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General introduction

The classical statistical theory (and in particular the well-known theorem of the

central limit) makes it possible to infer the central values of a sample but gives

very little information on the distribution tail. The particularity of the extreme value

theory (EVT) is that it focuses on the tail of distribution that generates the studied

various extreme phenomenon. It is developed for the estimation of the probability of rare

events and makes it possible to obtain reliable estimates of the extreme values, for which

there are few observations. EVT or extreme value analysis (EVA) is a branch of statistics

that aims to model and describe the occurrence and intensity of so-called rare events, ie

those with very large amplitudes (a low probability of occurrence). When the behavior of

these events is due to hasard, one can study their law. They are said to be extreme when

they are much larger or smaller than those usually observed. The EVA seeks to assess,

from a sample of ordered given a random variable, the probability of events which are

more extreme than that any previously observed. It is widely used in many disciplines,

such as structural engineering, �nance, earth sciences, tra¢ c prediction, and geological

engineering. For example, EVA might be used in the �eld of hydrology to estimate the

probability of an unusually wide �ooding event, such as the 100-year �ood. Similarly, for

the design of a breakwater, a coastal engineer Would seek to estimate the 50-year wave

and accordingly design the structure. There is a very good variety of textbooks which

isdevoted to EVT and their applications for example [32], [20], [76] and [2]. This is what

led Fisher and Tippet (1928) in [40] to develop the theory of extreme value.
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General Introduction

In the other hand, when the observations of a phenomenon studied are not complete then

we are in the case of incomplete data, where it can take various forms of censored or

truncated data. Censoring is when an observation is incomplete due to some random case

and the trancating is when an object can be detected only if its value is greater or less

than some number and the value is completely known in the case of detection. As a result,

the case of incomplete data is not that data to treat are not complete. Then, in this case

the classical techniques does not apply.

Resently, in the letterature of statistics of extremes, the authors are more interested in

estimating the extreme parameters (extreme value index and second order parameter) and

the extreme quantile. In the case of complete data, several estimators have been proposed:

for the extreme value index, recall the well know Hill estimator [60], the maximum likeli-

hood estimator [88], the moment estimator, the Pickands estimator, probability-weighted

moment estimator and a kernel type estimators of Csörg½o and al. (1985) [16] and many

more. We refer for the extreme value estimation in the case of censored data to Beirlant

and al. (2007) [3]; Einmahl and al. (2008) [31]; Worms and Worms (2016) [91] and under

random truncation to Gardes and Stup�er (2015) [42]; Benchaira and al. (2015) [5]: In

this thesis, we deal essentially with the case of right trancation with the estimation of

extreme parameters and extreme quantile. The 4th chapter of this thesis contains the �rst

published work on the estimate of the scond order parameter under random truncated.

Our thesis is organized in six chapters that allow us to present the di¤erent aspects of our

work which is organized as follows:.

Chapter 1

The �rst chapter is an introduction to the extreme value: concepts and de�nitions of the

distribution functions and order statistics. We review in this chapter the limit theorems:

the lows of large numbers and central limit theorem. Then, we give generalized extreme

value distribution, regular variation, the �rst and the second order of regular variation

2



General Introduction

and domain of attraction.

Chapter 2

The second chapter, is a review of the estimating of the tail index, the second order

parameter and the extreme quantile in the case of complete data by some classical methods.

The informations that exists in this chapter enables understanding of the rest of the

chapters.

Chapter 3

The third chapter contains de�nitions of incomplete data (censored and trancated data)

and there forms, and the estimation of their distribution in every case.

Chapter 4

The 4th chapter contains our �ndings about the estimation of the second-order parameter

of Pareto-type distributions under random right-truncation and its application by using

the estimator of the second order parameter in the estimation of the tail index and this

tail estimator is without bias. Our consedirations are based on results of Gomes and

al. (2003) [46] (Semi-parametric estimation of the second order parameter in statistics of

extremes) and on a useful Gaussian approximation of a tail product-limit process recently

given by Benchaira et al. [6], we will prove their consistency and the asymptotic normality.

Then, we will give the proves and the simulation of the estimators which can show the

performance of our estimators in several size of the sample.

Chapter 5

In the 5th chapter, we will consider the random threshold case to derive a Hill-type

estimator based on the recent results of Worms and Worms (2016) [91] (A Lynden-Bell

integral estimator for extremes of randomly truncated data) introduced an asymptotically

normal estimator of the tail index for Pareto-type (randomly right-truncated) data and

we will establish the consistency and asymptotic normality of our estimator. A simulation

3



General Introduction

study is carried out to evaluate the �nite sample behavior of the proposed estimator and

compare it with the existing ones.

Chapter 6

The last chapter contains an other method to estimate the quantile extreme which is

based on both methods, the kernel type and the log probability weighted moment of

estimation, where it is based on the results of Caeiro and Gomes (2015) [11] (A log

probability weighted moment estimator of extreme quantiles) which consider the semi

parametric estimation of extreme quantiles of a right heavy-tail model and propose a new

probability weighted moment estimator of extreme quantiles. Then, we will prove the

consistency and asymptotic normality of our estimator.

Finally, I would like to mention that the processing of data (numerical calculations and

graphical representations) is carried out using the statistical analysis software R.

4



Chapter 1

Extreme values

1.1 Introduction

The EVT is a branch of statistics that aims to model and describe the occurrence

and intensity of known events rare it is to say that present variations of great

samplitudes (with a low probability of occurrence) .When the behavior of these events is

due to chance, we can study their law. They expressed extreme values when it�s about

much larger or smaller than those usually observed. there is a very good variety of text-

books isdevoted to EVT and their applications for example [32], [20], [76] and [2].

1.2 Concepts and de�nitions

Let (X1; X2; :::; Xn) ; be a sample of size n � 1 from a random variable (rv) X de�ned over

some probability space (
;A;P) : The distribution ofXmay be caracterised by equivalents

functions which are de�ned as follows.

De�nition 1.1 (Distribution function) The distribution function (df) of a rv X is the

5



Chapter 1. Extreme values

application F de�ned on R+ to [0; 1] by

F (x) := P (X � x) :

De�nition 1.2 (Survival function) If X is a rv de�ned on a probability space (
;A;P)

then, it�s survival function is de�ned on R+ to [0; 1] by

F (x) := 1� F (x) = P (X > x) :

De�nition 1.3 (Probability density function) If F admits a derivative with respect

to the Lebesgue measure on R+, the function of probability density (pdf) exists, de�ned for

any t � 0; by

f (t) :=
dF (t)

dt
= lim

dx!1

P (t < X < t+ dx)

dx
:

De�nition 1.4 (Hasard function) if X is a continuous positive rv representing a du-

ration, the hasard function, noted by h(t), is de�ned by

h (t) :=
f (t)

F (t)
= lim

dx!1

P (t < X < t+ dx=X > t)

dx
:

Remark 1.1 Sometimes, it is useful to work with a cumulative (or integrated) which is

given by

� (t) :=

Z t

0

h (x) dx =

Z t

0

f (x)

F (x)
dx; (1.1)

it is easy to �nd the relationships between these di¤erent notions, for example (1:1) implies

that

� (t) = � logF (x) : (1.2)

It is noted that, under (1:2) ; we can write

F (x) = exp f�� (t)g = exp
�
�
Z t

0

f (x)

F (x)

�
: (1.3)

6



Chapter 1. Extreme values

This equality is the main exponential for survival analysis. It has a distribution charac-

teristic and a survival function by intermediate of a hasard function.

De�nition 1.5 (Quantile function) The quantile function is de�ned for any 0 < s < 1

by

Q (s) = F (s) := inf ft : F (t) � sg ;

where F is the generalised inverse function of df F; with the convention that inf f�g =

+1:

Remark 1.2 It is expressed in terms of the survival function by

F (s) = inf
�
t : F (t) � 1� s

	
= F

 
(1� s) ; 0 < s < 1:

De�nition 1.6 (Tail quantile function) The tail quantile function is denoted by U

and for any 1 < t <1

U (t) := Q (1� 1=t) =
�
1=F

� 
(t) :

Proposition 1.1 (Quantile trasformation) Let U be a (0; 1)�uniformly distributed

rv, then

1. For any df F of a rv X; F (U) d
= X:

2. When F is continuous, we have F (X) d
= U:

De�nition 1.7 (Empirical df and survival function) The empirical df and survival

function of the sample (X1; X2; :::; Xn) is de�ned respectly by

Fn (x) :=
1

n

nX
i=1

I(Xi�x); x 2 R

7



Chapter 1. Extreme values

and

F n (x) :=
1

n

nX
i=1

I(Xi>x); x 2 R;

where IA is the indicator function of A:

De�nition 1.8 (Empiriquale quantile and tail quantile function) The empirical quan-

tile function is de�ned by

Qn (s) := inf ft : Fn (t) � sg ; 0 < s < 1:

The corresponding empirical tail quantile function is

Un (t) := Qn (1� 1=t) ; 1 < t <1:

De�nition 1.9 (Sum and arithmetic mean) Let (X1; X2; :::; Xn) be a sample from a

rv X de�ned over some probability space (
;A;P) ;. For an integer n � 1; de�ne the

partial sum and the corresponding arithmetic mean by respectively

Sn :=
nX
i=1

Xi and Xn := Sn=n:

Xn is called sample mean or empirical mean.

1.3 Limite theorems

In this section we reminded the Laws of large numbers and the Central limit theorem.

1.3.1 Laws of large numbers

In the classical theory, one is often interested in the behaviour of the mean or average.

This average will then be described through the expected value EX of the distribution.

8



Chapter 1. Extreme values

On the basis of the law of large numbers, the sample mean Xn is used as a consistent

estimator of EX:

Theorem 1.1 (Laws of large numbers) If (X1; X2; :::; Xn) is a sample from a rv X

such that EjXj <1; then

Xn
P! � as n!1 weak law,

Xn
a:s:! � as n!1 strong law,

where � := EX:

Applying the strong law of large numbers on Fn(x) yields the following result.

Corollary 1.1 For every x 2 R;

Fn(x)
a:s:! F (x) as n!1:

Theorem 1.2 (Glivenko-Cantelli)

Sup
x2R

jFn(x)� F (x)j a:s:! 0 as n!1:

The proofs of Theorems 1.1 and 1.2 could be found in any standard textbook of probability

theory such as [8].

1.3.2 Central Limit Theorem

The central limit theorem yields the asymptotic behaviour of the sample mean. This result

can be used to provide a con�dence interval for EX in case the sample size is su¢ ciently

large, a condition necessary when invoking the central limit theorem.

9
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Theorem 1.3 (Central Limit Theorem) Let X1; X2; :::; Xn be a sequence of iid rv�s

with mean � and �nite variance �2, then

(Sn � n�)�
p
n

D! N (0; 1) as n!1:

The proof of the Central Limit Theorem (CLT) could be found in any standard book of

statistics, see e.g., Saporta, G. (1990) ; [79] page 66:

Note that a necessary condition for the CLT is that the variance be �nite. That is, if the

�nite variance assumption is dropped, the limit distribution in Theorem 1.3 is no longer

normal. In the case of in�nite variance, there exists a result known as the generalized

CLT which states that stable laws are the only possible limit distributions for properly

normalized and centered sums of iid rv�s.

1.4 Order statistics

De�nition 1.10 (Order statistics) The order statistics of a sample (X1; X2; :::; Xn) are

the Xi�s arranged in non-decreasing order. They are denoted by X1:n; X2:n; :::; Xn:n and

for k = 1; 2; :::; n; the rv Xn�k+1:n is called the kth upper order statistic. Order statistics

satisfy X1:n � X2:n � ::: � Xn:n: Thus

X1:n := min (X1; X2; :::; Xn) and Xn:n := max (X1; X2; :::; Xn) :

Remark 1.3 Noted that it is easy to trouve the following relation

min (X1; X2; :::; Xn) = �max (�X1;�X2; :::;�Xn) :

On this thesis we shall concentrate on the study of the maximum.

10
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Remark 1.4

� The empirical df of the sample (X1; X2; :::; Xn) is evaluated using order statistics as

follows:

Fn (x) =

8>>>><>>>>:
0 if x < X1:n

i�1
n

if Xi�1:n � x � Xi:n

1 if x > Xn:n

; for 1 < i � n:

� Qn may be expressed as a simple function of the order statistics pertaining to the

sample (X1; X2; :::; Xn) : Then, we have

Qn (s) = Xn�i+1:n for
n� i

n
< s � n� i+ 1

n
; 1 � i � n:

Proposition 1.2 (Distributions of rth order statistc) The distributions of Xr:n de-

�ned as follows :

1. The df of Xr:n is de�ned by

FXr:n (x) :=
nX
i=r

�
n

i

�
F r (x)F

n�r
(x) :

2. The pdf of Xr:n is de�ned if FXr:n is continuous by

fXr:n (x) :=
n!

(r � 1)! (n� r)!
F r�1 (x)F

n�r
(x) f (x) :

Remark 1.5 The event x � Xr:n � x+ �x may be realized as follows :

11
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Illustration of the number of ways can be made for n observations compared to Xr:n.

Xi < x for r�1 of the Xi; x � Xi � x+ �x for one Xi and Xi > x+ �x for the remaining

n� r the Xi: The number of ways in which the n observations can be so divided into three

parcels is
n!

(r � 1)!1! (n� r)!

and each such way has probability

F r�1 (x) [F (x+ �x)� F (x)]F
n�r

(x+ �x) :

Proposition 1.3 (Joint distribution of two or more order statistics ) X[np]+1:n is

the empiriquale quantile of order p for 0 < p < 1:

1. The joint pdf of X1:n; X2:n; :::; Xn:n is de�ned by

fX1:n;X2:n;:::;Xn:n (x1; x2; :::; xn) := n!
nY
i=1

f (xi) ; x1 � x2 � ::: � xn:

2. The joint pdf of X1:n; X2:n; :::; Xk:n is de�ned by

fX1:n;X2:n;:::;Xk:n (x1; x2; :::; xk) :=
n!

(n� k)!
F n�k (xk)

kY
i=1

f (xi) ; x1 � x2 � ::: � xk:

3. The joint pdf of Xr:n; Xs:n is de�ned by (for 1 � r < s � n)

fXr:n;Xs:n (x; y) :=
n!

(r � 1)! (s� r � 1)! (n� s)!
F r�1 (x) f (x) [F (y)� F (x)]s�r�1 ; x � y:

which may be realized as follows :

12
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Illustration of the number of ways can be made for n observations compared to

Xr:n and Xs:n.

Proof. see e.g, David and Nagaraja (2003) [18] page 11.

Distributional results for the smallest and largest order statistics (X1:n and Xn:n succes-

sively) are immediate.

Proposition 1.4 (The Distributions functions of muximum and minimum)

1. The joint pdf of X1:n and Xn:n is de�ned by

fX1:n;Xn:n (x; y) := n (n� 1) [F (y)� F (x)]n�2 f (x) f (y) ; x1 < x2:

2. The pdf of X1:n and Xn:n are de�ned respectively by

fX1:n (x) := nF
n�1

(x) f (x) and fXn:n (x) := nF n�1 (x) f (x) :

3. The df of X1:n and Xn:n are de�ned respectively by

FX1:n (x) := 1� F
n
(x) and FXn:n (x) := F n (x) :

Proof. see e.g, Embrechts et al.(1997) [32] page 183.
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1.5 Limit distributions of maxima

The limit of the distribution of the maxima Xn:n; when n tends to in�nity, is degenerate

and, depending on F , the maximum will tend either to in�nity or a �nite number called

upper (or right) endpoint of F; i.e :

xF := supfx 2 R : F (x) < 1g � 1:

This endpoint is may be �nite or in�nite (see [32], Exemple 3.3.2, page 139). Our interest

is on the asymptotic distribution of the maximum

lim
n!1

FXn:n (x) = lim
n!1

[F (x)]n =

8><>: 1 if x � xF ;

0 if x < x:

Then, we have that

Xn:n
a:s:! xF ; (1.4)

as n ! 1; the result 1.4 is immediate (see e.g., [32]). The central result on EVT which

speci�es the form of the limit distribution for centred and normalised maxima of indepen-

dent and identically distributed random variables is the Fisher�Tippett theorem [40].

De�nition 1.11 Let F1 and F2 be two dfs. F1 and F2 are on the same type i¤ exist a real

a 2 R�+ and b 2 R; sutch that for any x 2 R;

F1 (ax+ b) = F2 (x) :

Theorem 1.4 (Fisher and Tippett) Let (X1; X2; :::; Xn) be a sample from a rv X with

continuous df F and Xn;n = max(X1; :::; Xn): If exist a non-degenerate df H and two real

14
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sequences fang and fbng; n 2 N; with an > 0 and bn 2 R; such that for any x 2 R;

lim
n!1

P

�
Xn;n � bn

an
� x

�
= lim

n!1
F n (anx+ bn) = H (x) : (1.5)

Then, H is on the same of the following three dfs :

Type I: � (x) = exp (�e�x) ; (Gumbel df),

Type II: �a (x) = exp
�
� (x)��

�
I(x�0); a > 0; (Fréchet df),

Type III: 	a (x) = exp (� (�x)�) I(x<0) + I(x�0); a > 0; (Weibull df),

where IA is the indicator function of the set A:

For the proof of this Theorem, see e.g. [78] and [32].

Remark 1.6

� H is the extreme value distribution (EVD).

� fang and fbng are called norming sequences dependents with law of X.

� The theoritical norming sequences associated with the law of standard normal in [32]

page 145, are

an = (2 log n)
�1=2 and bn = (2 log n)

1=2 � log log n+ log 4�
2 (2 log n)1=2

:

1.6 Generalized extreme value distribution (GEVD)

De�nition 1.12 (Standard extreme value distributions) The Three df�s of theoreme

of Fisher and Tippett are called standard extreme value distributions. � is known as Gum-

bel (or double exponential) type, �� as Fréchet (or heavy-tailed) type and 	� as (reverse)

Weibull type.
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Remark 1.7 Let X be a positive rv (X > 0); then

(X has df ��), (lnX� has df 	�), (�1=X has df �):

De�nition 1.13 (GEVD) The GEVD is a df H de�ned, for all x 2 R such that 1+x >

0; as follows :

H (x) =

8><>: exp
n
� (1 + x)�1=

o
if  6= 0;

exp (�e�x) if  = 0:
(1.6)

Remark 1.8

� The parameter  is called Extreme Value Index (EVI), tail index or shape parameter.

� The corresponding pdf h is de�ned for all x 2 R by

h (x) =

8><>: H (x) (1 + x)�1=�1 if  6= 0;

exp (�x� e�x) if  = 0;

where 1 + x > 0:

� We can writ H (x) in a more general form by replacing the argument x by (x� �) =�

in the right hand side of 1.6, for 1 +  x��
�

> 0

H;�;� (x) =

8><>: exp
n
�
�
1 +  x��

�

��1=o
if  6= 0;

exp
�
� exp

�
x��
�

��
if  = 0:

where � 2 R and � > 0 are respectively the location and scale parameters Weissman

(1978) [86].

� We can express the three extreme value distributions in terms of the GEVD H as

16
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follows :

� (x) = H0 (x) ; x 2 R;

�� (x) = H1=� [� (x� 1)] ; x > 0;

	� (x) = H�1=� [� (x+ 1)] ; x < 0:

� The three extreme value distributions can be characterized by the sign of the tail index

 :

H =

8>>>><>>>>:
	�1= if  < 0;

� if  = 0;

�1= if  > 0:

Figure 1.1: Densities of the standard extreme value distributions. We chose � = 1 for the
Frechet and the Weibull distribution.
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1.7 Regular variation function

The concept of regular variation is frequently used in extreme value theory, for more details

we refer to [9].

De�nition 1.14

� The measurable function f : R+ ! R+ is regular variation function at in�nity with

index � 2 R; i¤ for any x 2 R;

lim
t!1

f (tx)

f (t)
= x�:

notation f 2 RV�; � is named index of regular variation function f:

� The measurable function f : R+ ! R+ is regular variation function at 0 with index

� 2 R; i¤ for any x 2 R;

lim
t!0

f (tx)

f (t)
= x�:

Notation f 2 RV 0
� ; i.e: f (1=x) is regular variation function with index �� at in�n-

ity.

Remark 1.9 If � = 0; then function f is said to be slowly varying at in�nity. i.e:

lim
t!1

f (tx)

f (t)
= 1:

Slowly varying functions are noted l (x).

Lemma 1.1 Inverse of regular variation function

� If f is regular variation at in�nity with index � > 0; then f is regular variation at

in�nity with index 1=� > 0:

� If f is regular variation at in�nity with index � < 0; then f is regular variation at

in�nity with index �1=� > 0:
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The proof of Lemma could be found in [9]. Then, if l is slowly varying function and � 2 R;

then the function f (x) := x�l (x) 2 RV�; for all x > 0:

Proposition 1.5 Let be � 2 R and f 2 RV�: Then, there is a slowly varying function at

in�nity l where for all 8x > 0;

f (x) = x�l (x) :

Example 1.1 The slowly varying functions at in�nity for example:

1. Functions have a strict positive limite at in�nity,

2. Functions of forms f : x! jlog xj� ; � 2 R:

3. Functions f where

9M > 0; 8x �M; g (x) = c+ dx�� (1 + o (1)) ;

where c; � > 0 and d 2 R: The set of this functions is named Hall�s class.

Theorem 1.5 (Karamata representation (Resnick, 1987)) Evry slowly varying func-

tion l at in�nity is de�ned as

l (x) = c (x) exp

�Z x

1

r (t) t�1dt

�
;

where c (:) > 0 and r (:) are two measurable functions, sutch that

lim
x!1

c (x) = c0 2 [0;1] ; and lim
x!1

r (x) = 0;

if the function c (:) is a constant, then we said l is normalised.

For the proof see Resnick [78], corollary 2.1; page 29:
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Proposition 1.6 For evry slowly varying function l at in�nity we have

lim
x!1

log (l (x))
log (x)

= 0:

For more details on this issue, see de Haan [20], [22] and [9].

