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Abstract

Compared to state-of-the-art classi�ers, the Gaussian process classi�er (GPC) o¤ers

several attractive properties. For instance, their Bayesian nature gives the possibility

to integrate any kind of prior information in the classi�cation process. They allow a

full automatic estimation of the hyperparameters. Feature selection may be part of the

learning process by using appropriate kernels. Moreover, in addition to the class posterior

probability estimate used to perform the decision, they yield a variance estimate that

can be exploited as a con�dence value on the provided decision. In order to improve the

GPC capabilities, in this thesis, we propose to reformulate the GPC learning model so

as to integrate spatial contextual information. Though it has been shown for numerous

other classi�cation approaches that the exploitation of such information can be potentially

attractive to increase the classi�cation accuracy, little attention has been given to do

so for GPC. All the mathematical developments leading to the proposed Spatial GPC

(SGPC) are described. Experimental results show that the SGPC can help in improving

the classi�cation accuracy compared to the baseline GPC.

Keywords : Gaussian processes, image classi�cation, Laplace approximation,

spatial contextual information.
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Résumé

Par rapport à l�état des classi�cateurs d�art, le processus Gaussien de classi�cation

o¤re plusieurs propriétés intéressantes. Par exemple, sa nature Bayésienne donne la pos-

sibilité d�intégrer tout type d�information préalable dans le processus de classi�cation. Ils

permettent une estimation automatique complète des hyperparamètres. La sélection de

fonction peut faire une partie du processus d�apprentissage à l�aide de noyaux appropriés.

En plus de classe d�estimation de probabilité posterior utilisé pour e¤ectuer la décision,

ils cédent une estimation de la variance qui peuvent être exploités comme une valeur de

con�ance sur la décision prévue. A�n d�améliorer les capacités de GPC, dans notre thèse,

nous proposons de reformuler le modèle d�apprentissage GPC a�n d�intégrer l�information

contextuelle spatiale. Cependant il a été démontré pour de nombreuses autres méthodes

de classi�cation que l�exploitation de ces informations peut être potentiellement attrayant

pour augmenter la précision de la classi�cation, peu d�attention a été donnée de GPC. Tous

les développements mathématiques menant à GPC spatiale proposé (SGPC) sont décrit.

Les résultats expérimentaux montrent que SGPC peut aider à améliorer la précision de la

classi�cation par rapport à la ligne de base GPC.

Mots clés : processus Gaussien, classi�cation d�image, approximation de Laplace,

information contextuelle spatiale.
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Symbols and Abbreviations

The di¤erent symbols and abbreviations used in this thesis.

q�i(:) : approximate cavity function.

JD=: : bessel function of order D=:

G : binarized image.

P�i(:) : cavity distribution.

c : centre of the basis function �:

l : characteristic length scale.

'B(I) : closing of an image I by structuring element B:

f � : complex conjugation of f:

C : complex numbers.

f jX and P (f jX) : conditional random variable f given X and its probability (density).

{ : contrast.

K; �K : covariance matrix.

k; k(x; �x) : covariance matrix, covariance matrix between x and �x:

L1; L2 : degrees of brightness.

f�i : denotes f without fi.

d : depth of the image.

j K j : determinant of K matrix.
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& : di¤usion coe¢ cient.

�B(O) : dilation of a set O by structuring element B:

D : dimension of input space.

� : distributed according.

P (:) : distribution.

, : equality which acts as a de�nition.

"B(O) : erosion of a set O by structuring element B:

E[x] : expectation at x.

�C(xi) : feature map of input xi:

J : function of light intensity and color.

�(:) : gamma function.

q(:j:) : Gaussian approximation.

� : Gaussian cumulative distribution function.

X : Gaussian process.

�f� : Gaussian process posterior mean.

f� : Gaussian process (posterior) prediction (random variable).

f(x) or f : Gaussian process (or vector of) latent function value.

z(x; y) : grayscale of the pixel at the coordinates (x; y):

rr : (Hissian) matrix of second derivatives.

I : image.

� : input space.

� : interest rate.
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K�1 : inverse of matrix K.

y� : label of test sample x�.

�y; y : labels.

f� : latent function value.

LUT : look up table.

X; �X : matrix of training data.

�; �(x) : mean function, mean function at x:

f̂
0
and f̂ : means.

� : mean vector.

� : measure.

min; max : minimum and maximum respectively.

k� : modi�ed bessel function.

N : natural numbers.

A1 and A2 : neighboring regions of an image.

N : normal distribution.

�2i : noise variance.

C : number of classes.

N and �N : numbers of samples.

O : object.

B(I) : opening of an image I by structuring element B:

p : order of polynomial.

r : partial derivatives.
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p : pixel (point) of an image.

�p : prior covariance matrix.

Wt; Ut; St; B
H : processes.

R; R+; R
D : real numbers, positif real numbers, real numbers of dimension D.

� : set of hyperparameters.

A : set of measurables.

y�n : spatial neighbors of y�.

S(s) : spectral density at frequency s:

� : spectral mesure.

B; Bp : structuring elements.

�B : symmetrical structuring element of B:

x� : test sample.

S : threshold.

D; �D : training set.

yT : transpose of vector y:

�2f : variance of the signal.

var(x); Cov(x; �x) : variance of x and covariance between x and �x:


 : vector of hyperparameters of the covariance function.

�f : vector of latent function value.

w : weight.
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General introduction

Recently, a new machine learning approach that is based on the Gaussian process

(GP) theory has been introduced. It represents a powerful and interesting theo-

retical framework for Bayesian regression and classi�cation. Despite it has gained promi-

nence in recent years, it remains an approach whose potentialities are not yet su¢ ciently

exploited in particular in the remote sensing �eld.

According to this approach, the learning of a machine (regressor or classi�er) is for-

mulated in terms of a Bayesian estimation problem, where the parameters of the machine

are assumed to be random variables which are a priori jointly drawn from a Gaussian dis-

tribution. Compared to other regression methods, GP regression has several advantages:

1) Its prediction equation is much simpler and it is given in an analytical form.

2) To each predicted output it associates a con�dence measure.

3) Thanks to its Bayesian formulation, the model selection issue is handled in an automatic

way, as demonstrated by di¤erent works recently published in the literature, including

Pasolli et al [56], Bazi et al [6] and Hultquist et al [32].

As very well described in Rasmussen and Williams [62], the main idea of GP classi�-

cation (GPC) is to assume that the probability of belonging to a class label for an input

sample is monotonically related to the value of some latent function (logistic or probit

functions) at that sample. Such monotonic relationship is de�ned according to a so-called

squashing function.

1



General Introduction

A Gaussian process prior characterized by a covariance matrix embedding a set of

hyperparameters is placed on this latent function. The inference is made by integrating

over the latent function. Since such integral is analytically intractable, solutions based

on Monte Carlo sampling or analytical approximation methods can be adopted. The

multiclass implementation of GPCs is obtained through an intrinsic multiclass formulation,

which can be complex, or simply by decomposition into binary classi�cation problem.

Among the few works reported in the remote sensing literature dealing with GPC, on can

�nd Bazi and Melgani [8], and Sun et al [73].

Up to now, to the best of our knowledge, the integration of spatial contextual informa-

tion in a GPC model has not yet been envisioned for classifying remote sensing imagery.

An apparently close work can be found in [34], where GP regression is used to exploit

spatial coordinates of the training samples for predicting mean vectors. The classi�cation

task is performed by means of a maximum likelihood (ML) classi�er.

In our case, we exploit spatial contextual information, which is di¤erent from spatial

coordinates, and embed it in a GPC model. It is well-known that spatial contextual

information can be useful, if well exploited, to improve the classi�cation accuracy by

opportunely capturing local spatial correlation conveyed in the image under analysis.

Our thesis is organized in 4 chapters that allow us to present the di¤erent aspects of

our work.

In the �rst chapter we introduce the general notions of images processing, giving the

de�nition of the image, the characteristics of digital image and the most �lters used for

improving the quality of images.

The second chapter gives the general overview on the Gaussian process and the

covariance functions.

2



General Introduction

The third chapter will be dedicated to the presentation of the classi�cation by the

Gaussian process using the Laplace approximation for binary GP classi�er or Expectation

propagation.

And the last chapter contains the fruit of our work, the obtened results of the

classi�cation by Spatial Contextual Gaussian Process Classi�cation (SGPC) enriched by

the results and the interpretation of these.

3



Chapter 1

Generalities on images processing

Today, the image constitutes one of the most important tools used by the people in

order to communicate with each other. It is universal tool of communication of

which the richness of content allows people of di¤erent ages and all cultures to understand

each other.

Images processing is a set of methods and operating technical on those latter it on order

to ameliorate the visual aspect of the image and to extract relevant judged information

that we will use in di¤erent applications for instance : the recognition, the classi�cation,

. . . etc.

In this chapter, we present some principal concepts of images processing which are

matched to our subject of study.

1.1 De�nition of the image

The image is a representation of a person or object through painting, sculpture,

drawing, photography, �lm, . . . etc. It is also a set of structured information that, become

after the display on the screen, meaningful to the human eye.

4



Chapter 1. Generalities on images processing

It can be described as an analog brightness continuous function J(x; y) de�ned in a

bounded domain, where x and y are the spatial coordinates of a point of the image and

J is a function of light intensity and color. In this aspect, the image is unusable by the

machine, which requires its digitization.

1.2 De�nition of the digital image

The term of digital image refers, in its most general sense, to any image that has

been acquired, processed and stored in encoded form, represented in numbers (numerical

values).

The digitization is the process that allows passing the state of physical image (optical

image, for example) that is characterized by the continuous appearance of the signal,

that it represents (in�nite value of the light intensity, for example), to the state of a

digital image that is characterized by the appearance discrete (light intensity can take

only values quantized into a �nite number of distinct points). It is this digital form which

allows further exploitation by software tools on computer.

1.3 Types of images

1.3.1 Raster image (bitmap)

A raster image (bitmap) (see Fig 1:1) is an image in point model. The most universal

coding system consists in decomposing the graphic representation, the image, a some

number of elementary points characterized by their spatial coordinates and color.

5



Chapter 1. Generalities on images processing

Figure 1.1: Raster image

1.3.2 Vector image

In a vector image, the data are represented by simple geometrical forms which are

described at a mathematical point of view. It comes to represent the images data by

geometric formulas that will able to be in described a mathematical way. In other words,

storing the operations sequence leading to the trak is stored in the case of a vector image,

then it stores a mosaic of point elementary in the case of raster image.

These images present two advantages : they occupy little memory space and they can

be resized without lossing of an information.

6



Chapter 1. Generalities on images processing

1.4 Tagged Image File Format (TIFF)

1.4.1 Concepts and de�nitions

Pixel

The pixel represents the smallest component of raster image. The word pixel comes

from an abbreviation of British expression PICture Element. The numerical value of pixel

represents a luminous intensity.

The pixel coding

Almost, the value of pixel is a binary word of length d bits, therefore a pixel can be

taken one of the values of the interval [0 : : : 2d�1] . The value d is called the depth of the

image. All these pixels are contained in a two-dimensional table (a matrix) constituting

the obtained image.

The size of an image

The size of an image is the number of pixels of the image, the size of an image which

is represented by (328� 456) where 328 is the number of rows, and 456 is the number of

columns is equal at : 328� 456 = 149568 pixels.

The resolution of an image

In the �eld of digital imaging, the resolution is a measure of the sharpness of the

display or capture of an image, expressed in number of pixels per unit of area, that means

(the density) in pixels.

The resolution of a digital image is expressed in PPI (Pixels Per Inch). When the

resolution of an image is big, its quality is better (see Fig 1:2).
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Figure 1.2: The resolution of an image : (a) an image acquires at 256 dpi, (b) an image
acquires at 64 dpi, (c) an image acquires at 32 dpi. [4]

The luminance

The word luminance is substituted for the word brilliance, matched to the eclat of an

object. The luminance is the brightness of the pixels of an image. It is also de�ned as the

intensity of the extended source in a given direction, divided by the apparent area from

this source in the same direction.

The contrast

It is the marked opposition between two regions of an image, more precisely between

the dark region and clear region of this image. The contrast is de�ned as a function of the

luminances of two regions of an image. If L1 and L2 are the degrees of brightness of two

neighboring regions respectively A1 and A2 of an image, the contrast { is de�ned by :

{ =
L1 � L2
L1 + L2

(1.1)

8



Chapter 1. Generalities on images processing

The noise

A registration system of an image does not restore the image perfectly. Actually

parasites information are added by the random manner to details of the original scene

which we call it : noise.

The noise has di¤erent origins but it causes the similar e¤ects as the loss of sharpness

on the detail or the appearance of grains.

The histogram

The histogram of grayscale or color images is a function that associates each intensity

value of the number of image pixels with that value (see Fig 1:3).

Figure 1.3: Example of histogram of an image.

The colors palette

We call the color palette, the list of colors that can contain an image. The value of

each pixel represents the rank of a color in this list. It is frequent to see images never use

certain colors, this makes it interesting to limit the color palette by selecting only color or

colors actually used by the image (see Fig 1:4).
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Figure 1.4: The ponctual transformation of digital image [4]

1.5 The colors coding

1.5.1 The binary images (black and white)

The binary images are images of depth d = 1 bit, so, a pixel can be taken one of the

values: black or white (0 or 1).

