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Abstract

In this thesis we study some asymptotic properties of the kernel conditional
quantile estimator when the interest variable is subject to random left truncation.
The uniform strong convergence rate of the estimator is obtained. In addition,
it is shown that, under regularity conditions and suitably normalized, the kernel
estimate of the conditional quantile is asymptotically normally distributed.

Our interest in conditional quantile estimation is motivated by it�s robusteness,
the constructing of the con�dence bands and the forecasting from time series
data. Our results are obtained in a more general setting (strong mixing) which
includes time series modelling as a special case.

Keywords: Asymptotic normality; Conditional quantile; Kernel estimate; Strong
mixing; Strong uniform consistency; Truncated data.
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Résumé

Dans cette thèse nous étudions certaines propriétés asymptotiques de l�estimateur
à noyau du quantile conditionnel lorsque la variable d�intérêt est soumise à une
troncature aléatoire à gauche. La convergence uniforme presque sûre avec vitesse
de l�estimateur est obtenue. En outre, il est démontré que, sous des conditions
de régularité, l�estimateur à noyau du quantile conditionnel convenablement nor-
malisé est asymptotiquement normal.

L�intérêt principal dans l�étude de l�estimation des quantiles conditionnels est
sa robustesse, la construction des intervalles de con�ance et la prévision à par-
tir des données de séries chronologiques. Nos résultats sont obtenus dans un
cadre général (mélangeance forte), qui inclut des modèles populaires de séries
�nancières et économétriques comme cas particulier.

Mots-clés: Convergence uniforme forte; Données tronquées; Estimation à noyau;
Normalité asymptotique; Mélangeance forte; Quantiles conditionnels; Vitesse de
convergence.
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Avant-propos

Dans l�analyse de survie on doit souvent modéliser le lien entre la fonction de
survie et un certain nombre de facteurs (covariables ou variables explicatives).
Dans les études de durée de vie il se peut que pour certains individus on n�arrive
pas à observer l�événement d�intérêt. Par exemple, au cours d�une étude sur
les fumeurs, il est intéressant de savoir comment le temps de survie (la variable
d�intérêt) est in�uencé par l�âge auquel la personne a commencé à fumer. Les
personnes sont suivies pendant une certaine période de temps. Un fumeur qui
décède avant le début de l�étude est systématiquement exclu de l�échantillon et
donne lieu à ce qu�on appelle une observation tronquée à gauche. En revanche,
un fumeur non décédé avant la �n de l�étude donne lieu à ce qu�on appelle une
observation censurée à droite.

Une durée de vie est une variable aléatoire (va) souvent positive, précisément
c�est le temps nécessaire de passer d�un état A à un état B. Il n�est pas rare,
donc, que les données à traiter ne soient pas complètes, dans ce cas les techniques
classiques ne s�adaptent pas correctement aux données incomplètes. La littéra-
ture est beaucoup plus riche en ce qui concerne la censure que la troncature qui
est plus récente. Dans cette thèse, nous nous intéressons particulièrement, à la
troncature gauche qui est le cadre dans le quel nous avons apporté de nouveaux
résultats.

Le modèle de trancature est apparu tout d�abord en astronomie, mais il est ob-
servé dans plusieurs domaines comme la médecine, l�épidémiologie, la biométrie
et l�économie. La recherche d�objets cachés qui devront être assez grand pour
être détectés, comme les réserves de pétrole est un champ d�application pour
les données tronquées. De plus, les enquêtes de suivi médical où la troncature
gauche peut apparaître si le temps d�origine de la durée de vie précède le temps
d�origine de l�étude.

En cas de troncature gauche, nous ne sommes capable d�observer que les durées
de vie Y pour les quelles Y � T; ici T est la variable de troncature. Dans ce
cas, nous disposons d�un échantillon de taille n, dont la variable d�intérêt Y
est observable, cet échantillon est extrait d�un échantillon de plus grand taille
N inconnue. Les résultats statistiques doivent être donnés en considérant la
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Avant-propos ix

population dont est extrait le N�échantillon et non le n�échantillon. Il n�est
pas possible d�avoir un échantillon représentant toute la population considérée,
car lorsque Y < T rien ne peut être observé. Ceci implique qu�il y a plusieurs
mesures de probabilités et nécessite beaucoup de précaution pour énoncer les
résultats asymptotiques.

