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Abstract

This thesis presents two independent research topics, the �rst one being divided into three distinct prob-

lems. Those topics all use stochastic control methods in order to solve, in di¤erent contexts, stochastic

optimal control problems which are time inconsistent.

In the �rst part, we formulate a general time-inconsistent stochastic linear-quadratic (LQ) control problem.

The time-inconsistency arises from the presence, of a quadratic term of the expected state as well as a

state-dependent term in the objective functional. Due to time inconsistency, we consider the problem

within a game theoretic framework and we seek equilibrium, instead of optimal, solution. We derive a

necessary and su¢ cient condition, for equilibrium controls, in the form of a maximum principle, which is

also applied to solve the mean-variance portfolio problem.

In the second part, we study optimal investment and reinsurance problem for mean�variance insurers

within a game theoretic framework and aims to seek the corresponding equilibrium strategies. Specially,

the insurers are allowed to purchase proportional reinsurance, acquire new business and invest in a �nancial

market, where the surplus of the insurers is assumed to follow a jump�di¤usion model and the �nancial

market consists of one risk-free asset and multiple risky assets whose price processes are modelled by a

geometric Lévy processes. By solving a �ow of FBSDEs, we obtain the equilibrium strategy among all

the open-loop controls for this time inconsistent control problem.

In the third part, we investigate the Merton portfolio management problem in the context of non-

exponential discounting. This gives rise to time-inconsistency of the decision maker. Open loop Nash

equilibrium are considered. The model is solved for di¤erent utility functions and the results are com-

pared.

Finally, the fourth part is concerned with necessary as well as su¢ cient conditions for near-optimality

to stochastic impulse control problems of mean-�eld type. Necessary conditions for a control to be

near-optimal are derived, using Ekeland�s variational principle and some stability results on the state

and adjoint processes, with respect to the control variable. In a second step, we show that the necessary

conditions for near-optimality are in fact su¢ cient for near-optimality provided some concavity conditions

are ful�lled.

Keys words. time inconsistency, mean-�eld control problem, hyperbolic discounting, stochastic systems

with jumps, stochastic maximum principle, equilibrium control, near-optimal controls, stochastic LQ

control, mean-variance criterion, Portfolio optimization, Merton problem.
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Résumé

Cette thèse présente deux sujets de recherche indépendants, le premier étant décliné sous la forme de

trois problèmes distincts. Ces di¤érents sujets ont en commun d�appliquer des méthodes de contrôle

stochastique à des problèmes qui sont inconsistants dans le sens où le principe d�optimalité de Bellman

n�est pas satisfait.

Dans une première partie, nous formulons un problème de contrôle stochastique inconsistant de type

linéaire-quadratique (LQ). L�inconsistance découle de la présence, d�un terme quadratique de l�espérance

conditionnelle de l�état ainsi que d�un terme dépendant de l�état initiale dans la fonction objective. En

raison de l�inconsistance, nous considérons le problème dans un cadre théorique de jeu et nous cherchons

les solutions d�équilibres de Nash. Nous dérivons une condition nécessaire et su¢ sante, pour les contrôles

équilibres, sous la forme d�un principe du maximum, qui est également appliqué pour résoudre le problème

de choix du portefeuille sous le critère moyenne-variance.

Dans la seconde partie, nous étudions le problème de choix de stratégies investissement-réassurance op-

timales pour les assureurs sous le critère moyenne �variance. Tout comme dans la première partie, nous

amenons le problème dans un cadre théorique de jeu et on s�intéresse aux stratégies d�équilibres correspond-

ants. En particulier, les assureurs sont autorisés à acheter de la réassurance proportionnelle, d�acquérir de

nouvelles entreprises et d�investir dans un marché �nancier, où le surplus des assureurs est supposé suivre

un modèle avec sauts et le marché �nancier se compose d�un actif sans risque et d�une multitude d�actifs

risqués dont les processus du prix sont modélisés par des processus de Lévy. En résolvant un système

stochastique nous obtenons la stratégie d�équilibre entre toutes les stratégies en boucle ouverte.

Dans la troisième partie, nous étudions le problème de gestion de portefeuille de Merton dans le cadre

de l�escompte non-exponentielle. Cela donne lieu à l�inconsistance des choix optimaux du décideur. Nous

caractérisons les stratégies d�équilibres de Nash et nous obtenons des solutions explicites dans le cas de

l�utilité logarithmique, l�utilité puissance, et l�utilité exponentielle.

En�n, dans la quatrième partie, on s�intéresse aux modèles de contrôle stochastiques de type à champ

moyen où la variable de contrôle comporte deux composantes, la première étant absolument continue et la

seconde est un processus d�impulsion par morceaux. En utilisant le principe variationnel de Ekeland ainsi

que certains résultats de stabilité sur le processus d�état et les processus adjoints, par rapport à la variable

de contrôle, on dérive des conditions nécessaires pour les contrôle près-optimaux (Near-optimal). Dans

un second temps, nous montrons que les conditions nécessaires sont en fait su¢ santes pour les contrôles

près-optimaux si quelques conditions de concavité sont satisfaites.

Mots Clés. Inconsistance, problèmes à champ-moyen, escompte hyperbolique, system stochastique
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avec sauts, principe du maximum stochastique, contrôles équilibres, contrôles près-optimaux, problèmes

linéaire-quadratique, critère moyenne-variance, problème de Merton.
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Introduction

Introduction
Stochastic optimal control theory can be described as the study of strategies to optimally in�uence a

stochastic system X (:) with dynamics evolving over time according to a stochastic di¤erential equation

(SDE), de�ned on some complete �ltered probability space
�

;z; fztgt�0 ;P

�
. The in�uence on the

system is modeled as a fztgt�0�adapted process, u (:), called the control which is allowed to take values

in some separable metric space (U; d) which is known as the action space. For a control to be optimal, it

should minimize (or maximize) some expected objective functional, which depends on the whole controlled

state of the system X (:) and the control u (:) over some time interval [0; T ]. The in�mum of the cost

functional is known as the value function (as a function of the initial time and state). This optimization

problem is in�nite dimensional, since we are minimizing (or maximizing) a functional over the space of

processes.

Optimal control theory essentially consists of di¤erent methods of reducing the original problem which is

in�nite dimensional to a more manageable problem. The two main methods are dynamic programming,

introduced by Bellman in 1950, and the Pontryagin�s maximum principle. As for dynamic programming,

it is essentially a mathematical technique for making a sequence of interrelated decisions. By considering

a family of control problems with di¤erent initial times and states and establishing relationships between

them, via dynamic programming principle (DPP), one obtains a nonlinear second-order partial di¤erential

equation known as the Hamilton-Jacobi-Bellman (HJB) equation. Solving this equation gives the value

function, after which a �nite dimensional maximization problem can be solved. On the other hand, the

maximum principle gives necessary conditions for optimality by perturbing an optimal control on a small

time interval of length ": Performing a Taylor expansion with respect to " and then sending " to zero one

obtains a variational inequality. By duality the maximum principle is obtained. It states that any optimal

control must solve the Hamiltonian system associated with the control problem. The Hamiltonian system

involves a linear di¤erential equation, with terminal conditions, called the adjoint equation, and a (�nite

dimensional) maximization problem.

1. Time inconsistency

In a typical dynamic programming problem setup, when a controller wants to optimize an objective

function by choosing the best plan, he is only required to decide his current action. This is because

dynamic programming principle, or Belman�s optimality principle, assumes that the future incarnations

of the controller are going to solve the remaining part of today�s problem and act optimally when future

comes. However, in many problems, the DPP does not hold, meaning that an optimal control selected at

some initial pair (of time and state) might not remain optimal as time goes. In such problems, the future
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Introduction

incarnations of the controller may have changed preferences or tastes, or would want to make decisions

based on di¤erent objective functions, e¤ectively acting as opponents of the current self of the controller.

The dilemma described above is called dynamic inconsistency, which has been noted and studied by eco-

nomists for many years, mainly in the context of non-exponential (or hyperbolic) type discount functions.

In [88], Strotz demonstrated that when a discount function was applied to consumption plans, one could

favour a certain plan at the beginning, but later switch preference to another plan. This would hold true

for most types of discount functions, the only exception being the exponential. Nevertheless, exponential

discounting is the default setting in most literatures, as none of the other types could produce explicit

solutions. Results from experimental studies contradict this assumption indicating that the discount rates

for the near future are much lower than the discount rates for the time further away in future, and there-

fore a hyperbolic type discount function would be more realistic. see, for example, Loewenstein and Prelec

[66].

In addition to the non-exponential discounted utility maximization, the mean-variance (MV) optimization

problems, introduced by Markowitz [67], is another important example of time inconsistent problems. The

idea of mean-variance criterion is that it quanti�es the risk using the variance, which enables decision

makers to seek the highest return after evaluating their acceptable risk level. However, due to the presence

of a non-linear function of the expectation in the objective functional, the mean-variance criterion lacks

the iterated expectation property. Hence, continuous-time and multi-period mean-variance problems are

time-inconsistent.

Other types of time-inconsistency do exist as well. In the literature (see e.g. [17]), there have been

listed three possible scenarios where time inconsistency would occur in stochastic continuous time control

problems. More speci�cally, given an objective function of the following form

J (t; x; u (:)) = Et
"Z T

t

� (s� t) f
�
x; s;X (s) ;Et [X (s)] ; u (s)

�
ds+ � (T � t)h

�
x;X (T ) ;Et [X (T )]

�#
;

where T > 0; (t; x) 2 [0; T ]� Rn; � (:) ; f (:) and h (:) are given functions, u (s) 2 U is the control action

applied at time s, and X (:) = X (:;u (:)) is some controlled state process which solves the following SDE,

driven by a standard Brownian motion de�ned on some �ltered probability space
�

;z; fztgt�0 ;P

�
8><>: dX (s) = b (s;X (s) ;Et [X (s)] ; u (s)) dt+ � (s;X (s) ;Et [X (s)] ; u (s)) dW (s) , s 2 [t; T ] ;

X (t) = x;

the optimization for J (t; x; :) is a time-inconsistent problem if:

2



Introduction

� The discount function � (:) is not of exponential type, e.g. a hyperbolic discount function;

� the coe¢ cients b; �; f and/or h are non linear functions of the marginal conditional probability law

of the controlled state process, e.g. mean �eld control problems;

� initial state x appears in the objective function, e.g. a utility function that depends on the initial

state x:

The mean-�eld models were initially proposed to study the aggregate behaviour of a large number of

mutually interacting particles in diverse areas of physical science, such as statistical mechanics, quantum

mechanics and quantum chemistry. Roughly speaking, the mean-�eld models describe the complex in-

teractions of individual �agents� (or particles) through a medium, namely the mean-�eld term, which

describes the action and reaction between the �agents�. In a recent paper Lasry and Lions [60] exten-

ded the application of the mean-�eld models to economics and �nance, where they considered N-player

stochastic di¤erential games, proved the existence of the Nash equilibrium points and derived rigorously

the mean-�eld limit equations as N goes to in�nity.

In all the three cases, listed above, the standard HJB equations cannot be derived since the usual for-

mulation requires an argument about the value function (process) being a supermartingale for arbitrary

controls and being a martingale at optimum, which does not hold here.

2. Approaches to handle time inconsistency

In light of the non-applicability of standard DPP on these problems, there are two basic ways of handling

(various forms of) time inconsistency in optimal control problems.

2.1. The strategy of pre-commitment
One possibility is to study the pre-committed problem: we �x one initial point, like for example (0; x0),

and then try to �nd the control process �u (:) which optimizes J (0; x0; :). We then simply disregard the

fact that at a later points in time such as (s;X (s; 0; x0; �u (:))) the control �u (:) will not be optimal for the

functional J (s;X (s; �u (:)) ; :). Kydland and Prescott [59] indeed argue that a pre-committed strategy may

be economically meaningful in certain circumstances. In the context of MV optimization problem, pre-

committed optimal solution have been extensively investigated in di¤erent situations. [83] is probably

the earliest paper that studies a pre-committed MV model in a continuous-time setting (although he

considers only one single stock with a constant risk-free rate), followed by [10]. In a discrete-time setting,

[64] developed an embedding technique to change the originally time-inconsistent MV problem into a

3
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stochastic LQ control problem. This technique was extended in [112], along with an inde�nite stochastic

linear�quadratic control approach, to the continuous-time case. Further extensions and improvements

are carried out in, among many others, [62], [61], [15], and [98]. Markowitz�s problem with transaction

cost is recently solved in [34]. For general mean �eld control problems, Andersson and Djehiche [7], Li

[63] , and Buckdahn et al. [23] derived a mean �eld type stochastic maximum principle to characterize

"pre-committed" optimal control where both the state dynamics and the cost functional are of a mean-

�eld type. The linear-quadratic optimal control problem for mean-�eld SDEs has been studied by Yong

[104]. The maximum principle for a jump-di¤usion mean-�eld model has been investigated in Shen and

Siu [86] and Chighoub and Mezerdi [31]:

2.2. Game theoretic approach

Another approach to handle time inconsistency in dynamic decision making problems is by considering

time-inconsistent problems as non-cooperative games in which decisions at every instant of time are

selected as if various players at each instant of time are intended to maximize or minimize their own

objective functions; Nash equilibriums are therefore considered instead of optimal solutions, see e.g. [17],

[33], [39], [40], [51], [58], [78], [80], [88], [45]; [102] and [103]. In the context of non-exponential type discount

functions, Strotz [88], was the �rst who used this game perspective to handle the dynamic time-inconsistent

decision problem on the deterministic Ramsay problem. Then by capturing the idea of non-commitment,

by letting the commitment period being in�nitesimally small, he introduced a primitive notion of Nash

equilibrium strategy. Further work which extend [88] are [58], [78], [80] and [45]. In order to study the

optimal investment-consumption problem under hyperbolic discount functions, in both, deterministic and

stochastic framework, Ekeland and Lazrak [39] and Ekeland and Pirvu [40] provided a formal de�nition of

feedback Nash equilibrium controls in continuous time setting. Further extensions of Ekeland and Pirvu�s

work can be found in Björk and Murguci [17], and Ekeland et al. [41]. Recently, Yong [103], provided

an alternative approach for studying a general discounting time inconsistent optimal control problem

in continuous time setting by considering a discrete time counterpart. Following Yong�s approach Q.

Zhaoa et al. [107] studied the consumption-investment problem with a general discount function and a

logarithmic utility function. In the context of MV optimization problem, Basak and Chabakauri [11] �rst

investigated the equilibrium solutions for continuous-time Markowitz�s mean-variance portfolio selection

problem. Böjrk et al. [18] studied the mean-variance portfolio selection with state dependent risk aversion.

In a non-Markovian framework, a time-consistent strategy is obtained for the mean-variance portfolio

selection by Hu et al. [51], followed by Czichowsky [33].

Concerning equilibrium strategies for mean �eld optimal control problems. Following the approach de-
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veloped in [51], Bensoussan et al. [14] investigate time-inconsistent stochastic LQ problem of mean

�eld type. Yong [102] investigate closed-loop Nash equilibrium strategies for general time-inconsistent

stochastic LQ problem for mean-�eld type stochastic di¤erential equation by adopting a discretization

conter part. Dehiche and Huang [37] derived a Pontryagin�s type stochastic maximum principle to char-

acterize equilibrium control where both the state dynamics and the cost functional are of a mean-�eld

type.

3. Organization of Thesis
This PhD dissertation presents two independent research topics about stochastic control problems which,

in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle.

For the �rst topic, we attack these problems by viewing them within a game theoretic framework, and

we look for open-loop Nash equilibrium solutions. The second one is concerned with the characterization

of pre-committed near-optimal controls for general stochastic control problems where both the state

dynamics and the cost functional are of a mean-�eld type.

The structure of the dissertation is as follows:

In Chapter 1, we discuss a class of stochastic linear quadratic dynamic decision problems of a general

time-inconsistent type, in the sense that, it does not satisfy the Bellman optimality principle. More pre-

cisely, the dependence of the running and the terminal costs in the objective functional on some general

discounting coe¢ cients, as well as on some quadratic terms of the conditional expectation of the state

process, makes the problem time-inconsistent. Open-loop Nash equilibrium controls are then construc-

ted instead of optimal controls, this has been accomplished through the stochastic maximum principle

approach that includes a �ow of forward-backward stochastic di¤erential equations under a maximum

condition. Then by decoupling the �ow of the adjoin process, we derive an explicit representation of the

equilibrium strategies in feedback form. As an application, we study some concrete examples. We emphas-

ize that, this method can provide the necessary and su¢ cient conditions to characterize the equilibrium

strategies. While most existing results which are based on the extended HJB techniques can create only

the su¢ cient condition to characterize the equilibrium strategies. The results obtained in this chapter,

extend some ones obtained in Hu et al. [51] and Yong [102]:

In Chapter 2, we study the equilibrium reinsurance/new business and investment strategy for mean-

variance insurers with constant risk aversion. The insurers are allowed to purchase proportional reinsur-

ance, acquire new business and invest in a �nancial market, where the surplus of the insurers is assumed

to follow a jump-di¤usion model and the �nancial market consists of one riskless asset and a multiple

risky assets whose price processes are driven by Poisson random measures and an independent Brownian

5
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motions. By using a version of the stochastic maximum principle approach, we characterize the open

loop equilibrium strategies via a stochastic system which consists of a �ow of forward-backward stochastic

di¤erential equations (FBSDEs in short) and an equilibrium condition. Then by decoupling the �ow

of FSBDEs, an explicit representation of an equilibrium solution is derived as well as it corresponding

objective function value. The results obtained, in this chapter, cover the ones obtained in [110] and [111].

In Chapter 3, we revisit time inconsistent consumption-investment problem with a general discount

function and a general utility function in a non-Markovian framework. The coe¢ cients in our model,

including the interest rate, appreciation rate and volatility of the stock, are assumed to be adapted

stochastic processes. We adopt a variational method to characterize equilibrium strategies in terms of

the unique solutions of a �ow of BSDEs. When the coe¢ cients in the problem are all deterministic, we

�nd an explicit equilibrium solutions in feedback from via some parabolic PDE. Our results generalize the

ones obtained in [87] and [40].

In Chapter 4, we discuss stochastic control models which are described by a stochastic di¤erential equa-

tion of mean-�eld type, in the sense that the coe¢ cients are permitted to depend on the state process

as well as of its expected value. The control variable has two components, the �rst being absolutely

continuous and the second is a piecewise impulse process which is not necessarily increasing. Necessary

and su¢ cient conditions for a control to be near optimal are studied in the form of stochastic maximum

principle by using Ekeland�s variational principle, which allows to produce two approximate variational

inequalities in integral form. The �rst inequality is constructed by the spike variation technique in terms

of the H-function employed for absolutely continuous part of all near optimal control. The second one

is de�ned in term of the �rst order adjoint process by using a convex perturbation technique for all near

optimal impulse controls.

Chapter 5 concludes the thesis with some �nal remarks and proposes some future research directions.

4. Relevant Papers
The content of this thesis was the subject of the following papers:

1. Farid Chighoub, Ayesha Sohail, Ishak Alia, Near-optimality conditions in mean-�eld control models
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Notation

Notation

� Rn�m : the set of n�m real matrices:

� Sn : the set of n� n symmetric real matrices:

� C> : the transpose of the vector (or matrix) C:

� h:; :i : the inner product in some Euclidean space.

� For a function f; we denote by fx (resp. fxx) the gradient or Jacobian (resp. the Hessian) of f with

respect to the variable x:

For any Euclidean space H = Rn, Rn�m or Sn with Frobenius norm j:j we let for any t 2 [0; T ]

� Lp (
;Ft;P;H) := f� : 
! H j � is Ft �measurable; with E [j�jp] <1g, for any p � 1:

� L2 (Z;B (Z) ; �;H) :=
�
r (:) : Z ! H j r (:) is B (Z)�measurable; with

Z
Z

jr (z)j2 � (dz) <1
�
:

� S2F (t; T ;H) :=
n
X (:) : [t; T ]� 
! H j X (:) is (Fs)s2[t;T ] � adapted;

s 7! X(s) is càdlàg; with E

"
sup
s2[t;T ]

jX (s)j2
#
<1

)
:

� C2F (t; T ;H) :=
n
X (:) : [t; T ]� 
! H j X (:) is (Fs)s2[t;T ] � adapted;

s 7! X(s) is continuous; with E

"
sup
s2[t;T ]

jX (s)j2
#
<1

)
:

� L1F (t; T ;H) :=
(
c (:) : [t; T ]� 
! Hj c (:) is (Fs)s2[t;T ] � adapted,with E

"
sup
s2[t;T ]

jc (s)j
#
<1:

)
:

� L2F (t; T ;H) :=
n
q (:) : [t; T ]� 
! Hj q (:) is (Fs)s2[t;T ] � adapted; with E

hR T
t
jq (s)j2 ds

i
<1

o
:

� L2F;p (t; T ;H) :=
n
u (:) : [t; T ]� 
! Hj u (:) is (Fs)s2[t;T ] � predictible; with E

hR T
t
ju (s)j2 ds

i
<1

o
:

� L�;2F;p ([t; T ]� Z;H) :=
n
R (:; :) : [t; T ]� 
� Z ! H j R (:) is measurable and (Fs)s2[t;T ] � predictable;

with E

"Z T

t

Z
Z

jR (s; z)j2 � (dz) ds
#
<1

)
:

� C ([0; T ] ;H) := ff : [0; T ]! Hj f (:) is continuousg :

� D [0; T ] := f(t; s) 2 [0; T ]� [0; T ] ; such that s � tg :

� C (D [0; T ] ;H) := ff (:; :) : D [0; T ]! Hj f (:; :) is continuousg :

� C0;1 (D [0; T ] ;H) :=
�
f (:; :) : D [0; T ]! Hj f (:; :) and @f

@s
(:; :) are continuous

�
:

� C1;2 ([0; T ]� R;R) :=
�
f (:; :) : [0; T ]� R! Rj f (:; x) is C1 in t and f (t; :) is C2 in x

	
:
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Chapter 1

The Maximum Principle in

Time-Inconsistent LQ Equilibrium

Control Problem for Jump Di¤usions

Stochastic optimal control problems with linear dynamics and quadratic stage costs are one of the most

important classes of optimal control ones. They have wide applications in engineering and �nancial math-

ematics, etc. A major approach for studying such stochastic control problems is the dynamic programming

principle which expresses the optimal policy in terms of an optimization problem involving the value func-

tion (or a sequence of value functions in the time-varying case). The proof of the dynamic programming

principle is technical and has been studied by di¤erent methods. The value function can be created, by

an iteration connecting to the Bellman operator, which maps functions on the state space into functions

on the state space and involves an expectation and a minimization step.

A number of studies have been devoted to this topic, Wu and Wang [96] discussed a kind of stochastic

LQ problem for system driven by a Brownian motion and an independent Poisson jump process and

a linear feedback regulator for the optimal control problem is given by the solution of a generalized

Riccati equation system. In view of completing of squares technique, Hu and Øksendal [53] studied

the stochastic LQ problem for a general stochastic di¤erential equation with random coe¢ cients, under

partial information. Meng [68] investigate the stochastic maximum principle in LQ control problem for

multidimensional stochastic di¤erential equation driven by a Brownian motion and a Poisson random

martingale measure and obtain the existence and uniqueness result for a class of backward stochastic

Riccati equations. For more information on LQ control models for stochastic dynamic systems, we refer

9
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to [91], [104], and [112].

To the best of our knowledge, there is little work in the literature concerning equilibrium strategy for

time-inconsistent LQ control problems. In [101] Yong studied a general discounting time-inconsistent

deterministic LQ model, and he derived a closed-loop equilibrium strategies, via a forward ordinary

di¤erential equation coupled with a backward Riccati-Volterra integral equation. Hu et al. [51] investigate

open loop equilibrium strategies for time inconsistent LQ control problem with random coe¢ cients by

adopting a Pontryagin type stochastic maximum principle approach, we refer to [94] for partially observed

time inconsistent recursive LQ optimization problem. Yong [102] investigate a time-inconsistent stochastic

LQ problem for mean-�eld type stochastic di¤erential equation and closed-loop solutions are presented

by means of multi-person di¤erential games, the limit of which leads to the equilibrium Riccati equation.

In [14] Bensoussan et al. investigate time-inconsistent stochastic LQ problem of mean �eld type. As

far as we know, there is no literature on the time-inconsistent stochastic linear-quadratic optimal control

problems incorporating stochastic jumps.

Motivated by these points, this thesis studies optimality conditions for time-inconsistent linear quadratic

stochastic control problem, in the sense that, it does not satisfy the Bellman optimality principle, since

a restriction of an optimal control for a speci�c initial pair on a later time interval might not be optimal

for that corresponding initial pair. Di¤erent from [51], [102], and [14] in which the noise is driven only by

a Brownian motion, in our LQ model the state evolves according to a SDE, when the noise is driven by a

multidimensional Brownian motion and an independent Poisson point process. The objective functional

includes the cases of hyperbolic discounting, as well as, the continuous-time Markowitz�s mean-variance

portfolio selection problem, with state-dependent risk aversion.

Our objective is to investigate a characterization of Nash equilibrium controls instead of optimal controls.

The novelty of this work lies in the fact that, our calculations are not limited to the exponential discounting

framework, the time-inconsistency of the LQ optimal control in this situation, is due to the presence

of some general discounting coe¢ cients, involving the so-called hyperbolic discounting situations. In

addition, the presence of some quadratic terms of the expected controlled state process, in both the

running cost and the terminal cost, make also the problem time-inconsistent: This can be motivated by

the reward term in the mean-variance portfolio choice model.

We accentuate that, our model covers some class of time-inconsistent stochastic LQ optimal control prob-

lem studied by [51], and some relevant cases appeared in [102]: Moreover, we have de�ned the equilibrium

controls in open-loop sense, in a manner similar to [51], which is di¤erent from the feedback form, see e.g.

[40], [11] , [17], and [103].

The rest of the chapter is organized as follows. In Section 1, we describe the model and formulate the

10
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objective. In Section 2 we present the �rst main result of this work (Theorem 1.2.1), which characterizes

the equilibrium control via a stochastic system, which involves a �ow of forward-backward stochastic

di¤erential equation with jumps (FBSDEJ in short), along with some equilibrium conditions. In Section 3,

by decoupling the �ow of the FBSDEJ, we investigate a feedback representation of the equilibrium control,

via some class of ordinary di¤erential equations. Section 4 is devoted to some applications, we solve a

continuous time mean�variance portfolio selection model and some one-dimensional general discounting

LQ problems.

1.1 Problem setting

Let (
;F ; (Ft)t2[0;T ] ;P) be a �ltered probability space such that F0 contains all P-null sets, FT = F for

an arbitrarily �xed �nite time horizon T > 0; and (Ft)t2[0;T ] satis�es the usual conditions. We assume that

(Ft)t2[0;T ] is generated by a d-dimensional standard Brownian motion (W (t))t2[0;T ] and an independent

Poisson measure N on [0; T ] � Z where Z � R � f0g. We assume that the compensator of N has the

form � (dt; dz) = � (dz) dt for some positive and ���nite Levy measure on Z, endowed with its Borel

���eld B (Z). We suppose that
R
Z
1^ jzj2 � (dz) <1 and write ~N (dt; dz) = N (dt; dz)� � (dz) dt for the

compensated jump martingale random measure of N: Obviously, we have

Ft = �
hR R

A�(0;t]N (ds; dz) ; s � t; A 2 B (Z)
i
_ � [W (s) ; s � t] _N ;

where N denotes the totality of ��null sets, and �1 _ �2 denotes the ���eld generated by �1 [ �2:

We consider a n-dimensional non homogeneous linear controlled jump di¤usion system

8>>>>>>><>>>>>>>:

dX (s) = fA (s)X (s) +B (s)u (s) + b (s)g ds+
dX
j=1

fCj (s)X (s) +Dj (s)u (s) + �j (s)g dW j (s)

+

Z
Z

fE (s; z)X (s�) + F (s; z)u (s) + c (s; z)g ~N (ds; dz) ; s 2 [t; T ] ;

X (t) = �.

(1.1.1)

where (t; �; u (:)) 2 [0; T ] � L2 (
;Ft;P;Rn) � L2F;p (t; T ;Rm) : Under some conditions, for any initial

situation (t; �) and any admissible control u (:) the state equation is uniquely solvable, we denote by

X (s) = Xt;� (s;u (:)) its solution; for s 2 [t; T ] : Di¤erent controls u (:) will lead to di¤erent solutions

X (:) : Note that L2F;p (t; T ;Rm) is the space of all admissible strategies over [t; T ].

11
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Our aim is to minimize the following expected discounted cost functional

J (t; �; u (:))

= Et
"Z T

t

1

2

�
hQ (t; s)X (s) ; X (s)i+



�Q (t; s)Et [X (s)] ;Et [X (s)]

�
+ hR (t; s)u (s) ; u (s)i

�
ds

+ h�1 (t) � + �2 (t) ; X (T )i

+
1

2

�
hG (t)X (T ) ; X (T )i+



�G (t)Et [X (T )] ;Et [X (T )]

���
;

(1.1.2)

over u (:) 2 L2F;p (t; T ;Rm) ;where X (:) = Xt;� (:;u (:)) and Et [:] = E [: jFt ] :

We need to impose the following assumptions about the coe¢ cients

(H1) The functions A (:) ; Cj (:) : [0; T ] ! Rn�n; B (:) ; Dj (:) : [0; T ] ! Rn�m; b (:) ; �j (:) : [0; T ] ! Rn;

E (:; :) : [0; T ]�Z ! Rn�n; F (:; :) : [0; T ]�Z ! Rn�m, and c (:; :) : [0; T ]�Z ! Rn are continuous

and bounded. The coe¢ cients on the cost functional satisfy

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Q (:; :) ; �Q (:; :) 2 C (D [0; T ] ;Sn) ;

R (:; :) 2 C (D [0; T ] ;Sm) ;

G (:) ; �G (:) 2 C ([0; T ] ;Sn) ;

�1 (:) 2 C ([0; T ] ;Rn�n) ;

�2 (:) 2 C ([0; T ] ;Rn) :

(H2) The functions R (:; :) ; Q (:; :) and G (:) satisfy

R (t; t) � 0; G (t) > 0; for t 2 [0; T ] ; and Q (t; s) � 0; for (t; s) 2 D [0; T ] :

Under (H1) for any (t; �; u (:)) 2 [0; T ]�L2 (
;Ft;P;Rn)�L2F;p (t; T ;Rm) ; the state equation (1:2:1) has

a unique solution X (:) 2 S2F (t; T ;Rn) ; see for example [68]. Moreover, we have the following estimate

E
�
sup
t�s�T

jX (s)j2
�
� K

�
1 + E

h
j�j2
i�
;

for some positif constant K. The optimal control problem can be formulated as follows.

