=
1

n
F (x) (1� F (x))� b

n
f(x)' (k) + o

�
b

n

�
;

where

' (k)= 2

Z 1

�1
tK (t) k(t)dt:

The previous result shows that the asymptotic variance of bFn is smaller than the variance
of the EDF. It is evident that for larger values of b, the quantity bf(x)' (k) increases,

resulting in a smaller variance expression but larger bias. This observation has important

implication for choosing the bandwith.

Several other properties of the estimator bFn have been investigated. Nadaraya (1964)[45],
Winter (1973) [64] and Yamato (1973) [66] proved almost uniform convergence of bFn to F ;
Watson and Leadbetter (1964) [62] established asymptotic normality for bFn; and Winter
(1979) [65] showed that bFn has the Chung-Smirnov property, that

lim sup
n!1

(�
2n

log log n

�1=2
sup
x2R

��� bFn(x)� F (x)���)� 1;
with probability 1. Reiss (1981) [49] pointed out that the loss in bias with respect to Fn is

compensanted by a gain in variance. This result is referred to as the de�ciency of Fn with

respect to bFn Falk (1983) [21] provided a comlete solution to the question as to which of
Fn or bFn is the better estimator of F . Using the concept of relative de�ciency, conditions
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Chapter 1. Nonparametric distribution estimation

(as n!1) onK and b = bn are derived, which enables the user to decide exactly whether

a given kernel distribution function estimator should be preferred to the EDF.

Azzalini (1981) [3] derived also an asymptotic expression for the mean squared errorMSE

of bFn(x) and determined the asymptotically optimal smoothing parameter, to have an
MSE lower for Fn, and he obtained the asymptotic expressions for the mean integrated

squared error MISE of bFn(x); for more details see (Mack, 1984 [39], and Hill, 1985 [30]).
In order to propose methods for estimating the bandwidth, discrepancy measures that

quantify the quality of bFn as an estimator for F must be introduced. One such measure
is the mean squared error, which in the case of the kernel distribution function estimator

is de�ned as

MSE
� bFn(x)� = E �h bFn(x)� F (x)i2�

= Bias2
� bFn(x)�+ V ar � bFn(x)�

=
1

4
f 02(x)h4�22(k)

+
1

n
F (x) (1� F (x))� b

n
f(x)' (k) + o

�
b4 +

b

n

�
;

and the asymptotic expression of the MSE
� bFn(x)� is

AMSE
� bFn(x)� = 1

4
f 02(x)h4�22(k)

+
1

n
F (x) (1� F (x))� b

n
f(x)' (k) :

The value of b that minimizes the AMSE
� bFn(x)� is

bb=� f(x)'(k)

nf 02(x)�22(k)

�1=3
:

The asymptotic mean integrated square error (AMISE) is found by integrating the
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Chapter 1. Nonparametric distribution estimation

AMSE
� bFn(x)� which is

AMISE
� bFn(x)�=Z 1

�1

�
1

4
f 02(x)h4�22(k) +

1

n
F (x) (1� F (x))� b

n
f(x)' (k)

�
dx:

The bandwidth which minimizes the AMISE can be calculated by di¤erentiating expres-

sion of the AMISE
� bFn(x)�, setting the equation to 0 and solving it for b. The result is

referred to as

b=

�
'(k)

n�22(k)
R
f 02(x)dx

�1=3
:

Remark 1.2.1

1. The choice of kernel k only a¤ects the AMISE through ' (k) (larger values reduce

the AMISE).

2. The estimator bFn(x) is asymptotically more e¢ cient than the Fn(x) see (Swanapoel,
1988 [56]).
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Chapter 2

Heavy-tailed distribution

Many distributions that are found in practice are heavy-tailed distributions. The

�rst example of heavy-tailed distributions was found in Mandelbort (1963) [41]

where it was shown that the change in cotton prices was heavy-tailed. Since then many

other examples of heavy-tailed distributions are found, among these are data �le in tra¢ c

on the internet Crovella and Bestavros (1997) [16], returns on �nancial markets Rachev

(2003) [48], and Embrechts et al. (1997) [17].

Heavy-tailed distributions are probability distributions whose tails are not exponentially

bounded : that is, they have heavier tails than the exponential distribution. In many

applications it is the right tail of the distribution that is of interest, but a distribution

may have a heavy left tail, or both tails may be heavy.

There is still some discrepancy over the use of the term heavy-tailed. There are two other

de�nitions in use. Some authors use the term to refer to those distributions which do not

have all their power moments �nite, and some others to those distributions that do not

have a �nite variance. (Occasionally, heavy-tailed is used for any distribution that has

heavier tails than the normal distribution)
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Chapitre 2. Heavy-tailed distribution

2.1 Heavy-tailed distribution

We consider nonnegative random variables X, such as losses in investments or claims in

insurance. For arbitrary random variables, we should consider both right and left tails.

The heavy-tailed distribution are related to extreme value theory and allow to model

several phenomena encountered in di¤erent disciplines: �nance, hydrology, telecommuni-

cations, geology... etc. Several de�nitions were associated with these distributions as a

function of classi�cation criteria. The characterization the most simple and one based on

comparison with the normal distribution.

De�nition 2.1.1 It is said that the distribution has heavy tail if:

2 = E

"�
X � �
�

�4#
> 3: (2.1)

where � is the arithmetical mean, � the standard deviation of rv X.

Which is equivalent to saying that a distribution to a heavy-tail if and only if its coe¢ cient

of applatissement, 2, is higher than normal distribution that is equal 2 = 3. The

characterization given by equation (2:1) is very general and can be applied only if the

moment of order 4 exists, therefore no discrimination, for distributions with a moment of

order 4 is in�nite can be made if considers that this criterion, unfortunately there is no

test for all distributions under the right tail.

There are others de�nitions of heavy-tailed distribution. These de�nitions all relate to the

decay of the survivor function F of a rv X.

De�nition 2.1.2 (Tail function) If F is the distribution function of X, we de�ne the

tail function or survivor function F on R+ by

F (x) = 1� F (x) = P (X > x):
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Chapitre 2. Heavy-tailed distribution

The tail of a distribution represents probability values for large values of the variable.

When large values of the variable appear in a data set, their probabilities of occurrence

are not zero.

De�nition 2.1.3 Let F be a df with support on [0;1), we say that the distribution F ,

its corresponding nonnegative rv X, is heavy-tailed if it has no exponential moment

Z 1

0

e�xdF (x) =1; for all � > 0:

De�nition 2.1.4 Let X a random variable with a distribution function F and the density

f; this distribution is said to have a heavy tail if

F (x) = P (X > x) � x��; as x!1;

where the parameter � > 0 is called the tail index.

The distribution F is heavy-tailed if its tail function goes slowly to zero at in�nity. For

the next we need the following de�nition.

De�nition 2.1.5 (Slowly varying function) A positive measurable function S on ]0;1[

is slowly varying at in�nity if

lim
x!1

S (tx)

S(x)
= 1; t > 0:

Thus, �nally, here is the formal de�nition of heavy-tailed distributions:

De�nition 2.1.6 The distribution F is said to have a heavy tail if

F (x) = S(x)x��;

for some � > 0 (called the tail index), and S(:) is a slowly varying function at in�nity.
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Chapitre 2. Heavy-tailed distribution

2.1.1 Examples of heavy-tailed distributions

� The Pareto distribution on R+ : This has tail function F given by

F (x) =

�
�

x+ �

��
;

for some scale parameter � > 0 and shape parameter � > 0. Clearly we have

F (x) � (x=�)�� as x!1;

and for this reason the Pareto distributions are sometimes referred to as the power

law distributions. The Pareto distribution has all moments of order  < � �nite,

while all moments of order  � � are in�nite.

� The Burr distribution on R+ : This has tail function F given by

F (x) =

�
�

x� + �

��
;

for parameters �; �; � > 0. We have

F (x) � ��x��� as x!1;

thus the Burr distribution is similar in its tail to the Pareto distribution, of which

it is otherwise a generalization. All moments of order  < �� are �nite, while those

of order  � �� are in�nite.

� The Cauchy distribution on R : This is most easily given by its density function

f where

f(x) =
�

�
�
(x� a)2 + �2

� ;
for some scale parameter � > 0 and position parameter a 2 R. All moments are
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Chapitre 2. Heavy-tailed distribution

in�nite.

� The lognormal distribution on R�+ : This is again most easily given by its density

function f , where

f(x) =
1p
2��x

exp

 
�(log x� �)

2

2�2

!
;

for parameters � and � > 0. The tail of the distribution F is then

F (x) = �

�
log x� �

�

�
for x > 0;

where � is the tail of the standard normal random variable. All moments of the

lognormal distribution are �nite. Note that a (positive) random variable Y has a

lognormal distribution with parameters � and � if and only if log Y has a normal

distribution with mean � and variance �2. For this reason the distribution is natural

in many applications.