It is typically, the type of the image that we use for scaning the text when it is

composed of one color.

1.5.2 The grayscale images

In general, the grayscale images are images of depth d = 8 bits, so, each pixel can be

taken one of the values of the interval [0:::255], where the value 0 represents the minimum

brightness (the black) and 255 the maximum brightness (the white). This type of image

is frequently used to reproduce texts or photos on black and white.
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In many professional applications of photography and printing as well as medicine

and astronomy, 8 bits per pixel is not enough, for that there are other types of grayscale

images of depth d = 12, d = 14 or d = 16 bits.

1.5.3 The colors images

The color space is based on the synthesis colors, i.e, the mixture between di¤erent

colors (three, four, . . . ) gives a color .

Most colors images are based on three primary colors : Red, Green and Blue (RGB),

and typically they use 8 bits for each component color, so each pixel requires 3� 8 = 24

bits for coding the three components, and each color component can take one of the values

of interval [0::: 255].

1.6 Format of images �les

An image format is a computer representation of the image, including information on

the way the image is encoded and possibly providing guidance on the way to decoce and

to manipulate.

The most formats are composed of a header containing attributes (image size, coding

type, LUT, ...etc.), followed by data (the actual image). The structuring of attributes and

data varies from one format to another. There are many images formats, we will mention

a some of them.

1.6.1 Windows BitMaP (BMP)

BMP format is one of the simplest formats. It was jointly developed by Microsoft

and IBM. This Technology has the main advantage the quality of images doesn�t supply
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compression (no quality loss). This makes it a very heavy format of image, no or little

used on the internet.

1.6.2 Tagged Image File Format (TIFF)

This format is oriented to the professionals (printers, advertisars, ...) because it has the

advantage of being recognized on all types of Operating System : Windows, Mac, Linux,

Unix, ldots, ... etc.

It provides a image of a very a good quality, but its size remains large, although it is

lower than the BMP �le.

1.6.3 Joint Photographic Expert Group (JPEG)

It is the most frequent format, it is found in the Internet. It takes up little disk

space. It�s the developed format by photographers to transmit images of a professional

photographic quality . It supports millions of colors but it has not associated the colors

palette and therefore the colors can be di¤erent on machines and di¤erent systems.

1.6.4 Graphics Interchange Format (GIF)

The �lles in GIF format are highly compressed while keeping a very decent quality.

They have a palette of associated colors (limited to 256 colors) and they occupy little of

disk space.

1.6.5 Portable Network Graphic (PNG)

PNG format uses the principle of GIF format encoding but it is not limited to 256

colors, and generally it provides a more e¤ective compression. It allows, unlike GIF to

record photographs without lossing the of quality, but with a gain of less storage space

comparing to JPEG.
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1.7 Some processing of images

There is a variety of images processing, we will present some examples :

1.7.1 Binarization

The binarization (and thresholding) (see Fig 1:5) is the simplest technique of classi�-

cation, where the pixels of the image are shared by a single threshold S into two classes:

those which is belonging to background and to the stage (the object). The image is then

separated into two classes in a way that the information between 0 and S is successful and

the other one not, or vice versa..

We have the image I(M; N), supposing that z(x; y) represents the grayscale of the

pixel at the coordinates (x; y); 0 � x � M , 0 � y � N and S is the chosen threshold ,

the pixels of the object are those having inferior the grayscale at S and the others having

the level of superior gray than S are background pixels. So, the binarized image G is

determined by the pixels (x; y) which its value is :

g(x; y) =

8><>: 0 if g(x; y) < S ;

255 if g(x; y) � S :
(1.2)
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Figure 1.5: Binarization of an image (a) original image , (b) binarized image.

1.7.2 Segmentation

The segmentation of images is an operation that is intended togather pixels with

each according to prede�ned criteria, and it may be accomplished according to several

methods. The pixels are grouped into regions that constitute a paving or partition of the

image. The segmentation is an important step in image processing.

1.7.3 Skeletonization

The skeletonization procedure is performed on a binary image, and it aims to reduce

the thickness track of a pixel only, while maintaining the continuity thereof (see Fig 1:6).
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Figure 1.6: Skeletonization of an image (a) original image , (b) skeletonized image.[4]

1.7.4 Convolution

The convolution is the replacement of the value of a pixel by a combining its surround-

ings. It consists to scan an analysis window (mask) on all the pixels of the image.

The convolution operation is calculated at every point of the source image in 3 steps :

1) The mask is centered (for example, a square mask 3� 3) on the current pixel.

2) 9 products are calculated between the value of the image and the value of superimpsed

mask.

3) Then we sum the 9 products to get the pixel value of the �ltered image.

1.7.5 Filtering

The notion of �ltering concept is borrowed from physics and signal processing tech-

niques. If a signal (electrical, radio, image, ... etc.) has a very di¤erent frequency compo-

nents, it may be advantageous to remove some, in this case we talk about �ltering.

The image �ltering is a local treatment used mainly to perform a spatial analysis of an

image. Its aim is to accentuate the image intensity variances, or to detect contours and
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to reduce existing noises. There are a large number of �lters, we can be classi�ed into two

broad categories : linear �lters and nonlinear �lters.

1.7.6 Mathematical morphology

Mathematical morphology (MP) is a mathematical theory and technique and structural

analysis computer, it is linked to algebra and it is performed on a binary image. One of

the basic ideas of mathematical morphology is to study or to treat a set with another

set, called structuring element (binary mask consisting of black and white pixels), which

serves as a probe.

At each position of the structuring element, we remark if it touches or it is included

in the initial set. Depending on the response function, we construct a set of output. We

are obtaining basic operators which are relatively intuitive.

Among the most important tools of mathematical morphology are : erosion, dilation,

opening and closing.

Structuring element

The structuring element (SE) is an assembly applied to image of study. SE "plans"

include a set of points without any value unlike the SE volume or points are considered.

SE "plans" are so named because they have only two dimensions in the case of 2D images.

The basic morphological operators require the de�nition of an origin for each structuring

element.

This origin allows the positioning of the structuring element on a point or a given pixel

a SE is a point p which means that its origin coincides with p: A structuring element is

identi�ed by its origin. The basic structuring elements planes and isotopes for -hexagonale

and square grids are represented by (Fig 1:7).
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Figure 1.7: Elementary structuring elements planes and isotopes. The origin of each
structuring element and its center.[48]

A structuring element de�nes a relation of neighbourhoud and of connectivity in an

image. The relation is the center to the neighbors as shown in (Fig 1:8) which shows the

neighborhood relation of a square structuring element 8� connexities.

The form and size of the structuring element must be adapted to the geometric

properties of the image objects. For example, the linears SE is suitable for the extraction

of linear objects. We will detail in the following sections the basic operators morphology.

Erosion

The erosion of set is to ask at each pixel p of an object O, the question : "is the

structuring element Bp be entirely contained in O ?": The eroded set consists of the

points where the answer of this question is a¢ rmative. The treated set represents either

the objects of a binary image or a subgraph of a grayscale image. The erosion of a set O

by a structuring element B is denoted by "B(O) and it is de�ned by the set of points p,

such as B is included in O when its origin is placed on p.

"B(O) = fp = Bp � Og ; (1.3)

The (Eq 1:3) can also be written as intersections from a set of translations. These
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Figure 1.8: Relation of neighborhood for a square structuring element at 8�connexties.
[48]

translations are de�ned by the structuring element.

"B(O) =
\
b2B

O�b ; (1.4)

The previous de�nition can be applied on binary images and on grayscale image : the

erosion of an image I by a structuring element B is denoted "B(I) and it is de�ned as

the minimum of translations of I by the vectors b of B:

"B(I) =
^
b2B

I�b ; (1.5)

Hence the eroded value of a given pixel is the minimum value of the image in the

window de�ned by the structuring element when its origin is placed on p :

["B(I)] (p) = minb2B I(p+ b) ; (1.6)

The erosion reduces the « pics » of the grayscale and enlarge the « valleys » : it tens

so, to homogenize the image, to darken and to spead the edge of the most dark objects

(Fig 1:9).

18



Chapter 1. Generalities on images processing

Figure 1.9: Erosion : (a) image on original grayscale, (b) erosion with SE square at size 3;
(c) erosion with SE square at size 6; (d) erosion with SE square at size 10. [48]

Dilation

The dilation is the adjoint operator of erosion. It consists to ask at each pixel p of

an object O, the question : " does the structuring element Bp intersect the set O ?" The

dilated set is constitued of the pixels where the answer is a¢ rmative.The dilation of a set

O by a structuring element B is denoted as �B(O), and it is de�ned by the set of points

p where B intersects the set O when its origin coincides with p :

�B(O) =
n
p = �Bp \O 6= 0

o
; (1.7)

In the (Eq 1:7), �B designates the symmetrical structuring element of B. Noting that

the dilatation of a single point gives as output the centered structuring element on its

origin. The (Eq 1:7) can also be written in the form of unions of translations. These

translations are de�ned by the structuring element.

�B(O) =
[
b2B

Ob ; (1.8)

The previous de�nition can be also applied on the binary images also on the grayscale

images : the dilation of an image I by a structuring element B is denoted by �B(I) and it
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is de�ned by the maximum of translation of I by the vectors b of B.

�B(I) =
_
b2B

Ib ; (1.9)

Hence the dilated value of a given pixel is the maximum of the image in the window

de�ned by the structuring element when its origin is placed on p :

[�B(I)] (p) = maxb2B I(p+ b) ; (1.10)

This transformation �lls the "valleys" and it thickens "peaks" : it homogenizes the

image, thinning and tending to make disappear the dark objects.

Dilation : (a) original grayscale image, (b) dilation with SE square at size 3; (c) dilation

with SE square at size 6; (d) dilation with SE square at size 10. [48]

Properties

Dilation and erosion are adjoint transformations and they respect the principle of

complementarity. This means that erosion on an image is equivalent to the complementary

of the dilation on the complementary image with the same structuring element (and vice

versa).
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Morphological opening

The opening of an image I by a structuring element B is denoted B(I) and it is

de�ned by erosion of I by B followed by a dilation of I by the symmetrical structuring

element �B.

B(I) = � �B � "B(I) : (1.11)

Figure 1.10: Opening : (a) original grayscale image, (b) opening with SE square at size 3;
(c) opening with SE square at size 6; (d) opening with SE square at size 10. [48]

Opening removes the peaks but preserves the valleys, it homogenizes the image but it

preserves the dark objects.

Morphological closing

The closing of an image I by a structuring element B is noted 'B(I) and it is de�ned by

the dilation of I by the structuring element B, followed by the erosion by the symmetrical

structuring element �B :

'B(I) = " �B � �B(I) : (1.12)

The closing �lls the valleys, it homogenizes and it brightens the image as shown in

(Fig 1:11).

21



Chapter 1. Generalities on images processing

Figure 1.11: Closing : (a) original grayscale image, (b) closing with SE square at size 3;
(c) closing with SE square at size 6; (d) closing with SE square at size 10. [48]
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Chapter 2

Gaussian Process

Gaussian process (GP) is very promising novel machine learning concept that is

based on a probabilistic model of the underlying function/class probabilities. It

represents a powerful and interesting theoretical framework for Bayesian classi�cation.

In this chapter we will see the Gaussian process de�nition, its covariance functions

and some examples of them.
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2.1 A brief history of Gaussian process

The study of Gaussian processes and their use for prediction is far from new [37]. Indeed,

the underlying theory dates back to Weiner-Kolmogorov prediction theory and time series

analysis in the 1940�s [37], [62], [28] and [42]. More recent is the introduction of kriging

[45], and its subsequent development as a method for the interpolation of geostatistical

data [16].

Kriging, named after the mining engineer D.G.Krige, is identical to Gaussian process

regression, but is derived and interpreted somewhat di¤erently to that above (e.g. see

[33]).

Furthermore, as a geostatistical method, it is mainly concerned with low-dimensional

problems and tends to ignore any probabilistic interpretations [37]. In the wider statistical

community, the use of Gaussian processes to de�ne prior distributions over functions dates

back to 1978, where O�Hagan [52] applied the theory to one-dimensional curve �tting.

In the machine learning community, the use of Gaussian processes for supervised learn-

ing is a more recent development which traces back to introduction of back-propagation

for learning in neural networks [64]. This original non-probabilistic treatment was subse-

quently enhanced by Buntine [11], MacKay [43], and Neal [51] who introduced a Bayesian

interpretation that provided a consistent method for handling network complexity (see

[40], [9] and [36] or reviews).

Soon after, Neal [49] showed that under certain conditions these Bayesian Neural

Networks converge to Gaussian processes in the limit of an in�nite number of units. This

resulted in the introduction of Gaussian processes for regression in a machine learning

context [83], [59] and [50].
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Brie�y, this work included a description of how to :

1) Specify and parameterise a covariance function.

2) Build a covariance matrix and hence express the prior distribution over function values.

3) Find the posterior distribution over parameters using Bayes�Theorem.

4) Either optimise to �nd the most likely (ML) or maximum a posteriori (MAP) para-

meters, or integrate over the posterior density using Hamiltonian Monte Carlo.

5) Calculate the predictive distribution at any test point.

For good introductions to Gaussian processes for regression refer to the 1997 thesis of

Gibbs [24], the Gaussian processes chapter in MacKay�s book [37], and the recent book by

Williams and Rasmussen [62]. Additionally, Seeger provides recent reviews [65], [66] and

[67] and relates Gaussian processes for machine learning to other kernel machine methods.