Problem (LQJ). For any given initial pair (t; �) 2 [0; T ] � L2 (
;Ft;P;Rn), �nd a control �u (:) 2

L2F;p (t; T ;Rm) such that

J (t; �; �u (:)) = inf
u(:)2L2F;p(t;T ;Rm)

J (t; �; u (:)) :

12
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Remark 1.1.1 1) The dependence of the weighting matrices of the current time t; the dependence of the

terminal cost on the current state � and the presence of quadratic terms of the expected controlled state

process in the cost functional make the Problem (LQJ) time-inconsistent.

2) One way to get around the time-inconsistency issue is to consider only precommitted controls (i.e., the

controls are optimal only when viewed at the initial time).

1.1.1 An example of time-inconsistent optimal control problem

We present a simple illustration of stochastic optimal control problem which is time-inconsistent. Our

aim is to show that the classical SMP approach is not e¢ cient in the study of this problem if it�s viewed as

time-consistent. For n = d = m = 1; consider the following controlled SDE starting from (t; x) 2 [0; T ]�R

8><>: dXt;x (s) = bu (s) ds+ �dW (s) ; s 2 [t; T ] ;

Xt;x (t) = x;
(1.1.3)

where b and � are real constants. The cost functional is given by

J (t; x; u (:)) =
1

2
E

"Z T

t

ju (s)j2 ds+ h (t)
�
Xt;x (T )� x

�2#
; (1.1.4)

where h (:) : [0; T ] ! (0;1) ; is a general deterministic non-exponential discount function satisfying

h (0) = 1; h (s) � 0 and
R T
0
h (t) dt <1. We want to address the following stochastic control problem.

Problem (E). For any given initial pair (t; x) 2 [0; T ]� R, �nd a control �u (:) 2 L2F (t; T ;R) such that

J (t; x; �u (:)) = inf
u(:)2L2F (t;T ;R)

J (t; x; u (:)) :

At a �rst stage, we consider the Problem (E) as a standard time consistent stochastic linear quadratic

problem. Since J (t; x; :) is convex and coercive, there exists then a unique optimal control for this problem

for each �xed initial pair (t; x) 2 [0; T ]�R: Notice that the usual Hamiltonian associated to this problem

is H : [0; T ]� R4 ! R such that for every (s; y; v; p; q) 2 [0; T ]� R4 we have

H (s; y; v; p; q) = pbv + �q � 1
2
v2;

Let ut;x (:) be an admissible control for (t; x) 2 [0; T ]�R: Then the corresponding �rst order and second

13
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order adjoint equations are given respectively by

8><>: dpt;x (s) = qt;x (s) dW (s) ; s 2 [t; T ] ;

pt;x (T ) = �h (t) (Xt;x (T )� x) ;

and 8><>: dP t;x (s) = Qt;x (s) dW (s) ; s 2 [t; T ] ;

P t;x (T ) = �h (t) ;

the last equation has only the solution (P t;x (s) ; Qt;x (s)) = (�h (t) ; 0) ; 8s 2 [t; T ] :

Note that, the corresponding H-function is given by

H (s; y; v) = H
�
s; y; v; pt;x (s) ; qt;x (s)

�
= pt;x (s) bv + �qt;x (s)� 1

2
v2;

which is a concave function of v: Then according to the su¢ cient condition of optimality, see e.g. Theorem

5.2 pp 138 in [105], for any �xed initial pair (t; x) 2 [0; T ]� R; Problem (E) is uniquely solvable with an

optimal control �ut;x (:) having the representation

�ut;x (s) = b�pt;x (s) ; 8s 2 [t; T ] ;

such that the process (�pt;x (:) ; �qt;x (:)) is the unique adapted solution to the BSDE

8><>: d�pt;x (s) = �qt;x (s) dW (s) ; s 2 [t; T ] ;

�pt;x (T ) = �h (t)
�
�Xt;x (s)� x

�
:

By stadard arguments we can show that the processes (�pt;x (:) ; �qt;x (:)) are explicitly given by

8><>: �pt;x (s) = �M t (s)
�
�Xt;x (s)� x

�
; s 2 [t; T ] ;

�qt;x (s) = ��M t (s) ; s 2 [t; T ] ;

where �Xt;x (:) is the solution of the state equation corresponding to �ut;x (:) ; given by

8><>: d �Xt;x (s) = b2�pt;x (s) ds+ �dW (s) ; s 2 [t; T ] ;
�Xt;x (t) = x:

and

M t (s) =
h (t)

b2h (t) (T � s) + 1 ; 8s 2 [t; T ] :
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A simple computation show that

ut;x (s) = � bh (t)

b2h (t) (T � s) + 1
�
�Xt;x (s)� x

�
; 8s 2 [t; T ] ;

clearly we have

ut;x (s) 6= 0; 8s 2 (t; T ] : (1.1.5)

In the next stage, we will prove that the Problem (E) is time-inconsistent, for this we �rst �x the initial

data (t; x) 2 [0; T ]�R. Note that, if we assume that the Problem (E) is time-consistent, in the sense that

for any r 2 [t; T ] the restriction of �ut;x (:) on [r; T ] is optimal for Problem (E) with initial pair
�
r; �Xt;x (r)

�
;

however as Problem (E) is uniquely solvable for any initial pair, we should have then 8r 2 (t; T ]

�ut;x (s) = �ur;
�Xt;x(r) (s) = � bh (r)

b2h (r) (T � s) + 1

�
�Xr; �Xt;x(r) (s)� �Xt;x (r)

�
;8s 2 [r; T ] ;

where �Xr;X̂t;x(r) (:) solves the SDE

8><>:
d �Xr; �Xt;x(r) (s) = b2

h (r)

b2h (r) (T � s) + 1

�
�Xr; �Xt;x(r) (s)� �Xt;x (r)

�
ds+ �dW (s) ;8s 2 [r; T ] ;

�Xr; �Xt;x(r) (r) = �Xt;x (r) :

In particular by the uniqueness of solution to the state SDE we should have

�ut;x (r) = � bh (r)

b2h (r) (T � r) + 1

�
�Xr; �Xt;x(r) (r)� �Xt;x (r)

�
= 0;

is the only optimal solution of the Problem (E), this contradict (1:1:5). Therefore, the Problem (E) is not

time-consistent, and more precisely, the solution obtained by the classical SMP is wrong and the problem

is rather trivial since the only optimal solution equal to zero.

1.2 Characterization of equilibrium strategies

The purpose of this thesis is to characterize open-loop Nash equilibriums instead of optimal controls. We

use the game theoretic approach to handle the time inconsistency in the same perspective as Ekeland and

Lazrak [39], and Bjork and Murgoci [17]. Let us brie�y describe the game perspective that we need to

consider, as follows.

� We consider a game with one player at each point t in [0; T ]. This player represents the incarnation

of the controller at time t and is referred to as �player t�.
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� The t� th player can control the system only at time t by taking his/her strategy u (t; :) : 
! Rm:

� A control process u (:) is then viewed as a complete description of the chosen strategies of all players

in the game.

� The reward to the player t is given by the functional J
�
t;X (t) ; uj[t;T ] (:)

�
, which depends only on

the restriction of the control u (:) to the time interval [t; T ] :

For the above description, we de�ne the concept of a � Nash equilibrium point (control)� of the game.

This is an admissible control process û (:) satisfying the following condition; For an arbitrary point t in

time, suppose that every player s, such that s > t, will use the strategy û (s). Then the optimal choice

for player t is that, he/she also uses the strategy û (t) :

Nevertheless, the problem with this �de�nition�, is that the individual player t does not really in�uence

the outcome of the game at all. He/she only chooses the control at the single point t; and since this is a

time set of Lebesgue measure zero, the control dynamics will not be in�uenced. Therefore, to characterize

open-loop Nash equilibriums, which have not to be necessary feedback, we follow [51] who suggests the

following formal de�nition inspired by [40] and [17].

Noting that, for brevity, in the rest of the paper, we suppress the subscript (s) for the coe¢ cients

A (s) ; B (s) ; b (s) ; Cj (s) ; Dj (s) ; �j (s), and we use the notation % (z) instead of % (s; z) for % = E;F and

c: In addition, sometimes we simply call û (:) an equilibrium control instead of open-loop Nash equilibrium

control when there is no ambiguity.

Following [51], we �rst consider an equilibrium by local spike variation, given an admissible control

û (:) 2 L2F;p (0; T ;Rm) : For any t 2 [0; T ] ; v 2 L2 (
;Ft;P;Rm) and for any " 2 [0; T � t) ; de�ne

u" (s) =

8><>: û (s) + v; for s 2 [t; t+ ") ;

û (s) ; for s 2 [t+ "; T ] ;
(1.2.1)

we have the following de�nition.

De�nition 1.2.1 (Open-loop Nash equilibrium) An admissible strategy û (:) 2 L2F;p (0; T ;Rm) is an

open-loop Nash equilibrium control for Problem (LQJ) if

lim
"#0

1

"

n
J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�o
� 0; (1.2.2)

for any t 2 [0; T ] ; and v 2 L2 (
;Ft;P;Rm) : The corresponding equilibrium dynamics solves the following
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SDE with jumps

8>>>>>><>>>>>>:
dX̂ (s) =

n
AX̂ (s) +Bû (s) + b

o
ds+

dX
j=1

n
CjX̂ (s) +Dj û (s) + �j

o
dW j (s)

+

Z
Z

n
E (z) X̂ (s�) + F (z) û (s) + c (z)

o
~N (ds; dz) ; s 2 [0; T ] ;

X̂0 = x0.

1.2.1 The �ow of adjoint equations

We introduce the adjoint equations involved in the stochastic maximum principle which characterize the

open-loop Nash equilibrium controls of Problem (LQJ). First, de�ne the Hamiltonian H : D [0; T ] �

L1 (
;Ft;P;Rn)� Rm � Rn � Rn�d � L2 (Z;B (Z) ; �;Rn)! R by

H (t; s;X; u; p; q; r (:))

= hp;AX +Bu+ bi+
dX
j=1

hqj ; DjX + Cju+ �ji �
1

2
hR (t; s)u; ui

+

Z
Z

hr (z) ; E (z)X + F (z)u+ c (z)i � (dz)� 1
2

�
hQ (t; s)X;Xi+



�Q (t; s)Et [X] ;Et [X]

��
:

(1.2.3)

Let û (:) 2 L2F;p (0; T ;Rm) and denote by X̂ (:) 2 S2F (0; T ;R) the corresponding controlled state process.

For each t 2 [0; T ], we introduce the �rst order adjoint equation de�ned on the time interval [t; T ], and

satis�ed by the triplet of processes (p (:; t) ; q (:; t) ; r (:; :; t)) as follows

8>>>>>>>>><>>>>>>>>>:

dp (s; t) = �

8<:A>p (s; t) +
dX
j=1

C>j qj (s; t) +

Z
Z

E (z)
>
r (s; z; t) � (dz)�Q (t; s) X̂ (s)

� �Q (t; s)Et
h
X̂ (s)

io
ds+

dX
j=1

qj (s; t) dW
j (s) +

Z
Z

r (s; z; t) ~N (ds; dz) ; s 2 [t; T ] ;

p (T ; t) = �G (t) X̂ (T )� �G (t)Et
h
X̂ (T )

i
� �1 (t) X̂ (t)� �2 (t) ;

(1.2.4)

where q (:; t) = (q1 (:; t) ; :::; qd (:; t)) :

Similarly, we introduce the second order adjoint equation de�ned on the time interval [t; T ] ; and satis�ed

17
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by the triplet of processes (P (:; t) ;� (:; t) ;� (:; :; t)) as follows

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

dP (s; t) = �
(
A>P (s; t) + P (s; t)A+

dP
j=1

�
C>j P (s; t)Cj + �j (s; t)Cj

+ C>j �j (s; t)
�
+

Z
Z

E (z)
>
(� (s; z; t) + P (s; t))E (z) � (dz)

+

Z
Z

� (s; z; t)E (z) � (dz) +

Z
Z

E (z)
>
� (s; z; t) � (dz)�Q (t; s)

�
ds

+
dX
j=1

�j (s; t) dW
j
s +

Z
Z

� (s; z; t) ~N (ds; dz) ; s 2 [t; T ] ;

P (T ; t) = �G (t) ;

(1.2.5)

where � (:; t) = (�1 (:; t) ; :::;�d (:; t)). Under (H1) the BSDE (1:2:4) is uniquely solvable in S2F (t; T ;Rn)�

L2F
�
t; T ;Rn�d

�
� L�;2F;p ([t; T ]� Z;Rn) ; see e.g. [68]. Moreover there exists a constant K > 0 such that

E
�
sup
t�s�T

jp (s; t)j2Rn
�
+ E

"Z T

t

jq (s; t)j2Rn�d ds
#
+ E

"Z T

t

Z
Z

jr (s; z; t)j2Rn � (dz) ds
#
� K

�
1 + jx0j2

�
:

(1.2.6)

In an other hand, noting that the �nal data of the equation (1:2:5) is deterministic, it is straightforward

to look at a deterministic solution. In addition we have the following representation

8>>>>>><>>>>>>:
dP (s; t) = �

(
A>P (s; t) + P (s; t)A+

dP
j=1

C>j P (s; t)Cj

+

Z
Z

E (z)
>
P (s; t)E (z) � (dz)�Q (t; s)

�
ds; s 2 [t; T ] ;

P (T ; t) = �G (t) ;

(1.2.7)

which is a uniquely solvable matrix-valued ordinary di¤erential equation.

Next, for each t 2 [0; T ] ; associated with the 6-tuple
�
û (:) ; X̂ (:) ; p (:; t) ; q (:; t) ; r (:; :; t) ; P (:; t)

�
we

de�ne the Ht-function as follows

Ht (s;X; u) = H (t; s;X; û (s) + u; p (s; t) ; q (s; t) ; r (s; :; t))

+
1

2
u>

8<:
dX
j=1

D>
j P (s; t)Dj +

Z
Z

F (z)
>
P (s; t)F (z) � (dz)

9=;u; (1.2.8)

where (s;X; u) 2 [t; T ]�L1 (
;F ;P;Rn)�Rm: In the rest of the paper, we will keep the following notation,

for (s; t) 2 D [0; T ]

�H (t; s) = H
�
t; s; X̂ (s) ; û (s) + u; p (s; t) ; q (s; t) ; r (s; :; t)

�
�H

�
t; s; X̂ (s) ; û (s) ; p (s; t) ; q (s; t) ; r (s; :; t)

�
:

18
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1.2.2 A stochastic maximum principle for equilibrium controls

In this subsection, we present a version of Pontryagin�s stochastic maximum principle which characterize

the equilibrium controls of the Problem (LQJ). We derive the result by using the second order Taylor

expansion in the special form spike variation (1:2:1). Here, we don�t assume the non-negativity condition

about the matrices Q; G and R as in [51] and [102]:

The following theorem is the �rst main result of this work, it�s providing a necessary and su¢ cient

condition to characterize the open-loop Nash equilibrium controls for time-inconsistent Problem (LQJ).

Theorem 1.2.1 (Stochastic Maximum Principle For Equilibriums) Let (H1) holds. Then an

admissible control û (:) 2 L2F;p (0; T ;Rm) is an open-loop Nash equilibrium, if and only if, for almost

all t 2 [0; T ], there exist a unique triplet of adapted processes (p (:; t) ; q (:; t) ; r (:; :; t)) which satisfy the

BSDE (1:2:4) and a deterministic matrix-valued function P (:; t) which satis�es the ODE (1:2:7), such

that the following condition holds, for all u 2 Rm;

�H (t; t) +
1

2
u>

8<:
dX
j=1

D>
j P (t; t)Dj +

Z
Z

F (z)
>
P (t; t)F (z) � (dz)

9=;u � 0; P� a:s: (1.2.9)

Or equivalently, we have the following two conditions. The �rst order equilibrium condition

R (t; t) û (t)�B>p (t; t)�
dX
j=1

D>
j qj (t; t)�

Z
Z

F (z)
>
r (t; z; t) � (dz) = 0; a:e:t 2 [0; T ] ; P�a:s:; (1.2.10)

and the second order equilibrium condition

R (t; t)�
dX
j=1

D>
j P (t; t)Dj �

Z
Z

F (z)
>
P (t; t)F (z) � (dz) � 0; a:e:t 2 [0; T ] ; P� a:s: (1.2.11)

Remark 1.2.1 Note that for each t 2 [0; T ], (1:2:4) and (1:2:5) are backward stochastic di¤erential

equations. So, as we consider all t in [0; T ] ; all their corresponding adjoint equations form essentially a

"�ow" of BSDEs. Moreover, there is an additional constraint (1:2:9) which is equivalent to the conditions

(1:2:10) and (1:2:11) that acts on the �ow only when s = t, while the Pontryagin�s stochastic maximum

principle for optimal control involves only one system of forward-backward stochastic di¤erential equation.

Proof of the Theorem 1.2.1

Our goal now, is to give a proof of the Theorem 1.2.1. The main idea is still based on the variational

techniques in the same spirit of proving the stochastic Pontryagin�s maximum principle [90].
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Let û (:) 2 L2F;p (0; T ;Rm) be an admissible control and X̂ (:) the corresponding controlled process solution

to the state equation: Consider the perturbed control u" (:) de�ned by the spike variation (1:2:1) for some

�xed arbitrary t 2 [0; T ] ; v 2 L2 (
;Ft;P;Rm) and " 2 [0; T � t) : Denote by X̂" (:) the solution of the

state equation corresponding to u" (:). Since the coe¢ cients of the controlled state equation are linear,

then by the standard perturbation approach, see e.g. [90], we have

X̂" (s)� X̂ (s) = y";v (s) + z";v (s) ; s 2 [t; T ] ; (1.2.12)

where y";v (:) and z";v (:) solve the following linear stochastic di¤erential equations, respectively

8>>>>><>>>>>:
dy";v (s) = Ay";v (s) ds+

dP
j=1

�
Cjy

";v (s) +Djv1[t;t+") (s)
	
dW j (s)

+

Z
Z

�
E (z) y";v (s�) + F (z) v1[t;t+") (s)

	
~N (ds; dz) ; s 2 [t; T ] ;

y";v (t) = 0;

(1.2.13)

and 8>>>>><>>>>>:
dz";v (s) =

�
Az";v (s) +Bv1[t;t+") (s)

	
ds+

dP
j=1

Cjz
";v (s) dW j (s)

+

Z
Z

E (z) z";v (s�) ~N (ds; dz) ; s 2 [t; T ] ;

z";v (t) = 0:

(1.2.14)

First, we present the following technical lemma needed later in this study.

Lemma 1.2.1 Under assumption (H1), the following estimates hold

Et [y" (s)] = 0; a.e. s 2 [t; T ] and sup
s2[t;T ]

��Et [z" (s)]��2 = O
�
"2
�
; (1.2.15)

Et sup
s2[t;T ]

jy" (s)j2 = O (") and Et sup
s2[t;T ]

jz" (s)j2 = O
�
"2
�
: (1.2.16)

Moreover, we have the equality

J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�
= �Et

"Z T

t

(
�H (t; s) +

1

2
v>

 
dP
j=1

D>
j P (s; t)Dj +

Z
Z

F (z)
>
P (s; t)F (z) � (dz)

!
v

)
1[t;t+") (s) ds

#
+ o (") :

(1.2.17)

Proof. Let t 2 [0; T ] ; v 2 L2 (
;Ft;P;Rm) and " 2 [0; T � t) : Since Et [y";v (:)] and Et [z";v (:)] solve the
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following ODEs, respectively,

8><>: dEt [y";v (s)] = AEt [y";v (s)] ds; s 2 [t; T ] ;

Et [y";v (t)] = 0;

and 8><>: dEt [z";v (s)] =
�
AEt [z";v (s)] +BEt [v] 1[t;t+") (s)

	
ds; s 2 [t; T ] ;

Et [z";v (t)] = 0:

Thus, it is clear that Et [y";v (s)] = 0; a:e: s 2 [t; T ] : According to Gronwall�s inequality we have

sup
s2[t;T ]

jEt [z";v (s)]j2 = O
�
"2
�
: Moreover, by Lemma 2.1. in [90], we obtain (1.2.16).

Now, we can calculate the di¤erence

J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�
= Et

"Z T

t

nD
Q (t; s) X̂ (s) + �Q (t; s)Et

h
X̂ (s)

i
; y";v (s) + z";v (s)

E
+
1

2
hQ (t; s) (y";v (s) + z";v (s)) ; y";v (s) + z";v (s)i

+
1

2



�Q (t; s)Et [y";v (s) + z";v (s)] ;Et [y";v (s) + z";v (s)]

�
+ hR (t; s) û (s) ; vi 1[t;t+") (s) +

1

2
hR (t; s) v; vi 1[t;t+") (s)

�
ds

+
1

2
hG (t) (y";v (T ) + z";v (T )) ; y";v (T ) + z";v (T )i

+
D
G (t) X̂ (T ) + �G (t)Et

h
X̂ (T )

i
+ �1 (t) X̂ (t) + �2 (t) ; y

";v (T ) + z";v (T )
E

+
1

2



�G (t)Et [y";v (T ) + z";v (T )] ;Et [y";v (T ) + z";v (T )]

��
:

In an other hand, from (H1) and (1:2:15)� (1:2:16) the following estimate holds

Et
"Z T

t

1

2



�Q (t; s)Et [y";v (s) + z";v (s)] ;Et [y";v (s) + z";v (s)]

�
ds

+
1

2



�G (t)Et [y";v (T ) + z";v (T )] ;Et [y";v (T ) + z";v (T )]

��
= o (") : (1.2.18)
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Then, from the terminal conditions in the adjoint equations, it follows that

J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�
= Et

"Z T

t

nD
Q (t; s) X̂ (s) + �Q (t; s)Et

h
X̂ (s)

i
; y";v (s) + z";v (s)

E
+
1

2
hQ (t; s) (y";v (s) + z";v (s)) ; y";v (s) + z";v (s)i

+ hR (t; s) û (s) ; vi 1[t;t+") (s) +
1

2
hR (t; s) v; vi 1[t;t+") (s)

�
ds

� hp (T ; t) ; y";v (T ) + z";v (T )i � 1

2
hP (T ; t) (y";v (T ) + z";v (T )) ; y";v (T ) + z";v (T )i

�
+ o (") :

(1.2.19)

Now, by applying Ito�s formula to s 7! hp (s; t) ; y";v (s) + z";v (s)i on [t; T ], we get

hp (T ; t) ; y";v (T ) + z";v (T )i

=

Z T

t

n
(Bv)

>
p (s; t) 1[t;t+") (s) + (y

";v (s) + z";v (s))
>
�
Q (t; s) X̂ (s) + �Q (t; s)Et

h
X̂ (s)

i�
+

dX
j=1

(Djv)
>
qj (s; t) 1[t;t+") (s) +

Z
Z

(F (z) v)
>
r (s; z; t) 1[t;t+") (s) � (dz)

�
ds

+
dX
j=1

Z T

t

n�
Cj (y

";v (s) + z";v (s)) +Djv1[t;t+") (s)
�>
p (s; t) + (y";v (s) + z";v (s))

>
qj (s; t)

o
dW j (s)

+

Z T

t

Z
Z

n�
E (z) (y";v (s�) + z";v (s�)) + F (z) v1[t;t+") (s)

�>
p (s; t)

+ (y";v (s�) + z";v (s�))> r (s; z; t)+�
E (z) (y";v (s�) + z";v (s�)) + F (z) v1[t;t+") (s)

�>
r (s; z; t)

o
~N (ds; dz) :

(1.2.20)
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Again, by applying Ito�s formula to s 7! hP (s; t) (y";v (s) + z";v (s)) ; y";v (s) + z";v (s)i on [t; T ] ; we get

hP (T ; t) (y";v (T ) + z";v (T )) ; y";v (T ) + z";v (T )i

=

Z T

t

n
2 (y";v (s) + z";v (s))

>
P (s; t)Bv1[t;t+") (s) + (y

";v (s) + z";v (s))
>
Q (t; s) (y";v (s) + z";v (s))

+
dX
j=1

�
2 (y";v (s) + z";v (s))

>
C>j P (s; t)Djv1[t;t+") (s) + v>D>

j P (s; t)Djv1[t;t+") (s)
�

+

Z
Z

n
2 (y";v (s) + z";v (s))

>
E (z)

>
P (s; t)F (z) v1[t;t+") (s)

+ v>F (z)
>
P (s; t)F (z) v1[t;t+") (s) � (dz)

o
ds

+ 2
dX
j=1

Z T

t

n
(y";v (s) + z";v (s))

>
P (s; t)

�
Cj (y

";v (s) + z";v (s)) +Djv1[t;t+") (s)
�o
dW j (s)

+

Z T

t

Z
Z

n
2 (y";v (s�) + z";v (s�))> P (s; t)

�
E (z) (y";v (s�) + z";v (s�)) + F (z) v1[t;t+") (s)

�
�
E (z) (y";v (s�) + z";v (s�)) + F (z) v1[t;t+") (s)

�>
P (s; t) (E (z) (y";v (s�) + z";v (s�))

+F (z) v1[t;t+") (s)
	
~N (ds; dz) ;

(1.2.21)

Moreover, we conclude from (H1) together with (1:2:15)� (1:2:16) that

Et
"Z T

t

(y";v (s) + z";v (s))
>
P (s; t)Bv1[t;t+") (s) ds

#
= o (") ;

Et
"Z T

t

(y";v (s) + z";v (s))
>
C>j P (s; t)Djv1[t;t+") (s) ds

#
= o (") ;

Et
"Z T

t

Z
Z

(y";v (s) + z";v (s))
>
E (z)

>
P (s; t)F (z) v1[t;t+") (s) � (dz) ds

#
= o (") :

(1.2.22)

By taking the conditional expectation in (1:2:20) and (1:2:21) ; then by invoking (1:2:22) it holds that

Et [hp (T ; t) ; y";v (T ) + z";v (T )i]

= Et
24 TZ
t

�
vTB>p (s; t) 1[t;t+") (s) + (y

";v (s) + z";v (s))
>
�
Q (t; s) X̂ (s) + �Q (t; s)Et

h
X̂ (s)

i�

+
dX
j=1

vTD>
j qj (s; t) 1[t;t+") (s) +

Z
Z

vTF (z)
>
r (s; z; t) 1[t;t+") (s) � (dz)

�
ds

�
; (1.2.23)
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and

1

2
Et [hP (T ; t) (y";v (T ) + z";v (T )) ; y";v (T ) + z";v (T )i]

=
1

2
Et
"Z T

t

n
(y";v (s) + z";v (s))

>
Q (t; s) (y";v (s) + z";v (s))

+
dX
j=1

v>D>
j P (s; t)Djv1[t;t+") (s)

+

Z
Z

v>F (z)
>
P (s; t)F (z) v1[t;t+") (s) � (dz)

�
ds

�
+ o (") : (1.2.24)

By taking (1:2:23) and (1:2:24) in (1:2:19) ; it follows that

J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�
= �Et

24Z T

t

8<:v>B>p (s; t) +
dX
j=1

v>D>
j qj (s; t) +

1

2

dX
j=1

v>D>
j P (s; t)Djv

�v>R (t; s) û (s)� 1
2
v>R (t; s) v

+

Z
Z

�
r (s; z; t)

>
F (z) v +

1

2
v>F (z)

>
P (s; t)F (z) v

�
� (dz)

�
1[t;t+") (s) ds

�
+ o (") ;

which is equivalent to (1:2:17) :

Now, we are ready to give a proof of Theorm 1.2.1

Proof of Theorem 1.2.1. Given an open-loop Nash equilibrium û (:), then for any t 2 [0; T ] and

v 2 L2 (
;Ft;P;Rm) ; we have clearly

lim
"#0

1

"

n
J
�
t; X̂ (t) ; û (:)

�
� J

�
t; X̂ (t) ; u" (:)

�o
� 0;

which leads from (1:2:17) to

lim
"#0

1

"
Et
24Z T

t

8<:�H (t; s) + 12v>
0@ dX
j=1

D>
j P (s; t)Dj +

Z
Z

F (z)
>
P (s; t)F (z) � (dz)

1A v

9=; 1[t;t+") (s) ds
35 � 0;

from which we deduce for almost all t 2 [0; T ] and v 2 L2 (
;Ft;P;Rm) ;

�H (t; t) +
1

2
v>

0@ dX
j=1

D>
j P (t; t)Dj +

Z
Z

F (z)
>
P (t; t)F (z) � (dz)

1A v � 0; P� a:s;

Therefore, the inequality (1:2:9) is ensured by stetting v � u for an arbitrarily u 2 Rm:
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Conversely, given an admissible control û (:) 2 L2F;p (0; T ;Rm) : Suppose that, for almost all t 2 [0; T ] ;

the variational inequality (1:2:9) holds. Then for any v 2 L2 (
;Ft;P;Rm) it yields

�H (t; t) +
1

2
v>

0@ dX
j=1

D>
j P (t; t)Dj +

Z
Z

F (z)
>
P (t; t)F (z) � (dz)

1A v � 0; P� a:s;

consequently, for all t 2 [0; T ] and v 2 L2 (
;Ft;P;Rm) ;

lim
"#0

1

"
Et
24Z t+"

t

8<:�H (t; s) + 12v>
0@ dX
j=1

D>
j P (s; t)Dj +

1

2

Z
Z

F (z)
>
P (s; t)F (z) � (dz)

1A v

9=; ds

35 � 0:
Hence

lim
"#0

1

"

n
J
�
t; X̂ (t) ; û (:)

�
� J

�
t; X̂ (t) ; u" (:)

�o
� 0:

8 t 2 [0; T ] and v 2 L2 (
;Ft;P;Rm) : Thus û (:) is an equilibrium control.