Lorsque l�on travaille avec des données tronquées, la proportion de la population
avec laquelle nous pouvons disposer d�une observation joue un rôle important
en estimation sous troncature. Cette probabilité notée � = P (Y � T ) pourrait

être estimée par la quantité
n

N
mais malheureusement cet estimateur ne peut

pas être calculé, car N est inconnue et la taille n de l�échantillon observé est
elle-même une variable aléatoire de loi binomiale B(N;�). En utilisant des esti-
mateurs produit-limites de Lynden-Bell (1971), He et Yang (1998) donnent un
estimateur calculable de � ainsi que des résultats de convergence asymptotique
dont la normalité. Nous rappelons dans le deuxième chapitre de cette thèse, les
principaux résultats concernant l�estimation sous la troncature gauche.

Bien que notre intérêt dans l�estimation non paramétrique soit motivé par la con-
struction des intervalles de con�ance à partir des données de séries chronologiques,
nous présentons nos résultats dans un cadre plus général (mélange fort) qui inclut
des modèles des séries chronologiques comme cas particulier. Dans le premier
chapitre, nous rappelons les concepts de base sur les mélanges avec certaines
propriétés liant les di¤érents coe¢ cients de mélanges. Il existe plusieurs types
de mélanges qui sont dé�nis à partir de coe¢ cients, notés, selon les cas, �; �;
�;  et �. Parmi toutes ces formes de mélanges le ��mélange est le plus faible.
Tout résultat énoncé pour des données ��mélangeantes sera valable pour des
données soumises à une autre forme de mélange, car toutes suites de va�s �; �;
 ou ��mélangeante sera donc forcément ��mélangeante.

Gorodetskii (1977) et Withers (1981) dérivent les conditions pour lesquelles un
processus linéaire est mélangeant. En fait, sous des hypothèses classiques le
modèle linéaire autorégressif et généralement les modèles bilinéaires de séries
chronologiques sont fortement mélangeant avec des coe¢ cients de mélange à
décroissance exponentielle. Auestad et Tj�stheim (1990) donnent des discussions
éclairantes sur le rôle des-mélange pour l�identi�cation du modèle dans l�analyse
de séries temporelles non linéaires. En outre, Masry et Tj�stheim (1995-97) ont
montré que sous certaines conditions douces, les deux processus autorégressif
conditionnellement hétéroscédastique ARCH et les processus autorégressifs non
linéaires additifs avec variables exogènes, qui sont particulièrement populaires
dans la �nance, sont stationnaires et mélangeant.

Récemment, des nouveaux développements ont eu lieu dans la théorie de sta-
tistique non paramétrique. Des résultats asymptotiques ont été obtenus pour
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certains estimateurs et prédicteurs pour des données incomplètes (sous tronca-
ture ou censure). Rappelons les travaux de Ould Saïd et Lemdani (2006) pour la
fonction de régression sous troncature, Ould Saïd et Sadki (2008) concernant les
quantiles conditionnels dans un modèle de censure à droite, Ould Saïd et Tat-
achak (2009) pour le mode conditionnel sous troncature à gauche et �nalement
Lemdani et al. (2009) ont étudié la fonction des quantiles conditionnels pour
des données tronquées mais dans le cas de va�s indépendantes et identiquement
distribués (i.i.d.).

Les médianes et quantiles conditionnels sont fréquemment utilisés dans l�analyse
des données de séries chronologiques avec des queues lourdes pour leurs pro-
priétés de robustesse. Il est bien connu, que la moyenne est sensible aux valeurs
aberrantes (voir Hampel et al. 1986), il peut être judicieux d�utiliser la médiane,
qui est un cas particulier du quantile, plutôt que la moyenne pour prévoir l�avenir
puisque la médiane est très robuste contre les valeurs aberrantes, en particulier
la fonction médiane conditionnelle pour distribution asymétrique.