� The Weibull distribution on R+ : This has tail function F given by

F (x) = e�(x=�)
�

;

for some scale parameter � > 0 and shape parameter � > 0. This is a heavy-tailed

distribution if and only if � < 1. Note that in the case � = 1 we have the exponential

distribution. All moments of the Weibull distribution are �nite.

2.2 Classes of heavy-tailed distributions

An important classes of heavy-tailed distributions are that regularity varying distrib-

ution and subexponential distribution.
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Chapitre 2. Heavy-tailed distribution

2.2.1 Regularity varying distribution functions

We introduce here the well-known class of heavy-tailed distributions is the class of regularly

varying distribution functions.

De�nition 2.2.1 (Regularity varying distribution) A distribution function F on R

is called regular varying at in�nity with index �� < 0 if the following limit holds

lim
x!1

F (tx)

F (x)
= t��; t > 0;

where F (x) = 1� F (x) and the parameter � is called the tail index.

De�nition 2.2.2 A positive measurable function g on ]0;1[ is regularly varying at in�n-

ity with index � 2 R if

lim
x!1

g(tx)

g(x)
= t�; t > 0;

we write g(x) 2 R�.

If g(x) 2 R� and � = 0 we call the function slowly varying at in�nity. If g(x) 2 R� we

simply call the function g(x) regularly varying and we can rewrite

g(x) = x�S(x);

where S(x) is a slowly varying function.

The class of regularly varying distribution is closed under convolutions as can be found in

Applebaum (2005) [1].

Proposition 2.2.1 (Regularly varying of convolution) If F1; F2 are two distribution

functions such that as x!1 :

1� Fi (x) = x��Si(x); 8i = 1; 2;

23



Chapitre 2. Heavy-tailed distribution

with Si is slowly varying, then the convolution H = F1 � F2 has a regularly varying tail

such that :

1�H (x) � x�� (S1(x) + S2(x)) :

Remark 2.2.1 If F (x) = x��S(x) for � � 0 and S 2 R0, then for all n � 1;

F n� (x) � nF (x) ; x!1;

where F n� denotes the convolution of F n�times with itself. (See Embrechts et al. (1997)

[17]).

An property of regularly varying distribution functions is that the k�th moment does

not exist whenever k � �; the mean and the variance can be in�nite. This has a few

important implications. When we consider a random variable that has a regularly varying

distributions with a tail index less than one, then the mean of this random variable is

in�nite, and if we consider the sum of independent and identically distributed random

variables that have a tail index � < 2, the means that the variance of these random

variables is in�nite, and hence the central limit theorem does not hold for these random

variables see Uchaikin and Zolotarev (1999) [58].

A more detail on regularly varying distribution functions is found in Bingham et al. (1987)

[5].
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Chapitre 2. Heavy-tailed distribution

The following table gives a particular examples of regularly varying distributions.

Distribution F (x) or f(x) Index of regular variation

Pareto F (x) =

�
�

x+ �

��
��

Burr F (x) =

�
�

x� + �

��
���

Log-Gamma f(x) =
��

� (�)
(ln (x))��1 x���1 ��

Table 2.1: Regularly varying distribution functions

2.2.2 Subexponential distribution functions

Subexponential distributions are a special class of heavy-tailed distributions. The name

arises from one of their properties, that their tails decrease more slowly than any expo-

nential tail, see Goldie (1978) [27]. This implies that large values can occur in a sample

with non-negligible probability, and makes the subexponential distributions candidates for

modelling situations where some extremely large values occur in a sample compared to

the mean size of the data. Such a pattern is often seen in insurance data, for instance in

�re, wind-storm or �ood insurance (collectively known as catastrophe insurance). Subex-

ponential claims can account for large �uctuations in the surplus process of a company,

increasing the risk involved in such portfolios.

De�nition 2.2.3 (Subexponential distribution function) Let X1; :::; Xn be iid pos-

itive random variables with df F such that 0 < F (x) < 1 for all x > 0.

Denote

P (max (X1 + :::+Xn) > x) = F n(x) � nF (x) as x!1;

and

P (X1 + :::+Xn > x) = F n�(x) = 1� F n�(x); x � 0;

the tail of the n�fold convolution of F . F is a subexponential df (F 2 S) if one of the

following equivalent conditions holds:
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(1) lim
x!1

F n�(x)

F (x)
= n for some (all) n � 2;

(2) lim
x!1

P (X1 + :::+Xn > x)

P (max (X1 + :::+Xn) > x)
= 1 for some (all) n � 2:

Lemma 2.2.1 If the following equation holds

lim sup
x!1

F 2�(x)

F (x)
= 2;

then F 2 S.

Proof. See Foss et al. (2013) [24]:

The following lemma give a few important properties of subexponential distributions:

Lemma 2.2.2 If F is subexponential then for all t � 0

lim
x!1

F (x� t)
F (x)

= 1:

Proof. See Chistyakov (1964) [12].

Lemma 2.2.3 Let F be subexponential and r > 0. Then

lim
x!1

erx(F (x)) =1;

in particular Z 1

0

erxdF (x) =1:

Proof. See Embrechts et al. (1997) [17]:

Next we give an upper bound for the tails of the convolutions.

Lemma 2.2.4 Let F be subexponential. Then for any � > 0 there exist a D 2 R such

that
F n�(x)

F (x)
� D(1 + �)n
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Chapitre 2. Heavy-tailed distribution

for all x > 0 and n � 2.

Proof. See Embrechts et al. (1997) [17].

Remark 2.2.2

1. De�nition (1) goes back to Chistyakov (1964) [12]. He proved that the limit (1) holds

for all n � 2 if and only if it holds for n = 2. It was shown in Embrechts and Goldie

(1982) [19] that (1) holds for n = 2 if it holds for some n � 2.

2. The equivalence of (1) and (2) was shown in Embrechts and Goldie (1980) [18].

3. De�nition (2) provides a physical in terpretation of subexponentiality : the sum of n

iid subexponential rv is likely to be large if and only if their maximum is likely to be

large. This accounts for extremely large values in a subexponential sample.

4. From De�nition (1) and the fact that S is closed with respect to tail equivalence we

conclude that

F 2 S =) F n� 2 S ; n 2 N;

Furthermore, from De�nition (2) and the fact that F n is the df of the maximum of

n iid rv with df F , we conclude that

F 2 S =) F n 2 S ; n 2 N:

Hence S is closed with respect to taking sums and maxima of iid random variables.

For an more explication of subexponential distribution, one refers to, for instance, Foss et

al. (2013) [24]: and Embrechts and Goldie (1980) [18]
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The following table gives a number of subexponential distribution:

Distribution F (x) or f(x) Parameters

Weibull F (x) = e��x
�

� > 0; 0 < � < 1

Lognormal f(x) = 1p
2��x

exp

 
�(log x� �)

2

2�2

!
� 2 R; � > 0

Benktender-type I F (x) =

�
1 + 2

�

�
lnx

�
e��(lnx)

2�(�+1) lnx �; � > 0

Benktender-type II F (x) = e

�

� x�(1��)e
��x

�

�
� > 0; 0 < � < 1

Table 2.2: Subexponential distribution

We give now two more classes of heavy-tailed distributions. We begin by the class of

dominated varying distribution functions denoted by D :

De�nition 2.2.4 We say that F is a dominated-varying distribution if there exists c > 0

such that

F (2x) � cF (x) for all x:

The class of dominated varying distribution functions denoted by D

D =
�
F; df on ]0;1[ : lim sup

x!1

F (x=2)

F (x)
<1

�
:

The �nal class of distribution functions is the class of long tailed distributions, denoted by

L

L =
�
F; df on ]0;1[ : lim

x!1

F (x� t)
F (x)

= 1 for all t > 0
�
:
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Chapter 3

Transformation in kernel density

estimation for heavy-tailed

distributions

It is well known now that kernel density estimators are not consistent when estimatinga density near the �nite end points of the support of the density to be estimated.

This is due to boundary e¤ects that occur in nonparametric curve estimation problems. A

number of proposals have been made in the kernel density estimation context with some

success. As of yet there appears to be no single dominating solution that corrects the

boundary problem for all shapes of densities.

Consequently, an idea on how to include boundary corrections in these estimators is pre-

sented. The �rst statement implies that the density has a support which is bounded on

the left hand side. Without loss of generality the support is set to be [0;1). Concerned

the kernel estimation for heavy-tailed distributions has been studied by several authors

Bolancé et al. (2003) [6], Clements et al. (2003) [13] and Buch-Larsen et al. (2005) [7]

propose di¤erent parametric transformation families that they all make the transformed

distribution more symmetric that the original one, which in many applications has usually
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a strong right-hand asymmetry. Buch-Larsen et al. (2005) [7] propose an alternative trans-

formation such as one based on the Champernowne distribution, who they have shown in

studies that this transformation is preferable to other transformation in density estimation

approach for heavy-tailed distribution.