Easy manipulations show that the variational inequality (1:2:9) is equivalent to

Ht

�
t; X̂ (t) ; 0

�
= max

u2Rm
Ht

�
t; X̂ (t) ; u

�
;

then (1:2:10) and (1:2:11) follow respectively from the following �rst order and second order conditions

at the maximum point u = 0 for the quadratic function Ht

�
t; X̂ (t) ; u

�

DuHt

�
t; X̂ (t) ; 0

�
= 0 and D2uHt

�
t; X̂ (t) ; u

�
� 0;

where we denote by DuHt (resp. D2uHt) the gradient (resp. the Hessian) of Ht with respect to the variable

u: Then, the required result is directly follows. �

In Theorem 1.2.1, in view of condition (1:2:11), as long as the term

�
dX
j=1

D>
j P (t; t)Dj �

Z
Z

F (z)
>
P (t; t)F (z) � (dz) ;

for each t 2 [0; T ] is su¢ ciently positive de�nite, the necessary and su¢ cient condition for equilibriums

might still be satis�ed even if R (t; t) is negative. This is di¤erent from [51] and [102] where the authors

have assumed the non-negativity of the matrices Q; G and R in order to state their stochastic maximum

principle for open-loop Nash equilibriums. Moreover, in the case where Q (t; s) � 0 for every s 2 [t; T ] ;

and G (t) � 0; it follows that the solution of the second order adjoint equation satis�es P (t; t) � 0; then
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if further we have R (t; t) � 0; the condition that

R (t; t)�
dX
j=1

D>
j P (t; t)Dj �

Z
Z

F (z)
>
P (t; t)F (z) � (dz) � 0;

is obviously satis�ed. Therefore, we summarize the main theorem into the following Corollary.

Corollary 1.2.1 Let (H1)-(H2) hold. Then an admissible control û (:) 2 L2F;p (0; T ;Rm) is an equilib-

rium control, if and only if, for almost all t 2 [0; T ], there exists a triple of adapted processes (p (:; t) ; q (:; t) ; r (:; :; t))

which satis�es the BSDE (1:2:4) ; with only the �rst order condition (1:2:10) holds.

1.3 Linear feedback stochastic equilibrium control

In this section, we consider only the case where the Brownian motion is one-dimensional (d = 1) for

simplicity of presentation. There is no essential di¢ culty with the multidimensional Brownian motions.

All the indices j will then be dropped. Our goal is to obtain a state feedback representation of an

equilibrium control for Problem (LQJ) via some class of ordinary di¤erential equations.

We �rst consider the following system of coupled generalized Riccati equations1 , for (t; s) 2 D [0; T ]

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

0 =
@M

@s
(t; s) +M (t; s)A+A>M (t; s) + C>M (t; s)C +

Z
Z

E (z)
>
M (t; s)E (z) � (dz)

�
�
M (t; s)B + C>M (t; s)D +

Z
Z

E (z)
>
M (t; s)F (z) � (dz)

�
	(s) +Q (t; s) ;

0 =
@ �M

@s
(t; s) + �M (t; s)A+A> �M (t; s)� �M (t; s)B	(s) + �Q (t; s) ;

0 =
@�

@s
(t; s) +A>�(t; s) ;

0 =
@'

@s
(t; s) +

�
M (t; s) + �M (t; s)

�
(b�B (s)) +A>' (t; s) + C>M (t; s) (� �D (s))

+

Z
Z

E (z)
>
M (t; s) (c (z)� F (z) (s)) � (dz) ;

M (t; T ) = G (t) ; �M (t; T ) = �G (t) ; �(t; T ) = �1 (t) , ' (t; T ) = �2 (t) ; t 2 [0; T ] ;

(1.3.1)

where

det

�
R (t; t) +D>M (t; t)D +

Z
Z

F (z)
>
M (t; t)F (z) � (dz)

�
6= 0; t 2 [0; T ] ;

1Strictly speaking, these are not Riccati equations in the usual sense as they are not symmetric. However, we still use
the term so as to see the connection and di¤erence between time-inconsistent and time-consistent LQ control problems.
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and 	(t) and  (t), for t 2 [0; T ] are given by

8>>>>><>>>>>:
�(t) =

�
R (t; t) +D>M (t; t)D +

R
Z
F (z)

>
M (t; t)F (z) � (dz)

��1
;

	(t) = � (t)

�
B>

�
M (t; t) + �M (t; t) + � (t; t)

�
+D>M (t; t)C +

Z
Z

F (z)
>
M (t; t)E (z) � (dz)

�
;

 (t) = � (t)

�
B>' (t; t) +D>M (t; t)� +

Z
Z

F (z)
>
M (t; t) c (z) � (dz)

�
;

(1.3.2)

Theorem 1.3.1 Let (H1)-(H2) hold. If there exists a solution to the system (1:3:1). Then Prob-

lem(LQJ) has an equilibrium control that can be represented by the state feedback form:

û (t) = �	(t) X̂ (t)�  (t) ; a.e.t 2 [0; T ] : (1.3.3)

Proof. Suppose that û (:) is an equilibrium control and denote by X̂ (:) the corresponding controlled

process: Then in view of Corollary 1:2:1; there exist an adapted processes
�
X̂ (:) ; (p (:; t) ; q (:; t) ; r (:; :; t))t2[0;T )

�
solution to the following �ow of forward-backward SDE with jumps, parametrized by t 2 [0; T ]

8>>>>>>>>>>>><>>>>>>>>>>>>:

dX̂ (s) =
n
AX̂ (s) +Bû (s) + b

o
ds+

n
CX̂ (s) +Dû (s) + �

o
dW (s)

+

Z
Z

n
E (z) X̂ (s�) + F (z) û (s) + c (z)

o
~N (ds; dz) ; s 2 [0; T ] ;

dp (s; t) = �
�
A>p (s; t) + C>q (s; t) +

Z
Z

E (z)
>
r (s; z; t) � (dz)�Q (t; s) X̂ (s)

� �Q (t; s)Et
h
X̂ (s)

io
ds+ q (s; t) dW (s) +

Z
Z

r (s; z; t) ~N (ds; dz) ; 0 � t � s � T;

X̂0 = x0, p (T ; t) = �G (t) X̂ (T )� �G (t)Et
h
X̂ (T )

i
� �1 (t) X̂ (t)� �2 (t) ; t 2 [0; T ] ;

(1.3.4)

such that the following condition holds

R (t; t) û (t)�B>p (t; t)�D>q (t; t)�
Z
Z

F (z)
>
r (t; z; t) � (dz) = 0; P� a:s; a:e:t 2 [0; T ] : (1.3.5)

Now, to solve the above stochastic system; we conjecture that X̂ (:) and p (:; t) for t 2 [0; T ) are related

by the following relation

p (s; t) = �M (t; s) X̂ (s)� �M (t; s)Et
h
X̂ (s)

i
��(t; s) X̂ (t)� ' (t; s) ; (t; s) 2 D [0; T ] ; (1.3.6)

for some deterministic functionsM (:; :) ; �M (:; :) ;�(:; :) 2 C0;1 (D [0; T ] ;Rn�n) and ' (:; :) 2 C0;1 (D [0; T ] ;Rn)

such that

M (t; T ) = G (t) ; �M (t; T ) = �G (t) ; �(t; T ) = �1 (t) , ' (t; T ) = �2 (t) ; t 2 [0; T ] : (1.3.7)

27



The Maximum Principle in Time-Inconsistent LQ Equilibrium Control Problem for Jump Di¤usions

Applying Itô�s formula to (1:3:6) and using (1:3:4), it yields

dp (s; t) =

�
�@M
@s

(t; s) X̂ (s)� @ �M

@s
(t; s)Et

h
X̂ (s)

i
� @�

@s
(t; s) X̂ (t)� @'

@s
(t; s)

� M (t; s)
�
AX̂ (s) +Bu (s) + b

�
� �M (t; s)

�
AEt

h
X̂ (s)

i
+BEt [u (s)] + b

�o
ds

�M (t; s)
�
CX̂ (s) +Dû (s) + �

�
dW (s)

�
Z
Z

M (t; s)
�
E (z) X̂ (s�) + F (z) û (s) + c (z)

�
~N (ds; dz) ;

= �
�
A>p (s; t) + C>q (s; t) +

Z
Z

E (z)
>
r (s; z; t) � (dz) �Q (t; s) X̂ (s)

� �Q (t; s)Et
h
X̂ (s)

io
ds+ q (s; t) dW (s) +

Z
Z

r (s; z; t) ~N (ds; dz) ; s 2 [t; T ] ; (1.3.8)

from which we deduce

q (s; t) = �M (t; s)
�
CX̂ (s) +Dû (s) + �

�
; a.e.s 2 [t; T ] ; (1.3.9)

r (s; z; t) = �M (t; s)
�
E (z) X̂ (s) + F (z) û (s) + c (z)

�
; a.e.s 2 [t; T ] : (1.3.10)

We put the above expressions of q (s; t) and r (s; z; t) into (1:3:5) ; then

0 = R (t; t) û (t) +B>
��
M (t; t) + �M (t; t) + � (t; t)

�
X̂ (t) + ' (t; t)

�
+D>M (t; t)

�
CX̂ (t) +Dû (t) + �

�
+

Z
Z

F (z)
>
M (t; t)

�
E (z) X̂ (t) + F (z) û (t) + c (z)

�
� (dz) ; a:e:t 2 [0; T ] :

Subsequently, we obtain with the above notations

�(t)
�1
�
û (t) + 	 (t) X̂ (t) +  (t)

�
= 0; a:e:t 2 [0; T ] :

Hence (1:3:3) holds, and for any (t; s) 2 D [0; T ] ; we have

Et [û (s)] = �	(s)Et
h
X̂ (s)

i
�  (s) : (1.3.11)
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Next, comparing the ds term in (1:3:8) ; then by using the expressions (1:3:3) and (1:3:11), we obtain

0 =

�
@M

@s
(t; s) +M (t; s)A+A>M (t; s) + C>M (t; s)C +

Z
Z

E (z)
>
M (t; s)E (z) � (dz)

�
�
M (t; s)B + C>M (t; s)D +

Z
Z

E (z)
>
M (t; s)F (z) � (dz)

�
	(s) +Q (t; s)

�
X̂ (s)

+

�
@ �M

@s
(t; s) + �M (t; s)A+A> �M (t; s)� �M (t; s)B	(s) + �Q (t; s)

�
Et
h
X̂ (s)

i
+

�
@�

@s
(t; s) +A>�(t; s)

�
X̂ (t)

+
@'

@s
(t; s) +

�
M (t; s) + �M (t; s)

�
(b�B (s)) +A>' (t; s)

+ C>M (t; s) (� �D (s)) +
Z
Z

E (z)
>
M (t; s) (c (z)� F (z) (s)) � (dz) :

This suggests that the functions M (:; :) ; �M (:; :) ;�(:; :) and ' (:; :) solve the system (1:3:1).

Note that, we can check that 	(:) and  (:) in (1:3:2) are both uniformly bounded. Then the following

linear SDEJ,

8>>>>>>>><>>>>>>>>:

dX̂ (s) =
n
(A�B	(s)) X̂ (s) + b�B (s)

o
ds

+
n
(C �D	(s)) X̂ (s) + � �D (s)

o
dW (s)

+

Z
Z

n
(E (z)� F (z)	 (s)) X̂ (s�) + c (z)� F (z) (s)

o eN (ds; dz) ; for s 2 [0; T ] ;
X̂ (0) = x0;

is uniquely solvable, and the following estimate holds

E

"
sup

s2[0;T ]

���X̂ (s)���2# � K
�
1 + jx0j2

�
:

So the control û (:) de�ned by (1:3:3) is admissible.

Remark 1.3.1 Note that, the veri�cation theorem (Theorem 1.3.1 ) assumes the existence of a solution

to the system (1:3:1). However, since the ODEs which should be solved by M (:; :) and �M (:; :) do not have

a symmetry structure. The general solvability for this type of ODEs when (n > 1) remains an outstanding

open problem. We will see in the next section two examples in the case when n = 1, this case is important,

especially in �nancial applications as will be con�rmed by the mean�variance portfolio selection model.

Also, we remark that a special feature of the case when n = 1 is that the state X (:) is one-dimensional, so

are the unknowns M (:; :) ; �M (:; :) ;�(:; :) and ' (:; :) of the system (1:3:1). This makes it easier to solve

(1:3:1).
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1.4 Some applications

1.4.1 Mean-variance portfolio selection problem

In this subsection, we discuss the continuous-time Markowitz�s mean-variance portfolio selection problem.

We apply Theorem 1.3.1 to obtain a state feedback representation of an equilibrium control for the

problem: In the absence of Poisson random jumps this problem is discussed in [51]:

The problem is formulated as follows: We consider a �nancial market, in which two securities are traded

continuously. One of them is a bond, with price S0 (s) at time s 2 [0; T ] governed by

dS0 (s) = S0 (s) r (s) ds; S0 (0) = s0 > 0: (1.4.1)

There is also a stock with unit price S1 (s) at time s 2 [0; T ] governed by

dS1 (s) = S1 (s�)
�
� (s) ds+ � (s) dW (s) +

Z
Z

 (s; z) eN (ds; dz)� ; S1 (0) = s1 > 0: (1.4.2)

where r : [0; T ] ! (0;1) ; �; � : [0; T ] ! R and  : [0; T ] � Z ! R are assumed to be deterministic,

continuous, and bounded such that � (s) > r (s) and  (s; z) � �1: We also assume a uniform ellipticity

condition as follow � (t)
2
+
R
Z
 (t; z)

2
� (dz) � �; a:e, for some � > 0. For an investor, a portfolio

� (:) is a process represents the amount of money invested in the stock: The wealth process Xx0;�(:) (:)

corresponding to initial capital x0 > 0; and portfolio � (:), satis�es then the equation

8>>>><>>>>:
dX (s) = (r (s)X (s) + � (s) (� (s)� r (s))) ds+ � (s)� (s) dW (s)

+ � (s)

Z
Z

 (s; z) eN (ds; dz) ; for t 2 [0; T ] ;
X (0) = x0:

(1.4.3)

As time evolves, we need to consider the controlled stochastic di¤erential equation parametrized by (t; �) 2

[0; T ]� L2 (
;Ft;P;R) and satis�ied by X (:) ;

8>>>><>>>>:
dX (s) = (r (s)X (s) + � (s) (� (s)� r (s))) ds+ � (s)� (s) dW (s)

+ � (s)

Z
Z

 (s; z) eN (ds; dz) ; for s 2 [t; T ] ;
X (t) = �:

(1.4.4)

The objective is to maximize the conditional expectation of terminal wealth Et [X (T )] ; and at the same

time to minimize the conditional variance of the terminal wealth Vart [X (T )] ; over controls � (:) valued in
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R. Then, the mean-variance portfolio optimization problem is denoted as: minimizing the cost J (t; �; :),

given by

J (t; �; � (:)) =
1

2
Vart [X (T )]� (�1 (t) � + �2 (t))Et [X (T )] ; (1.4.5)

subject to (1:4:4) :Here �1; �2 : [0; T ]! [0;1) ; are some deterministic, continuous and bounded functions.

The above model covers the one in [51]; since, in our case, the weight between the conditional variance

and the conditional expectation depends on the current wealth level, as well as, the current time, while

in [51]; the weight depends on the current wealth level only. Hence, in the above model, there are three

di¤erent sources of time-inconsistency. Moreover, the above model is mathematically a special case of the

general LQ problem formulated earlier in this paper, with n = d = m = 1. Then we can apply Theorem

1.3.1 to obtain a Nash equilibrium control.

The optimal control problem associated with (1:4:4) and (1:4:5) is equivalent to minimize

J (t; �; u (:)) =
1

2

�
Et
h
X (T )

2
i
� Et [X (T )]2

�
� (�1 (t) � + �2 (t))Et [X (T )]

subject to (1:4:4) : Denote

� (t) =
(� (t)� r (t))2

� (t)
2
+

Z
Z

 (t; z)
2
� (dz)

:

Thus, the system (1:3:1) reduces to

8>>>>>>>>>>>><>>>>>>>>>>>>:

@M

@s
(t; s) +

�
2r (s)� � (s)

M (s; s)

�
M (s; s) + �M (s; s) + � (s; s)

��
M (t; s) = 0; (t; s) 2 D [0; T ] ;

@ �M

@s
(t; s) +

�
2r (s)� � (s)

M (s; s)

�
M (s; s) + �M (s; s) + � (s; s)

��
�M (t; s) = 0; (t; s) 2 D [0; T ] ;

@�

@s
(t; s) + r (s)� (t; s) = 0; (t; s) 2 D [0; T ] ;

@'

@s
(t; s) + r (s)' (t; s) = 0; (t; s) 2 D [0; T ] ;

M (t; T ) = 1; �M (t; T ) = �1; �(t; T ) = ��1 (t) ; ' (t; T ) = ��2 (t) ; t 2 [0; T ] :
(1.4.6)

Clearly, if M (:; :) and �M (:; :) are solutions to the �rst and the second equations, respectively, in (1:4:6),

then ~M (:; :) =
�
�M +M

�
(:; :) solves the following ODE

8><>:
@ ~M

@s
(t; s) +

�
2r (s)� � (s)

M (s; s)

�
~M (s; s) + � (s; s)

��
~M (t; s) = 0; 8 (t; s) 2 D [0; T ] ;

~M (t; T ) = 0; t 2 [0; T ] ;
(1.4.7)

31



The Maximum Principle in Time-Inconsistent LQ Equilibrium Control Problem for Jump Di¤usions

which is equivalent to

~M (t; s) = ~M (t; T ) e

R T
s

�
2r(�)� �(�)

M(�;�) (
~M(�;�)+�(�;�))

�
d�
;

from the boundary condition in (1:4:7), it yields

�M (t; s) +M (t; s) = ~M (t; s) = 0; 8 (t; s) 2 D [0; T ] :

Moreover, we remark that all data of the ODEs which should be solved by M (:; :) and �M (:; :) are not

in�uenced by t; thus (1:4:6) reduces to

8>>>>>>>>>>><>>>>>>>>>>>:

dM

ds
(s) + 2r (s)M (s)� � (s)� (s; s) = 0; 8s 2 [0; T ] ;

�M (s) = �M (s) ; 8s 2 [0; T ] ;
@�

@s
(t; s) + r (s)� (t; s) = 0; 8 (t; s) 2 D [0; T ] ;

@'

@s
(t; s) + r (s)' (t; s) = 0; 8 (t; s) 2 D [0; T ] ;

M (T ) = 1; �(t; T ) = ��1 (t) ; ' (t; T ) = ��2 (t) ; 8t 2 [0; T ] :

(1.4.8)

which is explicitly solved by

8>>>>>>>>>>><>>>>>>>>>>>:

M (s) = e2
R T
s
r(�)d�

(
1 +

Z T

s

e�
R T
�
r(l)dl�1 (�) � (�) d�

)
; s 2 [0; T ] ;

�M (s) = �e2
R T
s
r(�)d�

(
1 +

Z T

s

e�
R T
�
r(l)dl�1 (�) � (�) d�

)
; s 2 [0; T ] ;

�(t; s) = ��1 (t) e
R T
s
r(�)d� ; (t; s) 2 D [0; T ] ;

' (t; s) = ��2 (t) e
R T
s
r(�)d� ; (t; s) 2 D [0; T ] :

(1.4.9)

In view of Theorem 1.3.1, the representation of the Nash equilibrium control (1:3:3) then gives

�̂ (s) = �	(s) X̂ (s)�  (s) ; s 2 [0; T ] ; (1.4.10)

where, 8s 2 [0; T ]

	 (s) =
� (s)

(� (s)� r (s))
� (s; s)

M (s)
and  (s) =

� (s)

(� (s)� r (s))
' (s; s)

M (s)
:
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The corresponding equilibrium dynamics solves the SDEJ,

8>>>><>>>>:
dX̂ (s) =

n
(r (s)�	(s) (� (s)� r (s))) X̂ (s)�  (s) (� (s)� r (s))

o
ds

�
�
	(s) X̂ (s) +  (s)

��
� (s) dW (s) +

Z
Z

 (s; z) eN (ds; dz)� ; for s 2 [0; T ] ;
X̂ (0) = x0:

Special cases and relationship to other works

Equilibrium investment strategies for mean�variance models have been studied in [11], [17], [18] and [51];

among others in di¤erent frameworks. In this paragraph, we will compare our results with some existing

ones in literature. First, suppose that the price process of the risky asst do not have jumps, i.e  (s; z) = 0

a.e.

Special case 1. When �1 (t) � 0 and �2 (t) � �2 > 0. In this case the objective is equivalent to Basak

and Chabakauri [11] and Bjork and Murguci [17] in which the equilibrium is de�ned within the class of

feedback controls. Moreover the equilibrium strategy �̂ (:) given in our study by (1:4:10) changes to

�̂ (s) = �2
(� (s)� r (s))

� (t)
2 e�

R T
s
r(�)d� ; s 2 [0; T ] :

It is worth pointing out that the above equilibrium solution is the same form as that obtained in Bjork

and Murguci [17] by solving the extended HJB equations.

Special case 2. Suppose that �1 (t) � �2 > 0 and �2 (t) � �2 � 0. In this case, the equilibrium strategy

�̂ (:) given by expressions (1:4:10) changes to

�̂ (s) =
�1 (� (s)� r (s)) 

1 + �1

Z T

s

e�
R T
�
r(l)dl� (�) d�

!
� (s)

2

e�
R T
s
r(�)d� X̂ (s) ;

which is the same as the solution obtained in Hu et al [51]; with one risky asset.

1.4.2 General discounting LQ regulator

In this subsection, we consider an example of a general discounting time-inconsistent LQ model. The

objective is to minimize the expected cost functional, that is earned during a �nite time horizon

J (t; �; u (:)) =
1

2
Et
"Z T

t

ju (s)j2 ds+ h (t) jX (T )� �j2
#

(1.4.11)
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where h (:) : [0; T ] ! (0;1) ; is a general deterministic non-exponential discount function satisfying

h (0) = 1; h (s) � 0 and
R T
0
h (t) dt < 1. Subject to a controlled one dimontional SDE, parametrized by

(t; �) 2 [0; T ]� L2 (
;Ft;P;R) ;

8><>:
dX (s) = faX (s) + bu (s)g ds+ �dW (s) +

Z
Z

c (z) ~N (ds; dz) ; s 2 [0; T ] ;

X (t) = �;

(1.4.12)

where a; b are real constants and c : Z ! R is assumed to be deterministic and bounded: As mentioned

in [17]; this is a time-inconsistent version of the classical linear quadratic regulator, we want control

the system so that the �nal sate X (T ) is close to � while at the same time we keep the control energy

(formalized by the running cost) small. Note that, here the time-inconsistency is due to the fact that the

terminal cost depends explicitly on the current state � as well as the current time t: Hence there are two

di¤erent sources of time-inconsistency. For this example, the system (1:3:1) reduces to

8>>>>>>>>>>><>>>>>>>>>>>:

@M

@s
(t; s) + 2aM (t; s)� b2M (t; s)

�
M (s; s) + �M (s; s) + � (s; s)

	
= 0; 8 (t; s) 2 D [0; T ] ;

@ �M

@s
(t; s) + 2a �M (t; s)� b2 �M (t; s)

�
M (s; s) + �M (s; s) + � (s; s)

	
= 0; 8 (t; s) 2 D [0; T ] ;

@�

@s
(t; s) + a�(t; s) = 0; 8 (t; s) 2 D [0; T ] ;

@'

@s
(t; s) + a' (t; s)� b2

�
M (t; s) + �M (t; s)

	
' (s; s) = 0; 8 (t; s) 2 D [0; T ] ;

M (t; T ) = h (t) ; �M (t; T ) = 0; �(t; T ) = h (t) , ' (t; T ) = 0; 8t 2 [0; T ] ;

(1.4.13)

obviously, �(:; :) is explicitely given by

�(t; s) = h (t) exp fa (T � s)g ; 8 (t; s) 2 D [0; T ] : (1.4.14)

Moreover, we can check that M (:; :) ; �M (:; :) and ' (:; :) solve (1:4:13) ; if and only if, they solve the

following system of integral equations

8>>>>><>>>>>:
M (t; s) =M (t; T ) e

R T
s f2a�b2(M(�;�)+ �M(�;�)+�(�;�))gd� , 8 (t; s) 2 D [0; T ] :

�M (t; s) = �M (t; T ) e

R T
s f2a�b2(M(�;�)+ �M(�;�)+�(�;�))gd� ; 8 (t; s) 2 D [0; T ] :

' (t; s) = ' (t; T ) ea(T�s) � b2
Z T

s

ea(��s)
�
M (t; �) + �M (t; �)

�
' (�; �) d�; 8 (t; s) 2 D [0; T ] ;

(1.4.15)
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on the other hand, we have �M (t; T ) = ' (t; T ) = 0; then (1:4:15) reduces to

8>>>>><>>>>>:
M (t; s) =M (t; T ) e

R T
s f2a�b2(M(r;r)+�(r;r))gdr; 8 (t; s) 2 D [0; T ] :

�M (t; s) = 0; 8 (t; s) 2 D [0; T ] ;

' (t; s) = �b2
Z T

s

ea(��s)M (t; �)' (�; �) d�; 8 (t; s) 2 D [0; T ] :

(1.4.16)

It is clear that if M (:; :) is the solution of the �rst equation in (1:4:16) ; then

' (s; s) = �b2
Z T

s

ea(��s)M (s; �)' (�; �) d�; 8s 2 [0; T ] ;

thus, there exists some constant L > 0 such that j' (s; s)j � L

Z T

s

j' (�; �)j d� , then by Gronwall Lemma,

we conclude that ' (s; s) = 0;8s 2 [0; T ] : Therefore ' (t; s) = 0; 8 (t; s) 2 D [0; T ] ; is the unique solution

to the last equation in the system (1:4:16) :

Now, it�s remains to solve the �rst equation in the system (1:4:16) : It is easy to check that the �rst

equation in the system (1:4:16) is equivalent to

8><>:
@M

@s
(t; s) + 2aM (t; s)� b2M (t; s) fM (s; s) + � (s; s)g = 0; (t; s) 2 D [0; T ] ;

M (t; T ) = h (t) :
(1.4.17)

We try a solution of the form M (t; s) = h (t)N (s) ; we �nde that N (:) should solve the following ODE

8><>:
dN

ds
(s) +

�
2a+ b2�(s; s)

�
N (s)� b2h (s)N (s)2 = 0; s 2 [0; T ]

N (T ) = 1;
(1.4.18)

We put N (s) =
1

y (s)
; the equation (1:4:18) leads to

8><>:
dy

ds
(s)�

�
2a+ b2�(s; s)

�
y (s) + b2h (s) = 0; s 2 [0; T ]

y (T ) = 1;

which is explicitly solvable by

y (s) = e�
R T
s f2a+b2�(�;�)gd�

 
1 + b2

Z T

s

e
R T
� f2a+b2�(l;l)gdlh (�) d�

!
; s 2 [0; T ] ;
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thus

M (t; s) = h (t)
e
R T
s f2a+b2�(�;�)gd�

1 + b2
R T
s
e
R T
�
f2a+b2�(l;l)gdlh (�) d�

; (t; s) 2 D [0; T ]

In view of Theorem 1.3.1, the representation (1:3:3) of the Nash equilibrium control, then gives

û (s) = �b f�(s; s) +M (s; s)g X̂ (s) ; 8s 2 [0; T ] ; (1.4.19)

and the corresponding equilibrium dynamics solves the SDEJ

8><>:
dX̂ (s) =

�
a� b2 (� (s; s) +M (s; s))

	
X̂ (s) ds+ �dW (s) +

Z
Z

c (z) ~N (ds; dz) ; s 2 [0; T ] ;

X (0) = x0:

(1.4.20)

To conclude this section let us present the following remark.

Remark 1.4.1 The Problem (E) given by the subsection 1.1.1, is in fact shown to be a particular case of

the general discounting LQ regulator model, formulated earlier in this paragraph, in the case when a = 0;

c (z) � 0; and the initial data � = x, this leads to the following representation of the Nash equilibrium

control of this problem ,

û (s) = �b (h (s) +M (s; s)) X̂ (s) ;8s 2 [0; T ] ;

where M (t; s) is given by,

M (t; s) = h (t)
e
R T
s fb2�(�;�)gd�

1 + b2
R T
s
e
R T
�
fb2�(l;l)gdlh (�) d�

; for (t; s) 2 D [0; T ] ;

and the corresponding equilibrium dynamics solves the SDE

8><>: dX̂ (s) = �b2 fh(s) +M (s; s)g X̂ (s) ds+ �dW (s) ; s 2 [0; T ] ;

X (0) = x0:

This in fact, the equilibrium solution of the Problem (E).
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Chapter 2

A Characterization of Equilibrium

Strategies in Continuous-Time

Mean-Variance Problems for Insurers

In the recent decades, the risk models for insurers that can control and manage their risk by means of

some business activities to optimize some objectives have received remarkable attention. Browne [22] �rst

obtained the optimal investment strategy which maximizes the exponential utility of terminal wealth,

where the surplus process of the insurer is modelled by a geometric Brownian motion. Yang and Zhang

[100] followed by Wang [93] considered the same optimal investment problem, where the surplus process

of the insurer is modelled, respectively, by a jump-di¤usion process and an increasing pure jump process.

Moreover, Xu et al. [99], Cao and Wan [28] and Gu et al [47] have investigated the optimal investment and

reinsurance strategies for the insurers to optimize the expected utility of the terminal wealth in di¤erent

situations.

In addition to the expected utility maximization, the mean-variance criterion, introduced by Markowitz

[67], is another important objective function to the optimal investment and reinsurance problems for

insurers. The idea of mean-variance criterion is that it quanti�es the risk using the variance, which enables

insurers to seek the highest return after evaluating their acceptable risk level. Bäuerle [12] considered the

optimal proportional reinsurance problem under the mean-variance criterion where the surplus process of

an insurer is modelled by the classical Cramér�Lundberg (CL) model, and solves this problem by adopting

the stochastic control approach. Bai and Zhang [9] studied the optimal reinsurance/new business and

investment strategy for the mean-variance problem where the surplus process is modelled respectively, by
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the classical risk model and a di¤usion model. For related works we refer to Delong and Gerrard [36],

Zeng et al. [109] , Zeng and Li [108].

However, there is little work in the literature concerning equilibrium strategies for optimal investment

and reinsurance problems under the mean-variance criterion. Zeng and Li [110] are the �rst to investigate

Nash equilibrium strategies for dynamic mean-variance insurers with constant risk aversion, where the

surplus of insurers is only modelled by the di¤usion model and the price processes of the risky assets are

only driven by geometric Brownian motions. The work [65] studied the case with state dependent risk

aversion and they derived equilibrium strategies via some class of well posed integral equations. Zeng et

al [111] considered the equilibrium investment and reinsurance strategies for mean-variance insurers with

constant risk aversion where both the surplus process and the risky asset�s price process follow a geometric

Lévy processes.