Dans cette thèse nous étudions les propriétés asymptotiques de l�estimateur à
noyau du quantile conditionnel lorsque la variable d�intérêt est soumise à la
troncature gauche. Notre intérêt pour l�estimation des quantiles conditionnels
est motivé par la construction des intervalles de con�ance et de la prévision à
partir des données de séries chronologiques. Nos résultats sont dérivés dans un
cadre plus général, de stationnarité et de forte dépendance (i.e., ��mixing). Ce
type de dépendance modélise beaucoup de processus en particulier les modèles
ARMA ou ARCH souvent rencontrés en �nance et économétrie.

Le chapitre deux, est consacré aux rappels des résultats existants sur l�estimation
non paramétrique dans le cas du modèle tronqué aléatoirement à gauche. Plus
précisément ces résultats concernent les propriétés de convergence des estima-
teurs de la probabilité d�observer la variable d�intérêt Y (tronquée par la variable
T ) ainsi que les fonctions de répartition correspondantes notée F et G respec-
tivement. l�estimateur à noyau à été introduit par Ould Saïd et Lemdani (2006,
Ann. Instit. Statist. Math.) qui est rappelé ici. Il est bien connu que les
quantiles et les quantiles conditionnels sont une alternative à la prévision par
la moyenne et moyenne conditionnelle respectivement. L�estimateur à noyau du
quantile conditionnel en présence de troncature aléatoire à gauche, a été intro-
duit par Lemdani, Ould Saïd et Poulin (2009, J. of Multivariate Analysis) dont
les propriétés asymptotiques de convergence et de normalité ont été établies dans
le cas i.i.d.

Le troisième chapitre est consacré à l�extension des résultats de convergence uni-
forme presque sûre. Ici le triplet de données (Y; T;X) est supposé satisfaire une
condition de mélange fort, pour relaxer la condition i.i.d, supposée dans l�article
cité précédemment. La condition de mélange fort est satisfaite, en général, par
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des processus du type ARMA ou ARCH ainsi que leur extension GARCH(1; 1).
Ici, nous précisons que nous ne pouvons pas supposer que les données d�origine
(qui est le N�échantillon) satisfait une certaine forme de dépendance. En e¤et,
nous ne savons pas si les données observées sont ��mélangeante ou non. Et
s�ils le sont, nous ne connaissons pas le coe¢ cient. Par conséquent, nous sup-
posons que les données observées satisfont une sorte de condition de mélange.
Sous certaines hypothèses sur le noyau, la fenêtre et la régularité de la fonc-
tion des quantiles on montre la convergence uniforme presque sûre avec vitesse
de convergence de l�estimateur à noyau du quantile conditionnel en présence de
troncature aléatoire à gauche dans le cas de mélange. Ce travail a fait l�objet
d�une publication dans la revue Electronic Journal of Statistics, 2009, Vol.3,
426�445.

Le quatrième chapitre de cette thèse, traite de la normalité asymptotique de
l�estimateur à noyau pour le même modèle. Il est montré que cet estimateur
convenablement normalisé, converge en loi vers une variable aléatoire normale
centrée réduite, où la variance asymptotique est explicitement donnée. De même
pour la normalité, nos hypothèses permettent d�obtenir les mêmes vitesses que
le cas i.i.d. Des applications aux prévisions et aux intervalles de con�ances sont
également établis. Ce travail a fait l�objet d�une publication, qui est sous presse,
dans la revue Communications in Statistics, Theory & Method.
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Introduction

Recently new developments have taken place in the theory of nonparametric sta-

tistics. Asymptotic results have been obtained and special behavior of estimators

and predictors for incomplete data (under truncation and/or censoring) has been

pointed out, mentioning in fully nonparametric estimation the percursor work

of Ould Saïd and Lemdani [55] who established the asymptotic properties of

the regression function kernel estimator under pure truncation, Ould Saïd and

Sadki [56] which they study the conditional quantile for right censorship model,

Ould Saïd and Tatachak [57] concerning the kernel conditional mode function

from randomly left-truncated model and Lemdani et al. [45, 46] where they

study the quantile and conditional quantile functions under left-truncation but

for independent and identically distributed random variables.

