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Sympols and acronyms

SYMPOLS AND ACRONYMS

a:e almost evrywhere

a:s almost surly

c�adl�ag continu à droit, limit à gauche

e:g for example

resp. respectively

R real numbers

R+ nonnegative real numbers

�(A) ��algebra generated by A.

(
;F) measurable space

(
; 6 F ;P) probability space

E (�) expectation

E (� j G) conditional expectation

O (") error bound.

W (t) Brownian motion

L2F([s; T ] ; Rn) the Hilbert space of Ft�adapted processes x(�) such that E
R T
s
jx(t)j2 dt < +1

fx the gradient or Jacobian of a scalar function f with respect to the variable x.

fxx the Hessian of a scalar function f with respect to the variable x.

@
�
xf the Clarke�s generalized gradient of f with respect to x

A� the transpose of any vector or matrix A

hx; yi the scalar product of any two vectors x and y on Rd

IB the indicator function of B

co (B) the closure convex hull of B

Sgn(:) the sign function.

L(�) = (L(t))t2[0;T ] R-valued Lévy process

H(t) = (Hj(t))j�1 Teugels martingales
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Sympols and acronyms

P
dt the product measure of P with the Lebesgue measure dt

l2 (Rn) the space of Rn-valued (fn)n�1,
�P1

n=1 kfnk
2
Rn
� 1
2 < +1:

l2F ([0; T ] ;Rn) the Banach space of Ft-adapted proc E
�R T

0
jx(t)j2Rn dt

� 1
2
< +1.

L2F ([0; T ] ;Rn) the Banach space of Ft�predictable proc E
�R T

0

P1
n=1 kfnk

2
Rn dt

� 1
2
< +1.

S2F ([0; T ] ;Rn) the Banach space of Ft�adapted and càdlàg processes

such that E( sup jx(t)j2) 12 < +1.

L2 (
;F ;P;Rn) the Banach space of Rn-valued, square integrable r.v on (
;F ;P):

Mn�m(R) the space of n�m real matrices.

FW
t the ��algebra generated by W (s) and � fW (s) : 0 � s � tg :

G0 the totality of P�null sets.

F1 _ F2 the �-�eld generated by F1 [ F2:

��(t) = �(t)� �(t�): the jumps of a singular control �(�) at any jumping time t:

ODE ordinary di¤erential equations

SDEs stochastic di¤erential equations

BSDEs Backward stochastic di¤erential equations

FBSDEs Forward-Backward stochastic di¤erential equations

U1G � U2G ([0; T ]) the set of admissible controls.
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Introduction

INTRODUCTION

In this thesis, we study stochastic control problems, where the system is governed by

stochastic di¤erential equations of mean-�eld type. The main part of the thesis is divided in

fort chapters.

In chapter 1., we collect some basis results of probability theory and stochastic analysis

in particular, we recall some basic proprieties of conditional expectation ,class of controls ,

martingales... .

In chapter 2., we establish the necessary and su¢ cient conditions of near-optimality for

systems governed by stochastic di¤erential equations with of poison jumps mean-�eld type.

The results have been proved by applying Ekeland�s Lemma, spike variation method and some

estimates of the state and adjoint processes. Under certain concavity conditions, we prove

that the near-maximum condition on the Hamiltonian function in integral form is a su¢ cient

condition for near-optimality. An example is presented to illustrate the theoretical results.

These results generalize the maximum principle proved in Zhou (SIAM. Control Optim. (36),

929-947, 1998 [45]) and Tang and Li (SIAM. Control Optim. (32), 1147-1475, (1994) [40])

to a class of stochastic control problems involving jump di¤usion processes of mean-�eld type.

We note that since the work by Zhou [45], the concept of near-optimal stochastic controls was

introduced for a class of stochastic control problems involving classical stochastic di¤erential

equations (SDEs). A near-optimal control of order "� is an admissible control de�ned by

For a given " > 0 the admissible control u"(�) is near-optimal with respect (s; �) if

��Js;� (u"(�))� V (s; �)
�� � O (") ;

where O (�) is a function of " satisfying lim"!0O (") = 0: The estimator O (") is called an

error bound.
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Introduction

� If O (") = C"� for some � > 0 independent of the constant C then u"(�) is called

near-optimal control of order "�:

� If O (") = C"; the admissible control u"(�) called "�optimal.

In this chapter, we obtain a Zhou-type necessary conditions of near-optimality, where the

system is described by nonlinear controlled jump di¤usion processes of mean-�eld type of the

form 8>>><>>>:
dxu(t) = f(t; xu(t);E (xu(t)) ; u(t))dt+ �(t; xu(t);E (xu(t)) ; u(t))dW (t);

+

Z
�

g (t; xu(t�); u(t); �)N(d�; dt); xu(s) = �;

and the cost functional has the form

J
s;�

(u(�)) = E
�
h(xu(T );E (xu(T ))) +

Z T

s

`(t; xu(t);E (xu(t)) ; u(t))dt
�
:

The control domain is not need to be convex. (a general action space). The proof of our

results follows the general ideas as in Zhou [45], Buckdahn et al., [5], and Tang et al., [40].

Finally, for the reader�s convenience, we give some analysis results used in this chapter in the

Appendix.

In chapter 3., In this chapter, we study partial information stochastic optimal control

problem of mean-�eld type, where the system is governed by controlled stochastic di¤erential

equation driven by Teugels martingales associated with some Lévy process and an independ-

ent Brownian motion. We establish necessary and su¢ cient conditions of optimal control for

these mean-�eld models in the form of maximum principle. The control domain is assumed

to be convex. As an application, partial information linear quadratic control problem of

9



Introduction

mean-�eld type is discussed, where the optimal control is given in feedback form.

The system under consideration is governed by stochastic di¤erential equations driven

by Teugels martingales associated with some Lévy process and an independent Brownian

motion of the form:8>>>>>>>>>>><>>>>>>>>>>>:

dxu(t) = f (t; xu(t);E(xu(t)); u(t)) dt+
dX
j=1

�j (t; xu(t);E(xu(t)); u(t)) dW j(t);

+

1X
j=1

gj (t; xu(t�);E(xu(t�)); u(t)) dHj(t);

xu(0) = x0;

and the expected cost on the time interval [0; T ] has the form

J (u(�)) := E
nZ T

0

`(t; xu(t);E(xu(t)); u(t))dt+h (xu(T );E (xu(T )))
o
;

where W (�) is a standard d�dimensional Brownian motion and H(t) = (Hj(t))j�1 are pair-

wise strongly orthonormal Teugels martingales, associated with some Lévy process, having

moments of all orders. The control u(�) = (u(t))t�0 is required to be valued in some subset

of Rk and adapted to a sub�ltration (Gt)t�0 of (Ft)t�0: The maps f; �; g; ` and h are an

appropriate functions. In this chapter, we derive a partial information maximum principle

for stochastic di¤erential equations, with Lévy processes. Necessary and su¢ cient conditions

of optimality have been established with an application to �nance. Some discussions with

remarks are given in the last of this chapter.

In chapter 4., we prove a necessary and su¢ cient conditions of optimality singular control

for systems driven by stochastic di¤erential equations with Teugels martingales associated
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Introduction

with Lévy processes with applications to linear quadratic control problem of the form:

8>>>>>>>>>>><>>>>>>>>>>>:

dxu;�(t) = f
�
t; xu;�(t);E(xu;�(t)); u(t)

�
dt+

dX
j=1

�j
�
t; xu;�(t);E(xu;�(t)); u(t)

�
dW j(t);

+

1X
j=1

gj
�
t; xu;�(t�);E(xu;�(t�)); u(t)

�
dHj(t) + C(t)d�(t);

xu;�(0) = x0;

and the cost functional has the form

J (u(�); �(�)) = E
nZ T

0

`(t; xu;�(t);E(xu;�(t)); u(t))dt

+h(xu;�(T );E(xu;�(T ))) +
Z
[0;T ]

M(t)d�(t)
o
;

where W (�) is a standard d�dimensional Brownian motion and H(t) = (Hj(t))j�1 are pair-

wise strongly orthonormal Teugels martingales, associated with some Lévy processes, having

moments of all orders, and �(�) is the singular part of the control, which is called intervention

control. The continuous control u(�) = (u(t))t�0 is required to be valued in some subset

of Rk and adapted to a sub�ltration (Gt)t�0: In some �nance models, the mean-�eld term

E(xu;�(t)) represents an approximation to the weighted average 1
n

Pn
i=1 x

u;�;i
n (t) for large n,

�(t) representing the harvesting e¤ort, while C(t) is a given harvesting e¢ ciency coe¢ cient.

As an illustration, linear quadratic control problem of mean-�eld type involving continuous-

singular control is discussed, where the optimal control is given in feedback form. Note that

in our mean-�eld control problem, there are two types of jumps for the state processes, the

inaccessible ones which come from the Lévy martingale part and the predictable ones which

come from the singular control part. Finally, some discussions with concluding remarks are

given in the last of this chapter.
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Chapter I. Stochastic control problems

Chapter-I

Stochastic Control Problem

1



Chapter 1

Stochastic Control Problem

1.1 Stochastic Processes

De�nition. (Filtration) A �ltration on (
;F ;P) is an increasing family (Ft)t2[0;T ] of ���elds

of F : Fs � Ft � F for all 0 � s � t T: Ft is interpreted as the information known at time t

and increases as time elapses.

In this section we recall some results on stochastic processes.

De�nition 1.1.1. Let I be a nonempty index set and (
;F ;P) a probability space. A family

(Xt; t 2 I) of random variables from (
;F ;P) to Rn is called a stochastic process.For any

w 2 
; the map t 7�! X (w; t).is called a sample path.

In what follows, we set I = [0; T ], or I = [0;1) : We shall interchangeably use (Xt; t 2 I) ;

X; Xt to denote a stochastic process.

For any given stochastic process (Xt; t 2 I), we can de�ned the following

Ft1 (x)
4
= P (Xt1 � x1) ;

Ft1;;t2 (x1; x2)
4
= P (Xt1 � x1; Xt2 � x2)

Ft1;;t2:::;tn (x1; x2;:::xn)
4
= P (Xt1 � x1; Xt2 � x2; :::Xtn � xn) ;

where ti 2 I; xi 2 Rn; and Xi � xi stands for component twice inequalities, the functions

2



Chapter I. Stochastic control problems

de�ne F are called the �nite-dimensional distributions of the process Xt:

De�nition 1.1.2.(stochastically equivalent) Two processesXt and Yt are said to be stochastic-

ally equivalent if

Xt = Yt; P� a:s; 8t 2 [0; T ] :

In this case, one is called a modi�cation of the other.

If Xt and Yt are stochastically equivalent ,then for any t 2 [0; T ] there exists a P -null set

Nt 2 F such that

Xt = Yt; 8w 2 
 j Nt:

Example Let 
 = [0; 1] ; T � 1; P the Lebesgue measure, X (w; t) = 0; and

Yt (w) =

8><>: 0; w 6= t;

1; w = t:

Then Xt and Yt are said to be stochastically equivalent. But each sample path X (:; t) is

continuous , and none of the sample paths Yt (:; w) is continuous. In the present case, we

actually have [
t2[0;t]

Nt = [0; 1] = 
:

De�nition 1.1.3. The process at s 2 [0; T ] if for any " > 0

lim
t!s
P (w 2 
; jXt (w)�Xs (w)j > ") = 0:

Morover, Xt is said to be continuous if there exists a P -null set N 2 F such that for any

w 2 
 j N ,the sample path X (�; t) is continuous

Then Xt and Yt are said to be stochastically equivalent. But each sample path X (�; t) is

continuous ,and none of the sample paths Yt (�; w) is continuous .

3



Chapter I. Stochastic control problems

In the present case, we actually have

[
t2[0;t]

Nt = [0; 1] = 
:

De�nition 1.1.4. The process at s 2 [0; T ] if for any " > 0

lim
t!s
P (w 2 
; jXt (w)�Xs (w)j > ") = 0:

Moreover,Xt is said to be continuous if there exists a P -null set N 2 F such that for any

w 2 
 j N , the sample path X (�; t) is continuous.

1.2 Lévy process

To model the sudden crashes in �nance, it is natural to allow jumps in the model because this

makes it more realistic. This models can be represented by Lévy processes which are used

throughout this work. This term (Lévy process) honors the work of the French mathematician

Paul Lévy.

De�nition 1.2.1. A process X = (X(t))t�0 � R de�ned on a probability space (
;F ;P) is

said to be a Lévy process if it possesses the following properties:

(1) The paths of X are P-almost surely right continuous with left limits.

(2) P(X(0) = 0) = 1:

(3) Stationary increments, i.e., for 0 6 s 6 t, X(t) � X(s) has the same distribution as

X(t� s)

(4) Independent increments, i.e., for 0 6 s 6 t, X(t)�X(s) is independent of X(u); u 6 s:

Example. The known examples are the standard Brownian motion and the Poisson process.

De�nition 1.2.2. A stochastic process W = (W (t))t�0 on Rn is a Brownian motion if it is

a Lévy process and if

(1) For all t > 0, has a Gaussian distribution with mean 0 and covariance matrix tId.

4



Chapter I. Stochastic control problems

(2) There is 
0 2 F with P(
0) = 1 such that, for every w 2 
0, W (t; w) is continuous in t.

De�nition 1.2.3. A stochastic process N = (N(t))t�0 on R such that

P [N(t) = n] =
(�t)n

n!
e��t; n = 0; 1;

is a Poisson process with parameter � > 0 if it is a Lévy process and for t > 0, N(t) has a

Poissson distribution with mean �t.

Remark 1.2.4. (1) Note that the properties of stationarity and independent increments

imply that a Lévy process is a Markov process.

(2) Thanks to almost sure right continuity of paths, one may show in addition that Lévy

processes are also strong Markov processes.

Any random variable can be characterized by its characteristic function. In the case of a

Lévy process X, this characterization for all time t gives the Lévy-Khintchine formula and it

is also called Lévy-Khintchine representation.

1.3 Stochastic integral with respect to Lévy process

Let (
;F ;P) be a given probability space with the �-algebra (Ft)t�0 generated by the un-

derline driven processes; Brownian motion W (t) and an independent compensated Poisson

random measure ~N , such that

~N(dt; dz) := N(dt; dz)� �(dz)dt:

For any t, let ~N(ds; dz), z 2 R, s 6 t, augmented for all the sets of P-zero probability.

For any Ft�adapted stochastic process � = �(t; z), t > 0, such that

E

�Z T

0

Z
R
�2(t; z)�(dz)dt

�
<1; for some T > 0;

5



Chapter I. Stochastic control problems

we can see that the process

Mn(t) =

Z t

0

Z
jzj� 1

n

�(s; z) ~N(ds; dz); 0 6 t 6 T;

is a martingale in L2(
;F ;P) and its limit

M(t) = lim
n!1

Mn(t) :=

Z T

0

Z
jzj� 1

n

�(s; z) ~N(ds; dz); 0 6 t 6 T;

in L2(
;F ;P) is also a martingale. Moreover, we have the Itô isometry

E

"�Z T

0

Z
R0
�(s; z) ~N (ds; dz)

�2#
= E

��Z T

0

Z
U
�2(t; z)�(dz)dt

��
:

Such processes can be expressed as the sum of two independent parts, a continuous part

and a part expressible as a compensated sum of independent jumps. That is the Itô-Lévy

decomposition.

Theorem 1.3.1 (Itô-Lévy decomposition)The Itô-Lévy decomposition for a Lévy process

X is given by

X(t) = �t+ �W (t) +

Z
jzj<1

z ~N(dt; dz) +

Z
jzj>1

zN(dt; dz);

where �; � 2 R; ~N(dt; dz) is the compensated Poisson random measure of X(:) and B(t) is

an independent Brownian motion with the jump measure N(dt; dz):

We assume that

E
�
X2(t)

�
<1; t > 0;

then Z
jzj�1

jzj2 �(dz) <1:

6



Chapter I. Stochastic control problems

We can represent as

X(t) = �t+ �B(t) +

Z
R
z ~N (dt; dz) ;

where X(t) = � +
R
jzj�1 z�(dz). If � = 0, then a Lévy process is called a pure jump Lévy

process.

Let us consider that the process X(t) admits the stochastic integral representation as follows

X(t) = x+

Z t

0

�(s)ds+

Z t

0

�(s)dW (s) +

Z t

0

Z
R
�(s; z) ~N (ds; dz) ;

where �(t); �(t), and �(t; �) are predictable processes such that, for all t > 0; z 2 R;

Z t

0

�
jb(s)j+ �2(s) +

Z
R
�2(s; z)�(dz)

�
ds <1 P� a:s:

Under this assumption, the stochastic integrals are well-de�ned and local martingales. If we

strengthened the condition to

E

�Z t

0

�
jb(s)j+ �2(s) +

Z
R
�2(s; z)�(dz)

�
ds

�
<1;

for all t > 0, then the corresponding stochastic integrals are martingales.

We call such a process an Itô�Lévy process. In analogy with the Brownian motion case, we

use the short-hand di¤erential notation8>>><>>>:
dX(t) = b(t)dt+ �(t)dB(t) +

Z
R
�(t; z) ~N (dt; dz) ;

X(0) = x 2 R:

7



Chapter I. Stochastic control problems

The Itô formula and related results

We now come to the important Itô formula for Itô-Lévy processes. Let X (t) be a process

given by 1.3.1

X(t) = � (t) + � (t)B(t) +

Z
R
 (t; z) ~N (dt; dz) ; (1.1)

where f : R2 ! R is a C2 function is the process Y (t) := f (t;X(t)) again an Itô-Lévy

process and if so, how do we represent it in the form (1.1).

Let Xc(t) be the continuous part of X(t);i.e Xc(t) is obtained by removing the jumps from

X(t):

dY (t) =
@f

@t
(t;X(t)) dt+

@f

@x
(t;X(t)) dXc (t) +

1

2

@2f

@x2
(t;X(t)) �2 (t)

+

Z
R

�
f
�
t;X(t�)

�
+  (t; z)� f

�
t;X(t�)

�	
~N (dt; dz) :

It can be proved that our guess is correct. Since

dXc(t) =

�
�(t)dt�

Z
jzj<r

(t; z)v (dz)

�
+ �(t)dB(t);

this given the following result;

Theorem 1.3.2 Let X(t) 2 R is an Itô-Lévy process of the form

dX(t) = � (t) + � (t)B(t) +

Z
R
 (t; z) ~N (dt; dz) ; (1.2)

where

~N (dt; dz) =

8><>: N (dt; dz)� v (dz) dt; if jzj < r:

N (dt; dz) if jzj � r;

for some r 2 [0;1]. Let f 2 C2 (R2) and de�ne Y (t) = f (t;X(t)) : Then Y (t) is again an

8
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Itô -Lévy process

dY (t) =
@f

@t
(t;X(t)) dt+

@f

@x
(t;X(t)) (�(t)dt+ �(t)dB(t)) +

1

2

@2f

@x2
(t;X(t)) �2 (t)

+

Z
jzj<r

�
f
�
t;X(t�)

�
+  (t; z)� f

�
t;X(t�)

�
� @f

@x
(t;X(t)) (t; z)

�
v (dz)Z

R

�
f
�
t;X(t�)

�
+  (t; z)� f

�
t;X(t�)

�	
~N (dt; dz) ;

Remark 1.3.3. if r = 0 then ~N = N every where. If r =1 then ~N = N every where.

Theorem 1.3.3. (The multi-dimensional Itô formula).LetX (t) 2 Rn be an Itô-Lévy process

of the form

dX (t) = � (t;w) dt+ � (t;X(t; w)) dB (t) +

Z
Rn
 (t; z; w) ~N (dt; dz) ;

where � : [0; T ] � 
 ! Rn; � : [0; T ] � 
 ! Rn+m and  : [0; T ] � Rn � 
� ! Rn�l are

adapted processes such that the integrals exist. Here B (t) is an multidimensional Brownian

motion and

~N (dt; dz)T =
�
~N1 (dt; dz) ; :::; ~Nl (dt; dz)

�
=
�
~N1 (dt; dz)� Ijz1j<rv1 (dz1) dt; :::;

~Nl (dt; dz)� Ijzlj<rlvl (dzl) dt
�
;

where (Nj(�; �)) are independent Poisson random measures with Lévy processes (�1; :::; �l) :

Note that each column (k) of the n � l matrix  = (ij) depends on z only through the

kthcoordinate zk; i.e.,

(k) (t; z; w) = (k) ((t; zk; w)) ; z = (z1; :::; zl) 2 Rl:

Thus the integral on the right of (1.2) is just a short hand matrix notation. When written

9
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out in detail component number i of X (t) in (1.2); Xi (t), gets the form

dXi (t) = �i (t;w) dt+

mX
j=1

�ij (t; w) dBj (t) +

lX
j=1

Z
Rn
ij (t; zj; w) ~Nj (dt; dzj) ;

1 � i � n:

Theorem 1.3.4.(The Itô-Lévy isometry) Let X (t) 2 Rn is be as in (1.2) but with X (0) and

� = 0: Then

E
�
X2 (t)

�
= E

"Z T

0

(
mX
j=1

�2ij (t) +
nX
i=1

lX
j=1

Z
Rn
2ij (t; zj) vj (dzj)

)
dt

#
;

=
nX
i=1

E

"Z T

0

(
mX
j=1

�2ij (t) +
nX
i=1

lX
j=1

Z
Rn
2ij (t; zj) vj (dzj)

)
dt

#
:

1.4 Some classes of stochastic control problems

Let (
;F;Ft�0; P ) be a complete �ltred probability space.

(1) Admissible control An admissible control is a measurable and F-adapted process u(t)

with values in a borelian A � Rn. We denote by U the set of all admissible controls, such

that

U := fu(�) : [0; T ]� 
! A : u(t) is measurable and F-adaptedg :

(2) Optimal control The optimal control problem consists to minimize a cost functional

J(u) over the set of admissible control U . We say that the control u�(�) is an optimal control

if

J(u�(t)) � J(u(t)), for all u(t) 2 U :

(3) Near optimal control Let " > 0, a control is a near optimal control (or "-optimal) if

for all control u 2 U we have that

J(u"(t)) � J(u(t)) + ".

10
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(4) Feedback control Let u (�) be an F-adapted control and we denote by FX
t the natural

�ltration generated by the process X. We say that u (�) is a feedback control if and only if

u (�) depends on X.

(5) Optimal stopping In the formulation of such models, an admissible control stopping

time is a pair (u (�) ; �) de�ned on a �ltered probability space (
;F ;Ft�0; P ) along with an n-

dimensional Brownian motion W (�), where u (�) is the contol satisfying the usual conditions

and � is an (Ft)t�0-stopping time the optimal control stopping problem is to minize

J(u (�) ; �) = E

�Z �

0

f (t; x (t) ; u (t)) dt+ h (x (�))

�
:

� = inf ft � 0 : x (t) 2 Og ; O � Rn:

(6) Singular control Let (
;F ;Ft�0;P) be a complete �ltred probability space. An admiss-

ible control is a pair (u(�); �(�)) of measurable A1 � A2�valued, Ft�adapted processes, such

that �(�) is of bounded variation, non-decreasing continuous on the left with right limits and

�(0�) = 0: Moreover,

E( sup
0�t�T

ju(t)j2 + j�(T )j2) <1:

Note that the jumps of a singular control �(�) at any jumping time t is denoted by

��(t) , �(t)� �(t�):

Let us de�ne the continuous part of the singular control by

�(c)(t) , �(t)�
X
0��j�t

��(�j);

i.e., the process obtained by removing the jumps of �(t):

We denote U1G�U2G ([0; T ]) ; the set of all admissible controls. Since d�(t) may be singular

with respect to Lebesgue measure dt; we call �(�) the singular part of the control and the

11
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process u(�) its absolutely continuous part.

(7) Relaxed controls Let U � Rd: A relaxed control with values in U is a measure q

over [0; T ] � U such that the projection on [0; T ] is the Lebesgue measure. If there exists

v : [0; T ]! U such that

q (dt; dv) = �v(t) (dv) dt;

q is identi�ed with vt and said to be a control process.

Noting that if q be a relaxed control with values in U . Then, for all t 2 [0; T ] there exists a

probability measure qt over U such that

q (dt; dv) = dtqt (dv) :

The proof is application of Fubini theorem.

12
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Chapter-II

On stochastic Near-optimal Control Problems

for Mean-�eld Jump Di¤usion Processes

13



Chapter 2

On Stochastic Near-optimal Control

Problems for Mean-�eld Jump

Di¤usion Processes

Abstract. In a recent work by Zhou [45], the concept of near-optimal stochastic controls was

introduced for a class of stochastic control problems involving classical stochastic di¤erential

equations (SDEs in short). Necessary and su¢ cient conditions for near-optimal controls were

derived. This work extends the results obtained by Zhou [45] to a class of stochastic control

problems involving jump di¤usion processes of mean-�eld type. We derive necessary as well

as su¢ cient conditions of near-optimality for our model, using Ekeland�s variational principle,

spike variation method and some estimates of the state and adjoint processes. Under certain

concavity conditions, we prove that the near-maximum condition on the Hamiltonian function

in integral form is a su¢ cient condition for near-optimality. An example is presented to

illustrate the theoretical results.

14
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2.1 Introduction

In this work, we consider a stochastic control problem for systems driven by a nonlinear

controlled jump di¤usion processes of mean-�eld type, which is also called McKean-Vlasov

equations, where the coe¢ cients depend on the state of the solution process as well as of

its expected value. More precisely, the system under consideration evolves according to the

jump di¤usion process

8>>>>><>>>>>:
dxu(t) = f(t; xu(t);E (xu(t)) ; u(t))dt+ �(t; xu(t);E (xu(t)) ; u(t))dW (t)

+
R
�
g (t; xu(t�); u(t); �)N(d�; dt);

xu(s) = �;

(2.1)

for some functions f; �; g: This mean-�eld jump di¤usion processes are obtained as the mean-

square limit, when n! +1 of a system of interacting particles of the form

dxj;un (t) = f(t; xj;un (t);
1

n

nX
i=1

xi;un (t); u(t))dt+ �(t; xj;un (t);
1

n

nX
i=1

xi;un (t); u(t))dW
j(t)

+

Z
�

g(t; xj;un (t
�); u(t); �)N (d�; dt) :

where (W j(�) : j � 1) is a collection of independent Brownian motions. The expected cost

to be near-minimized over the class of admissible controls is also of mean-�eld type, which

has the form

J
s;�

(u(�)) = E
�
h(xu(T );E (xu(T ))) +

Z T

s

`(t; xu(t);E (xu(t)) ; u(t))dt
�
: (2.2)

The value function is de�ned as

V (s; �) = inf
u(�)2U

Js;� (u(�)) ;

15
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where the initial time s and the initial state � of the system are �xed.