Our objective in this thesis is to characterize equilibrium investment and reinsurance strategies for the

mean-variance insurers with constant risk aversion, where the surplus process is modelled by a geometric

Levi process and the �nancial market consists of one risk-free asset and multiple risky assets whose price

processes follow jump-di¤usion processes. Di¤erent from most of the existing literature, on this topic, [110],

[111], [65] where a feedback equilibrium strategies are derived via a very complicated (extended) Hamilton�

Jacobi�Bellman equation, the novelty of this work is that: by means of the variational method, we derive

a necessary and su¢ cient conditions to characterize the equilibrium investment and reinsurance strategies

via a stochastic system, which involves a �ow of forward-backward stochastic di¤erential equation with

jumps (FBSDEJ in short), along with some equilibrium condition. Then by decoupling the �ow of the

FBSDEJ, we derive an explicit representation of the equilibrium strategies. We accentuate that, this

method can provide the necessary and su¢ cient conditions to characterize the equilibrium strategies.

While the extended HJB techniques studied in [110] and [111] can create only the su¢ cient condition to

characterizes the equilibrium strategies.

The rest of the chapter is organized as follows. In Section 1, we formulate the problem and give necessary

notations and preliminaries. In Section 2 we present the �rst main result of this work and we derive some

explicit representation of the equilibrium investment and reinsurance strategies. Section 3 is devoted to

some comparisons with some existing ones in literature.
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2.1 The model and problem formulation

Throughout this chapter, (
;F ; (Ft)t2[0;T ] ;P) is a �ltered probability space such that F0 contains all

P-null sets, FT = F for an arbitrarily �xed �nite time horizon T > 0; and (Ft)t2[0;T ] satis�es the usual

conditions. We use diag(C) for the diagonal matrix with the elements of a vector C on the diagonal: For

some Euclidean space Rm with Frobenius norm j:j ; we denote 0Rm the null vector. R? denotes R�f0g : In

addition, we de�ne the following space of processes, on the �ltered probability space (
;F ; (Ft)t2[0;T ] ;P);

as

- L�;2F;p ([t; T ]� R�;Rm) : the space of Rm�valued, (Fs)s2[t;T ]�predictable processes R (:; :), with

kR (:; :)k2L�;2F;p([t;T ]�R?;Rm)
= E

"Z T

t

Z
R?
R (s; z)

> diag (� (dz))R (s; z) ds

#
<1;

for any positive and ���nite Lévy measure � (dz) = (�1 (dz) ; �2 (dz) ; :::; �m (dz))> :

2.1.1 Financial Market

Suppose that there is a �nancial market in which n+1 assets (or securities) are traded continuously. One

of them is a bond, with price S0 (s) at time s 2 [0; T ] governed by

dS0 (s) = �0 (s)S0 (s) ds; S0 (0) = s0 > 0: (2.1.1)

where �0 : [0; T ] ! (0;+1) is deterministic function which represents the risk-free rate. The other n

assets are called risky stocks, whose price processes S1 (:) ; :::; Sn (:) satisfy the following jump-di¤usion

stochastic di¤erential equations

8>><>>:
dSi (s) = Si (s�)

 
�i (s) ds+

nP
j=1

�ij (s) dWj (s) +
nP
j=1

Z
R?
ij (s; z) (Nj (ds; dz)� �j (dz) ds)

!
;

Si (0) = si > 0:

(2.1.2)

where �i : [0; T ] ! R; �ij : [0; T ] ! R and ij : [0; T ] � R? ! R are deterministic functions, such that

8s 2 [0; T ] ; �i (s) � �0 (s), W (:) = (W1 (:) ; :::;Wn (:))
> is a n-dimensional standard Brownian motion,

N (:; :) = (N1 (:; :) ; N2 (:; :) ; :::; Nn (:; :))
> is an n-dimensional Poisson random measure on the measurable

space ([0; T ]� R�;B ([0; T ])
 B (R�)) : For j = 1; 2; :::; n; the compensator of Nj (ds; dz) has the form

�j (ds; dz) = �j (dz) ds for some positive and ���nite Lévy measure �j (dz) on R� endowed with it�s

Borel ���eld B (R�) such that
R
R�1 ^ z

2�j (dz) < 1: Denote by � (dz) = (�1 (dz) ; :::; �n (dz))
> the
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n-dimensional Lévy measure. We suppose that W (:) and N (:; :) are independent, and write eNj (:; :) =
Nj (:; :)� �j (:; :) for the compensated jump martingale random measure of Nj (:; :) :

2.1.2 Surplus process

Next we introduce the insurance risk model. Consider an insurer whose surplus process (without reinsur-

ance and investment) is described, by the following jump�di¤usion model

dR (s) = cds+ �0dW0 (s)� d

8<:
L(s)X
i=1

Yi

9=; ; (2.1.3)

where c > 0 is the premium rate; �0 is a positive constant, W0 (:) is a one-dimensional standard Brownian

motion, L (s) is a Poisson process with intensity � > 0; representing the number of claims occurring up

time s, Yi is the size of the i-th claim and fYigi2N�f0g are assumed to be independent and identically

distributed positive random variables with common distribution PY having �nite �rs and second moments

mY =

Z +1

0

yPY (dy) and �Y =
Z +1

0

y2PY (dy), respectively. The term �0dW0 (s) can be regarded as the

uncertainty from the premium income of the insurer.

We assume that W (:), W0 (:) ; N (:; :) ;and
L(:)P
i=1

Yi are independent: The premium rate c is assumed to be

calculated via the expected value principle, i.e. c = (1 + �)�mY with safety loading � > 0. We refer the

readers to [9], [36], [111] and references therein for more information about the above model.

Suppose that the insurer can purchase proportional reinsurance or acquire new business (for example,

acting as a reinsurer of other insurers, see Bäuerle [12]) at each moment in order to control the insurance

business risk. Let a (s) the retention level of reinsurance or new business acquired at time s 2 [0; T ] :When

a (s) 2 [0; 1] ; it corresponds to a proportional reinsurance cover and shows that the cedent should divert

part of the premium to the reinsurer at the rate of (1� a (s)) (�0 + 1)�mY , where �0 is the relative safety

loading of the reinsurer satisfying �0 � �. Meanwhile, for each claim occurring at time s, the reinsurer pays

100 (1� a (s))% of the claim, while the insurer pays the rest. The case where a (s) 2 (1;+1) corresponds

to acquiring new business. The process a (:) is called a reinsurance strategy. Incorporating purchasing

proportional reinsurance and acquiring new business into the surplus process, then the expression (2:2:3)

becomes

dRa(s) (s) = f� � �0 + (1 + �0) a (s)g�mY ds+ �0a (s) dW0 (s)� a (s) d

8<:
L(s)X
i=1

Yi

9=; :

We refer the readers for example to [111] and references therein for more information about the above
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model.

Note that, the compound Poisson process
L(:)P
i=1

Yi can also be de�ned through a random measure N0 (:; :)

as
L(s)X
i=1

Yi =

Z s

0

Z
R?
zN0 (dr; dz) ;

where N0 (:; :) is a �nite Poisson random measure on the space [0; T ]�R� endowed with it�s Borel ���eld

B ([0; T ])
B (R�) ; with a compensator having the form �0 (dz) ds = �PY (dz) ds; see e.g. [73]:We denoteeN0 (dr; dz) = N0 (dr; dz)��0 (dz) dr for the compensated jump martingale random measure of N0 (dr; dz) :

Obviously, we have Z
R?
z�0 (dz) ds = �

Z
R?
zPY (dz) ds = �mY ds:

Hence, the dynamics for the surplus process becomes

dRa(s) (s) =

�
(� � �0 + �0a (s))�mY + a (s)

Z
R?
z�0 (dz)

�
ds+ �0a (s) dW0 (s)� a (s)

Z
R?
zN0 (dr; dz) ;

equivalently, we obtain

dRa(s) (s) = (� � �0 + �0a (s))�mY ds+ �0a (s) dW0 (s)� a (s)
Z
R?
z ~N0 (dr; dz) : (2.1.4)

2.1.3 Wealth process

Starting from an initial capital x0 > 0 at time 0, the insurer is allowed to dynamically purchase pro-

portional reinsurance, acquire new business and invest in the �nancial market. A trading strategy is an

(n+ 1)-dimensional stochastic process � (:) = (a (:) ; b1 (:) ; :::; bn (:))
>
; where a (s) represents the reten-

tion level of reinsurance or new business acquired at time s 2 [0; T ] ; and bi (s) represents the amount

invested in the i-th risky stock at time s 2 [0; T ] : The dollar amount invested in the bond at time s is

Xx0;�(:) (s)�
nP
j=1

bi (s), where Xx0;�(:) (:) is the wealth process associated with the strategy � (:) and the

initial capital x0. Then the evolution of Xx0;�(:) (:) can be described as

8><>:
dXx0;�(:) (s) = dRa(:) (s) +

�
Xx0;�(:) (s)�

nP
i=1

bi (s)

�
dS0 (s)

S0 (s)
+

nP
i=1

bi (s)
dSi (s)

Si (s�)
; for s 2 [0; T ] ;

X (0) = x0:
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Accordingly, the wealth process solves the following SDE with jumps

8>>>>>>>><>>>>>>>>:

dXx0;�(:) (s) =
n
�0 (s)X

x0;�(:) (s) + (� + �0a (s))�mY + b (s)
>
� (s)

o
ds+ �0a (s) dW0 (s)

+ b (s)
>
� (s) dW (s)� a (s)

Z
R?
z eN0 (ds; dz)

+

Z
R?
b (s)

>
 (s; z) eN (ds; dz) ; for s 2 [0; T ] ;

X (0) = x0:

(2.1.5)

where b (s) = (b1 (s) ; :::; bn (s))
>
; � (s) = (�1 (s)� �0 (s) ; :::; �n (s)� �0 (s))>, � (s) = (�ij (s))1�i�n

1�j�n
;

 (s; z) = (ij (s; z))1�i�n
1�j�n

; and � = � � �0: It is worth pointing out that the above model covers the

one in [111]; since, in our case, we consider the case of multiple assets whose price processes are general

jump�di¤usion processes, while in [111] the authors consider the case of one risky stok whose price process

is modelled by a geometric Lévy process.

As time evolves, we need to consider the controlled stochastic di¤erential equation parametrized by (t; �) 2

[0; T ]� L2 (
;Ft;P;R) and satis�ed by X (:) = Xt;� (:;� (:))

8>>>>>>>><>>>>>>>>:

dX (s) =
n
�0 (s)X (s) + (� + �0a (s))�mY + b (s)

>
� (s)

o
ds+ �0a (s) dW0 (s)

+ b (s)
>
� (s) dW (s)� a (s)

Z
R?
z eN0 (dt; dz)

+

Z
R?
b (s)

>
 (s; z) eN (ds; dz) ; for s 2 [t; T ] ;

X (t) = �:

(2.1.6)

In this paper, a trading strategy � (:) = (a (:) ; b1 (:) ; :::; bn (:))
> is said to be admissible if it is an

(Fs)s2[0;T ]�predictable and square-integrable process with values in Rn+1: Therefore L2F;p
�
0; T ;Rn+1

�
is the space of all admissible strategies.

2.1.4 Assumptions on the coe¢ cients

We impose the following assumptions about the coe¢ cients of the state equation

(H1) The functions �0 (:) ; � (:) ; � (:) and  (:; :) are continuous such that

sup
t2[0;T ]

Z
R?
tr
h
 (t; z)

> diag (� (dz))  (t; z)
i
< +1:

(H2) We also assume a uniform ellipticity condition as follows

� (s)� (s)
>
+  (s; z) diag (� (dz))  (s; z)> � �In; ds� a:e:
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for some � > 0.

By Lemma 2.1 in [68], under (H1), for any (t; �; � (:)) 2 [0; T ]� L2 (
;Ft;P;R)� L2F;p
�
0; T ;Rn+1

�
; the

state equation (2:1:6) has a unique solution X (:) 2 S2F (t; T ;R), we also have the following estimate

E
�
sup
t�s�T

jX (s)j2
�
� K

�
1 + E

h
j�j2
i�
; (2.1.7)

for some positive constant K: In particular for t = 0 and � (:) 2 L2F;p
�
0; T ;Rn+1

�
; the state equation

(2:1:5) has a unique solution X (:) 2 S2F (0; T ;R) with the following estimate holds

E
�
sup

0�s�T
jX (s)j2

�
� K

�
1 + jx0j2

�
: (2.1.8)

2.1.5 Mean�variance criterion

The objective of the insurer at time t 2 [0; T ] is to achieve a balance between conditional variance and

conditional expectation of terminal wealth; namely, to choose a strategy �� (:) 2 L2F;p
�
0; T ;Rn+1

�
so as to

minimize

J (t; �; � (:)) =
1

2
Vart [X (T )]� 1


Et [X (T )] ; (2.1.9)

over L2F;p
�
0; T ;Rn+1

�
; subject to (2:1:6) ; where  > 0 denotes the constant risk aversion, Et [:] = E [: jFt ]

is the conditional expectation with respect to Ft, and Vart [:] = Var [: jFt ] is the conditional variance with

respect to Ft. This problem can be viewed as a dynamic optimal control problem, since the objective of

the insurer updates as state (t; �) changes.

If we de�ne the processes W ? (:) and eN? (:; :) by W ? (:) = (W0 (:) ;W1 (:) ; ::;Wn (:))
> and eN? (:; :) =� eN0 (:; :) ; eN1 (:; :) ; ::; eNn (:; :)�> ; respectively, then the optimal control problem associated with (2:1:6)

and (2:1:9) is equivalent to minimize

J (t; �; � (:)) =
1

2

�
Et
h
X (T )

2
i
� Et [X (T )]2

�
� 1


Et [X (T )] ; (2.1.10)

subject to 8>>>><>>>>:
dX (s) =

�
�0 (s)X (s) + � (s)

>
B (s) + �

�
ds+ � (s)

>
D (s) dW ? (s)

+

Z
R?
� (s)

>
F (s; z) eN? (ds; dz) ; for s 2 [t; T ] ;

X (t) = �;

(2.1.11)
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where B (s) = (�mY �0; �1 (s)� �0 (s) ; ::; �n (s)� �0 (s))> ; � = ��mY ; and we shall write

D (s) =

0BBBBBBBBBBB@

�0 0 : : 0

0 �11 (s) : : �1n (s)

:

:

:

:

: :

: :

:

:

0 �n1 (s) : : �nn (s)

1CCCCCCCCCCCA
;

F (s; z) =

0BBBBBBBBBBB@

�z 0 : : 0

0 11 (s; z) : : 1n (s; z)

:

:

:

:

: :

: :

:

:

0 n1 (s; z) : : nn (s; z)

1CCCCCCCCCCCA
;

and

�� (dz) = (�0 (dz) ; �1 (dz) ; :::; �n (dz))
>
:

2.2 Characterization of equilibrium strategies

It is well known that the problem described above turn out to be time inconsistent in the sense that, it

does not satisfy the Bellman optimality principle, which more precisely says that if for some �xed initial

point (0; x0) we determine the control �� (:) which minimize J (0; x0; :), then at some later point
�
t; �X (t)

�
the control �� (:) will no longer be optimal for the functional J

�
t; �X (t) ; :

�
: We refer the readers to Björk

and Murgoci [17] for a more detailed discussion. Since lack of time consistency, the notion �optimality�

needs to be de�ned in an appropriate way. Following [51], we adopt the concept of open loop Nash

equilibrium solution, which is, for any t 2 [0; T ], optimal �in�nitesimally�via spike variation.

Given an admissible strategy �̂ (:) 2 L2F;p
�
0; T ;Rn+1

�
: For any t 2 [0; T ] ; v 2 L2

�

;Ft;P;Rn+1

�
and for

any " 2 [0; T � t) ; de�ne

�" (s) =

8><>: �̂ (s) + v; for s 2 [t; t+ ") ;

�̂ (s) ; for s 2 [t+ "; T ] ;
(2.2.1)

we have the following de�nition.

De�nition 2.2.1 (Open-loop Nash equilibrium) An admissible strategy �̂ (:) 2 L2F;p
�
0; T ;Rn+1

�
is
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an open-loop Nash equilibrium strategy if

lim
"#0
inf

1

"

n
J
�
t; X̂ (t) ; �" (:)

�
� J

�
t; X̂ (t) ; �̂ (:)

�o
� 0; (2.2.2)

for any t 2 [0; T ] ; and v 2 L2
�

;Ft;P;Rn+1

�
: The corresponding equilibrium wealth process solves the

following SDE with jumps

8>>>><>>>>:
dX̂ (s) =

�
�0 (s) X̂ (s) + �̂ (s)

>
B (s) + �

�
ds+ �̂ (s)

>
D (s) dW ? (s)

+

Z
R?
�̂ (s)

>
F (s; z) eN? (ds; dz) ; for s 2 [0; T ] ;

X̂ (0) = x0;

(2.2.3)

Remark 2.2.1 The above de�nition of Nash equilibrium strategy is di¤erent from the one in [65], [111]

and [110]. Since an equilibrium strategy here is de�ned in the class of open-loop strategies, while in the

most existing literature only feedback strategies are considered. In addition, in the above de�nition, the

perturbation of the strategy �̂ (:) in [t; t+ ") will not change �̂ (:) in [t+ "; T ], which is not the case with

feedback strategies.

2.2.1 The �ow of adjoint equations

In the sequel, we present a general necessary and su¢ cient condition for equilibriums. We derive this

condition by a second-order expansion in spike variation. First, we introduce the adjoint equations

involved in the characterization of equilibrium strategies. Let �̂ (:) 2 L2F;p
�
0; T ;Rn+1

�
and denote by

X̂ (:) 2 S2F (0; T ;R) the corresponding wealth process. For each t 2 [0; T ], we introduce the �rst order

adjoint equation de�ned on the time interval [t; T ] and satis�ed by the processes (p (:; t) ; q (:; t) ; r (:; :; t))

as follows

8><>:
dp (s; t) = ��0 (s) p (s; t) ds+ q (s; t)> dW ? (s) +

Z
R�
r (s; z; t)

> eN? (ds; dz) ; s 2 [t; T ] ;

p (T ; t) = �X̂ (T ) + Et
h
X̂ (T )

i
+
1


;

(2.2.4)

where q (:; t) = (q0 (:; t) ; q1 (:; t) ; :::; qn (:; t))
>
; and r (:; :; t) = (r0 (:; :; t) ; r1 (:; :; t) ; :::; rn (:; :; t))

>
: By

Lemma 2.2 in [68] , under (H1), equation (2:3:4) is uniquely solvable in the space S2F (t; T ;R)�L2F
�
t; T ;Rn+1

�
�

L�
�;2
F;p

�
[t; T ]� R?;Rn+1

�
. Moreover there exists a constantK > 0 such that we have the following estimate

kp (:; t)k2S2F (t;T ;R) + kq (:; t)k
2
L2F (t;T ;Rn+1)

+ kr (:; :; t)k2L��;2F;p ([t;T ]�R�;Rn+1)
� K

�
1 + x20

�
: (2.2.5)
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The second order adjoint equation is de�ned on the time interval [0; T ] and satis�ed by the processes

(P (:) ;� (:) ;� (:; :)) as follows

8><>:
dP (s) = �2�0 (s)P (s) ds+ �(s)> dW ? (s) +

Z
R?
� (s; z)

> eN? (ds; dz) ; s 2 [0; T ] ;

P (T ) = �1:
(2.2.6)

where � (:) = (�0 (:) ;�1 (:) ; :::;�n (:))
>
; and � (:; :) = (�0 (:; :) ;�1 (:; :) ; :::;�n (:; :))

>. In the other hand,

noting that the �nal data of the equation (2:2:6) is deterministic, it is straightforward to look at a

deterministic solution. In addition we have the following representation

8><>: dP (s) = �2�0 (s)P (s) ds; s 2 [0; T ] ;

P (T ) = �1:
(2.2.7)

Clearly P (s) � �e
R T
s
2�0(�)d� ; hence the solution of (2:2:6) is explicitly given by the triplet

(P (s) ;� (s) ;� (s; z)) =
�
�e

R T
s
2�0(�)d� ;0Rn+1 ;0Rn+1

�
; 8 (s; z) 2 [0; T ]� R?: (2.2.8)

Remark 2.2.2 For each t 2 [0; T ) be �xed; the adjoint equation (2:2:4) is a backward stochastic dif-

ferential equation with jumps (BSDEJ for short) which has a unique solution (p (:; t) ; q (:; t) ; r (:; :; t)) 2

S2F (t; T ;R)� L2F
�
t; T ;Rn+1

�
� L�

�;2
F;p

�
[t; T ]� R�;Rn+1

�
.

Next; for any t 2 [0; T ] associated to the 5-tuple
�
û (:) ; X̂ (:) ; p (:; t) ; q (:; t) ; r (:; :; t)

�
we de�ne for s 2

[t; T ]

U (s; t) = B (s) p (s; t) +D (s) q (s; t) +

Z
R?
F (s; z)diag (�? (dz)) r (s; z; t) : (2.2.9)

2.2.2 A necessary and su¢ cient condition for equilibrium strategies

The following theorem is the �rst main result of this work, it provides a necessary and su¢ cient condition

to characterize the open-loop Nash equilibrium controls for the time inconsistent minimization problem

(2:1:9) subject to the dynamics (2:1:11).

Theorem 2.2.1 Let (H1)-(H2) hold. Given an admissible strategy �̂ (:) 2 L2F;p
�
0; T ;Rn+1

�
, let for

any t 2 [0; T ] ; (p (:; t) ; q (:; t) ; r (:; :; t)) 2 S2F (t; T ;R)� L2F
�
t; T ;Rn+1

�
� L�

�;2
F;p

�
[t; T ]� R?;Rn+1

�
be the

unique solution to the BSDE (2:2:4). Then �̂ (:) is an open-loop Nash equilibrium, if and only if, the

following condition holds

U (t; t) = 0; dP�a:s:; dt� a:e:; (2.2.10)
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where U (:; :) is given by (2:3:9) :

Our goal now, is to give a proof of the Theorem 2.2.1. The main idea is based on the variational techniques

in the same spirit of proving the stochastic Pontryagin�s maximum principle for equilibriums in [51] and

[52]. Note that in [51] and [52] the authors studied the Brownian case only.

Let �̂ (:) 2 L2F;p
�
0; T ;Rn+1

�
be an admissible strategy and X̂ (:) the corresponding controlled process:

Consider the perturbed strategy �" (:) de�ned by the spike variation (2:2:1) for some �xed arbitrary

t 2 [0; T ] ; v 2 L2
�

;Ft;P;Rn+1

�
and " 2 [0; T � t) : Denote by X̂" (:) the solution of the state equation

corresponding to �" (:). Since the coe¢ cients of the controlled state equation are linear, then by the

standard perturbation approach, see e.g. [90], we have

X̂" (s)� X̂ (s) = y";v (s) + z";v (s) ; s 2 [t; T ] ; (2.2.11)

where y";v (:) and z";v (:) solve the following linear stochastic di¤erential equations, respectively

8>>>><>>>>:
dy";v (s) = f�0 (s) y";v (s)g ds+ 1[t;t+") (s) v>D (s) dW ? (s)

+ 1[t;t+") (s)

Z
R?
v>F (s; z) eN? (ds; dz) ; s 2 [t; T ] ;

y";v (t) = 0;

(2.2.12)

and 8><>: dz";v (s) =
�
�0 (s) z

";v (s) + v>B (s) 1[t;t+") (s)
	
ds; s 2 [t; T ] ;

z";v (t) = 0:
(2.2.13)

We need to the following two lemmas

Lemma 2.2.1 Under assumption (H1), the following estimates hold

Et [y" (s)] = 0; ds� a:e: and sup
s2[t;T ]

��Et [z" (s)]��2 = O
�
"2
�
; (2.2.14)

Et
"
sup
s2[t;T ]

jy" (s)j2
#
= O (") and Et

"
sup
s2[t;T ]

jz" (s)j2
#
= O

�
"2
�
: (2.2.15)

Moreover, we have the equality

J
�
t; X̂ (t) ; �" (:)

�
� J

�
t; X̂ (t) ; �̂ (:)

�
= �

Z t+"

t

�

Et [U (s; t)] ; v

�
ds+

1

2
hH (s) v; vi

�
ds+ o (") : (2.2.16)
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where

H (s) = �e
R T
s
2�0(�)d�

�
D (s)D (s)

>
+

Z
R?
F (s; z) diag (�� (dz))F (s; z)>

�
: (2.2.17)

Proof. Let t 2 [0; T ] ; v 2 L2
�

;Ft;P;Rn+1

�
and " 2 [0; T � t) : Since Et [y";v (:)] and Et [z";v (:)] solve

the following ODEs, respectively

8><>: dEt [y";v (s)] = �0 (s)Et [y";v (s)] ds; s 2 [t; T ] ;

Et [y";v (t)] = 0;
(2.2.18)

and 8><>: dEt [z";v (s)] =
�
�0 (s)Et [z";v (s)] + Et

�
v>
�
B (s) 1[t;t+") (s)

	
ds; s 2 [t; T ] ;

Et [z";v (t)] = 0:
(2.2.19)

Thus, it is clear that Et [y";v (s)] = 0; a:e: s 2 [t; T ] : According to Gronwall�s inequality we have

sup
s2[t;T ]

jEt [z";v (s)]j2 = O
�
"2
�
: The estimation (2:2:15) is a direct consequence of Lemma 2.1. in [?].

To prove (2:2:16), we consider the di¤erence

J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�
= Et

�
1

2
(y";v (T ) + z";v (T ))

2
+

�
X̂ (T )� Et

h
X̂ (T )

i
� 1



�
(y";v (T ) + z";v (T ))

� 1

2
Et [y";v (T ) + z";v (T )]2

�
;

(2.2.20)

according to the estimations (2:2:14) and (2:2:15) the following valuation holds

1

2
Et [y";v (T ) + z";v (T )]2 = o (") :

Then, from the terminal conditions in the adjoint equations, it follows that

J
�
t; X̂ (t) ; �" (:)

�
� J

�
t; X̂ (t) ; �̂ (:)

�
= �Et

�
p (T ; t) (y";v (T ) + z";v (T )) +

1

2
P (T ; t) (y";v (T ) + z";v (T ))

2

�
+ o (") :

(2.2.21)

Now, by applying Ito�s formula to s 7! p (s; t) (y";v (s) + z";v (s)) on [t; T ], we get

Et [p (T ; t) (y";v (T ) + z";v (T ))]

= Et
24 t+"Z
t

�
v>B (s) p (s; t) + v>D (s) q (s; t) +

Z
R?
v>F (s; z)diag (�? (dz)) r (s; z; t)

	
ds

�
:

(2.2.22)
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Again, by applying Ito�s formula to s 7! P (s; t) (y";v (s) + z";v (s))
2 on [t; T ] ; we get

Et
h
P (T ; t) (y";v (T ) + z";v (T ))

2
i

= Et
24 t+"Z
t

�
2v>B (s) (y";v (s) + z";v (s))P (s; t)

+v>
�
D (s)D (s)

>
+

Z
R?
F (s; z) diag (�? (dz))F (s; z)>

�
vP (s; t)

�
ds

�
:

(2.2.23)

Moreover, we conclude from (H1) together with (2:2:14)� (2:2:15) that

Et
�Z t+"

t

(y";v (s) + z";v (s))P (s; t) v>B (s) ds

�
= o (") :

By taking (2:2:22) and (2:2:23) in (2:2:20) ; it follows that

J
�
t; X̂ (t) ; �" (:)

�
� J

�
t; X̂ (t) ; �̂ (:)

�
= �Et

�Z t+"

t

�
v>B (s) p (s; t) + v>D (s) q (s; t) +

Z
R?
v>F (s; z)diag (�? (dz)) r (s; z; t)

+
1

2
v>
�
D (s)D (s)

>
+

Z
R?
F (s; z)diag (�? (dz))F (s; z)>

�
vP (s; t)

�
ds

�
+ o (") ;

(2.2.24)

which is equivalent to (2:2:16) :�

Lemma 2.2.2 The following two statements are equivalent

1) lim
"#0

1

"

Z t+"

t

Et [U (s; t)] ds = 0; dP� a:s; 8t 2 [0; T ] :

2) U (t; t) = 0; dP� a:s; dt� a:e:

Proof. We put � (s) � e
R T
s
��0(�)d� . De�ne for t 2 [0; T ] and s 2 [t; T ]

(�p (s; t) ; �q (s; t) ; �r (s; z; t)) � �
��

� (s) p (s; t)� Et
h
X̂ (T )

i
� 1



�
; � (s) q (s; t) ; � (s) r (s; z; t)

�
.

Then for any t 2 [0; T ] ; in the interval [t; T ] ; the tiple (�p (:; t) ; �q (:; t) ; �r (:; :; t)) satis�es

8><>:
d�p (s; t) = �q (s; t)

>
dW ? (s) +

Z
R?
�r (s; z; t)

> eN? (ds; dz) ; s 2 [t; T ] ;

�p (T ; t) = X̂ (T ) :

(2.2.25)
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Moreover, it is clear that from the uniqueness of solutions to (2:2:25), we have

(�p (s; t1) ; �q (s; t1) ; �r (s; z; t1)) = (�p (s; t2) ; �q (s; t2) ; �r (s; z; t2)) ;

for any t1; t2; s 2 [0; T ] such that 0 < t1 < t2 < s < T: Hence, the solution (�p (:; t) ; �q (:; t) ; �r (:; :; t)) does

not depend on t. Thus we denote the solution of (2:2:25) by (�p (:) ; �q (:) ; �r (:; :)) :

We have then, for any t 2 [0; T ] ; and s 2 [t; T ]

(p (s; t) ; q (s; t) ; r (s; z; t)) = �� (s)�1
��

�p (s)� Et
h
X̂ (T )

i
� 1



�
; �q (s) ; �r (s; z)

�
: (2.2.26)

Now using (2:2:26) we have, for any t 2 [0; T ] ; and s 2 [t; T ]

lim
"#0

1

"
Et
�Z t+"

t

jU (s; t)�U (s; s)j ds
�
= lim

"#0

1

"
Et
�Z t+"

t

���B (s)� (s)�1 nEt hX̂ (T )i� Es hX̂ (T )io��� ds�
� Clim

"#0

1

"
Et
�Z t+"

t

���Et hX̂ (T )i� Es hX̂ (T )i��� ds�
= 0;

where we have used the fact that, the last quantity is a right continuous function of s; dt � a:e: and

vanishes at s = t: Thus

lim
"#0

1

"
Et
�Z t+"

t

U (s; t) ds

�
= lim

"#0

1

"
Et
�Z t+"

t

U (s; s) ds

�
: (2.2.27)

From the above equality, it is clear that if 2) holds, then

lim
"#0

1

"
Et
�Z t+"

t

U (s; t) ds

�
= 0: dP� a:s;

Conversely, according to Lemma 3.5 in [52]; if 1) holds then

U (s; s) = 0; dP� a:s; ds� a:e:

This completes the proof.�

Now, we are ready to give a proof of Theorem 2.2.1.
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Proof of Theorem 2.2.1. Given an admissible strategy �̂ (:) 2 L2F;p
�
0; T ;Rn+1

�
for which (2:2:10)

holds; according to Lemma 2.2.2 we have for any t 2 [0; T ]

lim
"#0

1

"

Z t+"

t

Et [U (s; t)] ds = 0:

Then for any t 2 [0; T ] and for any v 2 L2
�

;Ft;P;Rn+1

�
;

lim
"#0

1

"

n
J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�o
= � lim

"#0

1

"

Z t+"

t

�

Et [U (s; t)] ; v

�
ds+

1

2
hH (s) v; vi

�
ds

= �1
2
lim
"#0

1

"

Z t+"

t

hH (s) v; vi ds

= �1
2
hH (t) v; vi

� 0;

where we have used the fact that, under assumption (H2), hH (t) v; vi � 0: Hence �̂ (:) is an equilibrium

strategy.