However, the independence assumption for the observations is not always ade-

quate in applications, especially for sequentially collected economic data, which

often exhibit evident dependence. Our focus in the present thesis is to study

the strong uniform convergence and the asymptotic normality of the kernel con-

ditional quantile estimator used by Lemdani et al. [46] for the left truncation

model when the data exhibit some kind of dependence. Although our interest in

conditional quantile estimation is motivated by the forecasting from time series

data, our results are derived where the observations exhib some kind of depen-

dence (it is assumed that the lifetime observations with multivariate covariates

from a stationary strong mixing process).

Conditional medians and quantiles are frequently used in analyzing time series

data with heavy tails for their robustness properties. It is well known from the

robustness that the mean is sensible to outliers (see Hampel et al. [32]); it may

be sensible to use the median, which is a particular case of the quantile, rather

than the mean to forecast future since the median is highly resistant against

1



2 Introduction

outliers, especially the conditional median function for asymmetric distribution,

which can provide a useful alternative to the ordinary regression based on the

mean.

The nonparametric estimation of conditional quantile has �rst been considered

in the case of complete data (no truncation). Roussas [69] showed the conver-

gence and asymptotic normality of kernel estimates of conditional quantile under

Markov assumptions. For independent and identically distributed random vari-

ables, Stone [73] proved the weak consistency of kernel estimates. The uniform

consistency was studied by Schlee [72] for strong mixing case. The asymptotic

normality in the iid case has been established by Samanta [71]. Many other

authors considered this problem; without pretending to the exhaustiveness, we

quote Battacharya and Gangopadhay [2]. Jones and Hall [39], Mehra et al. [52],

Chaudhuri [13], Fan et al. [19], Welsh [84] and Xiang [88]. Hounda[13] dealt with

the strong mixing case and proved the uniform convergence and asymptotic nor-

mality of an estimate of the conditional quantile by considering the particular

case of stationary strong mixing process. Furthermore, Qui and Wu [63] ob-

tained the asymptotic normality of an estimator for a conditional quantile using

the empirical likelihood method and a linear �tting when some auxiliary infor-

mation is available. Finally Gannoun et al. [26] gave a smooth nonparametric

conditional median predictor, based on double kernel methods and established

its asymptotic normality and proposed an extension to the conditional quantile.

In censoring case, Beran [3] introduced a nonparametric estimate of the con-

ditional survival function and prove some consistency results which were later

exposed and extended by Dabrowska [15] in the iid case, and Lecoutre and Ould

Saïd [43] studied the consistency in the strong mixing case. Dabrowska [15] es-

tablished a Bahadur representation of kernel quantile estimator and Xiang [87]

obtained the de�ciency of the sample quantile estimator with respect to a ker-

nel estimator using coverage probability. Other large samples properties of the

conditional distribution have been studied extensively in the literature (see, e.g.,

Stute [75] and Van Keilegomand and Veraverbeke [80, 81, 82]). In the recent pa-

per of Ould Saïd [54] (see also Kohler et al. [40] and Carbonnez et al. [12]), who

established a strong uniform convergence rate of a kernel conditional quantile

estimator under iid censorship model.

In the random left-truncation model, Gürler et al. [30] established a Bahadur-
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type representation for the quantile function and asymptotic normality. Its ex-

tension to time series analysis have been obtained by Lemdani et al. [45]. A

nonparametric regression function estimator with randomly truncated data is

considered in [28], [42], [35] and [55]. In the same way, Lemdani et al. [46]

introduce a kernel conditional quantile estimator and prove its almost sure (a.s.)

consistency and asymptotic normality in the independent and identically distrib-

uted case.

Although our interest in nonparametric estimation is motivated by the construct-

ing of the con�dence intervals from time series data, we introduce our results in

a more general setting (strong mixing) which includes time series modeling as

a special case. Among various mixing conditions used in literature, ��mixing
is reasonably weak, and is known to be ful�lled for many stochastic processes

including many time series models. Gorodetskii [29] and Withers [85] derived the

conditions under which a linear process is ��mixing. In fact, under very mild
assumptions linear autoregressive and mor generally bilinear time series models

are strongly mixing with mixing coe¢ cients decaying exponentially. Auestad

and Tj�stheim [1] provided illuminating discussions on the role of ��mixing
for model identi�cation in nonlinear time series analysis. Further, Masry and

Tj�stheim [50, 50] showed that under some mild conditions, both autoregres-

sive conditional heteroscedastic process and nonlinear additive autoregressive

processes with exogenous variables, which are particularly popular in �nance,

are stationary and ��mixing.

