
République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ MOHAMED KHIDER, BISKRA

FACULTÉ des SCIENCES EXACTES et des SCIENCES de la NATURE et de la VIE

DÉPARTEMENT DE MATHÉMATIQUES

Thèse présentée en vue de l’obtention du Diplôme de

Doctorat en Mathématiques

Option: Analyse Numérique et Optimisation

Par

Samiha Aichouche

Titre

Amélioration des Performances de
Certaines Méthodes de Calcul

Numérique à L’aide des Algorithmes
Évolutionnaires.

Devant le jury

Président M.C.A. Zouheir Mokhtari Université M.K. Biskra

Rapporteur M.C.A. Naceur Khelil Université M.K. Biskra

Examinateur M.C.A. Leila Djerou Université M.K. Biskra

Examinateur M.C.A. El-Amir Djeffal Université L.K. Batna

2016

http://s.math2011@gmail.com

i

Improvement of Performance of Certain Numerical

Computational Methods using Swarm Intelligence

Algorithms

Improvement of Gregory’s Formula using Artificial Bee Colony

Algorithm.

Samiha Aichouche

AM Laboratory, University of Biskra, Algeria

Abstract

In this work, we prove that the Gregory Formula (G) can be optimized by min-

imizing some of their coefficients in the remainder term by using Artificial Bee

Colony (ABC) Algorithm.

Experimental tests prove that obtained Formula can be rendered a powerful for-

mula for library use.

Key words. Gregory Formula, Artificial Bee Colony (ABC) Algorithm, Numeri-

cal Integration.

http://s.math2011@gmail.com

All praise and thanks to God alone.

To my parents, my family and all of my friends,

Without whom none of my success would be possible.

ii

Acknowledgements

I would like to express deepest gratitude to my advisor Dr. Naceur Khelil for

his full support, expert guidance, understanding and encouragement throughout

my study and research. Without his incredible patience and timely wisdom and

counsel, my thesis work would have been a frustrating and overwhelming pursuit.

I express my appreciation to Dr.Zouheir Mokhtari, Dr. Leila Djerou and

Dr. El-Amir Djeffal for accepting to read our work.

My special thanks to the AM Laboratory, University of Biskra.

My thanks and appreciations go to our friends and colleagues.

iii

Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures v

List of Tables vi

Abbreviations vii

Introduction 1

1 Preliminary 3
1.1 The Algebra of Formal Power Series 3

1.1.1 The Ordrer of Power Series 7
1.1.2 Polynomial Algebra . 9
1.1.3 Generating Functions, Conjugate Sequences 9
1.1.4 Compositional Umbral . 10

1.2 Linear Functionals . 11
1.3 Expansion of Formal Series by Series Delta 16
1.4 Illustration . 21

2 Artificial Bee Colony (ABC) 24
2.1 Artificial Intelligence . 24
2.2 What is Swarm Intelligence? . 26

2.2.1 Main Idea . 26
2.2.2 Fundamentals of SI in Social Insects 28
2.2.3 Swarm Intelligence Models 29

2.3 Artificial Bee Colony (ABC) . 30
2.3.1 Description of The Foraging Behavior of Reel Honey Bees . 30
2.3.2 Studies on ABC Optimizations 33
2.3.3 Artificial Bee Colony (ABC) Algorithm Optimization 34
2.3.4 Simulation Studies . 38

iv

Contents v

3 Improvement of Gregory’s Formula using Artificial Bee Colony
Algorithm 47
3.1 Gregory’s Formula for Solving Numerical Integration 47
3.2 Improvement of Gregory’s Formula using Artificial Bee Colony Al-

gorithm . 51
3.3 Simulation Results . 53

Conclusion and Future Work 55

A MATLAB Code 56
A.1 ABC Algorithm Coded using MATLAB Language 56
A.2 The Fitness Function Coded using MATLAB Language 62
A.3 The Complete MATLAB Code for Figure 2.7 63
A.4 The Objective Function Coded using MATLAB Language 64

Bibliography 65

List of Figures

2.1 Insects Colonies Preserves Equilibrium 27
2.2 Ant Colonies . 27
2.3 Bird Flocks . 27
2.4 Honey Bees and Food Sources . 31
2.5 Orientation of Waggle Dance . 32
2.6 Waggle Dance of Honey Bees . 32
2.7 Initialize the Food Source Positions. 39
2.8 Food Source Positions of Employed Bee 01. 40
2.9 Food Source Positions of Employed Bee 02. 41
2.10 Food Source Positions of Employed Bee 03. 41
2.11 Food Source Positions of Employed Bee 04. 42
2.12 Food Source Positions of Cycle 01. 44
2.13 Food Source Positions of Cycle 03. 45
2.14 Food Source Positions of Cycle 04. 45
2.15 Food Source Positions of Cycle 10. 46

vi

List of Tables

2.1 The Different Studies That were Conducted on ABC 33
2.2 Parameters adopted for The ABC Algorithm 36
2.3 Parameters adopted for The ABC Algorithm 38
2.4 Initialize the Food Source Positions. 39
2.5 Food Source Positions of Cycle 01. 43
2.6 Food Source Positions of Cycle 03. 44
2.7 Food Source Positions of Cycle 04. 44
2.8 Food Source Positions of Cycle 10. 46

3.1 Parameters . 54
3.2 Comparison . 54

vii

Abbreviations

F Formal Power Series

P Polynomials (sub-algebra of F)

P* Vector Space of all Linear Functional on P

deg (p (x)) Degree of p (x)

O (f (t)) Order of f (t)

M (fk) Infinite Matrix associated of the Sequence fk (t)

< L | p (x) > Action of a Linear Functionals L on a Polynomial p (x)

G Gregory Integration Formula

GABC New Integration Formula

AI Artificial Intelligence

CI Computational Intelligence

SI Swarm Intelligence

SO Self Organization

ACO Ant Colony Optimization

PSO Particle Swarm Optimization

ABC Artificial Bee Colony

viii

Introduction

Solving numerical integration is an important question in scientific calculations

and engineering.

Consider classical Gregory integration formula [1],

∫ n

0

f(x)dx =
n∑

k=0

f(k) +
∑
k≥0

αk

k!

(
∆k

1f (0) + ∆k
−1f (n)

)
. (1)

And the Gregory integration formula (G) [2],

∫ n

0

f(x)dx =
n∑

k=0

f(k) +
∑
k≥0

αk

k!

(
∆k

hk
f (0) + ∆k

−hk
f (n)

)
. (2)

with end corrections where ∆h is the forward difference operator with step size h.

The formula (2) has a sense so n ≥ 1, In the contrary case an appropriate variable

change will permit us to do the integral without no difficulty.

The purpose of this thesis is to use Artificial Bee Colony (ABC) Algorithm in

order to improve the Gregory integration formula (G) at the 5th term by minimiz-

ing some of their coefficients in the remainder term (α3, α4, α5).

Artificial Bee Colony (ABC) Algorithm is the best example of swarm intelligence

algorithms for numerical optimization problem.

ABC Algorithm originally proposed by Karaboga in 2005 [3] and inspired by the

foraging behaviour of honey bee swarm on finding food source which is called the

nectar, food source position represents a possible solution to the problem to be

optimized.

This is a thesis for the degree of Doctorate (PhD) in Mathematics: Numerical

Analysis and Optimization. It is organized as follows:

1

Introduction Introduction 2

In the first chapter ; first of all, we give some of the basic definitions that re-

lated to this thesis. Then, we discuss the Theorem of Expansion of formal series

h(t) by series delta fk(t),

h (t) =
∞∑
k=0

< h (t) | pk (x) >

k!
fk (t) ,

where, pn (x) is the sequence of polynomials associated for fk (t) .

Lastly, we give an example of this theorem for determining pk (x), where

ent − 1

t
=
∞∑
k=0

< ent−1
t
| pk (x) >

k!

(
ehkt − 1

)k
,

and pk (x) is the sequence of polynomials associated for
(
ehkt − 1

)k
, k > 0 and hk

is non-zero parameters.

In the second chapter ; to begin with giving an overview of the Swarm In-

telligence. Then, we discuss the main steps of the Artificial Bee Colony (ABC)

Algorithm, with giving ABC Algorithm coded using Matlab language in Appendix.

A.1. Finally we give simple example for applying this Algorithm for finding the

global minimum of a function f in [0; 4] interval.

In the last chapter ; first, we try to justify the formula (G) by using the umbral

methods developed by Rota and his school [4–8], with calculating αk where

αk =<
1

et − 1
− 1

t
| pk (x) >, k = 0, ..., 5.

And pk (x) is the sequence of polynomials associated for
(
ethk − 1

)k
.

Next, we prove that the Gregory formula (G) at the 5th term that can be optimized

by minimizing (α3, α4, α5), by using Artificial Bee Colony (ABC) Algorithm. Last,

we attempt to give numerical examples for the new formula (GABC).

Finally ; we conclude this thesis with a short conclusion and we are going to deal

with future work.

Chapter 1

Preliminary

This chapter reviews some of the basic definitions related to this thesis; we start by

discussing what the algebra of formal power series is, and what linear functionals

are also, we discuss the theorem of expansion of formal series by series delta.

Finally, we give an example of application of this theorem. See [1, 4–11].

1.1 The Algebra of Formal Power Series

Define α to be an infinite sequence of complex numbers or reel numbers α =

[α0, α1, α2, ...].

By F we denote the class of all such infinite sequences α, and these are the formal

power series.

Let t denote the particular element [0, 1, 0, 0, ...] of F so that,

t2 = [0, 0, 1, 0, 0, ...] ,

t3 = [0, 0, 0, 1, 0, ...] ,

and in general tn−1 is the sequence with zeros in all positions except the nth, where

1 occurs.

3

Chapter 1. Preliminary 4

We now introduce the notation

∞∑
k=0

αkt
k = α0 + α1t+ α2t

2 + ...

For α = [α0, α1, α2, ...].

If f (t) ∈ F , f (t) = [α0, α1, α2, ...], say

f (t) =
∞∑
k=0

αkt
k,

and g (t) ∈ F , g (t) = [β0, β1, β2, ...], say

g (t) =
∞∑
k=0

βkt
k.

Define addition by

f (t) + g (t) =
∞∑
k=0

αkt
k +

∞∑
k=0

βkt
k

= [α0, α1, α2, ...] + [β0, β1, β2, ...]

= [α0 + β0, α1 + β1, α2 + β2, ...]

=
∞∑
k=0

(αk + βk) tk.

(1.1)

Define multiplication by

f (t) .g (t) =

(
∞∑
k=0

αkt
k

)
.

(
∞∑
k=0

βkt
k

)

=

[
α0β0, α1β0 + α0β1, α2β0 + α1β1 + α0β2, ...,

n∑
j=0

αjβn−j, ...

]

=
∞∑
k=0

(
k∑

j=0

αjβk−j

)
tk.

(1.2)

Chapter 1. Preliminary 5

Define multiplication of F with scalar λ ∈ C by

λ.f (t) = [λα0, λα1, λα2, ...]

=
∞∑
k=0

(λαk) tk.
(1.3)

It is clear that all those operations are well defined, that is, f + g, λ.f, f.g, are all

in F .

The definition of equality is that f (t) = g (t) if and only if αj = βj for all j > 0.

It is not difficult to establish that the set F is a commutative ring with a unit

(with addition (1.1) and multiplication (1.2)), F is a vector space (with addition

(1.1) and multiplication with scalar (1.3)) and F is an algebra over the field K

(K = R or C).

The zero element and the unit element are

0 = [0, 0, 0, ...] ,

and

1 = [1, 0, 0, ...] .