3.1 Kernel density estimator and boundary e¤ects

Nonparametric kernel density estimation is now popular and in wide use with great success

in statistical applications. Kernel density estimates are commonly used to display the

shape of a data set without relying on a parametric model, not to mention the exposition of

skewness, multimodality, dispersion, and more. Early results on kernel density estimation

are due to Rosenblatt (1956) [51] and Parzen (1962) [47]. Since then, much research has

been done in the area; see the monographs of Silverman (1986) [55], and Wand and Jones

(1995) [61].

Consider a density function f which is continuous on [0;1) and is 0 for x < 0. Given

a bandwidth b, the interval [0; b] is de�ned to be the boundary interval and ]b; a � b];

0 < a � 1; the interior interval, and consider nonparametric estimation of the unknown

density function f based on a random sample X1; :::; Xn. Suppose that f 0 and f 00 are

the �rst and second derivatives of f , exists and is continuous on [0; b]: Then the standard

kernel estimator of f is given by

f̂n(x) =
1

nb

nX
i=1

k

�
x�Xi

b

�
; (3.1)

where k is a symmetric density function with support [�1; 1] and b is the bandwidth. The

basic properties of f̂n(x) at interior points are well-known see Silverman (1986) [55], and

under some smoothen assumptions these include, for b < x � a� b; 0 < a � 1;

E
�
f̂n(x)

�
� f(x) = 1

2
�2(k)f

00 (x) b2 + o
�
b2
�
;
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and

V ar
�
f̂n(x)

�
=
1

nb
f(x)

Z 1

0

k2(x)dx+ o

�
1

nb

�
:

The bias of f̂n(x) is of order o (b2), whereas at boundary points, for x 2 [0; b] [ (a� b; a],

f̂n is not even consistent. In nonparametric curve estimation problems this phenomenon

is referred to as the �boundary e¤ects�. Problems will arise if x is smaller than the chosen

bandwidth b. This fact can be clearly seen by examining the behavior of f̂n(x) inside the

left boundary region [0; b]. Let x be a point in the left boundary, x 2 [0; b]. Then we can

write for x = sb; 0 � s � 1:

E
�
f̂n(x)

�
= E

�
1

b
k

�
x�Xi

b

��
=
1

b

Z 1

0

k

�
x� z
b

�
f(z)dz:

We used the change of variable t = (x� z)=b; we have

E
�
f̂n(x)

�
=

Z s

�1
k (t) f (x� bt) dt:

Assuming that f 00 exists and is continuous in a neighborhood of x, the density in the

integral can be approximated by its second order Taylor expansion evaluated at x:

f(x� bt) = f(x) + (x� bt� x)f 0 (x)

+
1

2
(x� bt� x)2 f 00 (x) + o

�
b2
�
;
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given for b! 0 and t 2 [�1; 1];

E
�
f̂n(x)

�
= f(x)

Z s

�1
k (t) dt� bf 0(x)

Z s

�1
tk (t) dt

+
b2

2
f 00(x)

Z s

�1
t2k (t) dt+ o

�
b2
�
;

and

V ar
�
f̂n(x)

�
=
1

nb
f(x)

Z s

�1
k2 (t) dt+ o

�
1

nb

�
:

It is now clear that the bias of f̂n(x) is of order o (b) instead of o (b2) ; the variance isn�t

much changed.

Example 3.1.1 The boundary problem can be detected in �gure (3:1). The theoretical

curve is that of the pareto density.

Figure 3.1: Boundary e¤ect in kernel density estimation

3.2 Methods for removing boundary e¤ects

The properties of the classical kernel methods are satisfactory, but when the support of

the variable is bounded, kernel estimates may su¤er from boundary e¤ects. Therefore, the
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so-called boundary correction is needed in kernel estimation. Removing boundary e¤ects

in kernel density estimation can be done in various methods. Some methods were selected

which seemed to be reasonable. There were methods which were rather complicated and

others which on the other hand felt quite natural.

� The re�ection method

The re�ection method is introduced by Schuster (1985) [53], then study by Cline and

Hart (1991) [14]. this method speci�cally designed for the case f 0 (0) = 0, where f 0

denotes the �rst derivative of f . Simplest way is to re�ect the data points X1; :::; Xn

at the origin, just add �X1; :::;�Xn to the data set. This is usually referred to as

the re�ection estimator and it can also be formulated as

bfR(x) = 1

nb

nX
i=1

�
k

�
x�Xi

b

�
+ k

�
x+Xi

b

��
; for x � 0;

for x < 0; bfn(x) = 0.
� Transformation of data method

The transformation idea is based on transforming the original data X1; :::; Xn to

g (X1) ; :::; g (Xn), where g is a non-negative, continuous and monotonically increas-

ing function from [0;1) to [0;1). Based on the transformed data, the estimator

(3:1) becomes:

f̂T (x) =
1

nb

nX
i=1

k

�
x� g (Xi)

b

�
:

Note this isn�t really estimating the density function of X, but instead of g(X)

� Pseudo-Data Methods

The pseudo-data method estimator is de�ned (see Cowling and Hall (1996) [15]),

this generates data beyond the left endpoint of the support of the density.
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bfCH(x) = 1

nb

(
nX
i=1

k

�
x�Xi

b

�
+

mX
i=1

k

�
x+X(�i)

b

�)
:

where

X(�i) = �5X(i=3) � 4X(2i=3) +
10

3
X(i); i = 1; 2; :::; n;

and X(i) is the ith-order statistic of sample X1; :::; Xn, and m is an integer such that

nb < m < n.

� Boundary kernel method

The boundary kernel method is more general than the re�ection method in the sense

that it can adapt to any shape of density. However, a drawback of this method is that

the estimates might be negative near the endpoints; especially when f(0) � 0.The

boundary kernel and related methods usually have low bias but the price for that is

an increase in variance. The boundary kernel estimator with bandwidth variation is

de�ned (see Zhang and Karunamuni (1998) [67]) as

f̂B(x) =
1

nbs

nX
i=1

k(s='(s))

�
x�Xi

bs

�
;

where s = minfx=b; 1g; k(s='(s)) is a boundary kernel satisfying k(1) (t) = k(t), and

bs = '(s)b with '(s) = 2� s: Also

k(s='(s)) (t) =
12

(1 + s)4
(1 + t)

�
(1� 2s) t+ 3s

2 � 2s+ 1
2

�
If�1�t�sg:

� Re�ection and transformation methods

The re�ection estimator computes the estimate density based on the original and

the re�ected data points. Unfortunately, this does not always yield a satisfying
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result since this estimator enforces the shoulder condition and still contains a bias of

order b if the density does not ful�ll this condition. The generalized re�ection and

transformation density estimators introduce by Karunamuni and Alberts (2005) [34]

and is given by

bfRT (x) = 1

nb

nX
i=1

�
k

�
x+ g (Xi)

b

�
+ k

�
x� g (Xi)

b

��
:

where g is a transformation that need to be determined.

We refer to Baszczyńska (2016) [4]; Karunamuni and Alberts (2005) [34] and Kolá¼cek

and Karunamuni (2009) [38] for more details about this methods and for other

methods see Zhang et al. (1999) [68].

Now for remove the boundary e¤ect in density estimation of heavy-tail distributions, we

investigate a new class of estimators based on a transformation of set of the original data

by the Champernowne distribution function.

3.3 Champernowne distribution

Buch-Larsen et.al. (2005) [7] used modi�ed Champernowne distribution to estimate loss

distributions in insurance which is categorically heavy-tailed distributions. Some time

it is di¢ cult to �nd a parametric model which is simple and �t for all values of claim

in the insurance industry. Gustafsson et.al. (2007) [28] used asymmetric kernel density

estimation to estimate actuarial loss distributions. The new estimator of density function is

obtained by transforming the data using generalized Champernowne distribution function,

because it produces good results in all the studied situations and it is straightforward to

apply.
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The original Champernowne distribution has density

f(x) =
C

x
�
(1=2) (x=M)�� + �+ (1=2) (x=M)�

� ; x � 0;
where C is a normalizing constant and �; � and M are parameters. The distribution

was mentioned for the �rst time in 1936 by D.G. Champernowne when he spoke on The

Theory of Income Distribution at the Oxford Meeting of the Econometric Society see,

Champernowne (1936) [8], Champernowne (1937) [9]. Later, he gave more details about

the distribution in Champernowne (1952) [10], and its application to economics. When

� equals to one and the normalizing constant c equals (1=2)�, the density of the original

distribution is simply called the Champernowne. Champernowne cumulative distribution

function is de�ned on x � 0 and has the form

F (x) =
x�

x� +M�
;

with parameter � > 0; M > 0, and density function is of the form

f(x) =
�M�x��1

(x� +M�)2
:

The Champernowne distribution converges to a Pareto distribution in the tail, while look-

ing more like a lognormal distribution near 0 when � > 1. Its density is either 0 or in�nity

at 0 (unless � = 1).