1.7.1 First Order Regular Variation Assumption

For a df function F and U the tail quantile function, the following assertions (assumptions)

are equivalent :

� F is regularly varying at infuinity with index �1=

lim
z!1

F (xz)

F (z)
= x�1=; x > 0:

� Q (1� s) is regularly varying at 0 with index �

lim
s!1

Q (1� sx)

Q (1� s)
= x�; x > 0:

� U is regularly varying at 1 with index 

lim
z!1

U (xz)

U (z)
= x; x > 0:

� F is heavy tailed.

1.7.2 Second Order Regular Variation Assumption

We say that F is second order regularly varying at in�nity if it satis�es one of the following

(equivalent) conditions :
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� There exist some parameter � � 0 and a function A�; such that for all x > 0

lim
t!1

F (tx) =F (t)� x�1=

A� (t)
= x�1=

x� � 1
�

: (1.7)

� There exist some parameter � � 0 and a function A��; such that for all x > 0

lim
s!1

Q (1� sx) =Q (1� s)� x�1=

A�� (s)
= x�

x� � 1
�

:

� There exist some parameter � � 0 and a function A; such that for all x > 0

lim
t!1

U (tx) =U (t)� x

A (t)
= x

x� � 1
�

: (1.8)

Where A�; A�� and A are regularly varying functions with

A� (t) = A
�
1=F (t)

�
and A�� (t) = A (1=t) ;

their role is to control the speed of convergence in First Order Regular Variation Condition.

If � = 0; interpret (x� � 1) =� as log x:

For the proofs see de Haan ana Ferrira (2006) [20].

1.7.3 Third Order Regular Variation Assumption

There exists a positive real parameter ; negative real parameters � and �; functions b

and eb with b (t)! 0 and eb (t)! 0 for t!1; both of constant sign for large values of t;

such that

lim
t!1

lnU(tx)�lnU(t)� lnx
b(t)

� x��1
�eb (t) =

1

�

�
x�+� � 1
�+ �

� x� � 1
�

�
; for x > 0

where
���eb��� is regularly varying of index �: We refer to [20] for further details.
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1.8 Characterization of the Domain of Attraction

An important problem is to de�ne the conditions (necessary and su¢ cient) of membership

of a distribution to a domain of attraction. Di¤erent characterizations of the three domains

of attraction of Fréchet, Gumbel and Weibull have been proposed in Resnick and al.

(1987) [78], Embrechts and al. (1997) [32] and de Haan ana Ferreira (2006) [20]. These

characterizations involve classes of functions with regular variation. In the following, a

df F is said to be in the domain of attraction of a non-degenerate df H; denoted by

F 2 D (H) ;  2 R:

The following theorem states a su¢ cient condition for belonging to a domain of attraction.

The condition is called von Mises condition.

Theorem 1.6 Let F be a distribution function and xF its right endpoint. Suppose F 00 (x)

exists and F 0 (x) is positive for all x in some lefte neighborhood of xF : If

lim
t"xF

�
1� F

F 0

�0
(t) = ; (1.9)

or equivalently

lim
t"xF

(1� F (t))F 00 (t)

(F 0 (t))2
= � � 1;

then F is in the domain of attraction of H:

Remark 1.10 Under 1.9 we have 1.5 with bn = U (n) and an = nU 0 (n) = 1= (nF 0 (bn)) :

Theorem 1.7

1. For  > 0; suppose xF =1 and F 0 exists. Then, if

lim
t!1

tF 0 (t)

1� F (t)
=
1


;

for some positive ; then F is in the domain of attraction of H:
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2. For  < 0; suppose xF =1 and F 0 exists for x < xF : Then, if

lim
t"xF

(xF � 1)F 0 (t)
1� F (t)

=
�1

;

for some negative : then F is in the domain of attraction of H:

For the proofs and more details on this issue, one may consulte de Haan ana Ferreira

(2006) [20] (see page 15).

Theorem 1.8 The distribution function F is in the domain of attraction of the extreme

value distribution D (H) if and only if

1. for  > 0 : F (x) < 0 for all x;
R1
1
[(1� F (x))=x] dx <1; and

lim
t!1

R1
t
(1� F (x)) dx

x

1� F (t)
= : (1.10)

2. for  < 0 : there is xF <1 such that;
R xF
xF�t [(1� F (x))= (xF � x)] dx <1; and

lim
t#0

R xF
xF�t (1� F (x)) dx

xF�x

1� F (xF � t)
= �: (1.11)

3. for  = 0 :
R xF
x

R xF
t
(1� F (s)) dsdt < 1 (here the right endpoint xF may be �nite

or in�nite) and

lim
t"xF

(1� F (x))
R xF
x

R xF
t
(1� F (s)) dsdt�R xF

x
(1� F (s)) ds

�2 = 1: (1.12)

Remark 1.11 Limit 1.10 is equivalent to

lim
t!1

E (logX � log t j X > t) = :
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In fact,

lim
t!1

R1
t
(1� F (x)) dx

x

1� F (t)
= lim
t!1

E (logX � log t j X > t) ;

since Z 1
t

(log x� log t) dF (x) =
Z 1
t

(1� F (x))
dx

x
:

Relation 1.10 will be the basis for the construction of the Hill estimator of : Similarly,

1.11 can be interpreted as

lim
t#0
E (log (xF �X)� log t j X > xF � t) = ;

which will be the basis for the construction of the negative Hill estimator and 1.12 is

equivalent to

lim
t"xF

E
�
(X � t)2 j X > t

�
E2 (log (X � t) j X > t)

= 2;

and this relation leads to the moment estimator of : In chapter 2 of estimation of para-

meters we de�ned the estimators of :

For the proofs see [20]. Now in following, we shall establish necessary and su¢ cient

condition for a distribution function F to belong to one of the three domains of attraction

of Fréchet, Gumbel and Weibull.

1.8.1 Domain of attraction of Fréchet

The result below stated in Gnedenko (1943) and we �nd a demonstration in Resnick

(1987).

Theorem 1.9 For the endpoit xF ; a df F is belonging to domain of attraction of Fréchet

D (H) ;  > 0 i¤ xF =1 and F is regularing variation with index �1= at in�nity i.e :

lim
z!1

F (xz)

F (z)
= x�1=: (1.13)
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The normalised constants are

an = U (n) = F (1� 1=n) and bn = 0; 8n > 0

Remark 1.12

1. From the proposition (existe slowly function g(x) = xl(x)) we have that

F 2 D (H) ;  > 0 () F (x) = x�1=l (x) ;

where l is a slowly regular variation function at in�nity.

2. For any s 2 (0; 1) ; Q (1� s) = F (1=s) : The equation 1.13 is iquivalent to Q (1� :) 2

RV 0
� ie : Q (1� s) is a rugular variation function at 0 with index � and

Q (1� s) = s�l (1=s) ;

sutch that l is a slowly regular variation function at in�nity (l 2 RV0) ; and the tail

quantile function U is regularly varying with index  at in�nity (U 2 RV) :

3. From 1.13, F 2 RV�1=;  > 0; then the representation of karamata we have that

F (x) = c (x)x�1=l (x)

�Z x

1

r (t) t�1dt

�
; x < xF ;

where lim
t!1

c (t) = c0 2 ]0;1[ and lim
t!1

r (t) = 0:

1.8.2 Domain of attraction of Weibull

The result in following shows that we can pass from the domain of attraction of Fréchet

to that of Weibull by a simple change in the distribution function (see Gnedenko (1943)

[52] or Resnick (1987) [78]).
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Theorem 1.10 For the endpoit xF ; a df F is belonging to domain of attraction of Weibull

D (H) ;  < 0 i¤ xF <1 and the df F � de�ned as

F � (x) =

8><>: 0 if x � 0;

F (xF � 1=x) if x > 0:

is belonging to domain of attraction of Fréchet with index � > 0 at in�nity i.e : F
�

is a regular variation function with index 1= at in�nity (F
� 2 RV1=). In this case the

normalised constants are

an = xF � F (1� 1=n) and bn = xF ; 8n > 0:

For the proof of this theorem we refer to Resnick and al. (1987) [78], proposition1.13 or

to Embrechts and al. (1997) [32], Théorème3.3.12.

1.8.3 Domain of attraction of Gumbel

The following result is prouved in Resnick and al. (1987) [78].

Theorem 1.11 For the endpoit xF ; a df F is belonging to domain of attraction of Gumbel

D (H) ;  = 0 i¤ exists a reel z < xF � 1 sutch that

F (x) = c (x) exp

�
�
Z x

z

g (t)

a (t)
dt

�
; z < x < xF ; (1.14)

where c and g are positive measurable functions and such that

lim
x!xF

c (x) = c > 0 and lim
x!xF

g (x) = 1;

and a a positive and absolutely continuous function (with respect to Lebesgue measure)
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with density a0 with lim
x!xF

a0 (x) = 0: In this case we can choose

an = U (n) = F (1� 1=n) and bn = a (an) ; 8n > 0;

as norming constants. A possible choice for the function a is

a (x) =

Z xF

x

F (t)

F (x)
dt; x < xF : (1.15)

Remark 1.13 The function a de�ned in 1.15 is named auxiliary function and the function

F de�ned in 1.14 is named von Mises function with auxiliary function a.

In the following table 1.1 some examples of laws from the three domains of attraction

Frechet Gumbel Weibull
Tail index  > 0  = 0  < 0

Laws Cauchy Normale Uniforme
Pareto Exponentielle Beta
Student Lognormale
Burr Gamma
Loggamma Weibull

Table 1.1: Some examples of laws from the three domains of attraction

1.8.4 General Characterizations

The following results gives general characterizations of three domains of attraction on this

issue, one may consulte [20].

Theorem 1.12 For  2 R; the following assertions are equivalent.

� F 2 D (H) :
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� For some positive function a; for x > 0

lim
t!1

U (tx)� U (t)

a (t)
=

8><>:
x�1


if  6= 0;

log x if  = 0:
(1.16)

� For some positive function b; for x > 0 with (1 + x) > 0

lim
t!xF

F (t+ xb (t))

F (t)
=

8><>: (1 + x)�1= if  6= 0;

exp (�x) if  = 0;

sutch that b (t) = a
�
1=F (t)

�
:

� For some positive function ea (t) = a (1=t) ;

lim
t!0

Q (1� sx)�Q (1� s)ea (t) =

8><>:
x��1


if  6= 0;

log x if  = 0:

Suppose U (1) > 0; the condition 1.16 yields

lim
t!1

U (tx)� U (t)

a (t) =U (t)
=

8><>:
x�1


if  < 0;

log x if  � 0:
(1.17)

In Dekkers and al. (1987), the result 1.17 is used to proposed the moments estimator of

parameter :

Proposition 1.7 For  2 R; F 2 D (H) i¤ for any x > 0; y > 0 and y 6= 1;

lim
t!1

U (tx)� U (t)

U (ty)� U (t)
=

8><>:
x�1
y�1 if  6= 0;
log x
log y

if  = 0:
(1.18)
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Chapter 1. Extreme values

This Proposition is used for construction the Pickands estimator of : For the proofs of

this results, see Embrechts et al. (1997) [32].
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Chapter 2

Tail index, extreme quantile and

second-order parameter estimation

2.1 Introduction

In this chapter we interested to the tail index parameter, extreme quantile and second-

order parameter estimation. In the following we de�ned some estimators (in semi para-

metric estimation) constructed under maximum domain of attraction conditions. That is,

we set X1; X2; :::; Xn be iid random variables with distribution function F 2 D (H) i.e.

lim
t!1

F (xt)

F (t)
= x�1=; x > 0: (2.1)

and let X1:n; X2:n; :::; Xn:n be the nth order statistics. The sample fraction k = kn being a

(random) sequence of integers such that,

kn !1 and kn=n! 0 as n!1:
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Chapter 2. Tail index, extreme quantile and second-order parameter estimation

2.2 Tail index estimation

There is many estimators for the tail index ; a simple one is Hill�s (1975) estimator for  >

0; Pickands (1975) and a Moment estimator in general case where  2 R; the Maximum

Likelihood Estimator for  > �1=2; and other estimators like the Probability-Weighted

Moment Estimator ( < 1) ; the Negative Hill Estimator ( < �1=2) : We interested only

in this section with Hill estimator, Pickand�s, Moment estimator and Probability-Weighted

Moment Estimator. For more details on this issu see de Haan ana Ferreira (2006) [20].

2.2.1 Hill�s estimator ( > 0)

In this case the parameter � := 1= > 0 is called the tail index of F; an equivalent form

of the condition 2.1 is :

lim
t!1

R1
t
x�1F (x) dx

F (t)
= :

Now partial integration yields

Z 1
t

x�1F (x) dx =

Z 1
t

(log s� log t) dF (s) :

Hence we have

lim
t!1

R1
t
(log s� log t) dF (s)

F (t)
= :

Then by remplaced the parameter t by the kth order statisticXn�k:n and F by the empirical

distribution function Fn we obtain the Hill�s (1975) estimator b(H)n de�ned [60].

De�nition 2.1 (Hill�s estimator ( > 0))

b(H)n = b(H)n (k) :=

R1
Xn�k:n

(log s� logXn�k:n) dFn (s)

F (Xn�k:n)
;

or

b(H)n :=
1

k

kX
i=1

logXn�i+1:n � logXn�k:n:
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Chapter 2. Tail index, extreme quantile and second-order parameter estimation

This estimator is only applicable in case the EVI  is known to be positive, which corre-

sponds to distributions belonging to the Frechet type domain of attraction.

Hill�s estimator is usual and easy to explain. It can be derived through several other

approaches (see Embrechts et al.(1997) [32] p. 330). In [60], Hill did not investigate the

asymptotic behavior of the estimator.

Mason who proved the weak consistency in (1982) [67], The strong consistency was proved

by Deheuvels, Hausler and Mason (1988) in [24] who gave an optimal rate of convergence

for an appropriately chosen sequence kn. The a symptotic normality was established, under

some extra condition on F , by Csörg½o and Mason [17] and Hausler and Teugels [61] in

(1985). Recently, Beirlant, Bouquiaux and Werker in (2006) [2] derived a local asymptotic

normality result showing that the asymptotic variance of Hill�s estimator attains a lower

bound.

The asymptotic properties of Hill�s estimator are summarized in the following theorem.

Theorem 2.1 (Asymptotic properties of b(H)n ) Assume that F 2 D
�
�1=

�
(is be-

longing to the domain of attraction of Frechet ) i.e. F satis�ed the condition 2.1, then

for  > 0; k := kn !1 and k=n! 0 as n!1:

1. For the weak consistency,

b(H)n
P!  as n!1:

2. For the strong consistency, if k= log log n!1 as n!1; then

b(H)n
a:s:!  as n!1:

3. For the symptotic normality, assume that F satis�es the second order regular vari-
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Chapter 2. Tail index, extreme quantile and second-order parameter estimation

ation assumption that de�ned in subsection (1:7:2), i.e., for x > 0;

lim
t!1

U (tx) =U (t)� x

A (t)
= x

x� � 1
�

;

or equivalently,

lim
t!1

F (tx) =F (t)� x�1=

A
�
1=F (t)

� = x�1=
x�= � 1
�

;

where  > 0; � � 0; and A is a function with lim
t!1

A (t) = 0: Then, if
p
kA (n=k)!

� <1 as n!1;
p
k
�b(H)n � 

�
! N

�
�

1� �
; 2
�
:

2.2.2 Pickands estimator

This estimator is simplest and oldest estimator for ; was introduced in 1975 by J. Pickands

in [75] for any  2 R; and thus it can be used to estimate the shape parameter of any

one of the three types of extreme value distributions. But, as it is rather unworkable in

practise for small or moderate samples, several re�nements were introduced mainly by

Drees (1996) in [30]. The derivation of the estimator is based on an equivalent condition

to F 2 D (H) ; namely assertion 1.18 in proposition 1.5 which for x = 2 and y = 1=2

yields

lim
t!1

U (2t)� U (t)

U (t)� U (t=2)
= 2:

Furthermore, for any positive function c such that limt!1 c (t) = 2; we have that

lim
t!1

U (c (t) t)� U (t)

U (t)� U (t=c (t))
= 2:

The basic idea now consists of constructing an empirical estimator using this formule. To

that e¤ect, let the ordered (Y1:n; Y2:n; :::; Yn:n) from a standard Pareto rv Y i.e. the df is

de�ned by

F (y) = 1� 1
y
; for any y � 1:
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Chapter 2. Tail index, extreme quantile and second-order parameter estimation

In the fact that
k

n
Yn�k+1:n

P! 1 and
Yn�k+1:n
Yn�2k+1:n

P! 2; as n!1;

see e.g., [35], yields
U (Yn�k+1:n)� U (Yn�2k+1:n)

U (Yn�2k+1:n)� U (Yn�4k+1:n)
= 2:

Finally, we use the distributional identity

Xn�i+1:n
d
= U (Yn�i+1:n) ; i = 1; 2; :::; n

we get the following de�nition of the Pickands estimator b(P )n .

De�nition 2.2 (Pickand�s estimator ( 2 R))

b(P )n = b(P )n (k) := (log 2)�1 log
Xn�k:n �Xn�2k:n

Xn�2k:n �Xn�4k:n
:

In the following theorem the consistensy and asymptotic normality of b(P )n :

Theorem 2.2 (Asymptotic properties of b(P )n ) Assume that F 2 D (H) ;  2 R;

k := kn !1 and k=n! 0 as n!1:

1. For the weak consistency,

b(P )n
P!  as n!1:

2. For the strong consistency, if k= log log n!1 as n!1; then,

b(P )n
a:s:!  as n!1:

3. For the asymptotic normality, suppose that U has a positive derivative U 0 and that

�t1�U 0 (t) (with either choice of sign) is satis�es the second order regular variation

assumption at in�nity with auxiliary function a: If k = o (n=g (n)) ; where g (t) :=
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Chapter 2. Tail index, extreme quantile and second-order parameter estimation

t3�2 (U 0 (t) =a (t))2 ; then

p
k
�b(P )n � 

�
! N

�
0; �2

�
as n!1;

where

�2 :=
2 (22+1 + 1)

(2 (2 � 1) log 2)2
:

2.2.3 Moment estimator

This estimator has been introduced as a direct extension or generalization of the Hill

estimator by Dekkers and al. (1989) in [26], that is similar to the Hill estimator but one

that can be used for general case of  ( 2 R) : Before stating the de�nition of the Moment

estimator, we reminde on the following statistics

M (�)
n =M (�)

n (k) :=
1

k

kX
i=1

[log (Xn�i+1:n)� log (Xn�k:n)]
� ; (2.2)

then, for � = 1; 2 we obtains M (1)
n and M (2)

n as empirical moments (of (logX)� calculated

at the threshold t = log (Xn�k:n) respectively of the 1st order moment and the 2th order

moment ) and with them we can proposed the Moment estimator b(M)
n of  as in the

following de�nition.

De�nition 2.3 (Moment estimator ( 2 R))

b(M)
n = b(M)

n (k) :=M (1)
n + 1� 1

2

0B@1�
�
M

(1)
n

�2
M

(2)
n

1CA
�1

:

Remark 2.1 Notice that, the case of � = 1 in 2.2 yields Hill�s estimator b(H)n .

After that we go to the asymptotic properties of the estimator b(M)
n :
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Theorem 2.3 (Asymptotic properties of b(M)
n ) Assume that F 2 D (H) ;  2 R;

k := kn !1 and k=n! 0 as n!1:

1. For the weak consistency,

b(M)
n

P!  as n!1:

2. For the strong consistency, if k= (log n)� !1 as n!1; for some � > 0; then

b(M)
n

a:s:!  as n!1:

3. For the symptotic normality,

p
k
�b(M)
n � 

�
! N

�
0; �2

�
as n!1;

where

�2 :=

8><>: 1 + 2;  � 0;

(1 + 2)
2
(1� 2)

�
4� 81�2

1�3 +
(5�11)(1�2)
(1�3)(1�4)

�
;  < 0:

For the the symptotic normality of b(M)
n see Theorem 3.1and Corollary 3.2 of [26]. For

more details on the moment estimator, we re¤er to [23].

2.2.4 Kernel type estimators

In the kernel estimation method, K, Csörg½o, Deheuvels and Mason (1985) [16] proposed a

smoother version of Hill�s estimator and proved its consistency and asymptotic normality.

For de�ne the Kernel type estimators denoted by b(CDM)
n or by b(K)n ; suppose that there

is a function K (named kernel function) satis�es :

1. K (x) � 0 for 0 < x <1 (non-negative),
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2. K (:) is non-increasing and right continuous function on (0;1) ;

3.
R1
0
K (x) dx = 1;

4.
R1
0
x�1=2K (x) dx <1:

De�nition 2.4 (Kernel type estimators)

b(K)n = b(K)n (h) :=

Pn�1
i=1

�
i
nh

�
K
�
i
nh

�
(logXn�i+1:n � logXn�i:n)R 1=h

0
K (x) dx

;

or (by remplacing
R 1=h
0

K (x) dx whith (nh)�1
Pn

i=1K
�
i
nh

�
because the both are the same),

b(K)n =

Pn�1
i=1

�
i
nh

�
K
�
i
nh

�
(logXn�i+1:n � logXn�i:n)

(nh)�1
Pn

i=1K
�
i
nh

� (2.3)

where h > 0 is called bandwidth or parameter of smoothing.

Remark 2.2 Notice that, using the uniform kernel K = I (0; 1) and h = k=n in 2.3 yields

Hill�s estimator b(H)n as a special case.

Remark 2.3 There are many examples for the kernel function K; we reminded of some

kernel functions in the table 2.1.

The name of kernel function The formula

Biweight K (s) := 15
8
(1� s2)

2 If0�s<1g
Triweight K (s) := 35

16
(1� s2)

3 If0�s<1g
Gaussian K (s) := 1p

2�
e�

1
2
s2

Table 2.1: Some example for the kernel function

The Kernel type estimators b(K)n depends in a continuous way on the bandwidth h rep-

resenting the proportion of top order statistics used. Under some additional conditions

on the kernel K Csörg½o and al. (1985) proved its consistency and asymptotic normality

of their Kernel type estimators and for a discussion of these conditions we refer to [16].
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Under von Mises�s condition, the kernel tail index estimators of Csörg½o and al. (1985)

have been generalized by Groeneboon and al. (2003) in [46] for all real tail indices. Weak

consistency and asymptotic normality of their kernel estimators have been established.