After having recalled the main basic concepts on truncated and mixing data in

the �rst chapter, we give in a second chapter, some important and useful results

existing in the literature for the random left truncation model. In the third

chapter, under strong mixing hypotheses, the strong uniform convergence with

rates of the kernel conditional quantile and that of the conditional distribution

function is established under random left truncation and dependent data. In

the fourth chapter of this thesis, we give the asymptotic normality of the kernel

conditional quantile estimator still for the left-truncated and dependent data.



Chapter 1

Basic concepts

1.1 Incomplete data

One hears by lifetime, the random variable, often positive. Indeed this variable is

observed in several domains as the astronomy, medicine, epidemiology, biometry,

and the economy... A lifetime is therefore, in a general case, the time that it is

necessary to pass from a state A to a state B. It is not rare that data to treat

are not complete, in this case a classical techniques don�t adjust correctly to the

incomplete data. Since our work carries on the incomplete data, and in order to

give back easy the reading of this thesis, we give some de�nitions and examples

of the incomplete data.

1.1.1 Censoring

De�nition 1.1.1 Censoring is when an observation is incomplete due to some
random case. The cause of the censoring must be independent of the event of

interest if we are to use standard methods of analysis.

Example 1.1.2 Lung cancer patients are recruited to a study to test the e¤ect
of a drug on their survival from lung cancer.

a) takes part in the study until her death at time Ta: Her survival time is
uncensored.

b) takes part in the study until time Tb: He then leaves the study. His survival
time is censored. We know it is at least Tb but we don�t know it precisely.

c) takes part in the study until time Tc: She then is hit by a car and dies. Her

4



1. Basic concepts 5

survival time with regard to the event of interest, namely death through lung

cancer, is also censored. We know is it at least Tc.

Commonest form of censoring isRight censoring. Subjects followed until some
time, at which the event has yet to occur, but then talks no further part in the

study. This may be because:

� the subject dies from another cause, independently of the cause of interest,

� the study ends while the subject survives, or

� the subject is lost to the study, by dropping out, moving to a di¤erent
area, etc.

If our data contain only uncensored and right-censored data, we can represent

all individuals by the triple (i; ti; �i) :

� i indexes subjects,

� ti is the time at which the death or censoring event occurs to individual i,

and

� �i is an indicator: �i = 1 if i is uncensored and �i = 0 if censored.

Remark 1.1.3 Left censoring is much rare, in this case, event of interest al-
ready occurred at the observation time, but it is not known exactly when. Exam-

ples of left censoring include: infection with a sexually transmitted disease such

as HIV/AIDS and time at which teenagers begin to drink alcohol.

De�nition 1.1.4 Interval censoring: exact time event occurs is not known pre-
cisely, but an interval bounding this time is known. Examples of interval cen-

soring include: infection with HIV/AIDS with regular testing and failure of a

machine during the Chinese new Year.
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1.1.2 Truncation

The censored data are not the unique type of incomplete data. The other classic

case is the one of the so-called truncated data, that modeling the lifetime by

a variable Y that must be big enough to be observed. Must of it in fact to be

bigger than the truncation variable T . Therefore contrarily to the censored data,

variables are not still observed being given that if Y < T , nor Y nor truncation

T can not be observed. It is a model that �rst appeared in astronomy where

is composed of astral objects. The truncated data are frequently used on the

lifetime study. At the end of 1980, some statistical studies were undertaken on

the time of incubation of the virus of the AIDS, that is the time during which a

person is seropositive without to develop the illness as much.

De�nition 1.1.5 Truncation is a variant of censoring but di¤erent which occurs
when the incomplete nature of the observation is due to a systematic selection

process inherent to the study design.