3.3.1 Modi�ed Champernowne distribution

We generalize the Champernowne distribution with a new parameter c. This parameter

ensures the possibility of a positive �nite value of the density at 0 for all �.

De�nition 3.3.1 The modi�ed Champernowne cumulative df is de�ned for x � 0 and
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has the form

T (x) =
(x+ c)� � c�

(x+ c)� + (M + c)� 2c� ; 8x 2 R+;

with parameter � > 0; M > 0 and c � 0, and its density is

t(x) =
� (x+ c)��1 ((M + c)� � c�)
((x+ c)� + (M + c)� � 2c�)2

; 8x 2 R+:

Corresponding to the Champernowne distribution, the modi�ed Champernowne distribu-

tion converges to a Pareto distribution in the tail, for the large values of x:

t(x)!
�
�
((M + c)� � c�)1=�

��
x�+1

:

A crucial step when using the Champernowne distribution, is the choice of parameter

estimators. As described in Buch-Larsen et al. (2005) [7], a natural way is to recognize

that T (M) = 1=2 and therefore estimate the parameter M as the empirical median, and

then estimate (�; c) by maximizing the log-likelihood function

l(�; c) = n log(�) + n log((M + c)� � c�) + (�� 1)
nX
i=1

log(Xi + c)

� 2
nX
i=1

log ((Xi + c) + (M + c)� � 2c�) :

The choice of M as the empirical median, especially for heavy-tailed distributions, and

the maximum likelihood estimates of (�; c) ensures the best over-all �t of the distribution.

Remark 3.3.1 The e¤ect of the additional parameter c is di¤erent for � > 1 and for

� < 1. The parameter c has some scale parameter properties: when � < 1, the derivative

of the cumulative df becomes larger for increasing c, and conversely, when � > 1, the

derivative of the df becomes smaller for increasing c. When � 6= 1, the choice of c a¤ects

the density in three ways.

First, c changes the density in the tail. When � < 1, positive c result in lighter tails, and
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the opposite when � > 1.

Secondly, c changes the density in 0. A positive c provides a positive �nite density in 0 :

0 < t(0) =
�c��1

(M + c)� � c� <1; when c > 0.

Thirdly, c moves the mode. When � > 1, the density has a mode, and positive c shift the

mode to the left. We therefore see that the parameter c also has a shift parameter e¤ect.

When � = 1, the choice of c has no e¤ect.

Figure 3.2: Modi�ed Champernowne distribution function, (M = 3;� = 0:5) . c = 0
dashed line and c = 2 solid line.
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Figure 3.3: Modi�ed Champernowne distribution function, (M = 3;� = 2) . c = 0 dashed
line and c = 2 solid line.

3.4 Density estimation using Champernowne trans-

formation

Consider a sample random of size n, X1; :::; Xn, from unknown df, F or density func-

tion f . We will make a detailed derivation of the density estimator based on the modi�ed

Champernowne distribution. This estimator is obtained by transforming the data set with

a parametric estimator. The estimator of M is the empirical median and the likelihood

estimator of � and c are the values which maximize likelihood function and afterwards esti-

mating the density of the transformed data set using the classical kernel density estimator

(3:1). The estimator of the original density is obtained by back-transformation.

Lemma 3.4.1 Using transformation y = T (x), then

g(y) = f
�
T�1 (y)

� 1

jt (T�1 (y))j ;
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and

f(x) = g (T (x)) t (x) = g(T (x))
1��(T�1)0 (x)�� ;

where t (x) = T 0(x):

Proof. For y = T (x); x = T�1 (y) and t (x) =
dT (x)

dx
: The density function of variable X

is f(x) and F (x) its cumulative df. Note that G (y) cumulative df of variable Y and g(y)

its density function, then

G (y) = P (Y � y)

= P
�
X � T�1 (y)

�
= F

�
T�1 (y)

�
;

and

g(y) =
dG(y)

dy

=
dF (T�1 (y))

dy

= f
�
T�1 (y)

� ����dT�1 (y)dy

����
= f

�
T�1 (y)

� 1����dT (x)dx

����
= f

�
T�1 (y)

� 1

jt (T�1 (y))j :

For x = T�1 (y) ; y = T (x);

f(x) = g(T (x))

����dT (x)dx

����
= g(T (x)) jt(x)j

= g(T (x))
1��(T�1)0 (x)�� :
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This achieves the proof of Lemma 3:4:1:

Theorem 3.4.1 Given a set of data X1; :::; Xn, cumulative df T; is the modi�ed Cham-

pernowne distribution function, then

Yi = T (Xi); i = 1; :::; n;

are new variable, Yi is in the interval [0; 1] and uniform distributed, then the density

function for transform data is

g (y) = f
�
T�1 (y)

� 1

jt (T�1 (y))j :

and the formulation of the kernel density estimation for transform data Y1; :::; Yn is

egn (y) = 1

nb

nX
i=1

k

�
y � Yi
b

�
;

where k(:) is kernel function.

Boundary correction, is needed since y are in the interval [0; 1], it is necessary to have

a boundary correction to ensure that the kernel density estimator for transform data

is a consistent estimator at the boundary. We use a simple renormalization method, as

described in Jones (1993) [31] which ensures that each kernel function integrates to 1. The

formula kernel density estimator for transform data Y1; :::; Yn with the boundary correction

is so

egn (y) = 1

nbky

nX
i=1

k

�
y � Yi
b

�
;

where

ky =

Z max(1;(1�y=b))

max(�1;�y=b)
k(u)du:
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Using Theorem 3:4:1 kernel density estimation for data Xi; i = 1; :::; n is;

efn (x) = egn (T (x))
j(T�1)0 (x)j :

The formula of transformation kernel density estimation is

efn (x) = 1

nbkT (x)

nX
i=1

kb

�
T (x)� T (Xi)

b

�
T 0 (x)

3.4.1 Asymptotic theory for the transformation kernel density

estimator

We investigate the asymptotic theory of the transformation kernel density estimator.

Buch-Larsen et.al. (2005) [7], presented a theorem about the asymptotic theory of the

transformation kernel density estimator in general (asymptotic bias and variance).

Theorem 3.4.2 Let X1; :::; Xn be independent identically distributed variables with den-

sity f . Let efn(x) be the transformation kernel density estimator of f(x)
efn (x) = 1

nb

nX
i=1

k

�
T (x)� T (Xi)

b

�
T 0 (x) ;

where T (�) is the transformation function.

Then the bias and the variance of efn (x) are given by
E
� efn (x)�� f(x) = 1

2
�2 (k) b

2

��
f(x)

T 0(x)

�0
1

T 0 (x)

�0
+ o

�
b2
�
;

and

V ar
� efn (x)� = 1

nb
R (k)T 0(x)f(x) + o

�
1

nb

�
:

as n!1; where �2 (k) =
R
u2k(u)dx and R(k) =

R
k2(u)dx.
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Proof. The variable transformation Yi = T (Xi) has the density g such as

g (y) =
f (T�1 (y))

T 0(T�1 (y))
:

Let egn (y) be the classical kernel density estimator of g(y)
egn (y) = 1

nb

nX
i=n

k

�
y � Yi
b

�
:

The mean and variance of the classical kernel density estimator

E (egn (y)) = g(y) + 1
2
�2 (k) b

2g00 (y) + o
�
b2
�
;

and

V ar (egn (y)) = 1

nb
R(k)g(y) + o

�
1

nb

�
:

The expression of the kernel estimator of density through the transformation by the stan-

dard kernel estimator of density is:

efn (x) = T 0 (x) egn (T (x)) :
Then

E
� efn (x)� = T 0 (x)E (egn (T (x)))

= T 0 (x)

�
g(T (x)) +

b2

2
g00 (T (x))�2 (k) + o

�
b2
��
;
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we have

g (T (x)) =
f(x)

T 0 (x)

g0 (T (x)) =
dg (T (x))

dT (x)

=
dg (T (x))

dx
:
dx

dT (x)

=

�
f(x)

T 0(x)

�0
1

T 0 (x)
;

and

g00 (T (x)) =
d

dT (x)
(g0 (T (x)))

=
d

dx
(g0 (T (x)))

dx

dT (x)

=

��
f(x)

T 0(x)

�0
1

T 0 (x)

�
1

T 0 (x)
;

E
� efn (x)�� f(x) = 1

2
�2 (k) b

2

��
f(x)

T 0(x)

�0
1

T 0 (x)

�0
+ o

�
b2
�
;

and

V ar
� efn (x)� = (T 0 (x))2 V ar (egn (T (x))

= (T 0 (x))
2

�
1

nb
R(k)g(y) + o

�
1

nb

��
=
1

nb
T 0 (x)R (k) f(x) + o

�
1

nb

�
:

This completes the proof of Theorem 3:4:2:
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Example 3.4.1 Taking boundary problem for rv X with pareto distribution with parame-

ter (�; �) = (1; 1) and sample size n = 500: Graphical output �gure (3:4) illustrates the

boundary correction by the transformation method.