In [70] (A functional law of the iterated logarithm for kernel-type estimators of the tail

index), Necir present a characterization of the almost sure behavior of these estimators

and they show their strong consistency.

2.2.5 Probability-weighted moment estimator

This estimator is only applicable on the case that  < 1; First let us consider the

probability-weighted moment estimator of Hosking and Wallis (1987) in [56]. The start-

ing point is the observation that if Y is a random variable with a generalized Pareto

distribution, i.e., with distribution function

H;� (x) := 1�
�
1 +

x

�

��1=
; 0 < x <

�

0 _ (�) ;

where � > 0 and  are real parameters, then for  < 1;

EY =

Z �=0_(�)

0

H;� (x) dx =
�

1� 
; (2.4)

then, de�ne which can be called a probability-weighted moment as follows :

E
�
Y
�
H;� (Y )

��
=

Z �=0_(�)

0

H
2

;� (x) dx =
�

2 (2� )
: (2.5)

By solving relations 2.4 and 2.5 obtain

 =
EY � 4E

�
Y
�
H;� (Y )

��
EY � 2E

�
Y
�
H;� (Y )

�� (2.6)
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and

� =
2 (EY )E

�
Y
�
H;� (Y )

��
EY � 2E

�
Y
�
H;� (Y )

�� : (2.7)

Then, for independent and identically distributed random variables X1; X2; :::; Xn with

distribution function F and suppose that F is in the domain of attraction of an extreme

value distributionD (H) : X1:n; X2:n; :::; Xn:n are the corresponding order statistics, let the

intermidiate Xn�k:n where k := kn ! 1 and k=n ! 0 as n ! 1: Finally, for de�ne the

Probability-weighted moment estimator we need to de�ne the following empirical statistics

Pn :=
1

k

kX
i=1

logXn�i:n � logXn�k:n;

Qn :=
1

k

kX
i=1

i

k
logXn�i:n � logXn�k:n:

For the construction of Pn and Qn read de Haan ana Ferreira (2006) [22].

De�nition 2.5 (Probability-weighted moment estimator ( < 1))

b(PWM)
n = b(PWM)

n (k) :=
Pn � 4Qn
Pn � 2Qn

= 1�
�
Pn
2Qn

� 1
��1

:

Theorem 2.4 Proposition 2.1 (Asymptotic properties of b(PWM)
n ) Assume that F 2

D (H) ;  < 1; k := kn !1 and k=n! 0 as n!1:

1. For the weak consistency,

b(PWM)
n

P!  as n!1:

2. For the symptotic normality, If F satis�es the second-order condition with  < 1=2;

and lim
n!1

p
kA (n=k)! � <1 as n!1; then

p
k
�b(PWM)
n � 

�
! N (E;M) as n!1;
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where E is the mean vector


(1���)(2���) ((1� ) (2� ) ;��) ; � < 0;

� (1; 0) ;  6= � = 0;

�
�
1;�1

2

�
;  = � = 0;

and M is the covariance matrix0B@ (1�)(2�)2(1�+22)
(1�2)(3�2)

(2�)(�2+6�72+23)
(1�2)(3�2)

(2�)(�2+6�72+23)
(1�2)(3�2)

31�94+1022�1263+1444�805+166
(1�2)(3�2)

1CA :

For 1=2 <  < 1 the convergence of b(PWM)
n to  is slower than that for  < 1=2; and for

the proove or more details see de Haan ana Ferreira (2006) [20]. Hosking and Wallis (1987)

in [56] derive a simple method of moments to estimate  and �; but this only works if

 < 1=2. They also apply a variant with probability weighted moments (PWM) and �nd

that the corresponding EVI estimator is a good alternative to the Maximum Likelihood

estimator for  < 1:

2.3 Choice of optimal number of extremes kn

The results of estimation of the extreme values are asymptotic: they are obtain as kn !1

and kn=n ! 0: Then, using too many data, in the estimation procedure, results in a

substantial bias whereas using too few observations leads to a considerable variance. For

this, it is necessary to make a trade-o¤ between bias and variance by the choice of optimal

number of extremes. We refer to Meraghni-thesis [69] for more details in this section.
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2.3.1 Graphical method

This method is the more simple to make an optimal choice of k := kn; consists of using

the plot

f(k; bn (k)) : 1 � k < ng :

Some other graphical procedures for selecting an optimal kn value are extensively discussed

and compared in Sousa (2002) [83] (a good reference for the interested reader) where the

author introducesa new method which he calls the Sum plot. Then, the graphical should

choose the optimal kn (noted kopt) in the �rst region where the plot of the estimator bn (k)
is roughly horizontal. For an illustration see 2.1, where it seems that any kn between 80

and 100 would be a good choice.

Figure 2.1: Plot of Hill�s estimator, for the EVI of a standard Pareto distrubution, as a
function of the number of top statistics, based on 100 samples of size 3000: The horizontal
line represents the true value of the tail index.
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2.3.2 Method bassed on the mean squared error

This is an outher method in the choice of optimal number of extremes kopt; it is based on

the minimisation of the asymptotic mean of squared error of the estimator bn (k) (AMSE),

that is de�ned by

AMSE (bn (k)) := E1
�
(bn (k)� )2

�
;

where E1 is the mathematical expectation corresponding to the asymptotic distribution.

It is therefore easy to assume that the mean squared error of bn (k) that is a function of k is
equal to bias squared plus variance. for any classical estimator, for a precise estimate and

an accurate estimation of the tail index , it is necessary to make a trade-o¤ between bias

and variance. It seems reasonable that a minimization of the AMSE makes it possible to

�nd an intermediate value between the components of the bias and the variance for this

compromise. That is, the optimal choice of k; denoted by kopt; corresponds to the smallest

AMSE; this optimal number of extremes kopt de�ned by

kopt := argmin
k

AMSE (bn (k)) :
2.3.3 Numerical procedure

This method is proposed because the process of choosing kopt is made di�cult by the fact

that the latter does not exclusively depend on the sample size and the index but it also

depends upon unknown features (the second order parameter � among others) of the under-

lying df F: En e¤et, for example we used the theorem 2.1 the asymptotic mean of squared

error of the Hill estimator b(H)n (k) is AMSE
�b(H)n (k)

�
:= AMSE

�b(H)n (k) ; A (n=k) ; �
�

de�ned by

AMSE
�b(H)n (k)

�
=
2

k
+

 
A
�
n
k

�
1� �

!2
:
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To overcome this hurdle, a large variety of algorithms and data-adaptive procedures of

computing consistent estimate bkopt for kopt in the sense that bkopt satisfes as n!1

bkopt
kopt

P! 1:

The estimator of the tail index correspond b(H)n

�bkopt� is asymptotically as e¢ cient asb(H)n (kopt) : There are many papers dealing with this issue of selecting the optimal fraction

of top statistics to be used when estimating an EVI and we refer to Hall and Welsh (1985)

[53]; Reiss and Thomas (1997) [76] and Cheng Peng (2001) [14]: Since we are used in

this thesis the algorithm of Reiss and Thomas (1997) (see [76] page 137) in the choice of

optimal number of extremes kopt, then, we just remind of them.

Reiss and Thomas approach

This approach based of choosing the adequate number of highest observations on mini-

mizing a mean distance summing up a penalty term in [76]. More precisely, they propose

an automatic manner to choose k by minimizing

1

k

X
i�k

i� jbn (i)�med (bn (1) ; :::; bn (k))j ; 0 � � � 1=2;

or the following suggested modi�cation

1

k � 1
X
i<k

i� (bn (i)� bn (k))2 ; 0 � � � 1=2:

The performance of this methodology is discussed and evaluated by Neves and Fraga Alves

in [72] by substantially reducing the domain of variation of the weight � of the penalty term

i�; considering Hill�s and the moment estimators. Depending on the prior information one

might have about the value of the EVI, the authors provide, for each estimator, suitable

values of � and indicate which expression (out of the two above) to minimize. On the light

of a thorough simulation study they come up with the overall conclusion that the most
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proper choice for � is 0. A fully detailed list of all possible combinations, with particular

�-values, is to be found in [72]. The latter reference also contains a brief discussion with

summarized results of the methods of Dekkers and de Haan [27] and de Haan and Peng

[21]. For more details in numerical procedure see thesis of Pr. Meraghni (2008) in [69]

page 63.

2.4 Quantile extreme estimation

In this section, we are interested in estimating the quantile extreme of order p 2 (0; 1)

corresponds to p is close to 0: the quantile of order 1 � p (or (1� p)-quantile) of df F is

de�ned by

xp := F (1� p) = Q (1� p) = U (1=p) :

For a sample (X1; X2; :::; Xn) withdrawn from a df F; p must depend on the sample size n

i.e., p =: pn: There are two cases possible for xp :

� The �rst situation where pn ! 0 with npn ! c 2 [1;1] as n ! 1 the quantile of

order 1� p is within the sample.

� The other situation is pn ! 0 with npn ! c 2 [0; 1) as n!1 the quantile of order

1� p is outside the sample.

In other words, the with in-sample estimation is possible up to the quantile of order 1=n

where as for p < 1=n; quantile estimates are beyond the range of the data. The latter case

is the most relevant for purposes of real-life applications.

In the �rst case the natural estimator of (1� pn)-quantile is the order statistic Xn�i+1:n

with pn = (i� 1) =n. En e¤et, for s = 1� pn

Qn

�
1� i� 1

n

�
= Xn�i+1:n; for i =; 2; :::; n:
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For the other case there are many estimation based on the estimating of the tail index.

2.4.1 Approach based on a positive index estimator

Weissman in 1978 provided the classic semi-parametric extreme quantile estimator where

de�ned by

bxWkn (pn) := Xn�kn:n

�
kn
npn

�bkn
where bkn is some consistent positive index estimator of ; if we remplace bkn by bHkn the
Hill estimator, we get (the Weissman-Hill estimator) in [86] the well know estimator of

the extreme quantile x (pn) ; which is de�ned by

bxW�Hkn
(pn) := Xn�kn:n

�
kn
npn

�bHkn
:

The asymptotic properties of this estimator are discussed and con�dence intervals con-

structed under some conditions on F; kn and pn in, e.g. [32], [68], [38] and [66].

Frederico Caeiro and Dora Prata Gomes (2015) in [11] proposed Pareto Log Probability

Weighted Moment (PLPWM) estimator in the semi- parametric estimation of extreme

quantiles of a right heavy-tail model; which is de�ned as the following form:

bxPLPWM
kn (pn) :=

�
kn
npn

�bPLPWM
kn

exp

(
1

k

kX
i=1

�
4
i� 1
k � 1 � 1

�
lnXn�i+1:n

)
; kn = 2; :::; n

where

bPLPWM
kn :=

1

k

kX
i=1

�
2� 4 i� 1

k � 1

�
lnXn�i+1:n

bPLPWM
kn

is the PLPWM estimator of : For the asymptotic results of the estimators see

[11].
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2.4.2 Approach based on a negative index estimator

For  < 0: If we use the Pickands estimator bPkn ; we get the estimator bxPkn (pn) which is
derived in [25] by Dekkers and de Haan (1989); it is de�ned as following

bxPkn (pn) := Xn�kn+1:n + (Xn�kn+1:n �Xn�2kn+1:n)
(kn=npn)

bPkn � 1
1� 2�bPkn :

For more details, several asymptotic results and examples see [26].

2.4.3 Approach based on any index estimator

By using the estimator of moments, Dekkers and al (1989) proposed an estimate of x (pn) =

U (1=pn) pour pn ! 0 as following:

bxMkn (pn) := Xn�kn:n +Xn�kn:nbHkn max �1� bMkn ; 1�� kn
npn

�bMkn
:

Asymptotic results are established in [26] provided conditions on F; kn and pn.

2.5 Second order parameter estimation

The theory of extreme values establishes that the asymptotic law of the normalised max-

imum Xn:n = max (X1; X2; :::; Xn) is given by

G (x) = exp
�
� (1 + x)+

��1=
where y+ = max (y; 0) : The unknown parameter  2 R is called the extreme value index

or a tail index. Note that  is the parameter of importance in the theory of extreme

values, it controls the behavior of the queue to the �rst order. The larger the ; the larger

the tail, it controls the heaviness of the tail of this distribution. Several estimators have

been proposed in the statistical literature and their asymptotic distributions have been
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established from a second-order condition given by 1.7 or 1.8, that they are respectively

equivalent to

lim
t!1

log
�
F (tx)

�
� log

�
F (t)

�
� �1 log x

A� (t)
=
x� � 1
�

:

and

lim
t!1

log (U (tx))� log (U (t))�  log x

A (t)
=
x� � 1
�

:

This parameter is of practical relevance in extreme value analysis due its crucial importance

in selecting the optimal number of upper order statistics k in tail index estimation (see, e.g.,

[20]) and the estimator of � is also used for the reduction of the bias of the estimators of the

index of extreme values (see for example [47] and [13]), or for Weibull�s tail coe¢ cient, in

[29], even if the bias reduction is obtained with the canonical choice � = �1; as is suggested

in [39]. In the case of complete data, this problem has received a lot of attention from

many authors like, for instance, [73], [36], [46], [74], [50], [87], [89], [28], [53] and [14].

In the case of censored data this issue is addressed recently in [4] by considering the

adapted tail index estimator introduced by [31].

Inspired by the paper of [46], we propose an estimator for � adapted to the random right-

truncation case in the chapter four.
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Chapter 3

Incomplete data

In lifetime data, truncation and censoring occur quite naturally and the estimationin this cases is very important. For this, our work deals with incomplete data,

and in order to make the thesis easier to read, we give some de�nitions and examples of

the incomplete data, i.e. truncated or censored data. There are three general types of

censoring and of truncating: right, left and interval. In this thesis our motivation is based

on the right truncation.

3.1 Censored data

In this section, we will focus on discussing censored data. The phenomenon of censorship

is linked to the disturbing events which may occur in the time required for the collection of

data. Subsequently, censoring is when an observation is incomplete due to some random

case. The cause of the censoring must be independent of the event of interest if we are

to use standard methods of analysis. So, When a data set contains observations within a

restricted range of values, but otherwise not measured, it is called a censored data set.

De�nition 3.1 The censoring variable Y is de�ned by the non-observation of the studied

event. if instead of observing X; we observe Y; and we know that X > Y (respectively
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X < Y , Y 1 < X < Y 2), we say that there is right censoring (respectively left censoring,

interval censoring).

3.1.1 Types of censoring

In the literature we �nd the following types:

Type 1: �xed censoring

The experimenter �xes a value (a date for example non-random end of experience). For

example, in epidemiology, the maximum duration of participation is �xed and, for each

observation, the di¤erence between the end of experience and the date of the patient�s

entry into the study. The number of events observed is, on the other hand, random.

Let Y be a �xed value. For example, in the right censoring, instead of observing the

variables X1; :::; Xn which are of interest to us, we observe Yj when it is less than or equal

to a �xed duration Y: We observe a variable Zj where Zj := min (Xj; Yj), j = 1; 2; :::; n:

This mechanism of censorship is frequently encountered in industrial applications.

Type 2: censorship waiting

The experimenter �xes a priori the number of events to be observed. The end date of the

experiment then becomes random, the number of events being non-random. This model

is often used in reliability and epidemiology studies. For example, in epidemiology, it is

decided to observe the survival durations of the n patients until r (1 � r � n) of them

deceaded and stop the study at that time. Let Xj:n and Zj:n be the order statistics of

variables Xj and Zj. The date of censorship is therefore Xr:n and one observes

8><>: Zj:n = Xj:n, if j � r;

Zj:n = Xj:n, if j � r:

Type 3: random censoring

It is typically this model that is used for therapeutic trials. In this type of experiment,
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the date of inclusion of the patient in the study is �xed, but the end of observation date is

unknown (this corresponds, for example, to the patient�s hospital stay). Let X1; :::; Xn be

a sample of a positive rv X; we say that there is random censoring of this sample if there

exists another positive rv Y of sample Y1; :::; Yn in this case instead of observing the Xj;

observe a couple of rv (Zj; �j) with

Zj := min (Xj; Yj) ; and �j := 1 (Xj � Yj) for j = 1; 2; :::; n; (3.1)

where �j is named the indicator of censore, which determines whetherX has been censored

or not:

If �j = 1 the duration of interest is observed (Zj = Xj)

If �j = 0 it is censored (Zj = Yj). There are incomplete durations.

Censored data can be further classi�ed into three categories: right censoring, left censoring

and interval censoring, as follows:

3.1.2 Right censoring

The variable of interest is said to be censored to the right if the individual concerned has

no information about his last observation. Thus, in the presence of the right censoring,

the variables of interest are not observed all.

A typical example is where the event considered is the death of a sick patient and the

duration of observation is a total duration of hospitalization. This phenomenon is also

found in reliability studies when the failure of an electronic device or component does not

allow observation to continue for another device or component.

These kinds of phenomena can also be found in hydrology, rainfall, etc. The experimenter

can set an end-of-experience date and observations for individuals for whom the event of

interest has not been observed before this date will be censored on the right.
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3.1.3 Left censoring

There is left censoring when the individual has already su¤ered the event before it is

observed. It is known only that the variable of interest is less than or equal to a known

variable. For example, if a certain electronic component is to be reliably studied, which

is connected in parallel with one or more other components: the system can continue to

function, albeit aberrantly, until this fault is detected (for example during a check or when

the system is shut down). Thus, the duration observed for this component is censored on

the left. In life there are several phenomena which present both censored data on the right

and on the left.

Remark 3.1 We say that we have double or mixed censorship if we have censored data

on the right and censored data on the left in the same sample, see Lawless (2002) page 66

in [65].

3.1.4 Interval censoring

In this case, as its name indicates, we observe both a lower bound and an upper bound of

the variable of interest. This model is generally found in medical follow-up studies where

patients are monitored periodically if a patient does not show up for one or more controls

and then presents himself after the event of interest has occurred. We also have this kind

of data that is censored on the right or, more rarely, on the left. An advantage of this

type is that it makes it possible to present the censored data to the right or to the left by

intervals of the type [a;+1] or [0; a] respectively.

3.2 Truncated data

Censored data are not the only type of incomplete data. The other classic case of incom-

plete data is that of the so-called truncated data.The truncated data are frequently used
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on the life time study. Some examples of truncated data from astronomy and economics

can be found in Woodroofe (1985) [88] and for applications in the analysis of AIDS data,

see Wang (1989) [85]. In reliability, are al data set, consisting in life times of automobile

brake pads and already considered by Lawless (2002) in [65] page 69, was recently analyzed

in Gardes and Stupfer (2015) [42] as an application of randomly truncated heavy-tailed

models.

The phenomenon of truncation is very di¤erent from censorship. Truncation is not un-

common for the variable of interest X not to be observable when it is less than a random

threshold Y:

De�nition 3.2 Truncation eliminates from the study a part of the X 0js of the variable of

interest X and suppose a random threshold Y , the analysis in this case can only relate to

the conditional law of X where X > Y:

There are three types of truncation: left (X > Y ), right (X < Y ) and interval (Y1 < X < Y2)

truncation de�ned as follows:

3.2.1 Left truncation

due to structure of the study design, we can only observe those individuals whose event

time is greater than some truncation threshold. As example, imagine you wish to study

how long people who have been hospitalized for a heart at tack survive taking some

treatment at home. The start time is taken to be the time of the heart at tack. Only

those individuals who survive their stayin hospital are able to be included in the study.

3.2.2 Right truncation

only individuals with event time less than some thre shold are included in the study. As

example, if you ask a group of smoking school pupils at what age they started smoking, you
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necessarily have truncated data, as individuals who start smoking after leaving schoolare

not included in the study.

3.2.3 Interval truncating

Or doubly truncated failure-time arises if an individual is potentially observed and only if

its failure-time falls within a certain interval,unique to that individual. Doubly truncated

data play an important role in the statistical analysis of astronomical observations as well

as in survival analysis.

3.3 Estimation in the case of incomplete data

When the empirical data is incomplete (truncated or censored), empirical estimators will

not produce good results. In this section we show the importante estimators of the distri-

bution function wish is used to estimate any statistics for example to estimate the mean,

tail index and quantiles.

3.3.1 Estimation under random right censoring model

There are two techniques available to determine the distribution function based on the

data. The Kaplan-Meier product limit estimator can be used to generate a survival distri-

bution function. The Nelson-Aalen estimator can be used to generate a cumulative hazard

rate function.

Let X1; :::; Xn be n (n � 1) independent copies of a non-negative random variable (rv)

X; de�ned over some probability space (
; A; P ); with continuous cumulative distribution

function (cdf) F . These rv�s are censored to the right by a sequence of independent copies

Y1; :::; Yn of a non-negative rv Y from some (censoring) d.f. G, being also independent

of X. Let f(Zj; �j) ; 1 � j � ng is a couple of rv observed and de�ned in 3.1. Let be Z
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from cdf H. This model is very useful in a variety of areas where random censoring is

very likely to occur such as in biostatistics, medical research, reliability analysis, actuarial

science,.... In the following we represent two types of df estimators.

Kaplan-Meier estimator

In the context of this randomly right censored observations, the nonparametric maximum

likelihood estimator of the survival distribution F is given in [63] by Kaplan and Meier in

(1958) as the product limit estimator de�ned by

bFn(x) :=
8>><>>:

1�
nY

Zi:n�x

h
1� �[i:n]

n�i+1

i
si x < Zn:n;

1 si x � Zn:n:

: (3.2)

where Z1:n � ::: � Zn:n denote the order statistics associated to Z1; :::; Zn and �[1:n]; :::; �[n:n]

is the associated concomitants, that is, �[i:n] = j if Zi:n = Zj. This estimator may be

expressed in the form of sum. This writing can be found in the book of Reiss and Thomas

[76] (page 162) as follows bFn(x) := nX
i=2

Wi:n1fx<Zn:ng

where for i = 2; :::; n;

Wi:n :=
�[i:n]

n� i+ 1

i�1Y
j=1

�
n� j

n� j + 1

��[j:n]
:

In the literature of survival analysis, many authors have been devoted to the study of the

asymptotic properties of the Kaplan-Meier estimator. For example, the uniform consis-

tency has been studied by Shorack et Wellner (1986) [80], Stute et Wang (1993) [81] and

Gill (1994) [45]. Asymptotic normality was studied by Breslow et Crowley (1974) [10],

Gill (1980) [43] et Gill (1983) [44].