Conversely, assume that �̂ (:) is an equilibrium strategy. Then, by (2:2:2) together with (2:2:16) ;for any

(t; �) 2 [0; T ]� Rn+1 the following inequality holds

lim
"#0

�
1

"

Z t+"

t

Et [U (s; t)] ds; �
�
+
1

2
hH (t)�; �i � 0: (2.2.28)

Now, we de�ne

	(t; �) =

�
lim
"#0

1

"

Z t+"

t

Et [U (s; t)] ds; �
�
+
1

2
hH (t)�; �i ; 8 (t; �) 2 [0; T ]� Rn+1:

Easy manipulations show that the inequality (2:2:18) is equivalent to

	(t; 0) = max
�2Rn+1

	(t; �) ; dP� a:s;8t 2 [0; T ] : (2.2.29)

It is easy to prove that the maximum condition (2:2:19) leads to the following condition, 8t 2 [0; T ]

D�	(t; 0) = lim
"#0

1

"

Z t+"

t

Et [U (s; t)] ds = 0; dP� a:s: (2.2.30)

According to Lemma 2.2.2, the expression (2:2:10) follows immediately. This completes the proof.�
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2.2.3 An explicit representation of the equilibrium control

In the next, we will �nd the (equilibrium) e¢ cient frontier of the mean-variance problem. The key point

in the explicit resolution of the problem is that the adjoint process may be separated into functions of

time and state variables. Then, on needs only to solve some linear ODEs in order to completely determine

the equilibrium control, and the corresponding equilibrium value function. Then by standard arguments,

we will prove the following result

Theorem 2.2.2 Let (H1)-(H2) hold. The stochastic mean-variance control problem (2:1:9) subject to

the SDE (2:1:11) ; has an open-loop Nash equilibrium solution

â (s) =
(�mY �0) e

�
R T
s
�0(�)d�



�
�20 +

Z +1

0

z2�0 (dz)

� ; (2.2.31)

b̂ (s) =
1



�
� (s)� (s)

>
+

Z
R?
 (s; z) diag (� (dz))  (s; z)>

��1
� (s) e�

R T
s
�0(�)d� ; (2.2.32)

Moreover, the associated expected terminal wealth is

E
h
X̂ (T )

i
= x0e

R T
0
�0(�)d� + �

Z T

0

e
R T
�
�0(l)dld� +

1



Z T

0

� (�) d�; (2.2.33)

and the corresponding variance of the terminal wealth is

Var
h
X̂ (T )

i
=
1

2

Z T

0

� (�) d�; (2.2.34)

where 8t 2 [0; T ]

� (t) = B (t)
>
�
D (t)D (t)

>
+

Z
R?
F (t; z) diag (�? (dz))F (t; z)>

��1
B (t) : (2.2.35)

Proof. The result of the previous subsections leads to the following �ow of forward and backward

stochastic di¤erential system with jumps (parametrized by t),

8>>>>>>>>><>>>>>>>>>:

dX̂ (s) =
�
�0 (s) X̂ (s) + �̂ (s)

>
B (s) + �

�
ds+ �̂ (s)

>
D (s) dW ? (s)

+

Z
R?
�̂ (s)

>
F (s; z) eN? (ds; dz) ; s 2 [0; T ] ;

dp (s; t) = ��0 (s) p (s; t) ds+ q (s; t)> dW ? (s) +

Z
R?
r (s; z; t)

> eN? (ds; dz) ; 0 � t � s � T;

X̂ (0) = x0; p (T ; t) = �
�
X̂ (T )� Et

h
X̂ (T )

i�
+
1


; for t 2 [0; T ] ;

(2.2.36)
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with the equilibrium condition

B (t) p (t; t) +D (t) q (t; t) +

Z
R?
F (t; z) diag (�? (dz)) r (t; z; t) = 0, dP� a:s:; dt� a:e: (2.2.37)

Inspired by [51], we consider the following Ansatz:

p (s; t) = �M (s)
�
X̂ (s)� Et

h
X̂ (s)

i�
+ ' (s) ; 80 � t � s � T (2.2.38)

for some deterministic functions M (:) ; ' (:) 2 C1 ([0; T ] ;R) such that, M (T ) = 1 and ' (T ) =
1


. We

would like to determine the equations that M (:) and ' (:) should satisfy. To this end we di¤erentiate

(2:2:38) we get

dp (s; t) = �dM
ds

(s)
�
X̂ (s)� Et

h
X̂ (s)

i�
+
d'

ds
(s)�M (s) d

�
X̂ (s)� Et

h
X̂ (s)

i�
; (2.2.39)

we remark that

dEt
h
X̂ (s)

i
=
�
�0 (s)Et

h
X̂ (s)

i
+ Et

h
�̂ (s)

>
i
B (s) + �

�
ds;

then

d
�
X̂ (s)� Et

h
X̂ (s)

i�
=
�
�0 (s)

�
X̂ (s)� Et

h
X̂ (s)

i�
+ (�̂ (s)� Et [�̂ (s)])>B (s)

�
ds

+ �̂ (s)
>
D (s) dW (s) +

Z
R?
�̂ (s)

>
F (s; z) eN (ds; dz) ; (2.2.40)

Now, invoking (2:2:39) and (2:2:40) ; then by comparing with (2:2:36), we easily check that

� �0 (s)
�
�M (s)

�
X̂ (s)� Et

h
X̂ (s)

i�
+ ' (s)

�
= �dM

ds
(s)
�
X̂ (s)� Et

h
X̂ (s)

i�
+
d'

ds
(s)

�M (s)
n
�0 (s)

�
X̂ (s)� Et

h
X̂ (s)

i�
+
�
�̂ (s)� Et [�̂ (s)]

�>
B (s)

o
; (2.2.41)

also we get

(q (s; t) ; r (s; z; t)) =
�
�M (s)D (s)

>
�̂ (s) ;�M (s)F (s; z)

>
�̂ (s)

�
: (2.2.42)

Moreover by taking (2:2:38) and (2:2:42) in (2:2:37) ; we obtain

B (t)' (t)�M (t)

�
D (t)D (t)

>
+

Z
R?
F (t; z)diag (�? (dz))F (t; z)>

�
�̂ (t) = 0:
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Subsequently, we obtain that �̂ (:) admits the following representation

�̂ (t) =
1

M (t)
� (t)B (t)' (t) : (2.2.43)

where

�(t) =

�
D (t)D (t)

>
+

Z
R?
F (t; z)diag (�? (dz))F (t; z)>

��1
; 8t 2 [0; T ] :

Note that 8t 2 [0; T ] ; �(t) can be represented as follows

�(t) =

0BBBB@
1�

�20 +

Z +1

0

z2�0 (dz)

� 0>Rn

0Rn

�
� (t)� (t)

>
+

Z
R?
 (t; z) diag (� (dz))  (t; z)>

��1
1CCCCA :

Next, from (2:2:41) and (2:2:43) we obtain

�
�dM
ds

(s)� 2�0 (s)M (s)

��
X̂ (s)� Et

h
X̂ (s)

i�
+
d'

ds
(s) + �0 (s)' (s) = 0: (2.2.44)

This suggests that the functions M (:) ; and ' (:) solve the following system of equations,

8>>>><>>>>:
dM

ds
(s) + 2�0 (s)M (s) = 0; s 2 [0; T ] ;

d'

ds
(s) + �0 (s)' (s) = 0; 8s 2 [0; T ] ;

M (T ) = 1; ' (T ) =
1


;

(2.2.45)

which is explicitely solved by

8><>:
M (s) = e2

R T
s
�0(�)d� ; 8s 2 [0; T ] ;

' (s) =
1


e

R T
s
�0(�)d� ; 8s 2 [0; T ] :

(2.2.46)

From (2:2:43) we obtain

0B@ â (s)

b̂ (s)

1CA =
1


�(t)

0B@ �mY �0

� (s)

1CA e�
R T
s
�0(�)d� ; (2.2.47)

It follows immediately that the open loop Nash equilibrium solution is given by (2:2:31) and (2:2:32).

Next we derive the e¢ cient frontier of the mean-variance problem. Substituting the equilibrium solution

54



A characterization of equilibrium strategies in continuous-time mean-variance problems for insurers

(2:2:43) into the wealth process results

8>>>>><>>>>>:
dX̂ (s) =

�
�0 (s) X̂ (s) +

1


e�

R T
s
�0(�)d�� (s) + �

�
ds+

1


e�

R T
s
�0(�)d�B (s)

>
�(s)D (s) dW ? (s)

+
1


e�

R T
s
�0(�)d�

Z
R?
B (s)

>
�(s)F (s; z) eN? (ds; dz) ; for s 2 [0; T ] ;

X̂ (0) = x0;

(2.2.48)

By taking expectations on both sides of (2:2:48), we represent E
h
X̂ (s)

i
as follows

8><>:
dE
h
X̂ (s)

i
=

�
�0 (s)E

h
X̂ (s)

i
+ �+

1


e�

R T
s
�0(�)d�� (s)

�
ds; s 2 [0; T ] ;

E
h
X̂ (0)

i
= x0;

(2.2.49)

A variation of constant formula yields

E
h
X̂ (s)

i
= x0e

R s
0
�0(�)d� + �

Z s

0

e
R s
�
�0(l)dld� +

1



Z s

0

� (�) d�; s 2 [0; T ] ; (2.2.50)

which implies (2:2:43) : Now, applying Ito�s formula to X̂ (s)2 : Taking the expectation, we conclude that

E
h
X̂ (s)

2
i
satis�es the following linear ordinary di¤erential equation

8>>>>><>>>>>:
dE
h
X̂ (s)

2
i
=

�
2�0 (s)E

h
X̂ (s)

2
i
+ 2

�
1


e�

R T
s
�0(�)d�� (s) + �

�
E
h
X̂ (s)

i
+
1

2
e�

R T
s
2�0(�)d�� (s)

�
ds; for s 2 [0; T ] ;

X̂ (0)
2
= x20;

(2.2.51)

a simple computations show that Var
h
X̂ (s)

i
= E

h
X̂ (s)

2
i
� E

h
X̂ (s)

i2
satis�es the following linear

ordinary di¤erential equation

8><>:
dVar

h
X̂ (s)

i
=

�
2�0 (s)Var

h
X̂ (s)

i
+
1

2
e�2

R T
s
�0(�)d�� (s)

�
ds; s 2 [0; T ]

Var
h
X̂ (0)

i
= 0:

(2.2.52)

which leads to the representation

Var
h
X̂ (s)

i
=
1

2

Z s

0

� (�) d�; s 2 [0; T ] ; (2.2.53)

which implies (2:2:34) : This completes the proof.�
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Remark 2.2.3 The objective function value of the equilibrium strategy �̂ (:) is

J (0; x0; �̂ (:)) = �
1



 
x0e

R T
0
�0(�)d� + �

Z T

0

e
R T
�
�0(�)d�d� +

1

2

Z T

0

� (�) d�

!
:

2.3 Special cases and relationship to other works

Equilibrium reinsurance and investment strategies for mean�variance models with constant risk aversion

have been studied in [110] and [111] among others in di¤erent frameworks. In this section, we will compare

our results with some existing ones in literature.

2.3.1 Special case 1

In the case where the surplus of the insurers is modelled by (2:1:4) ; the �nancial market consists of one

risk-free asset whose price process is given by (2:1:1), and only one risky asset whose price process is

modelled by the geometric Lévy process

dS1 (s) = S1 (s�)

0@~� (s) ds+ � (s) dW1 (s) + d

~L(s)X
i=1

Zi

1A ; S1 (0) = s1 > 0: (2.3.1)

where ~�; � : [0; T ] ! R are assumed to be deterministic and continuous functions. W1 (:) is a one-

dimensional standard Brownian motion, ~L (s) representing the number of the jumps of the risky asset�s

price occurring up time s is a Poisson process with intensity �Z > 0, Zi is the size of the ith jump amplitude

of the risky asset�s price and fZigi2N�f0g, are assumed to be i.i.d. random variables taking values in

[�1;+1) with common distribution PZ having �nite �rst and second moments mZ =
R1
�1 zPZ (dz) and

�Z =
R1
�1 z

2PZ (dz), respectively. The process
~L(s)P
i=1

Zi can also be de�ned through a random measure

N1 (ds; dz) as
~L(s)X
i=1

Zi =

Z s

0

Z 1

�1
zN1 (dr; dz) ;

where N1 (:; :) is a Poisson random measure with a random compensator having the form �1 (dz) ds =

�ZPZ (dz) ds: We recall that ~N1 (ds; dz) = N1 (ds; dz) � �1 (dz) ds de�nes the compensated jump mar-

tingale random measure of N1 (:; :) : A trading strategy � (:) is described by a two-dimensional stochastic

processes (a (:) ; b (:)), where a (s) represents the retention level of reinsurance or new business acquired

at time s 2 [0; T ] : b (s) represents the amount invested in the risky stock at time s. The dynamics of the

wealth process X (:) = Xt;� (:;� (:)) which corresponds to an admissible strategy � (:) = (a (:) ; b (:)) and

initial pair (t; �) 2 [0; T ]� L2 (
;Ft;P;R) can be described by
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8>>>>>>>>><>>>>>>>>>:

dX (s) = f�0 (s)X (s) + (� + �0a (s))�mY + � (s) b (s)g ds+ �0a (s) dW0 (s)

+ � (s) b (s) dW1 (s)� a (s)
Z +1

0

z ~N0 (ds; dz)

+ b (s)

Z +1

�1
z ~N1 (ds; dz) ; for s 2 [t; T ] ;

X (t) = �:

(2.3.2)

where � (s) = ~� (s) � �0 (s) + �ZmZ and � = � � �0: In this case the objective is exactly the same as

Zeng et al [111] in which the equilibrium is de�ned within the class of feedback controls. Moreover, the

equilibrium strategy
�
â (:) ; b̂ (:)

�
given in our paper by the expressions (2:2:31) and (2:2:32) change to

â (s) =
�mY �0e

�
R T
s
�0(�)d�

 (�20 + ��Y )
; s 2 [0; T ] ; (2.3.3)

b̂ (s) =
(~� (s)� �0 (s) + �ZmZ) e

�
R T
s
�0(�)d�


�
� (s)

2
+ �Z�Z

� ; s 2 [0; T ] : (2.3.4)

Which coincide with the ones obtained in Zeng et al [111] by solving an extended Hamilton�Jacobi�

Bellman (HJB) equations.

2.3.2 Special case 2

Now, suppose that the surplus of the insurer is modelled the classical Cramér�Lundberg (CL) model (.i.e.

the model (2:1:4) where �0 = 0), and we assume that the �nancial market consists of one risk-free asset

whose price process is given by (2:1:1), and only one risky asset whose price process do not have jumps

and is modelled by a di¤usion process

dS1 (s) = S1 (s�) (~� (s) ds+ � (s) dW1 (s)) ; S1 (0) = s1 > 0: (2.3.5)

where ~�; � : [0; T ] ! R are assumed to be deterministic and continuous functions. W1 (:) is a one-

dimensional standard Brownian motion. In this case, the dynamics of the wealth process X (:) =

Xt;� (:;� (:)) which corresponds to an admissible strategy � (:) = (a (:) ; b (:)) and initial pair (t; �) 2

[0; T ]� L2 (
;Ft;P;R) can be described by

8>>>><>>>>:
dX (s) = f�0 (s)X (s) + (� + �0a (s))�mY + � (s) b (s)g ds+ � (s) b (s) dW1 (s)

� a (s)
Z +1

0

z ~N0 (ds; dz) ; for s 2 [t; T ] ;

X (t) = �:

(2.3.6)
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where � (s) = ~� (s)��0 (s), and � = ���0: The equilibrium strategy
�
â (:) ; b̂ (:)

�
given by the expressions

(2:2:31) and (2:2:32) change to

â (s) =
mY �0e

�
R T
s
�0(�)d�

��Y
; s 2 [0; T ] ; (2.3.7)

b̂ (s) =
(~� (s)� �0 (s)) e�

R T
s
�0(�)d�

� (s)
2 ; s 2 [0; T ] : (2.3.8)

It is worth pointing out that the above equilibrium solutions are the same as those obtained in Zeng and

Li [110] by solving some extended HJB equations.

Remark 2.3.1 On comparing the results of this special case with the ones in the special case 1, we �nd

the following facts:

1) In the special case 2, the insurer will purchase less reinsurance or acquire more new business.

2) Comparing between
(~� (s)� �0 (s) + �ZmZ)


�
� (s)

2
+ �Z�2Z

� and
(~� (s)� �0 (s))

� (s)
2 , by simple computations, we have

if
mZ

�2Z
>
~� (s)� �0 (s)

� (s)
2 then the insurer in the second case will invest less money in the risky asset.

Moreover, if
mZ

�2Z
<
~� (s)� �0 (s)

� (s)
2 ; he/she will invest more money in the risky asset.

2.3.3 Special case 3

We conclude this section with the case where he insurer is not allowed to purchase reinsurance or acquire

new business, i.e. a (s) � 1, and the �nancial market consists of one risk-free asset whose price process

is given by (2:1:1), and only one risky asset whose price process is modelled by the di¤usion process

(2:3:5) : In this case a trading strategy � (:) reduces to a one-dimensional stochastic processes b (:), where

b (s) represents the amount invested in the risky stock at time s. The dynamics of the wealth process

X (:) = Xt;� (:;� (:)) which corresponds to an admissible investment strategy b (:) and initial pair (t; �) 2

[0; T ]� L2 (
;Ft;P;R) can be described by

8>>>><>>>>:
dX (s) = f�0 (s)X (s) + ��mY + � (s) b (s)g ds+ � (s) b (s) dW1 (s)

+ �0b (s) dW0 (s)�
Z +1

0

z ~N0 (ds; dz) ; for s 2 [t; T ] ;

X (t) = �;

(2.3.9)
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where � (s) = ~� (s) � �0 (s) : Similar to the previous section, for the investment-only case we can derive

the equilibrium strategy which is described as

b̂ (s) =
(~� (s)� �0 (s)) e�

R T
s
�0(�)d�

� (s)
2 ; s 2 [0; T ] : (2.3.10)

This essentially covers the solution obtained by Bjök and Murgoci [17] by solving some extended HJB

equations.
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Chapter 3

Open Loop Equilibrium Strategies in

General Discounting Merton

Portfolio Problem

Discounted utility maximization is one of the most frequent problems in �nancial mathematics and has

been considered by numerous authors. Landmark papers are the ones by Ramsey [81] in 1928 and

Samuelson [84] in 1937. There is by now a very rich literature. In [69], and [70] Merton was the �rst

to formulate the continuous-time portfolio-consumption model and apply the dynamic programming ap-

proach. Merton�s results and technique have been further extended and developed by many authors since

then. Among them we mention Richard [82], Breeden [21], and Fleming et al [44]. Another approach to

solve the problem is the martingale method studied by Pliska [79], and Karatzas-Lehoczky-Shreve [55].

The common assumption in the literature cited above is that the discount rate is constant over time which

leads to the discount function be exponential. However, Results from experimental studies contradict this

assumption indicating that the discount rates for the near future are much lower than the discount rates for

the time further away in future. Ainslie [3] performed empirical studies on human and animal behaviour

and found that discount functions are almost hyperbolic, that is they decrease like a negative power

of time rather than an exponential. Loewenstein and Prelec [66] present four drawbacks of exponential

discounting and propose a model which accounts for them. They analyze implications for savings behaviour

and estimation of discount rates.

As soon as discount function is non-exponential, the discounted utility models become time-inconsistent in

the sens that they do not admit a Bellman�s optimality principle. Consequently, research on equilibrium
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strategies for time inconsistent discounted utility maximization is a focus and attracts many scholars

attentions. Recently, an extended (non local) HJB equation is derived in Marín-Solano and Navas [87]

which solves the optimal consumption and investment problem with non-constant discount rate for both

naive and sophisticated agents. The similar problem is also considered by another approach in Ekeland

and Pirvu [40], they characterize the equilibrium policies through the solutions of a �ow of BSDEs, and

they show, with special form of the discount factor, this BSDE reduces to a system of two ODEs which

has a solution. Another approach to the time-inconsistent discounted utility models is developed by Yong

[103]. In Yong�s paper, a sequence of multi-person hierarchical di¤erential games is studied �rst and then

the time-consistent equilibrium strategy and equilibrium value function are obtained by taking limit.

The purpose of this thesis is to develop on the existing theory concerning the study of equilibrium solutions

to time inconsistents consumption-investment problem with a general discount function and a general

utility function. The novelty of this work is that, here, we consider this problem in a non-Markovian

framework. More speci�cally, the coe¢ cients in our model, including the interest rate, appreciation rate

and volatility of the stock, are assumed to be adapted stochastic processes. To our best knowledge,

the literature on the time-inconsistent Merton problem in a non-Markovian model is rather limited. We

consider the de�nition of equilibrium strategies in the sense of open-loop one. Motivated by the works Hu

et al [52] and Ekland and Pirvu [40], by means of the variational method, we characterize the open-loop

equilibrium consumption-investment strategies via a stochastic system, which involves a �ow of forward-

backward stochastic di¤erential equation along with some equilibrium condition. We accentuate that our

work covers some results obtained in Marín-Solano and Navas [87] and [40], since here we provide the

necessary and su¢ cient conditions to characterize the equilibrium strategies and we consider the discount

function in fairly general form.

The rest of this chapter is organized as follows. The next section is devoted to the formulation of our

problem. In Section 2, we apply the spike variation technique to derive a �ow of FBSDEs and a necessary

and su¢ cient condition for equilibrium controls. Based on this general result, we solve in Section 3 the

case when all the coe¢ cients are deterministic and we give some comparisons with some existing results

in literature.

3.1 Problem formulation

Suppose that all stochastic processes and random variables are de�ned on the �ltered probability space

(
;F ; (Ft)t2[0;T ] ;P).
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3.1.1 Investment-consumption strategies and wealth processes

Consider an individual facing the intertemporal consumption and portfolio problem where the market

environment consists of one riskless and d risky securities. The risky securities are stocks and their prices

are modelled as Ito processes. Namely, for i = 1; 2; ::; d; the price Si (s) ; s 2 [0; T ] ; of the i-th risky asset

satis�es

dSi (s) = Si (s)

0@�i (s) ds+ dX
j=1

�ij (s) dWj (s)

1A ; (3.1.1)

with Si (0) > 0; for i = 1; 2; :::; d: The process W (:) = (W1 (:) ; :::;Wd (:))
> is a d-dimensional stand-

ard Brownian motion de�ned on (
;F ; (Ft)t2[0;T ] ;P): For simplicity, it is assumed that the under-

lying �ltration (Ft)t2[0;T ], coincides with the one generated by the Brownian motion, that is Ft =

� (W (s) : 0 � s � t) :

The coe¢ cients ri (:) and �i (:) = (�i1 (:) ; ::; �id (:)) ; for i = 1; ::; d; are (Ft)t2[0;T ] -progressively measur-

able processes with values in R and Rd, respectively. For brevity, we use � (s) = (�1 (s) ; �2 (s) ; ::; �d (s))

to denote the the drift rate vector, and denote by � (s) = (�ij (s))1�i;j�d the random volatility matrix.

The riskless asset, the savings account, has the price process B (s) at time s 2 [0; T ] governed by

dB (s) = r0 (s)B (s) ds; B (0) = 1; (3.1.2)

where r0 (:) is (Ft)t2[0;T ] -progressively measurable process with values in [0;1) which represents the

interest rate. We assume that �i (t) > r0 (t) > 0, for i = 1; 2; ::; d, ds�a:e:; dP�a:s: This is a very natural

assumption, since otherwise nobody is willing to invest in the risky stocks.

Starting from an initial capital x0 > 0 at time 0, during the time horizon [0; T ], the decision maker is

allowed to dynamically investing in the stocks as well as in the bond, and consuming. A consumption-

investment strategy is described by an (d+ 1)-dimensional stochastic process u (:) = (c (:) ; u1 (:) ; ::; ud (:))
>
;

where c (s) represents the consumption rate at time for s 2 [0; T ] and ui (s) ; for i = 1; 2; ::; d; represents

the amount invested in the i-th risky stock at time s 2 [0; T ] : The process uI (:) = (u1 (:) ; :::; ud (:))> is

called an investment strategy. The dollar amount invested in the bond at time s is Xx0;u(:) (s)�
dP
i=1

ui (s),

where Xx0;u(:) (:) is the wealth process associated with the strategy u (:) and the initial capital x0. The

evolution of Xx0;u(:) (:) can be described as

8><>:
dXx0;u(:) (s) =

�
Xx0;u(:) (s)�

dP
i=1

ui (s)

�
dB (s)

B (s)
+

dP
i=1

ui (s)
dSi (s)

Si (s)
� c (s) ds; for s 2 [0; T ] ;

Xx0;u(:) (0) = x0:
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Accordingly, the wealth process solves the following SDE

8><>: dXx0;u(:) (s) =
n
r0 (s)X

x0;u(:) (s) + uI (s)
>
r (s)� c (s)

o
ds+ uI (s)

>
� (s) dW (s) ; for s 2 [0; T ] ;

Xx0;u(:) (0) = x0:

(3.1.3)

where r (s) = (�1 (s)� r0 (s) ; :::; �d (s)� r0 (s))>, see e.g [105] for more information. As time evolves,

we need to consider the controlled stochastic di¤erential equation parameterized by (t; �) 2 [0; T ] �

L2 (
;Ft;P;R) and satis�ed by X (:) = Xt;� (:;u (:)) ;

8><>: dX (s) =
n
r0 (s)X

x0;u(:) (s) + uI (s)
>
r (s)� c (s)

o
ds+ uI (s)

>
� (s) dW (s) ; for s 2 [t; T ] ;

X (t) = �:

(3.1.4)

De�nition 3.1.1 (Admissible Strategy) A consumption-investment strategy u (:) =
�
c (:) ; uI (:)

>
�>

is said be admissible over [t; T ] if u (:) 2 L1F (t; T ;R) � L2F
�
t; T ;Rd

�
; and equation (3:1:4) has a unique

solution X (:) = Xt;� (:;� (:)) ; for any (t; �) 2 [0; T ]� L2 (
;Ft;P;R) :

We impose the assumption about the coe¢ cients:

(H1) The processes r0 (:) ; r (:) ; and � (:) ; are uniformly bounded: We also assume a uniform ellipticity

condition as follows

� (s)� (s)
> � �In; a:e; P�a:s:

for some � > 0, where In denotes the identity matrice of Rn�n:

Under (H1), for any (t; �; u (:)) 2 [0; T ]�L2 (
;Ft;P;R)�L1F (t; T ;R)�L2F
�
t; T ;Rd

�
; the state equation

(3:1:4) has a unique solution X (:) 2 C2F (t; T ;R). Moreover, we have the following estimate

E
�
sup
t�s�T

jX (s)j2
�
� K

�
1 + E

h
j�j2
i�
; (3.1.5)

for some positive constant K. In particular for t = 0 and u (:) =
�
c (:) ; uI (:)

>
�>

2 L1F (t; T ;R) �

L2F
�
t; T ;Rd

�
; equation (3:1:3) has a unique solution X (:) 2 C2F (0; T ;R) with the following estimate

holds

E
�
sup

0�s�T
jX (s)j2

�
� K

�
1 + jx0j2

�
: (3.1.6)
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3.1.2 General discounted Utility Function

In order to evaluate the performance of an consumption-investment strategy, the decision maker uses

an expected utility criterion. Then, for any (t; �) 2 [0; T ] � L2 (
;Ft;P;R) the investment-consumption

optimization problem is denoted as: maximizing, the utility function J (t; �; :) given by,

J (t; �; u (:)) = Et
"Z T

t

� (s� t)' (c (s)) ds+ � (T � t)h (X (T ))
#
; (3.1.7)

over u (:) 2 L1F (t; T ;R) � L2F
�
t; T ;Rd

�
; subject to (3:1:4) ; where Et [:] = E [: jFt ] and '; h : R ! R

are strictly increasing, strictly concave twice continuously di¤erentiable functions. ' (c (s)) represents the

instantaneous utility from consumption c (s) and � (T � t)h (X (T )) is the (general discounted) utility that

is derived from bequests. � : [0; T ]�
! R is a stochastic adapted process which represents the hyperbolic

stochastic discount function satisfying � (0) = 1; � (s) > 0 ds� a:e; dP�a:s; and
R T
0
E [� (s)] ds <1: We

also impose a technical assumption on � (:)

(H2) There exists a constant C > 0 such that j� (s)� � (t)j � C js� tj ; dP�a:s; for any t; s 2 [0; T ] :

Remark 3.1.1 Assumption (H2) is satis�ed by many discount functions, such as exponential discount

functions, mixture of exponential functions and hyperbolic discount functions.