Given any

f (t) =
∞∑
k=0

αkt
k,

the additive inverse of f (t) is

−f (t) =
∞∑
k=0

(−αk) tk.

Theorem 1.1. Let f (t) ∈ F such that f (t) =
∑∞

k=0 αkt
k, the series f (t) has a

multiplicative inverse, denote by f (t)−1 or
1

f (t)
, if and only if α0 6= 0, we shall

say that f (t) is invertible.

Proof. f (t) =
∑∞

k=0 αkt
k has a multiplicative inverse in F , if and only if it exists

f (t)−1 =
∑∞

k=0 γkt
k such that f (t) .f (t)−1 = 1, it means if and only if α0γ0 = 1

and ∀n ∈ N∗,
∑n

j=0 αjγn−j = 0.

If f (t) is invertible, as α0.γ0 = 1 so α0 6= 0.

Chapter 1. Preliminary 6

Reciprocally, if α0 6= 0, the triangular system of equations

α0γ0 = 1

α1γ0 + α0γ1 = 0

α2γ0 + α1γ1 + α0γ2 = 0

...

αnγ0 + αn−1γ1 + ...+ α0γn = 0,

has a unique solution.

Example 1.1. We have (1− t) .
∑∞

k=0 t
k = 1.

Where

(1− t) = [1,−1, 0, 0, ...] ;
∞∑
k=0

tk = [1, 1, 1, 1, ...]

Because, suppose that g (t) =
∑∞

k=0 βkt
k then, (1− t) .g (t) = 1 so,

[1,−1, 0, 0, ...] . [β0, β1, β2, ...] = [1, 0, 0, ...] .

We get the following system 

β0 = 1

−1β0 + β1 = 0

−β1 + β2 = 0

−β2 + β3 = 0

...

−βn−1 + βn = 0

...

Chapter 1. Preliminary 7

So, 

β0 = 1

β1 = 1

β2 = 1

...

βn = 1

...

We get g (t) =
∑∞

k=0 t
k, or (1− t)−1 =

∑∞
k=0 t

k.

1.1.1 The Ordrer of Power Series

Definition 1.2. Let f (t) ∈ F such that f (t) =
∑∞

k=0 αkt
k. The order O (f (t))

of a power series f (t) is the smallest k such that αk 6= 0;

O (f (t)) = inf {k ∈ N, αk 6= 0} .

We take O (f (t)) = +∞ if f (t) = 0.

Example 1.2. O (tn) = n, n ∈ N.

Theorem 1.3. If f (t) , g (t) ∈ F such that f (t) =
∑∞

k=0 αkt
k and g (t) =

∑∞
k=0 βkt

k,

then

1. O (f (t) + g (t)) > min (O (f (t)) , O (g (t))).

2. O (f (t) .g (t)) = O (f (t)) +O (g (t)).

Proof. 1. We have

f (t) + g (t) =
∞∑
k=0

(αk + βk) tk.

If k < min (O (f (t)) , O (g (t))) then αk = βk = 0 and αk + βk = 0.

So,

inf {k ∈ N, αk + βk 6= 0} > min (O (f (t)) , O (g (t))) .

Chapter 1. Preliminary 8

We get

O (f (t) + g (t)) > min (O (f (t)) , O (g (t))) .

2. By definition,

f (t) .g (t) =
∞∑
k=0

(
k∑

j=0

αjβk−j

)
tk.

We shows that;

inf

{
n ∈ N,

n∑
j=0

αjβn−j 6= 0

}
= inf {k ∈ N, αk 6= 0}+ inf {k ∈ N, βk 6= 0} .

• Let n ∈ N such that
∑n

j=0 αjβn−j 6= 0 so, it exists (i; j) ∈ N2 such that

i+ j = n and αiβj 6= 0.

So, i > inf {k ∈ N, αk 6= 0} and j > inf {k ∈ N, βk 6= 0} .

So,

n = i+ j > inf {k ∈ N, αk 6= 0}+ inf {k ∈ N, βk 6= 0} .

So,

O (f (t) .g (t)) > O (f (t)) +O (g (t)) .

• Now, we demonstrate another inequality; let n = n1 + n2 such that

n1 = inf {k ∈ N, αk 6= 0} and n2 = inf {k ∈ N, βk 6= 0} .

Look at nth term of the formal series f (t) .g (t);

(f (t) .g (t))n = α0βn1+n2 + α1βn1+n2−1 + ...+ αn1−1βn2+1

+ αn1βn2 + αn1+1βn2−1 + ...+ αn1+n2β0.

For all j < n1; we have αj = 0 so, αjβn−j = 0.

For all k < n2; we have βk = 0 so, αn−kβk = 0.

So, (f (t) .g (t))n = αn1βn2 6= 0 and

n1 + n2 ∈ {n ∈ N, α0βn + α1βn−1 + ...+ αnβ0 6= 0}.

Chapter 1. Preliminary 9

So,

inf

{
n ∈ N,

n∑
j=0

αjβn−j 6= 0

}
6 inf {k ∈ N, αk 6= 0}+inf {k ∈ N, βk 6= 0} .

So,

O (f (t) .g (t)) 6 O (f (t)) +O (g (t)) .

1.1.2 Polynomial Algebra

Let K be a field (K = R or C), a polynomials is a formal series such that p (x) =∑
k>0 αkx

k, αk ∈ K and αk = 0 for all but a finite number of k.

We next definie P as the set of all polynomials in x over K.

So, P is a sub-algebra of F .

Definition 1.4. Let p (x) ∈ P such that p (x) =
∑

k>0 αkx
k. The degree deg (p (x))

of the polynomial p (x) is the largest k such that αk 6= 0.

We take deg (p (x)) = −∞ if p (x) = 0.

Let p (x) and q (x) be polynomials of P :

1. deg (p (x)) + deg (q (x)) = deg (p (x) .q (x)).

2. deg (p (x) + q (x)) ≤ max (deg (p (x)) , deg (q (x))).

1.1.3 Generating Functions, Conjugate Sequences

Suppose fk (t) is a sequence in F such that

fk (t) =
∞∑
n=0

αnkt
n, k ≥ 0.

Define the generating functions of the sequence fk (t) by

F (x, t) =
∞∑
k=0

fk (t)xk.

Chapter 1. Preliminary 10

Let M (fk) = (αnk) be the infinite matrix associated of the sequence fk (t), where

n is the index of the lines and k is the index of the columns. Then the data of

F (x, t) is equivalent to the data of the matrix M (fk) .

The conjugate sequence of fk (t) is the sequence f c
n (t) in F such that

f c
n (t) =

∞∑
k=0

αknt
k, n > 0.

In other words, the associated matrix of f c
n (t) is the transposed matrix M (fk)t of

M (fk) .

Consider fk (t) a sequence of F such that

fk (t) =
∞∑
n=0

αnkt
n, k ≥ 0,

that is said to be a sequence admitting addition. If corresponding to any integer

N = N (r) such that for all r > N ;

α0n = α1n = α2n = ... = αrn = 0;

if this condition is satisfied we also say that
∑∞

k=0 fk (t) is an admissible sum.

1.1.4 Compositional Umbral

Suppose gk(t) is a sequence admitting addition and f(t) ∈ F sush that f(t) =∑∞
k=0 αkt

k so, the sequence αkgk(t) is admitting addition and the sum

S(t) =
∞∑
k=0

αkgk(t)

is a well-defined series in F .

We call S is the compositional umbral of f and g, S is also denoted by f ◦ g.

S(t) = (f ◦ g)(t) = f(g(t)).

Chapter 1. Preliminary 11

In particular, we may take gk(t) = g(t)k where 0 (g (t)) > 1.

Let fk(t) be a sequence of F , we have

Ik ◦ f(t) = fk ◦ I(t) = fk(t), (1.4)

where Ik(t) = tk, k > 0. In other words, the sequence Ik(t) is the unit element for

the compositional umbral.

If I = M(tk) is the identity matrix so, the equality (1.4) is equivalent

M(fk).I = I.M(fk) = M(fk).

Let gk(t) and fk(t) be the sequences admitting addition, gk(t) is a compositional

umbral inverse of fk(t) if

fk ◦ g(t) = gk ◦ f(t) = Ik(t), k > 0.

So, M(gk) is the inverse matrix of the M(fk), i.e

M(fk).M(gk) = M(gk).M(fk) = I.

We write, gk(t) = fk(t).

We call any fk(t) of F with O (fk(t)) = k a delta series.

We call any pn(x) of P with deg (Pn(x)) = n a sequence of polynomials.

Delta series and sequence of polynomials are simple examples of the compositional

umbral invertible because M(fk) and M(pn) are triangular matrix.

1.2 Linear Functionals

Let P be the algebra of polynomials in a single variable x, with coefficients in a

field K, which we often assume to be either the real or the complex field.

Let P* be the vector space of all linear functional on P .

We use the notation < L | p (x) > for the action of a linear functionals L on a

polynomial p (x), and we recall that the vector space operations on P* are defined

Chapter 1. Preliminary 12

by

< L+M | p (x) >=< L | p (x) > + < M | p (x) >; ∀L,M ∈ P* ,

< cL | p (x) >= c < L | p (x) >;∀L ∈ P* , c ∈ K.

Since a linear functional is uniquely determined by its action on a basis, L in P*

is uniquely determined by the sequence of constants < L | xn > for n > 0.

The formal power series

f (t) =
∞∑
k=0

αk

k!
tk,

defines a linear functional on P by setting

< f (t) | xn >= αn, n > 0. (1.5)

Notice that we have used the same notation f (t) for the power series and the

linear functional.

This should cause no confusion since if f (t) and g (t) are in F , then f (t) = g (t)

if and only if < f (t) | xn >=< g (t) | xn > for all n > 0.

In other words, f (t) and g (t) are equal as formal series if and only if they are

equal as linear functionals.

As a consequence of (1.5) we have

< tk | xn >= n!δn,k,

such that

δn,k =

1, n = k

0, n 6= k,

and

<

∞∑
k=0

αkt
k | xn >=

∞∑
k=0

αk < tk | xn >, n > 0,

so, for any p (x) in P

<

∞∑
k=0

αkt
k | p (x) >=

∞∑
k=0

αk < tk | p (x) > .

Chapter 1. Preliminary 13

Now any linear functional L in P* can be represented as a series in F . In fact, if

fL (t) =
∞∑
k=0

< L | xk >
k!

tk,

then

< fL (t) | xn > =<
∞∑
k=0

< L | xk >
k!

tk | xn >

=
∞∑
k=0

< L | xk >
k!

< tk | xn >,

we have

< tk | xn >=

n!, n = k

0, n 6= k,

then

< fL (t) | xn >=< L | xn >,

and so as linear functionals

fL = L.

Theorem 1.5. The map L 7→ fL (t) is a vector space isomorphism from P* onto

F.

Proof. Since L = M if and only if < L | xk >=< M | xk > for all k > 0, which

holds if and only if fL (t) = fM (t), the map is bijective. But we also have

fL+M (t) =
∞∑
k=0

< L+M | xk >
k!

tk

=
∞∑
k=0

< L | xk >
k!

tk +
∞∑
k=0

< M | xk >
k!

tk

= fL (t) + fM (t) .

Chapter 1. Preliminary 14

And for c ∈ K,

fcL (t) =
∞∑
k=0

< cL | xk >
k!

tk

= c

∞∑
k=0

< L | xk >
k!

tk

= cfL (t) .

Thus our map is a vector isomorphism.

Proposition 1.6. If f (t) ∈ F, then

f (t) =
∞∑
k=0

< f (t) | xk >
k!

tk.

Proof. We have

<
∞∑
k=0

< f (t) | xk >
k!

tk | xn > =
∞∑
k=0

< f (t) | xk >
k!

