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Abstract

In this thesis, we are concerned with the estimation of the extreme value index andlarge quantiles for incompletely observed data, with a particular interest in the case

of right-truncated data. We begin by exploiting the �rst work in this matter, which is due

to [Gardes and Stup�er(2015)], to derive a simple tail index estimator based on a single

sample fraction of extreme values. The asymptotic normality of the proposed estimator

is established in the frameworks of tail dependence and second-order of regular variation.

Second, starting from the �rst-order condition of regular variation, we construct a new

estimator for the shape parameter of a right-truncated heavy-tailed distribution. We

prove its asymptotic normality by making use of the tail Lynden-Bell process for which a

weighted Gaussian approximation is provided. Also, a new approach of estimating high

quantiles is proposed and applied to a real dataset consisting in lifetimes of automobile

brake pads. Finally, a kernel-type asymptotically normal estimator is de�ned. Simulation

experiments are carried out to evaluate the performances and illustrate the �nite sample

behaviors of the above estimators and make comparisons as well.

Keywords: Bivariate extremes; Empirical process; Extreme value index; Heavy-tails;

High quantiles; Hill estimator; Kernel estimation; Lynden-Bell estimator; Regular varia-

tion; Random truncation; Tail dependence.
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Introduction

Incomplete data can take various forms, due to many di¤erent reasons; from censoredor truncated data. Where, it is considered censored when the number of values in

a set are known, but the values themselves are unknown. i.e, Censoring; Sources/events

can be detected, but the values (measurements) are not known completely. Then, it is

said to be truncated when there are values in a set that are excluded. i.e., Truncation; An

object can be detected only if its value is greater or less than some number, and the value

is completely known in the case of detection. So, it is not rare that data to treat are not

complete. In this case a classical techniques don�t adjust correctly.

In Statistics of Extremes we deal essentially with the estimation of parameters of extreme

or even rare events. Where the formulation of the possible limiting distributions of the

a¢ nely transformed maximum of a sample, shows that the parameter , i.e, the extreme-

value index is an important characteristic of the distribution. In the remainder of this

thesis we will mainly be concerned with the estimation of that parameter under random

truncation.

The estimation of the extreme-value index, for truncated data, has received a lot of

attention in the extreme value literature. In this context, the treatment in this thesis

is organized around two themes. The �rst is that the central analytic tool of extreme

value theory, and the second is that the estimation under random right-truncation model.

Accordingly we have presented an exposition of those aspects which are essential for a

proper understanding of extreme value theory.

Extreme-value theory establishes the asymptotic behavior of the largest observations in a
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Introduction

sample. It provides methods for extending the empirical distribution function beyond the

observed data. It is thus possible to estimate quantities related to the tail of a distribution

such as small exceedance probabilities or extreme quantiles.

More speci�cally, let X1; :::; Xn be a sequence of random variables (rv), independent and

identically distributed from a cumulative distribution function (cdf ) F . Extreme-value

theory establishes that the asymptotic distribution of the maximumXn;n = max fX1; :::; Xng

properly rescaled is the extreme-value distribution with cdf

G (x) = exp
�
� (1 + x)+

��1=
The parameter  2 R is referred to as the extreme-value index. It plays an impor-

tant parameter in univariate extreme-value theory since it controls the �rst order be-

havior of the distribution tail. The estimation of this paramater has �rst been con-

sidered in the case of complete data (no truncation). In the literature, numerous es-

timators of this parameter have been proposed, there exist a vast number of di¤erent

approaches. For example the Hill estimator [Hill(1975)], the maximum likelihood estima-

tor ([Hall(1982)]; [Smith(1985)];[Smith(1987)]; [Smith and Weissman(1985)]), the moment

estimator [Dekkers et al.(1989)], the Pickands estimator ([Pickands(1975)]; [Drees(1996)];

[Segers(2005)]) and a kernel type estimator [Csörgö et al.(1985)], and many more. we will

brie�y discuss some of this estimators in this thesis. We will state their de�nitions and

some of the (asymptotic) results obtained in the mentioned references.

In the recent years, several authors concentrated their e¤orts on obtaining good estima-

tions of the EVI for incompletely observed data, i.e. randomly censored or truncated

data (note here that, since the interest generally lies in the evaluation of the upper tail

of the data, left censoring or left truncation is not a relevant framework, and therefore

censoring or truncating is considered from the right). In those contexts, the usual es-

timators of the EVI need some modi�cations because otherwise they would lead to er-

roneous estimations when blindly applied to censored or truncated data. Some refer-

2



Introduction

ences for extreme value estimation in the context of randomly censored observations are

[Beirlant et al.(2007)], [Einmahl et al.(2008)] and [Worms and Worms(2016)]. The �rst

published work on extreme values estimation under random truncation was written by

[Gardes and Stup�er(2015)], who dealt with heavy-tailed right truncated data. The frame-

work of randomly right truncated data will be precisely de�ned in this thesis, which is

organized as follows:

Chapter 1

Contains the essential de�nitions and results of incomplete data, with the main basic

concepts on truncated data and some important and useful results existing in the literature

for the random right truncation model. In this chapter we start by censored data, which it

can be further classi�ed into three categories: right censoring, left censoring and interval

censoring. Afterwards, we will be interested in the truncated data. Which in turn has

three type as follows: right truncation, left truncation and interval truncation, but in the

present thesis, we are concerned with data that are right truncated.

Chapter 2

This chapter contains some mathematical preliminaries (the asymptotic properties of the

sum of iid rv�s including the CLT, order statistics and distributions of upper order statis-

tics), also contains a derivation of the three families of classical Gnedenko limit distribu-

tions for extremes of iid variables and an account of regular variation and its extensions

and domains of attraction. So, this chapter gives you an introduction to the mathematical

and statistical theory underlying EVT.

Chapter 3

We will focus on the recent paper of [Gardes and Stup�er(2015)], Where recently they

addressed the estimation of the extreme value index under random truncation. They

proposed a consistent estimator based on two sample fractions k and k0 of top observations

from truncated and truncation data respectively. They also established its asymptotic

normality in the case where k (resp. k0) is asymptotically negligible with respect to k0

(resp. k). Nevertheless, they did not cover the more interesting situation when k = k0: In

3
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this chapter, we consider this issue and derive a simple estimator based on a single sample

fraction of extreme values. The asymptotic normality of the proposed estimator is proved

by making use of weighted tail-copula processes and tail dependence frameworks and its

�nite sample behavior illustrated through some simulations.

Chapter 4

In addition,In chapter 4, we will introduce a tail Lynden-Bell process for heavy-tailed

distributions of randomly truncated data and we give its weak approximation in terms of

standard Wiener processes. In this chapter, a new estimator of the extreme value index for

a heavy-tailed distribution is derived and its asymptotic normality is established. Extensive

simulation study to investigate the performance of the proposed estimator is carried out.

Our results will be of great interest to establish the limit distributions of many statistics

in extreme value theory for randomly truncated data such as, the high quantiles, the

actuarial risk measures and the goodness-of-�t functionals.

Chapter 5

Finally, in chapter 5 we will present the Kernel type estimator for the extreme value index,

under random truncation, in the framework of Pareto-type distributions, and we establish

the asymptotic normality of the proposed estimator by making use of the tail Lynden-Bell

empirical process. Simulation experiments illustrate the �nite sample behavior of some

selected estimators.

We would not �nish this introduction without mentioning that the statistical software R,

is used in the treatment of the examples presented throughout this thesis.

4



Chapter 1

Incomplete data

Since our work deals with incomplete data, and in order to make the thesis easier

to read, we give some de�nitions and examples of the incomplete data, i.e. trun-

cated or censored data. Truncation and censoring occur quite naturally in lifetime data,

and one may refer to the books by [Cohen(1991)], [Balakrishnan and Cohen(1991)] and

[Meeker and Escobar(1998)] for some detailed discussion in this regard.

There are three general types of censoring, right-censoring, left-censoring and interval-

censoring. A second feature which may be present in some survival studies is that of

truncation, there are three general types but in the present thesis, we are concerned with

data that are right truncated. Since censoring and truncation are often confused, a brief

discussion on censoring with examples is helpful to more fully understand right truncation.

1.1 Censoring

De�nition 1.1.1 Censoring is when an observation is incomplete due to some random

case. The cause of the censoring must be independent of the event of interest if we are

to use standard methods of analysis. So, When a data set contains observations within a

restricted range of values, but otherwise not measured, it is called a censored data set.

Statistical techniques for analyzing censored data sets are quite well studied, especially

5



Chapter 1. Incomplete data

in survival analysis, reliability and biostatistics. Also, the censoring mechanisms are very

common and diversi�ed. In this section, we will focus on discussing censored data. It

gives partial information as events occurred to the right or left of a time boundary or

within a time interval. It can be further classi�ed into three categories: right censoring,

left censoring and interval censoring, as follows:

1.1.1 Right censoring

The most common form of censoring is Right censoring, occurs when a time-to-event is

only known to be greater than a censoring time due to end of study, loss to follow-up,

or patient�s withdrawal. It is convenient to use the following notation. For a speci�c

individual under study, we assume that there is a lifetime X and a �xed censoring time,

Cr (Cr for "right" censoring time). TheX�s are assumed to be independent and identically

distributed: The exact lifetime X of an individual will be known if, and only if, X is less

than or equal to Cr. If X is greater than Cr, the individual is a survivor, and his or

her event time is censored at Cr. The data from this experiment can be conveniently

represented by pairs of random variables (T; �), where � indicates whether the lifetime X

corresponds to an event (� = 1) or is censored (� = 0), and T is equal to X, if the lifetime

is observed, and to Cr if it is censored, i.e., T = min(X;Cr):

1.1.2 Left censoring

Left censoring is much rare. A lifetime X associated with a speci�c individual in a study is

considered to be left censored if it is less than a censoring time Cl ( Cl for "left" censoring

time), that is, the event of interest has already occurred for the individual before that

person is observed in the study at time Cl. For such individuals, we know that they have

experienced the event sometime before time Cl, but their exact event time is unknown.

The exact lifetime X will be known if, and only if, X is greater than or equal to Cl. The

data from a left-censored sampling scheme can be represented by pairs of random variables

(T; �), as in the previous kind, where T is equal to X if the lifetime is observed and �

6



Chapter 1. Incomplete data

indicates whether the exact lifetime X is observed (� = 1) or not (� = 0). Note that, for

left censoring as contrasted with right censoring, T = max(X;Cl):

Example 1.1.1 In early childhood learning centers, interest often focuses upon testing

children to determine when a child learns to accomplish certain speci�ed tasks. The age at

which a child learns the task would be considered the time-to-event. Often, some children

can already perform the task when they start in the study. Such event times are considered

left censored.

1.1.3 Interval censoring

A more general type of censoring occurs when the lifetime is known to occur only within

an interval. Such interval censoring occurs when patients in a clinical trial or longitudinal

study have periodic follow-up and the patient�s event time is only known to fall in an

interval (Li; Ri] (L for left endpoint and R for right endpoint of the censoring interval).

This type of censoring may also occur in industrial experiments where there is periodic

inspection for proper functioning of equipment items. Animal tumorigenicity experiments

may also have this characteristic.

Interval censoring is a generalization of left and right censoring because, when the left end

point is 0 and the right end point is Cl we have left censoring and, when the left end point

is Cr and the right end point is in�nite, we have right censoring.

1.1.4 Estimation under random right-censoring model

This section deals with the nonparametric estimation of the df by means of the Kaplan�

Meier estimator (also called the product�limit estimator) and with the estimator for the

mean. We start with remarks about the statistics of extremes of randomly censored data.

The topic was �rst mentioned in [Reiss and Thomas(1997)], Section 6.1, where an es-

timator of a positive extreme value index was introduced, but no (asymptotic) results

were derived. In the last decade, several authors started to be interested in the es-

7



Chapter 1. Incomplete data

timation of the tail index along with large quantiles under random censoring as one

can see in [Gomes and Oliveira(2003)], [Beirlant et al.(2007)], [Einmahl et al.(2008)] and

[Worms and Worms(2014)]. [Gomes and Neves(2011)] also made a contribution to this eld

by providing a detailed simulation study and applying the estimation procedures on some

survival data sets.

Let X1; :::; Xn be n � 1 independent copies of a non-negative random variable X; de�ned

over some probability space (
;A;P) ; with continuous cumulative distribution function

F: Rather then X1; :::; Xn, the variables of interest, one observes

Zi = min (Xi; Yi) and �i = 1Xi�Yi ; 1 � i � n;

where Y1; :::; Yn is another i.i.d. sequence from some (censoring) d.f. G being also indepen-

dent of the X 0s: This model is very useful in a variety of areas where random censoring is

very likely to occur such as in biostatistics, medical research, reliability analysis, actuarial

science,...

In the context of this randomly right censored observations, the nonparametric maximum

likelihood estimator of the survival distribution F is given by [Kaplan and Meier(1958)]

as the product limit estimator de�ned by

Fn (x) := 1�
Y
Zi:n�x

�
1�

�[i:n]
n� i+ 1

�
; for x < Zn:n;

where Zi:n denote the order statistics associated to Z1; :::; Zn and �[i:n] is the concomitant

of the ith order statistics, that is, �[i:n] = �j if Zi:n = Zj: This estimator may be expressed

as follows

Fn (x) :=

nX
i=2

Wi;n1fZi:n�xg

where for 2 � i � n;

Wi;n :=
�[i:n]

n� i+ 1

i�1Y
j=1

�
n� j

n� j + 1

��[j:n]
;

(see, e.g., [Reiss and Thomas(2007)], page 162).

8



Chapter 1. Incomplete data

Now, we have the mean of X;

� := E[X] =

1Z
0

F (x) dx;

The sample mean for censored data is obtained by substituting, in the previous equation,

the cdf F by its estimator Fn to have

e� := nX
i=2

�[i:n]
n� i+ 1

i�1Y
j=1

�
n� j

n� j + 1

��[j:n]
Zi:n:

The asymptotic normality of e� is established by [Stute(1995)] under some assumptions.
1.2 Truncation

De�nition 1.2.1 Truncation is a variant of censoring which occurs when the incomplete

nature of the observation is due to a systematic selection process inherent to the study

design.

Truncation appears when a time to the event is only observed in a study if the time-

to-event variable is greater or smaller than the truncation variable. Some examples of

truncated data from astronomy and economics can be found in [Woodroofe(1985)] and for

applications in the analysis of AIDS data, see [Wang(1989)]. In reliability, a real dataset,

consisting in lifetimes of automobile brake pads and already considered by [Lawless(2002)]

in page 69, was recently analyzed in [Gardes and Stup�er(2015)] as an application of

randomly truncated heavy-tailed models. One has three type of truncation, as follows:

1.2.1 Right truncation

Only individuals with event time less than some threshold are included in the study. As

example, if you ask a group of smoking school pupils at what age they started smoking,

9



Chapter 1. Incomplete data

you necessarily have truncated data, as individuals who start smoking after leaving school

are not included in the study.

Example 1.2.1 Induction Times for AIDS data from [Lagakos, Barraj, and de Gruttola(1988)]

are used to illustrate a situation in which one-sided (rather than two-sided) truncation ap-

pears. This data set is available from the book by [Klein and Moeshberger(2003)] (Table

1.10, pp. 20). The data include information on the infection and induction times for 258

adults and 37 children who were infected with HIV virus and developed AIDS by 1996-06-

30 The data consist on the time in years, measured from 1978-04-01, when adults were

infected by the virus from a contaminated blood transfusion, and the waiting time to de-

velopment of AIDS, measured from the date of infection. In this sampling scheme, only

individuals who had developed AIDS before the end of the study period were included and

so the induction times su¤er from right truncation. Let X be the induction time, that is,

the time from HIV infection to the diagnosis of AIDS; and denote by T the time from

HIV infection to the end of the study, which plays the role of right truncation time. Only

those individuals (X;T ) with X � T are observed. In this example the sole information

included is the infection and the induction times for the 258 adults. These variables X and

T are reported in the second and the third column, respectively, of the matrix AIDSdata

in Package DTDA.

1.2.2 Left truncation

Due to structure of the study design, we can only observe those individuals whose event

time is greater than some truncation threshold.

Example 1.2.2 imagine you wish to study how long people who have been hospitalized for

a heart attack survive taking some treatment at home. The start time is taken to be the

time of the heart attack. Only those individuals who survive their stay in hospital are able

to be included in the study.

10



Chapter 1. Incomplete data

Figure 1.1: Example of right-truncated data

1.2.3 Interval truncation

Or doubly truncated failure-time arises if an individual is potentially observed and only if

its failure-time falls within a certain interval, unique to that individual. Doubly truncated

data play an important role in the statistical analysis of astronomical observations as well

as in survival analysis.

Example 1.2.3 data on the luminosity of quasars in astronomy: One of the main aims

of astronomers interested in quasars is to understand the evolution of the luminosity of

quasars see [Efron and Petrosian(1999)]. The motivating example presented in this paper

concerns a set of measurements on quasars in which there is double truncation, because

the quasars are observed only if their luminosity occurs within a certain �nite interval,

that is bounded at both ends, with the interval varying for di¤erent observations.

11
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1.3 Estimation under random right-truncation model

In this section, we present some important and useful results existing in the literature for

the random right truncation model:

1.3.1 Random right-truncation model

Let (Xi;Yi) ; 1 � i � N be a sample of size N � 1 from a couple (X;Y) of independent

random variables (rv�s) de�ned over some probability space (
;A;P) ; with continuous

marginal distribution functions (df�s) F and G respectively. Suppose that X is truncated

to the right by Y; in the sense that Xi is only observed when Xi � Yi: This model of

randomly truncated data commonly �nds its applications in such areas like astronomy,

economics, medicine and insurance.

Let us denote (Xi; Yi) ; i = 1; :::; n to be the observed data, as copies of a couple of rv�s

(X;Y ) ; corresponding to the truncated sample (Xi;Yi) ; i = 1; :::; N; where n = nN is a

sequence of discrete rv�s. By the weak law of large numbers, we have

n=N
p! p := P (X � Y) ; as N !1; (1.1)

where the symbol
p! stands for convergence in probability. We shall assume that p > 0;

otherwise, nothing will be observed. The joint distribution of Xi and Yi is

H (x; y) := P (X � x; Y � y)

= P (X � x;Y � y j X � Y) = p�1
Z y

0

F (min (x; z)) dG (z) :

The marginal df�s of the observed X 0s and Y 0s; respectively denoted by F and G; are

equal to F (x) := p�1
R x
0
G (z) dF (z) and G (y) := p�1

R y
0
F (z) dG (z) : It follows that the

corresponding tails are

F (x) = �p�1
Z 1
x

G (z) dF (z) and G (y) = �p�1
Z 1
y

F (z) dG (z) : (1.2)

12
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which are estimated by

Fn (x) := n�1
nX
i=1

1 (Xi � x) and Gn (x) := n�1
nX
i=1

1 (Yi � x)

Let C(:) be a function de�ned by

C (x) := P (X � x � Y j X � Y) = p�1F (x)G (x) ;

with Y being the truncation rv. This quantity C is very crucial as it plays a prominent

role is the statistical inference under random truncation. In other words, we have

C (z) := P (X � z � Y ) = F (z)�G (z) :

with empirical estimator

Cn (x) := n�1
nX
i=1

1 (Xi � x � Yi) :

1.3.2 Product-limit estimator

The focus of this section will be on the construction of the Lynden-Bell estimator of a

distribution function in the random truncation model.

Since right endpoints of F and G are in�nite and thus they are equal. Hence, from

[Woodroofe(1985)], we may write

Z 1
x

dF (y)

F (y)
=

Z 1
x

dF (y)

C (y)
; (1.3)

Di¤erentiating (1:3) leads to the following crucial equation

C (x) dF (x) = F (x) dF (x) ; (1.4)

see, for instance, [Strzalkowska-Kominiak and Stute(2009)] whose solution is de�ned by

13
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F (x) = exp
�
�
R1
x
dF (z) =C (z)

	
: Replacing F and C by their respective empirical coun-

terparts yields the product-limit estimators of F and G given by

Fn (x) :=
Y
i:Xi>x

exp

�
� 1

nCn (Xi)

�
;

Gn (x) :=
Y
i:Yi�x

exp

�
� 1

nCn (Yi)

�
;

The �rst mathematical investigation on this estimator may be attributed to [Woodroofe(1985)]

and the central limit theorem under random truncation was established by [Stute and Wang(2008)].

Note that the approximation exp (�t) � 1 � t; for small t > 0; results in the well-known

estimator introduced by [Lynden-Bell(1971)].