If we denote B (s) =
�
�1; r (s)>

�>
; D (s) =

0B@ 0 0>Rd

0Rd � (s)

1CA and we write W � (s) =
�
0;W (s)

>
�>

:

Then the optimal control problem associated with (3:1:4) and (3:1:7) is equivalent to maximize

J (t; �; u (:)) = Et
"Z T

t

� (s� t)'
�
e>u (:)

�
ds+ � (T � t)h (X (T ))

#
; (3.1.8)

where e =
�
1;0>Rd

�>
; subject to

8><>: dX (s) =
n
r0 (s)X (s) + u (s)

>
B (s)

o
ds+ u (s)

>
D (s) dW � (s) ; for s 2 [t; T ] ;

X (t) = �:
(3.1.9)

3.2 Equilibrium strategies

It is well known that, the problem described above turn out to be time inconsistent in the sense that, it does

not satisfy the Bellman optimality principle, since a restriction of an optimal control for a speci�c initial

pair on a later time interval might not be optimal for that corresponding initial pair. For a more detailed

discussion see Ekeland and Pirvu [40] and Yong [103]. Since lack of time consistency, we consider open-loop

64



A characterization of equilibrium strategies in continuous-time mean-variance problems for insurers

Nash equilibrium controls instead of optimal controls. As in [51], we �rst consider an equilibrium by local

spike variation, given an admissible consumption-investment strategy û (:) 2 L1F (t; T ;R)�L2F
�
t; T ;Rd

�
:

For any t 2 [0; T ] ; v 2 L1 (
;Ft;P;R)� L2
�

;Ft;P;Rd

�
and for any " > 0; de�ne

u" (s) =

8><>: û (s) + v; for s 2 [t; t+ ") ;

û (s) ; for s 2 [t+ "; T ] ;
(3.2.1)

we have the following de�nition.

De�nition 3.2.1 (Open-loop Nash equilibrium) An admissible strategy û (:) 2 L1F (t; T ;R)�L2F
�
t; T ;Rd

�
is an open-loop Nash equilibrium strategy if

lim
"#0
inf

1

"

n
J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�o
� 0; (3.2.2)

for any t 2 [0; T ] and v 2 L1 (
;Ft;P;R)�L2
�

;Ft;P;Rd

�
: The corresponding equilibrium wealth process

solves the following SDE

8><>: dX̂ (s) =
n
r0 (s) X̂ (s) + û (s)

>
B (s)

o
ds+ û (s)

>
D (s) dW � (s) ; for s 2 [t; T ] ;

X̂ (t) = �:
(3.2.3)

3.2.1 A necessary and su¢ cient condtion for equilibrium controls

Our objective is to present a necessary and su¢ cient condition for equilibriums. In the same spirit of

the precedent chapters, we derive this condition by a second-order expansion in spike variation. First, we

introduce the adjoint equations involved in the characterization of open-loop Nash equilibrium controls.

Let û (:) =
�
ĉ (:) ; ûI (:)

>
�>

2 L1F (0; T ;R)� L2F
�
0; T ;Rd

�
and denote by X̂ (:) 2 C2F (0; T ;R) the corres-

ponding wealth process. For each t 2 [0; T ], we introduce the �rst order adjoint equation de�ned on the

time interval [t; T ], and satis�ed by the pair of processes (p (:; t) ; q (:; t)) as follows

8><>: dp (s; t) = �r0 (s) p (s; t) ds+ q (s; t)> dW (s) ; s 2 [t; T ] ;

p (T ; t) = � (T � t) dh
dx

�
X̂ (T )

�
;

(3.2.4)

where q (:; t) = (q1 (:; t) ; :::; qd (:; t))
>
: Under (H1), equation (3:2:4) is uniquely solvable in C2F (t; T ;R)�

L2F
�
0; T ;Rd

�
: Moreover there exists a constant K > 0 such that, for any t 2 [0; T ] ; we have the following

estimate

kp (:; t)k2C2F (t;T ;R) + kq (:; t)k
2
L2(t;T ;Rd) � K

�
1 + x20

�
: (3.2.5)
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The second order adjoint equation is de�ned on the time interval [t; T ] and satis�ed by the pair of processes

(P (:; t) ; Q (:; t)) 2 C2F (t; T ;R)� L2F
�
t; T ;Rd

�
as follows

8><>:
dP (s; t) = �2r0 (s)P (s; t) ds+Q (s; t)> dW (s) ; s 2 [t; T ] ;

P (T ; t) = � (T � t) d
2h

dx2

�
X̂ (T )

� (3.2.6)

whereQ (:; t) = (Q1 (:; t) ; :::; Qd (:; t))
>
:Under (H1) the above BSDE has unique solution (P (:; t) ; Q (:; t)) 2

C2F (t; T ;R)� L2F
�
t; T ;Rd

�
. Moreover we have the following representation for P (:; t)

P (s; t) = Es
�
� (T � t) d

2h

dx2

�
X̂ (T )

�
e
R T
s
2r0(�)d�

�
; s 2 [t; T ] : (3.2.7)

Indeed, if we de�ne the function � (s; :) for each s 2 [0; T ] ; as the fundamental solution of the following

linear ODE 8><>: d� (s; �) = r0 (�)� (s; �) d�; � 2 [s; T ] ;

� (s; s) = 1:
(3.2.8)

Then, we apply Ito�s formula to � ! P (� ; t)� (s; �)
2 on [s; T ] and by taking the conditional expectations

we obtain (3:2:7). Note that since
d2h

dx2

�
X̂ (T )

�
� 0, then P (s; t) � 0 ds� a:e.

Proposition 3.2.1 Let (H1) holds, for any t 2 [0; T ] ; v 2 L1 (
;Ft;P;R) � L2
�

;Ft;P;Rd

�
; and

" 2 [0; T � t) ; we have the following equality

J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; u (:)

�
=

Z t+"

t

Et
�
hH (s; t) ; vi+ 1

2
hL (s; t) v; vi

�
ds+ o (") (3.2.9)

where for ~q (s; t) =
�
0; q (s; t)

>
�>

H (s; t) , p (s; t)B (s) +D (s) ~q (s; t) + � (s� t) d'
dc

�
e>û (s)

�
e; (3.2.10)

and

L (s; t) ,

0B@ � (s� t) d
2

dc2
'
�
e>
�
û (s) + �v1[t;t+")

��
0>Rn

0Rn � (s)� (s)
>
P (s; t)

1CA (3.2.11)

with � 2 (0; 1) :

Proof. Denote by X̂" (:) the solution of the state equation corresponding to u" (:). Since the coe¢ cients

of the controlled state equation are linear, then by the standard perturbation approach, see e.g. [105], we
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have

X̂" (s)� X̂ (s) = y";v (s) + z";v (s) ; s 2 [t; T ] ; (3.2.12)

where y";v (:) and z";v (:) solve the following linear stochastic di¤erential equations, respectively

8><>: dy";v (s) = fr0 (s) y";v (s)g ds+ 1[t;t+") (s) v>D (s) dW � (s) ; s 2 [t; T ] ;

y";v (t) = 0;
(3.2.13)

and 8><>: dz";v (s) =
�
r0 (s) z

";v (s) + v>B (s) 1[t;t+") (s)
	
ds; s 2 [t; T ] ;

z";v (t) = 0:
(3.2.14)

Moreover, by Theorem 4.4 in [105], the following estimates hold

Et
"
sup
s2[t;T ]

jy" (s)j2
#
= O (") and Et

"
sup
s2[t;T ]

jz" (s)j2
#
= O

�
"2
�
: (3.2.15)

In addition, we have the following equality

J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�
= Et

�
� (T � t)

�
dh

dx

�
X̂ (T )

�
(y";v (T ) + z";v (T )) +

1

2

d2h

dx2

�
X̂ (T )

�
(y";v (T ) + z";v (T ))

2

��
+ Et

"Z T

t

� (s� t)
�
'
�
e>u" (s)

�
� '

�
e>û (s)

��
ds

#
+ o (")

= Et
�
p (T ; t) (y";v (s) + z";v (s)) +

1

2
P (s; t) (y";v (s) + z";v (s))

2

�
+ Et

"Z T

t

� (s� t)
�
'
�
e>u" (s)

�
� '

�
e>û (s)

��#
+ o (") : (3.2.16)

Now, by applying Ito�s formula to s 7! p (s; t) (y";v (s) + z";v (s)) on [t; T ], we get

Et [p (T ; t) (y";v (T ) + z";v (T ))] = Et
�Z t+"

t

�
v>B (s) p (s; t) + v>D (s) eq (s; t)	 ds� : (3.2.17)

Again, by applying Ito�s formula to s 7! P (s; t) (y";v (s) + z";v (s))
2 on [t; T ] ; we get

Et
h
P (T ; t) (y";v (T ) + z";v (T ))

2
i

= Et
�Z t+"

t

n
2v> (y";v (s) + z";v (s))

�
B (s)P (s; t) +D (s) eQ (s; t)�

+v>
�
D (s)D (s)

>
�
vP (s; t)

o
ds
i
;

(3.2.18)
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where eQ (s; t) = �0; Q (s; t)>�> : In the other hand, we conclude from (H1) together with (3:2:15) that

Et
�Z t+"

t

(y";v (s) + z";v (s))
�
B (s)P (s; t) +D (s) eQ (s; t)� ds� = o (") : (3.2.19)

By taking (3:2:17) and (3:2:18) in (3:2:16) ; it follows that

J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�
= Et

�Z t+"

t

�
v>B (s) p (s; t) + v>D (s) eq (s; t) + 1

2
v>D (s)D (s)

>
vP (s; t)

�
ds

�
+ Et

"Z T

t

� (s� t)
�
'
�
e>u" (s)

�
� '

�
e>û (s)

��
ds

#
+ o (") : (3.2.20)

Now, applying second order Taylor-Lagrange expansion to '
�
e>u" (s)

�
� '

�
e>u (s)

�
we �nd

'
�
e>u" (s)

�
� '

�
e>û (s)

�
= '

�
e>û (s) + e>v1[t;t+")

�
� '

�
e>û (s)

�
= v>e

d'
�
e>û (s)

�
dc

1[t;t+") +
1

2
v>e

d2'

dc2
�
e>
�
û (s) + �v1[t;t+")

��
e>v1[t;t+")

(3.2.21)

By taking (3:2:21) in (3:2:20) ; it follows that

J
�
t; X̂ (t) ; u" (s)

�
� J

�
t; X̂ (t) ; û (s)

�
= �Et

�Z t+"

t

�
v>B (s) p (s; t) + v>D (s) eq (s; t) + 1

2
v>D (s)D (s)

>
vP (s; t)

�
ds

�
+ Et

�Z t+"

t

� (s� t)
�
v>e

d'

dc

�
e>û (s)

�
+
1

2
v>e

d2'

dc2
�
e>
�
û (s) + �v1[t;t+")

��
e>v

�
ds

�
+ o (") ; (3.2.22)

which is equivalent to (3:2:9) :�

Now, we presents the following technical lemma needed later in this study.

Lemma 3.2.1 Under assumptions (H1)-(H2). The following two statements are equivalent

i) lim
"#0

1

"

Z t+"

t

Et [H (s; t)] ds = 0; dP� a:s; 8t 2 [0; T ] :

ii) H (t; t) = 0; dP� a:s; dt� a:e:

Proof. We set up � (s) = e
R T
s
�r0(�)d� : Now, we de�ne for t 2 [0; T ] and s 2 [t; T ]

(�p (s; t) ; �q (s; t)) � 1

� (T � t)� (s) (p (s; t) ; q (s; t)) :
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then for any t 2 [0; T ] ; in the interval [t; T ] ; the pair (�p (:; t) ; �q (:; t)) satis�es

8><>: d�p (s; t) = �q (s; t)
>
dW (s) ; s 2 [t; T ] ;

�p (T ; t) =
dh

dx

�
X̂ (T )

�
;

(3.2.23)

Moreover, it is clear that from the uniqueness of solutions to (3:2:23), we have (�p (s; t1) ; �q (s; t1)) =

(�p (s; t2) ; �q (s; t2)) ; for any t1; t2; s 2 [0; T ] such that 0 < t1 < t2 < s < T: Hence, the solution

(�p (:; t) ; �q (:; t)) does not depend on t. Thus we denote the solution of (3:2:23) by (�p (:) ; �q (:)) :

We have then, for any t 2 [0; T ] ; and s 2 [t; T ]

(p (s; t) ; q (s; t)) = � (T � t)� (s)�1 (�p (s) ; �q (s)) : (3.2.24)

Now using (3:2:24) we have, under (H2), for any t 2 [0; T ] and s 2 [t; T ]

jp (s; t)� p (s; s)j =
���(� (T � t)� � (T � s))� (s)�1 �p (s)���
� js� tj

���� (s)�1 �p (s)��� ; (3.2.25)

and

jq (s; t)� q (s; s)j � js� tj
���� (s)�1 �q (s)��� :

From which; we have for any t 2 [0; T ] ;

lim
"#0

1

"
Et
�Z t+"

t

jH (s; t)�H (s; s)j ds
�

� Clim
"#0

1

"
Et
�Z t+"

t

js� tj
�����p (s) + �q (s) + e> d'dc �e>û (s)�

���� ds�
� Clim

"#0
Et
�Z t+"

t

�����p (s) + �q (s) + e> d'dc �e>û (s)�
���� ds�

= 0:

Thus

lim
"#0

1

"
Et
�Z t+"

t

H (s; t) ds

�
= lim

"#0

1

"
Et
�Z t+"

t

H (s; s) ds

�
: (3.2.26)

From the above equality, it is clear that if ii) holds, then

lim
"#0

1

"
Et
�Z t+"

t

H (s; t) ds

�
= 0: dP� a:s;
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Conversely, according to Lemma 3.5 in [52]; if i) holds then

H (s; s) = 0; dP� a:s; ds� a:e:

This completes the proof.�

The following theorem is main result of this work, it�s provides a necessary and su¢ cient condition for

equilibriums.

Theorem 3.2.1 Let (H1)-(H2) hold. Given an admissible strategy û (:) 2 L1F (0; T ;R)�L2F
�
0; T ;Rd

�
,

let for any t 2 [0; T ] ; (p (:; t) ; q (:; t)) 2 C2F (t; T ;R) � L2F
�
t; T ;Rd

�
be the unique solution to the BSDE

(3:3:4). Then û (:) is an equilibrium consumption-investment strategy, if and only if, the following condi-

tion holds

H (t; t) = 0; dP�a:s:; dt� a:e:; (3.2.27)

Proof. Given an admissible strategy û (:) 2 L1F (0; T ;R)�L2F
�
0; T ;Rd

�
for which (3:2:27) holds; accord-

ing to Lemma 3.2.1 we have, for any t 2 [0; T ] ;

lim
"#0

1

"

Z t+"

t

Et [H (s; t)] ds = 0:

Then for any t 2 [0; T ] and for any v 2 L1 (
;Ft;P;R)� L2
�

;Ft;P;Rd

�
;

lim
"#0

1

"

n
J
�
t; X̂ (t) ; u" (:)

�
� J

�
t; X̂ (t) ; û (:)

�o
= lim

"#0

1

"

Z t+"

t

�

Et [H (s; t)] ; v

�
ds+

1

2



Et [L (s; t)] v; v

��
ds

=
1

2
lim
"#0

1

"

Z t+"

t



Et [L (s; t)] v; v

�
ds

� 0;

where we have used the fact that, under the concavity condition of ' (:) and h (:), it follows hL (s; t) v; vi �

0: Hence û (:) is an equilibrium strategy.

Conversely, assume that û (:) is an equilibrium strategy. Then, by (3:3:2) together with (3:3:11) ; for any

(t; u) 2 [0; T ]� R� Rd the following inequality holds

lim
"#0

�
1

"

Z t+"

t

Et [H (s; t)] ds; u
�
+ lim

"#0

�
1

"

Z t+"

t

Et [L (s; t)] dsu; u
�
� 0: (3.2.28)

70



A characterization of equilibrium strategies in continuous-time mean-variance problems for insurers

Now, we de�ne 8 (t; u) 2 [0; T ]� R� Rd;

� (t; u) = lim
"#0

1

"

�Z t+"

t

Et [H (s; t)] ds; u
�
+
1

2
lim
"#0

�
1

"

Z t+"

t

Et [L (s; t)] dsu; u
�
:

Clearly � (:; :) is well de�ned. Moreover, easy manipulations show that the inequality (3:2:28) is equivalent

to

� (t; 0) = max
u2R�Rd

	(t; u) ; dP� a:s;8t 2 [0; T ] : (3.2.29)

It is easy to prove that the maximum condition (3:2:29) leads to the following condition, 8t 2 [0; T ]

Du� (t; 0) = lim
"#0

1

"

Z t+"

t

Et [H (s; t)] ds = 0; dP� a:s: (3.2.30)

According to Lemma 3.2.1, the expression (3:2:27) follows immediately. This completes the proof.�

3.3 Equilibrium When Coe¢ cients are Deterministic

Theorem 3.2.1 shows that one can obtain equilibrium consumption-investment strategies by solving the

system of FBSDEs which are not standard since a ��ow�of unknowns (p (:; t) ; q (:; t))t2[0;T ] is involved.

Moreover, there is an additional constraints that act on the �diagonal� (i.e. when s = t) of the �ow.

As far as we know, the unique solvability of this type of equations remains an open problem. However,

we are able to solve quite thoroughly this problem when the parameters r0 (:) ; r (:) ; � (:) and � (:) are all

deterministic functions.

In this section, let us look at the Merton�s portfolio problem with general discounting and deterministic

parameters. The results in this section are comparable with the results obtained in [40], [87] and [103].

Suppose that û (:) =
�
ĉ (:) ; ûI (:)

>
�>

is an equilibrium control and denote by X̂ (:) the corresponding

wealth process: Then in view of Theorem 3:2:1 there exist an adapted processes
�
X̂ (:) ; (p (:; t) ; q (:; t))t2[0;T ]

�
solution to the following �ow of forward-backward SDEs, parameterized by t 2 [0; T ]

8>>>><>>>>:
dX (s) =

n
r0 (s) X̂ (s) + ûI (s)

>
r (s)� ĉ (s)

o
ds+ ûI (s)

>
� (s) dW (s) ; s 2 [0; T ] ;

dp (s; t) = �r0 (s) p (s; t) ds+ q (s; t)> dW (s) ; 0 � t � s � T;

X̂ (0) = x0; p (T ; t) = � (T � t) dh
dx

�
X̂ (T )

�
; t 2 [0; T ] ;

(3.3.1)
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whith the following conditions hold

� p (s; s) + _' (ĉ (s)) = 0; a.e. s 2 [0; T ] ; (3.3.2)

p (s; s) r (s) + � (s) q (s; s) = 0; a.e. s 2 [0; T ] ; (3.3.3)

where _' (c) denotes
d'

dc
(c) : From the terminal condition in the �rst order adjoint process we consider the

following Ansatz

p (s; t) = � (T � t) �
�
s; X̂ (s)

�
; 80 � t � s � T (3.3.4)

for some deterministic function � (:; :) 2 C1;2 ([0; T ]� R;R) such that � (T; x) = dh

dx
(x) :

Applying Itô�s formula to (3:3:4) and using the second equation in (3:3:1), it yields

dp (s; t) = � (T � t)
n
�s

�
s; X̂ (s)

�
ds+ �x

�
s; X̂ (s)

��
X̂ (s) r0 (s) + ûI (s)

>
r (s)� ĉ (s)

�
ds

+
1

2
�xx

�
s; X̂ (s)

�
ûI (s)

>
� (s)� (s)

>
ûI (s) ds+ �x

�
s; X̂ (s)

�
ûI (s)

>
� (s) dW (s)

�
;

= �r0 (s)� (T � t) �
�
s; X̂ (s)

�
ds+ q (s; t)

>
dW (s) : (3.3.5)

from which we deduce

q (s; t) = � (T � t) �x
�
s; X̂ (s)

�
� (s)

>
ûI (s) (3.3.6)

We put the above expressions of p (s; t) and q (s; t) into (3:3:2) and (3:3:3) ; then

� (T � s) �
�
s; X̂ (s)

�
� _' (ĉ (s)) = 0;

and

�x

�
s; X̂ (s)

�
� (s)� (s)

>
ûI (s) = �r (s) �

�
s; X̂ (s)

�
;

which leads to

ĉ (s) = _'�1
�
� (T � s) �

�
s; X̂ (s)

��
; ds� a:e: (3.3.7)

ûI (s) = �� (s) r (s)
�
�
s; X̂ (s)

�
�x

�
s; X̂ (s)

� ; ds� a:e: (3.3.8)

where _'�1 (:) denotes the inverse function of _' (:) =
d'

dc
(:) ; and � (s) �

�
� (s)� (s)

>
��1

.

72



A characterization of equilibrium strategies in continuous-time mean-variance problems for insurers

Next, comparing the ds term in (3:3:5) ; then by using the expressions (3:3:7) and (3:3:8), we obtain

�s

�
s; X̂ (s)

�
+ �x

�
s; X̂ (s)

�0@r0 (s) X̂ (s)� r (s)> � (s) r (s) �
�
s; X̂ (s)

�
�x

�
s; X̂ (s)

� � _'�1
�
� (T � s) �

�
s; X̂ (s)

��1A

+
1

2
�xx

�
s; X̂ (s)

�
r (s)

>
� (s) r (s)

0@ �
�
s; X̂ (s)

�
�x

�
s; X̂ (s)

�
1A2

ds+ r0 (s) �
�
s; X̂ (s)

�
= 0;

which suggests that � (:; :) solves the following parabolic backward partial di¤erential equation

8>>>>><>>>>>:
�s (s; x) + �x (s; x)

�
r0 (s)x� r (s)>� (s) r (s)

� (s; x)

�x (s; x)
� _'�1 (� (T � s) � (s; x))

�
+ 1
2�xx (s; x) r (s)

>
� (s) r (s)

�
� (s; x)

�x (s; x)

�2
+ � (s; x) r0 (s) = 0; (t; x) 2 [0; T ]� R;

� (T; x) = hx (x)

(3.3.9)

We summarize the above into the following theorem

Theorem 3.3.1 Let (H1)-(H2) hold. If there exists a classical solution � (:; :) 2 C1;2 ([0; T ]� R;R) to

the PDE (3:4:9) such that

(i) The stochastic di¤erential equation

8>>>>>>>>>><>>>>>>>>>>:

dX̂ (s) =

8<:r0 (s) X̂ (s)� r (s)>� (s) r (s) �
�
s; X̂ (s)

�
�x

�
s; X̂ (s)

� � _'�1
�
� (T � s) �

�
s; X̂ (s)

��9=; ds

�
�
�
s; X̂ (s)

�
�x

�
s; X̂ (s)

�r (s)>� (s)� (s) dW (s) ;

X̂ (0) = x0:

de�ne a unique solution X̂ (:) :

(ii) The strategy ĉ (:) and ûI (:) given by (3:3:7) ; and (3:3:8) ; respectively, are well de�ned and admissible.

Then û (:) =
�
ĉ (:) ; ûI (:)

>
�>

is an equilibrium consumption-investment strategy.

Remark 3.3.1 Equation (3:3:9) is comparable with the ones in Solano and Navas [87] and Ekland and

Pirvu [40], in which the equilibrium is de�ned within the class of feedback controls.

Special cases

Equilibrium investment-consumption strategies for Merton�s portfolio problem with general discounting

and deterministic parameters have been studied in [87], [40] and [103] among others in di¤erent frame-

works. In this subsection, we discuss some special cases in which the function � (t; x) may be separated
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into functions of time and state variables. Then, on needs only to solve some linear ODEs in order to

completely determine the equilibrium strategies. We will compare our results with some existing ones in

literature.

Logarithmic Utility Function. First of all, let us analyse the case where ' (c) = ln (c) and h (x) =

a ln (x) ; with a > 0:

In this case the PDE (3:3:9) reduces to

8>>>>><>>>>>:
�s (s; x) + �x (s; x)

�
r0 (s)x� r (s)>� (s) r (s)

� (s; x)

�x (s; x)
� _'�1 (� (T � s) � (s; x))

�
+ 1
2�xx (s; x) r (s)

>
� (s) r (s)

�
� (s; x)

�x (s; x)

�2
ds+ � (s; x) r0 (s) = 0;

� (T; x) = a
1

x
:

(3.3.10)

Because of the terminal condition, we put

� (s; x) = aM (s)
1

x
; (3.3.11)

where, M (:) 2 C ([0; T ] ;R) : Clearly we have

�x (s; x) = �aM (s)
1

x2
and �xx (s; x) = aM (s)

2

x3
: (3.3.12)

Substituting (3:3:11) and (3:3:12) in (3:3:10) ; we get

8><>:
dM (s)

ds
+

1

a� (T � s) = 0;

M (T ) = 1;

(3.3.13)

which is explicitly solved by

M (s) = 1 +

Z T

s

1

a� (T � l)dl:

In view of Theorem 3.3.1, the representation of the Nash equilibrium strategies (3:3:7)-(3:3:8) then give

ĉ (s) =
1

a� (T � s) +
R T
s

� (T � s)
� (T � l) dl

X̂ (s) (3.3.14)

ûI (s) = � (s) r (s) X̂ (s) ; (3.3.16)
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Remark 3.3.2 If we consider the special form of the discount function, suggested by Karp [56],

� (s� t) � e�
R s�t
0

�(�)d� ;

where � : [0; T ]! R+ is the instantaneous discount rate. In this case the objective is exactly the same as

Solano and Navas [87]. Moreover, the equilibrium strategy (ĉ (:) ; ûI (s)) given by the expressions (3:3:14)

and (3:3:15) change to

ûI (s) = � (s) r (s) X̂ (s) ; (3.3.14)

ĉ (s) =
1

a� (T � s) +
R T
s
e�

R T�s
T�l �(�)d�dl

X̂ (s) ; (3.3.15)

which is comparable with the ones obtained in Solano and Navas [87] by solving an extended Hamilton�

Jacobi�Bellman equations.

Potential Utility Function (CRRA model). Now, we consider the case where ' (c) =
c


; and

h (x) = a
x


; with a > 0 and  2 (0; 1) : In this case the PDE (3:3:9) reduces to

8>>>>><>>>>>:
�s (s; x) + �x (s; x)

�
r0 (s)x� r (s)>� (s) r (s)

� (s; x)

�x (s; x)
� _'�1 (� (T � s) � (s; x))

�
+
1

2
�xx (s; x) r (s)

>
� (s) r (s)

�
� (s; x)

�x (s; x)

�2
ds+ � (s; x) r0 (s) = 0;

� (T; x) = ax�1:

(3.3.16)

We put

� (s; x) = aN (s)x�1; (3.3.17)

�x (s; x) = a ( � 1)N (s)x�2; (3.3.18)

�xx (s; x) = a ( � 1) ( � 2)N (s)x�3: (3.3.19)

For some deterministic function N (:) 2 C ([0; T ] ;R) : Substituting (3:3:17) ; (3:3:18) and (3:3:19) in

(3:3:16) ; we obtain

8>>>><>>>>:
dN (s)

ds
+

�
r0 (s) +

1

2



(1� )r (s)
>
� (s) r (s)

+ (1� )N (s)
1

�1 (a� (T � s))
1

�1
o
N (s) = 0;

N (T ) = 1:

(3.3.20)
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De�ne

K (s) � r0 (s) +
1

2



(1� )r (s)
>
� (s) r (s) .

and

A (s) � (1� ) (a� (T � s))
1

�1 :

It is an easy exercise to check that N (:) solves (4:3:20) ; if and only if, it solves the following integral

equation

N (s) = e

R T
s

�
K(�)+A(�)N(�)

1
�1

�
d�
: (3.3.21)

We have the following Theorem.

Theorem 3.3.2 Equation (3:3:21) has a unique solution in C
�
[0; T ] ;

h
1; ~M

i�
with ~M having the following

estimate

~M = eT(kK(:)k1+kA(:)k1):

Proof. For a constant � > 0; to be �xed later, we introduce the following norm; for f (:; :) 2 C ([0; T ] ;R)

kfk1;� = sup
s2[0;T ]

���e��(T�s)f (s)��� ;
it is easy to check that e��T kfk1 � kfk1;� � kfk1 ; for every f 2 C ([0; T ] ;R), hence the norm k:k1;�

is equivalent to k:k1 on the Banach space C ([0; T ] ;R) :We introduce the following nonlinear operator,
~L [:] : C ([0; T ] ;R+)! C ([0; T ] ;R+) ; such that for all f (:) 2 C ([0; T ] ;R+) ; we have

~L [f ] (s) = e

R T
s

�
K(�)+A(�)f(�)

1
�1

�
d�
:

Since we have ~L [f ] (s) � 1; ds � a:e: Then, it is an easy to check that, our problem is equivalent to

a �xed point problem for the operator ~L [:] in the closed subset C
�
[0; T ] ;

h
1; ~M

i�
of the Banach space�

C ([0; T ] ;R) ; k:k1;�

�
:

1) Existence of solution. It is clear that ~L [:] is well de�ned. Now, consider f1; f2 2 C
�
[0; T ] ;

h
1; ~M

i�
,

we have

~L [f1] (s)� ~L [f2] (s) = e
R T
s
K(�)d�

�
e
R T
s
A(�)f1(�)

1
�1 d� � e

R T
s
A(�)f2(�)

1
�1 d�

�
: (3.3.22)

Moreover, since K (:) and A (:) are uniformly bounded and form the Lipschitz condition jex � eyj �
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c1 jx� yj ; 8x; y 2
h
0; ~M

i
,

����eR Ts A(�)f1(�)
1

�1 d� � e
R T
s
A(�)f2(�)

1
�1 d�

���� � K1

Z T

s

���f1 (�) 1
�1 � f2 (�)

1
�1

��� d�:
for some constant K1 > 0. In the other hand, from

���x 1
�1 � y

1
�1

��� � c2 jx� yj ; 8x; y 2
h
1; ~M

i
, we deduce

���~L [f1] (s)� ~L [f2] (s)��� � K2

Z T

s

jf1 (�)� f2 (�)j d�; (3.3.23)

for some constant K2 > 0: Thus

e��(T�s)
���~L [f1] (t; s)� ~L [f2] (t; s)��� � e��(T�s)K2

Z T

s

jf1 (�)� f2 (�)j d�

= e��(T�s)K2

Z T

s

e�(T��)e��(T��) jf1 (�)� f2 (�)j d�

�
K2

�
1� e��(T�s)

�
�

kf1 � f2k1;� ;

hence ~L [f1]� ~L [f2]
1;�

�
K
�
1� e��T

�
�

kf1 � f2k1;� :

Therefore ~L [:] is a contraction mapping for � large enough.

2) Uniqueness of solution. Let f1; f2 2 C (D [0; T ] ;R+) be two solutions; then

f1 (s) = ~L [f1] (s) and f2 (s) = ~L [f2] (s) ; 8s 2 [0; T ] :

From (3:3:23) we have

jf1 (s)� f2 (s)j � K2

Z T

s

jf1 (�)� f2 (�)j d�;8s 2 [0; T ] ;

therefore, by Gronwall Lemma, we conclude that jf1 (s)� f2 (s)j = 0;8s 2 [0; T ] :

This completes the proof.