The optimal control theory has been developed since early 1960s, when Pontryagin et al., [35]

published their work on the maximum principle and Bellman [7] put forward the dynamic

programming method. The pioneering works on the stochastic maximum principle was writ-

ten by Kushner ([29, 30]). Since then there have been a lot of works on this subject, among

them, in particular, see [2, 3, 80, 32, 27, 36, 109] and the references therein.

It is well-known that near-optimization is as sensible and important as optimization for

both theory and applications. The Modern near-optimal control theory has been well de-

veloped when Zhou published their works on necessary and su¢ cient conditions for any near-

optimal controls for both deterministic and stochastic controls see ([42, 43, 45]). The near-

optimal deterministic control problems have been investigated in ([42, 43, 44, 14, 12, 25, 34].

The necessary conditions for some near-optimal controls have been established by Ekeland

[12], The necessary and su¢ cient conditions for any near-optimal deterministic controls are

investigated in Zhou [42]. Dynamic programming and viscosity solutions approach for near-

optimal deterministiccontrols have been studied in [43]. In Pan et al., [34] the authors

extended the results obtained by Zhou [42] to a class of optimal control problems involving

Volterra integral equations.

It is well documented (e.g. Zhou (1998) [45]) that the near-optimal stochastic controls,

as the alternative to the exact optimal controls, are of great importance for both the theor-

etical analysis and practical application purposes due to its nice structure and broad-range

availability, feasibility as well as �exibility. In this recent work, Zhou [45] established the

second-order necessary as well as su¢ cient conditions for near-optimal stochastic controls for

classical controlled di¤usion, where the coe¢ cients were assumed to be twice continuously

di¤erentiable and the control domain not necessarily convex. In Hafayed et al., [17], the

authors extended Zhou�s maximum principle of near-optimality to singular stochastic con-

trols. The near-optimal control problems for systems described by SDEs with jumps have

been studied in Hafayed et al., [16]. The second-order maximum principle of near-optimality

16
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for jump di¤usions was obtained in [11]. The near-optimal stochastic control problem for

Forward backward SDEs has been investigated in Huang et al., [21] and Bahlali et al. [20].

The near-optimal control problem for recursive stochastic problem has been studied in Hui

el al., [19].

The stochastic optimal control problems for jump processes has been investigated by

many authors, see for instance, ([9, 13, 33, 37, 62, 39, 40]. The general case, where the

control domain is not necessarily convex and the di¤usion coe¢ cient depends explicitly on

the control variable, was derived via spike variation method by Tang et al., [40], extending

the Peng stochastic maximum principle of optimality [36]. These conditions are described in

terms of two adjoint processes, which are linear classical backward SDEs. A good account

and an extensive list of references on stochastic optimal control for jump processes can be

founded in ;ksendal et al., [33], and Shi [38].

The SDE of mean-�eld type was suggested by Kac [15] in 1956 as a stochastic model

for the Vlasov-kinetic equation of plasma and the study of which was initiated by McKean

[24] in 1966. Since then, many authors made contributions on SDEs of mean-�eld type and

applications, see for instance, ([1, 8, 41, 15, 6, 5, 60, 26]). Mean- �eld stochastic maximum

principle of optimality was considered by many authors, see for instance ([6, 5, 18, 60, 26,

64]). In Buckdahn et al., [5] the authors obtained mean-�eld backward stochastic di¤erential

equations. The general maximum principle of optimality for mean-�eld control problem has

been investigated in Buckdahn et al., [5], where the authors obtained a stochastic maximum

principle di¤ers from the classical one in the sense that the �rst-order adjoint equation turns

out to be a linear mean-�eld backward SDE, while the second-order adjoint equation remains

the same as in Peng�s stochastic maximum principle [36]. The stochastic maximum principle

of optimality for mean-�eld jump di¤usion processes has been studied by Hafayed et al, [18].

The local maximum principle of optimality for mean-�eld stochastic control problem has been

derived by Li [60]. The linear-quadratic optimal control problem for mean-�eld SDEs has

been studied by Yong [64]. In Mayer-Brandis et al., [26] a maximum principle of optimality

17
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for SDEs of mean-�eld type was proved by using Malliavin calculus. An extensive list of

references on mean-�eld control problems can be founded in Yong [64].

Our main goal in this work is to establish necessary as well as su¢ cient conditions of

near-optimality for mean-�eld jump di¤usion processes, in which the coe¢ cients depend on

the state of the solution process as well as of its expected value. Moreover, the cost functional

is also of mean-�eld type. The proof of our main result is based on some stability results with

respect to the control variable of the state process and adjoint processes, along with Ekeland�s

variational principle [12] and spike variation method. This near-optimality necessary and

su¢ cient conditions di¤ers from the classical one in the sense that here the �rst-order adjoint

equation turns out to be a linear mean-�eld backward stochastic di¤erential equation, while

the second-order adjoint equation remains the same as in stochastic maximum principle for

jump di¤usions developed in Tang et al., [40]. The control domain under consideration is

not necessarily convex. It is shown that stochastic optimal control may fail to exist even in

simple cases, while near-optimal controls always exist. This justi�es the use of near-optimal

stochastic controls, which exist under minimal conditions and are su¢ cient in most practical

cases. Moreover, since there are many near-optimal controls, it is possible to select among

them appropriate ones that are easier for analysis and implementation. Finally, for the

reader�s convenience we give some analysis results used in this work in the Appendix.

The rest of the work is organized as follows. Section 2 begins with a general formulation

of a Mean-�eld control problem with jump processes and give the notations and assumptions

used throughout the work. In Sections 3 and 4, we derive necessary and su¢ cient conditions

for near-optimality respectively, which are our main results. An example of this kind of

control problem is also given in the last section.
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2.2 Problem formulation and preliminaries

Let (
;F ; (Ft)t2[0;T ] ;P) be a �xed �ltered probability space equipped with a P�completed

right continuous �ltration on which a d�dimensional Brownian motion W = (W (t))t2[0;T ] is

de�ned. Let � be a homogeneous (Ft)-Poisson point process independent of W . We denote

by eN(d�; dt) the random counting measure induced by �, de�ned on � � R+, where � is

a �xed nonempty subset of Rk with its Borel �-�eld B (�). Further, let � (d�) be the local

characteristic measure of �, i.e. � (d�) is a �-�nite measure on (�;B (�)) with � (�) < +1.

We then de�ne

N(d�; dt) = eN(d�; dt)� � (d�) dt;

where N is Poisson martingale measure on B (�)�B (R+) with local characteristics � (d�) dt:

We assume that (Ft)t2[0;T ] is P�augmentation of the natural �ltration (F
(W;N)
t )t2[0;T ] de�ned

as follows

F (W;N)
t = � (W (s) : 0 � s � t) _ �

�Z s

0

Z
B

N(d�; dr) : 0 � s � t; B 2 B (�)
�
_ G;

where G denotes the totality of P�null sets, and �1 _ �2 denotes the �-�eld generated by

�1 [ �2:

Basic Notations. We list some notations that will be used throughout this work.

1. Any element x 2 Rd will be identi�ed to a column vector with ith component, and the

norm jxj =
Pd

i=1 jxij:

2. The scalar product of any two vectors x and y on Rd is denoted by hx; yi.

3. We denote A� the transpose of any vector or matrix A.

4. For a set B, we denote by IB the indicator function of B and co (B) the closure convex

hull of B and Sgn(:) the sign function.
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5. For a function �, we denote by �x (resp. �xx) the gradient or Jacobian (resp. the

Hessian) of a scalar function � with respect to the variable x. We denote @
�
x� the

Clarke�s generalized gradient of � with respect to x:

6. We denote by L2F([s; T ] ; Rn) the Hilbert space of Ft�adapted processes x(�) such that

E
R T
s
jx(t)j2 dt < +1.

7. For convenience, we will use �x(t) =
@�

@x
(t; x(t);E(x(t)); u(t));

and �xx(t) = @2�
@x2
(t; x(t);E(x(t)); u(t)):

Basic Assumptions. Throughout this work we assume the following.

Assumption (H1). The functions f : [s; T ] � Rn � Rn�A! Rn; � : [s; T ] � Rn �

Rn�A!Mn�d (R) and ` : [s; T ]� Rn � Rn�A! R are measurable in (t; x; y; u) and twice

continuously di¤erentiable in (x; y); g : [s; T ] � Rn�A�� ! Rn�m is twice continuously

di¤erentiable in x, and there exists a constant C > 0 such that, for ' = f; �; ` :

j'(t; x; y; u)� '(t; x0; y0; u)j+ j'x(t; x; y; u)� 'x(t; x
0; y0; u)j

� C [jx� x0j+ jy � y0j] :
(2.3)

j'(t; x; y; u)j � C (1 + jxj+ jyj) : (2.4)

sup�2� jg (t; x; u; �)� g (t; x0; u; �)j+ sup�2� jgx (t; x; u; �)� gx (t; x
0; u; �)j

� C jx� x0j
(2.5)

sup
�2�

jg (t; x; u; �)j � C (1 + jxj) : (2.6)

Assumption (H2). The function h : Rn � Rn! R is twice continuously di¤erentiable in
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(x; y), and there exists a constant C > 0 such that

jh(x; y)� h(x0; y0))j+ jhx(x; y)� hx(x
0; y0))j � C [jx� x0j+ jy � y0j] : (2.7)

jh(x; y)j � C (1 + jxj+ jyj) : (2.8)

Under the above assumptions, the SDE-(2.1) has a unique strong solution xu(t) which is

given by

xu(t) = � +

Z t

s

f (r; xu(r);E(xu(r)); u(r)) dr +
Z t

s

� (r; xu(r);E(xu(r)); u(r)) dW (r)

+

Z t

s

Z
�

g
�
t; xu(r�); u(r); �

�
N (d�; dr) ;

and by standard arguments it is easy to show that for any q > 0, it holds that

E( sup
t2[s;T ]

jxu(t)jq) < C (q) ;

where C (q) is a constant depending only on q and the functional Js;� is well de�ned.

We introduce the adjoint equations as follows. The �rst-order adjoint equation turns out to

be a linear mean-�eld backward SDE, while the second-order adjoint equation remains the

same as in Peng [36], see also Zhou [45].

De�nition 2.2.1. (Adjoint equation for mean-�eld jump di¤usion processes) For any

u(�) 2 U and the corresponding state trajectory x(�), we de�ne the �rst-order adjoint process

(	(�); K(�); (�)) and the second-order adjoint process (Q(�); R(�);�(�)) as the ones satisfying

the following equations:

21



Chapter II. Stochastic near-optimal control for mean-�eld jump di¤usions

(1) First-order adjoint equation: linear Backward SDE of mean-�eld type with jump processes

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

�d	(t) =
�
f �x (t; x(t);E(x(t); u(t))	(t) + E

�
f �y (t; x(t);E(x(t); u(t))	(t)

�
+ ��x (t; x(t);E(x(t); u(t))K(t) + E

�
��y (t; x(t);E(x(t); u(t))K(t)

�
+ `x (t; x(t);E(x(t); u(t)) + E [`y (t; x(t);E(x(t); u(t))]

+
R
�
g�x (t; x(t

�); u(t); �) t(�)�(d�)
	
dt

�K(t)dW (t)�
R
�
t(�)N(dt; d�)

	(T ) = hx (x(T );E(x(T )) + E [hy (x(T );E(x(T ))] :

(2.9)

(2) Second-order adjoint equation: classical linear Backward SDE with jump processes

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

�dQ(t) = ff �x (t; x(t);E(x(t)); u(t))Q(t) +Qtf
�
x (t; x(t);E(x(t); u(t))

+ ��x (t; x(t);E(x(t)); u(t))Q(t)��x (t; x(t);E(x(t)); u(t))

+ ��x (t; x(t);E(x(t)); u(t))R(t) +R(t)�x (t; x(t);E(x(t)); u(t))

�
R
�
g�x (t; x(t

�); u(t); �) (�t(�) +Q(t)) gx (t; x(t
�); u(t); �)�(d�)

�
R
�
�t(�)gx (t; x(t

�); u(t); �) + g�x (t; x(t
�); u(t); �) �t(�)�(d�)

�Hxx(t; x(t); E(x(t)); u(t);	(t); K(t); t(�))g dt�R(t)dW (t)

�
R
�
�t(�)N(dt; d�)

Q(T ) = hxx (x(T );E(x(T ))) ;

(2.10)

As it is well known that under conditions (H1) and (H2) the �rst-order adjoint equation

(2.7) admits one and only one Ft�adapted solution pair (	(�); K(�); (�)) 2 L2F ([s; T ] ;Rn)�

L2F
�
[s; T ] ;Rn�d

�
� L2F ([s; T ] ;Rn�m). This equation reduces to the standard one, when the

coe¢ cients do not explicitly depend on the expected value (or the marginal law) of the un-

derlying di¤usion process. Also the second-order adjoint equation (2.8) admits one and only

one Ft�adapted solution pair (Q(�); R(�);�(�)) 2 L2F ([s; T ] ;Rn�n)� L2F
�
[s; T ] ; (Rn�n)d

�
�
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L2F ([s; T ] ; (Rn�n)
m
) : Moreover, since fx; fy; �x; �y; `x; `x and hx are bounded, by C by as-

sumptions (H1) and (H2), we have the following estimate

E
h
sups�t�T j	(t)j

2 +
R T
s
jK(t)j2 dt +

R T
s

R
�
jt(�)j2 �(d�)dt

+ sups�t�T jQ(t)j
2 +

R T
s
jR(t)j2 dt++

R T
s

R
�
j�t(�)j2 �(d�)dt

i
� C:

(2.11)

De�nition 2.2.2. (Usual Hamiltonian and H-function). We de�ne the usual Hamiltonian

associated with the mean-�eld stochastic control problem (2.3)-(2.4) as follows

H (t;X;E (X) ; u; p; q; ') := �pf (t;X;E (X) ; u)� q� (t;X;E (X) ; u)

�
Z
�

'g
�
t; x(t�); u(t); �

�
�(d�)

� ` (t;X;E (X) ; u) ;

where (t;X; u) 2 [s; T ]� Rn � A and X is a random variable such that X 2 L1([s; T ] ; Rn).

Furthermore, we de�ne the H-function corresponding to a given admissible pair (z (�) ; v(�))

as follows

H(z(�);v(�))(t; x; u) = H (t; x;E (x) ; u;	(t); K(t)�Q(t)� (t; z(t);E (z(t)) ; v(t)) ;

t(�)� (Q(t) + t(�)) g
�
t; z(t�); v(t); �

��
� 1
2
�� (t; x;E(x); u)Q(t)� (t; x;E(x); u) ;

� 1
2

Z
�

g� (t; x; u; �) (Q(t) + t(�)) g (t; x; u; �)�(d�):
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This shows that

H(z(:);v(�))(t; x; u) = H (t; x;E (x) ; u;	(t); K(t); t(�))

+ �� (t; x;E (x) ; u)Q(t)� (t; z(t);E (z(t)) ; v(t))

� 1
2
�� (t; x;E(x); u)Q(t)� (t; x;E(x); u)

+

Z
�

g� (t; x; u; �) (Q(t) + t(�)) g
�
t; z(t�); v(t); �

�
�(d�)

� 1
2

Z
�

g� (t; x; u; �) (Q(t) + t(�)) g (t; x; u; �)�(d�);

where 	(t); K(t); t(�) and Q(t) are determined by adjoint equations (2.9) and (2.10) corres-

ponding to (z (�) ; v(�)) :

Before concluding this section, let us recall the de�nition of near-optimal controls as given in

Zhou [[45], De�nitions (2.1)-(2.2)], and Ekeland�s variational principle, which will be used

in the sequel.

De�nition 2.2.3. (Near-optimal control of order "�:) For a given " > 0 the admissible

control u"(�) is near-optimal with respect (s; �) if

��Js;� (u"(�))� V (s; �)
�� � O (") ; (2.12)

where O (�) is a function of " satisfying lim"!0O (") = 0: The estimator O (") is called an

error bound.

1. If O (") = C"� for some � > 0 independent of the constant C then u"(�) is called

near-optimal control of order "�:

2. If O (") = C"; the admissible control u"(�) called "�optimal.

Lemma 2.2.1. (Ekeland�s Variational Principle [12] ) Let (F; dF ) be a complete metric

space and f : F ! R be a lower semi-continuous function which is bounded from below. For
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a given " > 0, suppose that u" 2 F satisfying

f (u") � inf
u2F

(f(u)) + ":

Then for any � > 0, there exists u� 2 F such that

1. f
�
u�
�
� f (u") :

2. dF
�
u�; u"

�
� �:

3. f
�
u�
�
� f (u) +

"

�
dF
�
u; u�

�
; for all u 2 F:

Now, in order to apply Ekeland�s principle to our Mean-�eld control problem, we have to

endow the set of admissible controls U with an appropriate metric. We de�ne a distance

function d on the space of admissible controls U such that (U ; d) becomes a complete metric

space. For any u(�) and v(�) 2 U we set

d (u(�); v(�)) = P
dt f(w; t) 2 
� [s; T ] : u (w; t) 6= v (w; t)g ; (2.13)

where P
dt is the product measure of P with the Lebesgue measure dt on [s; T ] : Moreover,

it has been shown in the book by Yong and Zhou ([109], 146-147) that

1. (U ; d) is a complete metric space

2. The cost function Js;� is continuous from U into R.

2.3 Necessary conditions of near-optimality for mean-

�eld jump di¤usion processes

In this section, we obtain a Zhou-type necessary conditions of near-optimality, where the

system is described by nonlinear controlled jump di¤usion processes of mean-�eld type. The

control domain is not need to be convex. (a general action space).
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The proof of our theorem follows the general ideas as in Zhou [45], Buckdahn et al., [5], and

Tang et al., [40].

The following theorem constitutes the main contribution of this work.

Let (	"(�); K"(�); "(�)) and (Q"(�); R"(�);�"(�)) be the solution of adjoint equations (2.7) and

(2.8) respectively, corresponding to u"(�):

Theorem 2.3.1. (Mean-�eld stochastic maximum principle for any near-optimal control).

For any � 2 [0; 1
3
); and any near-optimal control u"(�) there exists a positive constant C =

C (�; �(�)) such that for each " > 0 it holds that

E
R T
s

�
1
2
(� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))�Q"(t)

� (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

+ 	"(t) (f (t; x"(t);E(x"(t)); u)� f (t; x"(t);E(x"(t)); u"(t)))

+K"(t) (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

+
R
�
"(t)g (t; x"(t); u; �)� g (t; x"(t); u"(t); �)�(d�)

+ 1
2

R
�
(g� (t; x"(t); u; �)� g� (t; x"(t); u"(t); �)) (Q"(t) + "t (�))

� (g (t; x"(t); u; �)� g (t; x"(t); u"(t); �))�(d�);

+(` (t; x"(t);E(x"(t)); u)� ` (t; x"(t);E(x"(t)); u"(t)))g dt � �C"�;

(2.14)

Corollary 2.3.1. Under the assumptions of Theorem 3.1, it holds that

E
R T
s
H(x"(:);u"(:))(t; x"(t);E(x"(t)); u"(t))dt

� supu(�)2U E
R T
s
H(x"(:);u"(:))(t; x"(t);E(x"(t)); u(t))dt� C"�:

(2.15)

To prove Theorem 2.3.1 and Corollary 2.3.1, we need the following auxiliary results on the

stability of the state and adjoint processes with respect to the control variable.

In what follows, C represents a generic constant, which can be di¤erent from line to line.

Our �rst Lemma below deals with the continuity of the state processes under distance d:
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Lemma 2.3.1. If xu(t) and xv(t) be the solution of the state equation (2.1) associated

respectively with u(t) and v(t). For any � 2 (0; 1) and � � 0 satisfying �� < 1, there exists

a positive constants C = C (T; �; �; �(�)) such that

E( sup
s�t�T

jxu(t)� xv(t)j2�) � Cd�� (u(�); v(�)) : (2.16)

Proof. We consider the following two cases:

Case 1. First, we assume that � � 1. Using Burkholder-Davis-Gundy inequality for the

martingale part and Propositions A2 (see Appendix) we can compute, for any r � s :

E( sup
s�t�r

jxu(t)� xv(t)j2�)

� CE(
Z r

s

n
jf (t; xu(t);E (xu(t)) ; u(t))� f(xv(t);E (xv(t)) ; v(t))j2�

+

Z r

s

j� (t; xu(t);E (xu(t)) ; u(t))� �(xv(t);E (xv(t)) ; v(t)j2�

+

Z
�

jg (t; xu(t); u; �)� g (t; xv(t); v(t); �)j2� �(d�)
�
dt

� I1 + I2;

where

I1 � CE(
Z r

s

n
jf (xu(t);E (xu(t)) ; u(t))� f (xu(t);E (xu(t)) ; v(t))j2�

+

Z r

s

j� (xu(t);E (xu(t)) ; u(t))� � (xu(t);E (xu(t)) ; v(t))j2�

+ �(�) sup
�2�

jg (t; xu(t); u(t); �)� g (t; xv(t); v(t); �)j2�
�
Ifu(t) 6=v(t)g (t) dt
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and

I2 � CE(
Z r

s

n
jf (xu(t);E (xu(t)) ; v(t))� f (xv(t);E (xv(t)) ; v(t))j2�

+

Z r

s

j� (xu(t);E (xu(t)) ; v(t))� � (xv(t);E(xv(t)); v (t))j2�

+ �(�)(sup
�2�

jg (t; xu(t); v(t); �)� g (t; xv(t); v(t); �)j)2�
�

Now arguing as in ([45], Lemma 3.1 ) taking b = 1
��
> 1 and a > 1 such that 1

a
+ 1

b
= 1; and

applying Cauchy-Schwarz inequality, we get

E
Z r

s

jf (t; xu;�(t);E (xu;�(t)) ; u(t))� f (xu;�(t);E (xu;�(t)) ; v(t))j2� Ifu(t) 6=v(t)g (t) dt

�
�
E
Z r

s

jf (t; xu;�(t);E (xu;�(t)) ; u(t))� f (xu;�(t);E (xu;�(t)) ; v(t))j2�a dt
� 1

a

�
�
E
Z r

s

Ifu(t) 6=v(t)g (t) dt

� 1
b

;

by using de�nition of d and linear growth condition on f with respect to x and y, (assumption

2.4) we obtain

E
Z r

s

jf (t; xu(t);E (xu(t)) ; u(t))� f (t; xu(t);E (xu(t)) ; v(t))j2� Ifu(t) 6=v(t)g (t) dt

� C

�
E
Z r

s

�
1 + jxu(t)j2�a + jE (xu(t))j2�a

�
dt

� 1
a

d (u(:); v(:))�� � Cd (u(:); v(:))�� :

Similarly, the same inequality holds if f above is replaced by � and g then we get

E
Z r

s

j� (t; xu(t);E (xu(t)) ; u(t))� � (t; xu(t);E (xu(t)) ; v(t))j2� Ifu(t) 6=v(t)g (t) dt

� Cd (u(:); v(:))�� :
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and

E
Z r

s

�
sup
�2�

jg (t; xu(t); u; �)� g (t; xv(t); v(t); �)j
�2�

Ifu(t) 6=v(t)g (t) dt � Cd (u(:); v(:))�� :

This implied that I1 � Cd (u(:); v(:))�� :

Since the coe¢ cients f; � and g are Lipschitz with respected to x and y (assumption (H1))

we conclude that

E( sup
s�t�r

jxu(t)� xv(t)j2�) � C

�
E
Z r

s

sup
s�r��

jxu(t)� xv(t)j2� d� + d (u(�); v(�))��
�
:

Hence (2.17) follows immediately from Gronwall�s inequality.

Case 2. Now we assume 0 � � < 1. Since 2
�
> 1 then the Cauchy-Schwarz inequality yields

E( sup
s�t�T

jxu(t)� xv(t)j2�) �
�
E( sup

s�t�T
jxu(t)� xv(t)j2)

��
� [Cd (u(�); v(�))�]� � Cd (u(�); v(�))�� :

This completes the proof of Lemma 3.1. �

The next result gives the ��th moment continuity of the solutions to adjoint equations with

respect to the metric d: This Lemma is an extension of Lemma 3.2 in Zhou [45] to mean-�eld

SDEs with jump processes.