Since the original introduction of Gaussian processes for regression, there have been

numerous enhancements and applications. One of the main areas of interest has been on

developing methods to reduce the computational cost of Gaussian process regression, both

in the training and prediction phases.

The fundamental problem is that for a training set of size N , exact calculation of

the marginal-likelihood (Eq 3:24) has complexity O(N3). This cost is a direct result of

inverting an N �N matrix, so some of the methods aim to approximate this calculation.

For example, [24], [25] describe and analyse an iterative method to approximate the inverse

with complexity O(N2). Another interesting approach is presented by Williams et al.[84],

[85], who make use of the Nyström method to form a rank m < N matrix approximation

to the covariance matrix, which can then be inverted with a cost O(m2N).

There have been many more recent developments (e.g. [69], [76], [17], [18], [19] and

[68]). For a good review and summary of these methods see [62] and [57].
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Other recent work has been extensive and varied. For example, Gibbs [24] and Paciorek

[54] and [55] developed methods for creating non-stationary covariance functions, and

hence, models of non-stationary data. We have seen methods to deal with input-dependent

noise [29] and non-Gaussian noise [70]. Mixtures of Gaussian processes were introduced by

[77] followed by an extension to a tractable in�nite mixture of Gaussian processes experts

[63].

Interesting machine learning applications include Gaussian processes for reinforcement

learning [61], the incorporation of derivative observations into Gaussian process models

[72], Gaussian processes to speed up the evaluation of Bayesian integrals [60], and Gaussian

process models of dynamical systems [80].

Gaussian processes have also proved useful for classi�cation problems. However, in

this case the likelihood function and evidence and hence the posterior distribution are

not Gaussian, so exact inference is not possible. As a result, much work has gone into

developing approximations.

Many of the resultant classi�ers make use of the Laplace approximation [5], Markov

Chain Monte Carlo [50], and variational methods [24] and [26]. Although Gaussian process

classi�ers are powerful and promising, this thesis is concerned only with Gaussian processes

for classi�cation.[10]

2.2 Gaussian process de�nition

Formally, when a stochastic process f(x) is stated Gaussian, the joint distribu-

tion of any subset of its aleatoires variables f = ff1; f2; :::; fNg on �nite indices sets

X = fx1; x2; :::; xNg, by hypothesis, the form of N normal multivariate distribution di-

mensions. By adopting this hypothesis, we get a Gaussian process that are completely

26



Chapter 2. Gaussian Process

de�ned by their mean function � and the covariance function k. These functions allow to

obtain the distribution.

P (f) = N (�;K) ; (2.1)

where N present the normal distribution, the mean vector � is composed of the element

�i = �(xi) , the covariance matrix K is constructed such that Kij = k(xi;xj). While the

functions � and k have a direct in�uence on the joint distribution (Eq 2:1) ; The various

forms that these functions can take cause process with di¤erents behaviors.

Note that it is also possible to de�ne the mean and covariance functions on a �nite space,

in which case the Guassian process becomes simply a normal multivariate distribution.

The Gaussian process is a general may be used on a large type of spaces.

Dé�nition 2.1 A process is called Gaussian if all its �nite dimensional laws L(Xt1; :::;

XtN) are Gaussians (8N 2 N; 8t1; :::; tN 2 T ).

In other words X = (Xt)t is Gaussian if all the linear combinaison a1Xt1 + ::: + anXtN

are Gaussian (for all 8N 2 N; 8t1; :::; tN 2 T and a1; :::; aN 2 R).

It�s well known that the Gaussian vector (Xt1; :::; XtN) is known (via its characteristic

function) by the mean vector (E[Xt1]; :::; E[XtN ]) and the covariance matrix (Cov(Xti;

Xtj); 1 � i; j � N):

As soon when we understand that any law of a Gaussian process is known as soon as one

takes the mean function. �(t) = E[Xt] and the covariance operator k(s; t) = cov(Xs; Xt).

Indeed, the �nite dimensional laws of (Xt1; :::; XtN) is the normal laws of dimension N

, N (�N ;KN) with �N = (�(t1); :::; �(tN)) and KN = (k(ti; tj))1�i;j�N . So, the functions

� and k de�ne all the �nite dimensional laws of X and therefore its law.
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2.3 Examples of Gaussian process

2.3.1 Brownian motion

Let T = R+, the Brownian motion (BM) (Wt)t�0 is the Gaussian process de�ned by

E[Wt] = 0 et k(s; t) = min(s; t). Also it is called process of Wiener.

2.3.2 Brownian bridge

Let T = [0; 1], brownian bridge (W 0
t )t2[0;1] is the centred Gaussian process de�ned by

the covariance function k(s; t) = min(s; t)� st.

2.3.3 Process of Ornstein-Uhlenbeck

Let T = R, the process of Ornstein-Uhlenbeck (O.U) is the centred Gaussian process

de�ned by :

Ut ' e�t=2W (et) ; (2.2)

where W is a MB. It is easily to shown that Ut = N (0; 1) because var(Ut) = 1, so, this

process is stationary.

Its covariance function is given by :

k(s; t) = e�jt�sj=2 ; (2.3)

It depends only on the di¤erence (t � s), it is indeed a stationary process of more

simply covariance function given by k(t) = e�jtj=2 . It is given under integral form with

the spectral measure �(du) =
1

�

du

1 + u2
:

2.3.4 Geometric Brownian

It is not a Gaussian process but the exponential of Gaussian process. It is
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St = x exp(�t+ &Wt � &2t=2) : (2.4)

Such a process modeled the cours of an active St submitted has an interest rate � and

it has a volatility & and which is worth x at time 0.

Assuming it is found as Samuelson that the returns between two periods are measured

by logarithms of cours St.

More than we suppose that the returns between 0 and t follow a tend Brownian motion

of drift � � &2=2 and a di¤usion coe¢ cient &.

2.3.5 Gaussian white noise

Let (A; �) a measured space and U = fA 2 A; �(A) < +1g:

The white noise is a Gaussian process (XA)A2A indexed by the set of measurables A

de�ned by E[XA] = 0 and Cov(XA; XB) = �(A \B).

We must understand the white noise as a random noise A ! XA(!). It is random

because XA depends of !.

2.3.6 Fractional Brownian motion

Let T = R+. the fractional Brownian motion (MBF) (BH(t))t�0 is the centered

Gaussian process de�ned by the covariance function :

k(s; t) = 1
2
(jsj2H + jtj2H � js� tj2H) : (2.5)
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2.4 Covariance functions

To specify a particular GP prior, we need to de�ne the mean � and covariance K of

where

P (f jX) = N (�; K) : (2.6)

The GPs we will use as priors will have a zero mean. Although this sounds restrictive,

o¤sets and simple trends can be subtracted out before modelling, and so in practice it

is not. It is worth noting however, that the posterior GP P (f jD) that arises from the

regression is not a zero mean process.

The important quantity is the covariance matrix K. We construct this from a

covariance function k(x; �x) :

Kij = k(xi; xj) ; (2.7)

This function characterises the correlations between di¤erent points in the process :

k(x; �x) = E[f(x) f(�x)] ; (2.8)

where E denotes expectation and we have assumed a zero mean. We are free in our choice

of covariance function, so long as the covariance matrices produced are always symmetric

and positive semide�nite (vTKv � 0; 8v).

The particular choice of covariance function determines the properties of sample

functions drawn from the GP prior (e.g. smoothness, lengthscales, amplitude, ... etc).

Therefore it is an important part of GP modelling to select an appropriate covariance

function for a particular problem.[18]
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2.5 Examples of covariance functions

2.5.1 Stationary covariance functions

It will be convenient to allow kernels to be a map from x 2 �; �x 2 � intoC (rather than

R). If a zero-mean process f is complexvalued, then the covariance function is de�ned as

k(x; �x) = E[f(x) f �(�x)], where � denotes complex conjugation.

A stationary covariance function is a function of � = x � �x. Sometimes in this case

we will write k as a function of a single argument, i.e. k(�).

The covariance function of a stationary process can be represented as the Fourier

transform of a positive �nite measure.

Théorème 2.1 (Bochner�s theorem) A complex-valued function k onRD is the covariance

function of a weakly stationary mean square continuous complexvalued random process on

RD if and only if it can be represented as

k(�) =

Z
RD

e2�is:� d�(s) ; (2.9)

where � is a positive �nite measure.

The statement of Bochner�s theorem is quoted from Stein [74][1999, p. 24]; a proof

can be found in Gihman and Skorohod [27][1974, p. 208]. If � has a density S(s) then S

is known as the spectral density or power spectrum corresponding to k.

The construction given by (Eq 2:9) ; puts non-negative power into each frequency s;

this is analogous to the requirement that the prior covariance matrix �p on the weights

w � N (0; �p) be non-negative de�nite.

In the case that the spectral density S(s) exists, the covariance function and the

spectral density are Fourier duals of each other as shown in (Eq 2:10); this is known as

the Wiener-Khintchine theorem, see, e.g. [14].
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k(�) =

Z
S(s)e2�is:� ds ; S(s) =

Z
k(�)e�2�is:� d� : (2.10)

Notice that the variance of the process is k(0) =
Z
S(s) ds, so the power spectrum

must be integrable to de�ne a valid Gaussian process.

To gain some intuition for the de�nition of the power spectrum given in(Eq 2:10)

it is important to realize that the complex exponentials e2�is:x are eigenfunctions of a

stationary kernel with respect to Lebesgue measure. Thus S(s) is, loosely speaking, the

amount of power allocated on average to the eigenfunction e2�is:x with frequency s. S(s)

must eventually decay su¢ ciently fast as jsj �! 1 so that it is integrable; the rate of

this decay of the power spectrum gives important information about the smoothness of

the associated stochastic process.

If the covariance function is isotropic (so that it is a function of r, where r = j� j)

then it can be shown that S(s) is a function of s , jsj only [2] [Adler, 1981, Theorem

2:5:2]. In this case the integrals in (Eq 2:10) can be simpli�ed by changing to spherical

polar coordinates and integrating out the angular variables (see e.g. [12] Bracewell, 1986,

ch. 12) to obtain :

k(�) =
2�

r�D=2�1

1Z
0

S(s)JD=;�1(2�rs)s
D=2 ds ; (2.11)

S(s) =
2�

s�D=2�1

1Z
0

k(r)JD=2�1(2�rs)r
D=2 dr ; (2.12)

where JD=2�1 is a Bessel function of order D=2 � 1. Note that the dependence on the

dimensionalityD in (Eq 2:11)means that the same isotropic functional form of the spectral

density can give rise to di¤erent isotropic covariance functions in di¤erent dimensions.

Similarly, if we start with a particular isotropic covariance function k(r) the form of

spectral density will in general depend on D (see, e.g. the Matérn class spectral density
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given in (Eq 2:19)) and in fact k(r) may not be valid for all D.

A necessary condition for the spectral density to exist is that
Z
rD�1jk(r)j dr <1.

We now give some examples of commonly-used isotropic covariance functions. The

covariance functions are given in a normalized form where k(0) = 1; we can multiply k by

a (positive) constant �2
f
to get any desired process variance.

Squared Exponential Covariance Function

The squared exponential (SE) covariance function has the form :

kSE(r) = exp(� r
2

2l2
) ; (2.13)

with parameter l de�ning the characteristic length-scale. This covariance function is in-

�nitely di¤erentiable, which means that the GP with this covariance function has mean

square derivatives of all orders, and is thus very smooth. The spectral density of the SE

covariance function is S(s) = (2�l2)D=2 exp(�2�l2s2).

Stein [1999] [74] argues that such strong smoothness assumptions are unrealistic

for modelling many physical processes, and recommends the Matern class (see below).

However, the squared exponential isprobably the most widely-used kernel within the kernel

machines �eld.

The SE kernel is in�nitely divisible in that (k(r))t is a valid kernel for all t > 0, the

e¤ect of raising k to the power of t is simply to rescale l.

We now digress brie�y, to show that the squared exponential covariance function can

also be obtained by expanding the input x into a feature space de�ned by Gaussian-shaped

basis functions centered densely in x-space. For simplicity of exposition we consider scalar

inputs with basis functions :

�c(x) = exp(�(x� c)
2

2l2
) ; (2.14)
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where c denotes the centre of the basis function. We recall that with a Gaussian prior on

the weights w � N (0; �2pI), this gives rise to a GP with covariance function

k(xp; xq) = �2p

NX
c=1

�c(xp)�c(xq) ; (2.15)

Now, allowing an in�nite number of basis functions centered everywhere on an interval

(and scaling down the variance of the prior on the weights with the number of basis

functions) we obtain the limit :

limN�!1
�2p
N

NX
c=1

�c(xp)�c(xq) = �2p

cmaxZ
cmin

�c(xp)�c(xq) dc ; (2.16)

Plugging in the Gaussian-shaped basis functions (Eq 2:14) and letting the integration

limits go to in�nity we obtain :

k(xp; xq) = �2p

1Z
�1

exp(�(xp � c)
2

2l2
) exp(�(xq � c)

2

2l2
) dc

=
p
�l�2p exp(�

(xp � xq)2

2(
p
2l)2

)

; (2.17)

which we recognize as a squared exponential covariance function with a times longer

length-scale. The derivation is adapted from MacKay [1998] [39]. It is straightforward to

generalize this construction to multivariate x.