< tk | xn >

=< f (t) | xn > .

Proposition 1.7. If p (x) ∈ P, then

p (x) =
∞∑
k=0

< tk | p (x) >

k!
xk.

Proof. We have

<
∞∑
k=0

< tk | p (x) >

k!
xk | tn > =

∞∑
k=0

< tk | p (x) >

k!
< xk | tn >

=
∞∑
k=0

< tk | xn >
k!

< xk | tn >

=< xn | tn >, n > 0

=< p (x) | tn > .

Chapter 1. Preliminary 15

Example 1.3 (The Evaluation Functional). For a constant a, the linear functional

ξa, defined by < ξa | p (x) >= p (a), is called evaluation at a, we call this linear

the evaluation functional.

Let y ∈ R, we have

< eyt | xn > =<
∞∑
k=0

yk

k!
tk | xn >

=
∞∑
k=0

yk

k!
< tk | xn >

= yn, n > 0,

and

< eyt | p (x) >= p (y) ,

for all p (x) ∈ P.

Example 1.4 (The Forward Difference Functional). The forward difference func-

tional is the delta functional eyt − 1 and

< eyt − 1 | p (x) >= p (y)− p (0) , y ∈ R.

Example 1.5. The functional f (t) that satisfies

< f (t) | p (x) >=

∫ y

0

p (u) du,

for all polynomial p (x) can be determined from proposition 1.6;

f (t) =
∞∑
k=0

< f (t) | xk >
k!

tk

=
∞∑
k=0

∫ y

0
ukdu

k!
tk

=
∞∑
k=0

yk+1

(k + 1)!
tk

=
eyt − 1

t
,

Chapter 1. Preliminary 16

so,

f (t) =
eyt − 1

t
.

1.3 Expansion of Formal Series by Series Delta

A sequence gk (t) for which O (gk (t)) = k forms pseudobasis for F . In other words,

for each series f (t) there is a unique sequence of constants αk for which

f (t) =
∞∑
k=0

αkgk (t) .

In particular, the powers of delta series form a pseudobasis for F .

Also, the sequence of polynomials form a pseudobasis for P .

Proposition 1.8. If O (fk (t)) = k, for all k > 0, then

<
∞∑
k=0

αkfk (t) | p (x) >=
∞∑
k=0

αk < fk (t) | p (x) >,

for all p (x) in P.

Proof. Suppose that deg (p (x)) = d, then

<
∞∑
k=0

αkfk (t) | p (x) > =<
d∑

k=0

αkfk (t) | p (x) > + <
∞∑

k=d+1

αkfk (t) | p (x) >

=<
d∑

k=0

αkfk (t) | p (x) >

=
d∑

k=0

αk < fk (t) | p (x) >

=
∞∑
k=0

αk < fk (t) | p (x) > .

Proposition 1.9. If O (fk (t)) = k (fk (t) is a delta series), for all k > 0 and if

< fk (t) | p (x) >=< fk (t) | q (x) >,

Chapter 1. Preliminary 17

for all k, then p (x) = q (x) .

Proof. Since the sequence fk (t) , forms a pseudobasis for F , for all n > 0 there

exist constants αn,k for which

tn =
∞∑
k=0

αn,kfk (t) .

Thus

< tn | p (x) > =<
∞∑
k=0

αn,kfk (t) | p (x) >

=
∞∑
k=0

αn,k < fk (t) | p (x) >

=
∞∑
k=0

αn,k < fk (t) | q (x) >

=<
∞∑
k=0

αn,kfk (t) | q (x) >

=< tn | q (x) >,

so proposition 1.7 shows that

p (x) =
∞∑
k=0

< tk | p (x) >

k!
xk

=
∞∑
k=0

< tk | q (x) >

k!
xk

= q (x) .

Proposition 1.10. If deg (pk (x)) = k, for all k > 0 and if

< f (t) | pk (x) >=< g (t) | pk (x) >,

for all k, then f (t) = g (t) .

Chapter 1. Preliminary 18

Proof. For each n > 0 there exist constants αn,k for which

xn =
N∑
k=0

αn,kpk (x) .

Thus

< f (t) | xn > =
N∑
k=0

αn,k < f (t) | pk (x) >

=
N∑
k=0

αn,k < g (t) | pk (x) >

=< g (t) | xn >,

so proposition 1.6 shows that f (t) = g (t) .

By a sequence pn (x) in P we shall always imply that deg (pn (x)) = n.

Theorem 1.11. Let fk (t) be a delta series. Then exists a unique sequence pn (x)

of polynomials satisfying the orthogonality conditions

< fk (t) | pn (x) >= n!δn,k, (1.6)

for all n, k > 0.

Proof. The uniqueness follows from proposition 1.9.

If < fk (t) | pn (x) >=< fk (t) | qn (x) > then pn (x) = qn (x).

For the existence, suppose

pn (x) =
n∑

j=0

αn,jx
j,

where αn,n 6= 0, and

fk (t) =
∞∑
i=k

βk,it
i,

Chapter 1. Preliminary 19

where βn,n 6= 0, then (1.6) becomes

n!δn,k =<
∞∑
i=k

βk,it
i |

n∑
j=0

αn,jx
j >

=
∞∑
i=k

n∑
j=0

βk,iαn,j < ti | xj >,

and we have < ti | xj >= i! if i = j,

so,

n!δn,k =
n∑

i=k

βk,iαn,ii!.

Taking k = n, one obtain n! = βn,nαn,nn! so,

αn,n =
1

βn,n
.

Taking k = n− 1,

n!δn,n−1 =
n∑

i=n−1

βn−1,iαn,ii!

0 = βn−1,n−1αn,n−1 (n− 1)! + βn−1,nαn,nn!,

so,

αn,n−1 = −nβn−1,nαn,n

βn−1,n−1

By successively taking k = n, n− 1, ..., 0. We obtain a triangular system of equa-

tions that can be solved for αn,k.

Definition 1.12. We say that the sequence pn (x) in theorem 1.11 is the sequence

of polynomials associated for fk (t) .

Theorem 1.13 (Expansion Theorem). Let fk (t) be a delta series. Then for any

h (t) in F

h (t) =
∞∑
k=0

< h (t) | pk (x) >

k!
fk (t) .

Chapter 1. Preliminary 20

Proof. From proposition 1.8 we have

<

∞∑
k=0

< h (t) | pk (x) >

k!
fk (t) | pn (x) > =

∞∑
k=0

< h (t) | pk (x) >

k!
< fk (t) | pn (x) >

=
< h (t) | pn (x) >

n!
n!

=< h (t) | pn (x) > .

From proposition 1.10 we have

h (t) =
∞∑
k=0

< h (t) | pk (x) >

k!
fk (t) .

Corollary 1.14. Let fk (t) be a delta series and let pn (x) be the sequence of

polynomials associated for fk (t) . then

pn (x) = f c
n (x) .

Proof. From theorem 1.13 , for a ∈ R we have

eat =
∞∑
n=0

< eat | pn (x) >

n!
fn (t)

=
∞∑
n=0

pn (a)

n!
fn (t) ,

so,
∞∑
k=0

ak

k!
tk =

∞∑
n=0

pn (a)

n!
fn (t) ,

so,
∞∑
k=0

ak

k!
fk (t) =

∞∑
n=0

pn (a)

n!
tn,

so,
∞∑
n=0

f c
n (a)

k!
tn =

∞∑
n=0

pn (a)

n!
tn,

we get,

f c
n (a) = pn (a) ,

Chapter 1. Preliminary 21

so,

pn (x) = f c
n (x) .

In other words,

M (pn) = M
(
f c
n

)
.

1.4 Illustration

From the Expansion Theorem 1.13, the functional f (t) = ent−1
t

can be developed

by using the delta series

fk (t) =
(
ehkt − 1

)k
, k > 0,

where hk non-zero parameters.

We have
ent − 1

t
=
∞∑
k=0

αk

k!

(
ehkt − 1

)k
,

where

αk =<
ent − 1

t
| pk (x) >,

pk (x) is the sequence of polynomials associated for fk (t) .

pk (x) can be determined by using corollary 1.14;

M (pn) = M
(
f c
n

)
.

We have,

f1 (t) =
(
eh1t − 1

)
=
∞∑
n=1

hn1
n!
tn.

f2 (t) =
(
eh2t − 1

)2
=

(
∞∑
n=1

hn2
n!
tn

)2

.

f3 (t) =
(
eh3t − 1

)3
=

(
∞∑
n=1

hn3
n!
tn

)3

.

Chapter 1. Preliminary 22

...

fk (t) =
(
ehkt − 1

)k
=

(
∞∑
n=1

hnk
n!
tn

)k

.

Suppose
hnk
n!

= Cn
k , for k, n = 1, 2, . . . , so

M (fk) =



1 0 0 0 · · · 0 · · ·

0 C1
1 0 0 · · · 0 · · ·

0 C2
1 C1

2 .C
1
2 0 · · · 0 · · ·

0 C3
1 C2

2 .C
2
2 C1

3 .C
1
3 .C

1
3 · · · 0 · · ·

...
...

...
...

...
...

...

0 Ck
1 Ck−1

2 .Ck−1
2 Ck−2

3 .Ck−2
3 .Ck−2

3 · · · C1
k .C

1
k .C

1
kC

1
k · · ·

...
...

...
...

...
...

...


Which can be written

M (fk) =



1 0 0 0 · · · 0 · · ·

0 C1
1 0 0 · · · 0 · · ·

0 C2
1 C1

2 (2) 0 · · · 0 · · ·

0 C3
1 C2

2 (2) C1
3 (3) · · · 0 · · ·

...
...

...
...

...
...

...

0 Ck
1 Ck−1

2 (2) Ck−2
3 (3) · · · C1

k (k) · · ·
...

...
...

...
...

...
...


Where Cn

k (i) = Cn
k .C

n
kC

n
k , i times. So,

M (f c
k) =



1 0 0 0 · · · 0 · · ·

0 C1
1 C2

1 C3
1 · · · Ck

1 · · ·

0 0 C1
2 (2) C2

2 (2) · · · Ck−1
2 (2) · · ·

0 0 0 C1
3 (3) · · · Ck−2

3 (3) · · ·
...

...
...

...
...

...
...

0 0 0 0 · · · C1
k (k) · · ·

...
...

...
...

...
...

...


Thus,

Chapter 1. Preliminary 23

• M (f c
0) = 1. So, M

(
f c
0

)
= 1. And p0 (x) = 1, and consequently

α0 =

∫ n

0

dx = n.

•

M (f c
1) =

1 0

0 C1
1

 =

1 0

0 h1


So,

M
(
f c
1

)
=

1 0

0
1

h1


And p1 (x) =

1

h1
x, and consequently

α1 =

∫ n

0

1

h1
xdx

=
n2

2h1
.

•

M (f c
2) =


1 0 0

0 C1
1 C2

1

0 0 C1
2 (2)

 =


1 0 0

0 h1
h21
2!

0 0 h22


So,

M
(
f c
2

)
=


1 0 0

0
1

h1

−h1
2h22

0 0
1

h22


And p2 (x) =

−h1
2h22

x+
1

h22
x2, and consequently

α2 =

∫ n

0

(
−h1
2h22

x+
1

h22
x2
)
dx

=
−h1
4h22

n2 +
1

3h22
n3.

In the same way, we calculate α3, α4 · · ·

Chapter 2

Artificial Bee Colony (ABC)

2.1 Artificial Intelligence

Artificial Intelligence (AI) is one of the oldest and the best known research fields

[12]. It attempts to understand intelligent entities. Thus, one reason to study it is

to learn more about ourselves. But unlike philosophy and psychology, which are

also concerned with intelligence, AI strives to build intelligent entities as well as

understand them. Another reason to study AI is that these constructed intelli-

gent entities are interesting and useful in their own right. AI has produced many

significant and impressive products even at this early stage in its development.