14



Chapter 2

Extreme value theory

Extreme value theory EVT is an elegant and mathematically fascinating theory

as well as a subject which pervades an enormous variety of applications. EVT

is a classical topic, in probability theory and mathematical statistics, that was devel-

oped for the estimation of the occurrence probability of rare events. It permits to ex-

trapolate the behavior of the distribution tails from the largest observed data. Classical

EVT is well developed and a number of books are available in the area, see for example,

[Gumbel(1958)], [Leadbetter et al.(1983)], [Resnick(1987)], [Embrechts et al.(1997)] and

[de Haan and Ferreira(2006)] etc. In these next two section, we review some fundamental

concepts of elementary probability and statistics. Then, we introduce various asymp-

totic models available in the classical EVT. Extreme value results are always phrased for

maxima. One can convert results about maxima to apply to minima by using the rule

min(X1; :::; Xn) = �max(�X1; :::;�Xn):

2.1 Basic concepts

De�nition 2.1.1 (Order statistics) The order statistics pertaining to a sample (X1; :::; Xn)

are the X 0i s arranged in non-decreasing order. They are denoted by X1;n; :::; Xn;n and for

k = 1; :::; n; the rv Xn�k+1;n is called the kth upper order statistic. Order statistics satisfy
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X1;n � ::: � Xn;n:Thus

X1;n = min(X1; :::; Xn) and Xn;n = max(X1; :::; Xn):

De�nition 2.1.2 (Distribution and survival functions) If X is a rv de�ned on a

probability space (
;F ; P ) then, its df and survival function (also called hazard function)

are respectively de�ned on R by

F (x) := P (X � x) and F (x) := 1� F (x) :

De�nition 2.1.3 (Quantile and tail quantile functions) The quantile function of df

F is the generalized inverse function of F de�ned by

Q (s) := F (s) = inf fx 2 R : F (x) � sg ; 0 < s < 1;

with the convention that the in�mum of the empty set is 1. In the theory of extremes, a

function, denoted by U and called tail quantile function, is used quite often. It is de�ned

by

U (t) := Q (1� 1=t) =
�
1=F

� 
(t) ; 1 < t <1:

De�nition 2.1.4 (Empirical quantile and tail quantile functions) The empirical (or

sample) quantile function of the sample (X1; :::; Xn) is de�ned by

Qn (s) := inf fx 2 R : Fn (x) � sg ; 0 < s < 1;

= Xi;n for i�1
n
< s � i

n
; i = 1; ::; n:

Note that for 0 < p < 1; X[np]+1;n is the sample quantile of order p; where [np] denotes

the integer part of np. If s = 1=2 then one also speaks of the sample median. The

corresponding empirical tail quantile function is

Un (t) := Qn (1� 1=t) ; 1 < t <1:
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Proposition 2.1.1 (Quantile transformation) Let (U1; :::; Un) be a sample from the

standard uniform rv U and (U1;n; :::; Un;n) the corresponding ordered sample.

� For any df F , we have

Xi;n
d
= F (Ui;n) ; i = 1; :::; n:

� When F is continuous, we have

F (Xi;n)
d
= Ui;n; i = 1; :::; n:

In this case the rv�s F (X1); :::; F (Xn) are iid standard uniform.

De�nition 2.1.5 (Sum and arithmetic mean) Let X1; X2; :::; Xn be a sequence of iid

rv�s with common df F . For an integer n � 1; de�ne the partial sum and the corresponding

arithmetic mean by respectively

Sn :=
nX
i=1

Xi and Xn := Sn=n:

Xn is then called sample mean or empirical mean.

2.1.1 Laws of large numbers

In what follows (X1; :::; Xn) will be considered as a sample from a rv X de�ned on a

probability space (
;F ; P ). If we want to get a rough idea about the �uctuations of the

Xn we might ask for convergence of the sequence (Xn): Unfortunately, for almost all ! 2 


this sequence does not converge. However, we can obtain some information about how the

Xn �behave in the mean�. We have two kinds of laws describe the asymptotic behavior of

the sample mean. The weak law is about the convergence in probability or the consistency

of Xn while the strong law, concerns the strong convergence of Xn, i.e. convergence with

probability 1.
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Theoreme 2.1.1 (Laws of large numbers) If (X1; :::; Xn) is a sample from a rv X

such that E jXj <1, then

weak law Xn
P! � as n!1;

strong law Xn
a:s! � as n!1;

where � := EX:

De�nition 2.1.6 (Empirical df ) The empirical df (or sample df ) of the sample (X1; :::; Xn)

is de�ned by

Fn (x) :=
1

n

nX
i=1

IfXi�xg; x 2 R:

The empirical df of the sample (X1; :::; Xn) is evaluated using order statistics as follows:

Fn (x) =

8>>><>>>:
0 x < X1;n

i�1
n

Xi�1;n � x < Xi;n; for i = 2; :::; n

1 x � Xn;n

Figure 2.1: Empirical and theoretical distribution function

Example 2.1.1 (Glivenko�Cantelli theorem) An application of the strong law of large

18
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numbers yields that

Fn (x)
a:s! EIfX�xg = F (x)

for every x 2 R. The latter can be strengthened (and is indeed equivalent) to

sup
x2R

jFn (x)� F (x)j a:s! 0:

The latter is known as the Glivenko�Cantelli theorem. It is one of the fundamental results

in non�parametric statistics.

Theoreme 2.1.2 (Central Limit Theorem) If X1; X2; :::; Xn is a sequence of iid rv�s

with mean � and �nite variance �2; then

(Sn � n�) =�
p
n

d! N (0; 1) as n!1:

The proof of the CLT could be found in any standard book of statistics, see e.g., [Saporta(1990)].

2.1.2 Order statistics

Order statistics are very instrumental in EVT because they (more precisely the upper ones)

provide information on the distribution (right) tail. In this section, we will summarize some

of their properties and results. After having investigated the behaviour of the maximum,

i.e. the largest value of a sample, we now consider the joint behaviour of several upper

order statistics.

The relationship between the order statistics and the empirical df of a sample is immediate,

we have

Xk;n � x if and only if
nX
i=1

IfXi>xg < k;

which implies that

P (Xk;n � x) = P

�
Fn (x) > 1�

k

n

�
:

Upper order statistics estimate tails and quantiles, and also excess probabilities over certain
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thresholds. we have

F (t) = Xk;n for 1�
k

n
< t � 1� k � 1

n
;

for k = 1; ::; n: Next we calculate the df Fk;n of the kth upper order statistic explicitly.

Proposition 2.1.2 (Distribution function of the k th upper order statistic) For k =

1; :::; n let Fk;n denote the df of Xk;n . Then

(a) Fk;n (x) =
k�1P
r=0

0@ n

r

1AF
r
(x)F n�r (x) :

(b) If F is continuous, then

Fk;n (x) =

Z x

�1
fk;n (z) dF (z) ;

where

fk;n (x) =
n!

(k � 1)! (n� k)!
F n�k (x)F

k�1
(x) ;

i.e. fk;n is a density of Fk;n with respect to F .

Proof. see e.g, [Embrechts et al.(1997)] p183.

Similar arguments lead to the joint distribution of a �nite number of di¤erent order sta-

tistics. If for instance F is absolutely continuous with density f , then the joint density of

(X1; :::; Xn) is

fX1;:::;Xn (x1; :::; xn) =
nY
i=1

f (xi) ; (x1; :::; xn) 2 Rn:

Since the n values of (X1; :::; Xn) can be rearranged in n! ways (by absolute continuity

there are a.s. no ties), every speci�c ordered collection (Xk;n)k=1;:::;n could have come from

n! di¤erent samples.

Proposition 2.1.3 (Distributions of order statistics)
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� Joint pdf of X1;n; :::; Xn;n

fX1;n;:::;Xn;n (x1; :::; xn) = n!

nY
i=1

f (xi) ; x1 � ::: � xn:

� Joint pdf of X1;n; :::; Xk;n

fX1;n;:::;Xk;n (x1; :::; xk) =
n!

(n� k)!
F n�k (xk)

kY
i=1

f (xi) ; x1 � ::: � xk:

Note that the df of the ith order statistic is a tail distribution of a binomial distribution

with parameters n and F (x). Distributional results for the smallest and largest order

statistics are immediate.

Corollary 2.1.1 (Distributions of the minimum and maximum)

� Joint pdf of X1;n and Xn;n

fX1;n;Xn;n (x; y) = n (n� 1) fF (y)� F (x)gn�2 f (x) f (y) ;�1 < x < y <1:

� pdf of min (X1; :::; Xn)

fX1;n (x) = n
�
F (x)

	n�1
f (x) ;�1 < x <1:

� pdf of max (X1; :::; Xn)

fXn;n (x) = n fF (x)gn�1 f (x) ;�1 < x <1:

� df of min (X1; :::; Xn)

FX1;n (x) = 1�
�
F (x)

	n
;�1 < x <1:
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� df of max (X1; :::; Xn)

FXn;n (x) = fF (x)g
n ;�1 < x <1:

2.2 Fluctuations of maxima

This section is concerned with classical EVT. The central result is the Fisher�Tippett the-

orem which speci�es the form of the limit distribution for centred and normalised maxima.

The three families of possible limit laws are known as extreme value distributions. We

remind that throughout this section, (X1; ::; Xn) is a sample from a rv X with continuous

df F and Xn;n = max(X1; ::; Xn):

2.2.1 Limit distributions

Our interest is in �nding possible limit distributions for sample maxima of independent and

identically distributed random variables. Let F be the underlying distribution function

and xF its right endpoint, i.e.,

xF := sup fx 2 R : F (x) < 1g � 1;

which may be in�nite.Then Xn;n
P! xF ; n ! 1; since P (Xn;n � x) = F n (x) ; which

converges to zero for x < xF and to 1 for x � xF : Hence,in order to obtain a nondegenerate

limit distribution, a normalization is necessary.

Suppose there exists a sequence of constants an > 0,and bn real (n = 1; 2; :::) , such that

Xn;n�bn
an

has a nondegenerate limit distribution as n!1; i.e.,

lim
n!1

P

�
Xn;n � bn

an
� x

�
= lim

n!1
F n (anx+ bn) = H (x) ; x 2 R; (2.1)

where H is a non-degenerate df. Since extreme value df�s are continuous on R, assumption
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2.1 is equivalent to the following weak convergence assumption

Xn;n � bn
an

d! H as n!1: (2.2)

an and bn are called norming constants.

We shall �nd all distribution functions H that can occur as this limit. These distributions

are called extreme value distributions. The class of distributions F satisfying 2.1 is called

the maximum domain of attraction or simply domain of attraction of H. We are going to

identify all extreme value distributions and their domains of attraction.

Theoreme 2.2.1 (Fisher-Tippett) Let (Xn) be a sequence of iid rvs. If there exist

norming constants an > 0; bn 2 R and some non�degenerate df H satis�es assumption

2.2, then H belongs to the type of one of the following three dfs:

TypeI : � (x) = exp (�e�x) ; x 2 R:

TypeII : �� (x) =

8<: 0;

exp
�
�x��

�
;

x � 0

x > 0
� > 0:

TypeIII : 	� (x) =

8<: exp
�
� (�x)�

�
;

1;

x � 0

x > 0
� > 0:

For the Sketch of the proof see [Embrechts et al.(1997)] p122.

De�nition 2.2.1 (Standard extreme value distributions) The Three df �s of this

theorem are called standard extreme value distributions. � is known as Gumbel (or double

exponential) type, �� as Frechet (or heavy-tailed) type and 	� as (reverse) Weibull type.

The types of �; �� and 	� are very di¤erent, from a mathematical point of view they are

closely linked. Indeed, one immediately veri�es the following properties. Suppose X > 0;

then

X has df �� , lnX� has df �, �1=X has df 	�:
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Figure 2.2: Densities of the standard EV distributions. We chose � = 1 for the Fréchet
and the Weibull distribution
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There exists some freedom in the choice of the norming constants in 2.1 because the

uniqueness of the limit H is only up to a¢ ne transformations. The three limit types of

theorem 2.2.1 may be combined into a single form known as the Generalized Extreme

Value Distribution (GEVD) and widely accepted as the standard representation of the

extreme value distributions.

De�nition 2.2.2 (GEVD) The GEVD is a df H de�ned , for all x 2 R such that

1 + x > 0; as follows:

H (x) =

8<: exp
n
� (1 + x)�1=

o
if  6= 0;

exp (�e�x) if  = 0:
(2.3)

The parameter  is called Extreme Value Index (EVI), tail index or shape parameter.

The GEVD H can be written in a more general form by replacing the argument x by

(x� �) =� in the right hand side of equation 2.3, where � 2 R and � > 0 are respectively

the location and scale parameters.

The parametrization in 2.3 is due to [von Mises(1936)] and [Jenkinson(1955)] and is known

as the GEVD or the von Mises-Jenkinson family, which uni�es all possible non-degenerate

weak limits of the maximum. We express the three extreme value distributions in terms

of the GEVD H as follows:

� = H0 (x) ; x 2 R:

�� = H1=� (� (x� 1)) ; x > 0:

	� = H�1=� (� (x+ 1)) ; x < 0:

In other words,

H =

8>>><>>>:
	�1= if  < 0;

� if  = 0;

�1= if  > 0:

Hence the three extreme value distributions can be characterized by the sign of the tail
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index  : Gumbel type corresponds to  = 0; Fréchet type to  > 0 and Weibull type to

 < 0:

Recall that if relation 2.3 holds with H = H for some  2 R, we say that the distribution

function F is in the domain of attraction of H. Notation F 2 D (H).

Remark 2.2.1 Let us consider the subclasses separately:

� For  > 0clearly H (x) < 1 for all x; i.e., the right endpoint of the distribution is

in�nity. Moreover, as x ! 1; 1�H (x) � �1=x�1=; i.e., the distribution has a

rather heavy right tail; for example, moments of order greater than or equal to 1=

do not exist.

� For  = 0 the right endpoint of the distribution equals in�nity. The distribution,

however,is rather light-tailed: 1�H0 (x) � e�x as x!1; and all moments exist.

� For  < 0 the right end point of the distribution is �1= so it has a short tail,

verifying 1�H (��1 � x) � (�x)�1= ; as x # 0:

2.2.2 Domains of attraction

In this part of the section, we shall derive su¢ cient conditions on the distribution function

F that ensure that there are sequences of constants an > 0 and bn such that

lim
n!1

F n (anx+ bn) = H (x)

for some given real  and all x. These conditions, basically due to [von Mises(1936)],

require the existence of one or two derivatives of F .

The following theorem states a su¢ cient condition for belonging to a domain of attraction.

The condition is called von Mises�condition.

Theoreme 2.2.2 Let F be a distribution function and xF its right endpoint. Suppose
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F "(x) exists and F
0
(x) is positive for all x in some left neighborhood of xF .If

lim
t"xF

�
1� F

F 0

�0

(t) =  (2.4)

or equivalently

lim
t"xF

(1� F (t))F "(t)

(F 0 (t))2
= � � 1

then F is in the domain of attraction of H:

Theoreme 2.2.3

1. ( > 0) Suppose xF =1 and F
0
exists.If

lim
t!1

tF
0
(t)

1� F (t)
=
1



for some positive , then F is in the domain of attraction of H:

2. ( < 0) Suppose xF <1 and F
0
exists for x < xF . If

lim
t"xF

(xF � t)F
0
(t)

1� F (t)
= �1



for some negative , then F is in the domain of attraction of H:

For the proofs and more details on this issue, one may consult [de Haan and Ferreira(2006)]

p15.

Now in the following theorem, we shall establish necessary and su¢ cient conditions for a

distribution function F to belong to the domain of attraction of H.

Theoreme 2.2.4 The distribution function F is in the domain of attraction of the ex-

treme value distribution H if and only if

1. for  > 0 : xF is in�nite and

lim
t!1

1� F (tx)

1� F (t)
= x�1=
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for all x > 0: This means that the function 1�F is regularly varying at in�nity with

index �1=.

2. for  < 0 : xF is �nite and

lim
t#0

1� F (xF � tx)

1� F (xF � t)
= x�1=

for all x > 0:

3. for  = 0 : xF can be �nite or in�nite and

lim
t"xF

1� F (t+ xf (t))

1� F (t)
= e�x (2.5)

for all real x, where f is a suitable positive function. If 2.5 holds for some f , thenR xF
t
(1� F (s)) ds <1 for t < xF and 2.5 holds with

f (t) :=

R xF
t
(1� F (s)) ds

1� F (t)
:

In addition to this formulations, for the domain of attraction assumption, there exist

other alternative assertions stated in the following proposition. The First one illustrates

the restriction on the upper distribution tail, the second form is in terms of function Q

and the third assertion is in terms of function U:

Proposition 2.2.1 (Characterizations of D (H)) For  2 R, the following assertions

are equivalent.

(a) F 2 D (H) :

(b) For some positive function b

lim
t!xF

F (t+ xb (t))

F (t)
=

8<: (1 + x)�1= if  6= 0;

e�x if  = 0;
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for all x > 0 with (1 + x) > 0:

(c) For some positive function ea
lim
s!0

Q (1� sx)�Q (1� s)ea (s) =

8<:
x��1


if  6= 0;

log x if  = 0;

for x > 0:

(d) For some positive function a (t) = ea (1=t)
lim
t!1

U (tx)� U (t)

a (t)
=

8<:
x�1


if  6= 0;

log x if  = 0;

for x > 0:

The latter two assertions are respectively equivalent to

lim
s!0

Q (1� sx)�Q (1� s)

Q (1� sy)�Q (1� s)
=

8<:
x��1
y��1 if  6= 0;
log x
log y

if  = 0;

and

lim
t!1

U (tx)� U (t)

U (ty)� U (t)
=

8<:
x�1
y�1 if  6= 0;
log x
log y

if  = 0;
(2.6)

for x; y > 0; y 6= 1:

2.3 Regular variation

In the previous subsection we stated necessary and su¢ cient conditions that characterised

the domains of attraction of the three extreme value distributions. These conditions are

closely related to the concept of regularly varying functions. Moreover, in the analysis of

the behaviour of estimators in the �eld of EVT, properties of regularly varying functions

and so called II-varying functions are frequently used.
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We de�ne the second order assumption that strengthens the regular variation condition of

the distribution tail F ; with a reminder on that �rst condition in the case of heavy tailed

distributions.

Proposition 2.3.1 (First Order Regular Variation Condition) The following asser-

tions are equivalent :

(a) F heavy tailed

F 2 D
�
�1=

�
;  > 0:

(b) F regularly varying at 1 with index �1=

lim
z!1

F (xz)

F (z)
= x�1=; x > 0:

(c) Q (1� s) regularly varying at 0 with index �

lim
s!0

Q (1� sx)

Q (1� s)
= x�; x > 0:

(d) U regularly varying at 1 with index 

lim
z!1

U (xz)

U (z)
= x; x > 0:

De�nition 2.3.1 (Second Order Regular Variation Assumption) We say that F 2

D
�
�1=

�
;  > 0; is second order regularly varying at in�nity if it satis�es one of the fol-

lowing (equivalent) conditions:

(a) There exist some parameter � � 0 and a function A�; tending to 0 and not changing

sign near in�nity, such that for all x > 0

lim
t!1

�
F (xt) =F (t)� x�1=

�
A� (t)

= x�1=
x� � 1
�

:
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(b) There exist some parameter � � 0 and a function A��; tending to 0 and not changing

sign near 0; such that for all x > 0

lim
s!0

(Q (1� sx) =Q (1� s)� x�)

A�� (s)
= x�

x� � 1
�

:

(c) There exist some parameter � � 0 and a function A; tending to 0 and not changing

sign near 0; such that for all x > 0

lim
t!1

(U (xt) =U (t)� x)

A (t)
= x

x� � 1
�

: (2.7)

If � = 0, interpret (x� � 1) =� as log x:

A;A� and A�� are regularly varying functions with A� (t) = A
�
1=F (t)

�
and A�� (s) =

A (1=s) : Their role is to control the speed of convergence in First Order Regular Variation

Condition (a) ; (b) and (c) respectively.

The equivalent assumptions above specify the rates (necessary to derive the asymptotic

normality of tail index estimators) of convergence in Proposition 2.3.1.

Hall�s class of df �s

As an example of heavy tailed distributions satisfying the second order assumption, we

have the so called and frequently used Hall�s model (introduced in [Hall(1982)]) which is

a class of df�s

F (x) = 1� cx�1=
�
1 + dx�= + o

�
x�=

��
as x!1; (2.8)

where  > 0; � � 0; c > 0; and d 2 Rn f0g : This sub-class of heavy-tailed distributions

contains the Pareto, Burr, Fréchet and t-Student df�s usually used, in insurance math-

ematics, as models for dangerous risks. Relation 2.8 may be reformulated in terms of

functions Q and U as follows:

Q (1� s) = cs�
�
1 + dc�s�� + o

�
s��
��
as s! 0;
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and

U (t) = ct (1 + dc�t� + o (t�)) as t!1:

Straightforward computations show that, in the case of Hall model, functions A(t) and

A� (t) are respectively equivalent to d�c�t� and d�t�= as t ! 1; whereas function

A�� (s) is equivalent to d�c�s�� as s! 0:

2.4 Tail index estimation

In this section we study di¤erent estimators of the shape parameter  for F 2 D (H). We

also give some of their statistical properties. That is, the data (X1; :::; Xn) are assumed

to be drawn from a population X with df F . This semi-parametric statistical procedures

don�t assume the knowledge of the whole distribution but only focus on the distribution

tails. The case  > 0 has got more interest because data sets in most real-life applications,

exhibit heavy tails. Classical estimators of  may be based on k upper order statistics

Xk;n; :::; Xn;n where

k = kn !1 and k=n! 0 as n!1:

we will present some algorithms, in the next section, on how to determine this crucial

number "k".

2.4.1 Pickands estimator

The simplest and oldest estimator for  is the Pickands estimator, was introduced in

1975 for any  2 R; but, as it is rather unworkable in practise for small or moderate

samples. The basic idea behind this estimator consists of �nding a condition equivalent to

F 2 D (H) which involves the parameter  in an easy way, namely assertion 2:6; which

for x = 2 and y = 1=2 yields

lim
t!1

U (2t)� U (t)

U (t)� U (t=2)
= 2:
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Furthermore, for any positive function c such that lim
t!1

c (t) = 2; we have

lim
t!1

U (c (t) t)� U (t)

U (t)� U (t=c (t))
= 2:

The basic idea now consists of constructing an empirical estimator using this formule. To

that e¤ect, let the ordered (Y1;n; :::; Yn;n) from a standard Pareto rv Y with df FY (y) =

1�1=y; y � 1 (namely, (k=n)Yn�k+1;n
P! 1 and Yn�k+1;n=Yn�2k+1;n

P! 2 as n!1), yields

U (Yn�k+1;n)� U (Yn�2k+1;n)

U (Yn�2k+1;n)� U (Yn�4k+1;n)
= 2:

Finally, we use the distributional identity

Xn�i+1;n
d
= U (Yn�i+1;n) ; i = 1; 2; :::; n

and we now de�ne the Pickands estimator

b(p) := 1

log 2
log

Xn�k+1;n �Xn�2k+1;n

Xn�2k+1;n �Xn�4k+1;n
:

This was already observed by [Pickands(1975)]. A full analysis on b(p) is to be found in
[Dekkers and de Haan(1989)] from which the following result is taken.