Lemma 2.3.2. For any � 2 (0; 1) and � 2 (1; 2) satisfying (1 + �) � < 2, there exist a

positive constant C = C (�; �; �(�)) such that for any u(�); v(�) 2 U , along with the corres-

ponding trajectories xu(�), xv(�) and the solutions (	u(�); Ku(�); u(�); Qu(�); Ru(�);�u(�)) and

(	v(�); Kv(�); v(�); Qv(�); Rv(�);�v(�)) of the corresponding adjoint equations (2.9)-(2.10), it

holds that

E
R T
s
( j	u(t)�	v(t)j� + jKu(t)�Kv(t)j�)dt

+E
R T
s

R
�
jut (�)� vt (�)j

� �(d�)dt � Cd (u(�); v(�))
��
2 ;

(2.17)
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and

E
R T
s
( jQu(t)�Qv(t)j� + jRu(t)�Rv(t)j�)dt

+E
R T
s

R
�
j�ut (�)� �vt (�)j

� �(d�)dt � Cd (u(�); v(�))
��
2 :

(2.18)

Proof. Note that e	(t) = 	u(t) � 	v(t); eK(t) = Ku(t) � Kv(t) and et(�) = ut (�) � vt (�)

satis�ed the following BSDEs:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�de	(t) = hf �x (t; xu(t);E(xu(t)); u(t)) e	(t) + ��x (t; x
u(t);E(xu(t)); u(t)) eK(t)

+
R
�
g�x (t; x

u(t); u; �) et(�)�(d�) + L(t)� dt
� eK(t)dW (t)� R

�
et(�)N(d�; dt)

e	(T ) = hx (x
u(T );E(xu(T )))� hx (x

v(T );E(xv(T )))

+ E[hy (xu(T );E(xu(T )))� hy (x
v(T );E(xv(T ))]:

(2.19)

where the process L(t) is given by

L(t) = [f �x (t; xu(t);E(xu(t)); u(t))� f �x (t; x
v(t);E(xv(t)); v(t))] 	v(t)

+ [��x (t; x
u(t);E(xu(t)); u(t))� ��x (t; x

v(t);E(xv(t)); v(t))]Kv(t)

+ (`x (t; x
u(t);E(xu(t)); u(t))� `x (t; x

v(t);E(xv(t)); v(t)))

+ E
�
f �y (t; x

u(t);E(xu(t)); u(t))	u(t)� f �y (t; x
v(t);E(xv(t)); v(t))	v(t)

	
+ E

��
��y (t; x

u(t);E(xu(t)); u(t))Ku(t)� ��y (t; x
v(t);E(xv(t)); v(t))Kv(t)

�	
+ E (`y (t; xu(t);E(xu(t)); u(t))� `y (t; x

v(t);E(xv(t)); v(t))))

+
R
�
(g�x (t; x

u(t�); u; �)� g�x (t; x
v(t�); v; �))

v
t (�)�(d�):

(2.20)
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Let �(�) be the solution of the following linear SDE

8>>>>>>>>>>><>>>>>>>>>>>:

d�(t) =

�
fx (t; x

u(t);E(xu(t)); u(t))�(t) +
���e	(t)�����1 Sgn(e	(t))� dt

+

�
�x (t; x

u(t);E(xu(t)); u(t))�(t) +
��� eK(t)�����1 Sgn( eK(t))� dW (t)

+
hR
�
g�x (t; x

u(t�); u; �)�(t) + jet(�)j��1 Sgn(et(�))iN(d�; dt)
�(s) = 0;

(2.21)

where Sgn (a) � (Sgn(a1); Sgn(a2); :::; Sgn(an))� for any vector a = (a1; a2; ::; an)�:

It is worth mentioning that since fx �x and gx are bounded and the fact that

8>>><>>>:
E
R T
s

(�������e	(t)�����1 Sgn(e	(t))����2 + ������� eK(t)�����1 Sgn( eK(t))����2
)
dt

+E
R T
s

R
�

���jet(�)j��1 Sgn(et(�))���2 �(d�)dt <1;

(2.22)

then the SDE (2.21) has a unique strong solution.

Let � � 2 such that 1
�
+ 1

�
= 1; � 2 (1; 2) then we get

E( sup
s�t�T

j�(t)j�) � CE
Z T

s

����e	(t)������� + ��� eK(t)�������� dt
+ E

Z T

s

Z
�

jet(�)j���� �(d�)dt
� CE

Z T

s

����e	(t)���� + ��� eK(t)���� + Z
�

jet(�)j� �(d�)� dt
Note that the right hand side term of the above inequality is bounded due to

(2.9), then we get

E( sup
s�t�T

j�(t)j�) <1: (2.23)

By applying Itô�s formula for jump processes (see Appendix Lemma A1 ) to e	(t)�(t) on [s; T ]
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and taking expectation, we get

E
Z T

s

�e	(t) ���e	(t)�����1 Sgn(e	(t)) + eK(t) ��� eK(t)�����1 Sgn( eK(t))
+

Z
�

et(�) jet(�)j��1 Sgn(et(�))�(d�)� dt
= E

�Z T

s

L(t)�(t)dt+ e	(T )�(T )�
= E

Z T

s

L(t)�(t)dt+ E f(hx (xu(T );E(xu(T )))� hx (x
v(T );E(xv(T ))))�(T )g

+ E[hy (xu(T );E(xu(T )))� hy (x
v(T );E(xv(T ))]E (�(T )) :

Since

E
Z T

s

�e	(t) ���e	(t)�����1 Sgn(e	(t)) + eK(t) ��� eK(t)�����1 Sgn( eK(t))
+

Z
�

et(�) jet(�)j��1 Sgn(et(�))�(d�)� dt
= E

Z T

s

����e	(t)���� + ��� eK(t)���� + Z
�

jet(�)j� �(d�)� dt;
and fact that

E
�Z T

s

L(t)�(t)dt + [(hx (xu(T );E(xu(T )))� hx (x
v(T );E(xv(T ))))

+E(hy (xu(T );E(xu(T )))� hy (x
v(T );E(xv(T )))] (�(T ))g

�
�
E
Z T

s

jL(t)j� dt
� 1
�
�
E
Z T

s

j�(t)j� dt
� 1
�

+ [E j(hx (xu(T );E(xu(T )))� hx (x
v(T );E(xv(T )))

+ E(hy (xu(T );E(xu(T )))� hy (x
v(T );E(xv(T )))]j�]

1
� [E j�(T )j�]

1
�
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then according to (2.23) we deduce

E
R T
s

����e	(t)���� + ��� eK(t)���� + R� jet(�)j� �(d�)� dt � CE
R T
s
jL(t)j� dt

+ CE
n
jhx(xu(T );E(xu(T )))� hx(x

v(T );E(xv(T )))j�

+ jE(hy(xu(T );E(xu(T ))))� E(hy(xv(T );E(xv(T ))))j�
o
:

(2.24)

We proceed to estimate the right hand side of (2.24). First noting that ��
2
< 1� �

2
< 1 then

by using assumption (H2) and Lemma 2.3.1, we obtain

E jhx(xu(T );E(xu(T )))� hx(x
v(T );E(xv(T )))j�

� CE jxu(T )� xv(T )j� � Cd(u(�); v(�))��2 :

E jE(hy(xu(T );E(xu(T ))))� E(hy(xv(T );E(xv(T ))))j�

� Cd(u(�); v(�))��2 :

(2.25)

Now, to prove inequality (2.17) it su¢ cient to estimate E
R T
s
jL(t)j� dt: By repeatedly using

Cauchy-Schwarz inequality and assumption (H2) we can estimate

E
Z T

s

jf �x (t; xu(t);E(xu(t)); u(t))� f �x (t; x
v(t);E(xv(t)); v(t))j� j	v(t)j� dt

� CE
Z T

s

n
jf �x (t; xu(t);E(xu(t)); u(t))� f �x (t; x

u(t);E(xu(t)); v(t))j� j	v(t)j�

+ jf �x (t; xu(t);E(xu(t)); v(t))� f �x (t; x
v(t);E(xv(t)); v(t))j� j	v(t)j�

o
dt

� CE
Z T

s

n
Ifu(t) 6=v(t)g(t) j	v(t)j�

+ [jxu(t)� xv(t)j+ jE(xu(t))� E(xv(t))j]� j	v(t)j�
o
dt

� C

�
E
Z T

s

j	v(t)j2 dt
��
2

d(u(:); v(:))
2��
2

+ C

�
E
Z T

s

j	v(t)j2 dt
��
2
�
E
Z T

s

jxu(t)� xv(t)j
2�
2�� dt

� 2��
2

:
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By using the fact that d(u(�); v(�)) � 1 and ��
2
< 1� �

2
; the �rst term of the right side of the

above inequality is dominated by d(u(�); v(�))��2 : Since ��
2�� < 1 and we have from Lemma

2.3.1 that

E
Z T

s

jxu(t)� xv(t)j
2�
2�� dt � d(u(�); v(�))

��
2�� ;

then we have

C
h
E
R T
s
j	v(t)j2 dt

i�
2
d(u(�); v(�)) 2��2

+
h
E
R T
s
j	v(t)j2 dt

i�
2
h
E
R T
s
jxu(t)� xv(t)j

2�
2�� dt

i 2��
2 � Cd (u(�); v(�))

��
2 ;

we conclude that

E
R T
s
jf �x (t; xu(t);E(xu(t)); u(t))� f �x (x

v(t);E(xv(t)); v(t))j� j	v(t)j� dt

� Cd (u(�); v(�))
��
2 :

(2.26)

A similar argument shows that

E
R T
s
j�x (t; xu(t);E(xu(t)); u(t))� �x (t; x

v(t);E(xv(t)); v(t))j� jKv(t)j� dt

� Cd (u(�); v(�))
��
2 ;

(2.27)

and

E
R T
s

��`x (t; xu(t);E(xu(t)); u(t))� `x
�
t; xv(t);E(xv;�(t)); v(t)

���� dt
� Cd (u(�); v(�))

��
2 ;

(2.28)
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Now, by using similar arguments developed above and (2.9) we get

E
R T
s

��E��f �y (t; xu(t);E(xu(t)); u(t))� f �y (x
v(t);E(xv(t)); v(t))

�
� 	v(t)gj� dt

� CE
R T
s
E
��f �y (t; xu(t);E(xu(t)); u(t))� f �y (x

v(t);E(xv(t)); v(t))
���

� E [j	v(t)j]� dt

� CE
R T
s
E
��f �y (t; xu(t);E(xu(t)); u(t))� f �y (x

v(t);E(xv(t)); v(t))
��� dt

� Cd (u(�); v(�))
��
2 :

(2.29)

A similar argument shows that

E
R T
s

��E����y (t; xu(t);E(xu(t)); u(t))� ��y (x
v(t);E(xv(t)); v(t))

�
	v(t)

	��� dt
� Cd (u(�); v(�))

��
2 ;

(2.30)

E
R T
s

��E��f �y (t; xu(t);E(xu(t)); u(t))� f �y (x
v(t);E(xv(t)); v(t))

�
	v(t)

	��� dt
� Cd (u(�); v(�))

��
2 ;

(2.31)

and

E
R T
s
jE f`y (t; xu(t);E(xu(t)); u(t))� `y (x

v(t);E(xv(t)); v(t))gj� dt

� Cd (u(�); v(�))
��
2 :

(2.32)
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Next , by applying Cauchy-Schwarz inequality, we get

E
Z T

s

����Z
�

(g�x (t; x
u(t�); u(t); �)� g�x (t; x

v(t�); v(t); �))
v
t (�)�(d�)

����� dt
= E

Z T

s

����Z
�

(g�x (t; x
u(t�); u(t); �)� g�x (t; x

u(t�); v(t); �))
v
t (�)�(d�)

����� dt
+ E

Z T

s

����Z
�

(g�x (t; x
u(t�); v(t); �)� g�x (t; x

v(t�); v(t); �))
v
t (�)�(d�)

����� dt
� I1 + I2;

where

I1 = E
Z T

s

����Z
�

(g�x (t; x
u(t�); u(t); �)� g�x (t; x

u(t�); v(t); �))
v
t (�)�(d�)

�����
� Ifu(t) 6=v(t)g(t)dt;

and

I2 = E
Z T

s

�
sup
�2�

j(g�x (t; xu(t�); u(t); �)� g�x (t; x
u(t�); v(t); �))j

��
�
 ����Z

�

vt (�)�(d�)

�����
!
dt;

by using the fact that gx is bounded, d(u(�); v(�)) � 1 and ��
2
< 1� �

2
, then due to (2.11) we

get

I1 � CE
nR T

s

R
�
jvt (�)j

2 �(d�)
o�

2 �
nR T

s
Ifu(t) 6=v(t)g(t)dt

o1��
2

� CE
nR T

s

R
�
jvt (�)j

2 �(d�)
o�

2
d (u(�); v(�))1�

�
2

� Cd (u(�); v(�))
��
2 :

(2.33)
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Further, since ��
2�� < 1 we conclude from Lemma 2.3.1 and (2.11) that

I2 � CE
�R T

s
jxu(t)� xv(t)j

2�
2�� dt

�1��
2 E
�R T

s

��R
�
vt (�)�(d�)

��2 dt��
2

� Cd (u(�); v(�))
��
2 ;

(2.34)

It follows from (2.33) and (2.34) that

E
R T
s

��R
�
(g�x (t; x

u(t�); u(t); �)� g�x (t; x
v(t�); v(t); �))

v
t (�)�(d�)

��� dt
� Cd (u(�); v(�))

��
2 :

(2.35)

We conclude from (2.26)�(2.35) that

E
Z T

s

jL(t)j� dt � Cd (u(�); v(�))
��
2 : (2.36)

Finally, combining (2.24)-(2.25) and (2.36), the proof of (2.17) is complete. Similarly one

can prove (2.19). This completes the proof of Lemma 2.3.2. �

Now, let (	
"
(�); K"

(�); "(�)) and (Q"(�); R"(�);�"(�)) be the solution of adjoint equations

(2.9)-(2.10) corresponding to (x"(�);E (x"(�)) ; u"(�)) :
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Lemma 3.3. For any " > 0, there exists near-optimal control u"(�) such that for any u 2 A :

E
R T
s

�
1
2
(� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))�Q"(t)

� (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

+ 	
"
(t) (f (t; x"(t);E(x"(t)); u)� f (t; x"(t);E(x"(t)); u"(t)))

+K
"
(t) (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

+
R
�
"(t)g (t; x"(t�); u; �)� g (t; x"(t�); u

"(t); �)�(d�)

+ 1
2

R
�
(g� (t; x"(t�); u; �)� g� (t; x"(t�); u

"(t); �))(Q
"
(t) + "t(�))

� (g (t; x"(t�); u; �)� g (t; x"(t�); u
"(t); �))�(d�);

+(` (t; x"(t);E(x"(t)); u)� ` (t; x"(t);E(x"(t)); u"(t)))g dt � �" 13 ;

(2.37)

Proof. By using Ekeland�s variational principle with � = "
2
3 ; there is an admissible control

u"(�) such that for any u(�) 2 U :

d (u"(�); u"(�)) � "
2
3 ; (2.38)

and

Js;� (u"(�)) � Js;� (u"(�)) + " 13d (u(�); u"(�)) :

Notice that u"(�) which is near-optimal for the initial cost Js;� de�ned in (2.2) is an optimal

control for the new cost Js;�;" given by

Js;�;" (u(�)) = Js;� (u(�)) + " 13d (u(�); u"(�)) :

Therefore we have

Js;�;" (u"(�)) � Js;�;" (u(�)) for any u(�) 2 U :

Next, we use the spike variation techniques for u"(�) to derive the variational inequality as
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follows. For ~ > 0, we choose a Borel subset E~ � [s; T ] such that jE~j = ~, and we consider

the control process which is the spike variation of u"(�) :

u";~(t) =

8><>:
u : t 2 E~;

u"(t) : t 2 [s; T ] j E~;

where u is an arbitrary element of A be �xed. By using the fact that

1. Js;�;" (u"(�)) � Js;�;"(u";~(�));

2. d(u";~(�); u"(�)) = d(u";~(�); u"(�)) � ~; we get

Js;�(u";~(�))� Js;�(u"(�)) � �"1=3d(u"(�); u";~(�)) � �"1=3~: (2.39)

Arguing as in Hafayed et al., ([18], Theorem 3.1 ), the left-hand side of (2.39) is equal to

E
R
E~

�
1
2
(� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))�Q"(t)

� (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

+ 	
"
(t) (f (t; x"(t);E(x"(t)); u)� f (t; x"(t);E(x"(t)); u"(t)))

+K
"
(t) (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

+
R
�
"(t)g (t; x"(t�); u; �)� g (t; x"(t�); u

"(t); �)�(d�)

+ 1
2

R
�
(g� (t; x"(t�); u; �)� g� (t; x"(t�); u

"(t); �))
�
Q
"
(t) + "t(�)

�
� (g (t; x"(t�); u; �)� g (t; x"(t�); u

"(t); �))�(d�);

+(` (t; x"(t);E(x"(t)); u)� ` (t; x"(t);E(x"(t)); u"(t)))g dt+ �(~);

(2.40)

where �(~) �! 0 as ~ �! 0: Finally, replacing (2.40) in (2.39), then dividing inequality

(2.39) by ~ and sending ~ to zero, the near-maximum condition (2.37) follows. �

Proof of Theorem 2.3.1. First, we are about to derive an estimate for the term similar to
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the left side of inequality (2.34) and (2.35) with all the (x"(�);E(x"(�)); u"(�)) etc. replaced

by (x"(�);E(x"(�)); u"(�)) etc.

Now, to prove (2.14) it remains to estimate the following di¤erences

S1(") = E
R T
s

�
K
"
(t) (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

� K"(t) (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))] dt;
(2.41)

S2(") = E
R T
s

�
1
2
(� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))�Q"(t)

� (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

� 1
2
(� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))�Q"(t)

� (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

+ 	
"
(t) [f (t; x"(t);E(x"(t)); u)� f (t; x"(t);E(x"(t)); u"(t))]

�	"(t) [f (t; x"(t);E(x"(t)); u)� f (t; x"(t);E(x"(t)); u"(t))]

+ [` (t; x"(t);E(x"(t)); u)� ` (t; x"(t);E(x"(t)); u"(t))]

� [` (t; x"(t);E(x"(t)); u)� ` (t; x"(t);E(x"(t)); u"(t))]g dt:

(2.42)

and

S3(") = E
R T
s

R
�
["t(�) (g (t; x

"(t�); u; �)� g (t; x"(t�); u
"(t)))

� "t (�) (g (t; x
"(t�); u; �)� g (t; x"(t�); u

"(t); �))]�(d�)dt;

(2.43)

Then we have

S1(") = E
R T
s

�
K
"
(t)�K"(t)

�
(� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t)))

+ E
R T
s
K"(t) (� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u)) dt

� E
R T
s
K"(t) (� (t; x"(t);E(x"(t)); u"(t))� � (t; x"(t);E(x"(t)); u"(t))) dt

= I1 (") + I2 (") + I3 (") ;
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We estimate the �rst term on the right-hand side I1 (") : For any � 2 [0; 13) so that � = 3� 2

[0; 1): Now, let � be a �xed real number such that 1 < � < 2 so that (1 + �)� < 2. Taking

q > 2 such that 1
�
+ 1

q
= 1 then by using Hôlder�s inequality, Lemma 2.3.2 and note (2.4) we

obtain

I1 (") �
�
E
Z T

s

��K"
(t)�K"(t)

��� dt� 1�
�
�
E
Z T

s

j� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u"(t))jq dt
� 1
q

� C
h
d(u"(�); u"(�))

��
2

i 1
�

�
E
Z T

s

(1 + jx"(t)jq + jE(x"(t))jq)dt
� 1
q

� C
h
"
2
3

i��
2
: 1
�
= C"�:

We estimate now the second term I2 (") : Then by applying Cauchy-Schwarz inequality, note

(2.9), assumption (H1), and Lemma 2.3.1, we get

I2 (") �
�
E
Z T

s

jK"(t)j2 dt
� 1
2
�
E
Z T

s

j� (t; x"(t);E(x"(t)); u)� � (t; x"(t);E(x"(t)); u)j2 dt
� 1
2

� C

�
E
Z T

s

(jx"(t)� x"(t)j2 + jE(x"(t))� E(x"(t))j2)dt
� 1
2

� C [d(u"(�); u"(�))�]
1
2 � C

h
"
2
3

i�: 1
2
= C"

�
3 = C"�:

Now, let us turn to estimate the third term I3 (") : By adding and subtracting �(t; x"(t);E(x"(t)); u"(t))

then we have

I3 (") = �E
Z T

s

K"(t)[� (t; x"(t);E(x"(t)); u"(t))� �(t; x"(t);E(x"(t)); u"(t))]dt

� E
Z T

s

K"(t)� (t; x"(t);E(x"(t)); u"(t))� � (t; x"(t);E(x"(t)); u"(t)))dt;
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then by using Cauchy-Schwarz inequality, we have

I3 (") �
�
E
Z T

s

jK"(t)j2 dt
� 1
2

�
�
E
Z T

s

j� (t; x"(t);E(x"(t)); u"(t))� �(t; x"(t);E(x"(t)); u"(t))j2

� Ifu"(�) 6=u"(�)g (t) dt
� 1
2

+ E
Z T

s

jK"(t)j j[� (t; x"(t);E(x"(t)); u"(t))� � (t; x"(t);E(x"(t)); u"(t))]j dt;

We proceed as in I2 (") to estimate the second term in the right of above inequality, then by

applying Cauchy-Schwartz inequality, Assumption (H1) and (2.9) we obtain

I3 (") �
�
E
Z T

s

jK"(t)j2 dt
� 1
2

�
(�
E
Z T

s

j� (t; x"(t);E(x"(t)); u"(t))� �(t; x"(t);E(x"(t)); u"(t))j4 dt
� 1
2

�
�
E
Z T

s

Ifu"(�) 6=u"(�)g (t) dt

� 1
2

) 1
2

+ C"�;

� C
h
d(u"(�); u"(�)) 12

i 1
2
+ C"�

� C"�;

thus, we have proved that

S1(") = I1 (") + I2 (") + I3 (") � C"�: (2.44)

By using similar arguments developed above, we can prove that

S2(") � C"�: (2.45)
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Now, let us turn to estimate the third term S3("). By applying the Cauchy-Schwarz inequal-

ity, we get

S3(") � E
R T
s

R
�
("t(�)� "t (�)) (g (t; x

"(t�); u; �)� g (t; x"(t�); u
"(t); �))�(d�)dt

+ E
R T
s

R
�
["t (�) (g (t; x

"(t�); u; �)� g (t; x"(t�); u))�(d�)dt;

+ E
R T
s

R
�
"t (�) (g (t; x

"(t�); u
"(t); �)� g (t; x"(t�); u

"(t); �))�(d�)dt;

= J1(") + J2(") + J3("):

For any � 2 [0; 1
3
) so that � = 3� 2 [0; 1): Now, let � be a �xed real number such that

� 2 (1; 2) so that (1 + �)� < 2. Taking q > 2 such that 1
�
+ 1

q
= 1 then by using Hôlder�s

inequality, Lemma 2.3.2 and note (2.5) we obtain

J1(") �
�
E
Z T

s

Z
�

j"t(�)� "t (�j
� �(d�)dt

� 1
�

� E
�Z T

s

(sup
�2�

jg (t; x"(t�); u; �)� g (t; x"(t�); u
"(t); �)j)qdt

� 1
q

� �(�)
1
q

� C
h
d(u"(�); u"(�))

��
2

i 1
�

�
E
Z T

s

(1 + jx"(t)jq + jE(x"(t))jq)dt
� 1
q

� C
h
"
2
3

i��
2
: 1
�
= C"

�
3 :

Applying assumption (H3), Cauchy-Schwarz inequality, Lemma 2.3.2, note (2.10) and the

fact that �(�) <1 we get

J2(") �
�
E
Z T

s

Z
�

j"t (�j
2 �(d�)dt

� 1
2

[�(�)]
1
2

� E
�Z T

s

(sup
�2�

jg (t; x"(t�); u; �)� g (t; x"(t�); u
"(t); �)j)2dt

� 1
2

� CE
�Z T

s

jx"(t)� x"(t)j2 dt
� 1

2

� C [d(u"(�); u"(�))�]
1
2
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by using (2.38) we get d(u"(�); u"(�))� �
�
"
2
3

��
; it holds that

J2(") � C
h
"
2�
3

i 1
2
= C"

�
3 = C"�:

We proceed to estimate J3("). By adding and subtracting g (t; x"(t�); u"(t); �) and Cauchy-

Schwarz inequality we obtain

J3(") = E
Z T

s

Z
�

"t (�)(g (t; x
"(t�); u

"(t); �)� g (t; x"(t�); u
"(t); �) Ifu"(�) 6=u"(�)g (t)�(d�)dt

+ E
Z T

s

Z
�

"t (�)(g (t; x
"(t�); u

"(t); �)� g (t; x"(t�); u
"(t); �))�(d�)dt

� E
�Z T

s

Z
�

j"t (�)j
2 �(d�)dt

� 1
2

� [�(�)]
1
2

� E
�Z T

s

(sup
�2�

jg (t; x"(t�); u"(t); �)� g (t; x"(t�); u
"(t); �)j)2Ifu"(�) 6=u"(�)g (t) dt

� 1
2

+ E
�Z T

s

Z
�

j"t (�)j
2 �(d�)dt

� 1
2

� E
�Z T

s

jx"(t)� x"(t)j2 dt
� 1

2

;

by applying Cauchy-Schwarz inequality, Lemma 2.3.2 and (2.11) it follows that

J3(") � E
�Z T

s

(1 + jx"(t)j4)dt
� 1

2

d(u"(�); u"(�)) 12

+ CE
�Z T

s

jx"(t)� x"(t)j2 dt
� 1

2

� C"�:

Thus, we have proved that

S3(") = J1(") + J2(") + J3(") � C"�: (2.46)

The desired result (2.14) follows immediately from combining (2.44), (2.45), (2.46) and (2.34).

This completes the proof of Theorem 2.3.1. �

Proof of Corollary 2.3.1. In the spike variations technique for the perturbed control
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u";�(�) in (2.37) the point u 2 A may be replaced by any admissible control u(�) 2 U ; and

the subsequent argument still goes through. So the inequality in the estimate (2.15) holds

for any u(�) 2 U and the subsequent argument still goes through. So the inequalities in the

estimate (2.15) holds for any u(�) 2 U . �

2.4 Su¢ cient conditions of near-optimality for mean-

�eld jump di¤usion processes

We will shows in this section, that under certain concavity conditions on the Hamiltonian

H and some convexity conditions on the function h(�; �), the "-maximum condition on the

Hamiltonian function H in the integral form is su¢ cient for near-optimality. We assume:

Assumption (H3)  is di¤erentiable in u for  =: f; �; `; g and there is a constant C > 0

such that

j (t; x; y; u)�  (t; x; y; u0)j+ j u(t; x; y; u)�  u(t; x; y; u
0)j

� C ju� u0j ;

sup�2� jg(t; x; u; �)� g(t; x; u0; �)j+ sup�2� jgu(t; x; u; �)� gu(t; x; u
0; �)j

� C ju� u0j ;

(2.47)

h(x; y)� h(x0; y0) � (hx(x0; y0) + hy(x
0; y0))(x� x0); (2.48)

and

H(t; x;E(x); u;	; K;R)�H(t; x0;E(x0); u0;	; K;R)

� (Hx(t; x
0;E(x0); u0;	; K;R) +Hy(t; x

0;E(x0); u0;	; K;R)) (x� x0)

+Hu(t; x
0;E(x0); u0;	; K;R)(u� u0); a:e:; t 2 [s; T ] ; P� a:s:

(2.49)

Now we are able to state and prove the su¢ cient conditions for near-optimality for systems

governed by mean-�eld SDEs with jump processes, which is the second main result of this

45



Chapter II. Stochastic near-optimal control for mean-�eld jump di¤usions

work.