The Matérn Class of Covariance Functions

The Matérn class of covariance functions is given by :

kMatern(r) =
21��

�(�)
(

p
2�r

l
)�k�(

p
2�r

l
) ; (2.18)

with positive parameters � and l, where k� is a modi�ed Bessel function [Abramowitz

and Stegun, 1965, sec. 9.6] [1]. This covariance function has a spectral density in D
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dimensions.

S(s) =
2D�D=2�(� +D=2)(2�)�

�(�)l2�
(
2�

l2
+ 4�2s2)�(�+D=2) ; (2.19)

Figure 2.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, (Eq 2:18), for di¤erent values of
�, with l = 1. The sample functions on the right were obtained using a discretization of
the x-axis of 2000 equally-spaced points.[15]

Note that the scaling is chosen so that for � �! 1 we obtain the SE covariance

function e�r
2=2l2 . For the Matérn class the process f(x) is k-times MS di¤erentiable if

and only if � > k. The Matérn covariance functions become especially simple when � is

half-integer : � = p+ 1=2, where p is a non-negative integer.

In this case the covariance function is a product of an exponential and a polynomial

of order p, the general expression can be derived from [Abramowitz and Stegun, 1965, eq.

10.2.15] [1], giving

k�=p+1=2(r) = exp(�
p
2�r

l
)
�(p+ 1)

�(2p+ 1)

pX
i=0

(p+ i)!

i!(p� i)!(
p
8�r

l
)p�i ; (2.20)

It is possible that the most interesting cases for machine learning are � = 3=2 and
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� = 5=2, for which

k�=3=2(r) = (1 +

p
3r

l
) exp(�

p
3r

l
) ; (2.21)

k�=5=2(r) = (1 +

p
5r

l
+
5r2

3l2
) exp(�

p
5r

l
) ; (2.22)

since for � = 1=2 the process becomes very rough (see below), and for � � 7=2, in the

absence of explicit prior knowledge about the existence of higher order derivatives, it is

probably very hard from �nite noisy training examples to distinguish between values of

� � 7=2 (or even to distinguish between �nite values of � and � �! 1, the smooth

squared exponential, in this case). For example a value of � = 5=2 was used in [Cornford

et al., 2002] [15].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting � = 1=2 in the Matérn class gives the exponential

covariance function

k(r) = exp(�(r=l)) ; (2.23)

The corresponding process is MS continuous but not MS di¤erentiable. In D = 1 this

is the covariance function of the Ornstein-Uhlenbeck (OU) process.

The OU process [Uhlenbeck and Ornstein, 1930] [58] was introduced as a mathematical

model of the velocity of a particle undergoing Brownian motion. More generally in D = 1

setting �+1=2 = p for integer p gives rise to a particular form of a continuous-time AR(p)

Gaussian process. The form of the Matérn covariance function and samples drawn from

it for � = 1=2; � = 2 and � �!1 are illustrated in (Fig 2:2)
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Figure 2.2: Panel (a) covariance functions, and (b) random functions drawn from Gaussian
processes with the �exponential covariance function (Eq 2:24), for di¤erent values of 
, with l = 1. The sample functions are only di¤erentiable when  = 2 (the SE case). The
sample functions on the right were obtained using a discretization of the x�axis of 2000
equally-spaced points. [62]

The �exponential Covariance Function

The �exponential family of covariance functions, which includes both the exponential

and squared exponential, is given by

k(r) = exp(�(r=l)) for 0 <  � 2 ; (2.24)

Although this function has a similar number of parameters to the Matérn class, it

is (as Stein [1999] [74] notes) in a sense less �exible. This is because the corresponding

process is not MS di¤erentiable except when  = 2 (when it is in�nitely MS di¤erentiable).

Rational Quadratic Covariance Function

The rational quadratic (RQ) covariance function :

kRQ(r) = (1 +
r2

2�l2
)�� ; (2.25)
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Figure 2.3: Panel (a) covariance functions, and (b) random functions drawn from Gaussian
processes with rational quadratic covariance functions, (Eq 2:27), for di¤erent values of �
with l = 1. The sample functions on the right were obtained using a discretization of the
x�axis of 2000 equally-spaced points. [62]

with �; l > 0 can be seen as a scale mixture (an in�nite sum) of squared exponential

(SE) covariance functions with di¤erent characteristic length-scales. Parameterizing now

in terms of inverse squared length scales, � = l�2, and putting a gamma distribution on

P (� j�; �) / ���1 exp(���=�) : (2.26)

we can add up the contributions through the following integral

kRQ(r) =

Z
P (� j�; �) kSE(r=�) d�

/
Z
���1 exp(���

�
) exp(��r

2

2
) d� / (1 +

r2

2�l2
)��

; (2.27)

where we have set ��1 = l2. The rational quadratic is also discussed by Matérn [1960,

p. 17] [44] using a slightly di¤erent parameterization; in our notation the limit of the

RQ covariance for � �!1 is the SE covariance function with characteristic length-scale

l (Fig 2:13). (Fig 2:3) illustrates the behaviour for di¤erent values of � ; note that the
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process is in�nitely MS di¤erentiable for every � in contrast to the Matérn covariance

function in (Fig 2:1).

The previous example is a special case of kernels which can be written as superpositions

of SE kernels with a distribution P (l) of length-scales l ,

k(r) =

Z
exp(
�r2
2l2

)P (l) dl: ; (2.28)

This is in fact the most general representation for an sotropic kernel which de�nes a

valid covariance function in any dimension D, see [Stein [74] , 1999, sec. 2:10].[62]

2.5.2 Non-stationary covariance functions

We brie�y list a few examples of common nonstationary covariances. The linear co-

variance produces straight line sample functions, and using it in GP regression is therefore

equivalent to doing Bayesian linear regression :

kLin(x; �x) = �20 + �21x�x
T ; (2.29)

The periodic covariance can be used to generate periodic random functions (1D) :

kPer(x; �x) = exp

8><>:�
2 sin2(

x� �x
2

)

l2

9>=>; ; (2.30)

The Wiener process, or continuous time Brownian motion, is a one-dimensional

nonstationary GP

kWien(x; �x) = min(x; �x); x; �x � 0 ; (2.31)
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A nonstationary neural network covariance function can be constructed as a limit

of a particular type of neural network with an in�nite number of hidden units [Williams,

1998] [81].

There are many other examples of covariance functions, both stationary and nonsta-

tionary. It is also possible to combine covariances in sums, products and convolutions to

obtain more �exible and complex processes. See [62] for further details. [71]
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Gaussian Process Classi�cation

Gaussian process classi�ers (GPCs) are Bayesian probabilistic kernel classi�ers.

In GPCs, the probability of belonging to a certain class at an input location is

monotonically related to the value of some latent function at that location. Starting from

a Gaussian process prior over this latent function, data are used to infer both the posterior

over the latent function and the values of hyperparameters to determine various aspects

of the function.[35]

In this chapter, we are giving the Bayesian classi�cation with Gaussian process,

Laplace approximation for binary GPC, the multi-class Laplace approximation and the

expectation propagation method.
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3.1 Classi�cation

Supervised classi�cation of remote sensing images has received great attention from

the remote sensing community for several decades. For such a purpose, many simple

and sophisticated techniques have been considered, such as the Statistical classi�er, the

k-Nearest Neighbor classi�er, the Arti�cial Neural-Network (NN) classi�er, and, more

recently, the Kernel-based classi�er [21] and [75]. Among the most popular kernelbased

classi�ers available in the literature, one can �nd Support Vector Machine (SVM) classi�ers

[78].

They are based on the margin maximization principle, which aims at providing them

with a good generalization capability. SVM classi�ers have been used extensively and

proved to be successful in dealing with remote sensing data [22] and [23].

Another potentially interesting kernel-based classi�cation approach is the one based

on Gaussian processes (GPs) [82] and [62]. In contrast to SVM classi�ers, GP classi�ers

(GPCs) have not yet received su¢ cient attention from the remote sensing community,

despite being theoretically attractive statistical models that permit a fully Bayesian treat-

ment of the considered classi�cation problem. Compared to SVM classi�ers, they have

the advantage of providing probabilistic outputs rather than discriminant function values.

Moreover, they can use evidence for solving the model selection issue in a completely

automatic way.

The main idea of GPCs is to assume that the probability of belonging to a class

label for an input sample is monotonically related to the value of some latent function at

that sample. Such a monotonic relationship is de�ned according to a so-called squashing

function. A GP prior characterized by a covariance matrix embedding a set of hyperpara-

meters is placed on this latent function. Inference is made by integrating over the latent

function. Since such an integral is analytically intractable, solutions based on Monte Carlo

sampling or analytical approximation methods are adopted.
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The two key analytical approximation algorithms are the Laplace and expectation-

propagation (EP) algorithms. Both approximate the non-Gaussian joint posterior over

the latent variables with a Gaussian one. In the Laplace approximation, the Gaussian

model is de�ned with mean and covariance matrix as the maximum point of the posterior

and the negative Hessian matrix at that point, respectively.

The identi�cation of this maximum is carried out according to the iterative Newton

method. The EP algorithm is a more sophisticated approximation technique that tries in

some way to minimize locally the Kullback�Leibler divergence measure between the true

posterior and the approximated one. This is done sequentially through the so-called cavity

distribution.

In the prediction phase, the approximate predictive mean and variance for the (approx-

imated) Gaussian posterior over the latent variable of the considered sample are computed

�rst. Then, the class posterior probability for the sample target is derived either analyti-

cally or by approximation, depending on the adopted squashing function. The multiclass

implementation of GPCs is obtained through an intrinsicmulticlass formulation, which can

be complex [28], or simply by decomposition into binary classi�cation problems.[8]
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Figure 3.1: Graphical model for GPCs with N training data points and one test data
point. [8]

3.2 Baysian classi�cation with Gaussian process

Let us consider a training set D = (X;y) consisting of a matrix of training data

X = [x1 x2; ::: xN ]
T where N is the number of samples and y = [y1 y2 ... yN ]T is the

corresponding target vector. To each vector xi 2 RD(i = 1; 2; :::; N), we associate a target

yi 2 f�1;+1g. Given this training set D, we aim at predicting the label y� of a new test

sample x� by computing the output probability P (y�jD;x�).

In GPC, the probability of belonging to a class label yi = +1 for an input sample xi is

monotonically related to the value of some latent function fi. Such monotonic relationship

is de�ned according to a squashing function, which can take several forms. In this work,

we will consider the probit function :
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P (yi = +1jfi) = �(yifi) ; (3.1)

where � is the Gaussian cumulative distribution function :

�(z) =

zZ
�1

1p
2�
exp(�x

2

2
) dx ; (3.2)

A Gaussian process prior (GP) characterized by a zero mean and a covariance matrix

embedding a set of hyperparameters � is placed on this latent function. The prediction

of the output probability for the test sample x� is obtained by integrating over the latent

function f� as follows:

P (y� = +1jD;x�;�) =

Z
P (y�jf�;�) P (f�jD;x�;�) df� ; (3.3)

The second part of the integral (Eq 3:3) represents the distribution of the latent

variable corresponding to the test sample x�:

It is obtained by further integrating over f = [f1 f2 ... fN ] :

P (f�jD;x�;�) =

Z
P (f�jX;x�; f ;�) P (f jD;�) df ; (3.4)

where, P (f jD;�) is the posterior over the latent variables :

P (f jD;�) = P (yjf ;�) P (f jX;�)=P (yjX;�) ; (3.5)

P (yjf ;�) is the probability of each observed class label given the latent function

value.

A possible form is the one adopted in (Eq 3:1). P (yjX;�) is the marginal likelihood

(evidence), and P (f jX;�) is the GP prior over the latent functions, i.e.
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P (f jX;�) =
1

(2�)N=2 jKj
1
2

expf�1
2
f K�1fg ; (3.6)

where each term of the covariance function K is a function of xi and xj. A popular

covariance function is the squared exponential (or Gaussian RBF), i.e.

k(x
(m)
i ; x

(m)
j ) = �2 exp

8>>>><>>>>:�
dX

m=1

(x
(m)
i � x(m)j )2

2l2

9>>>>=>>>>;
; (3.7)

where � is the variance and l is the length scale. Together they form the hyperparameter

vector �, i.e. � = [l �]:

Since the integrals in (Eq 3:3) and (Eq 3:4) are not analytically tractable due to the

nonlinearity in the likelihood terms, analytical approximation or Monte Carlo methods

have to be adopted. In next section, we describe two well known analytical approximation

methods, namely the Laplace and the Expectation Propagation (EP) algorithms.[7]

3.3 Laplace approximation for binary GP classi�er

Laplace�s method utilizes a Gaussian approximation q(f jX;y) to the posterior

P (f jX;y) in the integral (Eq 3:4). Doing a second order Taylor expansion of lnP (f jX;y)

around the maximum of the posterior, we obtain a Gaussian approximation :

q(f jX;y) = N (f ĵf ; A�1) / exp(�1
2
(f � f̂)TA(f � f̂)) ; (3.8)

where f̂ = argmaxf P (f jX;y) and A = �rr ln p(f jX;y)jf=̂f is the Hessian of the negative

log posterior at that point.
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Figure 3.2: likelihood functions are fairly similar, the main qualitative di¤erence being that
for large negative arguments the log logistic behaves linearly whereas the log cumulative
Gaussian has a quadratic penalty. Both likelihoods are log concave. [62]

3.3.1 Posterior

By Bayes�rule the posterior over the latent variables is given by :

P (f jX;y) = P (yjf) P (f jX)=P (yjX) ; (3.9)

but as P (yjX) is independent of f , we need only consider the un-normalized posterior

when maximizing w.r.t. f . Taking the logarithm and introducing expression lnP (f jX) =

�1
2
fTK�1f � 1

2
ln jKj � N

2
ln 2� for the GP prior gives

 (f) , lnP (yjf) + lnP (f jX)

= lnP (yjf)� 1
2
fTK�1f � 1

2
ln jKj � N

2
ln 2�

; (3.10)

Di¤erentiating (Eq 3:10) w.r.t. f we obtain :

r (f) = r lnP (yjf)�K�1f ; (3.11)
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rr (f) = rr lnP (yjf)�K�1 = �W �K�1 ; (3.12)

where W , �rr lnP (yjf) is diagonal, since the likelihood factorizes over cases (the

distribution for yi depends only on fi, not on fj 6=i). Note, that if the likelihood P (yjf) is

log concave, the diagonal elements of W are non-negative, and the Hessian in (Eq 3:12) is

negative de�nite, so that  (f) is concave and has a unique maximum.