Theoreme 2.4.1 (Asymptotic Properties of b(p)) Assume that F 2 D (H) ;  2 R;

k !1 and k=n! 0 as n!1:

(a) Weak Consistency:

b(p) P!  as n!1:

(b) Strong consistency: If k= log log n!1 as n!1; then

b(p) a:s:!  as n!1:
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(c) Asymptotic normality: Under further conditions on k and F (see [Dekkers and de Haan(1989)],

p. 1799),
p
k
�b(p) � 

� D! N
�
0; �2

�
as n!1;

where

�2 :=
2 (22+1 + 1)

(2 (2 � 1) log 2)2
:

2.4.2 Hill�s estimator

This estimator is only applicable in case the EVI  is known to be positive, which cor-

responds to distributions belonging to the Fréchet type domain of attraction. In order

to introduce the Hill estimator, a simple and widely used estimator, let us start from:

F 2 D
�
�1=

�
for  > 0 if and only if

lim
z!1

F (xz)

F (z)
= x�1=; x > 0:

In this case the parameter � := 1= > 0 is called the tail index of F , this condition have

an equivalent form

lim
t!1

1

F (t)

Z 1
t

x�1F (x) dx = ;

which, by an integration by parts, becomes

lim
t!1

1

F (t)

Z 1
t

log
x

t
dF (x) = :

Replacing F by Fn and letting t = Xn�k:n yields the Hill�s(1975) estimator b(H); de�ned
by

b(H) := 1

F n (Xn�k:n)

Z 1
Xn�k:n

log
x

Xn�k:n
dFn (x) ;

or

b(H) := 1

k

kX
i=1

logXn�i+1;n � logXn�k:
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Hill�s estimator is usual and easy-to-explain. It can be derived through several other

approaches (see [Embrechts et al.(1997)] p. 330). In his original paper [Hill(1975)],

Hill did not investigate the asymptotic behavior of the estimator. It was Mason who

proved the weak consistency in [Mason(1982)], The strong consistency was proved by

[Deheuvels, Häusler and Mason(1988)] who gave an optimal rate of convergence for an

appropriately chosen sequence kn. The asymptotic normality was established, under

some extra condition on F , in several papers such as, e.g [Csörgo and Mason(1985)] and

[Davis and Resnick(1984)].

The asymptotic properties of Hill�s estimator are summarized in the following theorem.

Theoreme 2.4.2 (Asymptotic Properties of b(H)) Assume that F 2 D
�
�1=

�
;  >

0; k !1 and k=n! 0 as n!1:

(a) Weak Consistency:

b(H) P!  as n!1:

(b) Strong consistency: If k= log log n!1 as n!1; then

b(H) a:s:!  as n!1:

(c) Asymptotic normality: Assume that F satis�es (2:7) : If
p
kA (n=k) ! � as n ! 1;

then
p
k
�b(H) � 

� d! N

�
�

1� �
; 2
�
as n!1:

2.4.3 Moment estimator

The moment estimator has been introduced by [Dekkers et al.(1989)] as a direct general-

ization of the Hill estimator, is similar to the Hill estimator but one that can be used for
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general  2 R, not only for  > 0:

b(M) :=M (1)
n + 1� 1

2

0B@1�
�
M

(1)
n

�2
M

(2)
n

1CA
�1

;

where

M (r)
n :=

1

k

kX
i=1

(logXn�i+1;n � logXn�k)
r ; r = 1; 2:

Because M (1)
n and M (2)

n can be interpreted as empirical moments, b(M) is also referred to

as amoment estimator of :

Theoreme 2.4.3 (Asymptotic Properties of b(M)) Assume that F 2 D (H) ;  2 R;

k !1 and k=n! 0 as n!1:

(a) Weak Consistency:

b(M) P!  as n!1:

(b) Strong consistency: If k= (log n)� !1 as n!1; for some � > 0, then

b(M) a:s:!  as n!1:

(c) Asymptotic normality: (see Theorem 3.1 and Corollary 3.2 of [Dekkers et al.(1989)]),

p
k
�b(M) � 

� D! N
�
0; �2

�
as n!1;

where

�2 :=

8<: 1 + 2;  � 0
(1�2)(1�2)(1�+62)

(4�1)(3�1) ;  < 0:

2.4.4 Kernel type estimators

In 1985, using a kernel function K; Csörg½o, Deheuvels and Mason proposed a smoother

version of Hill�s estimator and proved its consistency and asymptotic normality. To de�ne
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their estimator we need a kernel function K that satis�es the following condition: non-

negative, non-increasing and right continuous function on (0;1) such that
1R
0

K (u) du = 1

and
1R
0

u�1=2K (u) du <1: Then the estimator is de�ned as

b(K) := n�1X
i=1

i

nh
K

�
i

nh

�
(logXn�i+1;n � logXn�i;n) =

1=hZ
0

K (u) du;

where h > 0 is called bandwidth. Notice that, using the uniform kernel K = I(0;1) and

h = k=n yields Hill�s estimator b(H) as a special case. This estimator depends in a

continuous way on the bandwidth h representing the proportion of top order statistics

used. Under von Mises�s condition, the kernel type estimators have been generalized by

[Groeneboom et al.(2003)] for all real tail indices.

To be able to state the asymptotic normality of the kernel type estimator, we will need

some additional conditions on the kernel K; for a discussion of these conditions we refer

to [Csörgö et al.(1985)].

Remark 2.4.1 Recall that under appropriate conditions, the Hill estimator is consistent

only for positive values of ; the Pickands and moment estimators are de�ned and consis-

tent for all real values of : For instance, we shall see that for an important range of values

of ,the Pickands estimator has larger asymptotic variance than the others. Some sim-

ulation results for some common distributions are given in [de Haan and Ferreira(2006)]

p116. On Figure 2.3, Pickands estimators appears to be the least stable.

2.5 Optimal sample fraction selection

Most widely used semi-parametric estimators of the extreme value parameter depend

on the number of upper extremes which locate where the tail of a distribution begins.

In the presence of a random sample with �nite size, the problem concerning the choice

of the number of upper extremes is not easy to handle. This number k is not only
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Figure 2.3: Hill (solid line), Pickands (dashed line) and the moment (dotted line) estima-
tors for the EVI of the Burr(1,1,1) (left) and standard Cauchy (right) distributions, based
on 100 samples of 3000 observations.

governed by the sample size n, but also ruled by parameters characterizing F . When the

underlying distribution function is known, the optimum value k can be attained through

the minimization of the asymptotic mean squared error of the considered estimator. In this

section, we present some of the proposed methods in order to get an optimal number k:

In this thesis we are interesting only with algorithm of Reiss and Thomas for esteablished

this fraction.

2.5.1 Graphical method

We start by presenting a universal graphical method which should be applied prior to any

numerical investigation. The method consists of using the plot f(k; b) ; k = 1; :::; ng ; in
order to make an optimal choice of k: where it is clear that one should choose k in the

(�rst) region where the plot is roughly horizontal. Some other graphical procedures for

selecting an optimal k-value are extensively discussed and compared in [Sousa(2002)]. For

an illustration see Figure 2.4, where it seems that any k between 80 and 100 would be a
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good choice.

Figure 2.4: Plot of Hill�s estimator, for the EVI of a standard Pareto distrubution, as a
function of the number of top statistics, based on 100 samples of size 3000. The horizontal
line represents the true value of the tail index.

2.5.2 Adaptive procedures

A large variety of algorithms and data-adaptive procedures of computing consistent es-

timate bkopt for kopt in the sense that bkopt
kopt

P! 1 as n ! 1: In the remainder of this

subsection, we will outline some of the most known data-driven methods of choosing

the number of largest statistics suitable for an accurate estimation, for example: Hall

and Welsh approach, Bootstrap approach, Sequential approach, Coverage accuracy ap-

proach,Cheng and Peng approach, Reiss and Thomas approach, for more details see thesis

of Pr. [Meraghni(2008)] p63. In this thesis, to determine the optimal number of up-

per order statistics used in the computation of b, we apply the algorithm of page 137 in

[Reiss and Thomas(2007)].

Reiss and Thomas approach
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They propose an automatic manner to choose k by minimizing

1

k

X
i�k

i� jb (i)�med (b (1) ; :::; b (k))j ; 0 � � � 1=2;

or the following suggested modi�cation

1

k � 1
X
i<k

i� (b (i)� b (k))2 ; 0 � � � 1=2:

In our simulation study, we apply this procedure and we choose � = 0:3, for a discussion

on the choice of �; one refers to the paper of [Neves and Fraga Alves(2004)].
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On the asymptotic normality of the

EVI for right-truncated data

We introduce in this chapter, a consistent estimator of the extreme value index

under random truncation based on a single sample fraction of top observa-

tions from truncated and truncation data. We establish the asymptotic normality of the

proposed estimator by making use of the weighted tail-copula process framework.

3.1 Tail index estimation

We assume that both survival functions F := 1�F and G := 1�G are regularly varying

at in�nity with respective indices �1=1 and �1=2: That is, for any s > 0

lim
x!1

F (sx)

F (x)
= s�1=1 and lim

y!1

G (sy)

G (y)
= s�1=2 : (3.1)

Being characterized by their heavy tails, these distributions play a prominent role in

extreme value theory. They include distributions such as Pareto, Burr, Fréchet, stable

and log-gamma, known to be appropriate models for �tting large insurance claims, log-

returns, large �uctuations, etc. see, e.g., [Resnick(2006)].

Making use of Proposition B.1.10 in [de Haan and Ferreira(2006)], for the regularly varying
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functions F andG; we may readily show that bothG and F are regularly varying at in�nity

as well, with respective indices 2 and  := 12= (1 + 2) : That is, we have, for any s > 0;

lim
x!1

F (sx)

F (x)
= s�1= and lim

y!1

G (sy)

G (y)
= s�1=2 : (3.2)

Recently [Gardes and Stup�er(2015)] addressed the estimation of the extreme value in-

dex 1 under random truncation. They used the de�nition of  to derive the following

consistent estimator:

b1 (k; k0) := b (k) b2 (k0)b2 (k0)� b (k) ;
where

b (k) := 1

k

kX
i=1

log
Xn�i+1:n

Xn�k:n
and b2 (k0) := 1

k0

k0X
i=1

log
Yn�i+1:n
Yn�k0:n

; (3.3)

are the well-known Hill estimators of  and 2; with X1:n � ::: � Xn:n and Y1:n � ::: � Yn:n

being the order statistics pertaining to the samples (X1; :::; Xn) and (Y1; :::; Yn) respec-

tively. The two sequences k = kn and k0 = k0n of integer rv�s, which satisfy

1 < k; k0 < n; min (k; k0)!1 and max (k=n; k0=n)! 0 as n!1;

respectively represent the numbers of top observations from truncated and truncation

data. By considering the two situations k=k0 ! 0 and k0=k ! 0 as n ! 1; the au-

thors established the asymptotic normality of b1 (k; k0) ; but when k=k0 ! 1; they only

showed, in Theorem 3, that
p
min (k; k0) (b1 (k; k0)� 1) = Op (1) ; as n!1: It is obvi-

ous that an accurate computation of the estimate b1 (k; k0) requires good choices of both
k and k0: However from a practical point of view, it is rather unusual in extreme value

analysis to handle two distinct sample fractions simultaneously, which is mentioned by

[Gardes and Stup�er(2015)] in their conclusion as well. In the present work, we consider
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the situation when k = k0 (rather than k=k0 ! 1); to obtain an estimator

b1 := b1 (k) = k�1

kX
i=1

log
Xn�i+1:n

Xn�k:n

kX
i=1

log
Yn�i+1:n
Yn�k:n

kX
i=1

log
Xn�k:nYn�i+1:n
Yn�k:nXn�i+1:n

; (3.4)

of simpler form, expressed in terms of a single sample fraction k of truncated and truncation

observations. Thereby, the number of extreme values used to compute the optimal estimate

value b1 may be obtained by applying one of the various heuristic methods available in the
literature such that, for instance, the algorithm of page 137 in [Reiss and Thomas(2007)].

This estimator is used by [Gardes and Stup�er(2015)] in their simulation study (to eval-

uate the performance high quantile estimators) where they took k = k0 as it is mentioned

in their conclusion. The task of establishing the asymptotic normality of b1 is a bit deli-
cate as one has to take into account the dependence structure of X and Y: The authors

of [Gardes and Stup�er(2015)] handled this issue by putting conditions on the sample

fractions k and k0: In our case we require that the joint df H have a stable tail depen-

dence function ` (see [Huang(1992)] and [Drees and Huang(1998)]), in the sense that the

following limit exists:

lim
t#0

t�1P
�
F (X) � tx or G (Y ) � ty

�
=: ` (x; y) ; (3.5)

for all x; y � 0 such that max (x; y) > 0: Note that the corresponding tail copula function

is de�ned by

lim
t#0

t�1P
�
F (X) � tx; G (Y ) � ty

�
=: R (x; y) ; (3.6)

which equals x+ y� ` (x; y) : In on other words, we assume that H belongs to the domain

of attraction of a bivariate extreme value distribution. This may be split into two sets of

conditions, namely conditions for the convergence of the marginal distributions (3:2) and

others for the convergence of the dependence structure (3:5) : For details on this topic, see

43



Chapter 3. On the asymptotic normality of the EVI for right-truncated data

for instance Section 6.1.2 in [de Haan and Ferreira(2006)] and the papers of [Huang(1992)]

and [Einmahl et al.(2006)], [de Haan et al.(2008)].

3.2 Main results

Weak approximations of extreme value theory based statistics are achieved in the second-

order framework, see [de Haan and Stadtmüller(1996)]. Thus, it seems quite natural to

suppose that both df�s F and G satisfy the well-known second-order condition of regular

variation. That is, we assume that for any x > 0

lim
z!1

1

A (z)

�
U (zx)
U (z)

� x
�
= x

x� � 1
�

;

lim
z!1

1

A2 (z)

�
U2 (zx)
U2 (z)

� x2
�
= x2

x�2 � 1
�2

;

(3.7)

where U :=
�
1=F )

� 
; U2 :=

�
1=G)

� 
(with E (u) := inf fv : E (v) � ug ; for 0 < u < 1;

denoting the quantile function pertaining to a function E); jAj and jA2j are some regularly

varying functions with negative indices (second-order parameters) � and �2 respectively.

Theoreme 3.2.1 Assume that the second-order regular variation condition (3:7) and (3:5)

hold. Let k := kn be a sequence of integers such that k ! 1; k=n ! 0: Then, there exist

two standard Wiener processes fWi (t) ; t � 0g ; i = 1; 2; de�ned on the probability space

(
;A;P) with covariance function R (�; �) ; and two functions A� � A and A�2 � A2 with
p
kA� (n=k) = O (1) =

p
kA�2 (n=k) ; such that

p
k (b1 � 1)� � (k)

=

Z 1

0

t�1 (cW1 (t)� c2W2 (t)) dt� cW1 (1) + c2W2 (1) + op (1) ;

where c := 21=; c2 := 21=2 and

� (k) :=
c
p
kA� (n=k)

 (1� �)
+
c2
p
kA�2 (n=k)

2 (1� �2)
:
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If in addition we have
p
kA� (n=k)! � and

p
kA�2 (n=k)! �2; then

p
k (b1 � 1)

D! N
�
�; �2

�
; as n!1;

where

� :=
c�

 (1� �)
+

c2�2
2 (1� �2)

and �2 := 2c2 + 2c22 � 2cc2�;

with

� = � (R) :=

Z 1

0

Z 1

0

R (s; t)

st
dsdt�

Z 1

0

(R (s; 1)�R (1; s)) ds+R (1; 1) :

Remark 3.2.1 Note that �2 is �nite. Indeed, the fact that ` (x; y) is a tail copula function,

implies that max (x; y) � ` (x; y) � x+y see, e.g., [Gudendorf and Segers(2010)] and since

R (x; y) = x+ y � ` (x; y) ; then 0 � R (x; y) � min (x; y) : It follows that

Z 1

0

Z 1

0

R (s; t)

st
dsdt �

Z 1

0

Z 1

0

min (s; t)

st
dsdt = 2;

Z 1

0

R (s; 1) ds � 1

2
;

Z 1

0

R (1; s) ds � 1

2
and R (1; 1) � 1:

Therefore j�j � 4; which yields that �2 <1:

The following corollary directly leads to a practical construction of con�dence intervals

for the tail index 1:

Corollary 3.2.1 Under the assumptions of Theorem 3.2.1; we have

p
k (b1 � 1)� b�b� D! N (0; 1) ; as n!1;

where b� = bcb�b (1� b�) + bc2b�2b2 (1� b�2) and b�2 := 2bc2 + 2bc22 � 2bcbc2b�; with
bc := b21=b; bc2 := b21=b2; b� := �

� bR� ;
b� := pkb� Xn�2k:n � 2�bXn�k:n

2�b (2�b� � 1)Xn�k:n
and b�2 := pkb�2 Yn�2k:n � 2�b2Yn�k:n

2�b2 (2�b�2 � 1)Yn�k:n :
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Here b and b2 are the respective Hill estimators of  and 2 de�ned in (3:3) with k0 = k;

b� (resp. b�2) is one of the estimators of � (resp. �2) see, e.g., [Gomes and Pestana(2007)]
and bR is a nonparametric estimator of R given in [Peng(2010)] by

bR (s; t) := k�1
nX
i=1

1
�
Xi � Xn�[ks]:n; Yi � Yn�[kt]:n

�
;

with [x] standing for the integer part of the real number x and 1 (�) for the indicator

function.

3.3 Proofs

Proof of Theorem 3:2:1

We begin by a brief introduction on the weak approximation of a weighed tail copula

process given in Proposition 1 of [Einmahl et al.(2006)]. Set Ui := F (Xi) and Vi := G (Yi) ;

for i = 1; :::; n; and let C (x; y) be the joint df of (Ui; Vi) : The copula function C and its

corresponding tail R; de�ned in (3:6); are linked by t�1C (tx; ty) � R (x; y) = O (t�) ; as

t # 0; for some � > 0; uniformly for x; y � 0 and max (x; y) � 1 [Huang(1992)]: Let us

de�ne

�n (x; y) :=
p
k (Tn (x; y)�Rn (x; y)) ; x; y > 0;

where

Tn (x; y) :=
1

k

nX
i=1

1

�
Ui <

k

n
x; Vi <

k

n
y

�
and Rn (x; y) :=

n

k
C

�
kx

n
;
ky

n

�
:

In the sequel, we will need the following two empirical processes:

�n (x) := �n (x;1) =
p
k (Un (x)� x) and �n (y) := �n (1; y) =

p
k (Vn (y)� y) ;
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where

Un (x) := Tn (x;1) =
1

k

nX
i=1

1

�
Ui <

k

n
x

�
;

and

Vn (y) := Tn (1; y) =
1

k

nX
i=1

1

�
Vi <

k

n
y

�
:

From assertions (3:8) and (3:9) in [Einmahl et al.(2006)], there exists a Gaussian process

WR (x; y) ; de�ned on the probability space (
;A;P) ; with mean zero and covariance

E [WR (x1; y1)WR (x2; y2)] = R(min (x1; x2) ;min (y1; y2)); (3.8)

such that, for any M > 0;

sup
0<x;y�M

j�n (x; y)�WR (x; y)j
fmax (x; y)g� = op (1) ;

and

sup
0<x�M

j�n (x)�W1 (x)j
x�

= op (1) = sup
0<y�M

j�n (y)�W2 (y)j
y�

; (3.9)

as n!1; for any 0 � � < 1=2; where

W1 (x) :=WR (x;1) and W2 (y) :=WR (1; y) ;

are two standard Wiener processes such that E [W1 (x)W2 (y)] = R (x; y) : To prove our

result, we will write the tail index estimator b1 in terms of the processes �n (�) and �n (�) :
We start by splitting b1 � 1 into the sum of

Tn1 :=
b2 (2 � ) + 2

(b2 � b) (2 � )
(b � ) and Tn2 := �

2

(b2 � b) (2 � )
(b2 � 2) :

The consistency of both Hill estimators b and b2 yields that
Tn1 =

c


(b � ) (1 + op (1)) and Tn2 = �

c2
2
(b2 � 2) (1 + op (1)) ;
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where c and c2 are those de�ned in Theorem 3:2:1: On the other hand, we have, from

Theorem 3.2.5 in [de Haan and Ferreira(2006)], b �  = Op
�
k�1=2

�
= b2 � 2; as n!1:

Since k !1; it follows that

p
k (b1 � 1) =

c



p
k (b � )� c2

2

p
k (b2 � 2) + op (1) : (3.10)

Next, we represent
p
k (b � ) and

p
k (b2 � 2) in terms of �n (�) and �n (�) respec-

tively. By using the �rst-order condition of regular variation of F (3:2) and applying

Theorem 1.2.2 in [de Haan and Ferreira(2006)] we get lim
n!1

n

k

Z 1
ak

t�1F (t) dt = ; with

ak := U (n=k) : This allows us to write b = n

k

Z 1
Xn�k:n

t�1F n (t) dt: Now, we consider the

following decomposition b �  = Sn1 + Sn2 + Sn3; where

Sn1 :=
n

k

Z 1
Xn�k:n

t�1
�
F n (t)� F (t)

�
dt; Sn2 := �

n

k

Z Xn�k:n

ak

t�1F (t) dt

and Sn3 :=
n

k

Z 1
ak

t�1F (t) dt�: It is easy to verify that, almost surely, we have n
k
F n (t) =

Un

�n
k
F (t)

�
; it follows, after a change of variables, that

Sn1 =

Z 1
1

t�1
�
Un

�n
k
F (tXn�k:n)

�
� n

k
F (tXn�k:n)

�
dt:

In other words
p
kSn1 =

Z 1
1

t�1�n

�n
k
F (tXn�k:n)