Figure 3.4: Usual kernel estimator and Champernowne transformation estimator.
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Chapter 4

A modi�ed Champernowne

transformation to improve boundary

e¤ect in kernel distribution

estimation

Abstract. Kernel distribution estimators are not consistent when estimating a distribu-

tion function near the boundary of its support. This problem is due to boundary e¤ects.

Several solutions to this problem have already been proposed. In this paper, we propose an

estimator for heavy-tailed distributions using the boundary kernel distribution estimator

by transforming the data set with a modi�cation of the Champernowne distribution func-

tion. The asymptotic bias, variance and mean squared error of the proposed estimator are

determined. In a simulation studies, we show that the proposed method performs quite

well when compared with the existing methods.

Key words: Transformation; Boundary e¤ect; Kernel distribution estimation; Mean Square

Error; MeanIntegrated Equare Error.

AMS 2010 Subject Classi�cation: 62G07; 62G20.
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4.1 Introduction

LetX be a real random variable (rv) with unknown continuous distribution function

(cdf) F and density function f . An important statistical problem is the estimation

of a cdf F: A simple or the classic nonparametric estimator of the cdf is the empirical

distribution function estimator. But, these estimators are step functions, and therefore,

they have undesirable properties. To overcome these disadvantages, smoothing versions

of them are often used. Among them kernel smoothing is most widely used because it is

easy to derive and has good properties. Kernel smoothing has received a lot of attention

in density estimation contex (see, e.g., Silverman (1986) [55], Wand and Jones (1995)

[61]). Speci�cally, let X1; :::; Xn be a sample of size n � 1 from the rv X. The popular

nonparametric kernel estimator of f which is introduced by Rosenblatt (1956) [51] and

Parzen (1962) [47] and has the form

bfn(x) = 1

nb

nX
i=1

k

�
x�Xi

b

�
;

where b := bn is the bandwidth or the smoothing parameter (b �! 0, as n �!1) and k

is a nonnegative symmetric kernel function such that it is bounded and has �nite support.

The kernel distribution function estimator bFn(x) was proposed by Nadaraya (1964) [45].
Such an estimator arises as an integral of the Parzen-Rosenblatt kernel density estimator

(see Reiss (1981) [49] and Tenreiro (2013)) [57] and is de�ned for x 2 R; by

bFn(x) = Z x

�1
bfn(t)dt = 1

n

nX
i=1

K

�
x�Xi

b

�
; (4.1)

where

K(x) :=

Z x

�1
k(t)dt;

is the integrated kernel. However, several properties of bFn(x) have been investigated,
Azzalini (1981) [3] have derived an asymptotic expression for the mean squared error of
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bFn(x); and determined also the asymptotically optimal smoothing parameter. Winter
(1979) [65] and Yamato (1973) [66] proved the uniform convergence of bFn(x) to F (x)
with probability one, the asymptotic normality of bFn(x) is established by Watson and
Leadbetter (1964) [62].

The problems of boundary e¤ect for kernel estimators with compact supports is well-

known in regression and density function estimation and several modi�ed estimators have

been proposed in the literature (see Gasser and Müller (1979) [25], Karunamuni and Al-

berts (2005) [34], Zhang and Karunamuni (1999) [68], and references therein). A similar

correction would be made for improve the theoretical performance of the usual kernel

distribution function estimator (4:1); at the boundary points. More speci�cally the per-

formance of bFn(x) at boundary points, for x 2 [0; b][(a�b; a]; 0 < a � 1; however di¤ers
from the interior points due to so-called �boundary e¤ects�that occur in nonparametric

curve estimation problems. The bias of bFn(x) is of order o(b) instead of o(b2) at boundary
points, while the variance of bFn(x) is of order o� b

n

�
. This fact can be clearly seen by

examining the behavior of bFn inside the left boundary region [0; b]. Let x be a point in
the left boundary region, x 2 [0; b]. The bias and variance of bFn(x) at x = sb; 0 � s � 1
are

Bias
� bFn(x)� = bf (0) Z �s

�1
K(t)dt (4.2)

+ b2f 0 (0)

�
s2

2
+ s

Z �s

�1
K(t)dt�

Z s

�1
tK(t)dt

�
+ o

�
b2
�
;

and

V ar
� bFn(x)� = F (x) (1� F (x))

n
+
b

n
f (0)

�Z s

�1
K2(t)dt� s

�
+ o

�
b

n

�
: (4.3)

To remove those boundary e¤ects in kernel distribution estimator, a variety of methods

have been developed in the literature. We brie�y mention re�ection of data (see, e.g.,
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Silverman (1986) [55]), transform of data (see, Marron and Ruppert (1994) [42]), pseudo-

data method (see Cowling and Hall (1996) [15]) and also the boundary kernel method

(Gasser et al. (1985) [26], Zhang and Karunamuni (2000) [69]). For more details about

this techniques one refers to Karunamuni and Alberts (2005) [34]; Karunamuni and Alberts

(2004) [33].

In this paper, we develop a new kernel type estimator of the heavy-tailed distributions

functions that improved boundary e¤ects near the points at left boundary region, for

x 2 [0; b]. This estimator is based on a new transformation on boundary corrected kernel

estimator ideas of Kolá¼cek and Karunamuni (2009) [38]; Buch-Larsen et al. (2005) [7],

developed for boundary correction in kernel density estimation. The basic technique of

construction of the proposed estimator is kind of a generalized re�ection method involving

re�ecting a transformation of the observed data, we used two transformations. First, a

transformation g is selected from a parametric family, second we propose to use a transfor-

mation T based on the little-known Champernowne distribution function, which produces

good results in all situations studied and it is straightforward to apply.

Theoretical properties of boundary kernel distribution estimator are introduced in Section

4:2. In Section 4:3 the proposed estimator is given and its bias and variance are computed.

In Section 4:4, simulation studies are done to see the performance of the proposed esti-

mator, and compare it with the "usual" and "boundary" distribution function estimators.

Finally, all Proofs are referred to Section 4:5.

4.2 Boundary kernel distribution estimator

In order to deal with the boundary e¤ects that occur in nonparametric regression and

density function estimation, the use of boundary kernels is proposed and studied by authors

such as Gasser and Müller (1979) [25], Karunamuni and Alberts (2004) [33]. Next we

extend this approach to a distribution function estimator framework. The structure of this
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estimator is the same type of that in density estimation case which has been discussed in

Karunamuni and Alberts (2007) [35], for more details see Zhang and Karunamuni (1999)

[68]. This method of estimating combines the transformation and the re�ection methods,

consisting of three steps:

Step 1: Transform the initial data X1; :::; Xn to g(X1); :::; g(Xn); where g is a nonnegative,

continuous, and monotonically increasing function from [0;1) to [0;1):

Step 2: Re�ect g(X1); :::; g(Xn) around the origin, so we get �g(X1); :::;�g(Xn):

Step 3: The estimator of F is based on the enlarged data sample�g(X1); :::;�g(Xn); g(X1); :::; g(Xn):

Then the boundary kernel distribution estimator of the distribution function for

x 2 [0; b]; is given by

F n(x) =
1

n

nX
i=1

�
K

�
x� g(Xi)

b

�
�K

�
�x+ g(Xi)

b

��
; (4.4)

where K is a distribution of the kernel function k as in (4:1).

This estimator generates a class of boundary corrected estimators. We need to obtain

explicit forms of the bias, variance and asymptotic mean square error expressions of the

estimator (4:4).

Lemma 4.2.1 Assume that f 0(:) and g00(:) exist and are continuous. Further, assume

that g�1(0) = 1 and g0(0) = 0; where g�1 the inverse function of g and f 0 and g00 are the

�rst and second derivatives of f and g respectively. Then for x = sb; 0 � s � 1; we have

Bias
�
F n(x)

�
= b2

�
f 0 (0)

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
� f (0) g00(0)

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

��
+ o

�
b2
�
; (4.5)
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and

V ar
�
F n(x)

�
=
F (x) (1� F (x))

n
+
b

n
f (0)

�
2

Z �s

�1
K2(t)dt� s

+

Z s

�s
K2(t)dt� 2

Z s

�1
K(t)K(t� 2s)dt

�
+ o

�
b

n

�
: (4.6)

Accordingly, the asymptotic mean squared error is

AMSE
�
F n(x)

�
= b4

�
f 0 (0)

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
� f (0) g00(0)

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

��2
+
F (x) (1� F (x))

n
+
b

n
f (0)

�
2

Z �s

�1
K2(t)dt� s

+

Z s

�s
K2(t)dt� 2

Z s

�1
K(t)K(t� 2s)dt

�
: (4.7)

Remark 4.2.1 Functions satisfying conditions g�1(0) = 1 and g0(0) = 0 are easy to

construct. The trivial choice is g(y) = y, which represents the �classical�re�ection method

estimator. The following transformation adapts well to various shapes of distributions:

g(y) = y +
1

2
Isy

2;

for y � 0 and 0 � s � 1; where Is =
R �s
�1 K (t) dt:

Remark 4.2.2 Some discussion on the above choice of g and other various improvements

that can be made would be appropriate here. It is possible to construct functions g that

improve the bias under some additional conditions. For instance, if one examines the

right hand side of bias expansion, then it is not di¢ cult to see that the coe¢ cient of b2 can

be made equal to zero if g is appropriately chosen, (see Kolá¼cek and Karunamuni (2009)

[38]).