In the last decade, several authors started to be interested in the estimation of tail index

along with large quantiles under random censoring as one can see in Gomes and Oliveira

(2003) [49], Beirlant et al.(2007) [3]; Einmahl et al.(2008) [31] and Worms and Worms
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(2014) [90]: Gomes and Neves (2011) [48] also made a contribution to this eld by providing

a detailed simulation study and applying the estimation procedures

Nelson-Aalen estimator

Here we consider the outher nonparametric estimator of cdf F , based on Nelson-Aalen

estimator (Nelson 1972 [71], Aalen 1976 [1]) of the cumulative hazard function

� (z) :=

Z z

0

dF (v)

F (v)
=

Z z

0

dH(1) (v)

H (v)

where H(1) (z) := P (Z1 � z; �1 = 1) =
R z
0
G (y) dF (y) ; z � 0:

A natural nonparametric estimator �n of � is obtained by replacing H and H(1) by their

respective empirical counterparts

Hn (v) := n�1
nX
i=1

1 (Zi � v) and H(1)
n := n�1

nX
i=1

�i1 (Zi � v)

pertaining to the observed Z-sample. Then, the Nelson-Alen estimator is de�ned by

�n (z) =

Z z

0

dH
(1)
n (v)

Hn (v)
:=

8><>:
Pn

Zj:n�z
�[j:n]
n�j+1 ; z < Zj:n;

1; z � Zj:n:

Under 1.3, F (z) = 1� exp f�� (z)g which by substituting �n for �; yields Nelson-Aalen

estimator of cdf F , given by

FNAn (z) =

8>><>>:
1�

nY
i:Zi:n�x

exp
n
� �[i:n]
n�i+1

o
; for z � Zn:n;

1; for z > Zn:n:

By considering samples of various sizes, Fleming and Harrington (1984) [34] numerically

compared Fn with Kaplan-Meier (non parametric maximum likelihood) estimator of F

(Kaplan and Meier, 1958), given in 3.2 and pointed out that they are asymptotically
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equivalent and usually quite close to each other. A nice discussion on the tight relationship

between the two estimators may be found in Huang and Strawderman (2006) [58].

3.3.2 Estimation under random right truncating model

In the truncated data, there are also two estimators of the distribution function one is

Woodroofe estimator and the other is Lynden-Bell. The following of the thesis is interested

to them.

Let (Xi;Yi) ; 1 � i � N be a sample of size N � 1 from a couple (X;Y) of independent

random variables (rv�s) de�ned over some probability space (
;A;P) ; with continuous

marginal distribution functions (df�s) F and G respectively. Suppose that X is truncated

to the right by Y; in the sense that Xi is only observed when Xi � Yi: This model of

randomly truncated data commonly �nds its applications in such areas like astronomy,

economics, medicine and insurance.

Let us now denote (Xi; Yi) ; i = 1; :::; n to be the observed data, as copies of a couple of

rv�s (X; Y ) ; corresponding to the truncated sample (Xi;Yi) ; i = 1; :::; N; where n = nN

is a sequence of discrete rv�s which, in virtue of the weak law of large numbers, satis�es

nN=N
P! p := P (X � Y) ; asN !1:

We shall assume that p > 0; otherwise, nothing will be observed. We denote the joint df

of X and Y by

H (x; y) := P (X � x; Y � y) = P (X � min (x;Y) ;Y � y j X � Y) ;

which is equal to p�1
Z y

0

F (min (x; z)) dG (z) : The marginal distributions of the rv�s X

and Y; respectively denoted by F and G; are given by

F (x) = p�1
Z x

0

G (z) dF (z) and G (y) = p�1
Z y

0

F (z) dG (z) :
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Since right endpoints of F and G are in�nite and thus they are equal. Hence, from [88],

we may write Z 1
x

dF (y) =F (y) =

Z 1
x

dF (y) =C (y) ;

where

C (z) := P (X � z � Y j X � Y ) = p�1F (x)G(x):

Di¤erentiating the previous equation leads to the following crucial equation

C (x) dF (x) = F (x) dF (x) : (3.3)

Woodroofe estimator

The solution of 3.3 is de�ned by

F (x) = exp

�
�
Z 1
x

dF (z) =C (z)

�
;

see, for instance, Strzalkowska-Kominiak and Stute (2009) [84].This leads to nonparametric

estimator [88] of df F; Woodroofe estimator given by

F(W)
n (x) :=

Y
i:Xi>x

exp

�
� 1

nCn (Xi)

�
;

which is derived only by replacing df�s F and C by their respective empirical counterparts

Fn (x) := n�1
nX
i=1

1 (Xi � x)

and

Cn (x) := n�1
nX
i=1

1 (Xi � x � Yi) : (3.4)

The central limit theorem under random truncation was established by Stute and Wang
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(2008) in [82].

Lynden-Bell estimator

There exists a more popular estimator for F: Note that the approximation exp (t) � 1� t;

for small t > 0; results in the well-known estimator introduced by Lynden-Bell (1971),

known as Lynden-Bell nonparametric maximum likelihood estimator [64], de�ned by

F(LB)n (x) :=
Y
i:Xi>x

�
1� 1

nCn (Xi)

�
;

where Cn is de�ned in 3.4.

There is several applications to randomly right-truncated insurance claims, one refers to

[33], and in reliability, one consults for instance [42] and [6] in which they considered

lifetimes of automobile brake pads, given by [65] in page 69, as example of randomly

truncated heavy-tailed models.

In the last decade, several authors started to be interested in the estimation of tail index

along with large quantiles under random truncation as one can see in [42], [5] and [91],
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Estimating the second-order parameter of regular

variation and bias reduction in tail index estimation

under random truncation

In this chapter, we propose a consistent estimator of the second-order parameter ofPareto-type distributions under random right-truncation and establish its asymp-

totic normality. Moreover, we derive an asymptotically unbiased estimator for the tail

index and study its asymptotic behaviour.

4.1 Introduction

We assume that both survival functions F := 1�F and G := 1�G are regularly varying

at in�nity with negative tail indices �1=1 and �1=2 respectively, that is, for any x > 0

lim
z!1

F (xz)

F (z)
= x�1=1 and lim

z!1

G (xz)

G (z)
= x�1=2 : (4.1)
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To specifying the rates of convergence in (4:1) ; we consider the second-order conditions

in terms of the quantile functions [22], that is, for any x > 0

lim
t!1

UF (tx) =UF (t)� x1

AF (t)
= x1

x�1 � 1
�1

; (4.2)

and

lim
t!1

UG (tx) =UG (t)� x2

AG (t)
= x2

x�2 � 1
�2

; (4.3)

where �1; �2 < 0 are the second-order parameters and AF; AG are functions tending to

zero and not changing signs near in�nity with regularly varying absolute values at in�nity

with indices �1; �2 respectively. For any df K; we write UK (t) := K (1� 1=t) ; t > 1;

where K (s) := inf fx : K (x) � sg ; 0 < s < 1 stands for the quantile function.

Let us now denote the observed observations of the truncated sample (Xi;Yi) ; i = 1; :::; N;

by (Xi; Yi) ; i = 1; :::; n; as a sample of a couple of rv�s (X; Y ) ; where n = nN is a sequence

of discrete rv�s. Note that by the weak law of large numbers we have nN=N
P! p :=

P (X � Y) ; as N ! 1; which implies that nN
P! 1 as N ! 1; where P! stands for

convergence in probability. The joint distribution of Xi and Yi is

H (x; y) := P (X � x; Y � y) = P (X � min (x;Y) ;Y � y j X � Y)

= p�1
Z y

0

F (min (x; z)) dG (z) :

Thereby, the marginal distributions of the rv�s X and Y are equal to

F � (x) := p�1
Z x

0

G (z) dF (z) and G� (y) := p�1
Z y

0

F (z) dG (z) ;

respectively. The survival function F
�
simultaneously depends on G and F while G

�

only relies on G: Since F and G are regularly varying functions, then by making use of

Proposition B.1.10 in [20], we may readily show that both G
�
and F

�
are also regularly

varying at in�nity, with respective indices �1=2 and �1= := � (1 + 2) = (12) : In this
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context, Gardes and Stup�er 2015, [42] recently proposed a consistent estimator to the

extreme value index 1 by using the de�nition of  as a quotient depending only on two

Hill estimators [60] of tail indices  and 2 which are based on the upper order statistics

Xn�k:n � ::: � Xn:n and Yn�k:n � ::: � Yn:n pertaining to the samples (X1; :::; Xn) and

(Y1; :::; Yn) respectively. The sample fraction k = kn being a (random) sequence of integers

such that, given n = m = mN ; km ! 1 and km=m ! 0 as N ! 1: The asymptotic

normality of this estimator is established in Benchaira et al. 2015, [5] by assuming both

the tail dependence and the second-order regular variation conditions. Recently, Wormes

and Wormes 2016, [91] proposed an asymptotically normal estimator for 1 by considering

a Lynden-Bell integration. Independently, Benchaira et al. 2016a, [6] provided a Hill-type

estimator for randomly right-truncated data, de�ned by

b(BMN)
1 =

kX
i=1

a(i)n log
Xn�i+1:n

Xn�k:n
; (4.4)

where

a(i)n :=
Fn (Xn�i+1:n) =Cn (Xn�i+1:n)
kX
i=1

Fn (Xn�i+1:n) =Cn (Xn�i+1:n)

; (4.5)

with Fn (x) is the well-known product-limit Woodroofe�s estimator de�ned by 3.4 of the

underlying df F. The authors show by simulation that, for small datasets, their estimator

behaves better in terms of bias and root of the mean squared error (rmse), than the Gardes-

Sup�er estimator. Moreover, they establish the asymptotic normality by considering the

second-order regular variation conditions (4:2) and (4:3) with the assumption 1 < 2:

More precisely, they show that, for a su¢ ciently large N;

b(BMN)
1 = 1 + k�1=2� (W) +

A0 (n=k)

1� �1
(1 + oP (1)) ; (4.6)
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where A0 (t) := AF

�
1=F (UF � (t))

�
; t > 1; and � (W) is a centred Gaussian rv de�ned by

� (W) :=


1 + 2

Z 1

0

(2 � 1 �  log s) s�=2�1W (s) ds� W (1) ;

with fW (s) ; s � 0g being a standard Wiener process de�ned on the probability space

(
;A;P) : Thereby, for a given n = m; such that
p
kmA0 (m=km)! � <1; they conclude

that
p
k
�b(BMN)

1 � 1

�
D! N

�
�= (1� �1) ; �

2
�
; as N !1;

where �2 := 2 (1 + 1=2)
�
1 + (1=2)

2� = (1� 1=2)
3 : Recently, Benchaira et al. 2016b,

[7] adopted the same approach to introduce a kernel estimator to the tail index 1 which

improves the bias of b(BMN)
1 : It is worth mentioning that the assumption 1 < 2 is required

in order to ensure that it remains enough extreme data for the inference to be accurate.

In other words, they consider the situation where the tail of the rv of interest is not too

contaminated by the truncation rv.

4.2 Estimating the second-order parameter �1

The aim of this paper is the estimation of the second order-parameter �1 given in condition

(4:2) which, to our knowledge, is not addressed yet in the extreme value literature. Inspired

by the paper of Gomes et al. 2003, [46], we propose an estimator for �1 adapted to the

random right-truncation case. To this end, for � > 0 and t > 0; we introduce the following

tail functionals

M (�) (t;F) :=
1

F (UF � (t))

Z 1
UF� (t)

log� (x=UF � (t)) dF (x) ; (4.7)

Q(�) (t;F) :=
M (�) (t;F)� � (�+ 1)

�
M (1) (t;F)

��
M (2) (t;F)� 2 (M (1) (t;F))

2 ; (4.8)
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and

S(�) (t;F) := � (�)
Q(2�) (t;F)

(Q(�+1) (t;F))
2 ; (4.9)

where log� x := (log x)� and � (�) := � (�+ 1)2 �2 (�) = (4� (2�)) ; with � (�) standing for

the usual Gamma function. The following Lemma is instrumental for our needs.

Lemma 4.1 Assume that the second-order regular variation condition (4:2) holds, then

for any � > 0

(i)
M (�) (t;F)� �

(1)
�

�
M (1) (t;F)

��
(M (1) (t;F))

��1
A0 (t)

! �
�
�(2)� (�1)� �(1)� �

(2)
1 (�1)

�
;

(ii) Q(�) (t;F)! q� (�1) and (ii) S(�) (t;F)! s� (�1) ; as t!1;

where

q� (�1) :=
��21 �

(1)
�

�
1� (1� �1)

� � ��1 (1� �1)
��1�

2�21 (1� �1)
��2 (4.10)

and

s� (�1) :=
�21
�
1� (1� �1)

2� � 2��1 (1� �1)
2��1��

1� (1� �1)
�+1 � (�+ 1) �1 (1� �1)

��2 ; (4.11)

with

�(1)� := � (�+ 1) ; �(2)� (�1) :=
� (�) (1� (1� �1)

�)

�1 (1� �1)
� : (4.12)

Proof. See the Appendix.

To summarize, from Lemma 4:1; for any � > 0;

M (�) (t;F)! �1 � (�+ 1) ; Q
(�) (t;F)! q� (�1) and S(�) (t;F)! s� (�1) ; (4.13)

as t ! 1: The three results (4:13) allow us to construct an estimator for the second-

order parameter �1: Indeed, by recalling that n = nN is a random sequence of integers,

let � = �n be a subsequence of n; di¤erent than k; such that given n = m; �m ! 1;

�m=m! 0 as N !1: The sequence � has to be chosen so that
p
�m jA0 (m=�m)j ! 1;
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which is a necessary condition to ensure the consistency of �1 estimator. On the other

hand, as already pointed out, the asymptotic normality of b(BMN)
1 requires that, for a

given n = m;
p
kmA0 (m=km) ! � < 1: This means that both sample fractions k

and � have to be distinctly chosen. Since F
�
is regularly varying at in�nity with index

�1=; then from Lemma 3.2.1 in de Haan [20] page 69, we infer that, given n = m;

we have Xm��m:m ! 1 as N ! 1 almost surely. Then by using the total probability

formula, we show that Xn��:n !1; almost surely too. By letting, in (4:7) ; t = n=� then

by replacing UF � (n=�) by Xn��:n and F by the product-limit estimator Fn; we get an

estimator M (�)
n (�) =M (�) (t;Fn) for M (�) (t;F) as follows:

M (�)
n (�) =

1

Fn (Xn��:n)

Z 1
Xn��:n

log� (x=Xn��:n) dFn (x) : (4.14)

Next, we give an explicit formula forM (�)
n (�) in terms of observed sampleX1; :::; Xn: Since

F and G are regularly varying with negative indices �1=1 and �1=2 respectively, then

their right endpoints are in�nite and thus they are equal. Hence, from Woodroofe 1985,

[88], we may write
R1
x
dF (y) =F (y) =

R1
x
dF � (y) =C (y) ; where C (z) := P (X � z � Y )

is the theoretical counterpart of Cn (z) given in (3:4): Di¤erentiating the previous two

integrals leads to the crucial equation C (x) dF (x) = F (x) dF � (x) ; which implies that

Cn (x) dFn (x) = Fn (x) dF
�
n (x) ; where F

�
n (x) := n�1

Pn
i=1 1 (Xi � x) is the usual empiri-

cal df based on the observed sample X1; :::; Xn: It follows that

M (�)
n (�) =

1

Fn (Xn��:n)

Z 1
Xn��:n

Fn (x)

Cn (x)
log� (x=Xn��:n) dF

�
n (x) ;

which equals

M (�)
n (�) =

1

nFn (Xn��:n)

�X
i=1

Fn (Xn�i+1:n)

Cn (Xn�i+1:n)
log�

Xn�i+1:n

Xn��:n
:
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Similarly, we show that Fn (Xn��:n) = n�1
Pn

i=1Fn (Xn�i+1:n) =Cn (Xn�i+1:n) : This leads

to following form of M (�) (t;F) estimator:

M (�)
n (�) :=

�X
i=1

a(i)n log
� Xn�i+1:n

Xn��:n
;

where a(i)n is as in (4:5): It is readily observable that M (1)
n (k) = b(BMN)

1 : Making use

of (4:9) with the expression above, we get an estimator of S(�) (t;F) ; that we denote

S
(�)
n = S

(�)
n (�) : This, in virtue of the third limit in (4:13) ; leads to estimating s� (�1) :

It is noteworthy that the function �1 ! s� (�1) ; de�ned and continuous on the set of

negative real numbers, is increasing for 0 < � < 1=2 and decreasing for � > 1=2; � 6= 1:

Then, for suitable values of �; we may invert s� to get an estimator b�(�)1 for �1 as follows:

b�(�)1 := s �
�
S(�)n

�
; provided that S(�)n 2 A�; (4.15)

where A� is one of the following two regions:

�
s : (2�� 1) =�2 < s � 4 (2�� 1) = (� (�+ 1))2 ; for � 2 (0; 1=2)

	
;

or �
s : 4 (2�� 1) = (� (�+ 1))2 � s < (2�� 1) =�2; for � 2 (1=2;1) n f1g

	
:

For more details, regarding the construction of these two sets, one refers to Remark 2.1

and Lemma 3.1 in [46]. It is worth mentioning that, for � = 2; we have

s2 (�1) =
�
3�21 � 8�1 + 6

�
= (3� 2�1)2
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and s 2 (s) =
�
6s� 4 +

p
3s� 2

�
= (4s� 3) ; for 2=3 < s < 3=4: Thereby, we obtain an

explicit formula to the estimator of �1 as follows

b�(2)1 =
6S

(2)
n � 4 +

q
3S

(2)
n � 2

4S
(2)
n � 3

; provided that 2=3 < S(2)n < 3=4: (4.16)

4.3 Reduced-bias tail index estimator

Next, we derive an asymptotically unbiased estimator for 1; that improves b(BMN)
1 by

estimating the asymptotic bias A0 (n=k) = (1� �1) ; given in weak approximation (4:6) :

Indeed, let � be equal to un := [n1��] ; for a �xed � > 0 close to zero (say � = 0:01) so

that, given n = m; um ! 1; um=m ! 1 and
p
um jA0 (m=um)j ! 1: The validity of

such a sequence is discussed in [46] (Subsection 6.1, conclusions 2 and 5). The estimator

of �1 pertaining to this choice of � will be denoted by b�(�)1 : Let us now de�ne an estimator

for A0 (n=k) : From assertion (i) in Lemma 4:1; taking � = 2; we have

A0 (t) � (1� �1)
2
�
M (2) (t;F)� 2

�
M (1) (t;F)

�2�
=
�
2�1M

(1) (t;F)
�
; as t!1:

Then, by letting t = n=k and by replacing, in the previous quantity, UF � (n=k) by Xn�k:n;

F by Fn and �1 by b�(�)1 ; we end up with

bA0 (n=k) :=
�
1� b�(�)1 �2 �M (2)

n (k)� 2
�
M (1)
n (k)

�2�
=
�
2b�(�)1 M (1)

n (k)
�
;

as an estimator for A0 (n=k) : Thus, we obtain an asymptotically unbiased estimator

b1 :=M (1)
n (k) +

M
(2)
n (k)� 2

�
M

(1)
n (k)

�2
2M

(1)
n (k)

 
1� 1b�(�)1

!
;

for the tail index 1; as an adaptation of Peng�s estimator [73] to the random right-

truncation case. The rest of the paper is organized as follows. In Section 4.2, we present
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our main results which consist in the consistency and the asymptotic normality of the

estimators b�(�)1 and b1 whose �nite sample behaviors are checked by simulation in Section
4.3. All proofs are gathered in Section 4.4. The proofs of two instrumental lemmas are

postponed to the Appendix.