Although no one can predict the future in detail, it is clear that computers with

human-level intelligence (or better) would have a huge impact on our everyday

lives and on the future course of civilization [13].

AI addresses one of the ultimate puzzles. How is it possible for a slow, tiny brain,

whether biological or electronic, to perceive, understand, predict, and manipulate

a world far larger and more complicated than itself? How do we go about mak-

ing something with those properties? These are hard questions, but unlike the

search for faster-than-light travel or an antigravity device, the researcher in AI

has solid evidence that the quest is possible. All the researcher has to do is look

in the mirror to see an example of an intelligent system. AI is one of the newest

disciplines, John McCarthy, who coined the term Artificial Intelligence in 1956 at

the Dartmouth conference, defined it as “the science and engineering of making

24

Chapter 2. Artificial Bee Colony (ABC) 25

intelligent machines” [12, 14, 15], also other textbooks [13] define this discipline

as:

“exciting new effort to make computers think ... machines with minds, in the full

and literal sense” (Haugeland, 1985).

“The automation of activities that we associate with human thinking, activities

such as decision-making, problem solving, learning ...” (Bellman, 1978).

“The study of mental faculties through the use of computational models” (Char-

niak and McDermott, 1985).

“The study of the computations that make it possible to perceive, reason, and

act” (Winston, 1992).

“The art of creating machines that perform functions that require intelligence

when performed by people” (Kurzweil, 1990).

“The study of how to make computers do things at which, at the moment, people

are better” (Rich and Knight, 1991).

“A field of study that seeks to explain and emulate intelligent behavior in terms

of computational processes” (Schalkoff, 1990).

“The branch of computer science that is concerned with the automation of intel-

ligent behavior” (Luger and Stubblefield, 1993).

Intelligent behavior is shown in many ways, including: perceiving one’s environ-

ment, learning and understanding from experience, knowledge applying success-

fully in new situations, communicating with others, and more like, acting in com-

plex environments, reasoning to solve problems and discover hidden knowledge,

thinking abstractly and using analogies, creativity, ingenuity, expressive-ness, cu-

riosity.

The general goals of AI can be summarized as follows: replicate human intelligence

(still a distant goal), solve knowledge intensive tasks, Make an intelligent connec-

tion between perception and action and enhance human-human, human-computer

and computer to computer interaction/communication [14].

Computational Intelligence (CI) is a sub-branch of AI and a fairly new research

area and commonly referred to as AI [16]. It is defined as the study of the design

of intelligent agents where an intelligent agent is anything that can be viewed

as perceiving its environment through sensors and acting upon that environment

Chapter 2. Artificial Bee Colony (ABC) 26

through effectors [13]. For example, a human agent has eyes, ears, and other or-

gans for sensors, and hands, legs, mouth, and other body parts for effectors. CI

includes a set of nature-inspired computational methodologies and approaches to

address complex problems of the real world applications. There is a clear difference

between them. For example, CI uses subsymbolic knowledge processing whereas

classical AI uses symbolic approaches [17].

2.2 What is Swarm Intelligence?

2.2.1 Main Idea

Suppose that you with a group of friends are on a treasure finding mission. You

have knowledge of the approximate area of the treasure, but do not know exactly

where it is located. Each one in the group has a metal detector and can com-

municate the signal and current position to the nearest neighbors. Each person

therefore knows whether one of his neighbors is nearer to the treasure than he is.

The person who found the treasure getting a higher reward than all others, and

the rest being rewarded based on distance from the treasure at the time when

the first one finds the treasure. By using the information that you get from your

neighboring friends, and acting upon it, you increase your chances to find the

treasure than if you were on you own.

This is one of the examples of the benefits of cooperation in situations where you

do not have global knowledge of an environment. the interact of the individuals

with the group can be helpful to solve the global objective by exchanging locally

available information.

In loose terms, the group can be referred to as a swarm. Formally, a swarm can

be defined as a group of agents that communicate with each other, by acting on

their local environment [15], such as bird flocks (See figure 2.3).

Insects that live in colonies, ants, bees, wasps, and termites, have fascinated nat-

uralists as well as poets for many years. “What is it that governs here? What is

it that issues orders, foresees the future, elaborates plans, and preserves equilib-

rium?” wrote Maeterlinck [18].

Chapter 2. Artificial Bee Colony (ABC) 27

Figure 2.1: Insects colonies preserves equilibrium

These, indeed, are puzzling questions. Every single insect in a social insect colony

seems to have its own agenda, and yet an insect colony looks so organized. The

seamless integration of all individual activities does not seem to require any su-

pervisor, such as ant colonies (See figure 2.2).

Figure 2.2: Ant colonies Figure 2.3: Bird flocks

This model of the collective behavior of social swarms in nature is called Swarm

Intelligence (SI). SI can therefore be defined as a relatively new branch of Com-

putational intelligence that is a term given by Eric Bonabeau in his book “ Swarm

Intelligence: From Natural to Artificial ” [18], says this: “ Swarm Intelligence is

Chapter 2. Artificial Bee Colony (ABC) 28

the emergent collective intelligence of groups of simple agents (hardware or soft-

ware) ”. In other words “ Swarm Intelligence is any attempt to design algorithms

or distributed problem-solving devices inspired by the collective behavior of social

insect colonies and other animal societies ” [3].

2.2.2 Fundamentals of SI in Social Insects

There are two fundamentals concepts that are very important and necessary to

obtain swarm intelligent behavior, these two fundamentals of SI are discussed

bellow:

• Division of labor: The division of labor is the phenomenon of perform-

ing different simultaneous tasks by specialized individuals, In a social insect

colony, a worker usually does not perform all tasks, but rather specializes in

a set of tasks, according to its morphology, age, or chance because simulta-

neous task performance by groups of cooperating specialized individuals is

believed to be more efficient than the sequential task performance by un-

specialized individuals [3, 18], there are a further division of labor between

workers, which may take three possibly, basic forms:

– Temporal polyethism: temporal polyethism is a mechanism of di-

vision of labor that are allocated among workers based on their age;

individuals of the same age tend to accomplish common sets of tasks.

Individuals in the same age class form an age caste.

– Worker polymorphism: one of the most well knows mechanisms of

division of labor, where workers within a colony have morphological dif-

ferences, workers that differ by their morphologies are said to belong to

different morphological or physical castes. Workers in different morpho-

logical castes tend to accomplish different tasks.

– Individual variability: are the differences that vary from one caste

to another in the task performance, but at behavioral castes to describe

groups of individuals that perform the same set of tasks within a given

period.

Chapter 2. Artificial Bee Colony (ABC) 29

Division of labor also enables the swarm to respond to changed conditions in

the search space.

• Self organization (SO): The term self-organization describes “ the process

by which individuals organize their communal behavior to create global order

by interactions amongst themselves rather than through external intervention

or instruction.” [19], SO relies on four basic properties [18]:

– Positive feedback is a simple behavioral “ rules of thumb ” that pro-

mote the creation of structures.

– Negative feedback counterbalances positive feedback and helps to sta-

bilize the collective pattern.

– Fluctuations such as random walks, errors, random, task-switching.

– Multiple interactions is the different activities that is resulted from

a minimal density of mutually tolerant individuals.

2.2.3 Swarm Intelligence Models

In recent years, SI becomes more and more attractive for the researchers, who

work in the related research field, The objective of SI models is to model the

simple behavior of social insect colonies or other animal societies that can be used

to solve complex problems, mostly optimization problems.

Examples of SI models are:

• Ant Colony Optimization (ACO): the first example of a successful swarm

intelligence model is Ant Colony Optimization (ACO), which was introduced

by M. Dorigo and al [20, 21], that is the very simple pheromone trail following

behavior of real ants that helps find the shortest route between their nest

and a food source, where each ant perceives pheromone concentrations in its

local environment and acts by probabilistically selecting the direction with

the highest pheromone concentration.

• Particle Swarm Optimization (PSO): The second example of a successful

swarm intelligence model is Particle Swarm Optimization (PSO), which was

Chapter 2. Artificial Bee Colony (ABC) 30

introduced by Russell Eberhart, an electrical engineer, and James Kennedy,

a social psychologist, in 1995 [22, 23], the term ’particle’ means any natu-

ral agent that describes the swarm behavior. The PSO model based upon

a mathematical description of the social behavior of birds flocking or fish

schooling.

• Artificial Bee Colony (ABC): The third best example of a successful

swarm intelligence model is ABC, the ABC algorithm was firstly introduced

by Karaboga and al. [3, 24–27] for numerical optimization problems based

on the foraging behavior of a honey bee swarm. In the next section, we are

going to talk about this algorithm in more detail.

2.3 Artificial Bee Colony (ABC)

By now, there are many intelligent optimization techniques is proposed by re-

searchers in the literature, the known examples are PSO inspired by the social

behavior of flocks of birds and ACO inspired by the foraging behavior of ants.

They performs well in most cases but there still exist some problems it cannot

solve very well.

In this section we discuss ABC algorithm. It is considered one of the most recently

proposed swarm intelligence algorithms for numerical optimization problems. ABC

algorithm is simple and very flexible when compared to other algorithms and there

are many possible applications of ABC.

ABC algorithm is proposed by Karaboga in 2005 [3] and the performance of ABC

is analyzed in 2007 [26]. It depends on the foraging behavior of honey bee swarm

on finding food source (nectar).

2.3.1 Description of The Foraging Behavior of Reel Honey Bees

In nature, A colony of honey bees can exploit a large number of food sources in

big fields and they can fly up to 11 km to exploit food sources [28]. Tereshko

developed a minimal model of foraging behavior of a honey bee colony based on

Chapter 2. Artificial Bee Colony (ABC) 31

reaction–diffusion equations [29, 30]. This model consists of two essential compo-

nents as below:

• Food sources: The value of a food source depends on different parameters

such as its proximity to the nest, richness of energy and ease of extracting

this energy. For the sake of simplicity, the “profitability” of a food source

can be represented with a single quantity [3, 28].

• Foragers:

– Employed foragers: An employed forager is employed at a specific

food source which she is currently exploiting. She carries information

about this specific source and shares it with other bees waiting in the

hive. The information includes the distance, the direction and the prof-

itability of the food source [24].

– Unemployed foragers: A forager bee that looks for a food source to

exploit is called unemployed. It can be either a scout who searches the

environment randomly or an onlooker who tries to find a food source by

means of the information given by the employed bee. The mean number

of scouts is about 5–10% [24].

(See figure 2.4)

Figure 2.4: Honey bees and Food sources

The sharing of information between bees is the most important occurrence in the

foraging behavior of honey bees where it is done on part of the hive that called

dancing area or dance floor. Foragers bees discover the environment out the nest

Chapter 2. Artificial Bee Colony (ABC) 32

for finding new food sources when the bees have found it, they go to the dance floor

to communicate information about the quality of the food source, the distance of

the source from the hive and the direction of the source to the other members of

the colony with no difficulty by repeating specific movements in such a way as to

attract the other bees’s attention, known as the waggle dance [31].

Let us examine figure 2.5 and figure 2.6 for understand waggle dance.

The waggle dance path has a figure of eight shape. Initially the bees vibrates its

wing muscles which produces a loud buzz and runs in a straight line the direction

which is related to the vertical on the hive and indicates the direction of the food

source relative to the sun in the field, for example; if the dances is in the straight

line in hive, it means the source of nectar exactly in the direction of the sun,

if the source were located in the opposite direction, the bee makes lines in that

direction, see figure 2.5. The bees then circles back, alternating a left and a right

return path. The speed/duration of the dance indicates the distance to the food

source; the frequency of the waggles in the dance and buzzing convey the quality

of the source [31], see figure 2.6.