Randomly truncated data frequently arise in medical studies, other application

areas include economics, insurance and astronomy... In a broad sense, random

truncation corresponds to biased sampling, where only partial or incomplete data

are available about the variable of interest. One has two type of truncation, as

follows:

i) Right truncation: only individuals with event time less than some threshold

are included in the study. As example, if you ask a group of smoking school

pupils at what age they started smoking, you necessarily have truncated data,

as individuals who start smoking after leaving school are not included in the

study.

ii) Left truncation: due to structure of the study design, we can only observe

those individuals whose event time is greater than some truncation threshold. As

example, imagine you wish to study how long people who have been hospitalized

for a heart attack survive taking some treatment at home. The start time is

taken to be the time of the heart attack. Only those individuals who survive

their stay in hospital are able to be included in the study.
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1.2 Mixing conditions

For many phenomena of the real world, observations in the past and present

may have considerable in�uence on observations in the near future, but rather

weak in�uence on observations in the far future. Random sequences that satisfy

strong mixing conditions are used to model such phenomena.

In the reality, the treated data present a certain form of dependence or mixing,

and they exists several form of mixing that expresses themselves according to

coe¢ cients, noted: �; �; �;  and �. Among those, the alpha-mixing is weakest

and is therefore least restraining. Thus, all results statement for alpha mixing

data will be valid for the submissive data to another type of mixing.

1.2.1 De�nitions and properties

There is large literature on basic properties of strong mixing conditions. For the

approximation of mixing sequences by martingale di¤erences, see the book by

Hall and Heyde [31]. For the direct approximation of mixing random variables

by independent ones, see [53], [62] and [66, Chapter 5], for mixing proprieties of

linear processes, see [18] and [68]. For a recent developpement see Bradley [8].

Mixing conditions, as introduced by Rosenblatt [89] are weak dependence con-

ditions in terms of the ��algebras generated by a random sequence. In order to
de�ne such conditions we �rst introduce the conditions relative to sub ��algebras
A;B � z on an abstract probability space (
;z; P ), let L2 (A) denote the space
of square integrable and A�measurable random variables. De�ne the following

measures of dependence :

� (A;B) := sup jP (A \B)� P (A)P (B)j ; A 2 A; B 2 B;
� (A;B) := sup jP (BjA)� P (B)j ; A 2 A; B 2 B and P (A) > 0

 (A;B) := sup
���� P (A \B)P (A)P (B)

� 1
���� ; A 2 A; B 2 B; P (A) > 0 and P (B) > 0

� (A;B) := sup jcorr (f; g)j ; f 2 L2 (A) , g 2 L2 (B)

� (A;B) := sup 1
2

IP
i=1

JP
j=1

jP (Ai \Bj)� P (Ai)P (Bj)j ;

where the supremum is taken over all pairs of �nite partitions fA1; :::; AIg and
fB1; :::; BJg of 
 such that Ai 2 A for each i and Bj 2 B for each j:
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The following inequality give the ranges of possible values of those measures of

dependence:
0 � � (A;B) � 1

4
; 0 � � (A;B) � 1;

0 �  (A;B) � 1; 0 � � (A;B) � 1 and
0 � � (A;B) � 1:

Each of the following equalities is equivalent to the condition that A and B are
independent:

� (A;B) = 0; � (A;B) = 0;
 (A;B) = 0; � (A;B) = 0 and
� (A;B) = 0:

Finally, the measures of dependence satisfy the following inequalities:8><>:
2� (A;B) � � (A;B) � � (A;B) � 1

2
 (A;B) ;

4� (A;B) � � (A;B) �  (A;B) ;
� (A;B) � 2 [� (A;B)]1=2 [� (B;A)]1=2 � 2 [� (A;B)]1=2 :

(1.1)

The �rst and second inequalities are elementary, the third inequality was shown

by Peligrad[59] with an extension of the arguments used by Cogburn [14] and

Ibrahgimov [38] to show the inequality � (A;B) � 2 [� (A;B)]1=2 (see also Doob
[17, p222, lemma 7.1]).