�
dt; which may be decomposed into

Z 1
1

t�1W1

�n
k
F (tXn�k:n)

�
dt

+

Z 1
1

t�1
n
�n

�n
k
F (tXn�k:n)

�
�W1

�n
k
F (tXn�k:n)

�o
dt:

Let 0 < � < 1=2 and apply approximation (3:9); to the second term above, to get

p
kSn1 =

Z 1
1

t�1W1

�n
k
F (tXn�k:n)

�
dt+ op (1)

Z 1
1

t�1
�n
k
F (tXn�k:n)

��
dt:
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Note that k=n = F (ak) and write

Z 1
1

t�1
�n
k
F (tXn�k:n)

��
dt =

�
F (Xn�k:n)

F (ak)

�� Z 1
1

t�1
�
F (tXn�k:n)

F (Xn�k:n)

��
dt:

Let � > 0 be su¢ ciently small. From Potter�s inequalities to F , see, e.g., Proposition

B.1.9, assertion 5 in [de Haan and Ferreira(2006)], we have, for all large n and for any

t > 1;

(1� �) t�1=�� � F (tXn�k:n)

F (Xn�k:n)
� (1 + �) t�1=+�:

This implies that

Z 1
1

t�1
�
F (Xn�k:nt)

F (Xn�k:n)

��
dt = Op (1)

Z 1
1

t����=�1dt:

On the other hand, by combining Corollary 2.2.2 with Proposition B.1.10 in [de Haan and Ferreira(2006)]

(applied to U), we show that Xn�k:n=ak
P! 1 as n ! 1: By, once again, using Potter�s

inequalities above, we infer that F (Xn�k:n) =F (ak)
P! 1 as well. Since

R1
1
t����=�1dt =

1= (�= � ��) <1; then

p
kSn1 = (1 + op (1))

Z 1
1

t�1W1

�n
k
F (tXn�k:n)

�
dt+ op (1) :

Let us decompose the previous integral into

Z 1
1

t�1W1

�
t�1=

�
dt+

Z 1
1

t�1
n
W1

�n
k
F (tXn�k:n)

�
�W1

�
t�1=

�o
dt:

Next, we show that the second term is negligible in (probability). To this end, we write

����Z 1
1

t�1
n
W1

�n
k
F (tXn�k:n)

�
�W1

�
t�1=

�o
dt

����
�
Z 1
1

t�1
���W1

�n
k
F (tXn�k:n)

�
�W1

�
t�1=

���� dt:
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From Levy�s modulus of continuity of the Wiener process, see, e.g., Theorem 1.1.1 in

[Csörg½o and Révész, 1981], we have almost surely for all large n

���W1

�n
k
F (tXn�k:n)

�
�W1

�
t�1=

���� � (1 + �)p2hn (t) log (1=hn (t)); (3.11)

uniformly on t > 1; where hn (t) :=
���n
k
F (tXn�k:n)� t�1=

��� that we show to be equal to
op (1) : Indeed, we have

hn (t) =

����F (tXn�k:n)

F (ak)
� t�1=

����
�
�����F (tXn�k:n)

F (ak)
�
�
t
Xn�k:n

ak

��1=�����+ t�1=

�����
�
Xn�k:n

ak

��1=
� 1
����� ;

and in view of Proposition B.1.10 in [de Haan and Ferreira(2006)], we may write

�����F (tXn�k:n)

F (ak)
�
�
t
Xn�k:n

ak

��1=����� < �

�
t
Xn�k:n

ak

��1=��
;

for all large n and t > 1: In other words, we have

`n (t) <

(
�

�
Xn�k:n

ak

��1=��
+

�����
�
Xn�k:n

ak

��1=
� 1
�����
)
t�1=:

Since Xn�k:n=ak = 1 + op (1) ; then hn (t) = (�+ op (1)) t
�1=; uniformly on t > 1; this

means that supt>1 hn (t) ! 0 as n ! 1: Going back to (3:11) ; we use the fact that,

log u < �u�� as u # 0; we end up with

p
hn (t) log (1=hn (t)) = Op (1) �

1=2 (�+ op (1))
(1��)=2 t�(1=+�)=2:
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It follows that

Z 1
1

t�1
n
W1

�n
k
F (tXn�k:n)

�
�W1

�
t�1=

�o
dt

= Op (1) �
1=2 (�+ op (1))

(1��)=2
Z 1
1

t�(1=+�)=2�1dt:

We have
R1
1
t�(1=+�)=2�1dt is �nite and �1=2 (�+ op (1))

(1��)=2 P! 0 as " # 0; therefore

p
kSn1 = (1 + op (1))

Z 1
1

t�1W1

�
t�1=

�
dt+ op (1) :

It is easy to verify that E
��R1
1
t�1W1

�
t�1=

�
dt
�� � 2; then after a change of variables we

get
p
kSn1 = 

Z 1

0

s�1W1 (s) ds+ op (1) : (3.12)

As for the second term Sn2; we use the mean value theorem to get

Sn2 = �
n

k
(Xn�k:n � ak) z

�1
n F (zn) ;

where zn is a sequence of rv�s lying between Xn�k:n and ak: Observe that

Sn2 = �
F (zn)

F (ak)

ak
zn

�
Xn�k:n

ak
� 1
�
:

Since Xn�k:n=ak
p! 1; then zn=ak

p! 1 and
n

k
F (zn)

p! 1: It follows that

Sn2 = � (1 + op (1))
�
Xn�k:n

ak
� 1
�
:

Recall that Ui = F (Xi) and note that Ui:n = F (Xn�i+1:n) ; therefore

Sn2 = � (1 + op (1))
�
U (1=Uk+1:n)
U (n=k)

� 1
�
:
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By using Proposition B.1.10 in [de Haan and Ferreira(2006)] (applied to U) together with

the mean value theorem, we write Sn2 = (1 + op (1)) 
�n
k
Uk+1:n � 1

�
: SinceUn

�n
k
Uk+1:n

�
=

1; then
p
kSn2 = � (1 + op (1)) �n

�n
k
Uk+1:n

�
:

By applying approximation (3:9) and the stochastic boundednees of W1; we get
p
kSn2 =

�W1

�n
k
Uk+1:n

�
+op (1) :Recall that, fromCorollary 2.2.2 in [de Haan and Ferreira(2006)],

we have
n

k
Uk+1:n

p! 1; then by using similar arguments based on Levy�s modulus of con-

tinuity of the Wiener process, we show that

p
kSn2 = �W1 (1) + op (1) : (3.13)

By summing up (3:12) and (3:13), we get

p
k (Sn1 + Sn2) = 

Z 1

0

s�1W1 (s) ds� W1 (1) + op (1) :

For the third term Sn3; it su¢ ces to use the inequality (2.3.23) of Theorem 2.3.9 in

[de Haan and Ferreira(2006)] to get

p
kSn3 = (1 + o (1))

p
kA� (n=k)

1� �
as n!1;

for a suitable function A� � A: In summary, by using the fact that
p
kA� (n=k) = O (1) ;

we obtain

p
k (b � ) = 

Z 1

0

s�1W1 (s) ds� W1 (1) +

p
kA� (n=k)

1� �
+ op (1) : (3.14)

Likewise, we write b2 = n

k

Z 1
Yn�k:n

t�1Gn (t) dt; where Gn (x) := n�1
Pn

i=1 1 (Yi � x) is the

usual empirical df based on the fully observed sample (Y1; :::; Yn) : Then, by using similar
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arguments, we express b2 in terms of the process �n (�) ; whose approximation (3:9) yields
p
k (b2 � 2) = 2

Z 1

0

s�1W2 (s) ds� 2W2 (1) +

p
kA�2 (n=k)

1� �2
+ op (1) ; (3.15)

where A�2 � A2: Finally, substituting results (3:14) and (3:15) in equation (3:10) achieves

the proof of the �rst part of the theorem. Finally, some elementary calculations, using the

covariance formula (3:8) and the fact thatE
hR 1
0
s�1Wi (s) ds

i2
= 2; i = 1; 2;straightforwardly

lead to the asymptotic normality result. �

Proof of Corollary 3.2.1

It su¢ ces to plug the estimate of each parameter in the result of Corollary 3:2:1: To

estimate the limits � and �2; we exploit the second-order conditions of regular variation

(3:7) : We have, as z !1;

A (z) � �
U (zx) =U (z)� x

x (x� � 1) ; for any x > 0:

In particular, for x = 1=2; and z = n=k; we have

A (n=k) � �
U
� n
2k

�
=U
�n
k

�
� 2�

2� (2�� � 1) :

Hence, we take

bA (n=k) = b� Xn�2k:n=Xn�k:n � 2�b
2�b (2�b� � 1) = b� Xn�2k:n � 2�bXn�k:n

2�b (2�b� � 1)Xn�k:n
;

an estimate of A (n=k) : Thus, the expression of b� readily follows. The same idea applies
to �2 as well. �
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Chapter 4

Tail product-limit process for

truncated data with application to

EVI estimation

In this chapter a weighted Gaussian approximation to tail product-limit process forPareto-like distributions of randomly right-truncated data is provided and a new

consistent and asymptotically normal estimator of the extreme value index is introduced.

A simulation study is carried out to evaluate the �nite sample behavior of the proposed

estimator and compare it to that recently proposed by [Gardes and Stup�er(2015)]. Also,

a new approach of estimating extreme quantiles, under random right truncation, is derived

and applied to a real dataset of lifetimes of automobile brake pads.

4.1 Tail product-limit process

In the present section, we introduce a tail product-limit process for which we provide

a weighted Gaussian approximation as well. This tool will be very helpful when deal-

ing with the estimation of any tail related quantity. In particular, it will lead to the

asymptotic normality of the extreme value index estimator that we de�ne, under ran-
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dom right-truncation, as a function of a single sample fraction of upper order statistics.

But, prior to describing our estimation methodology, let us note that, as mentioned by

[Gardes and Stup�er(2015)], in order to ensure that it remains enough extreme data for

the inference to be accurate, we need to impose the condition 1 < 2: In other words, we

consider the situation where the tail of the rv of interest X is not too contaminated by

the truncation rv Y:

Now, let k = kn be a (random) sequence of integers such that, given n = m = mN ;

1 < km < m; km !1 and km=m! 0 as N !1; (4.1)

and introduce a tail product-limit process corresponding to Fn as follows:

Dn (x) :=
p
k

�
Fn (xXn�k:n)

Fn (Xn�k:n)
� x�1=1

�
; x > 0; (4.2)

where, given n = m; X1:m � ::: � Xm:m denote the order statistics pertaining toX1; :::; Xm:

It is worth mentioning, since n = nN is a (random) sequence of integers tending in proba-

bility to1 as N !1; then for any sequence of real numbers bN ; such that bN ! b (�nite

or not) as N !1; we have bn
p! b as N !1: Hence assumptions (4:1) ; also imply that,

1 < k < n; k
p! 1 and k=n

p! 0 as N ! 1: Observe now that, in the case of complete

data, we have n � N and Fn � Fn with F n (Xn�k:n) = k=n and thus the process de�ned

in (4:2) becomes

Dn (x) :=
p
k
�n
k
F n (xXn�k:n)� x�1=1

�
:

By jointly applying Theorems 2.4.8 and 5.1.4 (pages 52 and 161) in [de Haan and Ferreira(2006)]

we have that, for x0 > 0 and 0 < � < 1=2;

sup
x�x0

x(1=2��)=1
����Dn (x)� � (x;W )� x�1=1

x�1=1 � 1
�11

p
kA0 (n=k)

���� p! 0; (4.3)

provided that F ful�lls the second-order regular variation condition with auxiliary function

A0 tending to zero, not changing sign near in�nity, having a regularly varying absolute
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value with index �1 < 0 and satisfying
p
kA0 (n=k) = O (1) ; where

� (x;W ) :=W
�
x�1=1

�
� x�1=1W (1) ;

with fW (s) ; s � 0g being a standard Wiener process. Many authors used this approxi-

mation to establish the limit distributions of several statistics of heavy-tailed distributions,

such as tail index estimators (see, e.g., [de Haan and Ferreira(2006)], p76) and goodness-

of-�t statistics [Koning and Peng, 2008]. The main goal of this chapter is to provide an

analogous result to (4:3) in the random truncation setting through the tail product-limit

process (4:2) ; which, to the best of our knowledge, was not addressed yet in the extreme

value theory literature.

Main results

We present our main result which consists in a Gaussian approximation to the tail product-

limit process Dn (x) :

Weak approximations of extreme value theory based statistics are achieved in the second-

order framework, see, e.g., [de Haan and Stadtmüller(1996)]. Thus, it seems quite natural

to suppose that df�s F and G satisfy the well-known second-order condition of regular

variation that we express in terms of the tail quantile functions. That is, we assume that

for x > 0; we have

lim
t!1

UF (tx) =UF (t)� x1

AF (t)
= x1

x�1 � 1
�1

; (4.4)

and

lim
t!1

UG (tx) =UG (t)� x2

AG (t)
= x2

x�2 � 1
�2

; (4.5)

where �1; �2 < 0 are the second-order parameters and AF; AG are functions tending to

zero and not changing signs near in�nity with regularly varying absolute values at in�nity

with indices �1; �2 respectively. For any df K; the functions K (s) := inf fx : K (x) � sg ;

0 < s < 1; and UK (t) := K (1� 1=t) ; t > 1; respectively stand for the quantile and tail
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quantile functions. For convenience, we set A�F (t) := AF

�
1=F (UF (t))

�
; t > 1:

Theoreme 4.1.1 Assume that both second-order conditions (4:4) and (4:5) hold with 1 <

2: Let k be a sequence satisfying (4:1); then there exist a function A0 (t) � A�F (t) ; t!1;

and a standard Wiener process fW (s) ; s � 0g ; de�ned on the probability space (
;A;P) ;

such that, for 0 < � < 1=2� =2 and x0 > 0; we have

sup
x�x0

x(1=2��)=�1=2
����Dn (x)� � (x;W)� x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k)

���� p! 0;

as N !1; provided that, given n = m;
p
kmA0 (m=km) = O (1) ; where f� (x;W) ; x > 0g

is a Gaussian process de�ned by

� (x;W) :=


1
x�1=1

�
x1=W

�
x�1=

�
�W (1)

	
(4.6)

+


1 + 2
x�1=1

Z 1

0

s�=2�1
�
x1=W

�
x�1=s

�
�W (s)

	
ds:

Remark 4.1.1 A very large value of 2 yields a -value that is very close to 1; meaning

that the really observed sample is almost the whole dataset. In other words, the complete

data case corresponds to the situation when 1=2 � 0; in which case we have  � 1: It

follows that in that case,  (1 + 2)
�1 R 1

0
s�=2�1

�
x1=W

�
x�1=s

�
�W (s)

	
ds � 0 and

therefore � (x;W) =W
�
x�1=1

�
�x�1=1W (1) ; which agrees with the weak approximation

(4:3):

4.2 Tail index estimation

As an application, we introduce a new Hill-type estimator [Hill(1975)] for the tail index

1 and establish its consistency and asymptotic normality. The proposed estimator is com-

pared with that of [Gardes and Stup�er(2015)] and its �nite sample behavior is checked

by simulation in next Section.

We start the construction of our estimator by noting that fromTheorem 1.2.2 in [de Haan and Ferreira(2006)],
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the �rst-order condition (3:1) (for F) implies that

lim
t!1

1

F (t)

Z 1
t

x�1F (x) dx = 1;

which, by an integration by parts, becomes

lim
t!1

1

F (t)

Z 1
t

log
x

t
dF(x) = 1: (4.7)

Replacing F by Fn and letting t = Xn�k:n yields

b1 := 1

Fn (Xn�k:n)

Z 1
Xn�k:n

log
x

Xn�k:n
dFn (x) ;

as a new estimator to 1: By setting '
(1)
n (x) := 1 fx � Xn�k:ng log (x=Xn�k:n) and '

(2)
n (x) :=

1 fx � Xn�k:ng ; this may be rewritten into b1 = R10 '
(1)
n (x) dFn (x) =

R1
0
'
(2)
n (x) dFn (x) :

From the empirical counterpart of equation (1:4) we get

Z 1
0

'(1)n (x) dFn (x) =
1

n

nX
i=n�k

Fn (Xi:n)

Cn (Xi:n)
log (Xi:n=Xn�k:n) ;

and Z 1
0

'(2)n (x) dFn (x) =
1

n

nX
i=n�k

Fn (Xi:n)

Cn (Xi:n)
:

Finally, changing i to n� i+ 1 yields

b1 =  kX
i=1

Fn (Xn�i+1:n)

Cn (Xn�i+1:n)

!�1 kX
i=1

Fn (Xn�i+1:n)

Cn (Xn�i+1:n)
log

Xn�i+1:n

Xn�k:n
: (4.8)

Note that a similar estimator (with deterministic threshold) is proposed in the independent

parallel working paper [Worms and Worms(2016)]. Its asymptotic normality is established

by means of the classical Lindeberg-Feller central limit theorem.

Remark 4.2.1 For complete data, we have n�N and Fn�Fn�Cn: Consequently b1 re-
duces to the classical Hill estimator [Hill(1975)].
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Main results

Theoreme 4.2.1 Assume that (3:1) holds with 1 < 2 and let k be an integer sequence

satisfying (4:1): Then b1 ! 1 in probability, as N !1: Assume further that both second-

order conditions (4:4) and (4:5) hold. Then

p
k (b1 � 1) =

Z 1
1

x�1Dn (x) dx =

p
kA0 (n=k)

1� �1
� W (1)

+


1 + 2

Z 1

0

(2 � 1 �  log s) s�=2�1W (s) ds+ oP (1) ;

provided that, given n = m;
p
kmA0 (m=km) = O (1) ; as N !1:

Corollary 4.2.1 If, in addition to the assumptions of Theorem 4.2.1, we suppose that,

given n = m;
p
kmA

�
F (m=km)! �; as N !1; then

p
k (b1 � 1)

D! N
�

�

1� �1
; �2
�
; as N !1;

where

�2 := 2 (1 + 1=2)
�
1 + (1=2)

2� = (1� 1=2)
3 :

Remark 4.2.2 In the complete data case, we have n � N and �2 � 21 (from Remark

4:1:1): It follows that
p
k (b1 � 1)

D! N (�= (1� �1) ; 
2
1) ; as N ! 1; which meets the

asymptotic normality of the classical Hill estimator [Hill(1975)], see for instance, Theorem

3.2.5 in [de Haan and Ferreira(2006)].

4.3 Simulation study

This study is intended for illustrating the performance of our estimator and comparing

it to that introduced by [Gardes and Stup�er(2015)] (respectively denoted by b1 and bGS1
in the tables below), with respect to bias and root of the mean squared error (rmse). It

is realized through two sets of truncated and truncation data, both drawn from Burr�s
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model:

F (x) =
�
1 + x1=�

���=1
; G (x) =

�
1 + x1=�

���=2
; x � 0; (4.9)

where �; 1; 2 > 0: The corresponding percentage of observed data equals p = 2=(1 +

2): We �x � = 1=4 and choose the values 0:6; 0:7; 0:8 and 0:9 for 1 and 70%; 80%

and 90% for p: For each couple (1; p) ; we solve the equation p = 2=(1 + 2) to get

the pertaining 2-value. We vary the common size N of both samples (X1; :::;XN) and

(Y1; :::;YN) ; then for each size, we generate 1000 independent replicates. Our overall

results, summarized in Tables 4.1, 4.2, 4.3 and 4.4 for the respective 1-values above,

are taken as the empirical means of the results obtained through all repetitions. For the

selection of the optimal numbers of upper order statistics used in the computation of

estimators b1 and bGS1 ; we apply the algorithm of [Reiss and Thomas(2007)], page 137.

First, we note that, as expected, the estimation accuracy of both estimators decreases when

the truncation percentage increases. Second, we see in all four tables that our estimator

performs better as far as small samples are concerned (those of sizes less than 300 which

indeed might be considered as small in the context of extreme values). This is especially

advantageous in case studies where datasets are not so large as we will see in next section.

It is also notable that, with regard to samples of average sizes (300 to 500 observations),

both estimators roughly produce similar results, whereas for large data series (e.g. of size

1000) the estimator of [Gardes and Stup�er(2015)] is more suitable. Finally, we observe

that, when the values of the tail index get larger, both estimation procedures are less

precise.

4.4 High quantile estimation

We devote this Section to the estimation of high quantiles, under random right truncation,

which we apply to a real dataset composed of lifetimes of car brake pads.