Iin view of Theorem 3.3.1, the representation of the Nash equilibrium strategies (3:3:7)-(3:3:8) give

ĉ (s) = (a� (T � s)N (s))
1

�1 X̂ (s) ; a:e:t 2 [0; T ] ; (3.3.24)

ûI (s) = � (s) r (s)
X̂ (s)

(1� ) ; a:e:t 2 [0; T ] ; (3.3.25)

77



A characterization of equilibrium strategies in continuous-time mean-variance problems for insurers

which is comparable with the ones obtained by Solano and Navas [87] , Ekland and Pirvu [40] and Yong

[103].

Exponential Utility Function.

Finally, we consider the case where ' (c) = �e
�c


and h (x) = �ae

�x


; with a;  > 0.

The PDE (3:3:9) becomes

8>>>>><>>>>>:
�s (s; x) + �x (s; x)

�
r0 (s)x� r (s)>� (s) r (s)

� (s; x)

�x (s; x)
� _'�1 (� (T � s) � (s; x))

�
+
1

2
�xx (s; x) r (s)

>
� (s) r (s)

�
� (s; x)

�x (s; x)

�2
ds+ � (s; x) r0 (s) = 0;

� (T; x) = ae�x:

(3.3.26)

We try a solution of the form

� (s; x) = ae�(L(s)x+G(s)): (3.3.27)

where L (:),G (:) 2 C ([0; T ] ;R) : Clearly we have

�x (s; x) = �L (s) ae�(L(s)x+G(s)); (3.3.28)

�xx (s; x) = (L (s))
2
ae�(L(s)x+G(s)): (3.3.29)

Substituting (3:3:27) ; (3:3:28) and (3:3:29) in (3:3:26) ; we get

� dL (s)
ds

x�  _G (s)� L (s) r0 (s)x�
1

2
r (s)

>
� (s) r (s)

�L (s) ln
�
� (T � s) a

� (0)

�
+ L (s)

2
x+ L (s)G (s) + r0 (s) = 0:

This suggests that the functions L (:) and G (:) should solve the following system of equations

8>>>>><>>>>>:

dL (s)

ds
= �r0 (s)L (s) + L (s)2 ; s 2 [0; T ] ;

dG (s)

ds
= L (s)G (s)� 1


L (s) ln

�
� (T � s) a

� (0)

�
� 1

2
r (s)

>
� (s) r (s) +

r0 (s)


; s 2 [0; T ] ;

L (T ) = 1; G (T ) = 0;

(3.3.30)
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which is explicitly solvable by

8>>><>>>:
L (s) =

e
R T
s
r0(�)d�

1 +
R T
s
e
R T
l
r0(�)d�dl

;

G (s) = e�
R T
s
L(�)d�

R T
s
e
R T
l
L(�)d�

�
1


L (l) ln (� (T � l) a) + 1

2
r (s)

>
� (s) r (s)� r0 (l)



�
ds:

(3.3.31)

The representation of the Nash equilibrium strategies (3:3:7)-(3:3:8) give

ĉ (s) =
1


ln

�
1

� (T � s)

�
+ L (s) X̂ (s) +G (s) ; (3.3.30)

ûI (s) = � (s) r (s)
1

L (s) a
; a:e:t 2 [0; T ] : (3.3.31)

Remark 3.3.3 The equilibrium solutions (3:3:30) � (3:3:31) are comparable with the ones obtained in

Solano and Navas [87] by solving an extended HJB equations.
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Chapter 4

Near-Optimality Conditions in

Mean-Field Control Models

Involving Continuous and Impulse

Controls

The chief goal of this chapter is to study the stochastic maximum principle approach for near-optimality,

where the state of the system under consideration is governed by a controlled SDE, of mean-�eld type,

in which the coe¢ cients depend on the state of the solution process as well as of its expected value.

Moreover, the cost functional is also of mean-�eld type. More speci�cally, the dynamics of the controlled

system is driven by

8><>: dxt = b (t; xt;E [xt] ; ut) dt+ � (t; xt;E [xt] ; ut) dWt +Gtd�t;

xs = a:
(4.1.1)

Where �t =
P

i�1 �i1[�i;T [ (t) ; t � T; is a piecewise process. Here f�igi�1 is a �xed sequence of increasing

Ft�stopping times, each �i is an F�i�measurable random variable, and (Ft)t�T is the natural �ltration

generated by the Brownian motion. This mean-�eld SDE is obtained as the mean-square limit, when
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n!1; of a system of interacting particles of the form

dxi;nt = b

0@t; xi;nt ;
1

n

nX
j=1

xj;nt ; ut

1A dt+ �

0@t; xi;nt ;
1

n

nX
j=1

xj;nt ; ut

1A dW i
t +

mX
j=1

Gijt d�
j
t ;

where
�
W i
t

�
i�1 is a collection of independent Brownian motions, see e.g. [89]. The objective of the

controller is to minimize the expected cost functional, which depends on the control inputs to the system

J (u) = E

24Z T

s

f (t; xt;Ext; ut) dt+ g (xT ;ExT ) +
X
i�1

l (�i; �i)

35 ; (4.1.2)

over the set of the admissible controls. In contrast with the standard stochastic control problems for

stochastic control of Itô di¤usions, the coe¢ cients in the state equation (4:1:1) and the cost functional

(4.1.2) involve the expected value of the solution. Problems of this type occur in many applications, for

example in the continuous-time Markowitz�s mean-variance portfolio selection model, where one should

minimize an objective function involving a quadratic function of the expected value, due to the variance

term, see for example [7]: Note that related to the subject of SDEs of a mean-�eld type, in this sense,

is a large literature on the approximation of McKean-Vlasov SDEs, PDEs, and certain generalizations of

them, through interacting particle systems, see for example [1], [2] and [20]. The main di¢ culty when

facing a general mean-�eld controlled di¤usion is that, the setting is non-Markovian, and hence, the

dynamic programming principle and the characterization of the Hamilton-Jacobi-Belman equations based

on the law of iterated expectations on J does not hold in general. The notion of the stochastic maximum

principle provides a powerful tool for handling this problem, see [7] and [23].

In the recent years, stochastic impulse control problems have also received considerable research attention

due to wide application in a number of di¤erent areas. For example, they can be used for portfolio

optimization problems with transaction costs, see e.g. [35] and [74], and for optimal control of exchange

rates between di¤erent currencies see [27]. For a comprehensive survey of the theory of impulse control

and its applications, one is referred to [57], [72] and [106].

The maximum principle for stochastic optimal control problem by which a necessary or a su¢ cient condi-

tion of optimality can be obtained by duality theory, involves the so-called adjoint process, which solves

a linear backward stochastic di¤erential equation (BSDE in short). Some results about the �rst order

stochastic maximum principle for controlled di¤usion processes are discussed, see e.g. [16], [43], [26], [8]

and [13]: The second order stochastic maximum principle for optimal controls of nonlinear dynamics was

developed via spike variation method by Peng [77]. These conditions are described in terms of two adjoint

processes, which are linear backward SDE�s: Existence and uniqueness for solutions to such equations

81



Near-Optimality Conditions in Mean-Field Control Models Involving Continuous and Impulse Controls

with nonlinear coe¢ cients has been treated by Pardoux and Peng [76].

In Andersson & Djehiche [7] and Li [63]; the stochastic maximum principle (SMP in short) is proved

for mean-�eld stochastic control problem where both the state dynamics and the cost functional are of

a mean-�eld type. This SMP is obtained as an extension of the Bensoussan approach [13]: Some works

that cover the controlled jump di¤usion processes are discussed in [31] and [71]: The notion of mean-�eld

BSDE appears in [24] and [25]. Equations of this type are essentially a generalization of a BSDE which

allows the generator term to be an expectation of certain nonlinear function. In Buckdahn, Djehiche &

Li [24]; a general notion of mean-�eld BSDE associated with a mean-�eld SDE is obtained in a natural

way as limit of some highly dimensional system of FBSDE governed by a d-dimensional Brownian motion,

and in�uenced by positions of a large numbre of other particles. The study of the mean-�eld BSDE in a

Markovian framework, associated with a mean-�eld SDE is given in [25]: By combining classical BSDE

theory with particular arguments for mean-�eld BSDE it was shown that this mean-�eld BSDE discribes

the viscosity solution of a nonlocal PDE.

Other type of control problems that are also important both from a theoretical and applied viewpoint

are called the near-optimality problems. In fact, as well documented in Zhou [114], the near-optimal

controls have several attractive features. First, optimal controls may not even exist in many situations.

So it becomes very important to study near-optimal controls which are always exist and much easier to

be obtained than optimal ones, both analytically and numerically. Moreover, since there are many more

candidates for near-optimal controls it is likely to choose suitable ones, that are suitable for analysis and

implementation. For example, Sethi and Zhou [85] showed that a near-optimal control can be found

in certain class of the so-called threshold-type policies in optimal production controls for a stochastic

two-machine �owshop, while, this models may involve very complicated switching that is very di¢ cult to

obtain their optimal controls.

Second, many practical systems are complicated that it is simply impossible to obtain their optimal

controls. A commontly used approach is to approximate the original optimal control problems by simpler

ones and then construct controls of the approximating problems. This idea has been applied to the

hierarchical controls of manufacturing systems [113]. Note also that, in general, optimal feedback controls

of linear systems are not continuous on the state, making it very di¢ cult to handle analytically. However,

one can modify this kind of controls into Lipschitz continuous controls with a small loss in the value

function.

For deterministic control problems, the �rst result on necessary conditions for near-optimality has been

proved in Ekeland [38]; see also Zhou [115]; by using Ekeland�s variational principle. Their necessary

conditions were derived only for some near-optimal controls. Maximum principle for near-optimal controls
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problems for systems deriven by Itô SDE with an uncontrolled di¤usion coe¢ cient, have been studied in

[43]; which are used to explore the stochastic maximum principle for optimal control in the situations

where the coe¢ cients of the state dynamics and the cost functional are nonsmooth, see [8] for more detail.

We also would like to mention the work of Zhou [114] for the same problem in the setting where the

control domain is non-convex, and the di¤usion coe¢ cient in the state SDE contain the control variable.

For related works under di¤erent situations we refer to [30] for jump-di¤usion systems, [49] and [50] for

systems deriven by a forward-backward stochastic di¤erential equation (FBSDE in short). Zhou [114]

showed that any near-optimal control (in terms of a small parameter ") nearly maximizes the H-function

in the integral form. Under certain concavity conditions, the near-maximum condition of the H-function

in the integral form is su¢ cient for near-optimality.

The purpose of the present thesis is to make a �rst attempt to study the near-optimal controls for system

driven by a stochastic di¤erential equation of mean-�eld type. The main contribution is the developments

of necessary and su¢ cient conditions for all near-optimal controls. More speci�cally, according to Eke-

land�s variational principle we shall create two approximate variational inequalities in integral forme, with

an error of order of "almost" �
1
3 , the �rst is in terms of the H�function obtained by the spike variation

technique, see e.g. [23], used for all near-optimal absolutely continuous part of the control. In addition,

we use a convex perturbation, see e.g. [97], for all near-optimal impulse controls to obtain the second

variational inequality in terms of the �rst order adjoint process. Compared with the references [48] and

[114]; this paper mainly has two advantages stated as follows. First, it should be noted that, the impulse

control used in this paper is di¤erent to singular one, which has been studied in [48], since the singular

control is assumed to be a increasing process, while the impulse one is a piecewise process which is note

necessarily increasing. Second, we generalize results in [114] by allowing both continuous and impulse

controls, at least in the mean-�eld setting.

This chapter is organized as follows. The assumptions, notations and formulation of the problem are

given in section 2. By using some stochastic results for di¤usion processes of mean-�eld type and some

properties of impulse controls, the study of the continuity property of the state equation and the adjoint

processes with respect to an appropriate metric in the set of admissible controls is given in section 3.

Then the necessary conditions for all near-optimal controls, which are the �rst main result, are stated and

proved in this section. Section 4 is devoted to the su¢ cient conditions for near optimality.

4.1 Assumptions and problem formulation

This section sets out the notation and the assumptions that are supposed to hold in the sequel.
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Let
�

;F ; (Ft)t�T ;P

�
be a probability space such that F0 contains the P�null sets, FT = F for an

arbitrarily �xed time horison T; and (Ft)t�T satis�es the usual assumptions. We assume that, (Ft)t�T
is generated by a one dimensional standard Brownian motion W for notational simplicity. Let f�igi�1
be a sequence of increasing Ft-stopping times such that �i " +1; and let f�igi�1 be a given sequence of

random variables, such that each �i is a V -valued F�i�mesurable, where V is a nonempty convex subset

of Rn: It�s worth noting that, the assumption �i " +1 implies that at most �nitely many impulses may

occur on [0; T ] :

De�nition 4.1.1 Let U is a non empty subset of Rn: An admissible control is a pair of measurable,

adapted processes u : [0; T ]� 
! U; and � : [0; T ]� 
! V , such that

1. u is absolutely continuous, and � =
P

i�1 �i1[�i;T ] is a piecewise process, and �0� = 0;

2. E sup
t2[0;T ]

jutj2 + E
P

i�1 j�ij
2
<1:

We denote by I = U � V the set of all admissible controls. Here U (resp. V) represents the set of the

admissible controls u (resp. �).

Notation. In this chapter, any element x 2 Rn will be identi�ed to a column vector with i-th component,

and the norm jxj = jx1j+ :::+ jxnj : The scalar product of any two vectors x and y on Rn is denoted by

x:y

In what follows, C represents a generic constant, which can be di¤erent from line to line.

Let us consider the following stochastic control problem:

For (u; �) 2 I, suppose the state of a controlled di¤usion in Rn is described by the following stochastic

di¤erential equation

8><>: dxt = b (t; xt;Ext; ut) dt+ � (t; xt;Ext; ut) dWt +Gtd�t;

xs = a;
(4.2.1)

where (s; a) 2 [0; T ) � Rn be given, representing the initial time and initial state respectively, of the

system.

Suppose the cost functional has the form

J (u; �) = E

24Z T

s

f (t; xt;Ext; ut) dt+ g (xT ;ExT ) +
X
i�1

l (�i; �i)

35 ; (4.2.2)

where E denotes expectation with respect to P. Here b : [0; T ]�Rn�Rn�U ! Rn; � : [0; T ]�Rn�Rn�U !
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Rn; G : [0; T ] ! Rn�m; f : [0; T ] � Rn � Rn � U ! R, g : Rn � Rn ! R and l : [0; T ] � V ! R are

measurable functions in (t; x; y; u).

The following assumptions will be in force throughout this chapter.

(H1) For each (t; x; y; u) 2 [0; T ]�Rn�Rn�U: The maps b; �; and f are twice continuously di¤erentiable

in (x; y) ; and all derivatives are bounded. There exists a constants M > 0 such that, for h = b; �; and f

jh (t; x; y; u)� h (t; x0; y0; u)j+ jhx (t; x; y; u)� hx (t; x0; y0; u)j+ jhy (t; x; y; u)� hy (t; x0; y0; u)j

�M (jx� x0j+ jy � y0j) ; (4.2.3)

jh (t; x; y; u)j �M (1 + jxj+ jyj) : (4.2.4)

(H2) g is twice continuously di¤erentiable in (x; y) and all derivatives are bounded. There exists a

constants M > 0 such that

jg (x; y)� g (x0; y0)j+ jgx (x; y)� gx (x0; y0)j+ jgy (x; y)� gy (x0; y0)j

�M (jx� x0j+ jy � y0j) ; (4.2.5)

jg (x; y)j �M (1 + jxj+ jyj) : (4.2.6)

(H3) For any � 2 [0; T ] ; l is continuous and is continuously di¤erentiable in �: There exists a constants

M > 0 such that

jl� (�; �)� l� (�; �)j �M j� � �j :

Under the above hypothesis, the SDE (4:2:1) has a unique strong solution, see [25], and by a standard

argument it is easy to show that for any p > 0,

E
�
sup
s�t�T

jxtjp
�
<1; (4.2.7)

and the functional J is well de�ned from I into R.

Remark 4.1.1 The above assumptions can be made weaker, see e.g. [75]; where the usual Lipschitz

assumption on the drift term is weakened by certain dissipativity conditions, allowing polynomial growth.

But we do not focus on this subject here.
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4.1.1 Adjoint Processes and Maximum Principle

De�ne the usual Hamiltonian for (t; x; y; u; p; q) 2 [s; T ]� Rn � Rn � U � Rn � Rn; by

H (t; x; y; u; p; q) = �f (t; x; y; u)� p:b (t; x; y; u)� q:� (t; x; y; u) : (4.2.8)

For any (u; �) 2 I and the corresponding state trajectory x; we de�ne the �rst-order adjoint process  as

the solution to the following linear mean-�eld BSDE.

8>>>><>>>>:
d t = �

n
bx (t; xt;Ext; ut)>  t + E

�
by (t; xt;Ext; ut)>  t

�
+ �x (t; xt;Ext; ut)> �t

+ E
�
�y (t; xt;Ext; ut)> �t

�
+ fx (t; xt;Ext; ut) + Efy (t; xt;Ext; ut)

o
dt+ �tdWt;

 T = gx (xT ;ExT ) + Egy (xT ;ExT ) :

(4.2.9)

Note that under assumptions (4:2; 3)� (4:2; 6) the equation (4:2:9) admits a unique Ft-adapted solution

( ; �) 2 Rn �Rn; see theorem 3.1 in [25]. This BSDE reduces to the standard one, when the coe¢ cients

b; �; f; and g do not explicitly depend on expected value of the di¤usion process. The second-order adjoint

process 	 is the one satisfying the following BSDE, that appears in Peng�s SMP [77]:

8>>>><>>>>:
d	t = �

n
bx (t; xt;Ext; ut)>	t +	t:bx (t; xt;Ext; ut) + �x (t; xt;Ext; ut)>�t +�t:�x (t; xt;Ext; ut)

+�x (t; xt;Ext; ut)>	t�x (t; xt;Ext; ut) +Hxx (t; xt;Ext; ut;  t; �t)
o
dt+�tdWt;

	T = gxx (xT ;ExT ) + Egyy (xT ;ExT ) :
(4.2.10)

Under assumptions (4:2:3)�(4:2:6) the classical linear BSDE (4:2:10) admit a unique Ft-adapted solution

(	;�) 2 Rn�n � Rn�n; see [76].

Furthermore, we de�ne the H�function corresponding to a given admissible pair (z; v) as follows

H(z;v) (t; x; y; u) = H (t; x; y; u;  t; �t) + � (t; x; y; u)>	t� (t; zt;Ezt; vt)�
1

2
� (t; x; y; u)

>
	t� (t; x; y; u) ;

for (t; x; y; u) 2 [s; T ]�Rn�Rn�U; where the processes  ; �; and 	 are determined by adjoint equations

(4:2:10) and (4:2:11) corresponding to (z; v) :

Lemma 4.1.1 There exists a constant C, independent of (x; u) ; such that the solutions of (4:2:9) and
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(4:2:10) have the following estimates

E
�
sup
s�t�T

j tj2 +
R T
s
j�tj2 dt

�
� C; (4.2.11)

E
�
sup
s�t�T

j	tj2 +
R T
s
j�tj2 dt

�
� C: (4.2.12)

Proof. Squaring both sides of

 t +

Z T

t

�rdWr

= gx (xT ;E [xT ]) + Egy (xT ;ExT ) +
Z T

t

n
bx (r; xr;Exr; ur)>  r + E

�
by (r; xr;Exr; ur)>  s

�
+ �x (r; xr;Exr; ur)> �r + E

�
�y (r; xr;Exr; ur)> �r

�
+ fx (r; xr;Exr; ur) + Efy (r; xr;Exr; ur)

o
dr;

and since the derivatives of the coe�cients b; �; f and g are bounded by the constant C; then, by using

the fact that E t
R T
t
�rdWr = 0; we deduce

E j tj2 + E
Z T

t

j�rj2 dr � C + C (T � t)E
Z T

t

�
j rj2 + jE rj2 + j�rj2 + jE�rj2

�
dr

Then by the Jensen inequality, it yields

E j tj2 + E
Z T

t

j�rj2 dt � C + CTE
Z T

t

j rj2 dr + C (T � t)E
Z T

t

j�rj2 dr;

for t 2 [T � �; T ] with � = 1
2C : Applying Burkholder-Davis-Gundy inequality and Granwall lemma, we

obtain

E sup
t�r�T

j rj2 +
1

2
E
R T
t
j�rj2 dr � C; for t 2 [T � �; T ] :

Similarly we get

E sup
t�r�T��

j rj2 +
1

2
E
R T��
t

j�rj2 dr � C; for t 2 [T � 2�; T � �] :

Therefore, after a �nite number of iterations, we describe the estimate (4:2:11) :�

The objective of the exact-optimality problems, is to minimize the functional J (u; �) over all (u; �) 2 I;

i.e. we seek (u�; ��) such that J (u�; ��) = inf(u;�)2I J (u; �) : Any admissible control (u�; ��) that achieves

the in�mum is called an optimal control, and it implies an associated optimal state evolution x� from

(3:2:1) : The maximum principle then states that, if (u�; ��) is an optimal control, then one must have,
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�rst from [23]

Hx�;u� (t; x�t ;Ex�t ; u�t ) = max
u2U

Hx�;u� (t; x�t ;Ex�t ; u) ; P � a:s:, a:e: t 2 [s; T ] : (4.2.13)

and from [97]

0 � E
hP

i�1 (l� (�i; �
�
i ) +G�i �i) (�i � ��i )

i
; for all � 2 V: (4.2.14)

It�s worth noting that, for exact optimality, the integral form and the pointwise form of the maximum

condition are equivalent; but it is not the case for near-optimality.

Since our objective in this paper is to study near-optimality rather than exact-optimality for a control

(u; �) 2 I, we give the de�nition of the near-optimality, see for example [114]:

De�nition 4.1.2 Let (u"; �") be an admissible control parameterized by " > 0; x" is the corresponding

trajectory solution to (3:2:1) : The control (u"; �") is called near-optimal for the problem (4:2:2) if

����J (u"; �")� inf
(u;�)2U

J (u; �)

���� � R (") ;

holds for su¢ ciently small "; where R is a function of " satisfying R (")! 0 as "! 0:

The estimate R (") is called an error bound. If R (") = c"� for some � > 0 independent of the constant

c; then u" is called near-optimal with order "�:

Remark 4.1.2 An optimal control is an admissible strategy which achieves the in�mum of the cost func-

tion (3:2:2) ; it is usually unrealistic and unnecessary to explore optimal controls that are very sensitive

to external perturbations. For an in-depth discussion of the merits of near-optimality we refer to [114].

It should be also noted that, the concepts of the near-optimality and the exact-optimality are coincide if

" = 0 in the above de�nition.

4.2 Necessary conditions of near-optimality

Let us recall the Ekeland�s principle needed in this study

Lemma 4.2.1 (Ekeland�s principle [38]) Let (S; d) be a complet metric space and � : S ! R be lower-

semicontinuous and bounded from below. For " � 0; suppose u" 2 S satis�es � (u") � inf
u2S

� (u) + ": Then
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for any � > 0; there exists u� 2 S such that

�
�
u�
�
� � (u") ;

d
�
u�; u"

�
� �;

�
�
u�
�
� � (u) +

"

�
d
�
u; u�

�
; for all u 2 S:

This section is devoted to the presentation of necessary conditions for all near-optimal controls. The main

result is stated in the following theorem.

Theorem 4.2.1 (Necessary conditions for all near optimal controls) For any � 2
�
0; 13
�
; there

exists a constant C = C (�) > 0 such that for any " > 0; and any "�optimal control (u"; �") of the

problem (4:2:2) ; with the corresponding state x" solution to (3:2:1) ; the following error estimate with

respect to " hold

�C"� � E
R T
s
f "t : (b (t; x"t ;Ex"t ; u)� b (t; x"t ;Ex"t ; u"t )) + �"t : (� (t; x"t ;Ex"t ; u)� � (t; x"t ;Ex"t ; u"t ))

+
1

2
(� (t; x"t ;Ex"t ; u)� � (t; x"t ;Ex"t ; u"t ))

>
	"t (� (t; x

"
t ;Ex"t ; u)� � (t; x"t ;Ex"t ; u"t ))

+ (f (t; x"t ;Ex"t ; u)� f (t; x"t ;Ex"t ; u"t ))g dt; (4.3.1)

and

� C"� � E
hP

i�1
�
l� (�i; �

"
i ) +G�i 

"
�i

�
(�i � �"i )

i
: (4.3.2)

Here ( "; �") and (	";�") are the solutions to (4:2:9) and (4:2:10) respectively, corresponding to (x"; u") :

Remark 4.2.1 In particular, the inequality (4:3:1) gives the necessary condition of all near-optimal reg-

ular controls, in terms of the H-function, this inequality can rewritten as follows

�C"� � E
"Z T

s

n
Hx";u" (t; x"t ;Ex"t ; u"t )�Hx";u" (t; x"t ;Ex"t ; u)

o
dt

#
:

The proof of the Theorem 4.3.1 is based on some stability results with respect to the control variable

of the state and adjoint processes, along with the Ekeland principle. First, we have to endow the set of

controls with an appropriate metric

d ((u; v) ; (�; �)) = d1 (u; v) + d2 (�; �) ; (4.3.3)
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where

d1 (u; v) = P
 dt f(w; t) 2 
� [0; T ] ; v (!; t) 6= u (!; t)g ;

d2 (�; �) = E

"P
i�1
j�i � �ij2

#
;

Here P
 dt is the product measure of P with the Lebesgue measure dt: It is easy to see that (V; d2) is a

complete metric space. Moreover, it has been shown see e.g. [43] that (U ; d1) is a complete metric space.

Hence I as a product of two complete metric spaces is a complete metric space under d. Further, by

assumptions (4:2:3)� (4:2:6) we can prove that J (:; :) is continuous on I endowed with the metric d.

To arrive at the necessary conditions for all near-optimal controls, we �rst formulate the necessary con-

ditions only for some near-optimal controls. By applying Ekeland�s principle the following intermediate

theorem is then obtained

Theorem 4.2.2 (Necessary conditions for some near optimal controls) For " � 0; there exists�eu"; e�"� 2 I such that for all admissible control (u; �) ; the following error estimate with respect to " hold
�" 13 � E

h
(f (t; ex"t ;Eex"t ; u)� f (t; ex"t ;Eex"t ; eu"t )) + e "t : (b (t; ex"t ;Eex"t ; u)� b (t; ex"t ;Eex"t ; eu"t ))

+ e�"t : (� (t; ex"t ;Eex"t ; u)� � (t; ex"t ;Eex"t ; eu"t ))
+
1

2
(� (t; ex"t ;Eex"t ; u)� � (t; ex"t ;Eex"t ; eu"t ))> e	"t (� (t; ex"t ;Eex"t ; u)� � (t; ex"t ;Eex"t ; eu"t ))i ; (4.3.4)

and

� " 13 � E
hP

i�1

�
l�

�
�i; e�"i �+G�i e "�i���i � e�"i �i ; (4.3.5)

where
� e "; e�"� and �e	"; e�"� are the solutions to (4:2:9) and (4:2:10) respectively, corresponding to

(ex"; eu") :
Proof. By the Ekeland principle with � = "

2
3 , there is an admissible pair

�eu"; e�"� such that
d
�
(u"; �") ;

�eu"; e�"�� � "
2
3 ; and eJ �eu"; e�"� � eJ (u; �) ; for any (u; �) 2 U; (4.3.6)

where eJ (u; �) = J (u; �) + "
1
3 d
�
(u; �) ;

�eu"; e�"�� : This means that �eu"; e�"� is an optimal control for the
system (4:2:1) with a new cost function eJ (:; :) : Next, we use a double perturbatios of the control �eu"; e�"�.
The �rst perturbation is a spike variation on the absolutly continuous part of the control and the second

one is convex, on the impulse control.
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Take any Borel measurable set I� � [s; T ] ; with �
�
I�
�
= � for any � > 0; where �

�
I�
�
denote the

Lebesgue measure of the set I�. Let u 2 U be �xed and consider the �rst perturbation by

�eu";�t ; e�"t� =
8><>:
�eu"t ; e�"t� if t 2 [s; T ] nI�;�
u; e�"t� if t 2 I�;

(4.3.7)

for � 2 V we de�ne the second perturbation as follows

�eu"t ; e�";�t � = �eu"t ; e�"t + � ��t � e�"t�� ; for t 2 [0; T ] : (4.3.8)

Since
�eu"; e�"� is optimal for the cost eJ (:; :) ; then

eJ �eu";�; e�"� � eJ �eu"; e�"� ; (4.3.9)

eJ �eu"; e�";�� � eJ �eu"; e�"� : (4.3.10)

This imply that

J
�eu";�; e�"�� J �eu"; e�"� � �" 13 d1 �eu";�; eu"� ; (4.3.11)

J
�eu"; e�";��� J �eu"; e�"� � �" 13 d2 �e�";�; e�"� : (3.3.12)

By the fact that d1
�eu"; eu";�� � �; we have

J
�eu";�; e�"�� J �eu"; e�"� � �" 13 �: (4.3.13)

According to Peng�s maximum principle [77] and arguing as in [23]; we obtain (4:3:4) :

Now, the fact that d2
�e�";�; e�"� � � imply that

J
�eu"; e�";��� J �eu"; e�"� � �" 13 �: (4.3.14)

The left-hand side of (4:3:14) depends only on the impulse control part, then by the SMP for impulse

type control from [97] we get

lim
�!0

1

�

n
J
�eu"; e�";��� J �eu"; e�"�o = E hPi�1

�
l�

�
�i; e�"i �+G�i e "t���i � e�"i �i ;

this guarantee the ful�llment of (4:3:5) :�
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The following two lemmas are mainly devoted to investigate some prior estimates which play an important

role in proving the main result of this section.

Lemma 4.2.2 For any � 2 (0; 1) and p 2 (0; 2] satisfying �p < 1; there is a positive constant C =

C (�; p) ; such that

E
�
sup
s�t�r

jx"t � ex"t jp� � C"
�p
3 : (4.3.15)

Here x" (resp. ex"t ) is the solutions of the state SDE (4:2:1) corresponding to (u"; �") (resp. �eu"; e�"�).
Proof. According to Hölder inequality, it su¢ ces to prove the above estimate for p = 2.