Figure 2.5: Orientation of wag-
gle dance with respect to the food

source, hive and sun
Figure 2.6: waggle dance of

honey bees

But there is a question; The bees explain the direction according to the position

of the sun but the sun is certainly moving, every four minutes the sun moves

1◦ to the west which would to expect that bees would make the errors. However,

observation are shown that the bees take the count’s sun movement as the foragers

bees give the direction every four minute, the angle describe moves 1◦ to the west

[32].

Chapter 2. Artificial Bee Colony (ABC) 33

In the case of honey bees, the basic properties on which self organization relies are

as follows [3]:

• Positive feedback: As the nectar amount of food sources increases, the

number of onlookers visiting them increases, too.

• Negative feedback: The exploration process of a food source abandoned

by bees is stopped.

• Fluctuations: The scouts carry out a random search process for discovering

new food sources.

• Multiple interactions: Bees share their information about food source

positions with their nest mates on the dance area.

2.3.2 Studies on ABC Optimizations

In table 2.1, we are going to give a general look about the different studies that

were conducted on this algorithm:

The success of the ABC algorithm has motivated researchers to extend the use of

this algorithm to other areas, for more examples see [12].

2.3.3 Artificial Bee Colony (ABC) Algorithm Optimization

The ABC algorithm is developed by inspecting the behaviors of the real bees on

finding food source, which is called the nectar, and sharing the information of

food source to the other bees in the nest. In this algorithm colony bees are clas-

sified into three types with certain responsibilities:

employed bees, onlooker bees, and scout bees.

The main steps of the algorithm are given below [3]:

Send the scouts onto the initial food sources.

REPEAT

Move the employed bees onto the food sources and determine their nectar amounts.

Chapter 2. Artificial Bee Colony (ABC) 34

Table 2.1: The different studies that were conducted on ABC.

Authors Years Description

Karaboga 2005 [3] Invention of ABC, based on the intelligent
behaviour honey bee swarm

Basturk and Karaboga 2006 The first conference paper introducing ABC

Karaboga and Basturk 2007 [25] The first journal article describing ABC
and compared the performance of the ABC

with that of GA, PSO,...

Karaboga and Basturk 2008 [26] The second article presenting a performance
evaluation of ABC.

2009 [33] A public domain web-site

Karaboga and Akay 2009 [24] Presented a comparative study of ABC in
which ABC is used for optimizing a large set

of numerical test functions and its results
were compared with GA, PSO,...

Karaboga and Akay 2009 [27] Compared the performance of ABC wich
harmony search and bees algorithms on

numerical optimization.

Mala et .al 2009 [34] Applied ABC for test suite optimization
and compared it with ACO and concluded

that ABC based approach has sereval
advantages over ACO.

Move the onlooker bees onto the food sources and determine their nectar amounts.

Move the scouts into the search area for discovering new food sources.

Memorize the best food source found so far.

UNTIL (termination condition satisfied)

A food source position represents a possible solution to the problem to be opti-

mized. The amount of nectar of a food source corresponds to the fitness, fit,

(quality) of the solution represented by that food source.

Firstly, each scout bee that finds a food source location saves the current location

in her memory and becomes an employed bee.

In the employed bees phase, employed bees are the bees that have already

been assigned to a food source. Each of them saves the food source position and

selects another food source in her neighbor and chooses out of two the one that

Chapter 2. Artificial Bee Colony (ABC) 35

has a better nectar. Then they return to the hive and start to dance based on the

quality of the nectar of their associated food source.

In the onlooker bees phase, an onlooker bees watches the dance of employed

bees at the hive and selects an employed bee based on the dances observed so that

the probability of choosing an employed bee is proportional to the nectar quality of

that employed bee. Then the onlooker bee receives the information of the chosen

employed bee associated with food source (the food source position and its nectar

quality) from her and becomes an employed bee associated with that food source.

Since then, the new employed bee (former onlooker) performs the same act as the

employed bee in the previous phase; that is, it searches for a new food source in

the neighbor of her associated food source for higher nectar quality and saves the

best food source and its nectar to her memory.

In the scout bees phase, scout bees are free bees responsible for finding new

food sources and evaluating their nectar. As soon as a scout bee finds a food

source, she turns into an employed bee. In this phase, one of the employed bees

is selected and classified as the scout bee. The selection is controlled by a control

parameter called (Limit). If a solution representing a food source is not improved

by a predetermined number of trials, then that food source is abandoned by its

employed bee and the employed bee is converted to a scout. The number of trials

for releasing a food source is equal to the value of Limit which is an important

control parameter of ABC.

The algorithm ABC assumes that there is only one employed bee for every food

source; thus the number of employed bees is equal to the number of food sources

around the hive. The employed bee whose food source has been exhausted by the

bees becomes a scout [3, 35–37].

Now, we use ABC algorithm to optimize the following problem:

min
Y
F (Y)

Chapter 2. Artificial Bee Colony (ABC) 36

Where

Yi = (y1,i, y2,i, ..., yj,i, ..., yd,i), yj,i ∈ [yj,min; yj,max] , i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., d},

n is the number of employed bees, d is the dimension of the solution space.

In the ABC algorithm, The percentages of onlooker bees and employed bees were

50% of the colony and the number of scout bees was selected to be one.

Parameters adopted for the ABC algorithm are given in table 2.2:

Table 2.2: Parameters adopted for the ABC algorithm

Max cycle

Swarm size Number of colony bees

Limit Number of onlooker bees ∗d
Number of onlookers bees 50% of the swarm

Number of employed bees 50% of the swarm

Number of scouts 1

The general algorithmic structure of the ABC optimization approach is given as

follows:

Step 1: (Initialization) • The initial swarm Yi = (y1,i, y2,i, ..., yj,i, ..., yd,i) by

using equation

yj,i = yj,min + rand [0; 1] ∗ (yj,max − yj,min) (2.1)

Where

i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., d}.

n is the number of employed bees, d is the dimension of the problem.

yj,i is parameter to be optimized for the ith employed bee on the dimen-

sion j of the d-dimensional solution space.

yj,max and yj,min are the upper and lower for yj,i respectively.

• Calculate F (Yi) by the equation specific for the problem.

• Calculate the fitness value (fiti) of each food source by using equation

fiti =

 1
1+F (Yi)

if (F (Yi) ≥ 0)

1 + abs(F (Yi)) if (F (Yi) < 0)
(2.2)

Chapter 2. Artificial Bee Colony (ABC) 37

We are going to give the fitness function coded using MATLAB language

in Appendix. A.2.

• Reset the abandonment counter.

Step 2: (Move the employed bees) For each employed bee:

• Select a neighbor employed bee randomly.

• Calculate the new solution y∗j,i by using equation

y∗j,i = yj,i + rand [−1; 1] ∗ (yj,i − yj,k) (2.3)

Where

i 6= k; i, k ∈ {1, 2, ..., n}.

j, k are selected randomly.

yj,k is a neighbor bee of yj,i.

• Calculate F (Y ∗i) by the equation specific for the problem.

• Calculate the fitness value (fiti) of each food source by using equation

(2.2).

• If the fitness value of the new solution is better than the fitness value

of the old solution then replace the old solution with new one and reset

the abandonment counter of the new solution, else increase the aban-

donment counter of the old solution by 1.

Step 3: (Move the onlooker bees) For each onlooker bee:

• Select an employed bee as neighbor randomly.

• An onlooker bee selects a food source by evaluating the information

received from all of the employed bees based on the following probability

pi

pi =
fiti
n∑

j=1

fitj

(2.4)

• Improve the solution of the employed bee by using equation (2.3) and

the neighbor.

• Calculate F (Y ∗i) by the equation specific for the problem.

Chapter 2. Artificial Bee Colony (ABC) 38

• Calculate the fitness value (fiti) of each food source by using equation

(2.2).

• If the fitness value of the new solution is better than the fitness value

of the old solution then replace the old solution with new one and reset

the abandonment counter of the new solution, else increase the aban-

donment counter of the old solution by 1.

Step 4: (Move the scout bees) • Fixe the abandonment counter H with

the highest content.

• If the content of the counter H is higher than the predefined limit then

reset the counter H and by using equation (2.1) generate a new solution

for the employed bee to which the counter H belongs. Else continue.

Step 5: If a termination condition is met, the process is stopped and the best

food source is reported, otherwise the algorithm returns to Step 2.

We are going to give ABC algorithm coded using MATLAB language in Appendix.

A.1.

2.3.4 Simulation Studies

In the simulation studies, Artificial Bee Colony (ABC) Algorithm was applied for

finding the global minimum of the function f in [0; 4] interval,

f (x) = x5 − 10x4 + 35x3 − 50x2 + 24x

Parameters adopted for the ABC algorithm are given in table 2.3:

Table 2.3: Parameters adopted for the ABC algorithm

Max cycle 20

Swarm size 10

Limit 5

Number of onlookers bees 5

Number of employed bees 4

Number of scouts 1

Chapter 2. Artificial Bee Colony (ABC) 39

Initialization: • Number of food sources are initialized randomly and fitness

of each food source is computed. See figure 2.7, table 2.4.

The complete MATLAB code for figure 2.7 is listed in Appendix. A.3.

Table 2.4: Initialize the food source positions.

Foods Objval Fitness

0.8178 1.2234 0.4498
3.8992 -1.9454 2.9454
0.1582 2.6783 0.2719
1.9672 -0.1312 1.1312
2.5637 1.4161 0.4139

• The best food source is memorized by the bee:

GlogalMin = (3.8992;−1.9454).

Figure 2.7: Initialize the food source positions

Cycle 01: Employed Bee 01 , see figure 2.8

• Neighboor = 4

• New-sol = Food(1)+(Food(1)−Food(4))×rand

• New-sol = 1.4739, New-objval = −1.4166

• Fitness(New-sol) = 2.4166

• As Fitness(New-sol) > Fitness(01), So change

Chapter 2. Artificial Bee Colony (ABC) 40

• Trial=(0 0 0 0 0)

Figure 2.8: Food source positions of employed bee 01.

Employed Bee 02 , see figure 2.9

• Neighboor = 4

• New-sol = Food(2)+(Food(2)−Food(4))×rand = 5.3639

• New-sol = 4, New-objval = 0

• Fitness(New-sol) = 1

Chapter 2. Artificial Bee Colony (ABC) 41

• As Fitness(New-sol) < Fitness(02), So don’t change

• Trial=(0 1 0 0 0)

Figure 2.9: Food source positions of employed bee 02.

Employed Bee 03 , see figure 2.10

• Neighboor = 4

• New-sol = Food(3)+(Food(3)−Food(4))×rand = 0.4452

• New-sol = 0.4452, New-objval = 3.4876

• Fitness(New-sol) = 0.2228

• As Fitness(New-sol) < Fitness(03), So don’t change

• Trial=(0 1 1 0 0)

Employed Bee 04 , see figure 2.11

• Neighboor = 1

• New-sol = Food(4)+(Food(4)−Food(1))×rand = 1.8495

• New-sol = 1.8495, New-objval = −0.5850

• Fitness(New-sol) = 1.5850

• As Fitness(New-sol) > Fitness(04), So change

• Trial=(0 1 1 0 0)

Chapter 2. Artificial Bee Colony (ABC) 42

Figure 2.10: Food source positions of employed bee 03.

Employed Bee 05,

• Neighboor = 3

• New-sol = Food(5)+(Food(5)−Food(3))×rand = 1.4754

• New-sol = 1.4754, New-objval = 1.4163

• Fitness(New-sol) = 2.4163

• As Fitness(New-sol) > Fitness(05), So change....