In many real-life �elds, such as insurance, �nance, hydrology and reliability, a typical

requirement is to �nd values, large enough, so that the chances of exceeding them are very
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p = 0:7
N n b1 bias rmse bGS1 bias rmse

100 69 0:403 �0:197 0:447 0:178 �0:422 7:310
150 105 0:446 �0:154 0:399 0:375 �0:225 1:892
200 139 0:452 �0:148 0:363 0:373 �0:227 0:993
300 209 0:510 �0:090 0:335 0:506 �0:094 1:003
500 350 0:537 �0:063 0:290 0:553 �0:047 0:453
1000 699 0:551 �0:049 0:205 0:576 �0:024 0:168

p = 0:8
100 79 0:462 �0:138 0:471 0:408 �0:192 2:546
150 120 0:501 �0:099 0:378 0:447 �0:153 0:907
200 159 0:517 �0:083 0:333 0:508 �0:092 0:424
300 240 0:528 �0:071 0:297 0:531 �0:069 0:367
500 400 0:547 �0:053 0:244 0:557 �0:043 0:194
1000 800 0:577 �0:023 0:169 0:579 �0:021 0:136

p = 0:9
100 90 0:550 �0:050 0:556 0:478 �0:122 4:751
150 134 0:539 �0:061 0:392 0:528 �0:072 0:537
200 180 0:532 �0:068 0:309 0:516 �0:084 0:651
300 269 0:554 �0:046 0:249 0:559 �0:041 0:245
500 449 0:557 �0:043 0:173 0:563 �0:037 0:167
1000 900 0:579 �0:021 0:126 0:582 �0:018 0:114

Table 4.1: Biases and RMSE�s of the new estimator (left panel) and that of Gardes and
Stup�er (right panel) of the tail index 1 = 0:6 based on 1000 samples of Burr models
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p = 0:7
N n b1 bias rmse bGS1 bias rmse

100 69 0:468 �0:232 0:516 0:400 �0:300 5:129
150 104 0:545 �0:155 0:494 0:545 �0:155 2:562
200 140 0:545 �0:155 0:447 0:491 �0:209 1:285
300 210 0:584 �0:116 0:379 0:597 �0:103 0:744
500 350 0:637 �0:063 0:334 0:639 �0:061 0:566
1000 699 0:651 �0:049 0:255 0:668 �0:032 0:189

p = 0:8
100 79 0:565 �0:135 0:601 0:48 �0:212 5:068
150 119 0:604 �0:096 0:500 0:576 �0:124 1:039
200 159 0:609 �0:091 0:388 0:602 �0:098 0:620
300 240 0:626 �0:074 0:340 0:644 �0:056 0:477
500 399 0:638 �0:062 0:280 0:652 �0:048 0:238
1000 800 0:675 �0:025 0:201 0:680 �0:020 0:168

p = 0:9
100 90 0:629 �0:071 0:630 0:624 �0:076 2:856
150 135 0:601 �0:099 0:438 0:593 �0:107 0:832
200 180 0:635 �0:065 0:393 0:634 �0:066 0:436
300 269 0:630 �0:070 0:289 0:636 �0:064 0:264
500 450 0:659 �0:041 0:222 0:659 �0:041 0:203
1000 900 0:669 �0:031 0:149 0:672 �0:028 0:136

Table 4.2: Biases and RMSE�s of the new estimator (left panel) and that of Gardes and
Stup�er (right panel) of the tail index 1 = 0:7 based on 1000 samples of Burr models
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p = 0:7
N n b1 bias rmse bGS1 bias rmse

100 70 0:553 �0:247 0:617 0:485 �0:315 9:594
150 104 0:610 �0:190 0:515 0:492 �0:308 2:803
200 139 0:600 �0:200 0:513 0:544 �0:256 1:192
300 209 0:655 �0:145 0:417 0:662 �0:138 0:722
500 350 0:694 �0:106 0:350 0:719 �0:081 0:521
1000 700 0:753 �0:047 0:318 0:772 �0:028 0:212

p = 0:8
100 80 0:652 �0:148 0:673 0:594 �0:206 5:210
150 120 0:660 �0:140 0:534 0:657 �0:143 0:883
200 159 0:688 �0:112 0:499 0:673 �0:127 0:737
300 240 0:686 �0:114 0:386 0:721 �0:079 0:534
500 400 0:728 �0:072 0:319 0:739 �0:061 0:286
1000 799 0:745 �0:055 0:226 0:756 �0:044 0:182

p = 0:9
100 89 0:710 �0:090 0:713 0:707 �0:093 5:440
150 134 0:663 �0:137 0:467 0:662 �0:138 0:786
200 179 0:698 �0:102 0:407 0:690 �0:110 0:487
300 270 0:727 �0:073 0:327 0:730 �0:070 0:290
500 450 0:742 �0:058 0:240 0:745 �0:055 0:216
1000 899 0:759 �0:041 0:165 0:765 �0:035 0:156

Table 4.3: Biases and RMSE�s of the new estimator (left panel) and that of Gardes and
Stup�er (right panel) of the tail index 1 = 0:8 based on 1000 samples of Burr models
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p = 0:7
N n b1 bias rmse bGS1 bias rmse

100 70 0:613 �0:287 0:678 0:229 �0:671 7:099
150 104 0:666 �0:234 0:608 0:595 �0:305 1:823
200 140 0:657 �0:243 0:545 0:599 �0:301 1:430
300 209 0:755 �0:145 0:501 0:739 �0:161 1:413
500 349 0:814 �0:086 0:435 0:852 �0:048 0:673
1000 700 0:853 �0:047 0:425 0:869 �0:031 0:259

p = 0:8
100 79 0:719 �0:181 0:747 0:534 �0:366 6:285
150 119 0:753 �0:147 0:585 0:691 �0:209 1:292
200 159 0:796 �0:104 0:511 0:769 �0:131 0:928
300 240 0:790 �0:110 0:460 0:787 �0:113 0:751
500 399 0:844 �0:056 0:347 0:863 �0:037 0:316
1000 799 0:860 �0:040 0:261 0:862 �0:038 0:244

p = 0:9
100 90 0:786 �0:114 0:774 0:724 �0:176 8:239
150 134 0:776 �0:124 0:551 0:742 �0:158 0:793
200 179 0:788 �0:112 0:537 0:765 �0:135 0:499
300 269 0:838 �0:062 0:393 0:842 �0:058 0:365
500 450 0:837 �0:063 0:265 0:844 �0:056 0:252
1000 899 0:864 �0:036 0:197 0:866 �0:034 0:178

Table 4.4: Biases and RMSE�s of the new estimator (left panel) and that of Gardes and
Stup�er (right panel) of the tail index 1 = 0:9 based on 1000 samples of Burr models
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small. That is, the interest is in estimating extreme quantiles of df F; that we denote by

q� := F
 (1� �) = UF (1=�) ; when � is close to 0: As we use asymptotic theory, � must

depend on the observed sample size n; i.e., � = �n: The position of a high quantile with

respect to the data depends on how small � is. The most relevant case for purposes of

real-world applications is when � is much smaller than 1=n; in which case q� is outside the

available observations. Consequently, we are led to infer beyond the limits of the sample

by extrapolating from intermediate quantiles. Obviously, this cannot be done without

some kind of information on the distribution tail and so an appropriate modelling of the

latter is needed. In other words, for a heavy-tailed distribution, an accurate estimation of

the extreme value index is essential to the process of high quantile estimation. Needless

to say that estimating such quantiles is a central issue in the context of risk management,

where it is crucial to adequately evaluate the risk of a big loss that occurs very rarely. In

the presence of complete data, where the most celebrated large quantile estimator is the

due to [Weissman(1978)], this subject was extensively studied in the literature as was the

case for the tail index estimation, see, for instance [de Haan and Ferreira(2006)]. In this

section, we propose

bq� := Xn�k:n

�
�

Fn (Xn�k:n)

��b1
;

as a Weissman-type estimator for q� under random right truncation. A similar estimator

is proposed by [Gardes and Stup�er(2015)], but instead of Fn (Xn�k:n) they consider an

arbitrary sequence of deterministic order asymptotically negligible with respect to �: Before

we state our result on the asymptotic normality of bq� ; we set dn := F (UF (n=k)) =�n with
UF regularly varying at in�nity with index ; and assume that, given n = m;

dm ! 0 and
p
km= log dm !1 as N !1: (4.10)
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4.4.1 Main results

Theoreme 4.4.1 Assume that both second-order conditions (4:4) and (4:5) hold with 1 <

2 and let k be an integer sequence satisfying (4:1) and (4:10): Then

p
k

log dn

�bq�
q�
� 1
�
D! N

�
�

1� �1
; �2
�
; as N !1;

provided that, given n = m;

p
kmA

�
F (m=km)! � and

p
kmA

�
G (m=km) = O (1) ; as N !1; (4.11)

where A�G (t) := AG

�
1=G (UF (t))

�
; t > 1:

Remark 4.4.1 In the case of untruncated data, we have F �F and dN = kN=(�NN)

which coincides with dN in Theorem 4.3.8 in [de Haan and Ferreira(2006)], page 138.

Thereby, the conditions (4:10) ; (4:11) and the limiting distribution above agree with those

in the same theorem.

4.4.2 Real data example

Case study: automobile brake pad lifetime

As a real data example, we analyze the lifetimes of car brake pads already considered by

[Lawless(2002)], page 69. We follow the same steps as those of [Gardes and Stup�er(2015)]

who transformed this sample, which originally is left-truncated, into a right-truncated one,

then checked the heavy-tail nature of its distribution. Since we are dealing with a dataset of

small size (n = 98) ; then our estimator should be preferred to that of [Gardes and Stup�er(2015)].

After selecting the optimal number of top statistics, via the numerical procedure of

[Reiss and Thomas(2007)], page 137, used in the previous section, we �nd 0:47 as an

estimate value for the tail index 1: The estimations of the tail indices 2 and  (using the

same notation as before) are represented in Figure 4.2 and b1 are represented in Figure
4.1. The corresponding extreme quantiles that we obtain for three di¤erent levels are

66



Chapter 4. Tail product-limit process for truncated data with application to EVI
estimation

quantile level transformed data original data
0:990 0:094 17604
0:995 0:130 14641
0:999 0:277 10559

Table 4.5: Extreme quantiles for car brake pad lifetimes

represented in Figure 4.3 and summarized in Table 4.5. For instance, we conclude that

the brake pad lifetime is estimated to be less than 17; 600 km for 1% of the cars while only

one out of a thousand brake pads lasts less than 10; 600 km.

Figure 4.1: Plot of b1 as functions of kn

4.5 Proofs

The proofs are postponed to this Section and some results that are instrumental to our

needs are gathered in �ve lemmas in the Appendix.
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Figure 4.2: Hill estimators of 2 (full line) and  (dashed line) as functions of kn

Figure 4.3: Estimated quantiles for the transformed data (left) and the original data
(right)
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Proof of Theorem 4.1.1

We �x x0 > 0; then decompose k�1=2Dn (x) ; for x � x0; as the sum of the following four

terms:

Mn1 (x) := x�1=1
Fn (xXn�k:n)� F (xXn�k:n)

F (xXn�k:n)
;

Mn2 (x) := �
F (xXn�k:n)

Fn (Xn�k:n)

Fn (Xn�k:n)� F (Xn�k:n)

F (Xn�k:n)
;

Mn3 (x) :=

�
F (xXn�k:n)

Fn (Xn�k:n)
� x�1=1

�
Fn (xXn�k:n)� F (xXn�k:n)

F (xXn�k:n)
;

and

Mn4 (x) :=
F (xXn�k:n)

F (Xn�k:n)
� x�1=1 :

Our goal is to provide an approximation to the tail product-limit process Dn (x) by means

of a Wiener process. To this end, we introduce the sequence of iid rv�s Ui := F (Xi) ;

i = 1; :::; n: Since df�s F and G are assumed to be continuous, then df F (of the X 0is) is

continuous as well. On the other hand, we have, conditionally on n = m; for 0 � s � 1;

P
�
F (Xi) � s

�
= s; i = 1; :::;m; which means that fUigi=1;m are uniformly distributed

on (0; 1) : Let us now de�ne the corresponding uniform tail empirical process by �n (s) :=
p
k (Un (s)� s) ; for 0 � s � 1; where Un (s) := k�1

Pn
i=1 1 (Ui < ks=n) : In view of

Proposition 3.1 of [Einmahl et al.(2006)], we show in Lemma 4.6.3, that there exists a

Wiener processW; such that for every 0 � � < 1=2;

sup
0<s�1

s�� j�n (s)�W (s)j p! 0; as N !1: (4.12)

In order to establish the result of the theorem, we will successively show that, under the

�rst-order of regular variation conditions, we have uniformly on x � x0; for =2 < � < 1=2

69



Chapter 4. Tail product-limit process for truncated data with application to EVI
estimation

and � > 0 su¢ ciently small

x1=1
p
kMn1 (x)

= x1=
�


1
W
�
x�1=

�
+



1 + 2

Z 1

0

t�=2�1W
�
x�1=t

�
dt

�
+ op

�
x(1��)=��

�
;

x1=1
p
kMn2 (x) = �

�


1
W (1) +



1 + 2

Z 1

0

t�=2�1W (t) dt

�
+ op

�
x��
�
;

and x1=1
p
kMn3 (x) = op

�
x�1=1+(1��)=��

�
; where x�� := max (x��; x�) : Moreover, if we

assume the second-order condition we will show that

x1=1
p
kMn4 (x) = (1 + op (1))

x�1=1 � 1
1�1

p
kA0 (n=k) :

Let ak := UF (n=k) be a random sequence tending to 1 in probability, as N !1: From

Lemma 4.6.4 we have Xn�k:n=ak
p! 1 as N !1; which, in virtue of the regular variation

of F; implies that F (xak) =F (xXn�k:n) = 1 + op (1) : Therefore

Mn1 (x) = (1 + op (1))M
�
n1 (x) ; (4.13)

where

M�n1 (x) := x�1=1
Fn (xXn�k:n)� F (xXn�k:n)

F (xak)
:

Now, observe that, in view of equation (1:4); we may write

F (x) = exp f�� (x)g and Fn (x) = exp f��n (x)g ;

where � (x) and its empirical counterpart �n (x) are de�ned, respectively, by

Z 1
x

dF (z) =C (z) and
Z 1
x

dFn (z) =Cn (z) :
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Note that Fn (xXn�k:n) ; F (xXn�k:n) and F (xak) tend to zero in probability, uniformly

on x � x0; it follows that �n (xXn�k:n) ; � (xXn�k:n) and � (xak) go to zero in probability

as well. Using the approximation 1� exp(�t) � t; as t # 0; we may write

x1=1M�n1 (x) = (1 + op (1))
�n (xXn�k:n)� � (xXn�k:n)

� (xak)
:

Next, we provide a Gaussian approximation to the expression

p
k
�n (xXn�k:n)� � (xXn�k:n)

� (xak)
;

then we deduce one to
p
kx1=1M�n1 (x) : For this, we decompose �n (xXn�k:n)�� (xXn�k:n)

into the sum of

Sn1 (x) := �
Z 1
xak

d
�
F n (z)� F (z)

�
C (z)

;

Sn2 (x) := �
Z 1
xXn�k:n

�
1

Cn (z)
� 1

C (z)

�
dF n (z) ;

and

Sn3 (x) := �
Z xak

xXn�k:n

d
�
F n (z)� F (z)

�
C (z)

:

For the �rst term, we use the fact that F n (z) = 0 for z � Xn:n; to write, after an

integration by parts and a change of variables, Sn1 (x) = S
(1)
n1 (x)� S

(2)
n1 (x) ; with

S
(1)
n1 (x) :=

F n (akx)� F (akx)

C (akx)
and S(2)n1 (x) :=

Z 1
x

F n (akz)� F (akz)

C2 (akz)
dC (akz) :

It is easy to verify that F n (xak)� F (xak) =

p
k

n
�n

�n
k
F (xak)

�
; it follows that

p
kS

(1)
n1 (x)

� (akx)
= hn (x)�n

�n
k
F (akx)

�
;
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where hn (x) :=
k=n

� (xak)C (akx)
: From Lemma 4:6:2 (iii) ; we have

hn (x) = (=1)x
1= + op

�
x1=��

�
; as N !1; (4.14)

uniformly on x � x0; it follows that

p
kS

(1)
n1 (x)

� (akx)
=
�
(=1)x

1= + op
�
x1=��

�	
�n

�n
k
F (akx)

�
:

On the other hand, for 0 < � < 1=2; the sequence of rv�s sup0<s�1 j�n (s)j =s� is stochasti-

cally bounded. This comes from the inequality

sup
0<s�1

s�� j�n (s)j � sup
0<s�1

s�� j�n (s)�W (s)j+ sup
0<s�1

s�� jW (s)j ;

with approximation (4:12) and the fact sup0<s�1 s
�� jW (s)j = Op (1), see, e.g., Lemma 3.2

in [Einmahl et al.(2006)]. Now, for � > 0 be su¢ ciently small, we write, by applying Pot-

ter�s inequalities to F , see, e.g., Proposition B.1.9, assertion 5 in [de Haan and Ferreira(2006)]

together with (1:1) ;
n

k
F (akx) � (1 + �)x�1=��; it follows that

�n

�n
k
F (akx)

�
= Op

�
x��=���

�
;

uniformly on x � x0: For notational simplicity and without loss of generality, we attribute

� to any constant times � and v�� to any linear combinations of v�c1� and v�c2�; for every

c1; c2 > 0: Therefore

p
kS

(1)
n1 (x)

� (akx)
=



1
x1=�n

�n
k
F (akx)

�
+ op

�
x(1��)=��

�
:

For S(2)n1 (x) ; let us write

p
kS

(2)
n1 (x)

� (akx)
= hn (x)

C (akx)

C (ak)

Z 1
x

C2 (ak)

C2 (akz)
�n

�n
k
F (akz)

�
d
C (akz)

C (ak)
:
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From Lemma 4:6:2 (i) ; the function C is regularly varying at in�nity with index (�1=2) ;

as G is, this implies that C (xak) =C (ak) = x�1=2 + op
�
x�1=2��

�
: Then by using (4:14) ;

we get

hn (x)
C (akx)

C (ak)
= (=1)x

1=1 + op
�
x1=1��

�
; as N !1: (4.15)

For convenience, we set
p
kS

(2)
n1 (x) =� (akx) = (1 + op (x

��)) Tn (x) ; where

Tn (x) :=


1
x1=1

Z 1
x

C2 (ak)

C2 (akz)
�n

�n
k
F (akz)

�
d
C (akz)

C (ak)
;

which we decompose in the sum of

In (x) :=


1
x1=1

Z 1
x

C2 (ak)

C2 (akz)
�n

�n
k
F (akz)

�
d
F (akz)

C (ak)
;

Jn (x) := �


1
x1=1

Z 1
x

�
C2 (ak)

C2 (akz)
� z2=2

�
�n

�n
k
F (akz)

�
d
G (akz)

C (ak)
;

and

Kn (x) :=


1
x1=1

Z 1
x

z2=2�n

�n
k
F (akz)

�
d
G (akz)

C (ak)
:

Recall that ak
p! 1; which implies that C (ak) =G (ak)

p! 1 and F (ak) =G (ak)
p! 0

as N ! 1 and note that all the inequalities below, corresponding to C and F ; occur

with probabilities close to 1 as N !1: By using, once again, Potter�s inequalities to C;

(regularly varying at in�nity with index �1=2); we write, for z � x

(1� �) z�1=2 min
�
z�; z��

�
� C (akz)

C (ak)
� (1 + �) z�1=2 max

�
z�; z��

�
: (4.16)

It is clear this implies that C2 (ak) =C2 (akz) � (1� �)�2 z2=2�2�: On the other hand, we

have sup0<s�1 j�n (s)j =s� = Op (1) and
n

k
F (akz) � (1 + �) z�1=��; then

In (x) = op (1) x
1=1

Z 1
x

z2=2�2�
�
z�1=��

��
d
F (akz)

F (ak)
:
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Integrating by parts, we readily get In (x) = op
�
x1=2��=��

�
= op

�
x(1��)=��

�
: Let us

now consider Jn (x) : From Proposition B.1.10 in [de Haan and Ferreira(2006)], we have��C (akz) =C (ak)� z�1=2
�� � �z�1=2��: Applying the mean value theorem, then combining

this inequality with (4:16) ; yield

���� C2 (ak)C2 (akz)
� z2=2

���� � �
2 (z�� + 1)

(1� �)3
z2=2��:

Similar arguments as the above lead to Jn (x) = op
�
x(1��)=��

�
: Now, we focus on Kn (x) :

Since C (ak) =G (ak)
p! 1; then

Kn (x) = (1 + op (1))


1
x1=1

Z 1
x

z2=2�n

�n
k
F (akz)

�
d
G (akz)

G (ak)
:

By using the change of variables z = G 
�
1� sG (ak)

�
=ak we get

Kn (x) = � (1 + op (1))


1
x1=1

Z G(akx)

G(ak)

0

 
G 

�
1� sG (ak)

�
ak

!2=2
�n (`n (s)) ds;

where `n (s) :=
n

k
F
�
G 

�
1� sG (ak)

��
: It is easy to check that

Kn (x) = � (1 + op (1))
3X
i=1

Kni (x) ;

where

Kn1 (x) :=


1
x

1
1

Z G(akx)

G(ak)

0

8<:
 
G 

�
1� sG (ak)

�
ak

!2=2
� s�2

9=;�n (`n (s)) ds;

Kn2 (x) :=


1
x1=1

Z G(akx)

G(ak)

x�1=2
s�2�n (`n (s)) ds;

and

Kn3 (x) :=


1
x1=1

Z x�1=2

0

s�2�n (`n (s)) ds:
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By similar arguments based on stochastic boundedness of sup0<s�1 j�n (s)j =s� and the

aforementioned Proposition B.1.10 in [de Haan and Ferreira(2006)] applied to the regu-

larly varying functions G and G (1� �) ; we show that Kni (x) = op
�
x(1��)=��

�
; i = 1; 2

and Kn3 (x) = Op
�
x(1��)=��

�
; therefore we omit the details. Up to this stage, we

have shown that Tn (x) = Op
�
x(1��)=��

�
: It follows that

p
kS

(2)
n1 (x) =� (akx) = Tn (x) +

op
�
x(1��)=��

�
; which, after gathering the components of Tn (x) ; is equal to



1
x1=1

Z x�1=2

0

s�2�n (`n (s)) ds+ op
�
x(1��)=��

�
:

Therefore

p
kSn1 (x)

� (akx)

=


1
x1=�n

�n
k
F (akx)

�
+


1
x1=1

Z x�1=2

0

s�2�n (`n (s)) ds+ op
�
x(1��)=��

�
:

Recall that 1 < 2 and =2 = 1= (1 + 2) ; then we may choose the constant � in such

a way that =2 < � < 1=2: Making use of weak approximation (4:12); we obtain

p
kSn1 (x)

� (akx)

=


1
x1=W

�n
k
F (akx)

�
+


1
x1=1

Z x�1=2

0

s�2W (`n (s)) ds+ op
�
x(1��)=��

�
:

Note that k=n = F
�
G 

�
1�G (ak)

��
; hence

`n (s) =
F
�
G 

�
1� sG (ak)

��
F
�
G 

�
1�G (ak)

�� :
Since s ! F � G (1� s) is regularly varying at in�nity with index 2=; then, from