There are many possible functional forms of the likelihood, which gives the target

class probability as a function of the latent variable f . Two commonly used likelihood

functions are the logistic, and the cumulative Gaussian, (see Fig 3:2). The expressions

for the log likelihood for these likelihood functions and their �rst and second derivatives

w.r.t. the latent variable are given in the following table :

Table 3.1: The expressions for the log likelihood

lnP (yijfi)
@

@fi
lnP (yijfi)

@2

@f 2i
lnP (yijfi)

� ln(1 + exp(�yifi)) ti � �i -�i(1� �i)

ln�(yifi)
yiN (fi)
�(yifi)

�N (fi)2
�(yifi)2

yifiN (fi)
�(yifi)

where we have de�ned �i = P (yi = 1jfi) and t = (y + 1)=2. At the maximum of  (f) we

have

r (f) = 0 =) f̂ = Kr lnP (yĵf) ; (3.13)

as a self-consistent equation for f̂ (but since r lnP (yĵf) is a non-linear function of f̂

, (Eq 3:13) can not be solved directly). To �nd the maximum of  we use Newton�s

method, with the iteration
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fnew = f � (rr )�1r = f + (K�1 +W )�1(r lnP (yjf))�K�1f

= (K�1 +W )�1(W f +r lnP (yjf))
; (3.14)

To gain more intuition about this update, let us consider what happens to datapoints

that are well-explained under f so that @ lnP (yijfi)=@fi andWii are close to zero for these

points. As an approximation, break f into two subvectors, f1 that corresponds to points

that are not well-explained, and f2 to those that are. Then it is easy to show that

fnew1 = K11(I11 +W11K11)
�1(W11f1 +r lnP (y1jf1)) ; (3.15)

fnew2 = K21K
�1
11 f

new
1

; (3.16)

where K21 denotes the n2 � n1 block of K containing the covariance between the two

groups of points, etc. This means that fnew1 is computed by ignoring entirely the well-

explained points, and fnew2 is predicted from fnew1 using the usual GP prediction methods

(i.e. treating these points like test points). Of course, if the predictions of fnew2 fail to

match the targets correctly they would cease to be well-explained and so be updated on

the next iteration.

Having found the maximum posterior f̂ , we can now specify the Laplace approximation

to the posterior as a Gaussian with mean f̂ and covariance matrix given by the negative

inverse Hessian of  from (Eq 3:12) :

q(f jX;y) = N (̂f ; (K�1 +W )�1) ; (3.17)

One problem with the Laplace approximation is that it is essentially uncontrolled, in

that the Hessian (evaluated at f̂) may give a poor approximation to the true shape of the
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posterior. The peak could be much broader or narrower than the Hessian indicates, or it

could be a skew peak, while the Laplace approximation assumes it has elliptical contours.

3.3.2 Predictions

The posterior mean for f� under the Laplace approximation can be expressed by

combining the GP predictive mean �f� = kT� (K+ �2nI)
�1y with (Eq 3:13) into

Eq[f�jX;y;x�] = k(x�)
TK�1̂f = k(x�)

Tr lnP (yĵf) ; (3.18)

Compare this with the exact mean, given by Opper and Winther [2000] [?] as

Ep[f�jX;y;x�] =

Z
E[f�jf ;X;x�]P (f jX;y)df

=

Z
k(x�)

TK�1f P (f jX;y)df = k(x�)
TK�1E[f jX;y]

; (3.19)

where we have used the fact that for a GP E[f�jf ;X;x�] = k(x�)
TK�1f and have let

E[f jX;y] denote the posterior mean of f given X and y. Notice the similarity between

the middle expression of (Eq 3:18)) and (Eq 3:19), where the exact (intractable) average

E[f jX;y] has been replaced with the modal value f̂ = Eq[f jX;y]:

A simple observation from (Eq 3:18) is that positive training examples will give rise

to a positive coe¢ cient for their kernel function (as ri lnP (yijfi) > 0 in this case), while

negative examples will give rise to a negative coe¢ cient; this is analogous to the solution

to the support vector machine.

Also note that training points which have ri lnP (yijfi) ' 0 (i.e. that are well-

explained under f̂ ) do not contribute strongly to predictions at novel test points; this is

similar to the behaviour of non-Support Vectors in the Support Vector Machine.
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We can also compute Vq[f�jX;y], the variance of f�jX;y under the Gaussian approx-

imation. This comprises of two terms, i.e.

Vq[f�jX;y;x�] = EP (f�jX;x�;f)[(f� � E[f�jX;x�; f ])2]

+ Eq(f jX;y)[(E[f�jX;x�; f ]� E[f�jX;y;x�])2]
; (3.20)

The �rst term is due to the variance of f� if we condition on a particular value of f ,

and is given by k(x�;x�)� k(x�)TK�1k(x�), cf. eq. (2.19).

The second term in (Eq 3:20) is due to the fact that E[f�jX;x�; f ] = k(x�)
TK�1f

depends on f and thus there is an additional term of k(x�)TK�1cov(f jX;y)K�1k(x�).

Under the Gaussian approximation cov(f jX;y) = (K�1 +W )�1, and thus

Vp[f�jX;y;x�] = k(x�;x�)� kT�K�1k�

+kT�K
�1(K�1 +W )�1K�1k�k(x�;x�)� kT� (K+W

�1
)k�

;

(3.21)

where the last line is obtained using the matrix inversion lemma eq. (A.9).

Given the mean and variance of f� , we make predictions by computing

��� ' Eq[��jX;y;x�] =

Z
�(f�)q(f�jX;y;x�) df� ; (3.22)

where q(f�jX;y;x�) is Gaussian with mean and variance given by (Eq 3:18) and (Eq 3:21)

respectively. Notice that because of the non-linear form of the sigmoid the predictive

probability from (Eq 3:22) is di¤erent from the sigmoid of the expectation of f :

�̂� = �(Eq[f�jy]) ; (3.23)

We will call the latter the MAP prediction to distinguish it from the averaged

predictions from (Eq 3:22).
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3.3.3 Marginal likelihood

It will also be useful to compute the Laplace approximation of the marginal likelihood

P (yjX). We have

P (yjX) =

Z
P (yjf)P (f jX)df =

Z
exp( (f))df ; (3.24)

Using a Taylor expansion of  (f) locally around f̂ we obtain

 (f) '  (̂f)� 1
2
(f � f̂)TA(f � f̂) ; (3.25)

and thus an approximation q(yjX) to the marginal likelihood as

P (yjX) ' q(yjX) = exp( (̂f))

Z
exp

n
�1
2
(f � f̂)TA(f � f̂)

o
; (3.26)

This Gaussian integral can be evaluated analytically to obtain an approximation to

the log marginal likelihood

ln q(yjX;
) = �1
2
f̂
T
Âf + lnP (yĵf)� 1

2
ln jBj ; (3.27)

where jBj = jKj : jK�1 +W j =
���In +W

1
2KW

1
2

���, and 
 is a vector of hyperparameters
of the covariance function (which have previously been suppressed from the notation for

brevity).[62]

3.4 Multi-class Laplace approximation

Our presentation follows Williams and Barber [1998] [82]. We �rst introduce the

vector of latent function values at all N training points and for all C classes

f = (f 11 ; :::; f
1
N ; f

2
1 ; :::; f

2
N ; :::; f

C
1 ; :::; f

C
N )

T ; (3.28)
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Thus f has length CN . In the following we will generally refer to quantities pertaining

to a particular class with superscript c, and a particular case by subscript i (as usual); thus

e.g. the vector of C latents for a particular case is fi. However, as an exception, vectors

or matrices formed from the covariance function for class c will have a subscript c. The

prior over f has the form f � N (0;K). As we have assumed that the C latent processes

are uncorrelated, the covariance matrix K is block diagonal in the matrices K1; :::;KC .

Each individual matrix Kc expresses the correlations of the latent function values

within the class c. Note that the covariance functions pertaining to the di¤erent classes

can be di¤erent.

Let y be a vector of the same length as f which for each i = 1; :::; N has an entry of

1 for the class which is the label for example i and 0 for the other C � 1 entries.

Let �ci denote output of the softmax at training point i, i.e.

P (yci jf i) = �ci =
exp(f ci )X
�c

exp(f �ci )
; (3.29)

Then � is a vector of the same length as f with entries �ci . The multi-class analogue

of (Eq 3:10) is the log of the un-normalized posterior

 (f) , �1
2
fTK�1f + yT f �

NX
i=1

log(
CX
c=1

exp f ci )

�1
2
log jKj � CN

2
log 2�

; (3.30)

As in the binary case we seek the MAP value f̂ of p(f jX;y). By di¤erentiating

( Eq 3:30) w.r.t. f we obtain

r = �K�1f + y � � ; (3.31)

Thus at the maximum we have f̂ = K(y � �̂). Di¤erentiating again, and using
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� @2

@f ci @f
�c
i

ln
X
j

exp(f ji ) = �ci �c�c + �ci�
�c
i ; (3.32)

we obtain

rr = �K�1 �W where W , diag(�)� ��T

where � is a CN�N matrix obtained by stacking vertically the diagonal matrices diag(�c),

and �c is the subvector of � pertaining to class c. As in the binary case notice that �rr 

is positive de�nite, thus  (f) is concave and the maximum is unique.

As in the binary case we use Newton�s method to search for the mode of  , giving

fnew = (K�1 +W )�1(W f + y � �) ; (3.33)

This update if coded naïvely would take O(C3N3) as matrices of size CN have to be

inverted.

The Laplace approximation gives us a Gaussian approximation q(f jX;y) to the

posterior p(f jX;y). To make predictions at a test point x� we need to com- predictive

pute the posterior distribution q(f�jX;y;x�) where f(x�) , f� = (f1� ; :::; fC� )T

In general we have

q(f�jX;y;x�) =

Z
P (f�jX;x�; f)q(f jX;y) df ; (3.34)

As P (f�jX;y;x�) and q(f jX;y) are both Gaussian, q(f�jX;y;x�) will also be Gaussian

and we need only compute its mean and covariance. The predictive mean for class c is

given by

Eq[f
c(x�)jX;y;x�] = kc(x�)

TK�1
c f̂

c
= kc(x�)

T (yc � �̂c) ; (3.35)
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where kc(x�) is the vector of covariances between the test point and each of the training

points for the cth covariance function, and f̂
c
is the subvector of f̂ pertaining to class

c. The last equality comes from using (Eq 3:31) at the maximum f̂ . Note the close

correspondence to (Eq 3:18). This can be put into a vector form Eq[f�jy] = QT� (y� �̂) by

de�ning the CN � C matrix

Q� =

8>>>>>>><>>>>>>>:

k1(x�) 0 � � � 0

0 k2(x�) � � � 0

...
...

. . .
...

0 0 � � � kC(x�)

9>>>>>>>=>>>>>>>;
:

Using a similar argument to (Eq 3:20) we obtain :

covq(f�jX;y;x�) = � +QT�K
�1(K�1 +W )�1K�1Q�

= diag(k(x�;x�))�QT� (K+W�1)�1Q�

; (3.36)

where� is a diagonal C�C matrix with�cc = kc(x�;x�)�kTc (x�)K�1
c kc(x�), and k(x�;x�)

is a vector of covariances, whose c�th element is kc(x�;x�).

We now need to consider the predictive distribution q(��jy) which is obtained by

softmaxing the Gaussian q(f�jy). In the binary case we saw that the predicted classi�cation

could be obtained by thresholding the mean value of the Gaussian. In the multi-class case

one does need to take the variability around the mean into account as it can a¤ect the

overall classi�cation.

The Laplace approximation to the marginal likelihood can be obtained in the same

way as for the binary case, yielding
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lnP (yjX;
) ' ln q(yjX;
)

= �1
2
f̂
T
Âf + yT f̂ �

NX
i=1

ln(

CX
c=1

exp f̂
c

i)�
1

2
ln
���ICN+W 1

2KW
1
2

��� ;

(3.37)

As for the inversion of K�1 +W , the determinant term can be computed e¢ ciently

by exploiting the structure of W .[62]

3.5 Expectation propagation

Minka (2001a) [47] proposed the Expectation Propagation (EP) method which can

be applied to Gaussian process models.