First of all, using Burkholder-Davis-Gundy inequality, we get

E
�
sup
s�t�r

jx"t � ex"t j2� � CE
R r
s

n
jb (t; x"t ;Ex"t ; u"t )� b (t; ex"t ;Eex"t ; eu"t )j2

+ j� (t; x"t ;Ex"t ; u"t )� � (t; ex"t ;Eex"t ; eu"t )j2o dt+ CE ��Ps��i�r

����"�i � e�"�i����2� ;
� C

�
A1 +A2 + d2

�
�"; e�"�� ;

where A1; A2 are given by the following

A1 = E
R r
s

�
jb (t; x"t ;Ex"t ; u"t )� b (t; x"t ;Ex"t ; eu"t )j2 + j� (t; x"t ;Ex"t ; u"t )� � (t; x"t ;Ex"t ; eu"t )j2� 1fut 6=u0tg (t) dt;

A2 = E
R r
s

�
jb (t; x"t ;Ex"t ; eu"t )� b (t; ex"t ;Eex"t ; eu"t )j2 + j� (t; x"t ;Ex"t ; eu"t )� � (t; ex"t ;Eex"t ; eu"t )j2� dt:

Due to the linear growth of the coe¢ cients and from the Schwarz and Jensen inequalities, it follows

A1 � CE
hR r
s

�
1 + jx"t j

2
1�� + jEx"t j

2
1��
�
dt
i1��

E
�R r
s
1fu"t 6=eu"tg (t) dt�� ;

� CE
hR r
s

�
1 + jx"t j

2
1��
�
dt
i1��

d (u"; eu")� :
From (3:3:6) this means that A1 � C"

2
3�: Since the coe¢ cients of the SDE (3:2:1) are Lipschitz with

respect to the state variable and its expected value, we get A2 � CE
R r
s

�
jx"t � ex"t j2 + jE (x"t � ex"t )j2� dt.

Noting that 2�3 < 2
3 and " < 1; then we easily check that

E sup
s�t�r

jx"t � ex"t j2 � C

�R r
s
E sup
s�t��

jx"t � ex"t j2 d� + R rs sup
s�t��

jE (x"t � ex"t )j2 d� + d (u"; eu")� + d2 ��"; e�"�� ;
� C

�R r
s
E sup
s�t��

jx"t � ex"t j2 d� + " 23�� : (4.3.16)

Hence (3:3:15) follows from Gronwall lemma.�
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Lemma 4.2.3 For any � 2 (0; 1) and p 2 (1; 2) satisfying (1 + �) p < 2; there is a positive constant

C = C (�; p) such that

E
R T
s

��� "t � e "t ���p dt+ ER Ts ����"t � e�"t ���p dt � C"
�p
3 ; (4.3.17)

E
R T
s

���	"t � e	"t ���p dt+ ER Ts ����"t � e�"t ���p dt � C"
�p
3 : (4.3.18)

Where ( "; �") and
� e "; e�"� (resp. (	";�") and �e	"; e�"�) denote the unique solutions to the �rst-order

(resp. second-order) adjoint equation (4:2:9) (resp. (4:2:10)), corresponding to the admissible pair (x"; u")

and (ex"; eu") :
Proof. Denote by

�
 
"

t ; �
"

t

�
=
�
 "t � e "t ; �"t � e�"t� the unique solution of the linear mean-�eld backward

stochastic di¤erential equation for t 2 [s; T ]

8>>>><>>>>:
d 

"

t = �
n
bx (t; x

"
t ;Ex"t ; u"t )

>
 
"

t + E
�
by (t; x

"
t ;Ex"t ; u"t )

>
 
"

t

�
+ �x (t; x

"
t ;Ex"t ; u"t )

>
�
"

t

+ E
�
�y (t; x

"
t ;Ex"t ; u"t )

>
�
"

t

�
+ f

"
(t)
o
dt+ �

"

tdWt;

 T = gx (x
"
T ;Ex"T )� gx (ex"T ;Eex"T ) + E (gy (x"T ;Ex"T )� gy (ex"T ;Eex"T )) ;

(4.3.19)

where we have the following

f
"
(t) =

�
bx (t; x

"
t ;Ex"t ; u"t )

> � bx (t; ex"t ;Eex"t ; eu"t )>� e "t + E��by (t; x"t ;Ex"t ; u"t )> � by (t; ex"t ;Eex"t ; eu"t )>� e "t�
+
�
�x (t; x

"
t ;Ex"t ; u"t )

> � �x (t; ex"t ;Eex"t ; eu"t )>� e�"t + E���y (t; x"t ;Ex"t ; u"t )> � �y (t; ex"t ;Eex"t ; eu"t )>� e�"t�
+ (fx (t; x

"
t ;Ex"t ; u"t )� fx (t; ex"t ;Eex"t ; eu"t )) + E (fy (t; x"t ;Ex"t ; u"t )� fy (t; ex"t ;Eex"t ; eu"t )) :

Now, let � be a solution of the following linear stochastic di¤erential equation of mean-�eld type

8>>>>><>>>>>:
d�t =

�
bx (t; x

"
t ;Ex"t ; u"t ) �t + by (t; x"t ;Ex"t ; u"t )E�t +

��� "t ���p�1 sgn� "t�� dt
+

�
�x (t; x

"
t ;Ex"t ; u"t ) �t + �y (t; x"t ;Ex"t ; u"t )E�t +

����"t ���p�1 sgn��"t�� dWt;

�s = 0:

(4.3.20)

Where sgn (a)= (sgn (a1) ; :::; sgn (an)) for a vector a = (a1; :::; an)
>
: In view of the boundness of the

coe¢ cients bx; �x; by; and �y by the constant C, and by the fact that

E
TZ
s

 ������� "t ���p�1 sgn� "t�����2 + ��������"t ���p�1 sgn��"t�����2
!
dt <1; (4.3.21)
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the linear mean-�eld SDE (4:3:20) satis�es the Itô conditions. Therefore, it has a unique solution.

Moreover, we conclude from standard arguments based on the Burkholder-Davis-Gundy inequality, that

E sup
s�t�T

j�tjq � C

�R T
s
E sup
s�r�t

j�rjq dt+
R T
s
sup
s�r�t

jE�rjq dt
�
+ CE

R T
s

���� "t ���(p�1)q + ����"t ���(p�1)q� dt:
Jensen inequality and Gronwall lemma, gives

E sup
s�t�T

j�tjq � CE
R T
s

���� "t ���(p�1)q + ����"t ���(p�1)q� dt = CE
R T
s

���� "t ���p + ����"t ���p� dt; (4.3.22)

with q 2 (2;+1) satisfying 1
p
+
1

q
= 1: In view of (3:2:11), it yields

E
R T
s

���� "t ���p + ����"t ���p� dt � C: (4.3.23)

On the other hand, by applying Itô�s formula to  
"

t :�t and taking expectations, we have the representation

E
hR T
s
f
"
(t) �tdt+ (gx (x

"
T ;Ex"T )� gx (ex"T ;Eex"T )) �T + E [gy (x"T ;Ex"T )� gy (ex"T ;Eex"T )] �T i

= E
R T
s

�
 
"

t

��� "t ���p�1 sgn� "t�+ �"t ����"t ���p�1 sgn��"t�� dt;
= E

R T
s

���� "t ���p + ����"t ���p� dt: (4.3.24)

First, it follows from (4:3:22) that

E
hR T
s
f
"
(t) �tdt+ (gx (x

"
T ;Ex"T )� gx (ex"T ;Eex"T )) �T + E [gy (x"T ;Ex"T )� gy (ex"T ;Eex"T )] �T i

� CE
hR T
s

���� "t ���p + ����"t ���p� dti 1q �E hR Ts ���f" (t)���p dti 1p + E [jgx (x"T ;Ex"T )� gx (ex"T ;Eex"T )jp] 1p
+E [jgy (x"T ;Ex"T )� gy (ex"T ;Eex"T )jp] 1p� ;

according to (4:3:24) ; we get

E
R T
s

���� "t ���p + ����"t ���p� dt
� CE

hR T
s

���� "t ���p + ����"t ���p� dti 1q �E hR Ts ���f" (t)���p dti 1p + E [jgx (x"T ;Ex"T )� gx (ex"T ;Eex"T )jp] 1p
+E [jgy (x"T ;Ex"T )� gy (ex"T ;Eex"T )jp] 1p� ;
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since
1

p
+
1

q
= 1; then

E
hR T
s

���� "t ���p + ����"t ���p� dti � C
�
E
R T
s

���f" (t)���p dt+ E [jgx (x"T ;Ex"T )� gx (ex"T ;Eex"T )jp]
+E [jgy (x"T ;Ex"T )� gy (ex"T ;Eex"T )jp]) :

To derive the inequality (3:3:17) ; it is su¢ cient to prove the following assertions

E
hR T
s

���f" (t)���p dti � C"
�p
3 : (4.3.25)

E [jgx (x"T ;Ex"T )� gx (ex"T ;Eex"T )jp] � C"
�p
3 : (4.3.26)

E [jgy (x"T ;Ex"T )� gy (ex"T ;Eex"T )jp] � C"
�p
3 : (4.3.27)

Let us prove the inequalities (4:3:26) and (4:3:27), since gx and gy are Lipschitz with respect to (x; y),

and from Jensen inequality and by the fact that
�p

2
< 1 � p

2
< 1; which combined with Lemma 3:2:2,

leads to (4:3:26) and (4:3:27) :

Next, by repeatedly applying the Schwarz inequality, we can estimate

E
hR T
s

����bx (t; x"t ;Ex"t ; u"t )> � bx (t; ex"t ;Eex"t ; eu"t )>� e "t ���p dti � B1 +B2:

where, the following hold

B1 = E
hR T
s

����bx (t; x"t ;Ex"t ; u"t )> � bx (t; x"t ;Ex"t ; eu"t )>� e "t ���p 1fu"t 6=eu"tg (t) dti ;
B2 = E

hR T
s

����bx (t; x"t ;Ex"t ; eu"t )> � bx (t; ex"t ;Eex"t ; eu"t )>� e "t ���p dti :
Noting that 1 � p

2
>

�p

2
; and d (u"; eu") � "

2
3 < 1; then by the fact that bx is bounded together with

(3:2:11), it follows that

B1 � CE
�R T
s

��� e "t ���2 dt� p2 d (u"; eu")1� p
2 � C"

�p
3 :
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From Lipschitz condition on the coe¢ cients, and by the fact that
�p

2� p < 1; we conclude from Lemma

3:2:2 and estimate (4:2:11) that

B2 � E
R T
s

�
jx"t � ex"t jp ��� e "t ���p + jEx"t � Eex"t jp ��� e "t ���p� dt;

� CE
�R T
s

��� e "t ���2 dt� p2 E hR Ts jx"t � ex"t j 2p
2�p dt

i1� p
2

+

�R T
s
E
h��� e "t ���pi 2p dt�

p
2 hR T

s
E [jx"t � ex"t jp] 2

2�p dt
i1� p

2

;

� CE
�R T
s

��� e "t ���2 dt� p2 �d (u"; eu") �p
2�p
�1� p

2 � C"
�p
3 :

This proves

E
hR T
s

����bx (t; x"t ;Ex"t ; u"t )> � bx (t; ex"t ;Eex"t ; eu"t )>� e "t ���p dti � C"
�p
3 : (4.3.28)

and we have the bound E
hR T
s

���f" (t)���p dti � C"
�p
3 :�

Prof of Theorem 4.3.1. To arrive at the necessary conditions expressed for all near-optimal controls

(u"; �") ; it is su¢ cient to derive an estimate for the term similar to the right sides of the inequalities

(3:3:4) and (3:3:5) with all the ex"t ;Eex"t ; eu"t , etc. replaced by x"t ;Ex"t ; u"t , etc. To this end, we �rst estimate
the following di¤erence

E
hR T
s

ne�"t :(�(t; ex"t ;Eex"t ; u)� �(t; ex"t ;Eex"t ; eu"t ))� �"t : (� (t; x"t ;Ex"t ; u)� � (t; x"t ;Ex"t ; u"t ))o dti ;
� I1 + I2 � I3;

where the I1; I2; and I3 are de�ned by

I1 = E
R T
s

�e�"t � �"t� :(�(t; ex"t ;Eex"t ; u)� �(t; ex"t ;Eex"t ; eu"t ))dt;
I2 = E

R T
s
�"t :(�(t; ex"t ;Eex"t ; u)� �(t; x"t ;Ex"t ; u))dt;

I3 = E
R T
s
�"t :(�(t; ex"t ;Eex"t ; eu"t )� �(t; x"t ;Ex"t ; u"t ))dt:

With this notation we have writing: for any � 2
�
0; 13
�
; let � = 3� 2 [0; 1) ; and �x a p 2 (1; 2) so that

(1 + �) p < 2: Take q 2 (2;+1) with 1
p
+
1

q
= 1; it holds by using Lemma 4:3:3; that

I1 � E
hR T
s

���e�"t � �"t ���p dti 1p E hR Ts (�(t; ex"t ;Eex"t ; u)� �(t; ex"t ;Eex"t ; eu"t ))q dti 1q ;
�
�
C"

�p
3

� 1
p
�
CE

hR T
s
(1 + jex"t jq + jEex"t jq) dti� 1

q

:

� C"
�
3 = C"�:
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In vieu of the Lipschitz condition on �; together with the estimates (4:2:11) and (4:3:15), we get from

Schwarz inequality

I2 � E
hR T
s
j�"t j

2
dt
i 1
2 E
hR T
s
j�(t; ex"t ;Eex"t ; u)� �(t; x"t ;Ex"t ; u)j2 dti 12 ;

� CE
hR T
s

�
jex"t � x"t j2 + jE (ex"t � x"t )j2� dti 12 ;

� C
�
"
2�
3

� 1
2

= C"�:

Further, by the Schwarz and Jensen inequalities, one has

I3 = E
R T
s
�"t : (�(t; ex"t ;Eex"t ; eu"t )� �(t; ex"t ;Eex"t ; u"t )) 1feu"t 6=u"tg (t) dt

+E
R T
s
�"t : (�(t; ex"t ;Eex"t ; u"t )� �(t; x"t ;Ex"t ; u"t )) dt;

� CE
hR T
s
j�"t j

2
dt
i 1
2 E
hR T
s

�
1 + jex"t j4 + jEex"t j4� dti 14 d (eu"; u") 14 ;

+ CE
hR T
s
j�"t j

2
dt
i 1
2 E
hR T
s

�
1 + jex"t � x"t j2 + jE (ex"t � x"t )j2� dti 12 ;

Thus from the �rst inequality in (3:3:6) ; it yields I3 � C"�: Analogously we have

E
hR T
s

�
(f (t; ex"t ;Eex"t ; u)� f (t; ex"t ;Eex"t ; eu"t )) + e "t : (b (t; ex"t ;Eex"t ; u)� b (t; ex"t ;Eex"t ; eu"t ))

+ e�"t : (� (t; ex"t ;Eex"t ; u)� � (t; ex"t ;Eex"t ; eu"t ))
+
1

2
(� (t; ex"t ;Eex"t ; u)� � (t; ex"t ;Eex"t ; eu"t ))> e	"t (� (t; ex"t ;Eex"t ; u)� � (t; ex"t ;Eex"t ; eu"t )) dti

� E
hR T
s
((f (t; x"t ;Ex"t ; u)� f (t; x"t ;Ex"t ; u"t )) +  "t : (b (t; x"t ;Ex"t ; u)� b (t; x"t ;Ex"t ; u"t ))

+ �"t : (� (t; x
"
t ;Ex"t ; u)� � (t; x"t ;Ex"t ; u"t ))

+
1

2
(� (t; x"t ;Ex"t ; u)� � (t; x"t ;Ex"t ; u"t ))

>
	"t (� (t; x

"
t ;Ex"t ; u)� � (t; x"t ;Ex"t ; u"t )) dt

i
� C"�;

and directly deduce (3:3:1) :

By using similar arguments developed above, we can obtain the second variational inequality (3:3:2). We

�rst estimate the following di¤erence

E
hP

i�1

n�
l�

�
�i; e�"i �+G�i e "�i���i � e�"i �� �l� (�i; �"i ) +G�i "�i� (�i � �"i )oi = L1 + L2;
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where

L1 = E
hP

i�1
�
l� (�i; �

"
i ) +G�i 

"
�i

� �
�"i � e�"i �i ;

L2 = E
hP

i�1

n��
l� (�i; �

"
i )� l�

�
�i; e�"i ��+G�i � "�i � e "�i���e�"i � �i�oi :

By the fact that l� and G are bounded, together with the estimate (3:2:11) and Schwarz inequality, one

has L1 � C"�: Since l� is Lipschitz with respect to the control variable it follows from (3:3:17) and Schwarz

inequality that L2 � C"�:

This completes the proof of Theorem 4.3.1�

Corollary 4.2.1 Under the conditions of Theorem 4.3.1, it hold that

E

"Z T

s

Hx";u" (t; x"t ;Ex"t ; u"t ) dt

#
� sup

u2U
E

"Z T

s

Hx";u" (t; x"t ;Ex"t ; ut) dt

#
� C"�; (4.3.29)

and

E
hP

i�1
�
l� (�i; �

"
i ) +G�i 

"
�i

�
�i

i
� E

hP
i�1
�
l� (�i; �

"
i ) +G�i 

"
�i

�
�"i

i
� C"�: (4.3.30)

Proof. In the spike variations technique, we can replace the point u 2 U by any control u 2 U , and

the subsequent argument still goes through. So the inequality in the estimate (4:3:1) holds with u 2 U

replaced by u 2 U . The inequality (4:3:30) is an immediate consequence of (4:3:2) :�

4.3 Su¢ cient conditions of near-optimality

In this section, we will show that, under certain concavity conditions, the necessary conditions given by

(4:3:29) and (4:3:30) are in fact su¢ cient for near-optimality. The classical maximum principle is e¤ectively

based on the fact that a maximum point of a function implies zero derivative at this point, while this is

no longer the case for near-optimality. The key step here is to show that Hu (t; x
"
t ;Ex"t ; u"t ;  "t ; �"t ) is very

small and to estimate it in terms of ":

We make the following assumptions

(H4) b; �; and f are di¤erentiable in u, and there is a constant C > 0; such that for � = b; �; and f

j� (t; x; y; u)� � (t; x; y; u0)j+ j�u (t; x; y; u)� �u (t; x; y; u0)j � C ju� u0j : (4.4.1)

De�nition 4.3.1 (Clarke[32]) Let Q be a convex set in Rd and let h : Q ! R be a locally Lipschitz
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function. The generalized gradient of h at x̂ 2 Q; denoted by @xh; is a set de�ned by

@xh (x̂) =

(
p 2 Rd�p:� � lim sup

x!x̂;�!0+

h (x+ ��)� h (x)
�

; for any � 2 Rd; and x; x+ �� 2 Q
)
: (4.4.2)

We can now state and prove the main result of this section.

Theorem 4.3.1 Let (u"; �") be an admissible control, and ( "; �") be the solution to the corresponding

BSDE (4:2:9). Assume that H (t; :; :; :;  "t ; �
"
t ) is concave for a:e: t 2 [s; T ] , P � a:s:The functions g (:; :)

and l (�i; :) are convex. If for some " > 0

E
hR T
s
Hx";u" (t; x"t ;Ex"t ; u"t ) dt

i
� sup

u2U
E
hR T
s
Hx";u" (t; x"t ;Ex"t ; ut) dt

i
� "; (4.4.3)

and

E
hP

i�1
�
l� (�i; �

"
i ) +G�i 

"
�i

�
�i

i
� E

hP
i�1
�
l� (�i; �

"
i ) +G�i 

"
�i

�
�"i

i
� ": (4.4.4)

Then (u"; �") is a near-optimal control with an error bound "+ C"
1
2 ; i.e.

J (u"; �") � inf
(u;�)2I

J (u; �) + "+ C"
1
2 ;

where C > 0 is a constant independent of ":

Proof. We �rst �x an " > 0, and de�ne a new metric bd on U ; by setting
bd (u; u0) = E hR T

s
L" (t) jut � u0tj dt

i
; (4.4.5)

where L" (t) = 1 + j "t j+ j�"t j+ 2 j	"t j (1 + jx"t j+ jEx"t j) � 1: Obviously bd is a metric, and it is a complete
metric as a weighted L1 norm. A simple computation shows that

���E hR Ts Hx";u" (t; x"t ;Ex"t ; ut) dt
i
� E

hR T
s
Hx";u" (t; x"t ;Ex"t ; u0t) dt

i��� � C bd (u; u0) :
Therefore, E

hR T
s
Hx";u" (t; x"t ; :) dt

i
is continuous on U with respect to bd. It follows from (4:4:3) and the

Ekeland principle that, there exists a eu" 2 U such that
bd (eu"; u") � "

1
2 ; (4.4.6)
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and the following maximum condition holds

E
hR T
s
H (t; x"t ;Ex"t ; eu"t ) dti = max

u2U
E
hR T
s
H (t; x"t ;Ex"t ; u) dt

i
; (4.4.7)

where the H-function associated with random variables x 2 L1 (
;F ; P ) ; has the representation

H (t; x;Ex; u) = Hx";u" (t; x;Ex; u)� " 12L" (t) ju� eu"t j : (4.4.8)

The integral-form maximum condition (4:4:7) implies a pointwise maximum condition, namely, for a:e:

t 2 [s; T ] and P � a:s:; H (t; x"t ;Ex"t ; eu"t ) = max
u2U

H (t; x"t ;Ex"t ; u) : Recall from Proposition 2:3:2 in [32]

0 2 @uH (t; x"t ;Ex"t ; eu"t ) : (4.4.9)

By (4:4:8) and the fact that the generalized gradient of the sum of two functions is contained in the sum

of the generalized gradients of the two functions, it follows from Proposition 2:3:3 in [32]

@uH (t; x"t ;Ex"t ; eu"t ) � @uHx";u" (t; x"t ;Ex"t ; eu"t ) + h�" 12L" (t) ; " 12L" (t)i
+ �u (t; x

"
t ;Ex"t ; eu"t )T	"t (� (t; x"t ;Ex"t ; u"t )� � (t; x"t ;Ex"t ; eu"t )) :

Since the Hamiltonian H is di¤erentiable in u; we deduce from the inclusion (4:4:9) that, there is

K" (t) 2
h
�" 12L" (t) ; " 12L" (t)

i
;

such that

Hu (t; x"t ;Ex"t ; eu"t ;  "t ; �"t ) = �K" (t)� �u (t; x"t ;Ex"t ; eu"t )T	"t (� (t; x"t ;Ex"t ; u"t )� � (t; x"t ;Ex"t ; eu"t )) :
(4.4.10)

Therefore, by assumption (4:4:1) ; we get

jHu (t; x"t ;Ex"t ; u"t ;  "t ; �"t )j � jHu (t; x
"
t ;Ex"t ; u"t ;  "t ; �"t )�Hu (t; x"t ;Ex"t ; eu"t ;  "t ; �"t )j

+ jK" (t)j+
����u (t; x"t ;Ex"t ; eu"t )T	" (t) (� (t; x"t ;Ex"t ; u"t )� � (t; x"t ;Ex"t ; eu"t ))���

� CL" (t) ju"t � eu"t j+ " 12L" (t) : (4.4.11)
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By the concavity of H (t; :; :; :;  "t ; �"t ) ; we have

H (t; xt;Ext; ut;  "t ; �"t )�H (t; x"t ;Ex"t ; u" (t) ;  "t ; �"t ) � Hx (t; x
"
t ;Ex"t ; u"t ;  "t ; �"t ) (xt � x"t )

+Hy (t; x"t ;Ex"t ; u"t ;  "t ; �"t )E (xt � x"t ) +Hu (t; x"t ;Ex"t ; u"t ;  "t ; �"t ) (ut � u"t ) ;

for any admissible pair (x; u) ; integrating this inequality with respect to t and taking expectations we

obtain from (3:4:5), (3:4:6) and (3:4:11)

E
hR T
s
(H (t; xt;Ext; ut;  "t ; �"t )�H (t; x"t ;Ex"t ; u"t ;  "t ; �"t )) dt

i
� E

hR T
s
fHx (t; x"t ;Ex"t ; u"t ;  "t ; �"t ) + EHy (t; x"t ;Ex"t ; u"t ;  "t ; �"t )g (xt � x"t ) dt

i
+ C"

1
2 : (4.4.12)

On the other hand, by the convexity of g; it yields

E [g (xT ;ExT )� g (x"T ;Ex"T )] � E [fgx (x"T ;Ex"T ) + Egy (x"T ;Ex"T )g (xT � x"T )]

= E [ "T (xT � x"T )] : (4.4.13)

Thus it follows by the Itô formula applied to  "t (xt � x"t ) ; together with (4:4:4) ; (4:4:12) and (4:4:13)

E [ "T (xT � x"T )]

= E
hR T
s
fHx (t; x"t ;Ex"t ; u"t ;  "t ; �"t ) + EHy (t; x"t ;Ex"t ; u"t ;  "t ; �"t )g (xt � x"t )

+  "t : (b (t; xt;Ext; ut)� b (t; x"t ;Ex"t ; u"t )) + �"t : (� (t; xt;Ext; ut)� � (t; x"t ;Ex"t ; u"t )) dt

+
P

i�1 
"
�iG�i (�i � �

"
i )
i
;

� E
hR T
s
(H (t; xt;Ext; ut;  "t ; �"t )�H (t; x"t ;Ex"t ; u"t ;  "t ; �"t )

+  "t : (b (t; xt;Ext; ut)� b (t; x"t ;Ex"t ; u"t )) + �"t : (� (t; xt;Ext; ut)� � (t; x"t ;Ex"t ; u"t )) dt

�
P

i�1l� (�i; �
"
i ) (�i � �"i )

i
� "� C" 12 ;

= E
hR T
s
(f (t; x"t ;Ex"t ; u"t )� f (t; xt;Ext; ut)) dt�

P
i�1 fl (�i; �i)� l (�i; �

"
i )g
i
� "� C" 12 :

where the last inequality above is due to the convexity of l (�i; :) : This shows that J (u; �) � J (u"; �")�

"� C" 12 :�

Corollary 4.3.1 Under the assumptions of the Theorem 4:2, a su¢ cient condition for an admissible pair
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(u"; �") to be "�optimal is

E
hR T
s
Hx";u" (t; x"t ;Ex"t ; u"t ) dt

i
� sup

u2U
E
hR T
s
Hx";u" (t; x"t ;Ex"t ; ut) dt

i
�
� "

2C

�2
: (4.4.14)

and

E
hP

i�1
�
l� (�i; �

"
i ) +G�i 

"
�i

�
�i

i
� E

hP
i�1
�
l� (�i; �

"
i ) +G�i 

"
�i

�
�"i

i
� "

2
:

Remark 4.3.1 If we assume that " = 0: Theorems 4.3.1 and 4.4.1 reduces to the maximum principle for

exact optimal controls.
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Classical optimal control problems are time-consistent, which means that an optimal control constructed

for a given initial pair of time and state will remain optimal thereafter. It seems to be not so ideal in real

world. In fact, more than often, an optimal control selected/designed at a given moment will hardly be

optimal at later time moments. This is called time-inconsistency of the problem. Among many possible

reasons causing the time-inconsistency, there are two playing some essential roles:

(i) People usually over-discount on the immediate future utility/disutility than on farther future ones;

(ii) and people�s attitude towards risks are subjective rather than objective.

Mathematically, the former can be described by the hyperbolic discounting, and an important special case

of the later can be described by certain nonlinear appearance of conditional expectations for the state

process and/or control process in the cost functional.

In this Thesis we have investigated about 4 stochastic optimal control problems which, in various ways,

are time inconsistent in the sense that they do not admit a Bellman optimality principle. In chapter 1,

we have studied a class a general time-inconsistent stochastic linear�quadratic (LQ) control problem. We

have used the game theoretic approach to handle the time inconsistency. During this study open-loop Nash

equilibrium controls are constructed as an alternative of optimal controls. This has been accomplished

through stochastic maximum principle that includes a �ow of forward-backward stochastic di¤erential

equations under maximum condition. The inclusion of concrete examples con�rms the validity of our

proposed study. The work can be extended in several ways. For example, this approach can be extended to

a theory for general random coe¢ cients case. The research on this topic is in progress and will appear in

our forthcoming paper.

In Chapter 2 , we have studied optimal investment and reinsurance problem, incorporating jumps, for

mean�variance insurers. We have used the game theoretic approach to handle the time inconsistency.

We have provided a necessary and su¢ cient conditions for equilibriums and derived the equilibrium

investment and reinsurance strategies and the corresponding value function explicitly. In addition, some
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special cases of our model have been discussed and the explicit expressions of the corresponding solutions

have been derived. Moreover, this paper extends the models and results of Zheng et al [111]. The work

can be extended in several ways. For example, as the insurer updates its policy continuously in the

time inconsistent problems, it may be interesting to consider a time and state dependent coe¢ cient of risk

aversion, instead of a constant one, in order to analyze how time and state dependent risk aversion modify

the equilibrium strategies.

In Chapter 3, we investigated equilibrium consumption-investment problem with a general discount func-

tion and a general utility function in a non-Markovian framework. Using the variational method, we

characterized open loop Nash equilibrium strategies. We obtained the equilibrium solution in explicit

form under some special cases of the utility function. Possible extensions of the results in the paper

include several �nancial and actuarial applications, such as contribution and portfolio selection in pension

funding (see, e.g., Josa-Fombellida and Rincón-Zapatero [54] and references therein).

In chapter 4, we have studied a class of dynamic decision problems of a general time-inconsistent type in

the sense that the coe¢ cients in the state equation and the cost functional involve the expected value of the

solution. The control variable has two components, the �rst being absolutely continuous and the second is a

piecewise impulse process which is not necessarily increasing. During this study near-optimal controls are

constructed as an alternative of optimal controls. This has been accomplished through Ekeland�s variational

principle and a double perturbations approach, then a stochastic maximum principle is proved for all near-

optimal controls. This result includes two approximate variational inequalities in integral form, under two

adjoint processes which are backward stochastic di¤erential equations. The work can be extended in several

ways. For example,

1) The paper [19] considers a sector-wise allocation in a portfolio consisting of a very large number of

stocks. Their interdependence is captured by the dependence of the drift coe¢ cient of each stock on an

averaged e¤ect of the sectors. This leads to decoupled dynamics in the limit of large numbers. In this case,

the so-called consistent mean-�eld approximation which represents in some sense the average behavior of

the in�nite number of players. Note that, the general solvability for this type of problems optimally or

near-optimally, remains an outstanding open problem.

2) This approach can be extended to a mean-�eld game, see e.g. [37], to construct decentralized strategies

and obtain an estimate of their performance.

We hope to study these problems in forthcoming papers.
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