4.4 Main results

It is well known that, weak approximations of the second-order parameter estimators are

achieved in the third-order condition of regular variation framework, [37]. Thus, it seems

quite natural to suppose that df F satis�es

lim
t!1

�
UF (tx) =UF (t)� x1

AF (t)
� x1

x�1 � 1
�1

�
=BF (t) =

x1

�1

�
x�1+�1 � 1
�1 + �1

� x�1 � 1
�1

�
;

(4.17)

where �1 < 0 is the third-order parameter and BF is a function tending to zero and not

changing sign near in�nity with regularly varying absolute value at in�nity with index �1:

For convenience, we set B0 (t) := BF
�
1=F (UF � (t))

�
and by keeping similar notations to

those used in [46], we write

�(3)� (�1) :=

8>><>>:
1

�21
log

(1� �1)
2

1� 2�1
; if � = 1;

� (�)

�21 (�� 1)

�
1

(1� 2�1)��1
� 2

(1� �1)
��1 + 1

�
; if � 6= 1;

�(4)� (�1; �1) := ��11
�
�(2)� (�1 + �1)� �(2)� (�1)

�
;

m� := �(2)� (�1)� �(1)� �
(2)
1 (�1) ; c� := �(3)� (�1)� �(1)�

�
�
(2)
1 (�1)

�2
and d� := �

(4)
� (�1; �1)� �

(1)
� �

(4)
1 (�1; �1) : For further use, we set r� := 2q�2��1 =� (�+ 1) ;

where q� de�ned (4:10) ; and let

�1 :=
1

21m2r2�+1

�
(2�� 1) c2�
� (2�)

+ c2r2� �
2c�+1r2�
r�+1� (�)

�
;
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�2 :=
1

1m2r2�+1

�
d2�
� (2�)

+ d2r2� �
2d�+1r2�

r�+1� (�+ 1)

�
;

� := 

�
1� 2�� 3r2�

r2�+1m2

+
2�r2�
r3�+1m2

�
;

�1 :=
1

2��11 r2�+1� (2�+ 1)m2

; �2 := �
2r2�

�1 r
3
�+1� (�+ 2)m2

;

�3 :=
r2�

1r2�+12m2

; �4 :=
�2�r�+1 + 2 (�+ 1) r2� � 4r�+1r2�

r3�+1m2

;

�5 :=
�1 � 1
21�1

; �6 := 1 + 2
1� �1
1�1

and � := 

�
2 + 2

1� �1
1�1

� 1

�1

�
:

Theorem 4.1 Assume that both df�s F and G satisfy the second-order conditions (4:2)

and (4:3) respectively with 1 < 2: Let � 2 A� be �xed and let � be a random sequence of

integers such that, given n = m; � = �m !1; �=m! 0 and
p
� jA0 (m=�)j ! 1; then

b�(�)1 P! �1; as N !1:

If in addition, we assume that the third-order condition (4:17) holds, then whenever,

given n = m;
p
�A2

0 (m=�) and
p
�A0 (m=�)B0 (m=�) are asymptotically bounded, then

there exists a standard Wiener process fW (s) ; s � 0g ; de�ned on the probability space

(
;A;P) ; such that

s0� (�1)
p
�A0 (n=�)

�b�(�)1 � �1

�
=

Z 1

0

s�=2�1��(s)W (s) ds� �W (1)

+ �1
p
�A2

0 (n=�) + �2
p
�A0 (n=�)B0 (n=�) + oP (1) ;
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where s0� is the Lebesgue derivative of s� given in (4:11) and

��(s) :=
�1 log

2� s�

1 + 2
+
2��1

2 log2��1 s�

1
+
�2 log

�+1 s�

1 + 2

+
�2 (�+ 1) 

2 log� s�

1
+
�3 log

2 s�

1 + 2

+

�
2�3

2

1
+

�4

1 + 2

�
log s� +

�4
2

1
� 1�

1 + 2
:

If, in addition, we suppose that given n = m;

p
�A2

0 (m=�)! �1 <1 and
p
�A0 (m=�)B0 (m=�)! �2 <1;

then
p
�A0 (n=�)

�b�(�)1 � �1

�
D! N (�1�1 + �2�2; �

2
�) ; as N !1; where

�2� :=

Z 1

0

Z 1

0

s�=2�1t�=2�1min (s; t)��(s)��(t)dsdt� 2�
Z 1

0

s�=2��(s)ds+ �2:

Theorem 4.2 Let k be a random sequence of integers, di¤erent from �; such that, given

n = m; k = km ! 1; k=m ! 0 and
p
kA0 (m=k) is asymptotically bounded, then with

the same Wiener process fW (s) ; s � 0g as in Theorem 4.1, we have

p
k (b1 � 1) =

Z 1

0

s�=2�1D(s)W (s) ds� �W (1) + oP (1) ;

for any � > 0; where

D(s) :=
3�5
1 + 2

log2 s�
�
2�5

3

1
+

2�6
1 + 2

�
log s+

�6
2

1
� 1�

1 + 2
:

If, in addition, we suppose that, given n = m;
p
kA0 (m=k)! � <1; then

p
k (b1 � 1)

D! N
�
0; �2�

�
; as N !1;
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where �2� :=
Z 1

0

Z 1

0

s�=2�1t�=2�1min (s; t)D(s)D(t)dsdt� 2�
Z 1

0

s�=2D(s)ds+ �2:

4.5 Simulation study

We begin by choosing � = 2 to study the performance of b�(2)1 and compare the newly

introduced bias-reduced estimator b1 with b(BMN)
1 : To this end, let us consider sets of

truncated and truncation data drawn from Burr�s and Fréchet�s models:

� Burr (a; b) distribution with survival functionF (x) =
�
1 + xb

��1=(ab)
; x > 0; a; b > 0:

� Fréchet (c) distribution with survival function F (x) = exp
�
�x�1=c

�
; x � 0; c > 0:

Both models satis�es the third-order condition (4:17) ; with:

� � = � = �ab; AF (x) = abx�= (1� x�) and BF (x) = �x�= (1� x�) :

� � = � = �1; AF (x) = �1x�1=2 and BF (x) = 5x�1=6:

Let us consider the following four scenarios:

� [S1] Burr (a1; b1) truncated by Burr (a2; b2)

� [S2] Fréchet (c1) truncated by Fréchet (c2)

� [S3] Fréchet (c) truncated by Burr (a; b)

� [S4] Burr (a; b) truncated by Fréchet (c)

Both tail indices corresponding to the scenarios above are, respectively,

(1; 2) = (a1; a2) ; (a1; c) ; (c; a2) and (c1; c2) : (4.18)

For all cases, we �x b = 1=4 and choose the values 0:6 and 0:8 for 1 and 70% and 90%

for the percentage of observed data p = 2=(1 + 2): For each couple (1; p) ; we solve
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the latter equation to get the pertaining 2-value. We vary the common size N of both

samples (X1; :::;XN) and (Y1; :::;YN) ; then for each size, we generate 1000 independent

replicates. Next, we study the performance of our estimators by means of two adaptive

methods to select the sample fractions, namely the automatic choice and the graphical

diagnostics. For the �rst method we will consider both scenarios [S1] and [S2] will for the

second one take all the four scenarios [S1]� [S4] :

4.5.1 Automatic choice of the number of upper extremes

There exists in the literature several heuristic methods for choosing the optimal number

of upper extremes used in the computation of the tail index estimate. An exhaustive

bibliography to this topic is gathered in the nice survey given by Caeiro and Gomes 2015,

[12]. Our choice fell on the method of Reiss and Thomas given in their text book [76],

page 137; and also done in software program incorporated in the "Xtremes" package. We

will apply this method to select the optimal numbers �� and k� of upper order statistics

used in the computation of b�(2)1 ; b1 and b(BMN)
1 : For each estimator, we compute the

average of the resulting 1000 observations of bias, as well as its corresponding rmse. The

performance of the estimators and their comparison are made with respect to the absolute

biases (abias) and rmse�s, which are summarized in Tables 4.1, 4.2, 4.3 and 4.4. On the

light the results, we see that the estimation quality of three estimators decreases when the

truncation percentage increases. On the other hand, the results of Table 4.1, show that

b�(2)1 behaves well in terms of bias and rmse and those of Tables 4.2, 4.3 and 4.4, clarify that

the newly proposed estimator b1 performs better than b(BMN)
1 both in bias and rmse. It is

worth mentioning that, the kernel estimator for the tail index 1; introduced by Benchaira

et al. 2016b, [7], also performs better than b(BMN)
1 from the bias viewpoint but with higher

rmse. Furthermore, we observe that the kernel estimator works only when the sample sizes

are greater than, approximately, N = 100: In other words, this is not recommended when

the number n of observed data is less that 100:
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p = 0:7 p = 0:9
N n �� abias rmse n �� abias rmse

1 = 0:6

100 73 31 0:011 0:048 88 37 0:007 0:047
200 149 68 0:009 0:045 178 69 0:005 0:046
500 352 211 0:007 0:041 448 244 0:003 0:038
1000 702 672 0:002 0:029 895 643 0:001 0:031

1 = 0:8

100 70 31 0:012 0:055 89 42 0:017 0:049
200 137 65 0:010 0:047 178 75 0:011 0:048
500 351 196 0:006 0:040 450 230 0:004 0:044
1000 729 300 0:002 0:035 901 376 0:002 0:027

Table 4.1: Absolute biases and rmse�s of the second-order parameter estimator based on
1000 right-truncated samples from Burr�s models.

4.5.2 Graphical diagnostics of the number k of upper extremes

Being b = 1=4 and (1; 2) are �xed, then in view of (4:18) ; we may suppose that the

second-order parameter � is also �xed and equals 1b for both �rst and second scenarios

[S1]� [S2] and equals �1 for both third and fourth ones [S3]� [S4] : Note also that for all

cases we take N = 300 and since p is �xed then the number of observed sample n = [pN ]

is known. Thereby, for each scenario and for each k = 1; :::; n; we compute the average of

1000 values of biases and rmse�s with respect to both tail index estimators b1 and b(BMN)
1 :

The results are reported in Figures 4.1-4.8, where the solid and dashed lines correspond

respectively to the reduced-bias estimator and the original one. Likewise we clearly see

that, for the all scenarios, b1 performed better b(BMN)
1 both in bias and rmse.
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Figure 4.1: S1: 1 = 0:6; p = 70%
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Figure 4.2: S2: 1 = 0:6; p = 70%
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Figure 4.3: S4: 1 = 0:6; p = 70%
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Figure 4.4: S3: 1 = 0:6; p = 70%
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Figure 4.5: S1: 1 = 0:6; p = 90%
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Figure 4.6: S2: 1 = 0:6; p = 90%
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p = 0:7 p = 0:9b1 b(BMN)
1 b1 b(BMN)

1

N n k� abias rmse k� abias rmse n k� abias rmse k� abias rmse
1 = 0:6

100 71 11 0:067 0:258 11 0:125 0:259 89 16 0:015 0:155 15 0:119 0:220
200 139 25 0:047 0:202 24 0:092 0:223 180 34 0:010 0:118 31 0:088 0:169
500 352 67 0:026 0:125 58 0:084 0:173 449 83 0:005 0:069 78 0:049 0:132
1000 704 113 0:008 0:089 112 0:015 0:121 898 176 0:003 0:035 174 0:018 0:052

1 = 0:8

100 70 12 0:064 0:311 11 0:221 0:218 87 15 0:068 0:221 14 0:195 0:321
200 141 26 0:015 0:219 25 0:164 0:279 172 32 0:034 0:151 30 0:130 0:242
500 348 61 0:012 0:152 60 0:032 0:223 443 88 0:020 0:098 81 0:089 0:157
1000 702 142 0:007 0:054 124 0:020 0:131 894 180 0:011 0:056 168 0:015 0:086

Table 4.2: Absolute biases and rmse�s of the tail index estimators based on 1000 right-
truncated samples from Burr�s models.

4.6 High quantile estimation

Theoretically, the extreme quantile for df F is the value, in v # 0; of the generalized inverse

q� := UF (1=�) ; in other words the value, su¢ ciently large, so that the probability of

exceeding q� is so small. As being a risk measure, this quantity, known as the value-at-risk

(VAR), is used in several �elds, such as in �nance, insurance, hydrology and reliability. For

asymptotic needs, we suppose that v is a function of the observed sample size n, denoted

by v = vn; and assumed to be much smaller than 1=n: The estimation of high quantiles

for heavy-tailed distributions, in the case of complete data, is extensively studied in the

literature [20]. Benchaira et al. 2016a [6] adapted the well-known Weissman estimator

[86] to the random truncation case and proposed the following estimator

bq� := Xn�k:n

�
�

Fn (Xn�k:n)

��b(BMN)
1

:

Otherwise, Gardes and Stup�er 2015, [42] also suggested a similar estimator, but instead

of Fn (Xn�k:n) they considered a sequence of deterministic order asymptotically negligible
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p = 0:7 p = 0:9
N n �� abias rmse n �� abias rmse

1 = 0:6

100 72 32 0:009 0:039 90 32 0:008 0:038
200 139 66 0:007 0:042 168 67 0:006 0:036
500 349 202 0:005 0:037 439 238 0:005 0:033
1000 698 651 0:003 0:027 867 641 0:002 0:029

1 = 0:8

100 70 31 0:012 0:055 89 42 0:017 0:049
200 137 65 0:010 0:047 178 75 0:011 0:048
500 351 196 0:006 0:040 450 230 0:004 0:044
1000 729 300 0:002 0:035 901 376 0:002 0:027

Table 4.3: Absolute biases and rmse�s of the second-order parameter estimator based on
1000 right-truncated samples from Fréchet�s models.

with respect to �: As stated in Section 4.5, our new estimator b1 performed better thanb(BMN)
1 in terms of bias, therefore its corresponding high quantile estimator

eq� := Xn�k:n

�
�

Fn (Xn�k:n)

��b1

will be systematically better than bq� as well. It is worth mentioning, from Tables 4.2 and

4.4, that the sample fraction k in the computation of eq� is not necessarily the same for bq� :
The asymptotic normality of eq� is established in the following theorem.
Theorem 4.3 Assume that both second-order conditions (4:2) and (4:3) hold with 1 < 2.

Then p
k

log dn

�eq�
q�
� 1
�
D! N

�
0; �2�

�
; as N !1;

provided that, given n = m; k = km ! 1; k=m ! 0; dm ! 0;
p
km= log dm !

1;
p
kmA

�
F (m=km) ! � and

p
kmA

�
G (m=km) = O (1) ; as N ! 1; where dn :=

F (UF (n=k)) =�n and A�G (t) := AG

�
1=G (UF (t))

�
; t > 1:
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p = 0:7 p = 0:9b1 b(BMN)
1 b1 b(BMN)

1

N n k� abias rmse k� abias rmse n k� abias rmse k� abias rmse
1 = 0:6

100 69 13 0:078 0:347 13 0:065 0:278 90 14 0:055 0:275 17 0:049 0:320
200 138 29 0:054 0:325 28 0:040 0:214 178 32 0:039 0:219 31 0:032 0:269
500 362 59 0:035 0:245 58 0:012 0:193 459 79 0:018 0:127 76 0:009 0:129
1000 709 105 0:011 0:149 119 0:010 0:117 887 169 0:012 0:107 172 0:019 0:078

1 = 0:8

100 68 15 0:055 0:281 11 0:211 0:219 87 17 0:077 0:231 13 0:184 0:317
200 135 24 0:025 0:247 25 0:158 0:274 172 29 0:046 0:174 31 0:131 0:219
500 347 59 0:022 0:142 60 0:047 0:231 443 87 0:031 0:085 79 0:097 0:149
1000 717 139 0:018 0:042 124 0:030 0:148 894 175 0:018 0:062 172 0:043 0:095

Table 4.4: Absolute biases and rmse�s of the tail index estimators based on 1000 right-
truncated samples from Fréchet�s models.

4.7 Real data example

We consider, as it is done in both Gardes and Stup�er 2015, [42] and Benchaira et al.

2016a, [6], the (left-truncated) lifetimes of car brake pads given in Lawless [65], page

69. We �rst make a transformation on the dataset to be right-truncated and then verify

the Pareto-like nature of its distribution, see Section 5 in [42]. Since the sample size,

n = 98 < 100; is relatively small then the simulation study results in Section 4.5 suggest

that the new estimator b1 is a better candidate to estimate the tail index 1:Making use of
the algorithm of Reiss and Thomas [76], we select the optimal sample fraction k� and then

compute the corresponding value of b1: The result gives b�1 = 0:492; however Benchaira

et al. 2016a, [6] obtained the value 0:470: Thereby, we compute, for three di¤erent high

levels � = 1� � = 0:990; 0:995 and 0:999 their corresponding extreme quantiles. Finally,

via the aforementioned transformation, we obtain the pertaining extreme quantiles of the

original dataset. The results are summarized in Table 4.5. Then, we may conclude that

the estimated value of the brake pad lifetime is less than 17; 063 km for 1% of the cars.

However, only one out of a thousand brake pads lasts less than 10:200 km.
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� Transformed data Original data
0:990 0:094 17063
0:995 0:130 14138
0:999 0:227 10203

Table 4.5: Extreme quantiles for car brake pad lifetimes.

4.8 Proofs

4.8.1 Proof of Theorem 4:1

We begin by proving the consistency of b�(�)1 de�ned in (4:15): We let

Ln (x; �) :=
Fn (Xn��:nx)

Fn (Xn��:n)
� F (Xn��:nx)

F (Xn��:n)
;

and we show that for any � > 0

M (�)
n (�) = �1 �

(1)
� +

Z 1
1

Ln (x; �) d log
� x+ (1 + oP (1))�

��1
1 �(2)� (�1)A0 (n=�) ; (4.19)

where �(1)� and �(2)� (�1) are as in (4:12): It is clear that from formula (4:14) ; M
(�)
n (�) may

be rewritten into�
R1
1
log� xdFn (Xn��:nx) =Fn (Xn��:n) ; which by an integration by parts

equals
R1
1
Fn (Xn��:nx) =Fn (Xn��:n) d log

� x: The latter may be decomposed into

Z 1
1

Ln (x; �) d log
� x+

Z 1
1

�
Fn (Xn��:nx)

Fn (Xn��:n)
� x�1=1

�
d log� x+

Z 1
1

x�1=1d log� x:

It is easy to verify that
R1
1
x�1=1d log� x equals �1 �

(1)
� : Since, Xn��:n !1; almost surely,

then by making use of the uniform inequality of the second-order regularly varying func-

tions, to F; given in Proposition 4 of Hua [57], we write: with probability one, for any
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0 < � < 1 and large N

�����F (Xn��:nx) =F (Xn��:n)� x�1=1

�21
eAF

�
1=F (Xn��:n)

� � x�1=1
x�1=1 � 1
1=�1

����� � �x�1=1+�; for any x � 1;

(4.20)

where eAF (t) � AF (t) ; as t!1: This implies, almost surely, that

Z 1
1

�
Fn (Xn��:nx)

Fn (Xn��:n)
� x�1=1

�
d log� x

= eAF

�
1=F (Xn��:n)

��Z 1
1

x�1=1
x�1=1 � 1
1�1

d log� x+ oP

�Z 1
1

x�1=1+�d log� x

��
:

We check that
R1
1
x�1=1

x�1=1 � 1
1�1

d log� x = ���11 �
(2)
� (�1) and

R1
1
x�1=1+�d log� x is

�nite. From Lemma 7.4 in [6], Xn��:n=UF � (n=�)
P! 1; as N ! 1; then by using the

regular variation property of
��AF

�
1=F (�)

��� and the corresponding Potter�s inequalities
(see, for instance, Proposition B.1.10 in [20]), we get

eAF

�
1=F (Xn��:n)

�
= (1 + oP (1))AF

�
1=F (UF � (n=�))

�
= (1 + oP (1))A0 (n=�) ;

therefore M (�)
n (�) = �1 �

(1)
� +

R1
1
Ln (x; �) d log

� x + ���11 �
(2)
� (�1)A0 (n=�) (1 + oP (1)) :

In the second step, we use the Gaussian approximation of Ln (x) recently given by [6]

(assertion (6:26)); saying that: for any 0 < � < 1=2�=2; there exists a standard Wiener

process fW (s) ; s � 0g ; de�ned on the probability space (
;A;P) such that

sup
x�1

x(1=2��)=�1=2
��p�Ln (x; �)� L (x;W)

�� P! 0; as N !1; (4.21)

where fL (x;W) ; x > 0g is a Gaussian process de�ned by



1
x�1=1

�
x1=W

�
x�1=

�
�W (1)

	
+



1 + 2
x�1=1

Z 1

0

s�=2�1
�
x1=W

�
x�1=s

�
�W (s)

	
ds:
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Let us decompose
p
�
R1
1
Ln (x; �) d log

� x into

Z 1
1

L (x;W) d log� x+

Z 1
1

�p
�Ln (x; �)� L (x;W)

	
d log� x:

By using approximation (4:21); we obtain
R1
1
f
p
�Ln (x; �)� L (x;W)g d log� x = oP (1) :

We showed in Lemma 4.2 that
R1
1
L (x;W) d log� x = OP (1) ; therefore

R1
1
Ln (x; �) d log

� x =

OP
�
��1=2

�
; it follows that

M (�)
n (�) = �1 �

(1)
� + ��1=2

Z 1
1

L (x;W) d log� x (4.22)

+ ���11 �(2)� (�1)A0 (n=�) (1 + op (1)) + oP
�
��1=2

�
:

Once again, by using the fact that
R1
1
L (x;W) d log� x = OP (1) ; we get

M (�)
n (�) = �1 �

(1)
� + ���11 �(2)� (�1)A0 (n=�) (1 + oP (1)) + oP

�
��1=2

�
:

It particular, for � = 1; we have �(1)1 = 1; this means that

M (1)
n (�) = 1 + �

(2)
1 (�1)A0 (n=�) (1 + op (1)) + oP

�
��1=2

�
;

which implies that

�
M (1)
n (�)

�2
= 21 + 21�

(2)
1 (�1)A0 (n=�) (1 + oP (1)) + oP

�
��1=2

�
: (4.23)

Likewise, for � = 2; we have �(1)2 = 2; then

M (2)
n (�) = 221 + 21�

(2)
2 (�1)A0 (n=�) (1 + oP (1)) + oP

�
��1=2

�
: (4.24)
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Similar to the de�nition of M (�)
n (�) ; let Q(�)n (�) be Q� (t;F) with UF � (t) and F respec-

tively replaced by Xn��:n and Fn: From (4:8) ; we may write

Q(�)n (�) =
M

(�)
n (�)� � (�+ 1)

�
M

(1)
n (�)

��
M

(2)
n (�)� 2

�
M

(1)
n (�)

�2 :

Then, by using the approximations above, we end up with

Q(�)n (�) = (1 + oP (1))
���11

�
�
(2)
� (�1)� �

(1)
� �

(2)
1 (�1)

�
21

�
�
(2)
2 (�1)� �

(1)
2 �

(2)
1 (�1)

� :

By replacing �(1)� ; �
(1)
1 ; �

(2)
� (�1) and �

(2)
1 (�1) by their corresponding expressions, given in

(4:12); with the fact that �� (�) = � (�+ 1) ; we show that the previous quotient equals

q� (�1) given in (4:10): This implies that Q
(�)
n (�)

P! q� (�1) and therefore S
(�)
n (�)

P!

s� (�1) ; as N ! 1; as well. By using the mean value theorem, we infer that b�(�)1 =

s �

�
S
(�)
n (�)

�
P! �1; as sought. Let us now focus on the asymptotic representation of b�(�)1 :

We begin by denoting fM (�)
n (�) ; eS(�)n (�) and eQ(�)n (�) the respective values of M (�) (t;F) ;

S(�) (t;F) and Q(�) (t;F) when replacing UF � (t) by Xn��:n: It is clear that the quantity

S
(�)
n (�)� s� (�1) may be decomposed into the sum of

Tn1 := �� (�)

�
Q
(�+1)
n (�)

�2
�
� eQ(�+1)n (�)

�2
�
Q
(�+1)
n (�) eQ(�+1)n (�)

�2 Q(2�)n (�;Fn) ;

Tn2 := � (�)
Q
(2�)
n (�)� eQ(2�)n (�)� eQ(�+1)n (�)

�2 and Tn3 := eS(�)n (�)� s� (�1) :

Since Q(�)n (�)
P! q� (�1) ; then by using the mean value theorem, we get

Tn1 = � (1 + op (1)) 2� (�) q2�q�3�+1
�
Q(�+1)n (�)� eQ(�+1)n (�)