EP �nds a Gaussian approximation q(f jD; 
;  ) = N (f jm; A) to the posterior

P (f jD; 
;  ) by moment matching of approximate marginal distributions. The starting

point is to impose a factorising structure:

P (f jD;
;  ) =
N (f j0;K)
P (Dj
;  )

mY
i=1

P (yijfi;
)

' N (f j0;K)
q(Dj
;  )

mY
i=1

t(fi; �i; �
2
i ; Zi) = q(f jD;
;  )

(3.38)

resembling the structure of the prior times the factorising likelihood (3.4) where the terms

t(fi; �i; �
2
i ; Zi) = ZiN (fij�i; �2i ) ; (3.39)

are called site functions. Note that the site functions are approximating the likelihood

(which normalises over observations yi), with a Gaussian in fi, so we cannot expect the site

functions to normalise, hence the explicit term Zi is necessary. For notational convenience

we hide the site parameters �i; �2i and Zi and write t(fi) instead. From (Eq 3:39) the

Gaussian approximation q(f jD;
;  ) as given by (Eq 3:38) has mean and covariance :
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m = A��1� and A = (K�1 +��1)�1 ; (3.40)

where � = [�1; :::; �m] > and � = diag(�21; :::; �
2
m) collect site function parameters.

The EP algorithm iteratively visits each site function in turn, and adjusts the site

parameters to match moments of an approximation to the marginal distributions of the

posterior. The kth non-central moment of fi under the posterior is :

E[fki ] =
1

P (Dj
;  )

Z
fki P (yjf ;
) P (f jX;  ) df

=
1

P (Dj
;  )

Z
fki P (yijfi;
) P�i(fi) dfi

; (3.41)

where

P�i(fi) =

Z Y
j 6=i

P (yjjfj;
)P (f jX;  ) df�i ; (3.42)

is called the cavity distribution and f�i denotes f without fi. The marginalisation required

to compute the exact cavity distribution is intractable. The key step in the EP algorithm

is to replace the intractable exact cavity distribution with a tractable approximation based

on the site functions :

P�i(fi) ' q�i(fi) =

Z Y
j 6=i

t(fj)P (f jX;  ) df�i ; (3.43)

The approximate cavity function comes in the form of an unnormalised Gaussian

q�i(fi) / N (fi=��i; �2�i). Multiplying both sides by t(fi) :

q�i(fi)t(fi) =

Z
N (f j0; K)

mY
j=1

t(fj) df
�i / N (fijmi; Aii) ; (3.44)

and using basic Gaussian identities we obtain the parameters :

57



Chapter 3. Gaussian Process Classi�cation

�2�i = ((Aii)
�1 � ��2i )�1 and ��i = �2�i(

mi

Aii
� �i
�2i
) ; (3.45)

of the approximate cavity function.

The core idea of EP is to adjust the site parameters �i; �2i , and Zi such that the

approximate posterior marginal using the exact likelihood approximates as well as possible

the posterior marginal based on the site function :

q�i(fi)P (yjjfj;
) ' q�i(fi)t(fi; �i; �
2
i ; Zi) ; (3.46)

by matching the zeroth, �rst, and second moments.

Matching of moments minimises Kullback-Leibler divergence KL(P jjq). Although

the classical KL argument only applies to the �rst and second (and higher) moments for

normalised distributions, it seems natural also to match zeroth moments.

Therefore, the zeroth, �rst, and second non-central moment

mk =

Z
fki P (yijfi;
)q�i(fi) dfi =

Z
fki P (yijfi;
) N (fij��i; �2�i) dfi ; (3.47)

of the left hand side of (Eq 3:46) have to be computed for k = 0; 1; 2. This can be

implemented using numerical integration techniques, but if the moments can be computed

analytically this is usually computationally advantageous. In this case a generic approach

is to use the moment generating function

M(�) =

Z
exp(�fi) P (yijfi;
) N (fij��i; �2�i) dfi ; (3.48)

and di¤erentiating with respect to � gives the non-central moments :
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m0 = M(0) , m1 =
1

m0

@M

@�
j�=0 and m2 =

1

m0

@2M

@�2
j�=0 ; (3.49)

By equating these moments with the right hand side of (Eq 3:46) the update equations

for the site parameters become :

�2i = ((m2 �m2
1)
�1 � ��2�i)�1

�i = �2i (m1(�
�2
�i + ��2i )�

��i
�2�i

)

Zi = m0

q
2�(�2�i + �2i ) exp(

(�i � ��i)2
2(�2�i + �2i )

)

; (3.50)

Once the values of �i and �2i are updated, the e¤ect on m and A has to be computed

according to (Eq 3:40), which in practice is done using rank-one updates of A.

The EP algorithm iteratively updates the site parameters until convergence. A formal

proof of convergence does not exist but for log-concave likelihood functions, i.e. when the

posterior is concave, EP usually converges reliably.

Finally the evidence can be approximated from the normalisation of (Eq 3:38) :

ln p(Dj
;  ) ' ln q(Dj
;  ) = ln

Z
N (f j0; K)

mY
i=1

t(fi) df

=

mX
i=1

lnZi �
1

2
ln jK+�j � 1

2
�T (K+�)�1�� m

2
ln(2�)

;

(3.51)

and its derivatives can be computed in order to implement ML-II parameter estimation

of 
 and  The derivatives and further details on implementing EP for Gaussian process

models can be found in Appendix A.3 [79], where also a pseudo-code description is given.

In practical applications the EP approximation shows to work and converge better

for some likelihood models than for others. Unimodality of the posterior�log concavity
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of the likelihood� seems to be an important factor. Note that in the update (Eq 3:50) of

the site function parameters we ignored the possibility that updates lead to an invalid,

non-positive de�nite covariance matrix A. In those cases one can either skip the update in

the hope that a later update will be valid or dampen (soften) the update using a �learning

rate�parameter small enough to obtain a positive de�nite A. However, in general it is

not guaranteed that EP converges and often it is a challenging task to implement EP for

a particular likelihood avoiding numerical di¢ culties.[79]
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Chapter 4

Spatial Contextual Gaussian Process

Classi�cation

In this chapter, we propose a thorough investigation of the GPC e¤ectiveness for

classifying multisource and hyperspectral remote sensing images. To this end, we

designed several experiments aiming also at testing the sensitivity of GPCs to the num-

ber of training samples and to the course of dimensionality. In general, the obtained

classi�cation results show clearly that the GPC is given good results.
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4.1 Method description

Now, assuming a spatial neighbourhood system of size N� � N�, let us consider a

training set �D = (�X; �y) consisting of a matrix of training data �X = [X X�
n] accompanied

with labels �y = [y y�n], where y
�
n and X

�
n are the spatial neighbors of y� and x� with sizes

�d�N� and N� = N� �N�, respectively (see Fig ??). We aim at determining the label y�

at new test point x� by computing the class posterior probability P (y�j �D;x�).

Figure 4.1: Illustration of spatial neighborhood system of size N� � N� centered on
samples x�1; x�2; x�3:

The prediction of the output probability for the test sample x� is obtained by

integrating over the latent function f� as follows :

P (y� = +1j �D;x�) =

Z
P (y�jf�)P (f�j �D;x�) df� ; (4.1)
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P (y�j �D;x�) is the distribution of the latent variable corresponding to the sample x�.

It is obtained by further integrating over �f = [f1 f2 : : : fN f(N+1) f(N+2) : : : f �N ], where

�N = N + (N� � 1):

P (f�j �D; x�) =

Z
P (f�j�X;x�;�f)P (�f j �D) d�f ; (4.2)

The second part of the integral in (Eq 4:2) represents the posterior over of the latent

variables :

P (�f j �D) = P (�yj�f)P (�f j�X)=P (�yj�X) ; (4.3)

P (�yj�f) is the likelihood function. It can be expressed by using one of the forms of

the squashing functions. P (�yj�X) is the marginal likelihood and P (�f j�X) is the GP prior

over the latent variables. The GP prior is typically characterized by a zero mean and a

covariance matrix embedding a set of hyperparameters, i.e.

P (�f j�X) =
1

(2�)
�N=2
����K��� 12 exp

�
�1
2
�f
T �K

�1�f

�
; (4.4)

where �K is the covariance matrix, i.e.,

�K =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

k(x1;xN+1) � � � k(x1;x �N)

K
...

. . .
...

k(xN ;xN+1) � � � k(xN ;x �N)

k(xN+1;x1) � � � k(xN+1;xN) k(xN+1;xN+1) � � � k(xN+1;x �N)

...
. . .

...
...

. . .
...

k(x �N ;x1) � � � k(x �N ;xN) k(x �N ;xN+1) � � � k(x �N ;x �N)

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

:

(4.5)

The Laplace approximation uses a Gaussian approximation q(�f j �D) to the non-Gaussian
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posterior in integral of (Eq 4:2). This approximation is based on the second-order Taylor

expansion of lnP (�f j �D) around the maximum of the posterior :

P (�f j �D) �= q(�f j �D) = N (�f ĵf 0; �A�1) / exp

�
�1
2
(�f � f̂ 0)T �A(�f � f̂ 0)

�
; (4.6)

where f̂
0
and �A are the mean and covariance matrix, respectively. They are given by :

f̂
0
= arg max�f

�
P (�f j �D)

�
; (4.7)

�A = �55 ln
�
P (�f j �D)

����
�f=̂f

0
; (4.8)

The covariance matrix represents the Hessian of the negative log posterior at the

maximum point. In order to compute f̂
0
and �A, we can use the posterior P (�f j �D) formulated

in (Eq 4:3). By taking the logarithm of this posterior and introducing the expression of

(Eq 4:4) for GP priors, we obtain the following expression :

 (�f) , lnP (�yj�f)� lnP (�f j�X)� 1
2
�f
T �K

�1�f � 1
2
ln
����K���� �N

2
ln 2� ; (4.9)

Di¤erentiating twice (Eq 4:9) with respect to�f leads to :

8><>: r (
�f) = r lnP (�yj�f)� �K�1�f

rr (�f) = rr lnP (�yj�f)� �K�1
(4.10)

At the maximum of  (�f), we get

f̂
0
= �Kr lnP (�yĵf 0) (4.11)

and the covariance matrix is approximated by the shape of  (�f)
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�A = �(rr (�f))�1 = (�K
�1
+ �W )�1 : (4.12)

where

�W = �rr lnP (�yĵf 0) : (4.13)

Since (Eq 4:11) is nonlinear, the computation of f̂
0
is achieved by numerical meth-

ods such as Newton�s method. Once the computation of f̂
0
and �A is done, the Laplace

approximation to the posterior is completely de�ned by

q(�f j �D) = N
�̂
f
0
; (�K

�1
+ �W )�1

�
: (4.14)

The prediction of the point x� is evaluated by exploiting the Gaussian approximation

in (Eq 4:1)

P (y� = +1j �D;x�) ' q(y� = +1j �D;x�) =

Z
P (y�jf�) q(f�j �D;x�) df� : (4.15)

where q(f�j �D;x�) is Gaussian with mean and variance given as follows :

8><>: �� = �kT� �K
�1
f̂
0

�2� = k(x�;x�)� �kT� (�K+ �W�1)�1 �k�

: (4.16)

and �kT� = [k(x1;x�) k(x2;x�) ::: k(xN ;x�) k(xN+1;x�) ::: k(x �N ;x�)] is a vector of kernel

distances (covariances) between x� and all the training and neighbourhood samples.

Note that if the class posterior probability value is not desired but just the estimate

of the label of the sample x�, one can adopt the following labeling rule: Assign x� to label

�+1�if �� � 0; otherwise, assign it to label ��1�:

In the above mathematical derivations, we made the hypothesis that the true
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contextual labels in y�n are a priori known. Since it is not the case, the Spatial GPC (SGPC)

will implemented within an iterative scheme, as described in the following pseudo-code.

Step 1. Initialization

1:1) Read training set D and image I.

1:2) For each sample of I, compute the predicted label using the standard pixelwise

GPC.

1:3) Output: initial classi�cation map Y (0).

Step 2. Iterative spatial contextual Gaussian process

2:1) Set iteration index t � 1.

2:2) Repeat up to convergence

2:2:1) For each sample x� of image I:

� Generate contextual training set �D from D, I and Y (t�1).

� Compute �W according to (Eq 4:13).

� Apply (Eq 4:11) and (Eq 4:12) to get f̂ 0 and �A respectively.

� Estimate label y(t)� from (Eq 4:16).

2:2:2) Output Y (t)

2:2:3) Increment t:

4.2 Expremental results

4.2.1 Data set

We used an image acquired over an urban area, this image was acquired over a part

Boumerdes city (Algeria) in 2002 by the Quickbird sensor with a resolution of 1 m (see
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Fig 4:2). It is characterized by four channels (Red, Green, Blue and Near infrared). The

ground truth includes nine thematic classes, namely, water, sand, trees, asphalt, pavement,

rocks, roof1 (tile roof), roof2 (cement roof), and bare soil, see (Fig 4:3) and ( 4:4). The

(Tab 4:1) lists the numbers of training and test samples used for each class.