Remark 4.2.3 It is easy to see that for x > b, the estimator (4:4) reduces to (4:1) ; which
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is the usual kernel distribution estimator. So (4:4) is a natural boundary continuation of

the usual estimator.

4.3 The proposed estimator

We now have all the necessary tools to introduce our estimator of heavy tailed cdf F , based

on ideas of Kolá¼cek and Karunamuni (2009) [38], Buch Larsen et al. (2005) [7] and we

insert a new transformation. We shall assume that the unknown cdf F has support [0;1).

The transformation idea is based on transforming the original data by a new parametric

transformation T , chosen by modi�ed Champernowne distribution function. The modi�ed

Champernowne distribution is de�ned on x � 0; and formulated as

T (x) =
(x+ c)� � c�

(x+ c)� + (M + c)� 2c� ; x � 0;

with parameter � > 0; M > 0 and c � 0, and its density is

t(x) =
� (x+ c)��1 ((M + c)� � c�)
((x+ c)� + (M + c)� 2c�)2

; x � 0:

The modi�ed Champernowne distribution converges to a Pareto distribution in the tail:

t�;M;c(x)!
� ((M + c)� � c�)

x�+1
as x �!1:

For more details about modi�ed Champernowne distribution see for instance Buch Larsen

et al. (2005) [7], Champernowne (1952)[10].

The following steps describes the techniques using for obtain the proposed estimator of

F :

Step 1: Estimate the parameters (b�;cM;bc) of the modi�ed Champernowne distribution to
obtain the transformation function. In the modi�ed Champernowne distribution,
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we notice that T (x) = 0:5. This suggests that M can be estimated as the empirical

median of the data set. Then to estimate the pair (�; c) which maximizes the log

likelihood function :

l(�; c) = n log(�) + n log((M + c)� � c�) + (�� 1)
nX
i=1

log(Xi + c)

� 2
nX
i=1

log ((Xi + c) + (M + c)� � 2c�) :

Step 2: Transform the initial data X1; :::; Xn, with the transformation function,

Yi = T (Xi); i = 1; :::; n;

are new rv�s, Yi is in the interval (0; 1) and uniform distributed.

Step 3: Calculate the boundary kernel distribution estimator of the transformed data, Y1; :::; Yn :

eHn (y) = 1

n

nX
i=1

�
K

�
y � g(Yi)

b

�
�K

�
�y + g(Yi)

b

��
; (4.8)

where g is the same transformation as in (4:4).

Step 4: The �nal form of our estimator of the original data set, X1; :::; Xn is de�ned as, for

x = sb, 0 � s � 1; eFn (x) = eHn (T (x)) : (4.9)

Thus eFn (x) is a natural boundary continuation of the usual kernel distribution estima-
tor (4:1). An important adjustment in the estimator (4:9) is that it is based on a new

transformation T . Furthermore, it is important to remark here that the transform kernel

distribution estimator (4:9) is nonnegative (provided K is nonnegative).

The next theorem establishes the bias and variance of the proposed estimator (4:9) :

53



Chapitre 4. A modi�ed Champernowne transformation to improve boundary e¤ect in
kernel distribution estimation

Theorem 4.3.1 Assume that F is a heavy-tailed distribution function. Under the same

conditions on the transformation function g: Then for x = sb; 0 � s � 1 the bias and

variance of eFn(x) are respectively
Bias

� eFn (x)� = b2�� f
T 0

�0
(0)

1

T 0 (0)

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
� f (0)

T 0 (0)
g00(0)

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

��
+ o

�
b2
�
; (4.10)

and

V ar
� eFn (x)� = F (x) (1� F (x))

n
+
b

n

f (0)

T 0 (0)

�
2

Z �s

�1
K2(t)dt� s

+

Z s

�s
K2(t)dt� 2

Z s

�1
K(t)K(t� 2s)dt

�
+ o

�
b

n

�
: (4.11)

The asymptotic mean squared error is

AMSE
� eFn(x)� = b4�� f

T 0

�0
(0)

1

T 0 (x)

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
� f (0)

T 0 (0)
g00(0)

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

��2
+
F (x) (1� F (x))

n
+
b

n

f (0)

T 0 (0)

�
2

Z �s

�1
K2(t)dt� s

+

Z s

�s
K2(t)dt� 2

Z s

�1
K(t)K(t� 2s)dt

�
: (4.12)

Remark 4.3.1 By comparing expressions (4:2), (4:3), (4:10), and (4:11) at boundary

points we can see that the bias of eFn(x) is of order o (b2), while the variance of eFn(x)
is of the same order of bFn(x). So the proposed estimator improved boundary e¤ects in
kernel distribution estimator since the bias at boundary points is of the same order as the

bias at the interior points.
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4.4 Simulation Studies

To compare the performance of our proposed estimator eFn against the boundary kernel
estimator F n and the usual bFn estimator described by Nadaraya (1964) [45], we made
some simulation studies. We simulate data from three di¤erent heavy tailed distributions

: Pareto type I, Pareto type II and Pareto type III. The distributions and the chosen

parameters are listed in table 1:

Distribution F (x) for x � 0 Parameters

Pareto type I
1

1 + (x=�)��
(�; �) = (1; 1)

Pareto type II 1�
�
1 +

x

�

���
(� = 1; � = 2)

Pareto type III 1�
 
1 +

�
x� �
�

� 1


!�1
(�; �; ) = (0; 0:7; 1)

Table 4.1: Distributions used in the simulation studies.

We measure the performance of the estimators by the error measuresAMSE andAMISE.

The simulation is based on 1000 replications. In each replication the sample sizes: n = 50;

n = 200 and n = 400 was used. For the kernel, we choosing the Epanechnikov kernel

k(t) = 3=4(1� t2)I(jtj � 1); where I(:) denotes the indicator function, has been observed

in Silverman (1986) [55]; that this kernel possesses the maximum e¢ ciency, in the sense

that it produces the minimal AMISE. The choice of bandwidth is very important for the

good performance of any kernel estimator. In all cases, we select the asymptotic optimal

global bandwidth of the estimator F n by minimizing the AMISE, because this is much

more likely to be used in application and gave reliably good results. We have

bopt =

�
2f (0)A(s)

5 [f 0(0)B(s)� f (0) g00 (0)C(s)]2
�1=3

n�1=3;
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where

A(s) :=

�
2

Z s

�1
K (t)K (t� 2s) dt+ s� 2

Z �s

�1
K2 (t) dt�

Z s

�s
K2 (t) dt

�
; 0 � s � 1;

B(s) :=

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
; 0 � s � 1;

and

C(s) :=

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

�
; 0 � s � 1:

The comparison is based on data simulated from the four distributions described in table

4:1. Firstly, for each value of s 2 f0:35; 0:45; 0:55g we have calculated the absolute bias,

variance and the AMSE values of the three estimators and have displayed the results in

a tables 4:2, 4:3 and 4:4. Secondly, for di¤erent values of s we calculated the AMISE

values for each estimator over the whole boundary region [0; b]. The values of AMISE

are tabulated in table 4:5. The comparison show that the values of the AMSE and the

AMISE were smallest in case of the proposed estimator, this is due to the fact that the

proposed estimator is locally adaptive..

Discussion : For Pareto type I distribution, close examination of tables of AMSE

clear by shows that, we have the proposed estimator eFn and boundary kernel distribution
estimator F n show the best performance, but the estimator eFn out performs the estimator
F n for all n. Also, in terms of AMISE for each sample size, the AMISE of the estimatoreFn is smaller than that of F n. the performance of usual kernel distribution estimator bFn
is worse than the performance of the estimator eFn.
For the Pareto type II distribution, much the best, in terms of both AMSE and

AMISE, is the proposed estimator eFn . Next much the worst, although with performance,
is the usual kernel distribution estimator bFn.
For Pareto type III distribution, the estimator bFn also is overall clearly the worst.
The proposed estimator and boundary kernel distribution estimator have rather di¤erent
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performances in this case. Clearly best in terms of AMSE and AMISE terms is the

estimator eFn.
In conclution: the main resultant of our simulation studies is that the proposed estimator

is recommended for it improved boundary e¤et for heavy tailed distributions. We see

that overall eFn is the best choice amony the three estimators considered. Indeed, the
performance of boundary kernel distribution estimator F n is very disappointing, and this

estimator can not be recommended for use. The usual kernel distribution estimator bFn
is clearly the worst estimator for the three heavy tailed distribution considered. This is

clearly due to the boundary e¤ect.