• Trial=(0 1 1 0 0)

Onlooker Bee ,

• Calculate probability for each solution

0.8384 1.0000 0.1831 0.5843 0.8383

• Select solution due to probability

• ,,,,,,,,,,,,,,,,,,,,,,

• Finally Trial=(0 2 1 0 1)

Scout Bee

• Come counter of Trial 6= Limit, no send scouts to find new source.

At the end,

Chapter 2. Artificial Bee Colony (ABC) 43

Figure 2.11: Food source positions of employed bee 04.

• We get the positions of food sources for Cycle 1. See figure 2.12, table

2.5.

• The best food source is memorized by the bee:

GlogalMin = (3.8992;−1.94545)

Cycle 03: At the end,

• We get the positions of food sources for Cycle 3. See figure 2.13, table

2.6.

Chapter 2. Artificial Bee Colony (ABC) 44

Table 2.5: Food source positions of Cycle 01.

Foods Objval Fitness

1.4727 -1.4169 2.4169
3.8992 -1.9454 2.9454
0.7369 1.8082 0.3561
1.8139 -0.7125 1.7125
1.4754 -1.4163 2.4162

Figure 2.12: Food source positions of Cycle 01.

Table 2.6: Food source positions of Cycle 03.

Foods Objval Fitness

3.8003 -3.0623 4.0623
3.8377 -2.7209 3.7209
0 0 1
1.8139 -0.7125 1.7125
3.5991 -3.5928 4.5928

• The best food source is memorized by the bee:

GlogalMin = (3.5991;−3.5928)

Cycle 04: At the end,

• We get the positions of food sources for Cycle 4. See figure 2.14, table

2.7.

Chapter 2. Artificial Bee Colony (ABC) 45

Figure 2.13: Food source positions of Cycle 03.

Table 2.7: Food source positions of Cycle 04.

Foods Objval Fitness

3.8003 -3.0623 4.0623
3.4916 -3.2433 4.2433
1.3598 1.3564 2.3564
1.5932 -1.3018 2.3018
3.5995 -3.5934 4.5934

• The best food source is memorized by the bee:

GlogalMin = (3.5995;−3.5934).

Cycle 10: At the end,

• We get the positions of food sources for Cycle 10. See figure 2.15, table

2.8.

Table 2.8: Food source positions of Cycle 10.

Foods Objval Fitness

3.6530 -3.6300 4.6300
3.7427 -3.4186 4.4186
3.6481 -3.6312 4.6312
3.6481 -3.6312 4.6312
3.6485 -3.6311 4.6311

Chapter 2. Artificial Bee Colony (ABC) 46

Figure 2.14: Food source positions of Cycle 04.

Figure 2.15: Food source positions of Cycle 10.

• The best food source is memorized by the bee:

GlogalMin = (3.6481;−3.6312).

Chapter 3

Improvement of Gregory’s

Formula using Artificial Bee

Colony Algorithm

3.1 Gregory’s Formula for Solving Numerical Integration

Solving numerical integration is an important question in scientific calculations

and engineering. Gregory’s method is among the very first quadrature formulas

ever described in the literature, dating back to James Gregory (1638-1675)[38–42].

It seems to have been highly regarded for centuries.

Consider the Gregory integration formula (G) [2],

∫ n

0

f(x)dx =
n∑

k=0

f(k) +
∑
k≥0

αk

k!

(
∆k

hk
f (0) + ∆k

−hk
f (n)

)
. (3.1)

with end corrections where ∆h is the forward difference operator with step size h.

Note that for hk = 1 (k = 1, 2, ...) , the formula (3.1) reduces to the classical

Gregory integration formula[1],

∫ n

0

f(x)dx =
n∑

k=0

f(k) +
∑
k≥0

αk

k!

(
∆k

1f (0) + ∆k
−1f (n)

)
. (3.2)

47

Chapter 3. Improvement of Gregory’s Formula Using ABC 48

The formula (3.1) has a sense so n ≥ 1, In the contrary case an appropriate

variable change will permit us to do the integral without no difficulty.

To justify the formula (3.1) we shall use the umbral methods developed by Rota

and his school [4–8], instead of classical generating function technique.

So, we shall replace f (x) by etx (etx is the generating function of the sequence
tn

n!
).

We have, ∫ n

0

etxdx =
ent − 1

t
.

n∑
k=0

etk =
(et)

n+1 − 1

et − 1
=
ent.et − 1

et − 1
.

∆k
hk
etx = etx

(
ethk − 1

)k
.

Then (3.1) becomes

ent − 1

t
=
ent.et − 1

et − 1
+
∑
k≥0

αk

k!

(
ethk − 1

)k
+
∑
k≥0

αk

k!

(
e−thk − 1

)k
etn,

so,

ent

t
− 1

t
=
ent.et

et − 1
− 1

et − 1
+
∑
k≥0

αk

k!

(
ethk − 1

)k
+ ent

∑
k≥0

αk

k!

(
e−thk − 1

)k
,

so,

ent

(
1

t
− et

et − 1
−
∑
k≥0

αk

k!

(
e−thk − 1

)k)
+

(
1

−t
+

1

et − 1
−
∑
k≥0

αk

k!

(
ethk − 1

)k)
= 0,

so,

ent

(
1

t
+

1

e−t − 1
−
∑
k≥0

αk

k!

(
e−thk − 1

)k)
+

(
1

−t
+

1

et − 1
−
∑
k≥0

αk

k!

(
ethk − 1

)k)
= 0.

Suppose that

G (t) =
1

t
+

1

e−t − 1
−
∑
k≥0

αk

k!

(
e−thk − 1

)k
,

then (3.1) becomes

entG (t) +G (−t) = 0.

Chapter 3. Improvement of Gregory’s Formula Using ABC 49

we want the formula (3.1) that is independent of n. So G (t) = 0; from The

Expansion Theorem, we have

1

et − 1
− 1

t
=
∑
k≥0

αk

k!

(
ethk − 1

)k
,

where,

αk =<
1

et − 1
− 1

t
| pk (x) >,

pk (x) is the sequence of polynomials associated for
(
ethk − 1

)k
.

Suppose that

f (t) =
1

et − 1
− 1

t
,

so,

f (t) =
t− (et − 1)

t (et − 1)
,

so, (
et − 1

)
.f (t) = 1− (et − 1)

t
,

and suppose that

f (t) =
∑
n≥0

γnt
n,

so, ∑
k≥0

tk

(k + 1)!

∑
k≥0

γkt
k = −

∑
k≥0

tk

(k + 2)!
,

so, ∑
k≥0

(
k∑

n=0

1

(k + 1)!
γn−k

)
tk = −

∑
k≥0

tk

(k + 2)!
,

then the last equality is equivalent to the system



1 0 0 0 · · · 0 · · ·
1

2!
1 0 0 · · · 0 · · ·

1

3!

1

2!
1 0 · · · 0 · · ·

1

4!

1

3!

1

2!
1 · · · 0 · · ·

...
...

...
...

...
...

...
1

n!

1

(n− 1)!

1

(n− 2)!
· · · · · · 1 · · ·

...
...

...
...

...
...

...


.



γ0

γ1

γ2

γ3
...

γn
...


=



− 1

2!

− 1

3!

− 1

4!

− 1

5!
...

− 1

(n+ 2)!
...



Chapter 3. Improvement of Gregory’s Formula Using ABC 50

Therefore

γ0 =
−1

2
; γ1 =

1

12
; γ2 = 0; γ3 =

−1

720
; γ4 = 0; · · ·

So,

α0 =< f (t) | p0 (x) > =< f (t) | 1 >

= γ0

= −1

2
.

α1 =< f (t) | p1 (x) > =< f (t) | 1

h1
x >

=
1

h1
γ1

=
1

12h1
.

α2 =< f (t) | p2 (x) > =< f (t) | − h1
2h22

x+
1

h22
x2 >

= − h1
2h22

γ1 +
1

h22
γ2

= − h1
24h22

.

In the same way, we find

α3 =
1

720h33

(
−10h21 + 30h2h1 − 1

)
.

α4 =
−1

480h44

(
5

3
h31 − 10h3h

2
1 −

35

3
h22h1 + 30h3h2h1 − h3

)
.

α5 =
1

60480h55
)(−42h41+630h32h1+1050h23h

2
2−3150h23h2h1+420h4h

3
1−2520h4h

2
1h3

− 2940h4h
2
2h1 + 7560h4h3h2h1 + 105h23 − 252h4h3 + 2).

Chapter 3. Improvement of Gregory’s Formula Using ABC 51

Truncating the right member of (3.1) at the 5th term, we get the approximation:

∫ n

0

f(x)dx ≈
n∑

k=0

f(k) + a0

(
f(0) + f(n)

)
+α1(h1)

(
f(h1)− f(0) + f(n− h1)− f(n)

)
+
α2(h1, h2)

2!

(
f(2h2)− 2f(h2) + f(0) + f(n− 2h2)− 2f(n− h2) + f(n)

)
+
α3(h1, · · · , h3)

3!

(
∆3

h3
f(0) + ∆3

−h3
f(n)

)
+
α4(h1, · · · , h4)

4!

(
∆4

h4
f(0) + ∆4

−h4
f(n)

)
+
α5(h1, · · · , h5)

5!

(
∆5

h5
f(0) + ∆5

−h5
f(n)

)
. (3.3)

3.2 Improvement of Gregory’s Formula using Artificial Bee

Colony Algorithm

In this section we prove that the Gregory Formula (G) can be optimized by min-

imizing some of their coefficients in the remainder term (α3, α4, α5) by using Ar-

tificial Bee Colony (ABC) Algorithm [43–45].

For it; we try to determine h1, h2, h3, h4 and h5; we take h4, h5 = 1, in this study as

parameters and let’s solve non linear system by Artificial Bee Colony Algorithm.

The ABC algorithm was firstly introduced by Karaboga in 2005 [3] for numerical

optimization problems based on the foraging behaviour of honey bee swarm, and

the performance of ABC is analyzed in 2007 [26].

The algorithm consists of the following bee groups: employed bees, onlookers and

scouts as in nature. A bee which has found a food source to exploit is called an

employed bee. Onlookers are those waiting in the hive to receive the information

about the food sources from the employed bees and Scouts are the bees which are

randomly searching for new food sources around the hive. After exploiting a food

source, an employed bee returns to the hive and shares the information about the

nectar amount of the food source with other bees by dancing in the dance area of

the hive.

The position of a food source represents a possible solution of the optimization

Chapter 3. Improvement of Gregory’s Formula Using ABC 52

problem and the nectar amount of a food source corresponds to the quality (fit-

ness) of the associated solution.

In the ABC algorithm, half of the colony are employed bees while the other half

consists of onlookers, also it is assumed that the number of food sources is equal

to the number of employed bees. After abandoning a food source, the employed

bee of that food source becomes a scout and carries out a random search. Same

as other swarm intelligence based algorithms, the ABC algorithm has an iterative

process.

Now, we use Artificial Bee Colony Algorithm to optimize the following function;

F (Hi) = F (h1,i, h2,i, h3,i)

= |α3|2 + |α4|2 + |α5|2.
(3.4)

Where hj,i ∈ [hj,min;hj,max] , i ∈ {1, 2, ..., n} and j ∈ {1, 2, 3} , n is the number of

employed bees.

We are going to give the objective function coded using MATLAB language in

Appendix. A.4.