Let u"(�) be an admissible control and (	"(�); K"(�); " (�)) ; (Q"(�); R"(�);�" (�)) be the solu-

tion of the adjoint equations (2.9)-(2.10) corresponding to u"(�):

Theorem 2.4.1. (Su¢ cient conditions for near-optimality of order "
1
2 ). Let conditions

(2.47)�(2.49) holds. If for some " > 0 and for any u (�) 2 U :

E
R T
s
H(x"(�);u"(�))(t; x"(t);E(x"(t)); u"(t))dt+ "

� supu(�)2U E
R T
s
H(x"(�);u"(�))(t; x"(t);E(x"(t)); u(t))dt;

(2.50)

then u"(�) is a near-optimal control of order " 12 ; i.e.,

Js;� (u"(�)) � inf
u(�)2U

Js;� (u(�)) + C" 12 ;

where C > 0 is a positive constant independent of ":

Corollary 2.4.1. (Su¢ cient Conditions for "�optimality) Under the assumptions of The-

orem 2.4.1 a su¢ cient condition for an admissible control u"(�) to be "�optimal for our

mean-�eld control problem (2.1)-(2.2) is

E
�Z T

s

H(x"(�);u"(�))(t; x"(t);E(x"(t)); u"(t))dt
�
+
� "
C

�2
� sup

u(�)2U
E
�Z T

s

H(x"(:);u"(:))(t; x"(t);E(x"(t)); u(t))dt
�
:

Proof of Theorem 2.4.1. The key step in the proof is to show that

Hu(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�)) is very small and estimate it in terms of ". We

�rst �x an " > 0 and de�ne a new metric bd on U , by setting: for any u(�) and v(�) 2 U :
bd(u(�); v(�)) = EZ T

s

ju(t)� v(t)j$"(t)dt;
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where

$"(t) = 1 + j	"(t)j+ jK"(t)j+ 2 jQ"(t)j [1 + jx"(t)j+ jE(x"(t))j]

+ 2

�
jQ"(t)j+

����Z
�

"t (�)�(d�)

����� [1 + jx"(t)j]
Obviously bd is a metric on U satis�ed $"(t) > 1, and it is a complete metric as a weighted
L1-norm.

De�ne a functional g on U as follows

g (u(�)) = E
Z T

s

H(x"(�);u"(�)) (t; x"(t);E(x"(t)); u(t)) dt:

By using assumption (??) then a simple computation shows that

jg (u(�))� g (v(�))j = E
Z T

s

�
H(x"(�);u"(�)) (t; x"(t);E(x"(t)); u(t))

�H(x"(�);u"(�)) (t; x"(t);E(x"(t)); v(t))
	
dt:

� E
Z T

s

jH (t; x"(t);E (x"(t)) ; u(t);	"(t); K"(t); "t (�))

� H (t; x"(t);E (x"(t)) ; v(t);	"(t); K"(t); "t (�))j dt

+ E
Z T

s

j�� (t; x"(t);E (x"(t)) ; u(t))� �� (t; x"(t);E (x"(t)) ; v(t))j

� jQ"(t)j j� (t; x"(t);E (x"(t)) ; u"(t))j dt
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+
1

2
E
Z T

s

j�� (t; x"(t);E (x"(t)) ; u(t))Q(t)� (t; x"(t);E (x"(t)) ; u(t))

� �� (t; x"(t);E (x"(t)) ; v(t))Q"(t)� (t; x"(t);E (x"(t)) ; v(t))j dt

+ E
Z T

s

Z
�

jg� (t; x"(t); u(t); �)� g� (t; x"(t); v(t); �)j

� j(Q"(t) + "t (�)) g (t; x
"(t�); u

"(t); �)j�(d�)dt

+
1

2
E
Z T

s

Z
�

jg� (t; x"(t); u(t); �) (Q"(t) + "t (�)) g (t; x
"(t); u(t); �)

� g� (t; x"(t); v(t); �) (Q"(t) + "t (�)) g (t; x
"(t); v(t); �)j�(d�)dt;

= I"1 + I"2 + I"3 + I"4 + I"5

Now, by using de�nition 2.2.2 and assumption (H3)

I"1 = E
R T
s
jH (t; x"(t);E (x"(t)) ; u;	"(t); K"(t); "t (�))

� H (t; x"(t);E (x"(t)) ; v;	"(t); K"(t); "t (�))j dt

� CE
R T
s
ju(t)� v(t)j

�
j	"(t)j+ jK"(t)j+

��R
�
"t (�)�(d�)

��� dt
� CE

R T
s
ju(t)� v(t)j$"(t)dt

(2.51)

Since � is linear growth with respect to x and y then by using assumption (2.47) we get

I"2 = E
R T
s
j�� (t; x"(t);E (x"(t)) ; u)� �� (t; x"(t);E (x"(t)) ; v)j

� jQ"(t)� (t; x"(t);E (x"(t)) ; u"(t))j dt

� CE
R T
s
ju(t)� v(t)j jQ"(t)j [1 + jx"(t)j+ jE (x"(t))j] dt

� CE
R T
s
ju(t)� v(t)j$"(t)dt:

(2.52)

Similarly, since g is linear growth with respect to x then by assumptions (2.47) we can prove
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that

I"4 = E
R T
s

R
�
jg� (t; x"(t); u; �)� g� (t; x"(t); v; �)j

� j(Q"(t) + "t (�)) g (t; x
"(t�); u

"(t); �)j�(d�)dt

� CE
R T
s
ju(t)� v(t)j

�
jQ"(t)j+

��R
�
"t (�)�(d�)

��� [1 + jx"(t)j] dt
� CE

R T
s
ju(t)� v(t)j$"(t)dt:

(2.53)

Next, since � is linear growth with respect to x and y then we deduce that

I"3 = 1
2
E
R T
s
j�� (t; x"(t);E (x"(t)) ; u)Q"(t)� (t; x"(t);E (x"(t)) ; u)

� �� (t; x"(t);E (x"(t)) ; v)Q"(t)� (t; x"(t);E (x"(t)) ; v)j dt

� CE
R T
s
ju(t)� v(t)j 1

2
jQ"(t)j [1 + jx"(t)j+ jE (x"(t))j] dt

� CE
R T
s
ju(t)� v(t)j$"(t)dt;

(2.54)

and

I"5 = +1
2
E
R T
s

R
�
jg� (t; x"(t); u; �) (Q"(t) + "t (�)) g (t; x

"(t); u; �)

� g� (t; x"(t); v; �) (Q"(t) + "t (�)) g (t; x
"(t); v; �)j�(d�)dt;

� CE
R T
s
ju(t)� v(t)j 1

2
jQ"(t) + "t (�)j [1 + jx"(t)j] dt

� CE
R T
s
ju(t)� v(t)j$"(t)dt;

(2.55)

By combining (2.51)�(2.55) we conclude that

jg (u(�))� g (v(�))j � C bd (u(�); v(�)) ;
which implies that g is continuous on U with respect to bd: Now by using (2.50) and Ekeland�s
Variational Principle (Lemma 2.2.1), there exists u"(�) 2 U such that

bd(u"(�); u"(�)) � p"; (2.56)
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and

E
Z T

s

eH(t; x"(t);E(x"(t)); u"(t))dt = max
u(�)2U

E
Z T

s

eH(t; x"(t);E(x"(t)); u(t))dt; (2.57)

where eH(t; x; y; u) = H(x"(�);u"(�))(t; x; y; u)�
p
" ju� u"(t)j$"(t): (2.58)

The maximum condition (2.57) implies a pointwise maximum condition namely, for P� a:s;

and a:e:; t 2 [s; T ]

eH(t; x"(t);E(x"(t)); u"(t)) = max
u2A

eH(t; x"(t);E(x"(t)); u):
Using [Item 3, Proposition A1], then we have

0 2 @�u eH(t; x"(t);E(x"(t)); u"(t)): (2.59)

Since the function u : 7�! ju� u"(t)j is locally Lipschitz but not di¤erentiable in u"(t), then

Clarke�s generalized gradient (see Proposition A1, Example, Appendix) shows that

@�u (
p
" ju� u"(t)j$"(t)) = co f�$"(t)

p
"; $"(t)

p
"g

= [�$"(t)
p
"; $"(t)

p
"] :

(2.60)

By using (2.60) and fact that the Clarke�s generalized gradient of the sum of two functions

is contained in the sum of the Clarke�s generalized gradient of the two functions, ([Item 5,

Proposition A1] we get

@
�

u
eH(t; x"(t);E(x"(t)); u"(t)) � @

�

uH(x"(:);u"(:))(t; x"(t);E(x"(t)); u"(t))

+
�
�
p
"$"(t);

p
"$"(t)

�
:

By applying assumption (2.47), the Hamiltonian H is di¤erentiable in u; then [Item 4, Pro-
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position A1] shows that

@
�
u
eH(t; x"(t);E(x"(t)); u"(t))
� fHu(t; x

"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))

+ f��u(t; x"(t);E(x"(t)); u"(t))Q"(t)

� (�(t; x"(t);E(x"(t)); u"(t)))� �(t; x"(t);E(x"(t)); u"(t)))g

+
R
�
g�u (t; x

"(t�); u
"(t); �) (Q"(t) + "t (�))

�(g (t; x"(t�); u"(t); �)� g (t; x"(t�); u
"(t); �))�(d�)g

+ [�
p
"$"(t);

p
"$"(t)] :

Next, the di¤erential inclusion (2.59) implies that there is

� "(t) 2
�
�
p
"$"(t);

p
"$"(t)

�
;

such that

Hu(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))

+��u(t; x
"(t);E(x"(t)); u"(t))Q"(t)

�(�(t; x"(t);E(x"(t)); u"(t)))� �(t; x"(t);E(x"(t)); u"(t)))

+
R
�
g�u (t; x

"(t�); u
"(t); �) (Q"(t) + "t (�))

�(g (t; x"(t�); u"(t); �)� g (t; x"(t�); u
"(t); �))�(d�)g+ � "(t) = 0:

(2.61)
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By using assumption (2.47) we can prove that

jHu(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))

�Hu(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))j

� C ju"(t)� u"(t)j$"(t);

(2.62)

hence from (2.61) and (2.62), assumption (2.47) and the fact that j� "(t)j �
p
"$"(t) we get

jHu(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))j

� C ju"(t)� u"(t)j$"(t) + j��u(t; x"(t);E(x"(t)); u"(t))Q"(t)

� (�(t; x"(t);E(x"(t)); u"(t)))� �(t; x"(t);E(x"(t)); u"(t)))j

+
��R
�
g�u (t; x

"(t�); u
"(t); �) (Q"(t) + "t (�))

�(g (t; x"(t�); u"(t); �)� g (t; x"(t�); u
"(t); �))�(d�)j+ j� "(t)j

� C ju"(t)� u"(t)j$"(t) + j� "(t)j

� C ju"(t)� u"(t)j$"(t) +
p
"$"(t):

(2.63)

Now, using (2.49), we obtain for any u(�) 2 U

H(t; x(t);E(x(t)); u(t);	"(t); K"(t); "t (�))

�H(t; x"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))

� Hx(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))(x(t)� x"(t))

+Hy(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))(x(t)� x"(t))

+Hu(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))(u(t)� u"(t)):

(2.64)

Integrating this inequality with respect to t and taking expectations we obtain from (2.51)
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and (2.63)

E
R T
s
[H(t; x(t);E(x(t)); u(t);	"(t); K"(t); "t (�))

�H(t; x"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))] dt

� E
R T
s
Hx(t; x

"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))(x(t)� x"(t))dt

+E
R T
s
Hy(t; x

"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))(x(t)� x"(t))dt

+C(bd(u"(�); u"(�)) + " 12 )
� E

R T
s
Hx(t; x

"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))(x(t)� x"(t))dt

+E
R T
s
Hy(t; x

"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))(x(t)� x"(t))dt

+C"
1
2 :

(2.65)

On the other hand, by using (2.48) we get

h (x(T );E (x(T )))� h(x"(T );E (x"(T ))) �

[hx(x
"(T );E(x"(T ))) + hy(x"(T );E(x"(T )))] (x(T )� x"(T ))

Noticing that since 	"(T ) = hx(x
"(T );E(x"(T ))) + E (hy(x"(T );E(x"(T )))) then we have

E fh (x(T );E (x(T )))� h(x"(T );E (x"(T )))g � E f	"(T )(x(T )� x"(T ))g : (2.66)

By integration by parts formula for jumps process 	"(t)(x(t) � x"(t)) (see Lemma A1) we
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get

E [	"(T )(x(T )� x"(T ))]

= E
Z T

s

	"(t)d(x(t)� x"(t)) + E
Z T

s

(x(t)� x"(t))d	"(t)

+ E
Z T

s

K"(t) (�(t; x(t);E(x(t)); u(t))� �(t; x"(t);E(x"(t)); u"(t))) dt

+ E
Z T

s

Z
�

"t (�) (g (t; x(t); u(t); �)� g (t; x"(t); u"(t); �))�(d�)dt;

with the help of (2.1), and (2.9) we obtain

E f	"(T )(x(T )� x"(T ))g

= E
Z T

s

f[Hx(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))

+ E(Hy(t; x
"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�)))](x(t)� x"(t))

+ 	"(t) [f(t; x(t);E(x(t)); u(t))� f(t; x"(t);E(x"(t)); u"(t))]

+K"(t) [�(t; x(t);E(x(t)); u(t))� �(t; x"(t);E(x"(t)); u"(t))]

+

Z
�

"t (�) (g (t; x(t�); u(t); �)� g (t; x"(t�); u
"(t); �))�(d�)

�
dt;

then from (2.49) and (2.65) we get

E f	"(T )(x(T )� x"(T ))g

� E
R T
s
fH(t; x(t);E(x(t)); u(t);	"(t); K"(t); "t (�))

�H(t; x"(t);E(x"(t)); u"(t);	"(t); K"(t); "t (�))

+	"(t) [f(t; x(t);E(x(t)); u(t))� f(t; x"(t);E(x"(t)); u"(t))]

+K"(t) [�(t; x(t);E(x(t)); u(t))� �(t; x"(t);E(x"(t)); u"(t))]

+
R
�
"t (�) (g (t; x(t�); u(t); �)� g (t; x"(t�); u

"(t); �))�(d�)
	
dt� C"

1
2

= E
R T
s
(` (t; x"(t);E(x"(t)); u"(t))� ` (t; x(t);E(x(t)); u(t))) dt� C"

1
2 :

(2.67)
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Combining (2.66) and (2.67) we get

E fh (x(T );E (x(T )))� h(x"(T );E (x"(T )))g

� E
Z T

s

(` (t; x"(t);E(x"(t)); u"(t))� ` (t; x(t);E(x(t)); u(t))) dt� C"
1
2 ;

then by using de�nition of Js;� we conclude

Js;� (u(�)) � Js;� (u"(�))� C"
1
2 :

Finally, since u(�) is arbitrary element of U , the desired result follows. �

2.5 Application to �nance: Parameterized mean-variance

portfolio selection

In this section, we will apply our necessary and su¢ cient conditions of near-optimality to

study a parameterized mean-variance portfolio selection and we derive the explicit expression

of the optimal portfolio selection strategy.

Suppose that we have a mathematical market consisting of two investment possibilities:

The �rst asset is a bond whose price P0 (t) evolves according to the ordinary di¤erential

equation

(1) Risk-free security: (e.g., a bond), where the price P0(t) at time t is given by the

following equation: 8><>: dP0 (t) = P0 (t) �(t)dt; t 2 [0; T ]

P0 (0) > 0;
(2.68)

where �(�) is a bounded deterministic function.
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(2) Risky security (e.g. a stock), where the price P1 (t) at time t is given by

P1 (t) = P1 (t�)

�
&(t)dt+ �tdW (t) +

Z
�

�t (�)N (d�; dt)

�
; P1 (0) > 0; (2.69)

where &(t), �t and �t (�) are bounded deterministic functions such that &(t) 6= 0; �t 6= 0 and

&(t) > �(t): and as above N(d�; dt) is a compensated random measure.

Assumptions. In order to ensure that P1 (t) > 0 for all t 2 [0; T ] we assume that:

(1) �t (�) > �1 for any � 2 �:

(2) The function t!
R
�
�2t (�)�(d�) is a locally bounded

Portfolio and wealth dynamics: A portfolio is a predictable process �(t) = (�0(t); �1(t))

giving the number of units held at time t of the bond and the stock. The corresponding

wealth process x�(t); t � 0 is then given by

x�(t) = �0(t)P0 (t) + �1(t)P1 (t) : (2.70)

The portfolio �(�) is called Self-�nancing if

x�(t) = x�(0) +

Z t

0

�0(t)dP0 (t) +

Z t

0

�1(t�)dP1 (t) : (2.71)

We denote by

v(t) = �1(t)P (t) ; (2.72)

the amount invested in the risky security. Now, by combining (2.70) and (2.71) together with
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(2.72) we introduce the wealth dynamics as follows

8>>>>><>>>>>:
dxv(t) = [�(t)xv(t) + (&(t)� �(t))v(t)] dt+ �tv(t)dW (t)

+
R
�
�t� (�) v(t)N (d�; dt) ;

xv(0) = �;

(2.73)

where � 2 R: If the corresponding wealth process xv(�) given by SDE-(2.73) is square integ-

rable, the control variable v(�) is called tame. We denote U the set of admissible portfolio

valued in A = 6 R:

Parameterized mean-variance portfolio selection. We assume that we have a family

of optimization problem parameterized by "; where " is a small parameter " > 0 may be

represent the complexity of the cost functional

J�;"(v(�)) = E
��

xv(T )� E(xv(T ))� "

2
)
�2
+

Z T

0

"2

4
L(v(t))dt

�
; (2.74)

subject to xv(T ) solution of SDE-(2.73) at time T given by

xv(T ) = � +

Z T

0

[�(t)xv(t) + (&(t)� �(t))v(t)] dt+

Z T

0

�tv(t)dW (t)

+

Z T

0

Z
�

�t� (�) v(t)N (d�; dt) ;

where L(�) is a nonlinear, convex and bounded function, satisfying assumption (2.47) and

independent of ":

Our objective is to �nd an admissible portfolio v�(�) which minimizes the cost function (2.74)

of mean-�eld type (i.e., with ` � "2

4
L(v(t)); s = 0; h (x(t);E(x(t))) =

�
x(t)� E(x(t))� "

2

�2
):

Explicit solution of problem (2.73)-(2.74), called P", may be a di¢ cult problem. The idea is

to show that we can easily get a near-optimal control (in feedback form) analytically based

on the optimal control of the simpler problem, called P0 which is obtained by setting " = 0
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in (2.74), then we get

J�0 (v(�)) = E
�
(xv(T )� E(xv(T )))2

	
; (2.75)

We study the optimal control problem where the state is governed by SDE-(2.73) with a new

cost function (2.75). In a second step, we solve the control problem (2.73)-(2.75), and obtain

an optimal solution explicitly. Finally, we solve the control problem P" of near-optimally.

Problem P0: (optimal solution of mean-�eld stochastic control problem (2.73)-(2.75)). By

a standard argument, problem P0 can be solved as follows.

Since f (t; x(t);E(x(t); v(t)) = �(t)x(t) + (&(t) � �(t))v(t); � (t; x(t);E(x(t); v(t)) = �tv(t);

g (t; x(t�); v(t); �) = v(t)�t� (�) ; then the Hamiltonian H gets the form

H (t; x;E (x) ; v(t);	(t); K(t); t (�)) = �	(t) [�(t)x(t) + (&(t)� �(t))v(t)]�K(t)�tv(t)

� v(t)

Z
�

t (�) �t (�)�(d�)

= �	(t)�(t)x(t)� v(t) [	(t)(&(t)� �(t))

+K(t)�t +

Z
�

t (�) �t (�)�(d�)

�
:

Consequently, since this is a linear expression of v(�) then it is clear that the supremum is

attained at v�(t) satisfying

	�(t)(&(t) + �(t)) +K�(t)�t +

Z
�

�t (�) �t (�)�(d�) = 0: (2.76)

Since hx (x(T );E(x(T )) = 2 (x(T )� E(x(T )) ; hy(x(T );E(x(T )) = �2(x(T ) � E(x(T )) then

a simple computation shows that the �rst-order adjoint equation (2.9) associated with v�(t)

gets the form

8><>:
d	�(t) = ��(t)	�(t)dt+K�(t)dW (t) +

R
�
�t (�)N(dt; d�)

	�(T ) = 2 (x�(T )� E(x�(T )) :
(2.77)
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In order to solve the above equation (2.77) and to �nd the expression of v�(t) we conjecture

a process 	�(t) of the form

	�(t) = �1(t)x
�(t) + �2(t)E (x�(t)) + �3(t); (2.78)

where �1(�);�2(�) and �3(�) are deterministic di¤erentiable functions. (see Shi et al., [62]

and Framstad et al, [13], Ma et al, [23] and Li [60] for other models of conjecture).

Applying Itô�s formula to (2.78), in virtue of SDE-(2.73), we get

d	�(t) = �1(t) f[�(t)x�(t) + (&(t)� �(t))v�(t)] dt+ �tv
�(t)dW (t)

+
R
�
v�(t)�t� (�)N (d�; dt)

	
+ x�(t) _�1(t)dt

+ �2(t) [�(t)E(x�(t)) + (&(t)� �(t))v�(t)] dt

+ E (x�(t)) _�2(t)dt+ _�3(t)dt

=
n
�1(t) [�(t)x

�(t) + (&(t)� �(t))v�(t)] + x�(t) _�1(t)

+ �2(t) [�(t)E(x�(t)) + (&(t)� �(t))v�(t)]

+ _�2(t)E (x�(t)) + _�3(t)
o
dt

+ �1(t)�tv
�(t)dW (t)

+
R
�
�1(t)v

�(t)�t� (�)N (d�; dt) ;

	�(T ) = �1(T )x
�(T ) + �2(T )E (x�(T )) + �3(T );

(2.79)

Next, comparing (2.79) with (2.77), we get

��(t)	�(t) = �1(t) [�(t)x�(t) + (&(t)� �(t))v�(t)] + x�(t) _�1(t)

+ �2(t) [�(t)E(x�(t)) + (&(t)� �(t))v�(t)]

+ _�2(t)E (x�(t)) + _�3(t);

(2.80)
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K�(t) = �1(t)�tv
�(t); (2.81)

�t (�) = �1(t)v
�(t)�t (�) ; (2.82)

and

�1(T ) = 2;�2(T ) = �2;�3(T ) = 0: (2.83)

Combining (2.81) and (2.83) together with (2.76) we get

v�(t) =
�(&(t)� �(t))	�(t)

�1(t)
�
�2t +

R
�
�2t (�)�(d�)

� : (2.84)

We denote

A(t) = �2t +

Z
�

�2t (�)�(d�); (2.85)

by using (2.76) together with (2.84) and (2.85) then we can get

�3(t) = 0 for t 2 [0; T ] ;

v�(t) = (�(t)� &(t)) (A(t))�1
(�1(t)x

�(t) + �2(t)E (x�(t)))
�1(t)

:

=
�
(�(t)� &(t)) (A(t))�1

	
x�(t)

+
n
(�(t)� &(t)) (A(t))�1 �2(t)

�1(t)

o
E (x�(t))

(2.86)

Now combining (2.80) with (2.78) we deduce

v�(t) (�1(t) + �2(t)) (�(t)� &(t)) =
h
2�(t)�1(t) + _�1(t)

i
x�(t)

+
h
2�(t)�2(t) + _�2(t)

i
E(x�(t))

(2.87)

By comparing the terms containing x�(t) and E (x�(t)), we obtain from (2.86) with (2.87)
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the two ordinary di¤erential equations (ODEs in short):

�
(�(t)� &(t))2 (A(t))�1 � 2�(t)

�
�1(t) + (�(t)� &(t))2 (A(t))�1�2(t) = _�1(t):�

(�(t)� &(t))2 (A(t))�1 � 2�(t)
�
�2(t) + (�(t)� &(t))2 (A(t))�1

�22(t)

�1(t)
= _�2(t);

(2.88)

a simple computation from (2.88) we obtain

_�1(t)�2(t) = _�2(t)�1(t); (2.89)

which is equivalent to j�1(t)j = c0 j�2(t)j where c0 is a positive constant. Since �1(T ) =

2;�2(T ) = �2; (see (2.83)) we deduce c0 = 1, then we get

j�1(t)j = j�2(t)j ; (2.90)

Let us turn to calculate explicitly �1(t) and �2(t). From (2.90) we have

�2(t)

�1(t)
= Sgn(�1(t)�2(t));

then by dividing the �rst ODE in (2.88) by �1(t) and the second ODE by �2(t) we get

�
(�(t)� &(t))2 (A(t))�1 � 2�(t)

�
+ (�(t)� &(t))2 (A(t))�1 Sgn(�1(t)�2(t)) =

_�1(t)
�1(t)

;�
(�(t)� &(t))2 (A(t))�1 � 2�(t)

�
+ (�(t)� &(t))2 (A(t))�1 Sgn(�1(t)�2(t)) =

_�2(t)
�2(t)

;

from (2.83) then a simple computations shows that for any t 2 [0; T ]

j�1(t)j = 2 exp
n
�
R T
t

�
(�(t)� &(t))2 (A(t))�1 � 2�(t)

�
+ (�(t)� &(t))2 (A(t))�1 Sgn(�1(t)�2(t))dt

	
:

(2.91)
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With this choice of �1(t) and �2(t), we conclude that v�(t) is given by

v�(t) =
�
(�(t)� &(t)) (A(t))�1

�
x�(t)

+
�
(�(t)� &(t)) (A(t))�1 Sgn(�1(t)�2(t))

�
E (x�(t))

(2.92)

and the adjoint processes

	�(t) = �1(t)x
�(t) + �2(t)E (x�(t)) ;

K�(t) = �1(t)�tv
�(t);

�t (�) = �1(t)�t (�) v
�(t);

satisfying the adjoint equation (2.9). Moreover, with this choice of v�(t), the maximum

condition (2.14) of Theorem 2.3.1 holds. Since h (x(t);Ex(t)) = (x(t)� Ex(t))2 is convex

and H (�; �; �;	(t); K(t); t(�)) is concave, we can assert that our admissible portfolio v�(t) is

optimal and the su¢ cient conditions in Theorem 2.4.1 are satis�ed where v�(t) achieves the

maximum. Finally, we give the explicit optimal portfolio in the state feedback form in the

following theorem.