�
:
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Making use of the third-order condition (4:17); by analogy of the weak approximation

given in [46] (page 411), we write

M (�)
n (�) = �1 �

(1)
� + ��1=2

Z 1
1

L (x;W) d log� x+ ���11 �(2)� (�1)A0 (n=�) (4.25)

+ ���11 �(4)� (�1; �1)A0 (n=�)B0 (n=�) (1 + op (1)) + oP
�
��1=2

�
:

Since
R1
1
L (x;W) d log� x = OP (1) ; then

M (�)
n (�) = �1 �

(1)
� + ���11 �(2)� (�1)A0 (n=�) (4.26)

+ ���11 �(4)� (�1; �1)A0 (n=�)B0 (n=�) (1 + oP (1)) + oP
�
��1=2

�
:

Let us write

Q(�)n (�)� eQ(�)n (�)

=
M

(�)
n (�)� � (�+ 1)

�
M

(1)
n (�)

�2
M

(2)
n (�)� 2

�
M

(1)
n (�)

�2 �
fM (�)
n (�)� � (�+ 1)

�fM (1)
n (�)

�2
fM (2)
n (�)� 2

�fM (1)
n (�)

�2 :

By reducing to the common denominator and by using the weak approximations (4:25)

and (4:26) with the fact that A0 (n=�)
P! 0;

p
�A2

0 (n=�) and
p
�A0 (n=�)B0 (n=�) are

stochastically bounded, we get

p
�A0 (n=�)

�
Q(�)n (�)� eQ(�)n (�)

�
=

Z 1
1

L (x;W) dg1(x;�) + �1 (�)
p
�A0 (n=�)B0 (n=�) + oP (1) ;

where

g1(x;�) :=
��11

2m2

�
��1 log� x� �� (�)

2
r�

�2
1 log2 x�

�
��(1)� � 2�� (�) r�

�
�11 log x

�
;
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and �1 (�) := ���21 fd� � � (�) r�d2g = (2m2) with d�; r� and m2 being those de�ned in

the beginning of Section 4.2. It follows that

p
�A0 (n=�)Tn1

= �2� (�) q2�q�3�+1
�Z 1

1

L (x;W) dg1(x;�+ 1) + �1 (�+ 1)
p
�A0 (n=�)B0 (n=�) + oP (1)

�
:

Likewise, by similar arguments, we also get

p
�A0 (n=�)Tn2

= � (�) q�2�+1

�Z 1
1

L (x;W) dg1(x; 2�) + �1 (2�)
p
�A0 (n=�)B0 (n=�) + oP (1)

�
:

Therefore

p
�A0 (n=�) (Tn1 + Tn2) =

Z 1
1

L (x;W) dg(x;�) +K (�)
p
�A0 (n=�)B0 (n=�) + oP (1) ;

where K (�) := � (�)
�
q�2�+1�1 (2�)� 2q2�q�3�+1�1 (�+ 1)

�
and

g(x;�) := � (�)
�
q�2�+1g1 (x; 2�)� 2q2�q�3�+1g1 (x;�+ 1)

�
:

Once again by using the third-order condition (4:17) with the fact that A0 (n=�)
P! 0 and

p
�A0 (n=�)B0 (n=�) = OP (1) ; we show that

p
�A0 (n=�)Tn3 = �1

p
�A2

0 (n=�) + oP (1) :

It is easy to check that K (�) � �2; hence we have

p
�A0 (n=�)

�
S(�)n (�)� s� (�1)

�
=

Z 1
1

L (x;W) dg(x;�) + �1
p
�A2

0 (n=�) + �2
p
�A0 (n=�)B0 (n=�) + oP (1) ;

where �1 and �2 are those de�ned in the beginning of Section 4.2. Recall that S
(�)
n (�) =

s�

�b�(�)1 � ; then in view of the mean value theorem and the consistency of b�(�)1 ; we end up
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with

s0� (�1)
p
�A0 (n=�)

�b�(�)1 � �1

�
=

Z 1
1

L (x;W) dg(x;�) + �1
p
�A2

0 (n=�) + �2
p
�A0 (n=�)B0 (n=�) + oP (1) :

Finally, integrating by parts with elementary calculations completes the proof of the second

part of the theorem, namely the Gaussian approximation of b�(�)1 : For the third assertion,

it su¢ ces to calculate E
�Z 1

0

s�=2�1��(s)W (s) ds� �W (1)

�2
to get the asymptotic

variance �2�; therefore we omit details.

4.8.2 Proof of Theorem 4:2

Let us write

p
k (b1 � 1) =

p
k
�
M (1)
n (k)� 1

�
+

b�(�)1 � 1
2b�(�)1 M

(1)
n (k)

p
k
�
M (2)
n (k)� 2

�
M (1)
n (k)

�2�
:

From, Theorem 3.1 in [6] and Theorem 4.1 above both M (1)
n (k) = b(BMN)

1 and b�(�)1 are

consistent for 1 and �1 respectively. It follows that

p
k (b1 � 1)

=
p
k
�
M (1)
n (k)� 1

�
+
�1 � 1
21�1

p
k
�
M (2)
n (k)� 2

�
M (1)
n (k)

�2�
(1 + oP (1)) :

By applying the weak approximation (4:22) ; for � = 1; we get

p
k
�
M (1)
n (k)� 1

�
=

Z 1
1

L (x;W) d log x+

p
kA0 (n=k)

1� �1
+ oP (1) : (4.27)
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Using the mean value theorem and the consistency of M (1)
n (k) yields

p
k
��
M (1)
n (k)

�2 � 21

�
= 21

(Z 1
1

L (x;W) d log x+

p
kA0 (n=k)

1� �1
+ oP (1)

)
(1 + oP (1)) :

In the sequel we need to the following Lemma.

Lemma 4.2 For any � > 0; we have
R1
1
L (x;W) d log� x = OP (1) :

Proof. See the Appendix.

From Lemma 4:2 and the assumption
p
kA0 (n=k) = OP (1) as N !1 we have

p
k
��
M (1)
n (k)

�2 � 21

�
=

Z 1
1

L (x;W) d (21 log x) +
21
1� �1

p
kA0 (n=k) + oP (1) :

Once again, by applying the weak approximation (4:22 ; for � = 2; we write

p
k
�
M (2)
n (k)� 221

�
=

Z 1
1

L (x;W) d log2 x+ 21�
(2)
2 (�1)

p
kA0 (n=k) + oP (1) ;

where �(2)2 (�1) =
�
1� (1� �1)

2� = ��1 (1� �1)
2� : It follows that

p
k
�
M (2)
n (k)� 2

�
M (1)
n (k)

�2�
(4.28)

=

Z 1
1

L (x;W) d
�
log2 x� 41 log x

�
+

21�1

(1� �1)
2

p
kA0 (n=k) + oP (1) :

By combining approximations (4:27) and (4:28); we obtain

p
k (b1 � 1) =

Z 1
1

L (x;W) d	(x) + oP

�p
kA0 (n=k)

�
; as N !1;

where 	(x) := �6 log x + �5 log
2 x: Finally, making an integration by parts wit a change

of variables and elementary calculations, achieves the proof of the �rst assertion of the

theorem. The second part is straightforward.
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4.8.3 Proof of Theorem 4:3

It is straightforward. Indeed, by using similar arguments as those used in the proof of

Theorem 5.1 in [6], we infer that

p
k

log dn

�eq�
q�
� 1
�
=
p
k (b1 � 1) + oP (1) ; as N !1;

then, by making use of Theorem 4:2; the result of Theorem 4:3 comes.

4.9 Conclusion

We proposed an estimation method to the second-order parameter of Pareto-type dis-

tributions for randomly right-truncated data which conduced us to a new bias-reduced

estimator of the tail index. The useful weak approximation of the tail empirical process,

given in [6], allowed us to establish the asymptotic normality of the proposed estimators.

We emphasize, that our approach may also be employed to derive several asymptotically

normal estimators to both parameters. Indeed, it su¢ ces to de�ne the pertaining theo-

retical functionals, in terms of the underlying df F to be replaced by the corresponding

product-empirical estimator Fn:

4.10 Appendix

Poof of Lemma. 4:1Let us consider assertion (i) : We begin by letting

U (�) := �
Z 1
1

log� sds�1=1 and ` (t) :=
M (�) (t;F)� �

(1)
�

�
M (1) (t;F)

��
A0 (t)

;

to show that, for any � > 0

lim
t!1

` (t) = ���11

�
�(2)� (�1)� �(1)� �

(2)
1 (�1)

�
: (4.29)
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Indeed, let us �rst decompose ` (t) into

M (�) (t;F)� U (�)

A0 (t)
� �(1)�

�
M (1) (t;F)

�� � �U (1)��
A0 (t)

+
U (�) (t)� �

(1)
�

�
U (1)

��
A0 (t)

;

and note that �(1)� = � (�+ 1) where � (a) =
R1
0
e�xxa�1dx =

R1
1
t�2 loga�1 tdt; a > 0: It

is easy to verify that U (�) � �
(1)
�

�
U (1)

��
= 0; therefore

` (t) =
M (�) (t;F)� U (�)

A0 (t)
� �(1)�

�
M (1) (t;F)

�� � �U (1)��
A0 (t)

: (4.30)

Recall that M (�) (t;F) =
R1
u
log� (x=u) dF (x) =F (u) ; where u := UF � (t) ; which by a

change of variables and an integration by parts, may be rewritten into

Z 1
1

F (ux)

F (u)
d log� x =:M (�)

u (F) :

Making use, once again, of Proposition 4 of Hua [57], we write: for possibly di¤erent

function eAF; with eAF (y) � AF (y) ; as y !1; for any 0 < � < 1 and x � 1; we have

�����F (ux) =F (u)� x�1=1

�21
eAF

�
1=F (u)

� � x�1=1
x�1=1 � 1
1=�1

����� � �x�1=1+�; as u!1:

By using elementary analysis, we easily show that this inequality implies that

M
(�)
u (F)� U (�)eAF

�
1=F (u)

� ! ���11 �(2)� (�1) ; as u!1:

Hence, since 1=F (u)!1 as u!1; then eAF

�
1=F (u)

�
� AF

�
1=F (u)

�
= A0 (t) : This

means that
M (�) (t;F)� U (�)

A0 (t)
! ���11 �(2)� (�1) ; as t!1: (4.31)

Note that for � = 1; we have U (1) = 1 and therefore
�
M (1) (t;F)� 1

�
=A0 (t)! �

(2)
1 (�1) ;

which implies that M (1) (t;F) ! 1: By using the mean value theorem and the previous
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two results we get

�
M (1) (t;F)

�� � �1
A0 (t)

! ���11 �
(2)
1 (�1) ; as t!1: (4.32)

Combining (4:30) ; (4:31) and (4:32) leads to (4:29) : Finally, we use the fact thatM (1) (t;F)!

1 to achieve the proof of assertion (i) : To show assertion (ii) ; we apply assertion (i) twice,

for � > 0 and for � = 2; then we divide the respective results to get

Q(�) (t;F) =
M (�) (t;F)� �

(1)
�

�
M (1) (t;F)

��
M (2) (t;F)� 2 [M (1) (t;F)]

2

�
�
M (1) (t;F)

���1
M (1) (t;F)

�
�
�
(2)
� (�1)� �

(1)
� �

(2)
1 (�1)

�
2
�
�
(2)
2 (�1)� �

(1)
2 �

(2)
1 (�1)

� :
By replacing �(1)� and �(2)� (�1) by their expressions, given in (4:12); we get

�
�
�(2)� (�1)� �(1)� �

(2)
1 (�1)

�
= �

�
� (�) (1� (1� �1)

�)

�1 (1� �1)
� � � (�+ 1) � (1) (1� (1� �1))

�1 (1� �1)

�
= �

�
� (�) (1� (1� �1)

�)

�1 (1� �1)
� � � (�+ 1)

1� �1

�
:

Since M (1) (t;F)! 1; then

Q(�) (t;F)!
��21 � (�+ 1)

�
1� (1� �1)

� � ��1 (1� �1)
��1�

2�21 (1� �1)
��2 ; as t!1;

which is q� (�1) given in (4:10) : For assertion (iii) ; it is clear that

� (�)
Q
(2�)
t�

Q
(�+1)
t

�2 ! �21
�
1� (1� �1)

2� � 2��1 (1� �1)
2��1��

1� (1� �1)
�+1 � (�+ 1) �1 (1� �1)

��2 ;
which meets the expression of s� (�1) given in (4:11) :

Proof of Lemma. 4:2: Observe that
R1
1
L (x;W) d log� x may be decomposed into the
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sum of

I1 :=


1

Z 1
1

x1=2W
�
x�1=

�
d log� x; I2 := �



1
W (1)

Z 1
1

x�1=1d log� x;

I3 :=


1 + 2

Z 1
1

x1=2
�Z 1

0

s�=2�1W
�
x�1=s

�
ds

�
d log� x;

and

I4 := �


1 + 2

�Z 1

0

s�=2�1W (s) ds

�Z 1
1

x�1=1d log� x:

Next we show that Ii = OP (1) ; i = 1; :::; 4: To this end, we will show that E jIij is �nite

for i = 1; :::; 4: Indeed, we have E jI1j � (=1)
R1
1
x�1=1x1=E

��W �
x�1=

��� d log� x: Since
E jW (y)j � py; for any 0 � y � 1; then E jI1j � (�=1)

Z 1
1

x1=2�1=(2)�1 log��1 xdx: By

successively making two changes of variables log x = t; then (�1=2 + 1= (2) + 1) t = s;

we end up with E jI1j � ��11 (2= (2 � 1))
� � (�+ 1) which is �nite for any � > 0: By

similar arguments we also show that E jI2j � ��11 � (�+ 1) which is �nite as well. For

the third term I3; we have

E jI3j � = (1 + 2)

Z 1
1

x1=2
�Z 1

0

s�=2�1E
��W �

x�1=s
��� ds� d log� x:

By elementary calculations, we get

E jI3j �
2 (2)

�+1

(2 � 2) (1 + 2)

�
1

2 � 1

��
� (�+ 1) ;

which is also �nite. By using similar arguments, we get

E jI4j �
22

�
1 � (�+ 1)

(1 + 2) (2 � 2)
<1;

as sought.
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Chapter 5

A Lynden-Bell integral estimator for

the tail index of right-truncated data

with a random threshold

By means of a Lynden-Bell integral with deterministic threshold, recently Worms

andWorms [A Lynden-Bell integral estimator for extremes of randomly truncated

data. Statist. Probab. Lett. 2016; 109: 106-117] introduced an asymptotically normal

estimator of the tail index for Pareto-type (randomly right-truncated) data. In this con-

text, we consider the random threshold case to derive a Hill-type estimator and establish

its consistency and asymptotic normality. A simulation study is carried out to evaluate

the �nite sample behavior of the proposed estimator and compare it to the existing ones.

5.1 Introduction

Let (Xi;Yi) ; 1 � i � N be a sample of size N � 1 from a couple (X;Y) of independent

random variables (rv�s) de�ned over some probability space (
;A;P) ; with continuous

marginal distribution functions (df�s) F and G respectively. Suppose that X is truncated
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to the right by Y; in the sense that Xi is only observed when Xi � Yi: We assume that

both survival functions F := 1�F and G := 1�G are regularly varying at in�nity with

respective negative indices �1=1 and �1=2: (4:1) holds.

It is well known that, in extreme value analysis, weak approximations are achieved in

the second-order framework (see, e.g., de Haan 2006 [20] page 48). Thus, it seems quite

natural to suppose that F and G satisfy the second-order condition of regular variation

4:2 and 4:3 respectively with �1; �2 < 0 are the second-order parameters and AF; AG

are functions tending to zero and not changing signs near in�nity with regularly varying

absolute values at in�nity with indices �1; �2 respectively, which we express in terms of

the tail quantile functions pertaining to both df�s.

For any df K; the function UK (t) := K (1� 1=t) ; t > 1; stands for the tail quantile

function, with K (u) := inf fv : K (v) � ug ; 0 < u < 1; denoting the generalized inverse

of K: From Lemma 3 in [62] , the second-order conditions (4:2) and (4:3) imply that there

exist constants d1; d2 > 0; such that

F (x) = d1x
�1=1`1 (x) and G (x) = d2x

�1=2`2 (x) ; x > 0; (5.1)

where limx!1 `i (x) = 1 and j1� `ij is regularly varying at in�nity with tail index �i;

i = 1; 2: This ccondition is full�lled by many commonly used models such as Burr, Fréchet,

Generalized Pareto, absolute Student, log-gamma distributions, to name but a few. Also

known as heavy-tailed, Pareto-type or Pareto-like distributions, these models take a promi-

nent role in extreme value theory and have important practical applications as they are

used rather systematically in certain branches of non-life insurance, as well as in �nance,

telecommunications, hydrology, etc... [77].

Let us now denote (Xi; Yi) ; i = 1; :::; n to be the observed data, as copies of a cou-

ple of rv�s (X; Y ) ; corresponding to the truncated sample (Xi;Yi) ; i = 1; :::; N; where

n = nN is a sequence of discrete rv�s which, in virtue of the weak law of large num-
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bers, satis�es nN=N
P! p := P (X � Y) ; as N ! 1: We denote the joint df of X

and Y by H (x; y) := P (X � x; Y � y) = P (X � min (x;Y) ;Y � y j X � Y) ; which

is equal to p�1
Z y

0

F (min (x; z)) dG (z) : The marginal distributions of the rv�s X and Y;

respectively denoted by F and G; are given by F (x) = p�1
Z x

0

G (z) dF (z) and G (y) =

p�1
R y
0
F (z) dG (z) : Since F andG are heavy-tailed, then their right endpoints are in�nite

and thus they are equal. Hence, fromWoodrofee 1985, [88], we may write
R1
x
dF (y) =F (y) =R1

x
dF (y) =C (y) ; where C (z) := P (X � z � Y ) : Di¤erentiating the previous equation

leads to the following crucial equation C (x) dF (x) = F (x) dF (x) ; whose solution is de-

�ned by F (x) = exp
�
�
R1
x
dF (z) =C (z)

	
: This leads to Woodroofe�s nonparametric

estimator [88] of df F; given by

F(W)
n (x) :=

Y
i:Xi>x

exp

�
� 1

nCn (Xi)

�
;

which is derived only by replacing df�s F and C by their respective empirical counter-

parts Fn (x) := n�1
nP
i=1

1 (Xi � x) and Cn (x) := n�1
nP
i=1

1 (Xi � x � Yi) : There exists a

more popular estimator for F; known as Lynden-Bell nonparametric maximum likelihood

estimator [64], de�ned by

F(LB)n (x) :=
Y
i:Xi>x

�
1� 1

nCn (Xi)

�
;

which will be considered in this paper to derive a new estimator for the tail index of df

F: Note that the tail of df F simultaneously depends on G and F while that of G only

relies on G: By using Proposition B.1.10 in [20], to the regularly varying functions F and

G; we show that both F and G are regularly varying at in�nity as well, with respective

indices �1= := � (1 + 2) = (12) and �1=2: In view of the de�nition of ; Gardes and

Stup�er 2015, [42] derived a consistent estimator, for the extreme value index 1; whose

asymptotic normality is established in [5], under the tail dependence and the second-
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order conditions of regular variation. Recently, by considering a Lynden-Bell integration

with a deterministic threshold tn > 0; Wormes and Wormes 2016, [91] proposed another

asymptotically normal estimator for 1 as follows:

b(LB)1 (tn) :=
1

nF
(LB)

n (tn)

nX
i=1

1 (Xi > tn)
F
(LB)
n (Xi)

Cn (Xi)
log

Xi

tn
:

Likewise, Benchaira et al. 2016a, [6] considered a Woodroofe integration (with a random

threshold) to propose a new estimator for the tail index 1 given by

b(W)
1 :=

1

nF
(W)

n (Xn�k:n)

kX
i=1

F
(W)
n (Xn�i+1:n)

Cn (Xn�i+1:n)
log

Xn�i+1:n

Xn�k:n
;

where, given n = m = mN ; Z1:m � ::: � Zm:m denote the order statistics pertaining to a

sample Z1; :::; Zm; and k = kn is a (random) sequence of integers such that, given n = m;

1 < km < m; km ! 1 and km=m ! 0 as N ! 1: The consistency and asymptotic

normality of b(W)
1 are established in [6] through a weak approximation to Woodroofe�s tail

process

D(W)
n (x) :=

p
k

 
F
(W)

n (Xn�k:nx)

F
(W)

n (Xn�k:n)
� x�1=1

!
; x > 0:

More precisely, the authors showed that, under (4:2) and (4:3) with 1 < 2; there exist

a function A0 (t) � A�F (t) := AF

�
1=F (UF (t))

�
; t!1; and a standard Wiener process

fW (s) ; s � 0g ; de�ned on the probability space (
;A;P) ; such that, for 0 < � < 1=2�

=2 and x0 > 0;

sup
x�x0

x(1=2��)=�1=2
����D(W)

n (x)� � (x;W)� x�1=1
x�1=1 � 1
1�1

p
kA0 (n=k)

���� = oP (1) ; (5.2)

asN !1; provided that given n = m;
p
kmA0 (m=km) = O (1) ; where f� (x;W) ; x > 0g
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is a Gaussian process de�ned by

� (x;W) :=


1
x�1=1

�
x1=W

�
x�1=

�
�W (1)

	
+



1 + 2
x�1=1

Z 1

0

s�=2�1
�
x1=W

�
x�1=s

�
�W (s)

	
ds:

In view of the previous weak approximation, the authors also proved that if, given n = m;
p
kmA

�
F (m=km) ! �; then

p
k (b1 � 1)

D! N
�

�

1� �1
; �2
�
; as N ! 1; where �2 :=

2 (1 + 1=2)
�
1 + (1=2)

2� = (1� 1=2)
3 : Recently, Benchaira et al. 2016b, [7] followed

this approach to introduce a kernel estimator to 1 which improves the bias of b(W)
1 : In

this paper, we are interested in Worm�s estimator b(LB)1 (tn) ; but with a threshold tn that

is assumed to be random and equal to Xn�k:n: This makes the estimator more convenient

for numerical implementation than the one with a deterministic threshold. In other words,

we will deal with the following tail index estimator:

b(LB)1 :=
1

nF
(LB)

n (Xn�k:n)

kX
i=1

F
(LB)
n (Xn�i+1:n)

Cn (Xn�i+1:n)
log

Xn�i+1:n

Xn�k:n
:

Note that F(LB)n (1) = 1 and write F
(LB)

n (Xn�k:n) =
R1
Xn�k:n

dF
(LB)
n (y) : On the other

hand, we have Cn (x) dF
(LB)
n (x) = F

(LB)
n (x) dFn (x) (see, e.g., [84]), then

F
(LB)

n (Xn�k:n) =

Z 1
Xn�k:n

F
(LB)
n (x)

Cn (x)
dFn (x) =

1

n

kX
i=1

F
(LB)
n (Xn�i+1:n)

Cn (Xn�i+1:n)
:

This allows us to rewrite the new estimator into

b(LB)1 :=
kX
i=1

a(i)n log
Xn�i+1:n

Xn�k:n
;

where

a(i)n :=
F
(LB)
n (Xn�i+1:n)

Cn (Xn�i+1:n)
=

kX
i=1

F
(LB)
n (Xn�i+1:n)

Cn (Xn�i+1:n)
:

100



Chapter 5. A Lynden-Bell integral estimator for the tail index of right-truncated data
with a random threshold

It is worth mentioning that for complete data, we have n�N and Fn�Fn�Cn; it follows

that a(i)n �k�1; i = 1; :::; k and consequently both b(LB)1 and b(W)
1 reduce to the classical

Hill estimator [60]. The consistency and asymptotic normality of b(LB)1 will be achieved

through a weak approximation of the corresponding tail Lynden-Bell process that we de�ne

by

D(LB)
n (x) :=

p
k

 
F
(LB)

n (Xn�k:nx)

F
(LB)

n (Xn�k:n)
� x�1=1

!
; x > 0:

The rest of the paper is organized as follows. In Section 5.2, we provide our main results

whose proofs are postponed to Section 5.4. The �nite sample behavior of the proposed

estimator b(LB)1 is checked by simulation in Section 5.3, where a comparison with the one

recently introduced by Benchaira et al. 2016a, [6] is made as well.