Figure 4.2: RGB composition of the image used in the experiments.
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Figure 4.3: Test samples used in experiments.

Table 4.1: Numbers of training and test samples used in experiments.

Class name Numbers of training samples Numbers of test samples
1� Water 600 2400

2� Sand 600 2400

3� Trees 375 700

4� Pavement 105 200

5� Asphalt 343 500

6� Rocks 175 450

7� Roof1 75 200

8� Roof2 294 500

9� Bare soil 300 700

Total 2867 8050
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Figure 4.4: Training samples used in the experiments.

4.2.2 Results

In all experiments, the covariance function adopted is the well-known squared exponen-

tial covariance function. The hyperparameters of the models for both the standard GPC

and the proposed SGPC classi�ers were estimated according to the procedure based on

the maximization of the log marginal likelihood as described in Rasmussen and Williams

(2006).

Classi�cation performance was evaluated in terms of four measures, which are :

1) Overall accuracy (OA), which is the percentage of correctly classi�ed pixels among all

the pixels considered (independently of the classes they belong to).

2) Average accuracy (AA), which is the average over the classi�cation accuracies obtained

for the di¤erent classes.

3) Class-speci�c accuracy, which is the percentage of correctly classi�ed pixels among

the pixels of the considered class.
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4) McNemar�s test, which gives the statistical signi�cance of di¤erences between the

accuracies achieved by the di¤erent classi�cation methods.

Table 4.2: Accuracies achieved by the investigated classi�ers on the test samples(iteration
1).

GPC method SGPC method (iteration 1)
3� 3 size 5� 5 size 7� 7 size

OA (%) 73:95 75:07 74:98 75:03
AA (%) 66:42 67:77 67:58 67:82

1 100 99:00 98:96 99:00
2 61:42 63:58 63:54 63:25
3 93:57 95:71 95:71 95:43

Class-speci�c 4 42:50 46:00 45:50 46:50
accuracies (%) 5 85:40 85:40 85:40 85:40

6 34:75 36:89 36:22 36:67
7 70:50 71:00 70:50 70:50
8 67:20 71:40 71:40 71:80
9 42:43 41:00 41:00 41:86

Table 4.3: Accuracies achieved by the investigated classi�ers on the test samples(iteration
2).

GPC method SGPC method (iteration 2)
3� 3 size 5� 5 size 7� 7 size

OA (%) 73:95 75:29 75:15 75:22
AA (%) 66:42 68:03 67:96 68:14

1 100 99:04 99:08 99:13
2 61:42 63:83 63:46 63:25
3 93:57 95:71 95:86 96:14

Class-speci�c 4 42:50 45:50 46:00 46:00
accuracies (%) 5 85:40 85:60 85:80 85:80

6 34:75 36:22 35:78 36:22
7 70:50 72:00 72:00 72:50
8 67:20 72:40 71:80 72:60
9 42:43 42:00 41:86 41:86
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Table 4.4: Accuracies achieved by the investigated classi�ers on the test samples(iteration
3).

GPC method SGPC method (iteration 3)
3� 3 size 5� 5 size 7� 7 size

OA (%) 73:95 75:14 75:17 75:15
AA (%) 66:42 67:82 68:05 68:12

1 100 98:96 99:08 99:03
2 61:42 63:73 63:63 63:25
3 93:57 95:86 95:71 96:10

Class-speci�c 4 42:50 46:20 46:50 46:10
accuracies (%) 5 85:40 85:40 85:00 85:60

6 34:75 36:67 36:00 36:22
7 70:50 70:00 73:00 72:50
8 67:20 72:60 72:60 72:59
9 42:43 41:29 41:00 41:70

Overall accuracy achieved on the test samples by the investigated SGPC classi�er versus

the number of iterations (3 pixels �3 pixels ) .
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Overall accuracy achieved on the test samples by the investigated SGPC classi�er versus

the number of iterations (5 pixels �5 pixels ).

.

Overall accuracy achieved on the test samples by the investigated SGPC classi�er versus

the number of iterations (7 pixels �7 pixels ).
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Overall accuracy achieved on the test samples by the investigated SGPC classi�er versus

the size of the neighborhood system.�Pixelwise�stands for the standard GPC classi�er

(iteration 1).

Overall accuracy achieved on the test samples by the investigated SGPC classi�er versus

the size of the neighborhood system.�Pixelwise�stands for the standard GPC classi�er

(iteration 2).
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Overall accuracy achieved on the test samples by the investigated SGPC classi�er versus

the size of the neighborhood system.�Pixelwise�stands for the standard GPC classi�er

(iteration 3).

4.2.3 Interpretation

At �rst, we performed experiments by considering a neighborhood system of 3 pixels

�3 pixels. In particular, we run the proposed SGPC method up to convergence. As

it can be seen in (Fig 4:2:2); (Fig 4:2:2) and (Fig 4:2:2), convergence was achieved at

third iterations. The main improvement was obtained at the �rst iteration, and then the

accuracy stabilized. The detailed results achieved at convergence are reported in (Tab

4:2); (Tab 4:3) and (Tab 4:4). Compared to the standard SGPC, we have :

1) An improvement of about 1:12% in OA and 1:35% in AA when neighborhood system

of 3 pixels �3 pixels.

2) An improvement of about 1:34% in OA and 1:61% in AA when neighborhood system

of 5 pixels �5 pixels.

3) An improvement of about 1:20% in OA and 1:50% in AA when neighborhood system

of 7 pixels �7 pixels.
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Most of the classes take pro�t from the exploitation of spatial contextual information,

and in particular

1) The class �roof2�for which a boost of more than 4% is observed when neighborhood

system of 3 pixels �3 pixels.

2) The class �roof2�for which a boost of more than 5% is observedwhen neighborhood

system of 5 pixels �5 pixels.

3) The class �roof2�for which a boost of more than 5% is observedwhen neighborhood

system of 7 pixels �7 pixels.

The McNemar�s test provided us a value of 24, con�rming thus that the di¤erences

between the SGPC and the standard GPC classi�ers are statistically signi�cant.

Finally, in order to analyze the impact of the size of the neighborhood system on the

classi�cation results, we repeated the previous experiments by adopting increasing values

for the window size, namely 5 pixels � 5 pixels and 7 pixels � 7 pixels. The convergence

was achieved in all cases at the third iteration. The overall accuracies yielded by the

SGPC method are plotted in (Fig 4:2:2); (Fig 4:2:2) and (Fig 4:2:2), which suggests that

the size of the neighborhood is not critical.
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result image by SGPC method.

4.3 The comparaison between SGPCmethod andMP-

GPC method

For the sake of comparaison, we run the GPC classi�er fed with an additional set of

8 morphological pro�le (MP) features, concatenated with the 4 original faetures (in total

12 features).
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channels

Closing with SE square at size 3
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Opening with SE square at size 3

The MP was generated by applying opening and closing operations with a square-

shape stucturing element. The ovell accuracies yielded by the SGPC and the MP-GPC

methods are plotted in (Fig 4:3), which suggests that : 1) the size of the neighbourhood

is not critical for SGPC and 2) SGPC outperforms MP-GPC.

result image by MP method.
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Overall accuracy achieved on the test samples by the investigated SGPC classi�er versus

the standard MP-GPC classi�er

Table 4.5: Accuracies achieved by the investigated classi�ers (SGPC, MP-GPC) on the
test samples

MP method SGPC method
OA (%) 71:69 75:95
AA (%) 65:00 67:61
Class-speci�c 1 98:63 98:96
accuracies (%) 2 57:08 63:63

3 78:86 95:86
4 37:50 46:00
5 90:20 85:40
6 31:33 36:67
7 77:50 70:00
8 68:80 72:60
9 45:14 41:29
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Conclusion

In this thesis, we have proposed an innovative GPCmodel, which embeds iteratively the

spatial contextual information in the classi�cation process. To the best of our knowledge,

nothing similar has been yet introduced, at least in the remote sensing literature. It is

a general method which does not impose any constraint on the typology of the input

features. The proposed SGPC model showed to be able to well capture additional useful

information from the spatial context. Experimental results show that, despite the high

quality of the test image, the SGPC improved signi�cantly the classi�cation accuracy over

the baseline GPC.

The size of the neighborhood system appeared not critical in our experiments. However,

we think that the optimal size may depend on the image resolution. For instance, for

satellite images of metric resolution, we suggest that a 3 � 3 or 5 � 5 window size pixels

could be satisfactory. For centimetric resolution centimetre-resolution images (acquired

with sensors mounted on airborne aeroplane or UAV), the best window size may increase

be larger. Work is in progress :

1) To �nd a way to estimate automatically this parameter within the SGPC learning

process.

2) To develop an alternative non-iterative GPC model which integrates spatial contextual

information in the covariance matrix.

80



Bibliography

[1] ABRAMOWITZ, M. and STEGUN, I. A. Handbook of Mathematical Functions.

Dover, New York. (1965):

[2] ADLER, R. J. The Geometry of Random Fields. Wiley, Chichester. (1981):

[3] ANDRE, M. Introduction aux Techniques de Traitement d�Images, Eyrolles (1987).

[4] ASSAS, O. Classi�cation Floue des Images. PhD thesis. (2013):

[5] BARBER, D., WILLIAMS, C. K. I. Gaussian Processes for Bayesian Classi�ca-

tion via Hybrid Monte Carlo. In Advances in Neural Information Processing Systems

(1997),M. C. Mozer, M. I. Jordan, and T. Petsche, Eds., vol. 9, The MIT Press.

[6] BAZI, Y. ALAJLAN, N, and MELGANI, F. Improved Estimation of Water Chloro-

phyll Concentration with Semisuper vised Gaussian Process Regression. (2012).

IEEE Transactions on Geoscience and Remote Sensing 50 : 2733 � 2743. doi:

10:1109=TGRS:2011:2174246:

[7] BAZI, Y. MELGANI, F. Classi�cation of Hyperspectral Remote Sensing Images Using

Gaussian Process. (2008):

[8] BAZI, Y. MELGANI, F. Gaussian process approach to remote sensing image classi�-

cation. . (2010). IEEE Transactions on Geoscience and Remote Sensing 48 : 186�197.

doi: 10:1109=TGRS.2009:2023983:

81



Bibliography

[9] BISHOP, C. Neural Networks for Pattern Recognition. Oxford University Press.

(1995).

[10] BOYLE, P. Gaussian Process for Regression and Optimisation. PhD thesis, Victoria

University of Wellington. (2007), pp. 10� 12.

[11] BUNTINE, W., AND WEIGEND, A. Bayesian Backpropagation. Complex Systems

5(1991), pp. 603� 643.

[12] BRACEWELL, R. N. The Fourier Transform and its Applications. McGraw-Hill,

Singapore, international edition. (1986):

[13] BRETON, J. C. Processus Gaussiens. Université de la Rochelle. (2006):

[14] CHATFIELD, C. The Analysis of Time Series : An Introduction. Chapman and Hall,

London, 4th edition. (1989):

[15] CORNFORD, D., NABNEY, I. T., and WILLIAMS, C. K. I. Modelling Frontal Dis-

continuities in Wind Fields. Journal of nonparametric statsitics. (2002):

[16] CRESSIE, N. Statistics for Spatial Data. Wiley. (1993).

[17] CSATÓ , L. Gaussian Processes - Iterative Sparse Approximation. PhD thesis, Aston

University. (2002).

[18] CSATÓ , L., OPPER, M. Sparse Representation for Gaussian Process Models. In

Advances in Neural Information Processing Systems, NIPS (2001); vol. 13, pp. 444�

450.

[19] CSATÓ , L., OPPER., M. Sparse on-Line Gaussian processes. Neural Computation

14(2002). pp. 641� 668:

[20] DALLAIRE, P. Apprentissage par Renforcement Bayésien de Processus Décision-

nel de Markov Partiellement Obsarvable : Une Approche Basé sur les Processus

Gaussiens. (2010):

82



Bibliography

[21] DUDA, R. HART, S. and STORK, D. G. Pattern Classi�cation, 2nd edition. New

York : Wiley. (2001):

[22] FOODY, G. M. MATHUR. A. A Relative Evaluation of Multiclass Image Classi�ca-

tion by Support Vector Machines. IEEE Trans. Geosci. Remote Sensing. vol. 42, no.

6, pp. 1335� 1343. (2004):

[23] GHOGGALI, N. MELGANI, F. and BAZI, Y. A Multiobjective Genetic SVM Ap-

proach for Classi�cation Problems with Limited Training Samples. IEEE Trans.

Geosci. Remote Sensing. vol. 47, no. 6, pp. 1707� 1718. (1998):

[24] GIBBS, M. Bayesian Gaussian Processes for Classi�cation and Regression. PhD the-

sis, University of Cambridge, Cambridge, U.K.. (1997).

[25] GIBBS, M., MACKAY, D. J. E¢ cient Implementation of Gaussian Processes.

http://www.inference.phy.cam.ac.uk/mackay/abstracts/gpros.html. (1996).

[26] GIBBS, M. N., MACKAY, D. J. Variational Gaussian Process Classi�ers. IEEE

Trans. on Neural Networks 11; 6(2000), pp. 1458� 1464.

[27] GIHMAN, I. I. and SKOROHOD, A. V. The Theory of Stochastic Processes, vol 1.