Theorem 2.5.1. The optimal solution of our mean-�eld stochastic control problem P0 is

given in the state feedback form by

v�(t; x�(t);E (x�(t))) =
�
(�(t)� &(t)) (A(t))�1

�
x�(t)

+
�
(�(t)� &(t)) (A(t))�1 Sgn(�1(t)�2(t))

�
E (x�(t)) ;

(2.93)

where A(t), �1(t) and �2(t)) are given by (2.85), (2.91) and (2.90) respectively.
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Problem P": The Hamiltonian function H for the problem P is

H(z(:);v(�))(t; x; u) = �	(t)�(t)x(t)� u(t) f	(t)(&(t)� �(t))

+K(t)�t +

Z
�

t (�) �t (�)�(d�)

�
+ �2t v(t)u(t)Q(t)�

1

2
�2t u

2(t)Q(t)

+ u(t)v(t)

Z
�

(�t (�))
2 (Q�(t) + �t (�))�(d�);

� 1
2
v(t)

Z
�

(�t (�))
2 (Q�(t) + �t (�))�(d�);

where Q�(�) is given by second-order adjoint equation

8><>:
dQ�(t) = �2�(t)Q�(t)dt+R�(t)dW (t) +

R
�
��t (�)N(d�; dt)

Q�(T ) = 2:

By uniqueness of the solution of the above classical backward SDE it is easy to show that

(Q�(t); R�(t);��t (�)) = (2 exp

�
2

Z T

t

�(r)dr

�
; 0; 0);

then we get

Hx�(:);v�(�)(t; x; v) = �	(t)�(t)x(t)� v(t) f	�(t)(&(t)� �(t))

+K�(t)�t +
R
�
�t (�) �t (�)�(d�)

	
+ �2t v

�(t)v(t)Q�(t)� 1
2
�2t v

2(t)Q�(t)

+ v(t)v�(t)
R
�
(�t (�))

2 (Q�(t) + �t (�))�(d�)

� 1
2
v2(t)

R
�
(�t (�))

2 (Q�(t) + �t (�))�(d�):

(2.94)

Since v�(�) is optimal, by stochastic maximum principle, it necessary that v�(�) maximizes
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the H-function a:s: namely,

	�(t)(&(t)� �(t)) +K�(t)�t +
R
�
�t (�) �t (�)�(d�) = 0

P� a:s; a:e: t:

(2.95)

The Hamiltonian H" for the problem P" is

H(x�(:);v�(�))
" (t; x; v) = �	(t)�(t)x(t)� v(t) f	�(t)(&(t)� �(t))

+K�(t)�t +
R
�
�t (�) �t (�)�(d�)

	
+ �2t v

�(t)v(t)Q�(t)� 1
2
�2t v

2(t)Q�(t)

+ v(t)v�(t)
R
�
(�t (�))

2 (Q�(t) + �t (�))�(d�)

� 1
2
v2(t)

R
�
(�t (�))

2 (Q�(t) + �t (�))�(d�)

� "2

4
L(v(t)):

(2.96)

The above function is maximized at v"(t) which satis�es

	�(t)(&(t)� �(t)) +K�(t)�t +
R
�
�t (�) �t (�)�(d�) + �2t v

�(t)Q�(t)

��2t v"(t)Q�(t) + v�(t)
R
�
(�t (�))

2 (Q�(t) + �t (�))�(d�)

�v"(t)
R
�
(�t (�))

2 (Q�(t) + �t (�))�(d�)� "2

4
_L(v"(t)) = 0;

P� a:s; a:e: t:

by applying (2.95) we have

(v�(t)� v"(t))
�
�2tQ

�(t) +
R
�
(�t (�))

2 (Q�(t) + �t (�))�(d�)
�

�"
2

4
_L(v"(t)) = 0:

(2.97)
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Combining (2.96)-(2.95) then we can shows that

max
v(�)2U

H(x�(:);v�(�))
" (t; x(t); v(t))�H(x�(:);v�(�))

" (t; x(t); v�(t))

= H(x�(:);v�(�))
" (t; x(t); v"(t))�H(x�(:);v�(�))

" (t; x(t); v�(t))

= �2t v
�(t)v"(t)Q�(t)� 1

2
�2t (v

"(t))2Q�(t)� "2

4
L(v"(t)):

+

�
v"(t)v�(t)� 1

2
(v"(t))2

�Z
�

�
�t� (�)

�2
(Q�(t) + �t (�))�(d�)

�
�
1

2
�2t (v

�(t))2Q�(t)� "2

4
L(v�(t))

+
1

2
(v�(t))2

Z
�

(�t (�))
2 (Q�(t) + �t (�))�(d�)

�

= �2tQ
�(t)

�
v"(t)v�(t)� 1

2
(v"(t))2 � 1

2
(v�(t))2

�
+

�
v"(t)v�(t)� 1

2
(v"(t))2 � 1

2
(v�(t))2

�Z
�

(�t (�))
2 (Q�(t) + �t (�))�(d�)

� "2

4
(L(v"(t))� L(v�(t))) ;

since

v"(t)v�(t)� 1
2
(v"(t))2 � 1

2
(v�(t))2 = �1

2
(v�(t)� v"(t))2 ;

then by simple computation we get

max
v(�)2U

H(x�(:);v�(�))
" (t; x; v(t))�H(x�(:);v�(�))

" (t; x; v�(t))

= �1
2
(v�(t)� v"(t))2

�
�2tQ

�(t) +

Z
�

�
�t� (�)

�2
(Q�(t) + �t (�))�(d�)

�
� "2

4
(L(v"(t))� L(v�(t)))
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using (2.97), (2.47), and the fact that L (�) is convex and bounded we obtain

max
v(�)2U

H(x�(:);v�(�))
" (t; x; v(t))�H(x�(:);v�(�))

" (t; x; v�(t))

= �"
2

8
(v�(t)� v"(t)) _L(v"(t)) +

"2

4
(L(v�(t))� L(v"(t))) � C"2:

Moreover, by using (2.95) the hamiltonian H" of problem P" is

H" (t; x;E (x) ; v(t);	(t); K(t); t(�)) = �	(t)�(t)x(t)� v(t) f	(t)(&(t)� �(t))

+K(t)�t +

Z
�

t (�) �t (�)�(d�)

�
� "2

4
L(v(t))

= �	(t)�(t)x(t)� "2

4
L(v(t)):

Since L(�) is convex then the Hamiltonian H" (t; �; �; �;	(t); K(t); t(�)) is concave. By apply-

ing Theorem 2.4.1, this proves that, the control v�(t) given by (2.93) is indeed a near-optimal

for stochastic control problem P".

2.6 Concluding remarks.

In this chapter, necessary and su¢ cient conditions of near-optimal stochastic control for

systems governed by mean-�eld jump di¤usion processes of mean-�eld type is proved. The

control variable is allowed to enter both di¤usion and jump coe¢ cients and also the di¤usion

coe¢ cients depend on the state of the solution process as well as of its expected value.

Moreover, the cost functional is also of mean-�eld type. Our result is applied to �nancial

optimization problem, where explicit expression of the optimal (and near-optimal) portfolio

is obtained in the state feedback form. If we assume that " = 0 Theorem 2.3.1 reduces to

stochastic maximum principle of optimality developed in Hafayed et al., ([18], Theorem 3.1 ).

Moreover, if we assume that " = 0 and when the coe¢ cients f , � of the underlying jump

di¤usion processes and the cost functional do not explicitly depend on the expected value,
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Theorem 2.3.1 reduces to necessary conditions of optimality developed in Tang et al., ([40],

Theorem 2.1 ) and Theorem 2.4.1 reduces to su¢ cient conditions of optimality developed in

Framstad el al., ([13] Theorem 2.1 ).
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Chapter-III

On Mean-�eld Partial Information Maximum
Principle of Optimal Control for Stochastic

Systems with Lévy Processes

68



Chapter 3

On Mean-�eld Partial Information

Maximum Principle of Optimal

Control for Stochastic Systems with

Lévy Processes

Abstract. In this work, we study mean-�eld type partial information stochastic optimal

control problem, where the system is governed by controlled stochastic di¤erential equa-

tion driven by Teugels martingales associated with some Lévy process and an independent

Brownian motion. We prove necessary and su¢ cient conditions of optimal control for these

mean-�eld models in the form of maximum principle. The control domain is assumed to be

convex. As an application, partial information linear quadratic control problem of mean-�eld

type is discussed, where the optimal control is given in feedback form.
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3.1 Introduction

We consider a mean-�eld stochastic control problem under partial information, where the

controlled mean-�eld stochastic di¤erential equation (SDEs) driven by Teugels martingales

and an independent Brownian motion of the form

8>>>>>>>>>><>>>>>>>>>>:

dxu(t) = f (t; xu(t);E(xu(t)); u(t)) dt

+
Pd

j=1 �
j (t; xu(t);E(xu(t)); u(t)) dW j(t)

+
P1

j=1 g
j (t; xu(t�);E(xu(t�)); u(t)) dHj(t)

xu(0) = x0;

(3.1)

where f; � and g are given maps and the initial condition x0 is an F0�measurable random

variable. The mean-�eld SDEs-(3.1) which is also called McKean-Vlasov systems are obtained

as a limit approach, by the mean-square limit, as n goes to in�nity of a system of interacting

particles of the form:

dxu;jn (t) = f(t; xu;jn (t);
1

n

nX
i=1

xu;in (t); u(t))dt

+
dX
k=1

�k(t; xu;jn (t);
1

n

nX
i=1

xu;in (t); u(t))dW
k;j(t)

+
1X
k=1

gk(t; xu;jn (t�);
1

n

nX
j=1

xu;jn (t�); u(t))dH
k;j (t) ;

where W (�) is a standard d�dimensional Brownian motion and H(t) = (Hj(t))j�1 are pair-

wise strongly orthonormal Teugels martingales, associated with some Lévy process, having

moments of all orders. The control u(�) = (u(t))t�0 is required to be valued in some subset

of Rk and adapted to a sub�ltration (Gt)t�0 of (Ft)t�0: These Teugels martingales are the

natural martingales, which generate the Hilbert space of square integrable martingales, with

respect to the natural �ltration of a Lévy process having moments of all orders.

The main new purpose here is the formulation of the partial information stochastic control
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in mean-�eld system with Lévy processes, which requires special attention. Noting that mean-

�eld SDE associated with Lévy processes (3.1) under partial information occur naturally in

the probabilistic analysis of �nancial optimization problems (incomplete �nancial market).

Moreover, the above mathematical mean-�eld approaches play an important role in di¤erent

�elds of economics, �nance, physics, chemistry and game theory.

The expected cost on the time interval [0; T ] is de�ned by

J (u(�)) := E
nZ T

0

`(t; xu(t);E(xu(t)); u(t))dt+h (xu(T );E (xu(T )))
o
; (3.2)

where ` and h are an appropriate functions. This cost functional is also of mean-�eld type, as

the functions ` and h depend on the marginal law of the state process through its expected

value. It worth mentioning that since the cost functional J is possibly a nonlinear function

of the expected value stands in contrast to the standard formulation of a control problem.

This leads to a so called time-inconsistent control problem where the Bellman dynamic pro-

gramming does not hold. The reason for this is that one cannot apply the law of iterated

expectations on the cost functional. This is a type of a control problem which, it seems, has

not been studied before. An admissible control u�(�) is called optimal i¤ it satis�es

J (u�(�)) := inf
u(�)2UG([0;T ])

J (u(�)) :

The corresponding state processes, solution of mean-�eld system (3.1) is denoted by x�(�) =

xu
�
(�):

Partial information or incomplete information, means that the information available to

the controller is possibly less than the whole information. That is, any admissible control

is adapted to a sub�ltration (Gt)t of (Ft)t t � 0: This kind of problem, which has potential

applications in mathematical �nance and mathematical economics, arises naturally, because

it may fail to obtain an admissible control with full information in real world applications.

To the best to our knowledge, the stochastic optimal control problems related to Teugel�s
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martingales have been investigated by many authors. For example, [90, 91, 98, 99, 100, 101].

In Meng and Tang [90] the authors studied the general stochastic optimal control problem for

the stochastic systems driven by Teugel�s martingales and an independent multi-dimensional

Brownian motion and recently, they prove the corresponding stochastic maximum principle.

Optimal control problem for a backward stochastic control systems associated with Lévy

processes under partial information has been investigated in Meng, Zhang and Tang [91]. The

stochastic linear-quadratic problem with Lévy processes was studied by Mitsui and Tabata

[98] and Tang and Wu [99]. Optimal control of BSDEs and FBSDEs driven by Teugels

martingales has been studied in Tang and Zhang [100]. Stochastic maximum principle for

SDEs with jumps under partial information was proved in Baghery and ;ksendal [102].

Under complete information, the mean-�eld stochastic model was introduced by Kac [15]

as a stochastic system for the Vlasov-kinetic equation of plasma and the study of which

was initiated by McKean model [24]. Since then, many authors made contributions on

mean-�eld stochastic control and applications, see for instance, [81, 82, 103, 104, 83, 58,

5, 6, 1, 105, 59, 60, 106, 107, 108, 96]. Second order necessary and su¢ cient conditions

of near-optimal singular control for mean-�eld SDE have been established in Hafayed and

Abbas [81]. More interestingly, mean-�eld type stochastic maximum principle for optimal

singular control has been studied in Hafayed [82], in which convex perturbations used for both

absolutly continuous and singular components. The maximum principle for optimal control

of mean-�eld FBSDEJs has been studied in Hafayed [103]. The necessary and su¢ cient

conditions for near-optimality for mean-�eld jump di¤usions with applications have been

derived by Hafayed, Abba and Abbas [104]. Singular optimal control for mean-�eld forward-

backward stochastic systems and applications to �nance has been investigated in Hafayed

[83]. However, su¢ cient conditions of optimality for mean-�eld SDE with application have

been investigated in Shi [58]. In Buckdahn, Djehiche, Li and Peng [5] a general notion of

mean-�eld BSDE associated with a mean-�eld SDE is obtained in a natural way as a limit of

some high dimensional system of FBSDEs governed by a d�dimensional Brownian motion,
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and in�uenced by positions of a large number of other particles. General maximum principle

was introduced for a class of stochastic control problems involving SDEs of mean-�eld type in

Buckdahn, Djehiche and Li [6]. Optimal control of nonlinear mean-�eld di¤usion on Hilbert

space was investigated in Ahmed [1]. In Lazry and Lions [105] the authors introduced a

general mathematical modeling approach for high-dimensional systems of evolution equations

corresponding to a large number of particles (or agents). Under the conditions that the

control domains are convex, a various local maximum principle have been studied in [59, 60].

Second-order maximum principle for optimal stochastic control for mean-�eld jump di¤usions

was proved in Hafayed and Abbas [106]. Necessary and su¢ cient conditions for controlled

jump di¤usion with recent application in bicriteria mean-variance portfolio selection problem

have been proved in Shen and Siu [107]. Recently, maximum principle for mean-�eld jump-

di¤usions stochastic delay di¤erential equations and its applicationt to �nance have been

investigated in Yang, Meng and Shi [108]. A linear quadratic optimal control problem for

mean-�eld stochastic di¤erential equations has been studied in Yong [96]. Under partial

information, mean-�eld type stochastic maximum principle for optimal control has been

investigated in Wang, Zhang and Zhang [51].

Our main goal in this work is to establish a partial information necessary and su¢ cient

conditions for optimal stochastic control of systems governed by mean-�eld SDEs associated

with Lévy processes, where the coe¢ cient of the system and the performance functional

depend not only on the state process but also its marginal law of the state process through

its expected value. The partial information mean-�eld control problem under consideration is

not simple extension from the mathematical point of view, but also provide interesting models

in many applications such as mathematical �nance. An application is given to illustrate the

theoretical results. Our result could be seen as an extension of necessary and su¢ cient

conditions of stochastic systems associated with Lévy processes proved in Meng and Tang

[90] to the mean-�eld models under partial information.

The rest of this work is structured as follows. The assumptions, notations and some
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basic de�nitions are given in Section 2. Sections 3 and 4 are devoted to prove our main

results. As an illustration, time inconsistent linear quadratic mean-�eld problem is discussed

in the section 5. Finally, Section 6 concludes the work and outlines some possible future

developments.

3.2 Assumptions and Statement of the Control Prob-

lem

In this chapter, we study stochastic optimal control problems of mean-�eld type SDEs as-

sociated with Lévy processes of the following kind. Let T > 0 be a �xed time horizon

and (
;F ; (Ft)t2[0;T ] ;P) be a �xed �ltered probability space equipped with a P�completed

right continuous �ltration on which a d�dimensional Brownian motion W = (W (t))t2[0;T ] is

de�ned. Let L(�) = (L(t))t2[0;T ] be a R-valued Lévy process, independent of the Brownian

motion W (�); of the form L(t) = bt + �(t); where �(t) is a pure jump process. Assume that

the Lévy measure �(d�) corresponding to the Lévy process �(t) satis�es

1.
Z
R
(1 ^ �2)�(d�) <1:

2. There exist  > 0 such that for every � > 0 :
Z
]��;�[

exp ( j�j)�(d�) <1:

We assume that (Ft)t2[0;T ] is P�augmentation of the natural �ltration (F
(W;L)
t )t2[0;T ] de�ned

as follows:

F (W;L)
t := FW

t _ � fL(s) : 0 � s � tg _ G0;

where FW
t := � fW (s) : 0 � s � tg ; G0 denotes the totality of P�null sets, and F1 _ F2

denotes the �-�eld generated by F1 [ F2:

We denote UG ([0; T ]) the set of all admissible controls.
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Throughout this work, the power jump processes is de�ned by

8><>: L(k)(t) =
P

0<��t (�L(�))k : k > 1

L(1)(t) = L(t);

where �L(�) := L(�)� L(��): Moreover, we de�ne the continuous part of the control by

L(k)
(c)(t) := L(k)(t)�

X
0<��t

(�L(�))k : k > 1;

i.e., the process obtained by removing the jumps of L(t): If we de�ne

N(k)(t) := L(k)(t)� E
�
L(k)(t)

	
: k � 1;

then the family of Teugels martingales (Hj(�))j�1 is de�ned by Hj(t) :=
P

1<k�j �jkNk(t)

where the coe¢ cients �jk associated with the orthonormalization of the polynomials f1; x; x2; :::g

with respect to the measure m(dx) = x2�(dx): The jumps of xu(t) caused by the Lévy mar-

tingals �Lx
u(t) is de�ned by

�Lx
u(t) := g (t; xu(t�);E(xu(t�)); u(t))�L(t):

For convenience, we will use the following notation in this work.

1. l2: the Hilbert space of real-valued sequences x = (xn)n�0 such that kxk := [
P1

n=1 xn]
2
<

+1; and l2 (Rn): the space of Rn-valued (fn)n�1 such that
�P1

n=1 kfnk
2
Rn
� 1
2 < +1:

2. l2F ([0; T ] ;Rn) denotes the Banach space ofFt-adapted processes such that E
�R T

0
jx(t)j2Rn dt

� 1
2
<

+1.

3. L2F ([0; T ] ;Rn) denotes the Banach space ofFt�predictable processes such that E
�R T

0

P1
n=1 kfnk

2
Rn dt

� 1
2
<

+1.

4. S2F ([0; T ] ;Rn) denotes the Banach space of Ft�adapted and cadlag processes such that

E( sup jx(t)j2) 12 < +1.
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5. L2 (
;F ;P;Rn) the Banach space of Rn-valued, square integrable random variables on

(
;F ;P):

6. Mn�m(R) denotes the space of n�m real matrices.

7. For a di¤erentiable function � we denote by �x(t) its gradient with respect to the variable

x.

8. 1[t;t+r](�) denotes the indicator function on the set [t; t+ r]:

In this work, we assume

f : [0; T ]� Rn � Rn � A! Rn,

� : [0; T ]� Rn � Rn � A!Mn�d(R),

g : [0; T ]� Rn � Rn � A! l2 (Rn) ,

h : Rn ! R.

Conditions (A1) The functions f; �; `; g and h are continuously di¤erentiable in their vari-

ables including (x; ex; u). The maps f; �; g are progressively measurable processes such that
f(�; 0; 0; 0) and g(�; 0; 0; 0) 2 L2F ([0; T ] ;Rn) ; and �(�; 0; 0; 0) 2M2

F ([0; T ] ;Rn) :

Conditions (A2) The derivatives of f; � and g with respect to their variables including

(x; ex; u) are bounded. Further the map ` are dominated by C (1 + jxj+ juj) and its derivatives
are dominated by C(1+jxj2 + juj2): The map h is dominated by C (1 + jxj) and its derivatives

with respect to (x; ex) are dominated by C(1 + jxj2):
Thanks to Lemma 2.1 in Meng and Tang [90], and under conditions (A1) and (A2), the
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SDE-(4.1) has an unique solution xu (�) 2 L2F ([0; T ] ;Rn) such that

xu(t) = x0 +

Z t

0

f (s; xu(s);E(xu(s)); u(s)) ds

+

Z t

0

dX
j=1

�j(s; xu(s);E(xu(s)); u(s))dW j(s)

+

Z t

0

1X
j=1

gj (s; xu(s);E(xu(s)); u(s)) dHj (s) :

Mean-�eld Adjoint Equations. We introduce the new adjoint equations involved in the

stochastic maximum principle for our mean-�eld control problem (3.1)-(3.2). For simplicity

of notation, we will still use fx(t) :=
@f

@x
(t; xu(�);E(xu(�)); u(�)); So for any admissible control

u(�) 2 UG ([0; T ]) and the corresponding state trajectory x (�) = xu (�), we consider the

following adjoint equations of mean-�eld type

8>>>>>>>><>>>>>>>>:

�d	(t) = [fx (t)	(t) + E [fex (t)	(t)] +Pd
j=1(�

j
x (t)Q

j(t) + E[�jex (t)Qj(t)])
+
P1

j=1(g
j
x (t)K

j(t) + E[gjex (t)Kj(t)]) + `x(t) + E(`x(t))]dt

�
Pd

j=1Q
j(t)dW (t)�

P1
j=1K

j(t)dHj(t)

	(T ) = hx (x(T ) ;E(x(T ))) + E[hex (x(T ) ;E(x(T )))]:

(3.3)

We de�ne the Hamiltonian function

H : [0; T ]� Rn � Rn � A� Rn � Rn�d � l2(Rn)! Rn;

associated with the stochastic control problem (3.1)-(3.2) as follows

H (t; x; ex; u;	(�); Q(�); K(�)) := 	(t)f (t; x; ex; u) +Pd
j=1Q

j(t)� (t; x; ex; u)
+
P1

j=1K
j(t)gj (t; x; ex; u) + ` (t; x; ex; u) : (3.4)

If we denote by H(t) := H(t; x(t); ex(t); u(t);	(t); Q(t); K(t)); then the adjoint equation (3.3)
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can be rewritten as the following stochastic Hamiltonian system�s type

8><>:
�d	(t) = fHx (t) + E [Hex (t)]g dt�Pd

j=1Q
j(t)dW (t)�

P1
j=1K

j(t)dHj(t)

	(T ) = hx (x(T ) ;E(x(T ))) + E[hex (x(T ) ;E(x(T )))]:
(3.5)

It is a well known fact that under assumptions (A1) and (A2), the adjoint equations (3.3) or

(3.5) admits a unique solution (	(t); Q(t); K(t)) such that (	(t); Q(t); K(t)) 2 S2F([0; T ] ;Rn)�

L2F([0; T ] ;Rn�d) �l2F([0; T ] ;Rn): Moreover, since the derivatives of f; �; g; h with respect to

(x; ex) are bounded, we deduce from standard arguments that there exists a constant C > 0

such that

E

"
sup
t2[0;T ]

j	(t)j2 + sup
t2[0;T ]

jK(t)j2 +
Z T

0

jQ(t)j2 dt
#
< C: (3.6)

3.3 Partial Information Necessary Conditions for Op-

timal Control of Mean-�eld SDEs with Lévy Pro-

cesses

In this section, we establish a set of necessary conditions for a stochastic control to be optimal

where the system evolves according to nonlinear controlled mean-�eld SDEs associated with

Lévy processes. In addition to the assumptions in Section 2 we assume the following

Conditions (A3)

1. For all t; r such that 0 � t � t + r � T; all i : 1; 2; :::; k and all bounded Gt�measurable

� = �(w); the control �(t) = (0; :::; 0; �i(t); 0; :::; 0) 2 A � Rk; with �i(s) = �i1[t;t+r](s);

s 2 [0; T ] belong to UG ([0; T ]) :

2. For all u(�); � 2 UG([0; T ]); with � bounded, there exist � > 0 such that u+y� 2 UG([0; T ])

for all y 2 [��; �] :
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For a given u(�); � 2 UG([0; T ]) bounded, we de�ne the process Z(�) by

Z(t) = Zu;�(t) :=
d

dy
(xu;�)(t):

Note that Z(t) satis�es the following mean-�eld linear stochastic di¤erential equation driven

by both Brownian motion and Teugels martingales

8>>>>>>>><>>>>>>>>:

dZ(t) = [fx(t)Z(t) + fex(t)E(Z(t)) + fu(t)�(t)]dt
+
Pd

j=1[�
j
x(t)Z(t) + �jex(t)E (Z(t)) + �ju(t)�(t)]dW j(t)

+
P1

j=1[g
j
x(t)Z(t) + gjex(t)E (Z(t)) + gju(t)�(t)]dHj(t)

Z(0) = 0:

The following theorem constitutes the main contribution of this work.