5.2 Main results

We basically have three main results. The �rst one, that we give in Theorem 5.1, consists

in an asymptotic relation between the above mentioned estimators of the distribution tail,

namely F
(W)

n and F
(LB)

n : This in turn is instrumental to the Gaussian approximation of

the tail Lynden-Bell process D(LB)
n (x) stated in Theorem 5.2. Finally, in Theorem 5.3, we

deduce the asymptotic behavior of the tail index estimator b(LB)1 :

Theorem 5.1 Assume that both F and G satisfy the second-order conditions (4:2) and

(4:3) respectively with 1 < 2: Let k = kn be a random sequence of integers such that,

given n = m; km !1 and km=m! 0; as N !1; then, for any x0 > 0; we have

sup
x�x0

x1=1

���F(W)

n (Xn�k:nx)� F
(LB)

n (Xn�k:nx)
���

F (Xn�k:n)
= OP

�
(k=n)1=

�
:

Theorem 5.2 Assume that the assumptions of Theorem 5.1 hold and given n = m;

k1+1=(2)m =m! 0; (5.3)
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and
p
kmA0 (m=km) = O (1) ; as N !1: Then, for any x0 > 0 and 0 < � < 1=2� =2;

we have

sup
x�x0

x(1=2��)=�1=2
����D(LB)

n (x)� � (x;W)� x�1=1
x�1=1 � 1
1�1

p
kA0 (n=k)

���� = oP (1) :

Theorem 5.3 Assume that (4:1) holds with 1 < 2 and let k = kn be a random sequence

of integers such that given n = m; km !1 and km=m! 0; as N !1; then b(LB)1
P! 1:

Assume further that the assumptions of Theorem 5.2 hold, then

p
k
�b(LB)1 � 1

�
=

p
kA0 (n=k)

1� �1
� W (1)

+


1 + 2

Z 1

0

(2 � 1 �  log s) s�=2�1W (s) ds+ oP (1) :

If, in addition, we suppose that, given n = m;
p
kmA

�
F (m=km)! � <1; then

p
k
�b(LB)1 � 1

�
D! N

�
�

1� �1
; �2
�
; as N !1:

5.3 Simulation study

In this section, we illustrate the �nite sample behavior of b(LB)1 and, at the same time,

we compare it with b(W)
1 : To this end, we consider two sets of truncated and truncation

data, both drawn from Burr�s model: F (x) =
�
1 + x1=�

���=1
; G (x) =

�
1 + x1=�

���=2
;

x � 0; where �; 1; 2 > 0: The corresponding percentage of observed data is equal to

p = 2=(1 + 2): We �x � = 1=4 and choose the values 0:6 and 0:8 for 1 and 55%;

70% and 90% for p: For each couple (1; p) ; we solve the equation p = 2=(1 + 2) to

get the pertaining 2-value. We vary the common size N of both samples (X1; :::;XN)

and (Y1; :::;YN) ; then for each size, we generate 1000 independent replicates. Our overall

results are taken as the empirical means of the results obtained through all repetitions. To

determine the optimal number of top statistics used in the computation of the tail index
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1 = 0:6; p = 0:55b(LB)1 b(W)
1

N n abs bias rmse k� abs bias rmse k�

100 54 0:0407 0:2381 26 0:0443 0:2328 26
200 109 0:0378 0:2610 36 0:0358 0:2532 37
300 165 0:0352 0:2359 36 0:0323 0:2315 37
500 274 0:0199 0:2290 61 0:0185 0:2238 61
1000 549 0:0074 0:1763 112 0:0068 0:1748 112
3000 1649 0:0036 0:0982 350 0:0037 0:0981 352
5000 2747 0:0007 0:1066 432 0:0007 0:1065 432

Table 5.1: Estimation results of Lynden-Bell based (leftt pannel) and Woodroofe based
(right pannel) estimators of the shape parameter 1 = 0:6 of Burr�s model through 1000
right-truncated samples with 45%-truncation rate.

1 = 0:6; p = 0:7b(LB)1 b(W)
1

N n abs bias rmse k� abs bias rmse k�

100 69 0:0158 0:2451 25 0:0144 0:2428 25
200 140 0:0095 0:1871 39 0:0089 0:1866 39
300 210 0:0085 0:1590 61 0:0082 0:1587 61
500 348 0:0074 0:1294 76 0:0072 0:1293 76
1000 699 0:0063 0:1014 124 0:0062 0:1014 124
3000 2096 0:0053 0:0962 246 0:0053 0:0962 246
5000 3498 0:0036 0:0984 400 0:0036 0:0984 400

Table 5.2: Estimation results of Lynden-Bell based (left pannel) and Woodroofe based
(right pannel) estimators of the shape parameter 1 = 0:6 of Burr�s model through 1000
right-truncated samples with 30%-truncation rate.

estimate values, we use the algorithm of Reiss and Thomas [76], page 137. Our illustration

and comparison are made with respect to the estimators absolute biases (abs bias) and

the roots of their mean squared errors (rmse). We summarize the simulation results in

Tables 5.1, 5.2 and 5.3 for 1 = 0:6 and in Tables 5.4, 5.5 and 5.6 for 1 = 0:8: After

the inspection of all the tables, two conclusions can be drawn regardless of the situation.

First, the estimation accuracy of both estimators decreases when the truncation percentage

increases and this was quite expected. Second, we notice that the newly proposed estimator

b(LB)1 and b(W)
1 behave equally well.
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1 = 0:6; p = 0:9b(LB)1 b(W)
1

N n abs bias rmse k� abs bias rmse k�

100 90 0:0073 0:1779 21 0:0070 0:1778 21
200 180 0:0066 0:1208 54 0:0064 0:1208 54
300 270 0:0055 0:1133 88 0:0056 0:1133 88
500 450 0:0050 0:0864 125 0:0050 0:0863 125
1000 898 0:0030 0:0614 189 0:0029 0:0614 189
3000 2702 0:0016 0:0494 398 0:0016 0:0494 398
5000 4496 0:0010 0:0112 467 0:0010 0:0112 467

Table 5.3: Estimation results of Lynden-Bell based (left pannel) and Woodroofe based
(right pannel) estimators of the shape parameter 1 = 0:6 of Burr�s model through 1000
right-truncated samples with 10%-truncation rate.

1 = 0:8; p = 0:55b(LB)1 b(W)
1

N n abs bias rmse k� abs bias rmse k�

100 55 0:0570 0:3330 30 0:0636 0:3167 31
200 110 0:0401 0:3604 33 0:0347 0:3453 35
300 164 0:0252 0:2563 69 0:0272 0:2530 71
500 276 0:0227 0:1807 112 0:0216 0:1794 113
1000 551 0:0148 0:1795 196 0:0142 0:1788 197
3000 1647 0:0124 0:1794 525 0:0121 0:1783 525
5000 2751 0:0075 0:1260 688 0:0074 0:1259 688

Table 5.4: Estimation results of Lynden-Bell based (left pannel) and Woodroofe based
(right pannel) estimators of the shape parameter 1 = 0:8 of Burr�s model through 1000
right-truncated samples with 45%-truncation rate.
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1 = 0:8; p = 0:7b(LB)1 b(W)
1

N n abs bias rmse k� abs bias rmse k�

100 69 0:0217 0:3827 28 0:0195 0:3787 28
200 139 0:0203 0:2918 59 0:0194 0:2905 59
300 210 0:0189 0:1857 66 0:0184 0:1852 66
500 348 0:0143 0:1593 113 0:0140 0:1591 113
1000 700 0:0049 0:1205 230 0:0049 0:1204 230
3000 2100 0:0037 0:0886 449 0:0038 0:0886 449
5000 3500 0:0031 0:0857 500 0:0031 0:0857 500

Table 5.5: Estimation results of Lynden-Bell based (left pannel) and Woodroofe based
(right pannel) estimators of the shape parameter 1 = 0:8 of Burr�s model through 1000
right-truncated samples with 30%-truncation rate.

1 = 0:8; p = 0:9b(LB)1 b(W)
1

N n abs bias rmse k� abs bias rmse k�

100 89 0:0380 0:1833 38 0:0369 0:1827 38
200 179 0:0345 0:1383 80 0:0342 0:1383 80
300 269 0:0173 0:1014 99 0:0175 0:1013 99
500 450 0:0108 0:0927 143 0:0106 0:0926 143
1000 899 0:0021 0:0729 260 0:0021 0:0729 260
3000 2697 0:0013 0:0591 443 0:0013 0:0591 443
5000 4500 0:0001 0:0309 997 0:0001 0:0309 997

Table 5.6: Estimation results of Lynden-Bell based (left pannel) and Woodroofe based
(right pannel) estimators of the shape parameter 1 = 0:8 of Burr�s model through 1000
right-truncated samples with 10%-truncation rate.
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5.4 Proofs

5.4.1 Proof Theorem 5.1

For x � x0 we have

F(W)
n (Xn�k:nx) = exp

(
�
Z 1
Xn�k:nx

dFn (y)

Cn (y)

)
:

We show that the latter exponent is negligible in probability uniformly over x � x0: Indeed,

note that both Fn (y) =F (y) and C (y) =Cn (y) are stochastically bounded from above on

y < Xn:n (see, e.g., [80] page 415 and [84], respectively), it follows that

�
Z 1
Xn�k:nx

dFn (y)

Cn (y)
= OP (1)

Z 1
Xn�k:nx

dF (y)

C (y)
: (5.4)

By a change of variables we have

Z 1
Xn�k:nx

dF (y)

C (y)
=
F (Xn�k:n)

C (Xn�k:n)

�Z 1
x

C (Xn�k:n)

C (Xn�k:nt)
d
F (Xn�k:nt)

F (Xn�k:n)

�
: (5.5)

Recall that Xn�k:n
P!1 and that F is regularly varying at in�nity with index �1=: On

the other hand, from Assertion (i) of Lemma A2 [6] we deduce that 1=C is also regularly

varying at in�nity with index 1=2: Thus, we may apply Potters inequalities, see e.g.

Proposition B.1.10 in [20], to both F and 1=C to write: for all large N; any t � x0 and

any su¢ ciently small �; � > 0; with large probability,

����F (Xn�k:nt)

F (Xn�k:n)
� t�1=

���� < �t�1=�� and

���� C (Xn�k:n)

C (Xn�k:nt)
� t1=2

���� < �t1=2�� ; (5.6)

where t�a := max (ta; t�a) : These two inequalities may be rewritten, into

F (Xn�k:nt)

F (Xn�k:n)
= t�1=

�
1 + oP

�
t��
��
and

C (Xn�k:n)

C (Xn�k:nt)
= t1=2

�
1 + oP

�
t��
��
;
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uniformly on t � x0: This leads to

Z 1
x

C (Xn�k:n)

C (Xn�k:nt)
d
F (Xn�k:nt)

F (Xn�k:n)
= �1


x�1=1

�
1 + oP

�
x��
��
: (5.7)

In view of (5:1); Benchaira et al. 2016a, [6] showed, in Lemma A1, that F (y) = (1 + o (1)) c1y�1=

and G (y) = (1 + o (1)) c2y
�1=2 as y ! 1; for some constants c1; c2 > 0: In other words,

UF (s) = (1 + o (1)) (c1s)as s ! 1, and C (y) = (1 + o (1)) c2y�1=2 as y ! 1: On the

other hand, from Lemma A4 in [6], we have Xn�k:n = (1 + oP (1))UF (n=k) ; it follows

that Xn�k:n = (1 + oP (1)) c

1 (k=n)

� : Note that 1� =2 = =1; hence

F (Xn�k:n)

C (Xn�k:n)
= (1 + oP (1)) c

=2
1 c�12 (k=n)=1 : (5.8)

Plugging results (5:7) and (5:8) in equation (5:5) yields

Z 1
Xn�k:nx

dF (y)

C (y)
= (k=n)=1 c

=2
1 c�12 1x

�1=1
�
1 + oP

�
x��
��
: (5.9)

By combining equations (5:4) and (5:9); we obtain

Z 1
Xn�k:nx

dFn (y)

Cn (y)
= OP (1) (k=n)

=1 x�1=1
�
1 + oP

�
x��
��
; (5.10)

which obviously tends to zero in probability (uniformly on x � x0): We may now apply

Taylor�s expansion et = 1 + t+O (t2) ; as t! 0; to get

exp

(
�
Z 1
Xn�k:nx

dFn (y)

Cn (y)

)
= 1�

Z 1
Xn�k:nx

dFn (y)

Cn (y)
+OP

 Z 1
Xn�k:nx

dFn (y)

Cn (y)

!2
; N !1:

In other words, we have

F
(W)

n (Xn�k:nx) =

Z 1
Xn�k:nx

dFn (y)

Cn (y)
+Rn1 (x) ; N !1; (5.11)
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where Rn1 (x) := OP

�
(k=n)2=1

�
x�2=1 (1 + oP (x

��)) : Next, we show that

F
(LB)

n (Xn�k:nx) =

Z 1
Xn�k:nx

dFn (y)

Cn (y)
+Rn2 (x) ; N !1: (5.12)

Observe that, by taking the logarithme then its exponential in the de�nition of F(LB)n (x) ;

we have

F(LB)n (Xn�k:nx) = exp

(
nX
i=1

1 (Xi:n > Xn�k:nx) log

�
1� 1

nCn (Xi:n)

�)
;

which may be rewritten into exp
�
n
R1
x
log

�
1� 1

nCn (Xn�k:ny)

�
dFn (Xn�k:ny)

�
: To get

approximation (5:12) it su¢ ces to apply successively, in the previous quantity, Taylor�s

expansions et = 1 + t + O (t2) and log (1� t) = �t + O (t2) (as t ! 0) with similar

arguments as above (we omit further details). Combining (5:11) and (5:12) and setting

Rn (x) := Rn1 (x)�Rn2 (x) yield

F
(W)

n (Xn�k:nx)� F
(LB)

n (Xn�k:nx) = Rn (x) ; N !1: (5.13)

On the other hand, by once again using Taylor�s expansion, we write

F (Xn�k:n) =

Z 1
Xn�k:n

dF (y)

C (y)
+ eRn (x) ; N !1:

From equation (5:9), we infer that F (Xn�k:n) = c�12 c
1�=1
1 (k=n)=1 (1 + oP (1)) ; which

implies, in view of (5:13); that

x1=1
F
(LB)

n (Xn�k:nx)� F
(W)

n (Xn�k:nx)

F (Xn�k:n)
= OP

�
(k=n)=1

�
x�1=1�� :

Observe now that, for a su¢ ciently small � > 0; we have x�1=1�� = OP (1) ; uniformly on

x � x0 > 0; as sought.
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5.4.2 Proof Theorem 5.2

In a similar way to what is done with D(W)
n (x) ; in the proof of Theorem 2.1 in [6], we

decompose k�1=2D(LB)
n (x) into the sum of

Nn1 (x) := x�1=1
F
(LB)

n (Xn�k:nx)� F (Xn�k:n)

F (Xn�k:n)
;

Nn2 (x) := �
F (Xn�k:nx)

F
(LB)

n (Xn�k:n)

F
(LB)

n (Xn�k:n)� F (Xn�k:n)

F (Xn�k:n)
;

Nn3 (x) :=

 
F (Xn�k:nx)

F
(LB)

n (Xn�k:n)
� x�1=1

!
F
(LB)

n (Xn�k:nx)� F (xXn�k:n)

F (Xn�k:nx)
;

and Nn4 (x) := F (Xn�k:nx) =F (Xn�k:n)� x�1=1 : If we let

Mn1 (x) := x�1=1
F
(W)

n (Xn�k:nx)� F (Xn�k:n)

F (Xn�k:n)
;

then, by applying Theorem 5.1, we have x1=1Nn1 (x) = x1=1Mn1 (x)+x
�1=1OP

�
(k=n)=1

�
;

uniformly on x � x0: By assumption we have k1+1=(2)=n
P! 0; which is equivalent to

p
k (k=n)=1

P! 0 as N !1; therefore

x1=1
p
kNn1 (x) = x1=1

p
kMn1 (x) + oP

�
x�1=1

�
: (5.14)

In view of this representation we show that, both D(W)
n (x) and D(LB)

n (x) are (weakly)

approximated, in the probability space (
;A;P) ; by the same Gaussian process � (x;W)

given in (5:2) : Indeed, for a su¢ ciently small � > 0; and 0 < � < 1=2; [6] (see the beginning

of the proof of Theorem 2.1 therein), showed that

x1=1
p
kMn1 (x) = � (x) + oP

�
x(1��)=��

�
;
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where � (x) := x1=
�


1
W
�
x�1=

�
+



1 + 2

R 1
0
t�=2�1W

�
x�1=t

�
dt

�
: Then by using

representation (5:14) ; we get x1=1
p
kNn1 (x) = � (x) + oP

�
x�1=1

�
+ oP

�
x(1��)=��

�
: In

particular for x = 1; we have

p
k

 
F
(LB)

n (Xn�k:n)

F (Xn�k:n)
� 1
!
=
p
kNn1 (1) = � (1) + oP (1) ; (5.15)

leading to F
(LB)

n (Xn�k:n) =F (Xn�k:n)
P! 1; as N ! 1: By applying Potters inequalities

to F (as it was done for F in (5:8)) together with the previous limit, we obtain

F (Xn�k:nx)

F
(LB)

n (Xn�k:n)
=
�
1 +OP

�
x��
��
x�1=1 : (5.16)

By combining (5:15) and(5:16) ; we get x1=1
p
kNn2 (x) = �� (1)+oP (x��) : For the third

term Nn3 (x) ; we use similar arguments to show that

x1=1
p
kNn3 (x) = oP

�
x�1=1��

�
+ oP

�
x�1=1+(1��)=��

�
:

Observe that x1=1�(1��0)=oP
�
x�1=1��

�
and x1=1�(1��0)=oP

�
x�1=1+(1��)=��

�
respectively

equal oP
�
x�(1��0)=��

�
and oP

�
x(���0)=��

�
; for =2 < �0 < � < 1=2; and that both the

last two quantities are equal to oP (1) for any small � > 0 and x � x0 > 0: Finally, by

following the same steps at the end of the proof of Theorem 2.1 in [6], we get

p
kNn4 (x) = x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k) + op

�
x�1=1+(1��)=��

�
:

Consequently, we have

x1=1�(1��0)=
�
D(LB)
n (x)� � (x;W)� x�1=1

x�1=1 � 1
1�1

p
kA0 (n=k)

�
= oP (1) ;

uniformly over x � x0: Recall that 1=1 = 1= � 1=2; then letting �0 := 1=2 � � yields

0 < � < 1=2� =2 and achieves the proof.
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5.4.3 Proof of Theorem 5.3

The proof is similar, mutatis mutandis, as that of Corollary 3.1 in [6]. Therefore we omit

the details.

Concluding notes.

1. Therougout the simulation, we may conclude that are equivalent

2. From theoritical poin of view k=n more strong assumption k1+1=(2)=n:
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Chapter 6

Kernel weighted moment estimator

of extreme quantile of complete data

In this thapter we introduce a new estimator for the extreme quantile but in the

case of complete data, we use in this estimation the kernel weighted moment. Our

consederations are based on the results of Caeiro and Gomes 2015 in [11].