4.5 Proofs

Proof of (4:2). For x = sb; 0 � s � 1; using the property K(t) = 1�K(�t); �s � t � s;

and a Taylor expansion of order 1. First note that

Bias
� bFn(x)� = E bFn(x)� F (x);

then,

E bFn(x) = EK �x�Xi

b

�
=

Z 1

0

K

�
x� z
b

�
f(z)dz:

To calculate the mean of bFn, we used the change of variable t = (x� z)=b; we have
E bFn(x) = bZ s

�1
K (t) f((s� t)b)dt

= b

Z �s

�1
K (t) f((s� t)b)dt+ b

Z s

�s
(1�K (�t)) f((s� t)b)dt

= b

Z �s

�1
K (t) f((s� t)b)dt+ F (2sb)� b

Z s

�s
K (t) f((s+ t)b)dt:
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Using a Taylor expansion of order 2 on the function F (:) we have

F (2sb) = F (0) + f(0)2sb+ f 0(0)2s2b2 + o
�
b2
�
:

By the existence and continuity of f 0(:) near 0, we obtain for x = sb

F (0) = F (x)� f(x)sb+ 1
2
f 0 (x) s2b2 + o(b2)

f(x) = f(0) + f 0 (0) sb+ o(b)

f 0 (x) = f 0 (0) + o(1):

Therefore,

F (2sb) = F (x) + f(0)sb+
3

2
f 0 (0) s2b2 + o

�
b2
�
:

We obtain

Bias
� bFn(x)�

= b

Z �s

�1
K (t) ff(0) + f 0 (0) (s� t)b+ o(b)g dt+ f(0)sb+ 3

2
f 0 (0) s2b2 + o (b2)

�b
Z s

�s
K (t) ff(0) + f 0 (0) (s+ t)b+ o (b)g dt

= b

�
f(0)s+ f(0)

Z �s

�1
K (t) dt� f(0)

Z s

�s
K (t) dt

�
+ b2

�
3

2
f 0 (0) s2

+f 0 (0)

Z �s

�1
(s� t)K (t) dt� f 0 (0)

Z s

�s
(s+ t)K (t) dt

�
+ o (b2) :

From the symmetry of k and the de�nition K(x), one can write K(x) = 1=2+ r(x), where

r(x) = �r(�x) for all x such that jxj � 1. Thus
R s
�sK(t)dt = s and after some algebra

we obtain the bias expression as

Bias
� bFn(x)� = bf(0)Z �s

�1
K (t) dt

+ b2f 0(0)

�
s2

2
+ s

Z �s

�1
K(t)dt�

Z s

�1
tK(t)dt

�
+ o

�
b2
�
:

This completes the proof of expression (4:2):
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Proof of (4:3). Observe that for x = sb; 0 � s � 1, we have

V ar
� bFn(x)� = 1

n2
V ar

(
nX
i=1

K

�
x�Xi

b

�)

=
1

n
E

�
K

�
x�Xi

b

��2
� 1

n

�
E

�
K

�
x�Xi

b

���2
= I1 � I2;

where

I1 =
1

n
E

�
K

�
x�Xi

b

��2
=
1

n

Z 1

0

K2

�
x� z
b

�
f(z)dz

=
b

n

Z s

�1
K2 (t) f((s� t)b)dt

=
b

n

Z �s

�1
K2 (t) f((s� t)b)dt+ b

n

Z s

�s
K2 (t) f((s� t)b)dt:

= I11 + I12:

It can be shown that

I11 =
b

n

Z �s

�1
K2 (t) f((s� t)b)dt

=
b

n

Z �s

�1
K2 (t) ff(0) + o(1)g dt:
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We use the property K(t) = 1�K(�t) and similarly as in the last proof we obtain I12

I12 =
b

n

Z s

�s
K2 (t) f((s� t)b)dt

=
b

n

Z s

�s

�
1� 2K(�t) +K2 (�t)

�
f((s� t)b)dt

=
b

n

Z s

�s
f((s� t)b)dt� 2 b

n

Z s

�s
K (t) f((s+ t)b)dt+

b

n

Z s

�s
K2 (t) f((s+ t)b)dt

=
F (2sb)

n
� 2 b

n

Z s

�s
K (t) ff(0) + o(1)g dt+ b

n

Z s

�s
K2 (t) ff(0) + o(1)g dt

=
F (x)

n
� f(0)s b

n
+
b

n
f(0)

Z s

�s
K2 (t) dt+ o(

b

n
);

and now combine I11 and I12 to obtain the express I1 as

I1 = I11 + I12

=
b

n

Z �s

�1
K2 (t) ff(0) + o(1)g dt+ F (x)

n
� f(0)s b

n
+
b

n
f(0)

Z s

�s
K2 (t) dt+ o(

b

n
)

=
F (x)

n
+
b

n
f(0)

�Z s

�1
K2 (t) dt� s

�
+ o(

b

n
):

With the expression obtained for the bias we get the expression for I2 as

I2 =
1

n

�
E

�
K

�
x�Xi

b

���2
=
1

n

n
E bFn(x)o2

=
1

n
F 2(x) + o(

b

n
):

Finally, we obtain the variance of the estimator bFn(x) as
V ar

�
F n(x)

�
= I1 � I2

=
F (x)

n
+
b

n
f(0)

�Z s

�1
K2 (t) dt� s

�
� 1

n
F 2(x) + o(

b

n
)

=
F (x) (1� F (x))

n
+
b

n
f(0)

�Z s

�1
K2 (t) dt� s

�
+ o(

b

n
):
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This completes the proof of expression (4:3):

proof of Lemma 4:2:1. The proof is the same as On boundary correction in kernel

estimation of ROC curves, (see Kolá¼cek and Karunamuni (2009) [38]). It su¢ ces to

replace the tansformations g1 and g2 by g. Then for x = sb, 0 � s � 1; we have

Bias
�
F n(x)

�
= b2

�
f 0 (0)

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
� f (0) g00(0)

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

��
+ o

�
b2
�
;

and

V ar
�
F n(x)

�
=
F (x) (1� F (x))

n
+
b

n
f (0)

�
2

Z �s

�1
K2(t)dt� s

+

Z s

�s
K2(t)dt� 2

Z s

�1
K(t)K(t� 2s)dt

�
+ o

�
b

n

�
:

Hence, the MSE of F n(x) is

MSE
�
F n(x)

�
= Bias2

�
F n(x)

�
+ V ar

�
F n(x)

�
:

The asymptotic MSE of F n(x) is

AMSE
�
F n(x)

�
= b4

�
f 0 (0)

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
� f (0) g00(0)

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

��2
+
F (x) (1� F (x))

n
+
b

n
f (0)

�
2

Z �s

�1
K2(t)dt� s

+

Z s

�s
K2(t)dt� 2

Z s

�1
K(t)K(t� 2s)dt

�
:

Here completes the proof of Lemma 4:2:1:

Proof of Theorem 4:3:1. We have X1; :::; Xn are independent identically distributed

variables with density f and cdf F . the Transform kernel distribution estimator of F (x)
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is

; eFn (x) = 1

n

nX
i=1

�
K

�
T (x)� g(T (Xi))

b

�
�K

�
�T (x) + g(T (Xi))

b

��
;

where T (�) is the transformation function. Let the transformed variable Yi = T (Xi), have

distribution H:

H (y) = F
�
T�1 (T (x))

�
= F (x) ;

and the density of H (y) as

h (y) =
f (T�1 (y))

T 0 (T�1 (y))
;

so the boundary kernel distribution estimator of H (y) is

eHn (y) = 1

n

nX
i=1

�
K

�
y � g(Yi)

b

�
�K

�
�y + g(Yi)

b

��
:

The transform kernel distribution estimator can be expressed by :

eFn (x) = eFn �T�1 (T (x))� = eHn (y) ;
implying The Bias of the transform kernel distribution estimator is

Bias
� eFn (x)� = Bias� eFn �T�1 (T (x))��

= Bias
� eHn (T (x))�

= b2
�
h0(T (0))

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
� h(T (0))g00(0)

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

��
+ o

�
b2
�
;

note that

h (T (x)) =
f (x)

T 0 (x)
; h0(T (x)) =

�
f (x)

T 0 (x)

�0
1

T 0 (x)
:
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then

h (T (0)) =
f (0)

T 0 (0)
; h0(T (0)) =

�
f

T 0

�0
(0)