Proposition B.1.10 in [de Haan and Ferreira(2006)], we have

!n (s) :=
��`n (s)� s2=

�� � �s2=��; (4.17)
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with high probability for large N: Recall that x0 > 0 is �xed, then

sup
x�x0

sup
0<s�x�1=2

!n (s)
p! 0; as N !1:

On the other hand, by using Levy�s modulus of continuity of the Wiener process, see, e.g.,

Theorem 1.1.1 in [Csörg½o and Révész, 1981], we have with probability one

��W (`n (s))�W
�
s2=

��� � 2p!n (s) log (1=!n (s));

uniformly on s � x�1=2 : By using the fact that, log u < �u�� as u # 0; together with

inequality (4:17); we get
��W (`n (s))�W

�
s2=

��� � 2�s(2=)(1��)=2; almost surely. Follow-
ing our convention, we may write that (2= � �) (1� �=2) � 2=� �: Since 1 < 2 then

2= (2) > 1 and after elementary calculation, we show that uniformly on x � x0



1
x1=1

Z x�1=2

0

s�2W (`n (s)) ds =


1
x1=1

Z x�1=2

0

s�2W
�
s2=

�
ds+ op

�
x1=(2)��

�
:

By similar arguments, we get



1
x1=W

�n
k
F (akx)

�
=



1
x1=W

�
x�1=

�
+ op

�
x1=(2)��

�
:

It is obvious that op
�
x1=(2)��

�
+ op

�
x(1��)=��

�
= op

�
x(1��)=��

�
; it follows that

p
kSn1 (x)

� (akx)
=



1
x1=W

�
x�1=

�
+


1
x1=1

Z x�1=2

0

s�2W
�
s2=

�
ds+ op

�
x(1��)=��

�
:

After a change of variables, this may be rewritten into

p
kSn1 (x)

� (akx)
(4.18)

=


1
x1=W

�
x�1=

�
+



1 + 2
x1=

Z 1

0

t�=2�1W
�
x�1=t

�
dt+ op

�
x(1��)=��

�
:
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Now, we consider the second term Sn2 (x) : We have F n (z) = 0; for z � Xn:n; thus

Sn2 (x) =

Z Xn:n

xXn�k:n

Cn (z)� C (z)

Cn (z)C (z)
dF n (z) :

Therefore jSn2 (x)j � �n
R1
xXn�k:n

jCn (z)� C (z)j
C2 (z)

dFn (z) ; where �n := supX1:n�z�Xn:n

�
C (z)

Cn (z)

�
:

Note, that from, see, e.g., [Stute and Wang(2008)] , given n = m; the sequence �m is sto-

chastically bounded, then by using the total probability formula, we show easily that �n

is also stochastically bounded. By recalling that we have C = G� F and Cn = Gn � F n;

with Gn denoting the empirical df of G; we write jSn2 (x)j � �n (Tn1 (x) + Tn2 (x)) ; where

Tn1 (x) :=

Z 1
xXn�k:n

��F n (z)� F (z)
��

C2 (z)
dFn (z)

and

Tn2 (x) :=

Z 1
xXn�k:n

��Gn (z)�G (z)
��

C2 (z)
dFn (z) :

It is easy to verify that, by a change of variables, we have

p
kTn1 (x)

� (akx)
= hn (x)

k=n

C (ak)

C (akx)

C (ak)

� C2 (ak)

C2 (xXn�k:n)

Z 1
1

����n �n
k
F (xXn�k:nz)

����
C2 (xXn�k:nz) =C2 (xXn�k:n)

d
Fn (xXn�k:nz)

F (ak)
:

Recall that, uniformly on x � x0; we have C (ak) =C (xXn�k:n) = Op
�
x1=2��

�
: Moreover,

we use (4:16) and (4:15) to write

p
kTn1 (x)

� (akx)
= Op

�
k=n

C (ak)

�
x1=��

�
Z 1
1

z2=2
����n �n

k
F (xXn�k:nz)

���� dFn (xXn�k:nz)

F (ak)
:
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On the other hand, by using the stochastic boundedness of sup0<s�1 j�n (s)j =s� we get

p
kTn1 (x)

� (akx)
=

k=n

C (ak)
Op
�
x(1��)=��

� Z 1
1

z2=2��=��d
F n (xXn�k:nz)

F (ak)
;

where the integral may be split as follows

Z 1
1

z2=2��=��d
F n (xXn�k:nz)

F (ak)
= Pn (x) +Qn (x) ;

where

Pn (x) :=

Z 1
1

z2=2��=��d

�
F n (xXn�k:nz)� F (xXn�k:nz)

F (ak)

�
;

and

Qn (x) :=

Z 1
1

z2=2��=��d
F (xXn�k:nz)

F (ak)
:

It is clear that

Pn (x) = k�1=2
Z 1
1

z2=2��=��d�n

�n
k
F (xXn�k:nz)

�
:

By similar arguments as those used above, we show that, uniformly on x � x0; we have

Pn (x) = op
�
x��=��

�
and Qn (x) = Op

�
x�1=��

�
; therefore

p
kTn1 (x)

� (akx)
=

k=n

C (ak)
Op
�
x��=��

�
:

Next, let Vi := G (Yi) ; i = 1; :::; n; and de�ne the corresponding tail empirical process

�n (s) :=
p
k (Vn (s)� s) ; for 0 � s � 1; where Vn (s) := k�1

Pn
i=1 1 (Vi < ks=n) : Like

for �n (s) ; we also have sup0<s�1 j�n (s)j =s� = Op (1) ; therefore by similar arguments as

those used for Tn1 (x) ; with the facts that G (t) � C (t) as t ! 1 and 2 > ; we show

that p
kTn2 (x)

� (akx)
=

k=n

C1�� (ak)
Op
�
x(1��)=��

�
:
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From Lemma 4:6:2 (ii), we have that both
n

k
C (ak) and

n

k
C1�� (ak) tend to in�nity in

probability, it follows that

p
kTn1 (x)

� (akx)
= op

�
x��=��

�
and

p
kTn2 (x)

� (akx)
= op

�
x(1��)=��

�
:

Since op
�
x��=��

�
+ op

�
x(1��)=��

�
= op

�
x(1��)=��

�
; then

p
kSn2 (x)

� (akx)
= op

�
x(1��)=��

�
: (4.19)

Let us now focus on the third term Sn3; which, by integration by parts, equals the sum of

S
(1)
n3 (x) := �

Z xak

xXn�k:n

F n (z)� F (z)

C2 (z)
dC (z) ;

and

S
(2)
n3 (x) = �

F n (akx)� F (akx)

C (akx)
+
F n (xXn�k:n)� F (xXn�k:n)

C (xXn�k:n)
:

By using the change of variables z = txak we get

p
kS

(1)
n3 (x)

� (akx)
= �hn (x)

Z 1

Xn�k:n=ak

�n

�n
k
F (akxz)

�
(C (akxz) =C (akx))

2d
C (akxz)

C (akx)
;

and

p
kS

(2)
n3 (x)

� (akx)
= �hn (x)

�
�n

�n
k
F (akx)

�
� C (akx)

C (xXn�k:n)
�n

�n
k
F (xXn�k:n)

��
:

Routine manipulations, including Proposition B.1.10 in [de Haan and Ferreira(2006)] and

the stochastic boundedness of sup0<s�1 j�n (s)j =s�; yield

p
kS

(1)
n3 (x)

� (akx)
= op

�
x(1��)=��

�
and

p
kS

(2)
n3 (x)

� (akx)
= op

�
x(1��)=��

�
:
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It follows that
p
kSn3 (x) =� (akx) = op

�
x(1��)=��

�
: (4.20)

By gathering results (4:18) ; (4:19) and (4:20) ; we obtain

p
k
�n (xXn�k:n)� � (xXn�k:n)

� (akx)
(4.21)

=


1
x1=W

�
x�1=

�
+



1 + 2
x1=

Z 1

0

t�=2�1W
�
x�1=t

�
dt+ op

�
x(1��)=��

�
;

which yields that

x1=1
p
kM�n1 (x)

= x1=
�


1
W
�
x�1=

�
+



1 + 2

Z 1

0

t�=2�1W
�
x�1=t

�
dt

�
+ op

�
x(1��)=��

�
:

We show that the expectation of the absolute value of the �rst term in the right-hand side

of the previous equation equals Op
�
x1=(2)

�
: Since we already have 1= (2) < (1� �) =;

then x1=1
p
kM�n1 (x) = Op

�
x(1��)=��

�
; which leads to

x1=1
p
kMn1 (x) = x1=1

p
kM�n1 (x) + op

�
x(1��)=��

�
:

Recall that � > 0 is chosen su¢ ciently small, then for any 0 < � < 1=2; we have

x1=1
p
kMn1 (x)

= x1=
�


1
W
�
x�1=

�
+



1 + 2

Z 1

0

t�=2�1W
�
x�1=t

�
dt

�
+ op (1) x

(1��)=��:

Before we treat the term Mn2 (x) ; it is worth mentioning that by letting x = 1 in the

previous approximation, we infer that

Fn (Xn�k:n)

F (Xn�k:n)
� 1 = Op

�
k�1=2

�
= op (1) : (4.22)
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This, with the regular variation of F; implies that

F (xXn�k:n)

Fn (Xn�k:n)
=
�
1 +Op

�
x��
��
x�1=1 : (4.23)

To represent
p
kMn2 (x) ; we apply results (4:21) (for x = 1) and (4:23) to get

x1=1
p
kMn2 (x) = �

�


1
W (1) +



1 + 2

Z 1

0

t�=2�1W (t) dt

�
+ op

�
x��
�
:

For the third termMn3 (x) ; we write

x1=1
p
kMn3 (x) =

�
F (xXn�k:n)

Fn (Xn�k:n)
� x�1=1

�
x1=1

p
kMn1 (x) ;

which, by equation (4:23) ; is equal to op (1) x�1=1+(1��)=��: Let �0 be a real number such

that =2 < �0 < � < 1=2; then �0 � � < 0 and for � > 0 su¢ ciently small, we have

(�0 � �) = + � < 0: Since x � x0 > 0; then op (1) x(�0��)=�� = op (1) and thus

x1=1�(1��0)=
np

k (Mn1 (x) +Mn2 (x) +Mn3 (x))� � (x;W)
o
= op (1) ; (4.24)

where � (x;W) is the Gaussian process given in Theorem 4.1.1. For the fourth term

Mn4 (x) ; it su¢ ces to use the uniform inequality, corresponding to the second-order con-

dition (4:4) ; given in assertion (2.3.23) of Theorem 2.3.9 in [de Haan and Ferreira(2006)],

to get
p
kMn4 (x) = (1 + op (1))x

�1=1 x
�1=1 � 1
1�1

p
kA0

�
1=F (Xn�k:n)

�
:

Then Proposition B.1.10 in [de Haan and Ferreira(2006)] and the facts that A0 (t) is reg-

ularly varying at in�nity with index �1=1 and Xn�k:n=ak
p! 1; imply that

A0

�
1=F (Xn�k:n)

�
A0

�
1=F (ak)

� p! 1; as N !1:
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By assumption, given n = m; we have
p
kmA0 (m=km) = O (1) which implies that

p
kA0 (n=k) = OP (1) and thus

p
kA0

�
1=F (ak)

�
= OP (1) : On the other hand, we have

op (1) x
�1=1 x

�1=1 � 1
1�1

= op
�
x�1=1+(1��)=��

�
:

It follows that

p
kMn4 (x) = x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k) + op

�
x�1=1+(1��)=��

�
:

Finally, by letting � # 0 in (4:24) ; we end up with

sup
x�x0

x1=1�(1��0)=
����Dn (x)� � (x;W)� x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k)

���� p! 0;

as N !1; for every x0 > 0 and =2 < �0 < � < 1=2: Letting �0 := 1=2� � and recalling

that 1=1 = 1= � 1=2 yields that 0 < � < 1=2� =2 and achieves the proof. �

Proof of Theorem 4.2.1

We start by proving the consistency of b1 that we write as
b1 = Z 1

1

x�1
Fn (xXn�k:n)

Fn (Xn�k:n)
dx:

It is readily checked that this may be decomposed into the sum of

I1n :=

Z 1
1

x�1
F (xXn�k:n)

F (Xn�k:n)
dx and I2n :=

Z 1
1

x�1
3X
i=1

Mni (x) dx:

First, we show that I1n
p! 1 as N !1: Indeed, let N be su¢ ciently large, hence n is also

su¢ ciently large (in probability), then given n = m ! 1; we have z := Xm�km:m
p! 1

(because F is a Pareto-type distribution). Then by using the �rst inequality in (4:29) ; we

write that: for all large m and any 0 < � < 1; there exists m0 = m0 (�) ; such that for all
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m > m0 and x � 1; ����F (xXm�km:m)

F (Xm�km:m)
� x�1=1

���� < �x�1=1��;

with probability greater than 1 � �: Multiplying by x�1 then integrating, on (1;1) ; the

two sides of the previous inequality yield that jI1m � 1j <
�

1=1 � �
; with probability

greater than 1� �; where I1m :=
R1
1
x�1

F (xXm�km:m)

F (Xm�km:m)
dx: By using the total probabilities

formula and similar arguments as those used in Lemma 4.6.3 and Lemma 4.6.4, we get

P

�
jI1n � 1j >

�

1=1 � �

�
< �; meaning that I1n

p! 1 as N ! 1: Now, it remains to

show that I2n
p! 0: Observe that, from (4:24) ; we have

I2n =
1p
k

Z 1
1

x�1� (x;W) dx+
1p
k

Z 1
1

x�1op
�
x(1��)=�1=1

�
dx:

On the one hand, since =2 < �; the second integral above is �nite and therefore the

second term of I2n is negligible in probability. On the other hand, we have

Z 1
1

x�1� (x;W) dx =


1

Z 1
1

x1=2�1
�
W
�
x�1=

�
� x�1=W (1)

	
dx+



1 + 2

�
Z 1
1

x1=2�1
�Z 1

0

s�=2�1
�
W
�
x�1=s

�
� x�1=W (s)

	
ds

�
dx;

which, after some elementary but tedious manipulations of integral calculus (change of

variables and integration by parts), becomes

Z 1
1

x�1� (x;W) dx = �W (1) (4.25)

+


1 + 2

Z 1

0

(2 � 1 �  log s) s�=2�1W (s) ds:

Since E jW (s)j � s1=2 and 1 < 2; then
R1
1
x�1� (x;W) dx is stochastically bounded and

therefore the �rst term of I2n is negligible in probability as well. Consequently, we have

I2n = oP (1) when N !1; as sought. As for the Gaussian representation result, it is easy
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to verify that
p
k (b1 � 1) =

R1
1
x�1Dn (x) dx: Then, applying Theorem 4.1.1 yields that

p
k (b1 � 1) =

p
kA0 (n=k)

1� �1
+

Z 1
1

x�1� (x;W) dx+ oP (1) ;

and �nally, using result (4:25) completes the proof. �

Proof of Corollary 4.2.1

We set
p
k (b1 � 1) = �+

p
kA0 (n=k)

1� �1
+ oP (1) ;

where � := a�1 + b�2 ��3; with a := (2 � 1) = (1 + 2) ; b := �= (1 + 2) and

�1 :=

Z 1

0

s��2W (s) ds; �2 :=

Z 1

0

s��2W (s) log sds; �3 :=W (1) ;

with � := 1� =2 > 0: It is clear that the asymptotic mean is equal

p
kA0 (n=k)

1� �1

p! �

1� �1
; as N !1:

For the asymptotic variance we �nd, after elementary but tedious computations, the fol-

lowing covariances:

E
�
�2
1

�
=

2

� (2�� 1) ; E
�
�2
2

�
=

2 (4�� 1)
�2 (2�� 1)3

; E
�
�2
3

�
= 1;

E [�1�2] =
1� 4�

�2 (2�� 1)2
; E [�1�3] =

1

�
; E [�2�3] = �

1

�2
:

It follows that E [�2] =
2a2

� (2�� 1) +
2b2 (4�� 1)
�2 (2�� 1)3

+
2ab (1� 4�)
�2 (2�� 1)2

+
2b

�2
� 2a

�
+1: Replacing

a; b and � by their values achieves the proof. �
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Proof of Theorem 4.4.1

Recall that the high quantile of level 1�� and its Weissman-type estimator are respectively

de�ned by

q� := F
 (1� �) and bq� := Xn�k:n

�
�

Fn (Xn�k:n)

��b1
:

It is readily checked that

bq�
q�
=
Xn�k:n

ak

�
F (ak)

Fn (Xn�k:n)

��b1 (F �1� F (ak)�
F (1� �)

�
�

F (ak)

��b1)
;

and its logarithm is equal to the sum of

Tn1 := log
Xn�k:n

ak
; Tn2 := log

�
F (ak)

Fn (Xn�k:n)

��b1

and

Tn3 := log

(
F 

�
1� F (ak)

�
F (1� �)

�
�

F (ak)

��b1)
:

We will show that
p
kTni= log dn

p! 0; i = 1; 2; and
p
kTn3= log dn is asymptotically

Gaussian with mean �= (1� �1) and variance �2; were (�; �1; �2) are those given in Corol-

lary 4:2:1: From Lemma 4:6:4; we have Xn�k:n=ak
p! 1; then by using the approximation

log(1 + x) � x; as x # 0; we write

Tn1 = log
Xn�k:n

ak
= (1 + op (1))

�
Xn�k:n

ak
� 1
�
; as N !1:

Next we show that
p
k (Xn�k:n=ak � 1) is asymptotically stochastically bounded. Indeed,

let us write

Xn�k:n

ak
� 1 =

�
Xn�k:n

ak
�
�
1=Uk+1:n
n=k

��
+

��
1=Uk+1:n
n=k

�
� 1
�
=: Hn1 +Hn2;

85



Chapter 4. Tail product-limit process for truncated data with application to EVI
estimation

where Uk+1:n = F (Xn�k:n) is the (k + 1)-th order statistic pertaining to the (0; 1)-uniform

sample U1; :::; Un: Recall that F (ak) = k=n and rewrite Hn1 into

Hn1 =

 �
Xn�k:n

ak

��1=!�
�
�
F (Xn�k:n)

F (ak)

��
:

By using the mean value theorem, together with the fact that Xn�k:n=ak
p! 1 and the

regular variation of F ; we get

Hn1 =  (1 + op (1))

 
F (Xn�k:n)

F (ak)
�
�
Xn�k:n

ak

��1=!
; as N !1:

By applying Lemma 4.6.5 with similar arguments as those used in the proof of Lemma

4.6.4, we get Hn1 = Op (jA�F (n=k)j+ jA�G (n=k)j) ; as N ! 1: On the other hand, by

assumptions, we infer that
p
kA�F (n=k)

p! � and
p
kA�G (n=k) = Op (1) as N ! 1: It

follows, by analogous manipulations as those of the proof of Lemma 4.6.3, that
p
kHn1 =

OP (1) ; as N !1: Let us now focus on the term Hn2: Note that in the proof of Lemma

4.6.4, we showed that
n

k
Uk+1:n

p! 1; as N ! 1; then by using the mean value theorem,

we get

Hn2 = (1 + oP (1)) 
�
1� n

k
Uk+1:n

�
; as N !1:

Observe that
p
k
�
1� n

k
Uk+1:n

�
= �n

�n
k
Uk+1:n

�
; then by using approximation (4:12) ;

we have that
p
k
�
1� n

k
Uk+1:n

�
=W

�n
k
Uk+1:n

�
+ oP (1) :

Once again, by making use of Levy�s modulus of continuity of the Wiener process with

the fact that
n

k
Uk+1:n

p! 1; as N ! 1; we readily show, by similar arguments as those

used for inequality (4:17); that

p
k
�
1� n

k
Uk+1:n

�
=W (1) + oP (1) :
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It follows that
p
k
�
1� n

k
Uk+1:n

�
is an asymptotically centred Gaussian rv with variance 1;

hence
p
kHn2 is asymptotically stochastically bounded. By assumptions, we have dn

p! 0;

that is log dn
p! �1; as N !1; therefore

p
kTn1= log dn

p! 0; as N !1: For the term

Tn2; we write

Tn2 = �b1 log� F (ak)

Fn (Xn�k:n)

�
:

In view of Lemma 4.6.4 and the regular variation of F; we infer that F (ak) =F (Xn�k:n)

tends to 1 in probability, asN !1: Then by using assertion (4:22) ; we getF (ak) =Fn (Xn�k:n)
p!

1; as N ! 1 as well. Now, we (once again) use the approximation log(1 + x) � x; as

x! 0; to write

p
kTn2 = �b1 (1 + op (1))pk� F (ak)

Fn (Xn�k:n)
� 1
�
;

which, by assertion (4:22) ; is asymptotically stochastically bounded. Consequently, we

have
p
kTn2= log dn

p! 0; as N !1: Finally, the third term Tn3 may be rewritten into

Tn3 = log

(
F 

�
1� F (ak)

�
F (1� �)

�
�

F (ak)

��1 � �

F (ak)

��b1+1)
;

which equals

(�b1 + 1) log
�
�=F (ak)

�
+ log

(
F 

�
1� F (ak)

�
F (1� �)

�
�

F (ak)

��1)
=: Kn1 +Kn2:

By substituting 1=dn for �=F (ak) ; we get
p
kKn1= log dn =

p
k (b1 � 1) which, by Corol-

lary 4:2:1; is asymptotically Gaussian with mean �= (1� �1) and variance �2: It remains

to show that
p
kKn2= log dn

p! 0; as N !1: Indeed, it is easy to check that Kn2 may be

rewritten into

Kn2 = �
(
log

UF (1=�)
UF
�
1=F (ak)

� � 1 log

�
1=�

1=F (ak)

�)
;
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Note that the second-order regular variation condition (4:4) is equivalent to

lim
t!1

log
UF (tx)
UF (t)

� 1 log x

AF (t)
=
x�1 � 1
�1

; for x > 0:

From the inequality given in Theorem B.2.18 in[de Haan and Ferreira(2006)] page 383, the

previous limit implies that: for a possibly di¤erent function eAF; with eAF (t) � AF (t) ; as

t!1; and for each � > 0; there exists a t0 such that for t > t0 and x > 1 we have��������
log

UF (tx)
UF (t)

� 1 log xeAF (t)
� x�1 � 1

�1

�������� � �x�1+�:

We apply the inequality above for x = xn = dn and t = tn = 1=F (ak) and we use the

fact that �1 < 0; to readily show that Kn2 = Op

�eAF (n=k)
�
: Since, by assumption, we

have
p
kAF (n=k)

p! � < 1; then
p
kKn2 = Op (1) and therefore

p
kKn2= log dn

p! 0; as

N ! 1: Finally, we end up with
�p

k= log dn

�
log (bq�=q�) D! N

�
�

1��1 ; �
2
�
; as N ! 1;

and we achieve the proof by noting that log (bq�=q�) = (1 + op (1)) (bq�=q� � 1) :
4.6 Appendix

The following lemmas are instrumental for our needs.