6.1 Introduction

Let X1; :::; Xn be n (n � 1) independent copies of a non-negative random variable (rv)

X; de�ned over some probability space (
; A; P ); with continuous cumulative distribution

function (cdf) F . Note X1:n; :::; Xn:n the order statistics of X. We assume that F := 1�F

hase a right Pareto-type i,e

F (x) � (x=C)�1= ; x!1

with  > 0 and C > 0 denoting the shape and scale parameters, respectively. Then the

quantile function U(t) := F (1 � 1=t) = inffx : F (x) � 1 � 1=tg; t > 1 is a regularly

varying function with a positive index of regular variation equal to , i.e.,
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lim
t!1

U(tx)=U(t) = x: (6.1)

According Caeiro and Gomes 2015 [11], the probability weighted moments (PWM) method

is a generalization of the method of moments. The PWM of a rvX are de�ned byMp;r;s :=

E
�
XpF r(X)F

s
(X)

�
; with p; r; s 2 R; and the usualy work with one of the moments ar :=

M1;0;r or br :=M1;r;0: Caeiro and Gomes 2015 introduce a new semi-parametric estimators

Pareto log PWM (PLPWM) based on the log moments lr := E [(lnX) (1� F (X))r] for

non-negative integer r: For the strict Pareto model with d.f. F (x) = 1 � (x=C)�1=;

x > C > 0;  > 0 the PLPWM are

lr = ln(C)=(1 + r) + =(1 + r)2: (6.2)

Next, we introduce a kernel PLPWM estimator, we write

lr = �
Z
lnx

�
F (x)

�r
d
�
F (x)K

�
F (x)

��
where K is a function will be called kernel, satis�ying:

(1)K is nonincreasing and right-continuous;

(2)K(s) = 0 for s =2 [0; 1) and K (s) � 0, for s 2 [0; 1) ;

(3)
R1
0
K (s) ds = 1;

(4)K and their Lebesgue derivativesK 0 andK" are bounded on R: In the extreme quantile

we write

lr = �
Z 1
t�

ln
x

t

�
F (x�)

F (t�)

�r
d

�
F (x�)

F (t�)
K

�
F (x�)

F (t�)

��
=

Z 1
t

ln
x

t

�
F (x�)

F (t�)

�r
g

�
F (x�)

F (t�)

�
dF (x�)

F (t�)

where g (x) := [xK (x)]0 : Then, Xn�k:n tends almost surely to 1 where k := kn is an
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integer sequence satisfying

1 < k < n; k !1 and k=n! 0 as n!1: (6.3)

By replacing t by Xn�k:n and F by Fn (the well know empirical estimator of F ) in the last

formula of lr we get

blr = 1

nF n (Xn�k:n)

nX
i=n�k+1

ln
Xi:n

Xn�k:n

�
F n (Xi:n)

F n (Xn�k:n)

�r
g

�
F n (Xi:n)

F n (Xn�k:n)

�
;

by replacing n� i+ 1 par i and F n (Xn�i:n) = i=n; for i = 1; 2; :::; k; then

blr = 1

k

kX
i=1

ln
Xn�i+1:n

Xn�k:n

�
i

k + 1

�r
g

�
i

k + 1

�
:

According (6:2) we can write

 = 2 (l0 � 2l1) ; C =
�
k

n

�
exp (4l1 � l0) and qp =

�
k

np

�
exp (4l1 � l0) : (6.4)

Our estimators are

b := 21
k

kX
i=1

ln
Xn�i+1:n

Xn�k:n
g

�
i

k + 1

��
1� 2 i

k + 1

�
;

bCk;n := �k
n

�b
exp

(
1

k

kX
i=1

ln
Xn�i+1:n

Xn�k:n
g

�
i

k + 1

��
4

i

k + 1
� 1
�)

and bQk;n (p) := � k

np

�b
exp

(
1

k

kX
i=1

ln
Xn�i+1:n

Xn�k:n
g

�
i

k + 1

��
4

i

k + 1
� 1
�)

:
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6.2 Main results

We need the second order regular variation condition with a parameter � � 0, that mea-

sures the rate of convergence in (6:1) and is given by

lim
t!1

lnU(tx)� lnU(t)�  lnx

A(t)
=
x� � 1
�

, lim
t!1

U(tx)
U(t)

� x

A(t)
= x

x� � 1
�

(6.5)

for all x > 0, with jAj a regular varying function with index � and x��1
�
= ln x if � = 0.

Theorem 6.1 Under the second order regular variation condition (6:5), and for interme-

diate k = kn satisfying (6:3) ;

p
k (b � ) = 

Z 1

0

s�1Wn (s)' (s) ds� 4Wn (1)

Z 1

0

sK (s) ds

+
p
k eA (n=k)Z 1

0

�
2s�� +

4 (�� + 1)
�

s��+1 � 4
�
s

�
K (s) ds+ op (1) ;

provided that
p
k eA (n=k) = O (1) ; where ' (s) := 2 00 (s)�4 01 (s) and  r (s) :=

R s
0
g (t) trdt:

If in addition we suppose that
p
k eA (n=k) = �; then

p
k (b � )

D! N (�; �2) ; as n!1;

where

� := �

Z 1

0

�
2s�� +

4 (�� + 1)
�

s��+1 � 4
�
s

�
K (s) ds

and

�2 := 2

(
16

�Z 1

0

sK (s) ds

�2
+ 2

Z 1

0

s�1
Z s

0

' (t) dt' (s) ds� 32
�Z 1

0

sK (s) ds

�3)
:

Remark 6.1 If K = 1 we get � = 2= (�� + 1) (�� + 2) and �2 = (22) =3 are the same

as in caeiro 2015.

Theorem 6.2 Under the conditions of Theoreme 6.1, if p = pn is a sequence of probabil-
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ities such that cn := k=(np)!1; as n!1; then

p
k

ln cn

 bQk;n (p)
qp

� 1
!

D
=
p
k (b � ) (1 + op (1)) + op (1) :

6.3 Proofs

6.3.1 Proof of theorem 6.1

We have

blr = �Z 1
1

lnxg

�
F n (xXn�k:n)

F n (Xn�k:n)

��
F n (xXn�k:n)

F n (Xn�k:n)

�r
d

�
F n (xXn�k:n)

F n (Xn�k:n)

�
= �

Z 1
1

lnx 0r

�
F n (xXn�k:n)

F n (Xn�k:n)

�
d

�
F n (xXn�k:n)

F n (Xn�k:n)

�
= �

Z 1
1

lnxd r

�
F n (xXn�k:n)

F n (Xn�k:n)

�
=

Z 1
1

x�1 r

�
F n (xXn�k:n)

F n (Xn�k:n)

�
dx:

Then,

lr =

Z 1
1

x�1 
�
x�1=

�
dx:

Hence
p
k
�blr � lr

�
=
p
k

Z 1
1

x�1
�
 r

�
F n (xXn�k:n)

F n (Xn�k:n)

�
�  r

�
x�1=

��
dx:

Let Dn (x) :=
p
k
�
Fn(xXn�k:n)

Fn(Xn�k:n)
� x�1=

�
; be the tail product-limit process, then Taylor�s

expansion of  r yields that

p
k
�blr � lr

�
=

Z 1
1

x�1Dn (x) 
0
r

�
x�1=

�
dx+Rn1;

where Rn1 = 2�1k�1=2
R1
1
x�1D2

n (x) 
00
r (�) dx and � is between the minimum and the
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maximum of F n (xXn�k:n) =F n (Xn�k:n) and x�1=;

jRn1j � sup
x�1

��D2
n (x)

�� 2�1k�1=2 Z 1
1

x�1 j 00r (�)j dx;

In the fact that supx�1 jD2
n (x)j = Op (1) and from assumption (4), we infer that  00r is

bounded on (0; 1) : Consequently, we have Rn1 = op (1) :

Then by combining the theorem 2.4.8 and 5.1.4 in de Haan and Ferreira 2006, we infer

that under the second-order regular variation condition (6:5) ; there exist a constant � � 0;

a function eA (t) � A (t) at in�nity with
p
k eA (n=k) = O (1) and a sequence of Brownian

motions fWn (s) ; 0 � s � 1g such that for all x0 > 0

sup
x�x0

x(1=2��)=
��Dn (x)�

�
Wn

�
x�1=

�
� x�1=Wn (1)

	
(6.6)

�
p
k eA (n=k)x�1= x�= � 1

�

���� P! 0; as n tends to 1; (6.7)

for any " > 0: Then

p
k
�blr � lr

�
=

Z 1
1

x�1
�
Wn

�
x�1=

�
� x�1=Wn (1)

	
 0r
�
x�1=

�
dx

+
p
k eA (n=k)Z 1

1

x�1�1=
x�= � 1
�

 0r
�
x�1=

�
dx

+Rn1 +Rn2;

whereRn2 :=
R1
1
x�1

�
Dn (x)�

�
Wn

�
x�1=

�
� x�1=Wn (1)

	
�
p
k eA (n=k)x�1= x�=�1

�

�
 0r
�
x�1=

�
dx;

we have that

jRn2j � sup
x�x0

x(1=2��)=
����Dn (x)�

�
Wn

�
x�1=

�
� x�1=Wn (1)

	
�
p
k eA (n=k)x�1= x�= � 1

�

����Z 1
1

x�1�(1=2��)=
�� 0r �x�1=��� dx;

by using (6:6) since  0r is bounded on (0; 1) and
R1
1
x�1�(1=2��)=dx is �nite, then Rn2 =
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op (1)

For the fact that
p
k (b � ) = 2

p
k
�bl0 � l0

�
� 4
p
k
�bl1 � l1

�
: (6.8)

Hence

p
k (b � ) =

Z 1
1

x�1
�
Wn

�
x�1=

�
� x�1=Wn (1)

	
'
�
x�1=

�
dx

+
p
k eA (n=k)Z 1

1

x�1�1=
x�= � 1
�

'
�
x�1=

�
dx+ 0p (1) :

Then by using the change of variable s = x�1=; we get

p
k (b � ) = 

Z 1

0

s�1 fWn (s)� sWn (1)g' (s) ds

+
p
k eA (n=k)Z 1

0

s�� � 1
�

' (s) ds+ 0p (1) :

By calculing we get
R 1
0
' (s) ds = 4

R 1
0
sK (s) ds and

Z 1

0

s�� � 1
�

' (s) ds =

�
2

Z 1

0

s��K (s) ds+
4 (�� + 1)

�

Z 1

0

s��+1K (s) ds� 4
�

Z 1

0

sK (s) ds

�
:

Then

p
k (b � ) = 

�Z 1

0

s�1Wn (s)' (s) ds� 4Wn (1)

Z 1

0

sK (s) ds

�
+
p
k eA (n=k)�Z 1

0

�
2s�� +

4 (�� + 1)
�

s��+1 � 4
�
s

�
K (s) ds

�
+ 0p (1) :

Finally, if
p
k eA (n=k)! � as n!1;

p
k (b � )

D! N (�; �2) ; where

� = �

�Z 1

0

�
2s�� +

4 (�� + 1)
�

s��+1 � 4
�
s

�
K (s) ds

�
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and

�2 = 2E

�Z 1

0

s�1Wn (s)' (s) ds� 4Wn (1)

Z 1

0

sK (s) ds

�2
;

by calculing �2 we get the asymptotic bias as sought.

6.3.2 Proof of theorem 6.2

We have that

bQk;n (p)
qp

= c(b�)n exp
n
4
�bl1 � l1

�
�
�bl0 � l0

�o
= exp

n
ln c(b�)n + 4

�bl1 � l1

�
�
�bl0 � l0

�o
= exp

n
(b � ) ln cn + 4

�bl1 � l1

�
�
�bl0 � l0

�o
:

Then

bQk;n (p)
qp

� 1 = exp
n
(1� ln cn) 4

�bl1 � l1

�
+ (2 ln cn � 1)

�bl0 � l0

�o
� exp (0)

then Taylor�s expansion of exp yields that

p
k

ln cn

 bQk;n (p)
qp

� 1
!
=
1� ln cn
ln cn

4
p
k
�bl1 � l1

�
+
2 ln cn � 1
ln cn

p
k
�bl0 � l0

�
+R;

where

R := 2�1k�1=2
�
1� ln cn
ln cn

4
p
k
�bl1 � l1

�
+
2 ln cn � 1
ln cn

p
k
�bl0 � l0

��2
exp(�)

and � is between the minimum and the maximum of
n
(1� ln cn) 4

�bl1 � l1

�
+ (2 ln cn � 1)

�bl0 � l0

�o
and 0; in the fact that the bouth of

p
k
�bl1 � l1

�
and

p
k
�bl0 � l0

�
are Gaussian process,
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R = Op
�
2�1k�1=2

�
; then R = op (1) : Since, lim

cn!1
1�ln cn
ln cn

= �1 and lim
cn!1

2 ln cn�1
ln cn

= 2; so

p
k

ln cn

 bQk;n (p)
qp

� 1
!
= (�1 + op (1)) 4

p
k
�bl1 � l1

�
+ (2 + op (1))

p
k
�bl0 � l0

�
+ op (1)

=
n
2
p
k
�bl0 � l0

�
� 4
p
k
�bl1 � l1

�o
(1 + op (1)) + op (1) :

Finally, according (6:8) we get the result as sought.
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Conclusion

This thesis is divided into four distinct parts, to which is added one introduction.

In the �rst part, we recalled the areas where incomplete data (censored and

truncated) and to facilitate the reading of the document, it was recalled First chapter some

basic notions of survival analysis then the theory of extreme value and the estimation of

the tail index, extreme quantiles and second order parameter.

Then, we propose a consistent estimator of the second-order parameter of Pareto-type

distributions under random right-truncation and establish its asymptotic normality. Our

considerations are based on a useful Gaussian approximation of a tail product-limit process

given recently by Benchaira et al. [Tail product-limit process for truncated data with

application to extreme value index estimation. Extremes, 2016; 19: 219-251] and on the

results of Gomes et al. [Semi-parametric estimation of the second order parameter in

statistics of extremes. Extremes, 2003; 5: 387-414]. We show, by simulation, that the

proposed estimators behave well, in terms of bias and mean square error.

After that, by means of a Lynden-Bell integral with deterministic threshold, recently

Worms and Worms [A Lynden-Bell integral estimator for extremes of randomly truncated

data. Statist. Probab. Lett. 2016; 109: 106-117] introduced an asymptotically normal

estimator of the tail index for Pareto-type (randomly right-truncated) data. In this con-

text, we consider the random threshold case to derive a Hill-type estimator and establish

its consistency and asymptotic normality. A simulation study is carried out to evaluate

the �nite sample behavior of the proposed estimator and compare it to the existing ones.
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Conclusion

Finally, we estimate the quantile extreme that is based on the both of methods the kernel

type and the log probability weighted moment of estimation, where it is based on the

results of Caeiro and Gomes (2015) [11] (A log probability weighted moment estimator

of extreme quantiles) which consider the semi parametric estimation of extreme quantiles

of a right heavy-tail model and propose a new probability weighted moment estimator of

extreme quantiles. Then, we will prove the consistency and asymptotic normality of our

estimator.
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Software R

R is a system, commonly known as language and software, which allows statis-

tical analysis. More particularly, it includes means which make it possible to

manipulate data, calculations and graphical representations. R also has the ability to

run programs stored in text �les and has a large number of statistical procedures called

packets. The latter allow to deal fairly quickly with subjects as varied as linear (simple

and generalized) models, regression (linear and nonlinear), time series, classical parametric

and nonparametric tests, di¤erent methods of data analysis , ... Several packages, such as

ade4, FactoMineR, MASS, multivariate, scatterplot3d and rgl, among others, are intended

for the analysis of multidimensional statistical data.

It was originally created in 1996 by Robert Gentleman and Ross Ihaka of the Department

of Statistics of the University of Auckland in New Zealand. Since 1997, a "R Core Team"

has been formed that is developing R. It is designed to be used with Unix, Linux, Windows

and MacOS operating systems.

A key element in the development mission of R is the Comprehensive R Archive Network

(CRAN) which is a set of sites that provides everything needed for R distribution, ex-

tensions, documentation, source �les and �les binaries. The master site of the CRAN is

located in Austria in Vienna, it can be accessed by URL: "http://cran.r-project.org/".

Other CRAN sites, known as mirror sites, are widespread around the world.

R is free software distributed under the terms of the "GNU Public License". It is an
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integral part of the GNU project and has an o¢ cial website at http://www.R-project.org.

It is often presented as an S clone which is a high-level language developed by AT & T Bell

Laboratories and more particularly by Rick Becker, John Chambers and Allan Wilks. S

is usable through the S-Plus software which is marketed by the company Insightful (http:

//www.splus.com/).
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Abbreviations and notations
The di¤erent symbols and abbreviations used in this thesis.

(
;A;P) : probability space

rv : random variable

X : rv de�ned on (
;A;P)

(X1; X2; :::; Xn) : sample of size n from X

(X1:n; X2:n; :::; Xn:n) : order statistics pertaining to (X1; X2; :::; Xn)

Xk:n : kth order statistic (i = 1; :::; n)

X1:n : minimum of (X1; X2; :::; Xn)

Xn:n : maximum of (X1; X2; :::; Xn)

R : set of real numbers

R+ : set of positive real numbers

[a; b] : closed interval

(a; b) : open interval

df : distribution function

pdf : probability density function

F : df of a rv X

f : pdf of rv X

F : generalized inverse of F , quantile function
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Fn : empirical df

Q : quantile function, generalized inverse of F

Qn : empirical quantile function

IA (:) : indicator function of set A

Sn : the partial sum X

inf A : in�mum of set A

supA : supremum of set A

X : arithmetic mean of X

U (a; b) : uniform distribution on (a; b)

U (0; 1) : standard uniform distribution

EX : expectation or mean of X

a:s: : almost sure

a:s:! : a:s: convergence

P! : convergence in probability

D! : convergence in distribution

N (�; �2) : normal or Gaussian distribution with mean � and variance �2

N (0; 1) : standard normal or standard Gaussian distribution
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9 : exists

8 : 8x i.e. for any x

RV� : regular variation at 1 with index �

RV 0
� : regular variation at 0 with index �

D (H) : domain of attraction of the distribution H with tail index 

e:g: : for example

EV I : extreme value index

EV T : extreme value theory

i:e: : in other words

iff : if and only if

iid : independent identically distributed

n : integer number greater than 1

N : set of non-negative integers

o (:) : f (x) = o (g (x)) as x! x0 : f (x) =g (x) = 0 as x! x0

O (:) : f (x) = O (g (x)) as x! x0 : 9M > 0 : jf (x) =g (x)j �M; as x! x0

op (:) and Op (:) : stochasticordersymbols

:
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max (A) : maximum of the set A

min (A) : minimum of the set A

xF : the upper endpoint of df F

2 : belongs

_ : (a _ b) = max (a; b)

^ : (a ^ b) = min (a; b)

AMSE : asymptotic mean squared error

log : logarithme

e : exponentiel (exp)
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Abstract

In this thesis, we interested to statistics of rare events for incompletely observeddata, with a particular interest in the estimate of extreme value (tail index, quantile

extreme and second-order parameter) of distributions under random right-truncation. In

this context, we proposed a consistent estimator of the second-order parameter of Pareto-

type distributions under random right-truncation and establish its asymptotic normality.

Moreover, we derived an asymptotically unbiased estimator for the tail index and study its

asymptotic behaviour. We show, by simulation, that the proposed estimators behave well,

in terms of bias and mean square error. After that, by means of a Lynden-Bell integral

with deterministic threshold, we consider the random threshold case to derive a Hill-type

estimator and establish its consistency and asymptotic normality. A simulation study is

carried out to evaluate the �nite sample behavior of the proposed estimator and compare it

to the existing ones. And �nally we estimate the quantile extreme in the case of complete

data that is based on the both of methods the kernel type and the log probability weighted

moment of estimation. Then, we prove the consistency and asymptotic normality of our

estimator.

Keywords: Bias-reduction; Extreme value index; Heavy-tails; Second-order parameter;

Random truncation; Product-limit estimator; Lynden-Bell estimator.
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Résumé 

    Dans cette thèse, nous intéressons à statistique des événements rares pour des 

données incomplètement observées, en particulier au l'estimation des valeurs 

extrêmes aux distributions dans le cas ou les données sont tronquées à droite. Dans 

ce contexte, nous proposons un estimateur consistent du paramètre de second 

ordre des distributions de type Pareto et établissons sa normalité asymptotique. 

Nous obtenons un estimateur asymptotiquement sans biais pour l'indice de la queue 

et étudions son comportement asymptotique. Par simulation, on montre que les 

estimateurs proposés se comportent bien, en termes de biais et d'erreur 

quadratique moyenne. A travers l'intégrale de Lynden-Bell avec un seuil 

déterministe, nous considérons le cas du seuil aléatoire pour obtenir un estimateur 

de type Hill et établit sa consistent et sa normalité asymptotique. Une étude de 

simulation est réalisée afin d'évaluer le comportement des échantillons finis de 

l'estimateur proposé et de le comparer à ceux qui existent. Ensuite, nous estimons 

l'extrême quantile dans le cas des données complètes, qui est basé sur les deux 

méthodes, type noyau et le moment pondéré de probabilité logarithmique. 

Finalement, nous prouverons la consistent et la normalité  asymptotique de notre 

estimateur. 

 Mots-clés:  

Réduction des biais; Indice de valeur extrême; Heavy-tails; Paramètre de second 

ordre; Troncature aléatoire; Estimateur de produit -limite; Estimateur de Lynden-

Bell. 

 ملخص

اهتمينا بإحصاء القيم النادرة لبيانات غير كاملة و نهتم بصفة خاصة بتقدير  الأطروحة، هذه في

 مقدر في هذا السياق اقترحنا. القيم القصوى لتوزيعات في حالة بيانات مقطوعة من اليمين

من جهة أخرى، . و أثبتنا تقاربها الطبيعي باريتو لتوزيعات الثانية الدرجة للمؤشر من متسق

 طريق عن لنا وتبين. تقاربه الطبيعي بدون تحيز مع دراسة مقدر لمؤشر الذيل على تحصلنا

 باستخدام مكاملة .مربع الخطأ ومعدل التحيز حيث من جيد أداء المقترحة للمقدرات أن المحاكاة

 دراسة .و تقاربه الطبيعي واثبات اتساقه هيل مقدر بإثبات قمنا عشوائية عتبة مع بيل-ليندن

 ثم قدمنا مقدر .المحاكاة طبقت لمعاينة سلوك العينات بمقدرنا و مقارنته مع المقدرات الموجودة

للربيعيات القصوى في حالة البيانات الكاملة المعتمدة على الطريقتين التقدير من نوع النواة و 

.و الحالة السوية للمقدر الاتساق أثبتنا ثم. اللحظات المتزنة للاحتمالات اللوغاريتمية  

:مفتاحية كلمات  

الحد من التحيز، مؤشر القيم القصوى، الذيول الثقيلة، المؤشر من الدرجة الثانية، اقتطاع 

.بيل-عشوائي، مقدر نهاية المنتج، مقدر لندن    
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