Let u�(�) be a local minimum for the cost J over UG ([0; T ]) in the sense that for all bounded

�, there exist � > 0 such that (u�+y�) 2 UG ([0; T ]) for all y 2 [��; �] and '(y) = J(u�+y�)

is maximal at y = 0 :

'0(y) =
d

dy
J(u� + y�) = 0: (3.7)

Let x�(�) be the solution of the mean-�eld SDEs-(3.1) corresponding to u�(�):

Theorem 3.3.1. (Partial information necessary condition for optimality in integral form).

Let conditions (A1), (A2) and (A3) hold. Then there exists a unique triplet of adapted process

(	�(�); Q�(�); K�(�)) solution of adjoint equation (3.3) such that u�(�) is a stationary point

for E [H j Gt] in the sense that for almost all t 2 [0; T ] we have

E [Hu(t; x
�(t�);E(x�(t�)); u� (t) ;	�(t); Q�(t); K�(t)) j Gt] = 0; a:e:; t 2 [0; T ] : (3.8)
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Proof. From (3.7) we have

0 =
d

dy
J(u� + y�) (3.9)

= E
nZ T

0

`x(t; x
�(t);E(x�(t)); u�(t))Z�(t)dt+E(`ex(t; x�(t);E(x�(t)); u�(t)))Z�(t)

+

Z T

0

`u(t; x
�(t);E(x�(t)); u�(t))�(t)dt

+ hx (x
�(T );E (x�(T )))Z�(T ) + E(hex (x�(T );E (x�(T )))Z�(T )

o
:

By applying Itô�s formula to 	�(t)Z�(t) and take expectation we get

E(	�(T )Z�(T )) = E
R T
0
	�(t)dZ�(t) + E

R T
0
Z�(t)d	�(t)

+ E
R T
0

Pd
j=1Q

j�(t)[�jx(t)Z
�(t) + �jex(t)E (Z�(t)) + �ju(t)�(t)]dt

+ E
R T
0

Pd
j=1K

j�(t)[gjx(t)Z
�(t) + gjex(t)E (Z�(t)) + gju(t)�(t)]dt

= I1+I2+I3+I4;

(3.10)

where

I1 = E
R T
0
	�(t)dZ�(t)

= E
R T
0
	�(t) [fx (t)Z

�(t) + fex (t)E(Z�(t)) + fu(t)�(t)] dt
= E

R T
0
	�(t)fx (t)Z

�(t) + E
R T
0
	�(t)fex (t)E(Z�(t)) + E R T0 	�(t)fu(t)�(t))dt:

(3.11)
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By simple computations we get

I2 = E
R T
0
Z�(t)d	�(t)

= �E
R T
0
Z�(t)

n
fx (t)	

�(t) + E (fex (t)	�(t)) +Pd
j=1(�

j
x (t)Q

j�(t) + E(�jex (t)Qj�(t)))
+
P1

j=1(g
j
x (t)K

j�(t) + E[gjex (t)Kj�(t)]) + `x (t) + E (`ex (t))
o
dt

= �E
R T
0
Z�(t)fx (t)	

�(t)dt� E
R T
0
Z�(t)E (fex (t)	�(t)) dt

� E
R T
0

Pd
j=1 Z

�(t)(�jx (t)Q
j�(t) + E(�jex (t)Qj�(t)))

� E
R T
0

P1
j=1 Z

�(t)(gjx (t)K
j�(t) + E[gjex (t)Kj�(t)])

� E
R T
0
Z�(t)`x (t) dt� E

Z T

0

Z�(t)E (`ex (t)) dt:
(3.12)

I3 = E
R T
0

Pd
j=1Q

j�(t)[�jx(t)Z
�(t) + �jex(t)E (Z�(t)) + �ju(t)�(t)]dt

= E
R T
0

Pd
j=1Q

j�(t)[�jx(t)Z
�(t)dt+ E

R T
0

Pd
j=1Q

j�(t)�jex(t)E (Z�(t)) dt
+ E

R T
0

Pd
j=1Q

j�(t)�ju(t)�(t)dt;

(3.13)

and

I4 = E
R T
0

Pd
j=1K

j�(t)[gjx(t)Z
�(t) + gjex(t)E (Z�(t)) + gju(t)�(t)]dt

= E
R T
0

Pd
j=1K

j�(t)gjx(t)Z
�(t)dt+ E

R T
0

Pd
j=1K

j�(t)gjex(t)E (Z�(t)) dt
+ E

R T
0

Pd
j=1K

j�(t)gju(t)�(t)]dt:

(3.14)

Combining (3.10), (3.11), (3.12), (3.13), (3.14) and the fact that

	�(T ) = hx (x
�(T );E(x�(T )) + E [hex (x�(T );E(x�(T ))] and Z�(0) = 0;
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we get

E f[hx (x(T );E(x(T )) + E (hex (x(T );E(x(T )))]Z�(T )g
= E

R T
0

n
	�(t)fu(t)�(t)dt+

Pd
j=1Q

j�(t)�ju (t) �(t)dt+
Pd

j=1K
j�(t)gju(t)�(t)

� `x (t)Z
�(t)� E (`ex (t))Z�(t)

o
dt:

(3.15)

Combining (3.9) and (3.15) we obtain

E
Z T

0

n
	�(t)fu(t)�(t)dt+

dX
j=1

Qj�(t)�ju (t) �(t)dt+

dX
j=1

Kj�(t)gju(t)�(t)

+ `u(t; x
�(t);E(x�(t)); u�(t))�(t)

o
dt = 0;

which implied that

E
Z T

0

Hu (t; x
�(t�); ex�(t�); u�(t);	�(t); Q�(t); K�(t)) �(t)dt = 0: (3.16)

Fix t 2 [0; T ] and apply the above to � = (0; :::; �i; :::; 0) where �i(s) = �i1[t;t+r](s); s 2 [0; T ],

t+ r � T and �i = �i(w) is bounded, Gt�measurable. Then from (3.16) we get

E
Z t+r

t

@

@ui
H (s; x�(s�); ex�(s�); u�(s);	�(s); Q�(s); K�(s))�i(w)ds = 0:

Di¤erentiating with respect to r at r = 0 gives

E
�
@

@ui
H (s; x�(s�); ex�(s�); u�(s);	�(s); Q�(s); K�(s))�i

�
= 0: (3.17)

Since (3.17) holds for all bounded Gt�measurable �i; we have

E [Hu (t; x
�(t�); ex�(t�); u�(t);	�(t); Q�(t); K�(t)) j Gt] = 0: P� a:s:

This completes the proof of Theorem 3.3.1 �
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3.4 Partial Information Su¢ cient Conditions for Op-

timal Control of Mean-�eld SDEs with Lévy Pro-

cesses

The su¢ cient condition of optimality is of signi�cant importance in the stochastic maximum

principle for computing optimal controls. In this section, we will prove that under some

additional hypotheses on the Hamiltonian function is a su¢ cient condition for optimality.

Conditions (A4) . We assume

1. H (t; �; �; �;	�(t); Q�(t); K�(t)) is convex with respect to (x; ex; u) for a:e:t 2 [0; T ] ; P� a:s:
2. h(�; �) is convex with respect to (x; ex).
Theorem 3.4.1. Let conditions (A1), (A2), (A3) and (A4) hold. Then u�(�) is a partial

information optimal control, i.e.,

J(u�(�)) = inf
u(�)2UG([0;T ])

J (u(�)) : (3.18)

if satis�es (3.8).

To prove Theorem 3.4.1, we need the following auxiliary result, which deals with the duality

relations between 	�(t), [xu(t)� x�(t)]. This Lemma is very important for proving our su¢ -

cient maximum principle. We denote byH�
x(t) := Hx(t; x

�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t))

etc,.

Lemma 3.4.1 Let xu(�) be the solution of state mean-�eld SDE-(3.1) corresponding to any
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admissible control u(�): We have

E [	�(T ) (xu(T )� x�(T ))] = E
R T
0
	�(t) [f(t; xu(t);E(xu(t)); u(t)) � f(t; x�(t);E(x�(t)); u�(t))] dt

+ E
R T
0
H�
x(t) (x

u(t)� x�(t)) dt+ E
R T
0
E[H�ex(t)] (E(xu(t))� E(x�(t)))dt

+ E
R T
0

Pd
j=1Q

�;j(t) [�j(t; xu(t);E(xu(t)); u(t)) � �j(t; x�(t);E(x�(t)); u�(t))] dt

+ E
R T
0

Pd
j=1K

j�(t)[gj(t; xu(t);E(xu(t)); u(t))� gj(t; x�(t);E(x�(t)); u�(t))]dt:
(3.19)

Proof. First, by simple computations, we get

d (xu(t)� x�(t)) = [f(t; xu(t);E(xu(t)); u(t))� f(t; x�(t);E(x�(t)); u�(t))] dt

+
Pd

j=1 [�
j(t; xu(t);E(xu(t)); u(t))� �j(t; x�(t);E(x�(t)); u�(t)] dW j(t)

+
P1

j=1 [g
j(t; xu(t);E(xu(t)); u(t))� gj(t; x�(t);E(x�(t)); u�(t)] dHj (t) :

(3.20)

By applying integration by parts formula to 	�(t) (xu(t)� x�(t)) and the fact that xu(0) �

x�(0) = 0; we get

E f	�(T ) (xu(T )� x�(T ))g = E
R T
0
	�(t)d (xu(t)� x�(t)) + E

R T
0
(xu(t)� x�(t)) d	�(t)

+ E
R T
0

Pd
j=1Q

�;j(t)[�j(t; xu(t);E(xu(t)); u(t))� �j(t; x�(t);E(x�(t)); u�(t))]dt

+ E
R T
0

Pd
j=1K

�;j(t)[gj(t; xu(t);E(xu(t)); u(t))� gj(t; x�(t);E(x�(t)); u�(t))]dt

= I1 + I2 + I3 + I4:

(3.21)

From (3.20), we obtain

I1 = E
R T
0
	�(t)d (xu(t)� x�(t))

= E
R T
0
	�(t)[f(t; xu(t);E(xu(t)); u(t))� f(t; x�(t);E(x�(t)); u�(t))]dt;

(3.22)
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similarly, by applying (3.5), we get

I2 = E
R T
0
(xu(t)� x�(t)) d	�(t) = E

R T
0
(xu(t)� x�(t)) [H�

x(t) + E(H�ex(t))]dt
= E

R T
0
H�
x(t) (x

u(t)� x�(t)) dt+ E
R T
0
E(Hex(t)) (E(xu(t))� E(x�(t)))dt:

(3.23)

By standard arguments, we obtain

I3 = E
Z T

0

dX
j=1

Q�(t)[�j(t; xu(t);E(xu(t)); u(t))� �j(t; x�(t);E(x�(t)); u�(t))]dt; (3.24)

and

I4 = E
Z T

0

dX
j=1

K�(t)[gj(t; xu(t);E(xu(t)); u(t))� gj(t; x�(t);E(x�(t)); u�(t))]dt: (3.25)

The duality relation (3.19) follows from combining (3.22), (3.23), (3.24) and (3.25) together

with (3.21). �

Proof of Theorem 3.4.1. Let x�(�) be the solution of the state equation (3.1) and

(	� (�) ; Q� (�) ; K� (�)) be the solution of the adjoint equation (3.3), corresponding to u�(�) 2

UG ([0; T ]) (condidate to be optimal). For any u(�) 2 UG ([0; T ]) and from (3.2) we get

J (u�(�))� J (u(�)) = E [h(x�(T );E (x�(t))� h(xu(T );E (xu(T ))]

+ E
R T
0
[`(t; x�(t);E (x�(t)) ; u�(t)� `(t; xu(t);E (xu(t)) ; u(t)] dt:

From the convexity of h(�; �) we get

J (u�(�))� J (u(�)) � E [(hx(x�(T );E (x�(T )) + E(hex(x�(T );E (x�(T )))) (x�(T )� xu(T ))]

+ E
R T
0
[`(t; x�(t);E (x�(t)) ; u�(t))� `(t; xu(t);E (xu(t)) ; u(t))] dt:

(3.26)
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Since 	�(T ) = hx(x
�(T );E (x�(T )) + E(hex(x�(T );E (x�(T )) ; we get

J (u�(�))� J (u(�)) � E [	�(T ) (x�(T )� xu(T ))]

+ E
R T
0
[`(t; x�(t);E (x�(t)) ; u�(t))� `(t; xu(t);E (xu(t)) ; u(t))] dt:

By applying Lemma 3.4.1, we have

J (u�(�))� J (u(�)) � E
R T
0
(H (t; x�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t))

�H (t; xu(t);E(xu(t)); u(t);	�(t); Q�(t); K�(t)))dt

� E
R T
0
(x�(t)� xu(t)) [Hx (t; x

�(t);E (x�(t)) ; u�(t);	�(t); Q�(t); K�(t))

+ E (Hex (t; x�(t);E (x�(t)) ; u�(t);	�(t); Q�(t); K�(t)))] dt:

(3.27)

By the convexity of H (t; �; �; �;	�(t); Q�(t); K�(t)) (Conditions (A4), (2) ) it hold that

H (t; x�(t);E(x�(t)); u�(t);	u(t); Qu(t); Ku(t))

�H (t; xu(t);E(xu(t)); u(t);	�(t); Q�(t); K�(t))

� Hx (t; x
�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t)) (x�(t)� xu(t))

+E (Hex (t; x�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t))) (x�(t)� xu(t))

+Hu (t; x
�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t)) (u�(t)� u(t)):

(3.28)

Since E [Hu (t; x
�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t)) j Gt] ; u(t) and u�(t) are Gt�measurable

we get

E [Hu (t; x
�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t)) j Gt] (u(t)� u�(t))

= E [Hu (t; x
�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t)) (u(t)� u�(t)) j Gt] ;

(3.29)
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from (3.8), (3.28) and (3.29) we obtain

H (t; x�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t))

�H (t; xu(t);E(xu(t)); u(t);	�(t); Q�(t); K�(t)))dt

�E
R T
0
[Hx (t; x

�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t))

+ E (Hex (t; x�(t);E(x�(t)); u�(t);	�(t); Q�(t); K�(t)))] (x�(t)� xu(t))dt � 0;

(3.30)

by combining (3.27) and (3.30) we get

J(u(�))� J(u�(�)) � 0:

Finally, since u(�) is an arbitrary element of UG ([0; T ]) the desired result (3.18) follows. This

completes the proof of Theorem 3.4.1. �

3.5 Application: Partial InformationMean-�eld Linear

Quadratic Control Problem

In this section, partial information optimal stochastic linear quadratic control problem of

mean-�eld type is considered. We give a mean-�eld partial information counterpart for

the example studied in Meng and Tang [90]. The optimal control is represented by a state

feedback form involving both x(�) and E(x(�)), via the solutions of Riccati ordinary di¤erential

equations. Then mean-�eld SDE (3.1), but now with linear coe¢ cients, writes as follows

8>>>>><>>>>>:
dx(t) = (Ax(t) + eAE (x(t)) +Bu(t))dt+Pd

j=1(C
jx(t) + eCjE (x(t)) +Dju(t))dW j(t);

+
P1

j=1 [%
jx(t) + e%jE (x(t)) + F ju(t)] dHj(t);

x(0) = x0;

(3.31)

87



Chapter III. Mean-�eld partial information maximum principle for SDEs with Levy
processes

where A; eA;B;C; eC;D; %; e% and F are constants and u(�) 2 UG ([0; T ]) : The cost where R;

N and � are positive constants. Noting that the admissible controls u = (u(t)) are adapted

to a sub�ltration (Gt) : t � 0. For a given control u(�), then due to (3.4) the Hamiltonian

functional H corresponding to control problem (3.31)-(??) gets the form:

H (t; x; ex; u;	(�); Q(�); K(�)) = 	(t)(Ax(t) + eAE (x(t)) +Bu(t))
+
Pd

j=1Q
j(t)(Cjx(t) + eCjE (x(t)) +Dju(t))

+
P1

j=1K
j(t) (%jx(t) + e%jE (x(t)) + F ju(t))

+ 1
2
(Rx(t)2 +Nu(t)2);

(3.32)

and due to (3.5) the corresponding adjoint equation gets the form

8>>>>>>>><>>>>>>>>:

d	(t) = �[A	(t) + eAE(	(t)) +Pd
j=1(C

jQ
j
(t) + eCjE(Qj(t)))

+
P1

j=1(%
jKj(t) + e%E[Kj(t)]) +Rx(t)]dt

+
Pd

j=1Q
j(t)dW j(t) +

P1
j=1K

j(t)dHj(t)

	(T ) = �x(T ):

(3.33)

Let u�(�) be a local optimal control of the partial information problem. For example, Gt could

be the �-delayed information de�ned by

Gt = F(t��)+ : t � 0;

where � is a given constant delay. Then by applying Theorem 3.4.1 and the fact that

Hu (t; x
�(t);E (x�(t)) ; u�(t);	�(t); Q�(t)) = B	�(t) +DQ�(t) + FK�(t) +Nu�(t);

we deduce that the optimal control is given by

E [B	�(t) +DQ�(t) + FK�(t) +Nu�(t) j Gt] = 0; t 2 [0; T ] : (3.34)
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Since u�(t) is adapted to Gt we get

u�(t) = � 1
N
fBE[	�(t) j Gt] +DE[Q�(t) j Gt] + FE[K�(t) j Gt]g : (3.35)

In order to solve explicitly the above equation (3.35), we conjecture the adjoint process 	�(�)

as follows

	�(t) = �1 (t)x
�(t) + �2 (t)E (x�(t)) + �3 (t) ; (3.36)

where �1 (�) ; �2 (�) and �3 (�) are deterministic di¤erentiable functions. See Hafayed [82, 83],

Li [60], and Anderson, Djehiche [59] for other models of conjecture.

Applying Itô�s formula to (3.36) we get

d	�(t) = d(�1 (t)x
�(t)) + d(�2 (t)E (x�(t))) + d�3 (t)

= �1 (t) dx
�(t) + x�(t)�01 (t) dt+ �2 (t) dE (x�(t)) + E (x�(t)) �02 (t) dt

+ �03 (t) dt:

Since dE (x�(t)) = [(A+ eA)E (x�(t)) +BE (u�(t))]dt; we get
d	�(t) =

n
�1 (t) [Ax

�(t) + eAE (x�(t)) +Bu�(t))]
+ �2 (t) [(A+ eA)E (x�(t)) +BE (u�(t))]
+ x�(t)�01 (t) + E (x�(t)) �02 (t) + �03 (t)g dt

+
Pd

j=1[C
jx�(t) + eCjE (x�(t)) +Dju�(t)]�1 (t) dW

j(t);

+
P1

j=1 [%
jx�(t) + e%jE (x�(t)) + F ju�(t)] �1 (t) dHj(t);

	�(T ) = �1 (T )x
�(T ) + �2 (T )E (x�(T )) + �3 (T ) :

(3.37)
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From (3.33) and (3.37) we have �3 (t) � 0; 8t 2 [0; T ] ; and8>>>>>>>>><>>>>>>>>>:

�1 (t) [Ax
�(t) + eAE (x�(t)) +Bu�(t))] + �2 (t) [(A+ eA)E (x�(t)) +BE (u�(t))]

+x�(t)�01 (t) + E (x�(t)) �02 (t)

= �[A	�(t) + eAE(	�(t)) + (CQ�(t) + eCE(Q�(t)))
+(%K�(t) + e%E[K�(t)]) +Rx�(t)];

(3.38)

Q�(t) = [Cx�(t) + eCE (x�(t)) +Du�(t)]�1 (t) ; (3.39)

K�(t) = [%x�(t) + e%E (x�(t)) + Fu�(t)] �1 (t) : (3.40)

By comparing the coe¢ cient of x�(t) and E (x�(t)) in equation (3.38) and last equation in

(3.37) (terminal condition) we immediately deduce that �1(�); �2(�) are given by the following

ordinary di¤erential equations (ODEs in short)

8>>>>><>>>>>:
�01 (t) + (2A+ C2 + %2) �1 (t) +R = 0; �1 (T ) = �;

�02 (t) + 2(A+ eA)�2 (t) + (2 eA+ eC2 + e%2 + 2(C eC + %e%))�1 (t) = 0
�2 (T ) = 0:

(3.41)

By solving the ODEs (3.41) we obtain

�1 (t) = �R
�
2A+ C2 + %2

��1
+
h
�+R

�
2A+ C2 + %2

��1i
exp

�
(2A+ C2 + %2)(T � t)

	
�2 (t) = (2 eA+ eC2 + e%2 + 2(C eC + %e%)) expn�2(A+ eA)toZ T

t

�1 (s) exp
n
2(A+ eA)so ds:

Finally, by combining Theorem 3.3.1 and Theorem 3.4.1 we give the explicit optimal control

in feedback form involving both x�(t) and E (x�(t)) :

Theorem 3.5.1 The optimal control u� (�) 2 UG ([0; T ]) for the mean-�eld linear quadratic
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control problem (3.31)-(??) is given in feedback form by

u�(t; x�(t);E (x�(t))) = � 1
N
fBE[	�(t) j Gt] +DE[Q�(t) j Gt] + FE[K�(t) j Gt]g :

3.6 Conclusions

In this chaptre, under partial information, optimal control problem for mean-�eld stochastic

di¤erential equations driven by Lévy process has been discussed. Necessary and su¢ cient

conditions of optimal control are established. As an illustration, using these results, linear

quadratic control problem (time-inconsistent solution) has been studied. Apparently, there

are many problems left unsolved. To mention a few, necessary and su¢ cient conditions for

mean-�eld nonlinear controlled forward-backward stochastic systems governed by Teugels

martingales associated with some Lévy process.
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Chapter-IV

On partial-information optimal singular
control problem for mean-�eld stochastic
di¤erential equations driven by Teugels

martingales measures

92



Chapter 4

On optimal singular control for

mean-�eld SDEs driven by Teugels

martingales measures under partial

information

Abstract. This work is concerned with partial-information mixed optimal stochastic continuous-

singular control problem for mean-�eld stochastic di¤erential equation driven by Teugels

martingales associated with some Lévy processes and an independent Brownian motion. The

control variable has two components; the �rst being absolutely continuous, and the second sin-

gular. Partial-information necessary and su¢ cient conditions of optimal continuous-singular

control for these mean-�eld models are investigated. The control domain is assumed to be

convex. As an illustration, this work studies a partial-information linear quadratic control

problem of mean-�eld type involving continuous-singular control.
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4.1 Introduction

Stochastic control problems related to Lévy processes and Teugels martingales are an import-

ant and challenging class of problems in control theory. These appear in various �elds like

mathematical �nance, problem of optimal consumption, etc. A number of results have been

obtained for these types of problems, see Meng, Tang [90]; Meng, Zhang and Tang [91]; Mit-

sui andTabata [98]; Tang and Zhang [100]; Tang and Wu [99], and references therein. Under

partial-information, the necessary and su¢ cient optimality conditions for stochastic di¤eren-

tial equations (SDEs), driven by Teugels martingales and an independent multi-dimensional

Brownian motion have been proved by using convex perturbation, see Meng and Tang [90].

Partial-information optimal control problems for backward stochastic di¤erential equations

(BSDEs), and for forward-backward stochastic di¤erential equations (FBSDEs) associated

with Lévy processes have been investigated in Meng, Zhang and Tang [91]; Tang and Zhang

[100]. The stochastic linear-quadratic problems with Lévy processes have been studied by

Mitsui and Tabata [98] and Tang and Wu [99].

Mean-�eld stochastic control theory has been an active area of research and a useful tool

in many applications, particularly in biology, game theory, economics and �nances. A general

mean-�eld maximum principle for SDEs was obtained by using spike variational method, see

Buckdahn, Djehiche and Li [6]. A mean-�eld type stochastic maximum principle for Risk-

Sensitive control has been proved by Djehiche, Tembine and Tempone [79]. For decentralized

tracking-type games for large population multi-agent systems with mean-�eld coupling, we

refer to Li and Zhang [50], and for discrete time mean-�eld stochastic linear-quadratic op-

timal control problems with applications, we refer to Elliott, Li and Ni [80]. Under complete

information, second order necessary and su¢ cient conditions of near-optimal singular con-

trol for mean-�eld SDE have been established in Hafayed and Abbas [81]. Mean-�eld type

stochastic maximum principle for optimal singular control has been studied in Hafayed [82],

in which convex perturbations used for both absolutely continuous and singular compon-

ents. The maximum principle for optimal control of mean-�eld FBSDEJs has been studied
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in Hafayed [103]. The necessary and su¢ cient conditions for near-optimality for mean-�eld

jump di¤usions with applications have been derived by Hafayed, Abba and Abbas [104].

Singular optimal control for mean-�eld forward-backward stochastic systems with applica-

tions to �nance has been investigated in Hafayed [83]. Second-order maximum principle for

optimal stochastic control for mean-�eld jump di¤usions was proved in Hafayed and Abbas

[106]. For singular mean-�eld control games with applications to optimal harvesting and

investment problems, we refer to Hu, ;ksendal and Sulem [88], and for mean-�eld games for

large population multiagent systems with Markov jump parameters, we refer to Wang and

Zhang [49]. Various forms of necessary and su¢ cient optimality conditions, for systems of

SDEs with jumps with their applications have been studied in Shen, Meng and Shi [108];

Shen and Siu [107]; Meng and Yang [93]. Special attention has been paid to applying the

maximum principle to mean-�eld linear quadratic control problems, see Ni, Zhang and Li

[94]; Yong [96] and the references therein.

Partial-information or incomplete information means that the information available to

the controller is possibly less than the whole information. That is, any admissible control

is adapted to a sub�ltration (Gt)t of (Ft)t t � 0: This kind of problem, which has potential

applications in mathematical �nance and mathematical economics, arises naturally, because

it may fail to obtain an admissible control with full information in real world applications.

Under partial-information, mean-�eld type stochastic maximum principle for optimal control

has been investigated by Wang, Zhang and Zhang [51]. Stochastic maximum principles for

partially observed mean-�eld stochastic systems with application has been investigated by

Wang, Wu and Zhang [95].