Lemma 4.6.1 Assume that both second-order conditions (4:4) and (4:5) hold. Then, for

all large x; there exist constants s1; s2 > 0; such that

F (x) = (1 + o (1)) s1x
�1= and G (x) = (1 + o (1)) s2x�1=2 :
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Proof. We only show the �rst statement since the second one follows by similar arguments.

To this end, we rewrite the �rst equation of (1:2) into

F (x) = �p�1G (x)F (x)
Z 1
1

G (xz)

G (x)
d
F (xz)

F (x)
:

By applying Proposition B.1.10 in [de Haan and Ferreira(2006)] to both F and G; it is

easy to check that Z 1
1

G (xz)

G (x)
d
F (xz)

F (x)
= � (1 + o (1)) =1:

On the other hand, since F and G satisfy the aforementioned second-order conditions,

then in view of Lemma 3 in [Hua and Joe(2011)], there exist two constants r1; r2 > 0; such

that F (x) = (1 + o (1)) r1x
�1=1 and G (x) = (1 + o (1)) r2x

�1=2 ; as x ! 1: Therefore

F (x) = (1 + o (1)) s1x
�1= with s1 = p�1r1r2=1:

Lemma 4.6.2 Under the assumptions of Lemma 4:6:1; we have

(i) lim
t!1

C (t) =G (t) = 1:

(ii) lim
t!1

t1=�C (UF (t)) =1; for each 0 < � � 1:

(iii) limt!1 supx�x0 x
�1=��

��(t� (xUF (t))C (xUF (t)))�1 � (=1)x1=�� = 0;
for x0 > 0 and any su¢ ciently small � > 0:

Proof. For assertion (i) ; write C (t) =G (t) = 1 � F (t) =G (t) and observe that from

Lemma 4:6:1 we have F (t) =G (t) = (1 + o (1)) (d1=d2) t
1=2�1=: Since 1=2 � 1= < 0;

then F (t) =G (t) = o (1) ; that is C (t) =G (t) = 1+ o (1) as sought. For result (ii) ; Lemma

4:6:1 implies that UF (t) = (1 + o (1)) (d1t)
 (as t ! 1); it follows that C (UF (t)) =

(1 + o (1)) d2 (d1t)
�=2 : Since 0 < =2 < 1; then for every 0 < � � 1; t1=�C (UF (t))!1

as t!1: To prove (iii) ; we �rst show that

t� (xUF (t))C (xUF (t))� (1=)x�1= = o
�
x�1=��

�
: (4.26)
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Recalling that � (x) =
R1
x
dF (z) =C (z) and F (UF (t)) = 1=t; we write

t� (xUF (t))C (xUF (t)) = �
C (xUF (t))
C (UF (t))

Z 1
x

C (UF (t))
C (zUF (t))

dF (zUF (t))
F (UF (t))

: (4.27)

Observe now that t� (xUF (t))C (xUF (t))�
1

x�1= may be decomposed into the sum of

L1 (s; t) := �
�
C (xUF (t))
C (UF (t))

� x�1=2
�Z 1

x

C (UF (t))
C (zUF (t))

dF (zUF (t))
F (UF (t))

;

L2 (s; t) := �x�1=2
Z 1
x

�
C (UF (t))
C (zUF (t))

� z1=2
�
dF (zUF (t))
F (UF (t))

and

L3 (s; t) := �x�1=2
Z 1
x

z1=2d

�
F (zUF (t))
F (UF (t))

� z�1=
�
:

By applying Proposition B.1.10 in [de Haan and Ferreira(2006)] to both C and F with

integrations by parts, it is easy to verify that

��t� (xUF (t))C (xUF (t))� (1=)x�1=�� � �x�1=��:

Observe now that t� (xUF (t))C (xUF (t))� (=1)x1= is equal to

�
(t� (xUF (t))C (xUF (t)))�1

��1 � �(1=)x�1=��1 :
By using the mean value theorem, the latter equals

(1=)x
�1= � t� (xUF (t))C (xUF (t))

( (x; t))2
;

where  (x; t) is between (1=)x�1= and t� (xUF (t))C (xUF (t)) : In view of the represen-

tation (4:27) and Potter�s inequalities, applied to C and F ; with an integration by parts, we

get t� (xUF (t))C (xUF (t)) � (1� �)x�1=��: It follows that ( (x; t))2 � (1� �)2 x�2=�2�

and therefore
��t� (xUF (t))C (xUF (t))� (=1)x1=�� � (1� �)�2 �x1=��; as sought.
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Lemma 4.6.3 On the probability space (
;A;P) ; there exists a standard Wiener process

fW (s) ; s � 0g ; such that for any 0 < � < 1=2;

sup
0<s�1

s�� j�n (s)�W (s)j p! 0; as N !1:

Proof. Let �; � > 0 be arbitrary and N an integer su¢ ciently large. We will show that

P

�
sup
0<s�1

s�� j�n (s)�W (s)j > �

�
< �:

Indeed, from (1:1); we infer that n = nN
p!1 as N !1; this means that for any �xed

integer M > 0;

P fn �Mg < �= (2M) ; for all large N: (4.28)

On the other hand, from Proposition 3.1 of [Einmahl et al.(2006)], there exists a standard

Wiener process fW (s) ; s � 0g de�ned on (
;A;P) ; such that for given n = m ! 1;

we have Zm := sup0<s�1 s
�� j�m (s)�W (s)j p! 0; for any 0 < � < 1=2: In other words,

there exists N� such that we have P fZm > �g < �=2; for any m > N�: By the total

probabilities formula we have P fZn > �g =
PN

m=1P fZn > �; n = mg : From Lemma 1 in

[Gardes and Stup�er(2015)], we infer that for arbitrary Borel subsets (Ai)i�1 of [x0;1[ ;

we have

P fX1 2 A1; :::; Xn 2 An; n = mg = P fn = mg
mY
i=1

P fXi 2 Aig :

Since Zn is a statistic based on the sample (X1; :::; Xn) ; this yields that

P fZn > �; n = mg = P fZm > �gP fn = mg

and thereforeP fZn > �gmay be written intoP fZn > �g =
PN

m=1P fZm > �gP fn = mg :

Let us writeP fZn > �g =
PN�

m=1P fZm > �gP fn = mg+
PN

m=N�+1
P fZm > �gP fn = mg :

Observe that by takingM = N� in (4:28); we have P fn = mg < �=(2N�); for anym � N�;

it follows that
PN�

m=1P fZm > �gP fn = mg < �=2; because P fZm > �g is less to 1: On
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the other hand, for any m > N�; we have P fZm > �g < �=2; therefore

NX
m=N�+1

P fZm > �gP fn = mg �
1X

m=N�+1

P fZm > �gP fn = mg

� (�=2)
1X

m=N�+1

P fn = mg :

Since
P1

m=1P fn = mg = 1; then
P1

m=N�+1
P fZm > �gP fn = mg < �=2: Hence we

showed that, for any N > N�; we have P fZn > �g < �; as sought.

Lemma 4.6.4 Let k be an integer sequence satisfying (4:1); then

Xn�k:n=UF (n=k)
p! 1; as N !1:

Proof. Given n = m; the rv Ukm+1:m is the (km + 1)-th order statistic pertaining to

the sequence of iid (0; 1)-uniform rv�s Ui = F (Xi) ; i = 1; :::;m: It is well-known that

Uj:m
D
= Sj=Sm+1; j = 1; :::;m; where Sj is the j-partial sum of iid standard exponential

rv�s, see, e.g., Proposition 1 in page 335 of [Shorak and Wellner(1986)]. Hence Ukm+1:m
D
=

Skm+1=Sm+1 and by using the law of total probabilities, we easily show that Uk+1:n
D
=

Sk+1=Sn+1 as well. Observe that

n

k
Uk+1:n

D
=

n

n+ 1

k + 1

k

�
Sk+1
k + 1

��
Sn+1
n+ 1

��1
:

Then by using the law of large numbers, we get
n

k
Uk+1:n

p! 1; as N !1: To achieve the

proof, it su¢ ces to write Xn�k:n=UF (n=k) = UF (1=Uk+1:n) =UF (n=k) and apply Proposi-

tion B.1.10 in [de Haan and Ferreira(2006)] to the regularly varying function UF ; therefore

the details are omitted.

Lemma 4.6.5 Under the assumptions of Lemma 4:6:1; we have for any x0 > 0

sup
x�x0

����F (ux)F (u)
� x�1=

���� = O
���AF

�
1=F (u)

���+ ��AG

�
1=G (u)

���	 ; as u!1:
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Proof. Recall (1:2) and observe that, for x � x0 > 0; we have

F (x) = �p�1F (x)G (x)
Z 1
1

G (xt)

G (x)
d
F (xt)

F (x)
;

which implies that

F (ux)

F (u)
=
F (ux)G (ux)

F (u)G (u)

R1
1

G (uxt)

G (ux)
d
F (uxt)

F (ux)R1
1

G (ut)

G (u)
d
F (ut)

F (u)

:

Let us write F (ux) =F (u)� x�1= into the sum of

L1 (x;u) :=

8>>><>>>:
R1
1

G (uxt)

G (ux)
d
F (uxt)

F (ux)R1
1

G (ut)

G (u)
d
F (ut)

F (u)

9>>>=>>>;
�
F (ux)G (ux)

F (u)G (u)
� x�1=

�

and

L2 (x;u) := x�1=

8>>><>>>:
R1
1

G (uxt)

G (ux)
d
F (uxt)

F (ux)R1
1

G (ut)

G (u)
d
F (ut)

F (u)

� 1

9>>>=>>>; :

Note that, the �rst factor in L1 (x;u) tends to 1 as u!1; uniformly on x � x0: To prove

this, we use Proposition B.1.10 in [de Haan and Ferreira(2006)], page 369, to the regularly

varying functions F and G : for any 0 < � < 1; there exists y0 = y0 (�) ; such that for all

yz � y0 we have

��F (yz) =F (y)� z�1=1
�� < �z�1=1�� and

��G (yz) =G (y)� z�1=2
�� < �z�1=2��: (4.29)

To achieve the proof, it su¢ ces to apply successively the previous inequalities and the

uniform inequalities to the second-order regularly varying functions F and G; which say

that for possibly di¤erent functions eAF and eAG; with eAF (t) � AF (t) and eAG (t) �

AG (t) ; as t ! 1; and for each 0 < � < 1; there exists y0 = y0 (�) ; such that for all
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yz � y0 we have �����F (yz) =F (y)� z�1=1eAF

�
1=F (y)

� � z�1=1
z�1=1 � 1
�1=1

����� � �z�1=1��;�����G (yz) =G (y)� z�1=2eAG

�
1=G (y)

� � z�1=2
z�2=2 � 1
�2=2

����� � �z�1=2��:

see, e.g., Proposition 4 and Remark 1 in [Hua and Joe(2011)]. The rest of the proof

consists in elementary calculations, therefore we omit the details.
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Chapter 5

Kernel estimation of the tail index

for right-truncated data

In this chapter, we de�ne a kernel estimator for the tail index of a Pareto-typedistribution under random right-truncation and establish its asymptotic normal-

ity. A simulation study shows that, compared to the estimators recently proposed by

[Gardes and Stup�er(2015)] and [Benchaira et al.(2016)], this newly introduced estimator

behaves better, in terms of bias and mean squared error, for small samples.

5.1 Tail index estimation

In this section, we derive a kernel version of b1 in the spirit of what is called kernel
estimator of [Csörgö et al.(1985)]. Thereby, for a suitable choice of the kernel function,

we obtain an improved estimator of 1 in terms of bias and mean squared error. To this

end, let K : R! R+ be a �xed function, that will be called kernel, satisfying:

[C1] K is non increasing and right-continuous on R;

[C2] K(s) = 0 for s =2 [0; 1) and K(s) � 0 for s 2 [0; 1) ;

[C3]
R
RK(s)ds = 1;

[C4] K and its �rst and second Lebesgue derivatives K0 and K00 are bounded on R:
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As examples of such functions see, e.g., [Groeneboom et al.(2003)], we have the indicator

kernel K = 1[0;1) and the biweight and triweight kernels respectively de�ned by

K2(s) :=
15

8

�
1� s2

�2
1f0�s<1g; K3(s) :=

35

16

�
1� s2

�3
1f0�s<1g: (5.1)

For an overview of kernel estimation of the extreme value index with complete data, one

refers to, for instance, [Hüsler et al.(2006)] and [?]. By using Potter�s inequalities, see e.g.

Proposition B.1.10 in [de Haan and Ferreira(2006)], to the regularly varying function F

together with assumptions [C1]-[C3] ; we may readily show that

lim
u!1

Z 1
u

x�1
F (x)

F (u)
K
�
F (x)

F (u)

�
dx = 1

Z 1
0

K(s)ds = 1: (5.2)

An integration by parts yields

lim
u!1

1

F (u)

Z 1
u

gK

�
F (x)

F (u)

�
log

x

u
dF (x) = 1; (5.3)

where gK denotes the Lebesgue derivative of the function s ! 	K (s) := sK (s) : Note

that, for K = 1[0;1); we have gK = 1[0;1); then the previous two limits meet assertion (1:2:6)

given in Theorem 1.2.2 by [de Haan and Ferreira(2006)]. For kernels K2 and K3; we have

gK2(s) :=
15

8

�
1� s2

� �
1� 5s2

�
1f0�s<1g; gK3(s) :=

35

16

�
1� s2

�2 �
1� 7s2

�
1f0�s<1g:

Since F is regularly varying at in�nity with tail index  > 0; then Xn�k:n tends to 1

almost surely. By replacing, in (5:3); u by Xn�k:n and F by its empirical counterpart Fn;

we get

b1;K = 1

Fn (Xn�k:n)

Z 1
Xn�k:n

gK

�
Fn (x)

Fn (Xn�k:n)

�
log

x

Xn�k:n
dFn (x) ;

as a kernel estimator for 1: Next, we give an explicit formula for b1;K: Since F and G
are regularly varying at in�nity with tail indices 1 > 0 and 2 > 0 respectively, then

their right endpoints are in�nite and so they are equal. Hence, we have the empirical
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counterpart of equation (1:4). This allow us to rewrite b1;K into
b1;K = 1

Fn (Xn�k:n)

Z 1
Xn�k:n

Fn (x)

Cn (x)
gK

�
Fn (x)

Fn (Xn�k:n)

�
log

x

Xn�k:n
dFn (x) ;

which is equal to

1

nFn (Xn�k:n)

kX
i=1

Fn (Xn�i+1:n)

Cn (Xn�i+1:n)
gK

�
Fn (Xn�i+1:n)

Fn (Xn�k:n)

�
log

Xn�i+1:n

Xn�k:n
:

In view of this equation

Cn (x) dFn (x) = Fn (x) dFn (x) ;

[Benchaira et al.(2016)] showed that

Fn (Xn�k:n) =
1

n

kX
i=1

Fn (Xn�i+1:n)

Cn (Xn�i+1:n)
:

Thereby, by setting a(i)n := Fn (Xn�i+1:n) =Cn (Xn�i+1:n) ; we end up with the �nal formula

of our new kernel estimator

b1;K :=
kP
i=1

a
(i)
n gK

�
Fn (Xn�i+1:n)

Fn (Xn�k:n)

�
log

Xn�i+1:n

Xn�k:n
kP
i=1

a
(i)
n

: (5.4)

Note that in the complete data situation, Fn is equal to Cn and both reduce to the classical

empirical df. As a result, we have in that case a(i)n = 1 and Fn (Xn�i;n) =Fn (Xn�k;n) = i=k

meaning that b1;K = k�1
Xk

i=1
gK

�
i� 1
k

�
log (Xn�i+1:n=Xn�k:n) : By applying the mean

value theorem to function 	K; we get

i

k
K
�
i

k

�
� i� 1

k
K
�
i� 1
k

�
=
1

k
gK

�
i� 1
k

�
+O

�
1

k2

�
; as N !1:
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It follows that

b1;K = kX
i=1

�
i

k
K
�
i

k

�
� i� 1

k
K
�
i� 1
k

��
log

Xn�i+1:n

Xn�k:n
+O

�
1

k

�bHill1 ;

where bHill1 := k�1
kP
i=1

log (Xn�i+1:n=Xn�k:n) is Hill�s estimator of the tail index 1: In view

of the consistency of bHill1 [Mason(1982)], we obtain

b1;K = kX
i=1

i

k
K
�
i

k

�
log

Xn�i+1:n

Xn�i:n
+Op

�
1

k

�
; as N !1;

which is an approximation of the aforementioned CDM�s kernel estimator of the tail index

1 with untrucated data.

5.2 Main results

Theoreme 5.2.1 Assume that the second-order conditions of regular variation (4:4) and

(4:5) hold with 1 < 2; and let K be a kernel function satisfying assumptions [C1]-[C4] and

k = kn a random sequence of integers such that given n = m; km !1 and km=m! 0; as

N !1: Then, there exist a function A0 (t) � A�F (t) ; as t!1; and a standard Wiener

process fW (s) ; s � 0g ; de�ned on the probability space (
;A;P) such that

p
k (b1;K � 1)

=
�
2=1

� Z 1

0

s�1W (s) d fs'K (s)g+
p
kA0 (n=k)

Z 1

0

s��1K (s) ds+ oP (1) ;

provided that, given n = m;
p
kmA0 (m=km) = O (1) ; as N !1; where

'K (s) := s�1
Z s

0

t�=2
�
K
�
t=1

�
� 1
2
t�2=1K

�
t=1

�
+ t=1K0

�
t=1

��
dt:
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If in addition, we suppose that, given n = m;
p
kmA0 (m=km)! �; then

p
k (b1;K � 1)

D!

N (�K; �
2
K) ; as N !1; where

�K := �

Z 1

0

s��1K (s) ds and �2K :=
�
2=1

�2 Z 1

0

'2K (s) ds:

Remark 5.2.1 A very large value of 2 yields a -value that is very close to 1; meaning

that the really observed sample is almost the whole dataset. In other words, the complete

data case corresponds to the situation when 1=2 � 0; in which case we have  � 1: It

follows that in that case

'K (s) = 1s
�1
Z s

0

fK (t) + tK0 (t)g dt = 1s
�1
Z s

0

d ftK (t)g = 1K (s) ;

and therefore �2K = 21
R 1
0
K2 (s) ds; which agrees with the asymptotic variance given in

Theorem 1 of [Csörgö et al.(1985)].

5.3 Simulation study

In this section, we check the �nite sample behavior of b1;K and, at the same time, we com-
pare it with b1 and b(GS)1 respectively proposed by [Benchaira et al.(2016)] and [Gardes and Stup�er(2015)]

and de�ned in (4:8) and (3:4): To this end, we consider two sets of truncated and trun-

cation data, both drawn from Burr�s model de�ned in 4.9: The corresponding percentage

of observed data is equal to p = 2=(1 + 2): We �x � = 1=4 and choose the values 0:6

and 0:8 for 1 and 70%; 80% and 90% for p: For each couple (1; p) ; we solve the equation

p = 2=(1 + 2) to get the pertaining 2-value. For the construction of our estimatorb1;K; we select the biweight and the triweight kernel functions de�ned in (5:1): We vary
the common size N of both samples (X1; :::;XN) and (Y1; :::;YN) ; then for each size,

we generate 1000 independent replicates. Our overall results are taken as the empirical

means of the results obtained through all repetitions. To determine the optimal number

of top statistics used in the computation of each one of the three estimators, we use the
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algorithm of [Reiss and Thomas(2007)], page 137. Our illustration and comparison are

made with respect to the estimators absolute biases (abs bias) and the roots of their mean

squared errors (rmse). We summarize the simulation results in Tables 5.1 and 5.2 for

1 = 0:6 and in Tables 5.3 and 5.4 for 1 = 0:8: In light of all four tables, we �rst note

that, as expected, the estimation accuracy of all estimators decreases when the trunca-

tion percentage increases. Second, with regard to the bias, the comparison de�nitely is in

favour of the newly proposed tail index estimator b1;K; whereas it is not as clear-cut when
the rmse is considered. Indeed, the kernel estimator preforms better than the other pair

as far as small samples are concerned while for large datasets, it is b(GS)1 that seems to

have the least rmse but with greater bias. As an overall conclusion, one may say that, for

case studies where not so many data are at one�s disposal, the kernel estimator b1;K is the
most suitable among the three estimators.