The main steps of the algorithm of the simulation of foraging and dance behaviors

of honey bee colony adopted from [3, 35–37]; to optimize the function (3.4); are

given below:

Step 1 Initialize the initial swarm Hi = (h1,i, h2,i, h3,i) by using equation

hj,i = hj,min + rand [0; 1] ∗ (hj,max − hj,min) (3.5)

Calculate F (Hi) by using equation (3.4) and the fitness (fiti) of each food

source by using equation

fiti =

 1
1+F (Hi)

if (F (Hi) ≥ 0)

1 + abs(F (Hi)) if (F (Hi) < 0)
(3.6)

Chapter 3. Improvement of Gregory’s Formula Using ABC 53

Step 2 (Move the employed bees) Calculate the new solution h∗j,i by using equa-

tion

h∗j,i = hj,i + rand [−1; 1] ∗ (hj,i − hj,k) , i 6= k; i, k ∈ {1, 2, ..., n} (3.7)

Where j, k are selected randomly and hj,k is a neighbor bee of hj,i.

Calculate F (H∗i) by using equation (3.4) and its fitness (fiti) by using equa-

tion (3.6), After that we compare this fitness with its old one. If the new

food source fitness has equal or better than the old fitness, the old one is

replaced by the new one. Otherwise, the old one is retained.

Step 3 (Move the onlookers) Calculate The probability pi of selecting the food

source i by

pi =
fiti

n∑
j=1

fitj

(3.8)

For Improving the solution H∗i we use the main operations of Step 2.

Step 4 (Move the Scouts) If the fitness values of the employed bees are not im-

proved by a continuous predetermined number of iterations, which is called

Limit those food sources are abandoned, and these employed bee become the

scouts, and by using equation (3.5) generate a new solution for the employed

bee.

Step 5 If the termination condition is met, the stop and the best food source is

memorized; otherwise the algorithm returns to Step 2.

3.3 Simulation Results

In the simulation studies, Artificial Bee Colony (ABC) Algorithm was applied for

optimize a3, a4 and a5, where the maximum number of cycles was taken as 2000.

The percentages of onlooker bees and employed bees were %50 of the colony and

the number of scout bees was selected to be one.

The increase in the number of scouts encourages the exploration process while the

Chapter 3. Improvement of Gregory’s Formula Using ABC 54

increase of onlookers on a food source encourages the exploitation process.

Parameters adopted for the ABC algorithm are given in table 3.1.

Table 3.1: Parameters

Max cycle Swarm Limit Number of Number of Number of
size onlookers bees employed bees scouts

2000 30 45 15 14 1

The ABC algorithm provides us the solution: h1 = 0.08, h2 = 0.4, h3 = 0.5.

To test the performance of this algorithm we took various functions and we looked

for an approximation with Gregory formula (G) and formula GABC. The Com-

parison is given in table 3.2.

Table 3.2: Comparison

Function Interval Exact value Formula Approx.value Rel. Error

G 149.2289234815335 0.01231
exp(x) [0, 5] 147, 4131591025766 GABC 147.3572775013750 0.00037

G 1.328883861236802 0.00324
1

1+x2 [0, 5] 1.373400766945016 GABC 1.375035677680117 0.00119

G −1012.75 0.01195
x(1− x) [0, 15] −1025 GABC −1025 0.00000

G 44099.751818 0.00112
ex√
ex+1

[0, 20] 44050.1032078 GABC 44049.336590 0.00001

G 5.326509523358369 0.01650
3x+1
(x+1)2

[0, 10] 5.415908040617334 GABC 5.387058431515922 0.00532

Conclusion and Future Work

This thesis has presented a new numerical integration formula (GABC)

[43, 45],

∫ n

0

f(x)dx ≈
n∑

k=0

f(k)− 0.5 (f(0) + f(n))

+ 1.04 (f(0.08)− f(0) + f(n− 0.08)− f(n))

− 0.01 (f(0.8)− 2f(0.4) + f(0) + f(n− 0.8)− 2f(n− 0.4) + f(n)) .

Experimental results on several well-known functions (badly to integrate by the

classic methods (exp(x),
1

1 + x2
, ...) show that the proposed formula give good

results and prove that obtained formula can be rendered a powerful formula for

library use.

In future work ; we introduce the ABC algorithm to find an approximate solution

of initial-value problem (IVP),  y
′
= f(x, y)

y(a) = y0

Where x ∈ [a, b] and f = f(x, y) is a real-valued function of two real variables.

55

Appendix A

MATLAB Code

A.1 ABC Algorithm Coded using MATLAB Language

%/* ABC algorithm coded using MATLAB language */

%/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by

Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. */

clear all

close all

clc

%/* Control Parameters of ABC algorithm */

NP= %/* The number of colony size (employed bees+onlooker bees)*/

FoodNumber=NP/2 %/*The number of food sources equals the half of the colony size*/

limit= %/*A food source which could not be improved through "limit" trials is

abandoned by its employed bee*/

maxCycle= %/*The number of cycles for foraging {a stopping criteria }*/

%/* Problem specific variables */

objfun=’’ %cost function to be optimized

D= %/* The number of parameters of the problem to be optimized */

ub=ones(1,D)*1 %/* lower bounds of the parameters. */

lb=ones(1,D)*0%/* upper bound of the parameters .*/

runtime =1%/* Algorithm can be run many times in order to see its robustness */

%Foods [FoodNumber][D]; /* Foods is the population of food sources. Each row of Foods

matrix is a vector holding D parameters to be optimized. The number of rows of Foods

matrix equals to the FoodNumber */

%ObjVal[FoodNumber]; /*f is a vector holding objective function values associated

56

Appendix A. MATLAB Code 57

with food sources */

%Fitness[FoodNumber]; /* fitness is a vector holding fitness (quality) values

associated with food sources */

%trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions

can not be improved */

%prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions)

to be chosen */

%solution [D]; /*New solution (neighbour) produced by

v_{ij}=x_{ij}+\ phi_{ij}*(x_{kj}-x_{ij})

j is a randomly chosen parameter and k is a randomlu chosen solution different

from i*/

%ObjValSol; /* Objective function value of new solution */

%FitnessSol; /* Fitness value of new solution */

%neighbour , param2change; /* param2change corrresponds to j, neighbour corresponds

to k in equation v_{ij}=x_{ij}+\ phi_{ij}*(x_{kj}-x_{ij})*/

%GlobalMin; /* Optimum solution obtained by ABC algorithm */

%GlobalParams[D]; /* Parameters of the optimum solution */

%GlobalMins[runtime]; /* GlobalMins holds the GlobalMin of each run in multiple

runs*/

GlobalMins=zeros(1,runtime)

for r=1: runtime

% /*All food sources are initialized */

%/* Variables are initialized in the range [lb,ub]. If each parameter has different

range , use arrays lb[j], ub[j] instead of lb and ub */

Range = repmat ((ub-lb),[FoodNumber 1])

Lower = repmat(lb , [FoodNumber 1])

Foods = rand(FoodNumber ,D) .* Range + Lower

ObjVal=feval(objfun ,Foods)

Fitness=calculateFitness(ObjVal)

%reset trial counters

trial=zeros(1, FoodNumber)

%/* The best food source is memorized */

BestInd=find(ObjVal ==min(ObjVal))

BestInd=BestInd(end)

GlobalMin=ObjVal(BestInd)

GlobalParams=Foods(BestInd ,:)

iter =1;

while ((iter <= maxCycle)),

%%%%%%%%% EMPLOYED BEE PHASE %%

for i=1:(FoodNumber)

Appendix A. MATLAB Code 58

%/* The parameter to be changed is determined randomly */

Param2Change=fix(rand*D)+1

%/*A randomly chosen solution is used in producing a mutant solution of

the solution i*/

neighbour=fix(rand*(FoodNumber))+1

%/* Randomly selected solution must be different from the solution i*/

while(neighbour ==i)

neighbour=fix(rand*(FoodNumber))+1

end;

sol=Foods(i,:)

% /*v_{ij}=x_{ij}+\ phi_{ij}*(x_{kj}-x_{ij}) */

sol(Param2Change)= Foods(i,Param2Change)+(Foods(i,Param2Change)-

Foods(neighbour ,Param2Change))*(rand -0.5)*2

% /*if generated parameter value is out of boundaries , it is shifted

onto

the boundaries */

ind=find(sol <lb)

sol(ind)=lb(ind)

ind=find(sol >ub)

sol(ind)=ub(ind)

%evaluate new solution

ObjValSol=feval(objfun ,sol)

FitnessSol=calculateFitness(ObjValSol)

% /*a greedy selection is applied between the current solution i and its mutant */

if (FitnessSol >Fitness(i)) %/*If the mutant solution is better than the

current solution i, replace the solution with the mutant and reset the

trial counter of solution i*/

Foods(i,:)= sol

Fitness(i)= FitnessSol

ObjVal(i)= ObjValSol

trial(i)=0

else

trial(i)=trial(i)+1 %/*if the solution i can not be improved , increase

its trial counter */

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%% CalculateProbabilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%/* A food source is chosen with the probability which is proportioal to its

quality */

Appendix A. MATLAB Code 59

%/* Different schemes can be used to calculate the probability values */

%/* For example prob(i)= fitness(i)/sum(fitness)*/

%/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/

%/* probability values are calculated by using fitness values and normalized by

dividing maximum fitness value */

prob =(0.9.* Fitness ./max(Fitness))+0.1

%%%%%%%%%%%%%%%%%%%%%%%% ONLOOKER BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i=1

t=0

while(t<FoodNumber)

if(rand <prob(i))

t=t+1

%/* The parameter to be changed is determined randomly */

Param2Change=fix(rand*D)+1

%/*A randomly chosen solution is used in producing a mutant

solution of the solution i*/

neighbour=fix(rand*(FoodNumber))+1

%/* Randomly selected solution must be different from the solution

i*/

while(neighbour ==i)

neighbour=fix(rand*(FoodNumber))+1

end;

sol=Foods(i,:);

% /*v_{ij}=x_{ij}+\ phi_{ij}*(x_{kj}-x_{ij}) */

sol(Param2Change)= Foods(i,Param2Change)+(Foods(i,Param2Change)-

Foods(neighbour ,Param2Change))*(rand -0.5)*2

% /*if generated parameter value is out of boundaries , it is

shifted onto the boundaries */

ind=find(sol <lb)

sol(ind)=lb(ind)

ind=find(sol >ub)

sol(ind)=ub(ind)

%evaluate new solution

ObjValSol=feval(objfun ,sol);

FitnessSol=calculateFitness(ObjValSol)

% /*a greedy selection is applied between the current solution i and

its mutant */

if (FitnessSol >Fitness(i)) %/*If the mutant solution is better than

the current solution i, replace the solution with the mutant and

Appendix A. MATLAB Code 60

reset the trial counter of solution i*/

Foods(i,:)= sol

Fitness(i)= FitnessSol

ObjVal(i)= ObjValSol

trial(i)=0

else

trial(i)=trial(i)+1 %/*if the solution i can not be improved ,

increase its trial counter */

end;

end;

i=i+1

if (i==(FoodNumber)+1)

i=1

end;

end;

%/* The best food source is memorized */

ind=find(ObjVal ==min(ObjVal))

ind=ind(end)

if (ObjVal(ind)<GlobalMin)

GlobalMin=ObjVal(ind)

GlobalParams=Foods(ind ,:)

end;

%%%%%%%%%%%% SCOUT BEE PHASE %%

%/* determine the food sources whose trial counter exceeds the "limit" value.