The singular stochastic control problems have received considerable research attention

in recent years due to wide applicability in a number of di¤erent areas, see Alvarez [77];

Cadenillas and Haussmann [9]; Dufour and Miller [78]; Hafayed and Abbas [81]; Hafayed

[82]; Haussmann and Suo [84], and the list of references therein. In most classical cases, the

optimal singular control problem was investigated through dynamic programming principle.
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The �rst version of stochastic maximum principle for singular control was obtained, where

the coe¢ cient of SDEs are random, see Cadenillas and Haussmann [9]. In Dufour and Miller

[78], the authors derived stochastic maximum principle where the singular part has a linear

form. The maximum principle for mixed regular-singular stochastic control of FBSDEs have

been proved by using the approach of relaxed controls, where the set of regular controls is

not necessarily convex and the regular control enters the di¤usion coe¢ cient, see Zhang [97].

The mixed continuous-singular control problems in stochastic systems with jumps have

been studied by only a few researchers. A maximum principle for singular stochastic control

problems and optimal stopping with partial-information of Itô�Lévy processes have been

studied by using Malliavin calculus, see ;ksendal and Sulem [89]. For some cases of mixed

singular-jump control problems when the payo¤ functional does not depend explicitly on the

control, see Menaldi and Rebin [76]. Necessary and su¢ cient conditions for near-optimal

mixed singular jump control have been proved by using Ekeland�s variational principle, see

Hafayed and Abbas [73].

Our main goal in this work is to derive partial-information necessary and su¢ cient condi-

tions of optimal stochastic continuous-singular control in the form of a stochastic maximum

principle, where the system is governed by mean-�eld controlled SDE, driven by Teugels

martingales associated with some Lévy processes and an independent Brownian motion. The

coe¢ cients of the system and the cost functional depend not only on the state process but

also on its marginal law of the state process through its expected value. The mean-�eld mixed

continuous-singular control problem under consideration is not a simple extension from the

mathematical point of view. It also provide interesting models in many applications such as

mathematical �nance, where the singular components of the control means the interventions.

As an illustration, linear quadratic control problem of mean-�eld type involving continuous-

singular control is discussed, where the optimal control is given in feedback form. Note that

in our mean-�eld control problem, there are two types of jumps for the state processes, the

inaccessible ones which come from the Lévy martingale part and the predictable ones which
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come from the singular control part.

The rest of the work is structured as follows. Section 2 begins with general formulation of

the mean-�eld mixed control problem and gives the notations, assumptions and some basic

de�nitions used throughout the work. In Sections 3 and 4, respectively, we derive necessary

and su¢ cient conditions for optimality. An application is discussed in section 5. Finally,

some discussions with concluding remarks are given in the last section.

4.2 Formulation of the problem

Let (
;F ;Ft;P) be a �xed �ltered probability space equipped with a P�completed right

continuous �ltration on which a d�dimensional Brownian motion W = (W (t))t : t 2 [0; T ]

is de�ned. Let (Gt)t a sub�ltration of (Ft)t. For example Gt could be the �-delayed inform-

ation de�ned by Gt = F(t��)+ : t � 0: Let L(�) = (L(t))t2[0;T ] be a R-valued Lévy process,

independent of the Brownian motion W (�); and of the form L(t) = bt+ �(t); where �(�) is a

pure jump process. Assume that the Lévy measure �(d�) corresponding to the Lévy process

�(�) satis�es
R
R(1 ^ �

2)�(d�) <1; and for every � > 0 : there exist  > 0 such that

Z
]��;�[

exp ( j�j)�(d�) <1:

Let Ft be P�augmentation of the natural �ltration F (W;L)
t de�ned as follows: for t 2 [0; T ]

F (W;L)
t , FW

t _ � fL(s) : 0 � s � tg _ F0;

whereFW
t = � fW (s) : 0 � s � tg ; F0 denotes the totality of P�null sets, andF1_F2 denotes

the �-�eld generated by F1[F2: Since the purpose of this work is to study optimal singular-

continuous stochastic control for mean-�eld systems, we give here the precise de�nition of

the singular part of an admissible control.

Consider the following sets: A1 is a nonempty convex subset of Rk and A2 , ([0;1[)m :
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De�nition 4.1.1. An admissible control is a pair (u(�); �(�)) of measurable A1�A2�valued,

Gt�adapted processes, such that �(�) is of bounded variation, non-decreasing continuous on

the left with right limits and �(0�) = 0: Moreover,

E( sup
0�t�T

ju(t)j2 + j�(T )j2) <1:

Note that the jumps of a singular control �(�) at any jumping time t is denoted by

��(t) , �(t)� �(t�):

Let us de�ne the continuous part of the singular control by

�(c)(t) , �(t)�
X
0��j�t

��(�j);

i.e., the process obtained by removing the jumps of �(t):

We denote U1G�U2G ([0; T ]) ; the set of all admissible controls. Since d�(t) may be singular

with respect to Lebesgue measure dt; we call �(�) the singular part of the control and the

process u(�) its absolutely continuous part.

Remark 4.1.1. (Jumps caused by the singular control and by the Lévy martingales)

Throughout this work, we distinguish between the jumps caused by the singular control �(�)

at any jumping time t de�ned by

��x
u;�(t) , C(t)��(t) = C(t)(�(t)� �(t�));

and the jumps of xu;�(t) caused by the Lévy martingales, where �L(t) = L(t) � L(t�) and
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the power jump processes is de�ned by

8><>:
L(k)(t) ,

P
0<��t (�L(�))k : k > 1

L(1)(t) , L(t):

Moreover, we de�ne the continuous part of the control by

L(k)
(c)(t) , L(k)(t)�

X
0<��t

(�L(�))k : k > 1;

i.e., the process obtained by removing the jumps of L(t): If we de�ne

N(k)(t) , L(k)(t)� E
�
L(k)(t)

	
: k � 1;

then the family of Teugels martingales (Hj(�))j�1 is de�ned by Hj(t) =
P

1<k�j �jkNk(t);

where the coe¢ cients �jk associated with the orthonormalization of the polynomials f1; x; x2; :::g

with respect to the measure m(dx) = x2�(dx): The Teugels martingales (Hj(�))j�1 are path-

wise strongly orthogonal and their predictable quadratic variation processes are given by

hHi(t); Hj(t)i = �ijt: The jumps of xu;�(t) caused by the Lévy martingales�Lx
u;�(t) is de�ned

by

�Lx
u;�(t) , g(t; xu;�(t�);E(xu;�(t�)); u(t))�L(t):

The general jump of the state processes xu;�(�) at any jumping time t is given by

�xu;�(t) , xu;�(t)� xu;�(t�) , ��x
u;�(t) + �

L
xu;�(t):

In this chapter, we consider the following mean-�eld continuous-singular stochastic control

problem under partial-information, where the system is governed by a mean-�eld SDEs driven

by Teugels martingales, associated with some Lévy processes and an independent Brownian
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motion, whose state equation is related to a kind of McKean-Vlasov equation of the type

8>>>>>>>>>><>>>>>>>>>>:

dxu;�(t) = f
�
t; xu;�(t);E(xu;�(t)); u(t)

�
dt

+
Pd

j=1 �
j
�
t; xu;�(t);E(xu;�(t)); u(t)

�
dW j(t)

+
P1

j=1 g
j
�
t; xu;�(t�);E(xu;�(t�)); u(t)

�
dHj(t) + C(t)d�(t);

xu;�(0) = x0;

(4.1)

where f; �; g and C are given maps and the initial condition x0 is an F0�measurable random

variable. The mean-�eld SDEs-(4.1) may be obtained as a limit approach, by the mean-square

limit, as n goes to in�nity of a system of interacting particles of the form:

dxu;�;jn (t) = f(t; xu;�;jn (t);mu;�
n (t); u(t))dt

+
Pd

k=1 �
k(t; xu;�;jn (t);mu;�

n (t); u(t))dW
k;j(t)

+
P1

k=1 g
k(t; xu;�;jn (t�);m

u;�
n (t�); u(t))dH

k;j (t)

+ C(t)d�(t);

where mu;�
n (t) =

1
n

Pn
i=1 x

u;�;i
n (t), W (�) is a standard d�dimensional Brownian motion and

H(t) = (Hj(t))j�1 are pairwise strongly orthonormal Teugels martingales, associated with

some Lévy processes, having moments of all orders, and �(�) is the singular part of the

control, which is called intervention control. The continuous control u(�) = (u(t))t�0 is

required to be valued in some subset of Rk and adapted to a sub�ltration (Gt)t�0: In some

�nance models, the mean-�eld term E(xu;�(t)) represents an approximation to the weighted

average 1
n

Pn
i=1 x

u;�;i
n (t) for large n, �(t) representing the harvesting e¤ort, while C(t) is a

given harvesting e¢ ciency coe¢ cient.

100



Chapter IV. Singular control for mean-�eld SDEs driven by Teugels martingales

The expected cost on the time interval [0; T ] is de�ned by

J (u(�); �(�)) , E
nZ T

0

`(t; xu;�(t);E(xu;�(t)); u(t))dt (4.2)

+h(xu;�(T );E(xu;�(T ))) +
Z
[0;T ]

M(t)d�(t)
o
;

where `; h andM are an appropriate functions. This cost functional is also of mean-�eld type,

as the functions ` and h depend on the marginal law of the state process through its expected

value. It worth mentioning that since the cost functional J is possibly a nonlinear function of

the expected value stands in contrast to the standard formulation of a control problem. This

leads to so called time-inconsistent control problem where the Bellman dynamic programming

does not hold. The reason for this is that one cannot apply the law of iterated expectations

on the cost functional. Noting that the partial-information mixed control problem (4.1)-(4.2)

occur naturally in the probabilistic analysis of �nancial optimization problems. Moreover,

the above mathematical mean-�eld approaches play an important role in di¤erent �elds of

game theory, economics and �nance, where the objective of the controller is to choose a

couple (u�(�); ��(�)) of adapted processes, in order to minimize the performance functional.

Problem. Find an admissible control (u�(�); ��(�)) 2 U1G�U2G ([0; T ]) such that

J (u�(�); ��(�)) = inf
(u(�);�(�))2U1G�U

2
G([0;T ])

J (u(�); �(�)) : (4.3)

The admissible control (u�(�); ��(�)) satisfying (4.3) is called an optimal control. The cor-

responding optimal state process, solution of mean-�eld system (4.1) is denoted by x�(�) =

xu
�;��(�):

Notations. We will use the following notations in this work.

� 1. The set Rn denotes the n�dimensional Euclidean space, l2 denotes the Hilbert space
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of real-valued sequences x = (xn)n�0 such that

kxkl2 ,
" 1X
n=1

xn

#2
<1:

� 2. l2 (Rn) denotes the space of Rn-valued (fn)n�1 such that

" 1X
n=1

kfnk2Rn

# 1
2

<1:

� 3. l2F ([0; T ] ;Rn) denotes the Banach space of Ft�adapted processes such that

E
�Z T

0

jx(t)j2Rn dt
� 1

2

<1:

� 4. L2F ([0; T ] ;Rn) denotes the Banach space of Ft�predictable processes such that

E

 Z T

0

1X
n=1

kfnk2Rn dt
! 1

2

<1:

� 5. S2F ([0; T ] ;Rn) denotes the Banach space of Ft�adapted and cadlag processes such

that

E( sup jx(t)j2) 12 <1:

� 6. L2 (
;F ;P;Rn) denotes the Banach space of Rn-valued, square integrable random

variables on (
;F ;P):

� 7. Mn�m(R) denotes the space of n�m real matrices.

� 8. For a di¤erentiable function f; we denote by fx(t) its gradient with respect to the

variable x.

� 9. We denote by IA the indicator function of A and by E (� j �) the conditional expect-
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ation.

Assumptions. Throughout this work, we assume the following:

f : [0; T ]� Rn � Rn � A1 ! Rn;

� : [0; T ]� Rn � Rn � A1 !Mn�m(R);

g : [0; T ]� Rn � Rn � A1 ! l2 (Rn) ;

` : [0; T ]� Rn � Rn � A1 ! R;

h : Rn � Rn ! R;

C : [0; T ]!Mn�m(R);

M : [0; T ]! ([0;1))m :

Assumption (C1) The functions f; �; `; g and h are continuously di¤erentiable in their

variables including (x; y; u). The maps f; �; g are progressively measurable processes such

that f(�; 0; 0; 0); g(�; 0; 0; 0) 2 L2F ([0; T ] ;Rn) and �(�; 0; 0; 0) 2M2
F ([0; T ] ;Rn) :

Assumption (C2) The derivatives of f; � and g with respect to their variables including

(x; y; u) are bounded. Further the map ` are dominated by C(1 + x2 + y2 + u2) and its

derivatives with respect to (x; y; u) are dominated by C (1 + jxj+ jyj+ juj) : The map h is

dominated by C (1 + x2 + y2) and its derivatives with respect to (x; y) are dominated by

C(1 + jxj+ jyj):

Assumption (C3) The functions C andM are FW
t �adapted, continuous and bounded.

From Lemma 1 in Meng and Tang [90], and under assumptions (H1)�(H3), the mean-�eld
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SDE-(4.1) has a unique solution xu;� (�) 2 L2F ([0; T ] ;Rn) such that

xu;�(t) = x0 +

Z t

0

f(s; xu;�(s);E(xu;�(s)); u(s))ds

+

Z t

0

dX
j=1

�j(s; xu;�(s);E(xu;�(s)); u(s)))dW j(s)

+

Z t

0

1X
j=1

gj(s; xu;�(s);E(xu;�(s)); u(s))dHj (s)

+

Z
[0;t]

C(s)d�(s):

Adjoint equation. We introduce the adjoint equations involved in the stochastic max-

imum principle for our mean-�eld mixed continuous-singular control problem (4.1)-(4.2).

For simplicity of notation, we will still use fx(t) =
@f
@x
(t; xu;�(�);E(xu;�(�)); u(�)); etc. So for

any admissible control (u(�); �(�)) 2 U1G�U2G ([0; T ]) and the corresponding state trajectory

x (�) = xu;� (�), we consider the following adjoint equations of mean-�eld type, which are

independent to singular control

8>>>>>>>>>><>>>>>>>>>>:

�d	(t) = [fx (t)	(t) + E(fy (t)	(t)) +
Pd

j=1[�
j
x (t)Q

j(t) + E(�jy (t)Qj(t))]

+
P1

j=1(g
j
x (t)K

j(t) + E(gjy (t)Kj(t))) + `x(t) + E(`x(t))]dt

�
Pd

j=1Q
j(t)dW (t)�

P1
j=1K

j(t)dHj(t)

	(T ) = hx (x(T ) ;E(x(T ))) + E(hy (x(T ) ;E(x(T )))):

(4.4)

Hamiltonian function. We de�ne the Hamiltonian function H : [0; T ]�Rn�Rn�A1�Rn�

Rn�d � l2(Rn) ! Rn, associated with the mean-�eld stochastic control problem (4.1)-(4.2)

as follows:

H (t; x; y; u;	(�); Q(�); K(�)) , 	(t)f (t; x; y; u) +
Pd

j=1Q
j(t)� (t; x; y; u)

+
P1

j=1K
j(t)gj (t; x; y; u) + ` (t; x; y; u) :

(4.5)
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If we denote by H(t) = H(t; x(t); y(t); u(t);	(t); Q(t); K(t)); then the adjoint equation (4.4)

can be rewritten in terms of the derivative of the Hamiltonian as

8>>>>><>>>>>:
�d	(t) = fHx (t) + E [Hy (t)]g dt

�
Pd

j=1Q
j(t)dW (t)�

P1
j=1K

j(t)dHj(t);

	(T ) = hx (x(T ) ;E(x(T ))) + E[hy (x(T ) ;E(x(T )))]:

(4.6)

Since the derivatives of f; �; g; h and ` with respect to (x; y) are bounded, by assumptions

(C1)-(C2), the mean-�eld BSDEs-(4.4) and (4.6) admits a unique solution (	(�); Q(�); K(�)) 2

S2F([0; T ] ;Rn) �L2F([0; T ] ;Rn�d) �l2F([0; T ] ;Rn), such that

E

"
sup
t2[0;T ]

j	(t)j2 + sup
t2[0;T ]

jK(t)j2 +
Z T

0

jQ(t)j2 dt
#
< C:

4.3 Necessary conditions for optimal continuous-singular

control for mean-�eld SDEs driven by Teugels mar-

tingales

In this section, inspired by Meng and Tang [90], we establish partial-information mean-

�eld type necessary conditions for optimal stochastic continuous-singular control, where the

system evolves according to controlled mean��eld SDEs-(4.1), driven by Teugels martingales

associated with some Lévy processes and an independent Brownian motion. In addition to

the assumptions in Section 2, we now assume the following:

Assumptions (C4)

(1) For all t; r such that 0 � t � t + r � T; all i = 1; :::; k and all bounded Gt�measurable

� = �(w); the control �(t) = (0; :::; 0; �i(t); 0; :::; 0) 2 A1; with �i(s) = �iI[t;t+r](s); s 2 [0; T ]

belong to U1G ([0; T ]) :

(2) For all u(�); � (�) 2 U1G([0; T ]) with � (�) bounded, there exist �1 > 0 such that u(�)+ �� 2
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U1G([0; T ]) for all � 2 [0; �1] :

(3) For �(�) 2 U2G([0; T ]); we let V(�) denote the set of Gt-adapted processes � of �nite variation

such that there exist �2 = �2(�) > 0 such that �(�) + �� 2 U2G ([0; T ]) for all � 2 [0; �2] :

Now, let � = min(�1; �2); for all � 2 [0; �] and for a given u(�); � 2 U1G([0; T ]) and �(�) 2

U2G([0; T ]) with � bounded, � 2 V(�); we de�ne the process Zu;�(�) by

Zu;�(t) = Zu(�);�(�);�;�(t) , d

d�
(xu

�+��;��+��(t)) j�=0 : (4.7)

Note that the process Zu;�(�) satis�es the following mean-�eld linear SDEs driven by both

Brownian motion and Teugels martingales:

8>>>>>>>>>><>>>>>>>>>>:

dZu;�(t) = [fx(t)Z
u;�(t) + fy(t)E(Zu;�(t)) + fu(t)�(t)]dt+

Pd
j=1[�

j
x(t)Z

u;�(t)

+ �jy(t)E
�
Zu;�(t)

�
+ �ju(t)�(t)]dW

j(t) +
P1

j=1[g
j
x(t)Z

u;�(t) + gjy(t)E
�
Zu;�(t)

�
+ gju(t)�(t)]dH

j(t) + C(t)d�(t);

Zu;�(0) = 0;

The main result of this section is stated in the following theorem.

Let (u�(�); ��(�)) be a local minimum for the cost functional J over U1G � U2G([0; T ]) in the

sense that for all bounded � and all � 2 V(��), there exist � = min(�1; �2) > 0 such that

(u�(�) + ��; ��(�) + ��) 2 U1G � U2G([0; T ]) for all � 2 [0; �] and a function ' de�ned by

'(�) , J(u�(�) + ��; ��(�) + ��);

is minimal at � = 0: Then it follows that

d

d�
'(�) j�=0=

d

d�
J(u�(�) + ��; ��(�) + ��) j�=0= 0: (4.8)

Let x�(�) be the solution of the mean-�eld SDEs-(4.1) corresponding to (u�(�); ��(�)) :
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Theorem 4.3.1. (Partial-information mean-�eld necessary conditions). Let assumptions

(C1)-(C4) hold. Then there exists a unique triplet of adapted process (	�(�); Q�(�); K�(�))

solution of adjoint equation (4.4) corresponding to (u�(�); ��(�)) ; such that (u�(�); ��(�)) is a

critical point in the sense that for almost all t 2 [0; T ] ; we have

E[Hu(t; x
�(t�);E(x�(t�)); u�(t);	�(t); Q�(t); K�(t)) j Gt]

+E
hR
[0;T ]

(M(t) + C(t)	�(t)) d��(t) j Gt
i

= 0; a:e:; t 2 [0; T ] :

(4.9)

Proof: Let Z�(�) = Zu
�;��(�): From (4.8) and (4.2), we have

0 =
d

d�
J(u�(�) + ��(�); ��(�) + ��(�)) j�=0

= E
nZ T

0

[`x(t; x
�(t);E(x�(t)); u�(t))Z�(t)

+`y(t; x
�(t);E(x�(t)); u�(t)))E(Z�(t))]dt (4.10)

+

Z T

0

`u(t; x
�(t);E(x�(t)); u�(t))�(t)dt

+

Z
[0;T ]

M(t)d�(t) + hx (x
�(T );E (x�(T )))Z�(T )

+ hy (x
�(T );E (x�(T )))E(Z�(T ))

o
:

By applying Itô�s formula to 	�(t)Z�(t) and take expectation, we get

E(	�(T )Z�(T )) = E
R T
0
	�(t)dZ�(t) + E

R T
0
Z�(t)d	�(t)

+E
R T
0

Pd
j=1Q

�j(t)[�jx(t)Z
�(t) + �jy(t)E (Z�(t)) + �ju(t)�(t)]dt

+E
R T
0

P1
j=1K

�j(t)[gjx(t)Z
�(t) + gjy(t)E (Z�(t)) + gju(t)�(t)]dt

= I1 + I2 + I3 + I4:

(4.11)
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From (4.8), we obtain

I1 = E
R T
0
	�(t)dZ�(t)

= E
R T
0
	�(t)[fx (t)Z

�(t) + fy (t)E(Z�(t)) + fu(t)�(t)]dt+ E
R T
0
	�(t)C(t)d�(t)

= E
R T
0
	�(t)fx (t)Z

�(t)dt+ E
R T
0
	�(t)fy (t)E(Z�(t))dt

+ E
R T
0
	�(t)fu(t)�(t))dt+ E

R
[0;T ]

	�(t)C(t)d�(t):

(4.12)

By applying (4.4) and (4.8), we have

I2 = E
R T
0
Z�(t)d	�(t) = �E

R T
0
Z�(t) ffx (t)	�(t) + E (fy (t)	�(t))

+
Pd

j=1(�
j
x (t)Q

j�(t) + E(�jy (t)Qj�(t))) +
P1

j=1(g
j
x (t)K

j�(t) + E[gjy (t)Kj�(t)])

+ `x (t) + E (`y (t))g dt;

(4.13)

I3 = E
R T
0

Pd
j=1Q

�j(t)[�jx(t)Z
�(t) + �jy(t)E (Z�(t)) + �ju(t)�(t)]dt

= E
R T
0

Pd
j=1Q

�j(t)�jx(t)Z
�(t)dt+ E

R T
0

Pd
j=1Q

�j(t)�jy(t)E (Z�(t)) dt

+ E
R T
0

Pd
j=1Q

�j(t)�ju(t)�(t)dt;

(4.14)

and it follows easily by the same arguments that

I4 = E
Z T

0

P1
j=1K

�j(t)[gjx(t)Z
�(t) + gjy(t)E (Z�(t)) + gju(t)�(t)]dt

= E
R T
0

P1
j=1K

�j(t)gjx(t)Z
�(t)dt+ E

R T
0

Pd
j=1K

�j(t)gjy(t)E (Z�(t)) dt

+E
R T
0

P1
j=1K

�j(t)gju(t)�(t)dt:

(4.15)
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By combining (4.11)�(4.15), together with (4.4) and the fact that Z�(0) = 0; we get

Ef[hx (x(T );E(x(T ))

+ E (hy (x(T );E(x(T )))]Z�(T )g

= E
Z T

0

n
	�(t)fu(t)�(t)dt

+

dX
j=1

Qj�(t)�ju (t) �(t)dt+

1X
j=1

Kj�(t)gju(t)�(t)

� `x (t)Z
�(t)� E(`y (t))Z�(t)

o
dt (4.16)

+ E
Z
[0;T ]

	�(t)C(t)d�(t):

From (4.10) and (4.16), we obtain

E
Z T

0

n
	�(t)fu(t)�(t)dt+

dX
j=1

Qj�(t)�ju (t) �(t)dt

+
dX
j=1

K�j(t)gju(t)�(t) + `u(t; x
�(t);E(x�(t)); u�(t))�(t)

o
dt

+ E
Z
[0;T ]

[M(t) + C(t)	�(t)]d�(t) = 0:

Since

Hu (t; x; y; u;	(�); Q(�); K(�))

= 	(t)fu (t; x; y; u) +
dX
j=1

Qj(t)�u (t; x; y; u)

+
1X
j=1

Kj(t)gju (t; x; y; u) + `u (t; x; y; u) ;

we get

E
R T
0
Hu(t; x

�(t�); y
�(t�); u

�(t);	�(t); Q�(t); K�(t))�(t)dt

+E
R
[0;T ]
[M(t) + C(t)	�(t)]d�(t) = 0:

(4.17)
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We �x 0 � t � T and apply the above to � = (0; :::; �i; :::; 0) ; where �i(s) = �iI[t;t+r](s);

s 2 [0; T ] ; t+ r � T and �i = �i(w) is bounded, Gt�measurable. Then from (4.17), we get

E
R t+r
t

@
@ui
H(s; x�(s�); y�(s�); u�(s);	�(s); Q�(s); K�(s))�i(w)ds

+E
R
[0;T ]

[M(t) + C(t)	�(t)] d�(t) = 0:

Now, di¤erentiating the above equation with respect to r at r = 0, we obtain

E
h
@
@ui
H(s; x�(s�); y�(s�); u�(s);	�(s); Q�(s); K�(s))�i]

+E
R
[0;T ]

[M(t) + C(t)	�(t)] d�(t) = 0:
(4.18)

Since (4.18) holds for all bounded Gt�measurable �i; and for all � 2 V(��); it is easy to show

that

E [Hu(t; x
�(t�); y

�(t�); u
�(t);	�(t); Q�(t); K�(t)) j Gt]

+E
hR
[0;T ]

[M(t) + C(t)	�(t)] d��(t) j Gt
i
= 0; P� a:s;

which completes the proof of Theorem 4.3.1. �

4.4 Su¢ cient conditions for optimal continuous-singular

control for mean-�eld SDEs driven by Teugels mar-

tingales

The purpose of this section is to derive partial-information mean-�eld type su¢ cient condi-

tions for optimal stochastic continuous-singular control, where the system evolves according

to controlled mean��eld SDEs-(4.1) driven by Teugels martingales associated with some Lévy

processes and an independent Brownian motion. We prove that under some additional con-

ditions, the maximality condition on the Hamiltonian function is a su¢ cient condition for

optimality.
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Assumptions (C5). We assume

1. The functional H (t; �; �; �;	u(t); Qu(t); Ku(t)) is convex with respect to (x; y; u) for a:e:t 2

[0; T ] ; P� a:s:

2. The function h(�; �) is convex with respect to (x; y).

Let (	u(�); Qu(�); Ku(�)) solution of adjoint equation (4.4) corresponding to (u(�); �(�)) :

Now, we are able to state and prove the partial-information su¢ cient conditions of optimal

continuous-singular mean-�eld control problem, which is the second main result of this work.