5.4 Proofs

The proof is based on a very useful weak approximation to the tail product-limit process re-

cently provided by [Benchaira et al.(2016)]. From (5:2); the estimator b1;K may be rewrit-
ten into

b1;K = Z 1
1

x�1	K

�
Fn (xXn�k:n)

Fn (Xn�k:n)

�
dx:

Recall that 	K (s) = sK (s) ; then it is easy to verify that
R1
1
x�1	K

�
x�1=1

�
dx = 1:

Hence

b1;K � 1 =

Z 1
1

x�1
�
	K

�
Fn (xXn�k:n)

Fn (Xn�k:n)

�
�	K

�
x�1=1

��
dx:

Let Dn (x) de�ned in 4.2 be the tail product-limit process, then Taylor�s expansion of 	K

yields that
p
k (b1;K � 1) =

Z 1
1

x�1Dn (x) gK
�
x�1=1

�
dx+Rn1;
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p = 0:7b1;K b1 bGS1
N n abs bias rmse abs bias rmse abs bias rmse

150 104 0:073 0:665 0:133 0:408 0:136 3:341
200 140 0:008 0:614 0:152 0:392 0:258 1:647
300 210 0:003 0:467 0:095 0:321 0:102 0:962
500 349 0:007 0:439 0:063 0:296 0:022 0:409
1000 699 0:020 0:284 0:042 0:210 0:023 0:211
1500 1049 0:009 0:255 0:024 0:189 0:013 0:142
2000 1399 0:011 0:245 0:018 0:177 0:013 0:116

p = 0:8
150 120 0:054 0:608 0:093 0:398 0:100 0:989
200 160 0:030 0:520 0:085 0:353 0:109 0:488
300 239 0:022 0:467 0:067 0:322 0:069 0:353
500 399 0:002 0:340 0:049 0:240 0:040 0:196
1000 799 0:013 0:217 0:033 0:168 0:029 0:135
1500 1199 0:003 0:190 0:017 0:140 0:019 0:109
2000 1599 0:005 0:149 0:011 0:113 0:005 0:095

p = 0:9
150 134 0:031 0:492 0:082 0:387 0:149 2:740
200 180 0:019 0:404 0:069 0:313 0:072 0:334
300 270 0:016 0:299 0:051 0:238 0:043 0:231
500 449 0:002 0:236 0:045 0:176 0:037 0:160
1000 899 0:006 0:163 0:024 0:131 0:020 0:123
1500 1350 0:010 0:131 0:021 0:103 0:018 0:093
2000 1799 0:002 0:116 0:010 0:088 0:009 0:078

Table 5.1: Biweight-kernel estimation results for the shape parameter 1 = 0:6 of Burr�s
model based on 1000 right-truncated samples
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p = 0:7b1;K b1 bGS1
N n abs bias rmse abs bias rmse abs bias rmse

150 104 0:134 0:808 0:142 0:408 0:245 1:242
200 139 0:097 0:705 0:129 0:373 0:184 0:857
300 209 0:045 0:566 0:090 0:313 0:091 0:582
500 349 0:002 0:430 0:074 0:268 0:064 0:550
1000 699 0:003 0:399 0:031 0:237 0:023 0:161
1500 1050 0:010 0:362 0:013 0:217 0:010 0:130
2000 1401 0:010 0:244 0:018 0:164 0:009 0:117

p = 0:8
150 119 0:096 0:730 0:109 0:397 0:117 0:729
200 159 0:060 0:580 0:091 0:340 0:108 0:874
300 239 0:037 0:496 0:067 0:315 0:080 0:490
500 399 0:009 0:303 0:057 0:231 0:047 0:280
1000 799 0:001 0:265 0:027 0:177 0:021 0:139
1500 1199 0:008 0:194 0:018 0:139 0:015 0:109
2000 1600 0:001 0:183 0:013 0:124 0:012 0:095

p = 0:9
150 134 0:066 0:660 0:080 0:392 0:081 0:450
200 179 0:047 0:454 0:061 0:314 0:061 0:359
300 270 0:003 0:299 0:064 0:243 0:062 0:230
500 449 0:001 0:226 0:043 0:174 0:037 0:164
1000 899 0:009 0:175 0:016 0:124 0:014 0:113
1500 1350 0:002 0:146 0:017 0:108 0:017 0:098
2000 1799 0:003 0:134 0:010 0:093 0:008 0:081

Table 5.2: Triweight-kernel estimation results for the shape parameter 1 = 0:6 of Burr�s
model based on 1000 right-truncated samples
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p = 0:7b1;K b1 bGS1
N n abs bias rmse abs bias rmse abs bias rmse

150 105 0:090 0:893 0:187 0:548 0:294 2:126
200 139 0:014 0:863 0:199 0:542 0:316 1:351
300 210 0:022 0:573 0:140 0:412 0:173 0:812
500 349 0:031 0:519 0:103 0:372 0:053 0:593
1000 699 0:004 0:462 0:042 0:324 0:020 0:253
1500 1049 0:017 0:356 0:031 0:255 0:020 0:174
2000 1399 0:008 0:424 0:017 0:267 0:017 0:150

p = 0:8
150 120 0:088 0:862 0:122 0:553 0:248 1:947
200 159 0:040 0:684 0:121 0:472 0:178 1:143
300 239 0:006 0:516 0:084 0:406 0:099 0:494
500 399 0:022 0:372 0:078 0:285 0:058 0:247
1000 800 0:003 0:297 0:029 0:221 0:021 0:189
1500 1199 0:004 0:239 0:020 0:180 0:012 0:157
2000 1599 0:001 0:209 0:013 0:156 0:014 0:121

p = 0:9
150 134 0:034 0:585 0:113 0:479 0:118 0:543
200 180 0:002 0:512 0:120 0:402 0:127 0:459
300 270 0:003 0:389 0:082 0:320 0:073 0:310
500 450 0:002 0:305 0:052 0:246 0:045 0:228
1000 900 0:004 0:223 0:024 0:169 0:020 0:153
1500 1349 0:005 0:176 0:020 0:141 0:021 0:124
2000 1800 0:006 0:166 0:013 0:126 0:013 0:110

Table 5.3: Biweight-kernel estimation results for the shape parameter 1 = 0:8 of Burr�s
model based on 1000 right-truncated samples
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p = 0:7b1;K b1 bGS1
N n abs bias rmse abs bias rmse abs bias rmse

150 104 0:159 0:976 0:202 0:511 0:386 3:264
200 139 0:064 0:905 0:205 0:493 0:247 1:355
300 209 0:090 0:831 0:101 0:469 0:141 1:082
500 349 0:014 0:589 0:090 0:371 0:063 0:586
1000 700 0:013 0:458 0:049 0:296 0:023 0:264
1500 1050 0:008 0:561 0:023 0:315 0:020 0:189
2000 1400 0:012 0:381 0:027 0:241 0:013 0:164

p = 0:8
150 120 0:103 0:886 0:151 0:511 0:180 1:906
200 160 0:058 0:775 0:131 0:466 0:153 1:311
300 239 0:023 0:629 0:106 0:398 0:078 0:502
500 399 0:005 0:515 0:069 0:339 0:060 0:256
1000 800 0:005 0:330 0:036 0:226 0:030 0:186
1500 1200 0:017 0:242 0:035 0:176 0:029 0:145
2000 1600 0:001 0:225 0:017 0:160 0:012 0:133

p = 0:9
150 135 0:039 0:611 0:117 0:465 0:133 1:103
200 180 0:047 0:603 0:102 0:435 0:127 0:845
300 270 0:020 0:414 0:078 0:308 0:071 0:301
500 449 0:008 0:321 0:049 0:256 0:050 0:223
1000 900 0:011 0:230 0:024 0:173 0:020 0:153
1500 1350 0:008 0:197 0:016 0:137 0:015 0:120
2000 1800 0:001 0:162 0:014 0:115 0:011 0:105

Table 5.4: Triweight-kernel estimation results for the shape parameter 1 = 0:8 of Burr�s
model based on 1000 right-truncated samples
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with

Rn1 :=
1

2
p
k

Z 1
1

x�1D2
n (x) g

0
K (�n (x)) dx:

where �n (x) is a stochastic intermediate value lying between Fn (xXn�k:n) =Fn (Xn�k:n)

and x�1=1 : According to [Benchaira et al.(2016)], we have, for 0 < � < 1=2� =2

sup
x�1

x(1=2��)=�1=2
����Dn (x)� � (x;W)� x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k)

���� P! 0; as N !1;

(5.5)

where f� (x;W) ; x > 0g is a Gaussian process de�ned in 4.6.

Now, we write

p
k (b1;K � 1) =

Z 1
1

x�1� (x;W) gK
�
x�1=1

�
dx+

3X
i=1

Rni;

where Rn1 is as de�ned above and

Rn2 :=

Z 1
1

x�1
�
Dn (x)� � (x;W)� x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k)

�
gK
�
x�1=1

�
dx;

and

Rn3 :=

Z 1
1

x�1
�
x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k)

�
gK
�
x�1=1

�
dx:

Elementary calculation yields that

Z 1
1

x�1� (x;W) gK
�
x�1=1

�
dx =

�
2=1

� Z 1

0

s�1W (s) d fs'K (s)g =: Z;

where 'K (s) is that de�ned in the theorem. Next, we evaluate the remainder terms

Rni; for i = 1; 2; 3: First, we show that Rn1 tends to zero in probability, as N ! 1:

Recall that 1 < 2 and 0 < � < 1=2 � =2; then (1=2� �) = � 1=2 > 0: It follows

that
R1
1
x2(1=2�(1=2��)=)�1dx is �nite and, from Lemma 5.4.1, we get supx�1 jD2

n (x)j =

Op (1) : On the other hand, from assumption [C4] ; we infer that g0K is bounded on (0; 1) :

Consequently, we have Rn1 = op (1) : Second, for the term Rn2; we use approximation
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(5:5); to get

Rn2 = op (1)

Z 1
1

x1=2�(1=2��)=�1
��gK �x�1=1��� dx:

Since gK is bounded on (0; 1) ; then Rn2 = op (1) : Finally, we show that the third term

Rn3 is equal to
p
kA0 (n=k)

R 1
0
s��1K (s) ds: Observe that

Rn3 =
p
kA0 (n=k)

Z 1
1

x�1=1�1
x�1=1 � 1
1�1

gK
�
x�1=1

�
dx:

Keeping in mind that gK (s) = (sK (s))0 ; we end up, after a change of variables and an

integration by parts, with

Z 1
1

x�1=1�1
x�1=1 � 1
1�1

gK
�
x�1=1

�
dx =

Z 1

0

s��1K (s) ds:

Gathering all the results above leads to the �rst part of the theorem. For the second part,

it su¢ ces to use Lemma 8 in [Csörgö et al.(1985)], to show that the variance of the centred

Gaussian rv Z equals �2K: Finally, whenever (given n = m)
p
kmA0 (m=km)! �; we have

Rn3
p! �

Z 1

0

s��1K (s) ds; as N !1;

which corresponds to the asymptotic bias �K; as sought.

Lemma 5.4.1 Under the assumptions of Theorem 5.2.1, we have, for any 0 < � < 1=2�

=2

sup
x�1

x(1=2��)=�1=2 jDn (x)j = Op (1) ; as N !1:

Proof. This result is straightforward from the weak approximation (5:5): Indeed, it is

clear that supx�1 x
(1=2��)=�1=2 jDn (x)j � T1;n + T2;n + T3; where

T1;n := sup
x�1

x(1=2��)=�1=2
����Dn (x)� � (x;W)� x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k)

���� ;
T2;n :=

p
k jA0 (n=k)j
1 j�1j

sup
x�1

�
x�(1=2+�)=

��1� x�1=1
��	 and T3 := sup

x�1
x(1=2��)=�1=2 j� (x;W)j :
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First, it is readily checked, from (5:5); that T1;n = op (1) : Second, observe that, in addition

to the assumption
p
kA0 (n=k) = Op (1) ; we have 0 � x�(1=2+�)=

�
1� x�1=1

�
� 1; for

x � 1; it follows that T2;n = Op (1) : Finally, note that x(1=2��)=�1=2� (x;W) is equal to

x�(1=2+�)=
�


1

�
x1=W

�
x�1=

�
�W (1)

�
+



1 + 2

Z 1

0

s�=2�1
�
x1=W

�
x�1=s

�
�W (s)

�
ds

�
;

where the quantity between brackets is a Gaussian rv and x�(1=2+�)= � 1; for x � 1:

Therefore, T3 = Op (1) and the proof is completed.

.
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Concluding notes

As we have seen throughout this thesis, we proposed an estimator of the tail index

for randomly truncated heavy-tailed data based on the same number of extreme

observations from both truncated and truncation variables. Thus, the determination of

the optimal sample fraction becomes standard, in the sense of applying any convenient

algorithm available in the literature. The asymptotic normality of the estimator is estab-

lished by taking into account the dependence structure of the observations and a practical

way to construct con�dence bounds for the extreme value index is given. The obtained

Gaussian approximations are of great usefulness as they allow to determine the limiting

distributions of several statistics related to the extreme value index such that high quan-

tiles and risk measures estimators (see, for instance, [Necir and Meraghni(2009)]). As an

application, we can provided an estimator for the excess-of-loss reinsurance premium in

the case of large randomly truncated claims.

In chapter 4, We introduced a product-limit process for the tail of a Pareto-like distribu-

tion under random right-truncation. The weak approximation of this process proved to be

a very useful tool in establishing the asymptotic normality of the estimators of tail indices

and related statistics such as high quantiles. Moreover, we proposed a natural Hill-type

estimator for the extreme value index, that behaves well in the case of small datasets. An

interesting point, which is beyond the scope of the present thesis and deserves to be con-

sidered in a future work, is to reduce estimation biases under random truncation. Similar

anterior works were done with complete datasets by, for instance, [Peng and Qi(2004)],

[Li et al.(2010)] and [Brahimi et al.(2013)].
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Concluding notes

We �nish this work by making a comment on relation (4:7) ; which actually is a special

case of a more general functional of the distribution tail de�ned by

�t (g; �) :=

1

F (t)

R1
t
g

�
F (x)

F (t�)

��
log

x

t

��
dF (x)R 1

0
g (x) (� log x)� dx

; t � 0;

where g is some weight function and � some positive real number. As a consequence of

the fact that limt!1 �t (g; �) = �; this functional can be considered as the starting point

to constructing a whole class of estimators for distribution tail parameters. Indeed, in the

complete data case, we replace F by its empirical counterpart Fn and t by Xn�k:n to get

the following statistic which generalizes several extreme value theory based procedures of

estimation already existing in the literature:

�n;k (g; �) :=

1

k

kP
i=1

g

�
i

k + 1

��
log

Xn�i+1:n

Xn�k:n

��
R 1
0
g (x) (� log x)� dx

:

When g = � = 1; we recover the famous Hill estimator [Hill(1975)]. For a detailed list

of extreme value index estimators drawn from the statistic above, we refer to the paper

of [Ciuperca and Mercadier(2010)], where the authors propose an estimation approach of

the second-order parameter by considering di¤erences and quotients of several forms of

�n;k (g; �) : By analogy, when we deal with randomly truncated observations, we substitute

the product-limit estimator Fn for F in the formula of �t (g; �) in order to obtain the

following family of parameter estimators under random truncation:

�n;k (g; �) :=

kP
i=1

a
(i)
n g

�
Fn (Xn�i+1:n)

Fn (Xn�k�1:n)

��
log

Xn�i+1:n

Xn�k:n

��
kP
i=1

a
(i)
n

R 1
0
g (x) (� log x)� dx

;

where a(i)n := Fn (Xn�i+1:n) =Cn (Xn�i+1:n) : This would have fruitful consequences on the

statistical analysis of extremes under random truncation.
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Annexe A: Abbreviations and

Notations

Abbreviations and Notations that is largely con�ned to sections or chapters is mostly

excluded from the list below:

Abbreviation Signi�cation

a.s. almost sure

CLT central limit theorem

df distribution function

e.g. for example

EVI extreme value index

EVT extreme value theory

df distribution function

cdf cumulative distribution function

GEVD generalized extreme value distribution

i.e. in other words

i¤ if and only if

iid independent and identically distributed

MSE mean squared error

RMSE Root mean squared error

rv random variable
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Annexe A: Abbreviations and Notations

Notations Signi�cation

Cov(X;Y ) covariance between X and Y
D! convergence in distribution
p! convergence in probability

a (t) � b (t) limt a (t) =b (t) = 1

D(:) domain of attraction
d
= equality in distribution

 extreme value index

F distribution function

Fn empirical distribution function

1fpg indicator function: equals 1 if p is true and 0 otherwise

inf A in�mum of set A

l dependence function

a+ max(a; 0)

a� min(a; 0)

a _ b max(a; b)

a ^ b min(a; b)

n integer number greater than 1

N set of non-negative integers

N (�; �2) normal or Gaussian distribution with mean � and variance �2

o (:) f (x) = o (g (x)) as x! x0 : f (x) =g (x)! 0; as x! x0

O (:) f (x) = O (g (x)) as x! x0 : 9M > 0; jf (x) =g (x)j �M; as x! x0

op (:) and Op (:) stochastic order symbols

(
;F ; P ) probability space

R set of real numbers

supA supremum of set A

X rv de�ned on (
;F ; P ) ; population

(X1; :::; Xn) sample of size n from X

(X1;n; :::; Xn;n) order statistics pertaining to (X1; :::; Xn)
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Abstract

Abstract

In this thesis, we are concerned with the estimation of the extreme value index andlarge quantiles for incompletely observed data, with a particular interest in the case

of right-truncated data. We begin by exploiting the �rst work in this matter, which is due

to [Gardes and Stup�er(2015)], to derive a simple tail index estimator based on a single

sample fraction of extreme values. The asymptotic normality of the proposed estimator

is established in the frameworks of tail dependence and second-order of regular variation.

Second, starting from the �rst-order condition of regular variation, we construct a new

estimator for the shape parameter of a right-truncated heavy-tailed distribution. We

prove its asymptotic normality by making use of the tail Lynden-Bell process for which a

weighted Gaussian approximation is provided. Also, a new approach of estimating high

quantiles is proposed and applied to a real dataset consisting in lifetimes of automobile

brake pads. Finally, a kernel-type asymptotically normal estimator is de�ned. Simulation

experiments are carried out to evaluate the performances and illustrate the �nite sample

behaviors of the above estimators and make comparisons as well.

Keywords: Bivariate extremes; Empirical process; Extreme value index; Heavy-tails;

High quantiles; Hill estimator; Kernel estimation; Lynden-Bell estimator; Regular varia-

tion; Random truncation; Tail dependence.
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Résumé 

 

    Dans cette thèse, nous nous intéressons à l'estimation de l'indice des 

valeurs extrêmes et des quantiles extrêmes pour des données 

incomplètement observées, avec un intérêt particulier au cas des données 

tronquées à droite. Nous commençons par l'exploitation du premier 

travail sur  ce sujet, qui est dù à Gardes et Stupfler (2015), pour obtenir 

un estimateur simple d’indice de queue basé sur une seule fraction 

d’échantillon de valeurs extrêmes. La normalité asymptotique de 

l'estimateur proposé est établie dans le cadre de la dépendance de queue 

et de la condition du second ordre de variation régulière. Deuxièmement, 

à partir de la condition du premier ordre de variation régulière, nous 

construisons un nouvel estimateur pour le paramètre de forme d'une 

distribution à queue lourde tronquée à droite. Nous prouvons sa normalité 

asymptotique en utilisant le processus de queue de Lynden-Bell pour 

lequel une approximation gaussienne pondérée est fournie. En outre, une 

nouvelle approche de l'estimation des quantiles extrêmes  est proposée et 

appliquée sur des données réelles consistant en les durées de vie des 

plaquettes de frein automobile. Enfin, un estimateur de type noyau 

asymptotiquement normal est défini. Des expériences de simulation sont 

effectuées pour évaluer les performances et illustrer les comportements 

des estimateurs ci-dessus sur des échantillons finis et aussi pour faire des 

comparaisons. 

 

Mots clés: Extrêmes bivariées; Processus empirique; Indice des valeurs 

extrêmes; Queues lourdes; Quantiles extrêmes; Estimateur de Hill; 

Estimation à noyau; Estimateur de Lynden-Bell; Variation régulière; 

Troncature aléatoire. 

 

 صــخـلـم

 

، مي  ةغمير اصم ي صتبمصنيب الخيص  القيمم القوي  تقدير مؤشر ب نهتم نحن  في هذه الأطروحة،     

ن فيي هيذا ال ي  . نبدأ من خيل  اتيتلل  أو  عمي المممنمقط عة من حصلة بمصنصت باهتمصم خص  

 سيتدد ىلي  عمديةبسيم  يشيتقص  مقيدر مؤشير  يي  ا، واليذ  يرعي  ىلي  (2015) رفللصردس و تيت 

الحصلية السي ية المقصربية ل مقيدر المقتيرس   تسيط فيي أطير ال مي  بيذي  من القيمم المتطرفية.  ةواحد

ندط ق من أو   شرط للخيتلف المديتظم و صنمص، . ثالتراب  و الدرعة الثصنمة من الاختلف المدتظم

 الحصلية السي ية. نثبيط نستخرج مقدر عديد خص  بمؤشر القمم القو   لت زي صت  ات أ يص  ثقم ة

قتيرس نهايص ن. أيضيص، ليه غي   قريي  ر  يم  ي فم ذ   اليبمي-لمديدن  ي  اتت مص  نهجمن خل   له

قهيص طبنو قسم البمصنصت ال  ماصلات  حتي   ع ي  ن يل ال يدد مين البمصنيصت  عصلمة  قممعديدا لتقدير 

مقيدر مؤشير  يي  ن رف فرام  السمصرات. وأخمرا، بمصنصت حقمقمة  تمث  في أعمصر  ع   مام عة

 مدة محدودة من لمن ن ع ن اة. و ار   اصرب المحصاصة لتقممم الأداء و  ضمح الس  امصت بسم   

 .بمدهص ىعراء مقصرنصتاذلك له، والمقدرات المذا رة أع

 

 ; ثقم ية يي    ; قو  مؤشر قممة  ; عم مة  اريبمة ; متلمرين ات  قو     :الكلمات المفتاحية

  .اقتطصع ع  ائي ; ختلف مدتظما ; بم -لمددن  قدير;  قدير الد اة ; هم  ريقد  ; عصلمة أعزاء