Springer Verlag, Berlin. (1974):

[28] GIROLAMI, M. ROGERS, S. Variational Baysian Multinomial Probit Regression

with Gaussian Process Priors. Neural Comput. vol. 18, no. 8, pp. 1790�1817. (2006):

[29] GOLDBERG, P. W. WILLIAMS, C. K. I., AND BISHOP, C. M. Regression with

Input-Dependent Noise: A Gaussian Process Treatment. In Advances in Neural In-

formation Processing Systems, NIPS (1998), M. J. Jordan, M.I. Kearns and S. A.

Solla, Eds., vol. 10.

83



Bibliography

[30] GOSSELIN, B.Application des réseaux de neurones arti�cielles aux reconnaissances

automatique de caractères manuscrits. Thèse de Doctorat, Faculté Polytique de Mons.

(1996).

[31] HASSOUNA, H. MELGANI, F. and MOKHTARI, Z. Spatial Contextual Gaussian

Process Learning for Remote Sensing Image Classi�cation. Remote Sensing Letters,6 :

7; 519� 528, doi : 10:1080=2150704X:2015:1051628:

[32] HULTQUIST, C., G. CHEN, and K. ZENG. A Comparison of Gaussian Process

Regression, Random Forests and Support Vector Regression for Burn Severity As-

sessment in Diseased Forests. (2014). Remote Sensing Letters 5 : 723 � 732. doi:

10:1080=2150704X:2014:963733:

[33] JONES, D. R. A Taxonomy of Global Optimization Methods Based on Response Sur-

faces. Journal of Global Optimization 21(2001), pp. 345� 383.

[34] JUN, G., and J. GHOSH. Spatially Adaptive Classi�cation of Hyperspectral Data

with Gaussian Processes. (2009). IEEE International Geoscience and Remote Sensing

Symposium 2 : II � 290� II � 293. doi: 10:1109=IGARSS:2009:5418067:

[35] KIMA, H. C, . GHAHRAMANI, Z. Baysian Gaussian Process Classi�cation with the

EM-EP Algorithm. (2006):

[36] LAMPINEN, J., AND VEHTARI, A. Bayesian neural netwroks - review and case

studies. Neural Networks 14; 3(2001). pp. 7� 24:

[37] MACKAY, D. J. Information Theory, Inference, and Learning Algorithms. Cambridge

University Press. (2003).

[28] MACKAY, D. J. Gaussian Processes: A Replacement for Supervised Neuralnetworks?

In NIPS97 Tutorial. (1997).

84



Bibliography

[39] MACKAY, D. J. C. Introduction to Gaussian process. In Bishop, C. M., editor, Neural

networks and machine learning. Springer-Verlag. (1998):

[40] MACKAY, D. J. C. Probable Networks and Plausible Predictions a Review of Practical

Bayesian Methods for Supervised Neural Networks.Network: Computation in Neural

Systems 6(1995). pp. 469� 505.

[41] MACKAY, D. J. C. Introduction to Monte Carlo Methods. In Learning in Graphical

Models, M. I. Jordan, Ed., NATO Science Series. Kluwer Academic Press. (1998), pp.

175� 204.

[42] MACKAY, D. J. C. Introduction to Gaussian processes. In Neural Networks and

Machine Learning, C. M. Bishop, Ed., NATO ASI Series. Kluwer. (1998), pp. 133�

166.

[43] MACKAY, D. J. C. Bayesian Methods for Adaptive Models. PhD thesis, California

Institute of Technology. (1992).

[44] MATERN, B. Spatial Variation. Meddelanden fran statens skogsfororskningsinstitut,

Almänna Förlaget, stockholm. Second edition (1986), Springer-Verlag, Berlin. (1960):

[45] MATHERON, G. Principles of Geostatistics. Economic Geology 58 (1963), pp. 1246�

1266.

[46] MINGYUE, T. Expectation Propagation of Gaussian Process Classi�cation and Its

Application toGene Expression Analysis.

[47] MINKA, T. P. A family of Algorithms for Approximate Bayesian Inference. PhD

thesis, Massachusetts institute of technology. (2001):

[48] MOUINE, S. Traitement Morphologique des Images de Feuilles.PhD thesis.

[49] NEAL, R. Bayesian Learning for Neural Networks, Lecture Notes in Statistics, No

118. Springer-Verlag. (1996).

85



Bibliography

[50] NEAL, R.Monte Carlo Implementation of Gaussian Process Models for Bayesian Re-

gression and Classi�cation. Tech. Rep. CRG-TR�97�2, Dept. of Computer Science,

Univ. of Toronto. (1997).

[51] NEAL, R. M. Bayesian Training of Backpropagation Networks by the Hybrid Monte

Carlo Method. Tech. Rep. CRG-TR�92 � 1, Dept. of Computer Science, Univ. of

Toronto. (1992).

[52] O�HAGAN, A. Curve Fitting and Optimal Design for Prediction (with discussion). J.

Roy. Statist. Soc. Ser. B 40(1978), pp. 1� 42.

[53] OPPER, M. and Winther, O. Gaussian processes for classi�cation : Mean-�eld algo-

rithms. Neural Computation. (2000):

[54] PACIOREK, C. Nonstationary Gaussian Processes for Regression and Spatial Mod-

elling. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.A.

(2003).

[55] PACIOREK, C., AND SCHERVISH, M. Nonstationary Covariance Functions for

Gaussian Process Regression. In Advances in Neural Information Processing Systems,

NIPS 16(2004), pp. 273� 280:

[56] PASOLLI, L., F. MELGANI, and E. BLANZIERI. Gaussian Process Regression for

Estimating Chlorophyll Concentration in Subsurface Waters from. (2010). Remote

Sensing Data. IEEE Geoscience and Remote Sensing Letters 7 : 464 � 468. doi:

10:1109=LGRS:2009:2039191:

[57] QUIÑONERO-CANDELA, J., AND RASMUSSEN, C. E. A Unifying View of Sparse

Approximate Gaussian Process Regression. Journal of Machine Learning Research

6; 12(2005). pp. 1935� 1959.

[58] UHLENBECK, G. E. and ORNSTIEN, L. S. On the Theory of Brownian Motion.

Phys. Rev. (1930):

86



Bibliography

[59] RASMUSSEN, C. E. Evaluation of Gaussian Processes and Other Methods for Non-

Linear Regression. PhD thesis, Graduate Department of Computer Science, Univer-

sity of Toronto. (1996).

[60] RASMUSSEN, C. E. Gaussian Processes to Speed up Hybrid Monte Carlo for Expen-

sive Bayesian Integrals. In Bayesian Statistics (2003), J. M. Bernardo,M. J. Bayarri,

J. O. Berger, A. P. Dawid, D. Heckerman, A. F.M. Smith, and M. West, Eds., vol. 7,

Oxford University Press, pp. 651� 659.

[61] RASMUSSEN, C. E., ANDKUSS, M.Gaussian Processes in Reinforcement Learning.

In Advances in Neural Information Processing Systems, NIPS (2002), S. Thrun, L.

Saul, and B. Schlkopf, Eds., vol. 16, The MIT Press.

[62] RASMUSSEN, C. E., and C. K. I. Williams. Gaussian Process for Machine Learning.

Cambridge, MA: MIT Press. (2006).

[63] RASMUSSEN, C. E., ANDGHAHRAMANI, Z. In�nite Mixtures of Gaussian Process

Experts. In Advances in Neural Information Processing Systems, NIPS (2002), T. G.

Diettrich, S. Becker, and Z. Ghahramani, Eds., vol. 14, The MIT Press.

[64] RUMELHART, D., HINTON, G., AND WILLIAMS, R. Learning Representations by

Back-Propagating Errors. Nature 323(1986), pp. 533� 536:

[65] SEEGER, M. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Er-

ror Bounds and Sparse Approximations. PhD thesis, University of Edinburgh. (2003).

[66] SEEGER, M. Gaussian Processes for Machine Learning. Tech. rep., Department of

EECS, University of California at Berkeley. (2004).

[67] SEEGER, M. Gaussian Processes for Machine Learning. International Journal of

Neural Systems 14; 2(2004), pp. 1� 38.

87



Bibliography

[68] SEEGER, M., AND WILLIAMS, C. Fast Forward Selection to Speed up Sparse

Gaussian Process Regression. (2003). InWorkshop on AI and Statistics 9.

[69] SMOLA, A. J., AND BARTLETT, P. L. Sparse Greedy Gaussian Process Regression.

In Advances in Neural Information Processing Systems, NIPS (2001), vol. 13, pp.

619� 625.

[70] SNELSON, E., C. E. R., AND GHAHRAMANI, Z. Warped Gaussian Processes. In

Advances in Neural Information Processing Systems, NIPS (2004), L. S. Thrun, S.

and B. Schlkopf, Eds., vol. 16, pp. 337� 344:

[71] SNELSON, E. L. Flexible and E¤cient Gaussian Process Models for Machine Learn-

ing. PhD Thesis, London University. (2007). pp. 21� 22:

[72] SOLAK, E., MURRAY-SMITH, R., LEITHEAD, W. E., LEITH, D., AND RAS-

MUSSEN, C. E. Derivative Observations in Gaussian Process Models of Dynamic

Systems. In Advances in Neural Information Processing Systems, NIPS (2003), vol.

15, The MIT Press, pp. 1033� 1040:

[73] SUN, S., P. ZHONG, H. XIAO, and R.WANG.Active Learning with Gaussian Process

Classi�er for Hyperspectral Image Classi�cation. (2015). IEEE Transactions on Geo-

science and Remote Sensing 53 : 1746� 1760. doi: 10:1109=TGRS:2014:2347343:

[74] STEIN, M. L. Interpolation of Spatial Data. Springer-Verlag, New York.(1999).

[75] TAYLOR, J. S. CRISTIANININ. N. Kernel Methods for Pattern Analysis. Cam-

bridge, U.K.: Cambridge University. Press. (2004):

[76] TRESP, V. A Bayesian Committee Machine. Neural Computation 12; 11(2000); pp.

2719� 2741:

88



Bibliography

[77] TRESP, V. Mixtures of Gaussian Processes. In Advances in Neural Information

Processing Systems, NIPS (2001), T. K. Leen, T. G. Dietterich, and T. V., Eds.,

vol. 13, The MIT press.

[78] VAPNIK, V. Statistical Learning Theory. New York : Wiley. (2004)

[79] VON, v. Gaussian Process Models for Robist Regression, Classi�cation and Reinforce-

ment Learning. (2006):

[80] WANG, J., FLEET, D., AND HERTZMANN, A. Gaussian Process Dynamical Mod-

els. In Advances in Neural Information Processing Systems, NIPS (2006), Y. Weiss,

B. Schlkopf, and J. Platt, Eds., vol. 18, The MIT Press, pp. 1443� 1450:

[81] WILLIAMS, C. K. I. Computation with In�nite Neural Networks. Neural computa-

tion. (1998):

[82] WILLIAMS, C. K. I. and Barber, D. Bayesian Classi�cation with Gaussian Process.

IEEE Transactions on pattern analysis and machine intelligence, vol. 20, no. 12, pp.

142� 1351. (1998):

[83] WILLIAMS, C. K., AND RASMUSSEN, C. E. Gaussian Processes for Regression.

In Advances in Neural Information Processing Systems (1996), D. Touretzsky, M.

Mozer, and M. Hasselmo, Eds., vol. 8

[84] WILLIAMS, C. K. I., RASMUSSEN, C. E., SCHWAIGHOFER, A., AND TRESP,

V. Observations on the Nyström Method for Gaussian Process Prediction. Tech. rep.,

University of Edinburgh. (2002).

[85] WILLIAMS, C. K. I., AND SEEGER, M. Using the Nyström Method to Speedup

Kernel Machines. Advances in Neural Information Processing Systems 13. (2001).

89


	Abstract
	Résumé
	Acknowledgement
	Symbols and Abbreviations
	Table of Contents
	List of Figures
	List of tables
	General Introduction
	Generalities on images processing
	Definition of the image
	Definition of the digital image
	Types of images
	Raster image (bitmap)
	Vector image

	Tagged Image File Format (TIFF)
	Concepts and definitions

	The colors coding
	The binary images (black and white)
	The grayscale images
	The colors images

	Format of images files
	Windows BitMaP (BMP)
	Tagged Image File Format (TIFF)
	Joint Photographic Expert Group (JPEG)
	Graphics Interchange Format (GIF)
	Portable Network Graphic (PNG)

	Some processing of images
	Binarization
	Segmentation
	Skeletonization
	Convolution
	Filtering
	Mathematical morphology


	Gaussian Process
	A brief history of Gaussian process
	Gaussian process definition
	Examples of Gaussian process
	Brownian motion
	Brownian bridge
	Process of Ornstein-Uhlenbeck
	Geometric Brownian
	Gaussian white noise
	Fractional Brownian motion

	Covariance functions
	Examples of covariance functions
	Stationary covariance functions
	Non-stationary covariance functions


	Gaussian Process Classification
	Classification
	Baysian classification with Gaussian process
	Laplace approximation for binary GP classifier
	Posterior
	Predictions
	Marginal likelihood

	Multi-class Laplace approximation
	Expectation propagation

	Spatial Contextual Gaussian Process Classification
	Method description
	Expremental results
	Data set
	Results
	Interpretation

	The comparaison between SGPC method and MP-GPC method

	Conclusion
	Bibliography