Theorem 4.4.2. (Partial-information mean-�eld su¢ cient conditions) Let assumptions

(C1)-(C5) hold. Suppose that an admissible continuous-singular control (u(�); �(�)) 2 U1G �

U2G([0; T ]) satis�es

E
�
Hu(t; x

u;�(t�);E(xu;�(t�)); u;	u(t); Qu(t); Ku(t)) j Gt]

+E
hR
[0;T ]

(M(t) + C(t)	u(t)) d�(t) j Gt
i
= 0; a:e:; t 2 [0; T ] :

(4.19)

Then (u(�); �(�)) is a partial-information optimal control, i.e.,

J (u(�); �(�)) = inf
(v(�);�(�))2U1G�U2G([0;T ])

J (v(�); �(�)) : (4.20)

The following Lemma gives the duality relations between 	u(t) and (xv;�(t)�xu;�(t)): It plays

a key role in proving the su¢ cient optimality conditions (Theorem 4.4.2.)

Lemma 4.4.1. Let xu;�(�) and xv;�(�) be the solutions of the state equation (4.1) corres-

111



Chapter IV. Singular control for mean-�eld SDEs driven by Teugels martingales

ponding respectively to (u(�); �(�)) and (v(�); �(�)) : Then they satisfy

E
�
	u(T )

�
xv;�(T )� xu;�(T )

��
= E

R T
0
	u(t) [f(t; xv;�(t);E(xv;�(t)); v(t)) � f(t; xu;�(t);E(xu;�(t)); u(t))

�
dt

+E
R T
0
(Hx(t) + E(Hy(t)))

�
xv;�(t)� xu;�(t)

�
dt

+E
R T
0

Pd
j=1Q

u;;j(t) [�j(t; xv;�(t);E(xv;�(t)); v(t)) � �j(t; xu;�(t);E(xu;�(t)); u(t))
�
dt

+E
R T
0

P1
j=1K

u;j(t)[gj(t; xv;�(t);E(xv;�(t)); v(t))� gj(t; xu;�(t);E(xu;�(t)); u(t))]dt:

+E
R
[0;T ]

C(t)	u(t)d(� � �)(t):

(4.21)

Remark 4.4.2. From Lemme 4.4.1 and using the fact that

H
�
t; xu;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t)

�
= 	u(t)f

�
t; xu;�(t);E(xu;�(t)); u(t)

�
+
Pd

j=1Q
j(t)�

�
t; xu;�(t);E(xu;�(t)); u(t)

�
+
P1

j=1K
j(t)gj

�
t; xu;�(t);E(xu;�(t)); u(t)

�
+`
�
t; xu;�(t);E(xu;�(t)); u(t)

�
;

we obtain

E
�
	u(T )

�
xv;�(T )� xu;�(T )

��
= H (t; xv;�(t);E(xv;�(t)); v(t);	u(t); Qu(t); Ku(t))

�H
�
t; xu;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t)

�
+`(t; xu;�(t);E(xu;�(t)); u(t))

�`(t; xv;�(t);E(xv;�(t)); v(t))

+E
R T
0
(Hx(t) + E(Hy(t)))

�
xv;�(t)� xu;�(t)

�
dt

+E
R
[0;T ]

C(t)	u(t)d(� � �)(t):

(4.22)
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Proof: First, from (4.1) and by simple computations, we get

d
�
xv;�(t)� xu;�(t)

�
= [f(t; xv;�(t);E(xv;�(t)); v(t))

�f(t; xu;�(t);E(xu;�(t)); u(t))]dt+
Pd

j=1[�
j(t; xv;�(t);E(xv;�(t)); v(t))

��j(t; xu;�(t);E(xu;�(t)); u(t)]dW j(t) +
P1

j=1[g
j(t; xv;�(t);E(xv;�(t)); v(t))

�gj(t; xu;�(t);E(xu;�(t)); u(t)]dHj (t) + C(t)d(� � �)(t):

(4.23)

By applying integration by parts formula to 	u(t)
�
xv;�(t)� xu;�(t)

�
, we obtain

E[	u(T )
�
xv;�(T )� xu;�(T )

�
]

= E
R T
0
	u(t)d

�
xv;�(t)� xu;�(t)

�
+ E

R T
0

�
xv;�(t)� xu;�(t)

�
d	u(t)

+E
R T
0

Pd
j=1Q

u;j(t)[�j(t; xv;�(t);E(xv;�(t)); v(t))

��j(t; xu;�(t);E(xu;�(t)); u(t))]dt+ E
R T
0

P1
j=1K

u;j(t)[gj(t; xv;�(t);E(xv;�(t)); v(t))

�gj(t; xu;�(t);E(xu;�(t)); u(t))]dt

= I1 + I2 + I3 + I4:

(4.24)

From (4.23), we obtain

I1 = E
R T
0
	u(t)d

�
xv;�(t)� xu;�(t)

�
= E

R T
0
	u(t)[f(t; xv;�(t);E(xv;�(t)); v(t))

� f(t; xu;�(t);E(xu;�(t)); u(t))]dt

+E
R
[0;T ]

C(t)	u(t)d(� � �)(t):

(4.25)
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Similarly, from (4.6), we get

I2 = E
R T
0

�
xv;�(t)� xu;�(t)

�
d	u(t)

= E
R T
0

�
xv;�(t)� xu;�(t)

�
[Hx(t) + E(Hy(t))]dt

= E
R T
0
Hx(t)

�
xv;�(t)� xu;�(t)

�
dt

+E
R T
0
E(Hy(t))(x

v;�(t))� xu;�(t))dt:

(4.26)

By standard arguments, we obtain

I3 = E
R T
0

Pd
j=1Q

u(t)[�j(t; xv;�(t);E(xv;�(t)); v(t))

��j(t; xu;�(t);E(xu;�(t)); u(t))]dt;
(4.27)

and a similar argument shows that

I4 = E
R T
0

P1
j=1K

u(t)[gj(t; xv;�(t);E(xv;�(t)); v(t))

�gj(t; xu;�(t);E(xu;�(t)); u(t))]dt:
(4.28)

Finally, the duality relation (4.21) follows by combining (4.25)-(4.28) together with (4.24).

This completes the proof of Lemma 4.4.1. �

Proof of Theorem 4.4.2.: Let xu;�(�) be the solution of the state equation (4.1) and

(	u (�) ; Qu (�) ; Ku (�)) be the solution of the adjoint equation (4.4) corresponding to (u(�); �(�)) 2

U1G � U2G([0; T ]). For any (v(�); �(�)) 2 U1G � U2G([0; T ]) and from (4.2), we obtain

J (u(�); �(�))� J(v(�); �(�))

= E(h(xu;�(T );E
�
xu;�(T )

�
� h(xv;�(T );E (xv;�(T )))

+E
R T
0
[`(t; xu;�(t);E

�
xu;�(t)

�
; u(t)� `(t; xv;�(t);E (xv;�(t)) ; v(t)]dt

+E
R T
0
M(t)d(� � �)(t):
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By the convexity condition on h (see assumptions (C5)), we get

J (u(�); �(�))� J(v(�); �(�)) � E[(hx(xu;�(T );E
�
xu;�(T )

�
+E(hy(xu;�(T );E

�
xu;�(T )

�
))
�
xu;�(T )� xv;�(T )

�
]

+E
Z T

0

[`(t; xu;�(t);E
�
xu;�(t)

�
; u(t))� `(t; xv;�(t);E (xv;�(t)) ; v(t))]dt

+E
R T
0
M(t)d(� � �)(t):

(4.29)

We observe that, from the adjoint equation (4.4); we get

J (u(�); �(�))� J(v(�); �(�))

� E
�
	u(T )

�
xu;�(T )� xv;�(T )

��
+ E

R T
0
[`(t; xu;�(t);E

�
xu;�(t)

�
; u(t))

�`(t; xv;�(t);E (xv;�(t)) ; v(t))]dt+ E
R T
0
M(t)d(� � �)(t):

By applying Lemma 4.4.1, we have

J (u(�); �(�))� J(v(�); �(�))

� E
R T
0
[H(t; xu;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t))

�H(t; xv;�(t);E(xv;�(t)); v(t);	u(t); Qu(t); Ku(t))]dt

�E
R T
0
Hx(t; x

u;�(t);E
�
xu;�(t)

�
; u(t);	u(t); Qu(t); Ku(t))(xu;�(t)� xv;�(t))

�E
R T
0
E[Hy(t; x

u;�(t);E
�
xu;�(t)

�
; u(t);	u(t); Qu(t); Ku(t))](xu;�(t)� xv;�(t))

+E
R
[0;T ]
(	u(t)C(t) +M(t))d(� � �)(t):

(4.30)

By the convexity of the functional H (t; �; �; �;	u(t); Qu(t); Ku(t)) ; (see assumption (H5)) in
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the sense of Clarke�s generalized gradient, the following holds

E
R T
0
[H(t; xu;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t))

�H(t; xv;�(t);E(xv;�(t)); v(t);	u(t); Qu(t); Ku(t))]dt

� E
R T
0
Hx(t; x

u;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t))(xu;�(t)� xv;�(t))dt

+E
R T
0
E(Hy(t; x

u;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t)))(xu;�(t)� xv;�(t))dt

+E
R T
0
Hu(t; x

u;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t))(u(t)� v(t))dt:

(4.31)

Since the conditional expectation E[Hu(t; x
u;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t)) j Gt];

v(t) and u(t) are Gt�measurable, we have

E[Hu(t; x
u;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t)) j Gt](v(t)� u(t))

= E[Hu

�
t; xu;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t)

�
(v(t)� u(t)) j Gt]:

(4.32)

Using condition (4.19), (4.31) and (4.32), we obtain

H
�
t; xu;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t)

�
�H (t; xv;�(t);E(xv;�(t)); v(t);	u(t); Qu(t); Ku(t)))dt

�E
Z T

0

�
Hx(t; x

u;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t))

+E(Hy(t; x
u;�(t);E(xu;�(t)); u(t);	u(t); Qu(t);

Ku(t)))] (xu;�(t)� xv;�(t))dt � 0:

(4.33)

From (4.30) and (4.33), then for any continuous-singular control (v(�); �(�)) 2 U1G�U2G([0; T ]);

we obtain

J (u(�); �(�))� J(v(�); �(�)) � 0:

Finally, we observe that since (v(�); �(�)) is an arbitrary admissible control of U1G�U2G ([0; T ]) ;

the desired result (4.20) follows. This completes the proof of Theorem 4.4.2. �
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4.5 Application: continuous-singular mean-�eld linear

quadratic control problemwith Teugels martingales

As an application, under partial-information, we study optimal continuous-singular stochastic

linear quadratic control problem for linear mean-�eld SDEs driven by Teugels martingales

associated with some Lévy processes and an independent Brownian motion. The optimal

control (u�(t); ��(t)) is obtained in feedback form involving both xu;�(�) and its marginal

law through its expected value E(xu;�(�)), via the solutions of Riccati ordinary di¤erential

equations (ODEs). Let Gt be a given sub�ltration of Ft; t � 0;. For example, Gt could be

the �-delayed information de�ned by Gt = F(t��)+ : t � 0; where � is a given constant delay.

The cost functional to be minimized, over the set of admissible controls U1G �U2G ([0; T ]), has

the quadratic form

J (u(�); �(�)) = 1

2
E
Z T

0

(Rxu;�(t)2 +Nu(t)2)dt+
1

2
�E
�
xu;�(T )2

�
(4.34)

+

Z
[0;T ]

M(t)d�(t);

where (u(�); �(�)) 2 U1G � U2G ([0; T ]) is adapted to a sub�ltration Gt, and R; N and � are

positive constants, subject to xu;�(t) is the solution of the following linear mean-�eld SDE:

8>>>>>>>>>><>>>>>>>>>>:

dxu;�(t) = (Axu;�(t) + eAE �xu;�(t)�+Bu(t))dt

+
Pd

j=1(C
jxu;�(t) + eCjE �xu;�(t)�+Dju(t))dW j(t);

+
P1

j=1(�
jxu;�(t) + e�jE �xu;�(t)�+ F ju(t))dHj(t);

+C(t)d�(t); xu;�(0) = x0;

(4.35)

where A; eA; B; Cj; eCj; Dj; �j; e�j and F j are constants.
For a given continuous-singular control (u(�); �(�) 2 U1G � U2G ([0; T ]), then from (4.5) the

Hamiltonian functional H corresponding to the partial-information control problem (4.34)-
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(4.35) gets the form

H
�
t; xu;�(t);E(xu;�(t)); u(t);	u(t); Qu(t); Ku(t)

�
= 	u(t)(Axu;�(t) + eAE �xu;�(t)�+Bu(t))

+
Pd

j=1Q
u;j(t)(Cjxu;�(t) + eCjE �xu;�(t)�+Dju(t))

+
P1

j=1K
u;j(t)(�jxu;�(t) + e�jE �xu;�(t)�+ F ju(t))

+1
2
(Rxu;�(t)2 +Nu(t)2):

(4.36)

From (4.4), the corresponding adjoint equation gets the form

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

d	u(t) = �[A	u(t) + eAE(	u(t))
+
Pd

j=1(C
jQu;j(t) + eCjE(Qu;j(t)))

+
P1

j=1(�
jKu;j(t) + e�E[Ku;j(t)]) +Rxu;�(t)]dt

+
Pd

j=1Q
u;j(t)dW j(t) +

P1
j=1K

u;j(t)dHj(t);

	u(T ) = �xu;�(T ):

(4.37)

Let (u�(t); ��(t) be a local optimal control of the partial-information control problem (4.34)-

(4.35). Then by applying Theorem 4.4.2 and the fact that

Hu (t; x
�(t);E (x�(t)) ; u�(t);	�(t); Q�(t); K�(t))

= B	�(t) +DQ�(t) + FK�(t) +Nu�(t);

we deduce that the optimal control is given by

E [B	�(t) +DQ�(t) + FK�(t) +Nu�(t) j Gt] = 0;

t 2 [0; T ] :
(4.38)
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Since u�(t) is adapted to Gt; we get

u�(t) = �N�1fBE[	�(t) j Gt] +DE[Q�(t) j Gt]

+FE[K�(t) j Gt]g:
(4.39)

Now, to solve explicitly the above equation (4.39), we assume that the adjoint process 	�(�)

has the following form:

	�(t) = U1 (t)x
�(t) + U2 (t)E (x�(t)) + U3 (t) ; (4.40)

where U1 (�) ; U2 (�) and U3 (�) are deterministic di¤erentiable functions. Applying Itô�s for-

mula to (4.40), we get

d	�(t) = d(U1 (t)x
�(t)) + d(U2 (t)E (x�(t))) + dU3 (t)

= U1 (t) dx
�(t) + x�(t)U 01 (t) dt+ U2 (t) dE (x�(t)) + E (x�(t))U 02 (t) dt

+ U 03 (t) dt:

By simple computation and the fact that d [E (x�(t))] = [(A + eA)E (x�(t)) + BE (u�(t))]dt;

we obtain

d	�(t) =
n
U1 (t) [Ax

�(t) + eAE (x�(t)) +Bu�(t))]
+U2 (t) [(A+ eA)E (x�(t)) +BE (u�(t))]
+ x�(t)U 01 (t) + E (x�(t))U 02 (t) + U 03 (t)g dt

+
Pd

j=1[C
jx�(t) + eCjE (x�(t)) +Dju�(t)]U1 (t) dW

j(t);

+
P1

j=1

h
�jx�(t) + e�jE (x�(t)) + F ju�(t)iU1 (t) dHj(t);

	�(T ) = U1 (T )x
�(T ) + U2 (T )E (x�(T )) + U3 (T ) :

(4.41)
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Now, from (4.37) and (4.41), we can easily prove that U3 (t) � 0; 8t 2 [0; T ] ;8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

U1 (t) [Ax
�(t) + eAE (x�(t)) +Bu�(t))]

+U2 (t) [(A+ eA)E (x�(t)) +BE (u�(t))]
+x�(t)U 01 (t) + E (x�(t))U 02 (t)

= �[A	�(t) + eAE(	�(t)) + (CQ�(t)
+ eCE(Q�(t))) + (�K�(t) + e�E[K�(t)]) +Rx�(t)]:

(4.42)

A similar argument shows that

Q�(t) = [Cx�(t) + eCE (x�(t)) +Du�(t)]U1 (t) ; (4.43)

and

K�(t) =
h
�x�(t) + e�E (x�(t)) + Fu�(t)iU1 (t) : (4.44)

By comparing the coe¢ cients of x�(t) and E (x�(t)) in equation (4.42) and last equation in

(4.41), we immediately deduce that U1(�); U2(�) are given by the following ODEs:

8>>>>><>>>>>:
U 01 (t) + (2A+ C2 + �2)U1 (t) +R = 0; U1 (T ) = �;

U 02 (t) + 2(A+ eA)U2 (t) + (2 eA+ eC2 + e�2 + 2(C eC + �e�))U1 (t) = 0;
U2 (T ) = 0:

(4.45)

By solving the ODEs-(4.45), we obtain

U1 (t) = [� +R
�
2A+ C2 + �2

��1
] exp

�
(2A+ C2 + �2)(T � t)

	
�R

�
2A+ C2 + �2

��1
U2 (t) = (2 eA+ eC2 + e�2 + 2(C eC + �e�)) exp[�2(A+ eA)t]Z T

t

U1 (s) exp[2(A+ eA)s]ds:
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Now, from Theorem 4.4.2, the singular part ��(�) satis�es: for any �(�) 2 U2G ([0; T ])

E
Z
[0;T ]

(M(t) + C(t)	�(t))d (� � ��) (t) � 0: (4.46)

If we de�ne

D , f(w; t) 2 
� [0; T ] :M(t) + C(t)	�(t) � 0g ;

and let �(�) 2 U2G ([0; T ]) such that

d�(t) =

8><>:
0 ifM(t) + C(t)	�(t) � 0

d��(t) otherwise,
(4.47)

then by a simple computations, it is easy to see that

0 � E
Z
[0;T ]

(M(t) + C(t)	�(t))d (� � ��) (t)

= E
Z
[0;T ]

(M(t) + C(t)	�(t))IDd (���) (t)

= �E
Z
[0;T ]

(M(t) + C(t)	�(t))IDd�
�(t);

which implies that ��(t) satis�es for any t 2 [0; T ]

E
Z
[0;T ]

(M(t) + C(t)	�(t))IDd�
�(t) = 0: (4.48)

Finally, from (4.47) and (4.48) we can easy shows that the optimal singular control ��(�) has

the form

��(t) = �(t) +

Z t

0

ID c(s; w)ds = �(t) +

Z t

0

If(w;s)2
�[0;T ]:M(s)+C(s)	�(s)<0g(s; w)ds: (4.49)

Finally, we give the explicit optimal continuous-singular control in feedback form involving

both the state process and its expected value.
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Theorem 4.5.3. The optimal continuous-singular control (u� (�) ; �� (�)) 2 U1G � U2G ([0; T ])

of the partial-information mean-�eld linear quadratic control problem (4.34)-(4.35) is given

in feedback form by

u�(t) = u�(t; x�(t);E (x�(t))) = �N�1E[B	�(t) +DQ�(t) + FK�(t) j Gt]:

�� (t) = �(t) +
R t
0
If(w;s)2
�[0;T ]:M(s)+C(s)	�(s)<0g(s; w)ds; t 2 [0; T ] :

4.6 Some discussion and concluding remarks

In this last chaptre, under partial-information, necessary and su¢ cient conditions for optimal

continuous-singular control for mean-�eld SDEs driven by Teugels martingales associated

with some Lévy processes and an independent Brownian motion have been established. A

partial-information linear quadratic control problem has been studied to illustrate our theor-

etical results. In our mean-�eld control problem, there are two types of jumps for the state

processes, the predictable ones which come from the discrete interventions of singular control

and the inaccessible ones which come from the Teugels martingale measure.

� 1. In Theorem 4.3.1, equation (4.9) is equivalent to

E[Hu(t; x
�(t�);E(x�(t�)); u�(t);	�(t); Q�(t); K�(t)) j Gt]

+E
�Z

[0;T ]

(M(t) + C(t)	�(t)) d��(t) j Gt
�
= 0; a:e:; t 2 [0; T ] :

� 2. If ��(t) =
P

j�1 �jI[�j ;T ](t); �j 2 [0; T ], then (4.9)-Theorem 4.3.1 is equivalent to

E[Hu(t; x
�(t�);E(x�(t�)); u�(t);	�(t); Q�(t); K�(t)) j Gt]

+
X
�j�T

E f[M(�j) + C(�j)	�(�j)] j G(�j)g = 0; a:e:; �j 2 [0; T ] :

� 3. If Gt = Ft and g = 0, our maximum principle (Theorem 4.3.1 ) coincides with the

stochastic maximum principle (Theorem 1 ) developed in Hafayed [82].
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� 4. If Gt = Ft and C(t) = M(t) = 0 and without mean-�eld terms, our maximum

principle (Theorem 4.3.1 ) coincides with the stochastic maximum principle developed

in Meng and Tang [90].

� 5. Apparently, there are many problems left unsolved. To mention a few, necessary

and su¢ cient conditions for optimality for mean-�eld general controlled SDEs driven

by Teugels martingales and an independent Brownian motion of the form

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dxu;�(t) = f
�
t; xu;�(t);E(xu;�(t)); u(t)

�
dt

+
Pd

j=1 �
j
�
t; xu;�(t);E(xu;�(t)); u(t)

�
dW j(t)

+
P1

j=1 g
j
�
t; xu;�(t�);E(xu;�(t�)); u(t)

�
dHj(t)

+C
�
t; xu;�(t);E(xu;�(t))

�
d�(t);

xu;�(0) = x0;

(4.50)

and the expected cost has the general form

J (u(�); �(�)) = E
nZ T

0

`(t; xu;�(t);E(xu;�(t)); u(t))dt (4.51)

+h
�
xu;�(T );E

�
xu;�(T )

��
+

Z
[0;T ]

M
�
t; xu;�(t);E(xu;�(t))

�
d�(t)

o
:

where the coe¢ cients of the singular parts C andM depend on the state of the solution

process as well as of its expected value. Moreover, the second-order maximum principle

for the problem (4.50)-(4.51), where the control domain is not assumed to be convex

is still an open problem. It is worthwhile pointing out that we can derive these results

by using the singular version of the Hamiltonian and the adjoint processes should be

de�ned within singular control. Such topics will be studied in our future works.
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Appendix

The following result gives the de�nition and some basic properties of the generalized gradient.

De�nition A1. Let F be a convex set in Rn and let f : F ! R be a locally Lipschitz

function. The generalized gradient of f at bx 2 F , denoted by @�xf (bx), is a set de�ned by
@
�

xf (bx) = f� 2 Rn : h�; �i � f � (bx; �) ; for any � 2 Rng ;
where f � (bx; �) = lim supy!bx;t!0 1t (f (y + t�)� f (y)) :

Proposition A1. If f : Rn ! R is locally Lipschitz at x 2 Rn, then the following statements

holds

1. @
�
xf (x) is nonempty, compact and convex set in Rn.

2. @
�
x (�f) (x) = �@

�
x (f) (x).

3. @
�
xf (x) 3 0 if f attains a local minimum or maximum at x.

4. If f is continuously di¤erentiable at x, then @
�
xf (x) = ff 0 (x)g :

5. If f; g : Rn ! R are locally Lipschitz functions at x 2 Rd, then

@
�

x (f + g) (x) � @
�

xf (x) + @
�

xg (x) :

For the detailed proof of the above Proposition see Clarke [10] or the book by Yong et al.,

([109] Lemma 2.3 ).
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As a simple example of the generalized gradient, we consider the absolute value function

f : x 7! jx� aj which is continuously di¤erentiable everywhere except at x = a. Since

f 0 (x) = 1 for x > a and f 0 (x) = �1 for x < a, then a simple calculation shows that the

generalized gradient of f at x = a is given by @
�
xf (a) = co f�1; 1g = [�1; 1] :

The following result gives special case of the Itô formula for jump di¤usions.

Lemma A1. (Integration by parts formula for jumps processes) Suppose that the processes

x1(t) and x2(t) are given by: for j = 1; 2; t 2 [s; T ] :

8>>>>><>>>>>:
dxj(t) = f (t; xj(t); u(t)) dt+ � (t; xj(t); u(t)) dW (t)

+
R
�
g (t; xj(t

�); u(t); �)N (d�; dt) ;

xj(s) = 0:

Then we get

E (x1(T )x2(T )) = E
�Z T

s

x1(t)dx2(t) +

Z T

s

x2(t)dx1(t)

�
+ E

Z T

s

�� (t; x1(t); u(t))� (t; x2(t); u(t)) dt

+ E
Z T

s

Z
�

g� (t; x1(t); u(t); �) g (t; x2(t); u(t); �)�(d�)dt:

See Framstad et al., ([13], Lemma 2.1 ) for the detailed proof of the above Lemma.

Proposition A2. Let G be the predictable ���eld on
�[s; T ], and f be a G�B(�)�measurable

function such that

E
Z T

s

Z
�

jf (r; �)j2 �(d�)dr <1;

then for all � � 2 there exists a positive constant C = C(T; �; �(�)) such that

E

"
sup
0�t�T

����Z t

s

Z
�

f (r; �)N(d�; dr)

�����
#
< CE

�Z T

s

Z
�

jf (r; �)j� �(d�)dr
�
:

Proof. See Bouchard et al., ([4], Appendix). �
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