%In Basic ABC , only one scout is allowed to occur in each cycle*/

ind=find(trial==max(trial))

ind=ind(end)

if (trial(ind)>limit)

trial(ind)=0

sol=(ub-lb).* rand(1,D)+lb

ObjValSol=feval(objfun ,sol)

FitnessSol=calculateFitness(ObjValSol)

Foods(ind ,:)= sol

Fitness(ind)= FitnessSol

ObjVal(ind)= ObjValSol

end

%/* The best food source is memorized */

ind=find(ObjVal ==min(ObjVal))

ind=ind(end)

if (ObjVal(ind)<GlobalMin)

GlobalMin=ObjVal(ind)

GlobalParams=Foods(ind ,:)

end;

Appendix A. MATLAB Code 61

fprintf(’iter=%d ObjVal =%g\n’,iter ,GlobalMin)

GlobalParams

iter=iter+1

end % End of ABC

GlobalMins(r)= GlobalMin

end; %end of runs

save all

Appendix A. MATLAB Code 62

A.2 The Fitness Function Coded using MATLAB Lan-

guage

%/* the fitness function coded using MATLAB language */

function fFitness=calculateFitness(fObjV)

fFitness=zeros(size(fObjV));

ind=find(fObjV >=0);

fFitness(ind)=1./(fObjV(ind)+1);

ind=find(fObjV <0);

fFitness(ind)=1+ abs(fObjV(ind));

Appendix A. MATLAB Code 63

A.3 The Complete MATLAB Code for Figure 2.7

%/* the objective function coded using MATLAB language */

clc

clear

x=0:0.01:4;

y=x.^5 -10.*x.^4+35.*x.^3 -50.*x.^2+24.*x;

xi =[0.8178 3.8992 0.1582 1.9672 2.5637];

yi =[1.2234 -1.9454 2.6783 -0.1312 1.4161];

xmin =3.8992;

ymin = -1.9454;

hold on

plot(x,y,’-’,’LineWidth ’,1);

plot(xi ,yi,’b*’,’LineWidth ’,2);

plot(xmin ,ymin ,’r*’,’LineWidth ’,2);

grid;

title(’f(x)=x^5-10x^4+35x^3-50x^2+24x’);

legend(’f(x)’,’P-ABC ’,’Gmin ’);

hold off

Appendix A. MATLAB Code 64

A.4 The Objective Function Coded using MATLAB Lan-

guage

%/* the objective function coded using MATLAB language */

function ObjVal = gregory1(Chrom ,switc);

%Dimension of objective function

Dim=size(Chrom ,2);

% Compute population parameters

Mat1 = Chrom (: ,1);

Mat2 = Chrom (: ,2);

Mat3 = Chrom (: ,3);

ObjVal =

(((1./(720.* Mat3 .^3)).*(-10.* Mat1 .^2+30.* Mat2.*Mat1 -1)).^2)+

(((-1./480).*((5./3).* Mat1 .^3 -10.* Mat3.*Mat1 .^2

+30.* Mat3.*Mat2.*Mat1 -Mat3)).^2)+

(((1./60480).*((-42.* Mat1 .^4)+(630.* Mat2 .^3.* Mat1)

+(1050.* Mat3 .^2.* Mat2 .^2) -(3150.* Mat3 .^2.* Mat2.*Mat1)

-(420.* Mat1 .^3) -(2520.* Mat1 .^2.* Mat3) -(2940.* Mat2 .^2.* Mat1)

+(7560.* Mat3.*Mat2.*Mat1)+(105.* Mat3 .^2 -252.* Mat3 +2))).^2)

end

% End of function

Bibliography

[1] M.K. Belbahri. Generalized gregory formula. Doctoral Thesis, Stevens Insti-

tute of Technology, 1982.

[2] N. Khelil and M.K. Belbahri. Integration de gregory avec correction param-

etisee. Magister Thesis, University of Batna, 1991.

[3] D. Karaboga. An idea based on honey bee swarm for numerical optimization.

Technical Report-TR06, Erciyes University, Engineering Faculty, Computer

Engineering Department, October 2005. URL karaboga@erciyes.edu.tr.

[4] G.C. Rota. Finite operator calculus. Academic press, Inc., New York, 1975.

[5] I. Niven. Formal power series. The American Mathematical Monthly, 76(8):

871–889, October 1969.

[6] S. Roman. The theory of the umbral calculus. Mathematical Analysis and

Applications, Academic press, Inc., New York, 87(1):58–115, May 1982.

[7] S. Roman. The umbral calculus. Academic press, Inc., 1984.

[8] S. Roman and G.C. Rota. The umbral calculus. Advances in Math, Academic

press, Inc., 27:95–188, 1978.

[9] O.S. Zariski and P. Samuel. Commutative algebra volume 1. Springer, D.

VAN Nostrand Company, Inc., 1960.

[10] O.S. Zariski and P. Samuel. Commutative algebra volume 2. Springer, D.

VAN Nostrand Company, Inc., 1960.

[11] X.X. Gan and N. Knox. On composition of formal power series. Hindawi

Publishing Corporation, pages 761–770, 2002.

65

karaboga@erciyes.edu.tr

Bibliography 66

[12] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga. A comprehensive

survey: artificial bee colony (abc) algorithm and applications. Springer Sci-

ence+Business, March 2012.

[13] S. J. Russell and P. Norvig. Artificial intelligence a modern approach. Alan

Apt, United States of America, 1995.

[14] RC. Chakraborty. Introduction to artificial intelligence. URL http://www.

myreaders.info/htmlartificial_intelligence.html.

[15] J. McCarthy. What is artificial intelligence? Computer Science Department.

Stanford University, 2007.

[16] A. P. Engelbrecht (2nd edition). Computational intelligence: An introduction.

John Wiley and Sons, England, 2002.

[17] T. D. Kelley. Symbolic and sub-symbolic representations in computational

models of human cognition. what can be learned from biology? Sage Publi-

cations, 13(6):847–860, 2003.

[18] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: From natural

to artificial systems. New York, NY: Oxford University Press, 1999.

[19] D. Willshaw. Self-organization in the nervous system. Institute for Adap-

tive and Neural Computation, School of Informatics, University of Edinburgh

This, 2006.

[20] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strat-

egy. Tech. Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,

Italy, 1991.

[21] M. Dorigo and T. Stützle. Ant colony optimization. MIT Press, Cambridge,

ISBN: 978-0-262-04219-2, 2004.

[22] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings

of IEEE International Conference on Neural Networks, Perth, Australia, page

1942–1948, 1995.

http://www.myreaders.info/html artificial_intelligence.html
http://www.myreaders.info/html artificial_intelligence.html

Bibliography 67

[23] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory.

In Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, Nagoya, Japan, page 39–43, 1995.

[24] D. Karaboga and B. Akay. A comparative study of artificial bee colony algo-

rithm. Applied Mathematics and Computation, Elsevier Inc., (214):108–132,

2009.

[25] D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (abc) algorithm. Springer Science

and Business Media B.V, (39):459–471, 2007.

[26] D. Karaboga and B. Basturk. On the performance of artificial bee colony

(abc) algorithm. Elsevier B.V, (8):687–697, 2008.

[27] D. Karaboga and B. Akay. Artificial bee colony (abc), harmony search and

bees algorithms on numerical optimization. Erciyes University, The Dept. of

Computer Engineering, 38039, Melikgazi, Kayseri, Turkiye, 2009.

[28] T. D. Seeley. The wisdom of the hive. Harvard University Press, Cambridge,

MA, 1995.

[29] V. Tereshko. Reaction–diffusion model of a honey bee colony’s foraging be-

haviour. Springer–Verlag, Berlin, 1917:807–816, 2000.

[30] V. Tereshko and T. Lee. How information mapping patterns determine for-

aging behaviour of a honey bee colony. Open Systems and Information Dy-

namics, Kluwer Academic Puplisher, (9):181–193, 2002.

[31] B. Yuce and D.T. Pham A. Lambiase M.S. Packianather, E. Mastrocinque.

Honey bees inspired optimization method: The bees algorithm. Insects ISSN

2075-4450, (4):646–662, 2013.

[32] H. Yahya. The miracle of the honey bees. Gursel Mh. Darulaceze Cd. No:

9 Funya Sk. Eksioglu Is Merkezi B Blok D: 5, Okmeydani-Istanbul/Turkey,

March 2007.

[33] URL http://mf.erciyes.edu.tr/abc/.

http://mf.erciyes.edu.tr/abc/

Bibliography 68

[34] D. Jeya Mala and .al. A non-pheromone based intelligent swarm optimization

technique in software test suite optimization. IEEE, 2009.

[35] G. Zhu and S. Kwong. Gbest-guided artificial bee colony algorithm for nu-

merical function optimization. Elsevier, page 3166–3173, 2010.

[36] M.S. Kiran and M. Gunduz. A novel artificial bee colony-based algorithm

for solving the numerical optimization problems. International Journal of

Innovative Computing, Information and Control ICIC, 8(9):6107–6121, 2012.

[37] P.W. TSai, J.S. Pan, B.Y. Liao, and S.C.Chu. Enhanced artificial bee colony

optimization. International Journal of Innovative Computing, Information

and Control ICIC, 5(12), 2009.

[38] C.E Froberg. Introduction to numerical analysis. Addison-Wesley, Second

Edition, 1969.

[39] G. M. Phillips. Gregory’s method for numerical integration. The American

Mathematical Monthly, 79(3):270–274, 1972.

[40] A. Ralston and P. Rabinowitz. A first course in numerical analysis, 2nd ed.

New York:McGraw-Hill, 1978.

[41] R. W. Hamming and R. S. Pinkhan. A class of integration formulas. the

Association for Computing Machinery, 13(3):430–438, July 1966.

[42] C. Jordan. Calculus of finite differences, 3rd ed. New York: Chelsea, pages

284–287, 1965.

[43] S. Aichouche, N. Khelil, and L. Djerou. Improvement of gregory’s formula

using artificial bee colony algorithm. Applied Computer Science and Mathe-

matics, Suceava, 10(21):22–24, 2016.

[44] N. Khelil, L. Djerou, A. Khernane, and S. Aichouche. Particle swarm opti-

mization algorithm for improve the gregory’s formula. Conference on Meta-

heuristics and Nature Inspired Computing - META’2014, 29-31 October 2014.

[45] S. Aichouche, N. Khelil, and L. Djerou. Improvement of gregory’s formula us-

ing artificial bee colony algorithm. Conference ICMSAO’15 6th International

Bibliography 69

Conference on Modeling, Simulation AND Applied Optimization, Istambul-

Turky, 27-29 May 2015.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	1 Preliminary
	1.1 The Algebra of Formal Power Series
	1.1.1 The Ordrer of Power Series
	1.1.2 Polynomial Algebra
	1.1.3 Generating Functions, Conjugate Sequences
	1.1.4 Compositional Umbral

	1.2 Linear Functionals
	1.3 Expansion of Formal Series by Series Delta
	1.4 Illustration

	2 Artificial Bee Colony (ABC)
	2.1 Artificial Intelligence
	2.2 What is Swarm Intelligence?
	2.2.1 Main Idea
	2.2.2 Fundamentals of SI in Social Insects
	2.2.3 Swarm Intelligence Models

	2.3 Artificial Bee Colony (ABC)
	2.3.1 Description of The Foraging Behavior of Reel Honey Bees
	2.3.2 Studies on ABC Optimizations
	2.3.3 Artificial Bee Colony (ABC) Algorithm Optimization
	2.3.4 Simulation Studies

	3 Improvement of Gregory's Formula using Artificial Bee Colony Algorithm
	3.1 Gregory's Formula for Solving Numerical Integration
	3.2 Improvement of Gregory's Formula using Artificial Bee Colony Algorithm
	3.3 Simulation Results

	Conclusion and Future Work
	A MATLAB Code
	A.1 ABC Algorithm Coded using MATLAB Language
	A.2 The Fitness Function Coded using MATLAB Language
	A.3 The Complete MATLAB Code for Figure ??
	A.4 The Objective Function Coded using MATLAB Language

	Bibliography