1

T 0 (0)
;

which are used to �nd the mean of the transform kernel distribution estimator

Bias
� eFn (x)� = b2�� f

T 0

�0
(0)

1

T 0 (0)

�
s2

2
+ 2s

Z �s

�1
K(t)dt�

Z s

�s
tK(t)dt

�
� f (0)

T 0 (0)
g00(0)

�Z s

�1
(s� t)K(t)dt+

Z �s

�1
(s+ t)K(t)dt

��
+ o

�
b2
�
:

By the same idea we calculated the variance

V ar
� eFn (x)� = V ar � eFn �T�1 (T (x))��

= V ar
� eHn (T (x))�

=
H (y) (1�H (y))

n
+
b

n
h(T (0))

�
2

Z �s

�1
K2(t)dt� s

+

Z s

�s
K2(t)dt� 2

Z s

�1
K(t)K(t� 2s)dt

�
+ o

�
b

n

�
:

=
F (x) (1� F (x))

n
+
b

n

f (0)

T 0 (0)

�
2

Z �s

�1
K2(t)dt� s

+

Z s

�s
K2(t)dt� 2

Z s

�1
K(t)K(t� 2s)dt

�
+ o

�
b

n

�
:

This completes the proof of Theorem 4:3:1:
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Pareto type I Pareto type II Pareto type III

Estimator s :35 :45 :55 :35 :45 :55 :35 :45 :55eFn 6:3049 6:3733 6:6385 14:830 16:289 17:605 4:1028 4:3000 4:5112

jBiasj Fn 26:904 28:668 31:311 28:840 31:802 34:524 26:783 28:780 31:482bFn 38:987 48:741 54:245 38:659 45:524 53:794 39:962 48:336 48:841

eFn 0:1042 0:2428 0:1299 0:2403 0:2759 0:1587 0:1183 0:3229 0:2383

V ar Fn 0:3714 0:5461 0:4918 0:4391 0:5249 0:4619 0:3802 0:5384 0:4985bFn 0:9980 1:1071 1:3112 1:0359 1:3299 1:5280 0:9695 1:1331 1:3767

eFn 0:1439 0:2834 0:1740 0:4602 0:5412 0:4686 0:1352 0:3414 0:2587

AMSE Fn 1:0952 1:3679 1:4722 1:2709 1:5363 1:6539 1:0976 1:3667 1:4896bFn 2:5180 3:4828 4:2537 2:5305 3:4023 4:4219 2:5665 3:4695 3:7622

Table 4.2: Bias, Var and AMSE Values Over the Boundary Region for sample size n=50.

Results are re-scaled by the factor 0.001.

Pareto type I Pareto type II Pareto type III

Estimator s :35 :45 :55 :35 :45 :55 :35 :45 :55eFn 2:0016 2:0856 2:1298 5:0417 5:3146 5:8175 0:8145 0:8062 0:8240

jBiasj Fn 10:489 11:443 12:596 11:811 12:531 13:786 10:623 11:250 12:468bFn 13:168 18:879 24:637 13:276 19:884 32:944 15:899 21:445 23:283

eFn 0:0611 0:0929 0:1029 0:0533 0:0879 0:0935 0:0593 0:1022 0:1247

V ar Fn 0:0931 0:1309 0:1490 0:1025 0:1452 0:1647 0:0961 0:1344 0:1489bFn 0:1719 0:2346 0:2498 0:2329 0:2664 0:2778 0:1932 0:2092 0:2640

eFn 0:0651 0:0972 0:1075 0:0787 0:1161 0:1273 0:0600 0:1028 0:1253

AMSE Fn 0:2031 0:2618 0:3077 0:2420 0:3022 0:3547 0:2089 0:2609 0:3043bFn 0:3453 0:5910 0:8568 0:4091 0:6617 1:3631 0:4459 0:6691 0:8061

Table 4.3: Bias, Var and AMSE Values Over the Boundary Region for sample size n=200.

Results are re-scaled by the factor 0.001.
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Pareto type I Pareto type II Pareto type III

Estimator s :35 :45 :55 :35 :45 :55 :35 :45 :55eFn 0:9937 1:0213 1:0449 2:5560 2:7109 2:9718 0:7311 0:7523 0:7888

jBiasj Fn 6:5212 7:2401 7:9143 7:2751 7:7788 8:5954 6:6332 7:1435 7:9339bFn 8:7913 10:2731 16:296 11:057 17:428 20:437 7:4034 12:070 14:831

eFn 0:0336 0:0450 0:0629 0:0255 0:0401 0:0407 0:0281 0:0422 0:0357

V ar Fn 0:0424 0:0559 0:0759 0:0512 0:0705 0:0790 0:0448 0:0630 0:0644bFn 0:0719 0:1025 0:1113 0:0926 0:1066 0:1420 0:0768 0:0956 0:1193

eFn 0:0345 0:0461 0:0640 0:0320 0:0474 0:0496 0:0286 0:0428 0:0363

AMSE Fn 0:0849 0:1084 0:1386 0:1042 0:1310 0:1529 0:0888 0:1141 0:1274bFn 0:1492 0:2081 0:3769 0:2149 0:4103 0:5597 0:1316 0:2413 0:3393

Table 4.4: Bais, Var and AMSE Values Over the Boundary Region for sample size n=400.

Results are re-scaled by the factor 0.001.

Pareto type I Pareto type II Pareto type III

Estimator s :35 :45 :55 :35 :45 :55 :35 :45 :55eFn 0:2015 0:1062 0:1014 0:2353 0:1148 0:0317 0:3175 0:2504 0:1805

n = 50 Fn 0:5882 0:5437 0:4142 0:4024 0:3262 0:2826 0:3998 0:3456 0:2947bFn 1:3379 1:2503 1:3200 0:7429 0:7232 0:6875 0:8923 0:7979 0:8473

eFn 0:0405 0:0241 0:0101 0:0262 0:0178 0:0065 0:0450 0:0396 0:0337

n = 200 Fn 0:0748 0:0657 0:0619 0:0523 0:0468 0:0432 0:0495 0:0444 0:0398bFn 0:2028 0:1927 0:1799 0:1281 0:1045 0:0995 0:1542 0:1249 0:1216

eFn 0:0160 0:0103 0:0072 0:0088 0:0036 0:0078 0:0157 0:0133 0:0108

n = 400 Fn 0:0258 0:0225 0:0229 0:0195 0:0157 0:0135 0:0177 0:0156 0:0133bFn 0:0806 0:0729 0:0639 0:0512 0:0374 0:0383 0:0509 0:0469 0:0453

Table 4.5: AIMSE Values Over the Boundary Region. Results are re-scaled by the factor

0.001.
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Conclusion

Estimation in the boundary points su¤er a large bias, however a special treatment

is needed. For heavy-tailed distributions, It is well known now that kernel dis-

tribution estimators are not consistent when estimating a distribution near the �nite end

points of the support. This is due to boundary e¤ects that occur in nonparametric curve

estimation problems. A number of proposals have been made in the kernel density esti-

mation context with some success. In this thesis, we have introduced a new kernel type

estimator of the heavy tailed distributions functions by using a new approach based on

the modi�ed Champernowne distribution function.

On the other hand, the present approach can be viewed as an generalized re�ection method

involving re�ecting a transformation of the observed data with a modi�cation of the Cham-

pernowne distribution function. The proposed estimator possesses a number of desirable

properties, including the non-negativity of the estimator. Each estimator has certain ad-

vantages and works well at certain times. The proposed method seems to have inherited

the best of both transformation and re�ection methods and that improved boundary ef-

fects near the points at left boundary region.
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Abbreviations and Notations

We list the notations that will be used in this thesis.

X random variable

X1; :::; Xn sample of n observations of X

IA indicator function of set A

F distribution function

f density function

k kernel function

K Distribution of kernel function

b bandwidth or smoothing parameter

f 0; f 00 the �rst and second derivatives of fbfn standard kernel density estimatorefn transformation density estimator

g transformation function

g�1 the inverse function of g

o(:) f(x) = o(g(x)) as x! x0 : lim f(x)=g(x) = 0

df distribution function

P law of probability
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Abbreviations and Notations

T the modi�ed Champernowne cumulative distribution function

t the density of modi�ed Champernowne distribution

iid independent and identically distributed

[0;1) positive interval

E (X) Esperance of X

V ar (X) variance of X

Fn empirical distribution functionbFn usual kernel distribution estimator

F n the generalized re�ection and transformation distribution estimatoreFn transformation kernel distribution estimator

rv random variable

� standard normal distribution

L! convergence in law

S class of subexponential distribution

R� class of regularly varying with index �

D class of dominated varying distribution functions

L class of long tailed distributions

EDF Empirical distribution function

MSE Mean Squared Error

AMSE Asymptotic Mean Squared Error

AMISE Asymptotic Mean Integrated Squared Error
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