1.2.2 Strong mixing conditions

Suppose X := (Xk; k 2 Z) is a (not necessarily stationary) sequence of random
variables. For �1 � I � J � 1, de�ne the ���eld

FJ
I := � (Xk; I � k � J; (k 2 Z)) :

Here and below, the notation � (� � �) means the ���eld � F generated by (� � �).
For each n � 1, de�ne the following dependence coe¢ cients :

� (n) := sup
j2Z

�
�
F j
�1;F1

j+n

�
; � (n) := sup

j2Z
�
�
F j
�1;F1

j+n

�
;

 (n) := sup
j2Z

 
�
F j
�1;F1

j+n

�
; � (n) := sup

j2Z
�
�
F j
�1;F1

j+n

�
and

� (n) := sup
j2Z

�
�
F j
�1;F1

j+n

�
:

The random sequence X is said to be :

� ��mixing (or strong mixing) if � (n)! 0 as n!1;
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� ��mixing if � (n)! 0 as n!1;

�  �mixing if  (n)! 0 as n!1;

� ��mixing if � (n)! 0 as n!1 and

� ��mixing (or absolutely regular) if � (n)! 0 as n!1:

The strong mixing condition was introduced by Rosenblatt [69]. The ��mixing
condition was introduced by Ibragimov [37], and was also studied by Cogburn

[14]. The  �mixing condition had its origin in a paper by Blum et al. [5]

studying a di¤erent condition based on the same measure of dependence, and it

took its present form in the paper of Philipp [61]. The ��mixing condition was
introduced by Kolmogorov and Rozanov [41]. The absolute regularity condition

was introduced by Volkonskii and Rozanov [78, 79]. In the special case where

the sequence X is strictly stationary, one has simply

� (n) := sup�
�
F0
�1;F1

n

�
;

and the same holds for the other dependence coe¢ cients.

Remark 1.2.1 It needs to be kept in mind that two barely di¤erent phrases
are used with quite di¤erent meanings: The phrase "strong mixing condition"

(singular), or simply "strong mixing" refers to ��mixing (� (n)! 0) as above.

In contrast, the phrase "strong mixing conditions" (plural) refers to all mixing

conditions that are at least as strong as (i.e. that imply) ��mixing. The latter
phrase "strong mixing conditions" is intended to distinguish from a broad class

of "mixing conditions" from ergodic theory that are weaker than ��mixing (See
e.g. Petersen [60]).

Finally, from (1.1), The following relations hold:

��mixing =)
(
��mixing

� �mixing

)
=) ��mixing

and no reverse implication holds in general.

Remark 1.2.2 For more details on the mixing conditions, one can consult for
example: Doukhan [18], Bosq [7], Rio [66], Bradley [8] and Dedecker et al. [16].



Chapter 2

Estimation under random
left-truncation model

In this chapter, we present some important and useful results existing in the

literature for the random left truncation model :

2.1 Random left-truncation model

Let (Yj; Tj), 1 � j � N; be a sequence of iid random vectors such that (Yj) is
independent of (Tj). Let F and G denote the respective common distribution

functions of the Yj values and Tj values. In the random left truncation model

(RLT), the rv of interest Y is interfered by the truncation rv T , in such a way
that both Yj and Tj are observable when Yj � Tj.

If there were no truncation, we could think of the observations as (Yj; Tj) ; 1 �
j � N , where the sample size N is deterministic, but unknown. Under RLT,

however, some of these vectors would be missing and for notational convenience,

we shall denote (Yi; Ti) ; 1 � i � n; (n � N) the observed subsequence subject to

Yi � Ti from the N�sample. As a consequence of truncation, the size of actually
observed sample, n, is a binomial rv with parameters N and � := P (Y � T ) : It
is clear that, the parameter � represent the probability that we observe the rv

of interest Y, however, if � = 0 no data can be observed. Therefore, we suppose
throughout the thesis that � > 0. By the strong law of large numbers we have,

as N !1
�̂n :=

n

N
! �; P�a:s: (2.1)

10
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Conditionally on the value of n, these observed random vectors are still iid.

Under RLT sampling scheme, the conditional joint distribution (Stute [74]) of

(Y; T ) becomes

J�(y; t) = P (Y � y; T � t) = P (Y � y; T � tjY � T )

= ��1
Z y

�1
G(t ^ u)dF (u)

where t ^ u := min(t; u). The marginal distribution are de�ned by

F �(y) := J�(y;1) = ��1
Z y

�1
G(u)dF (u)

and

G�(t) := J�(1; t) = ��1
Z 1

�1
G(t ^ u)dF (u)

= ��1
Z t

�1
(1� F (u)) dG (u) ;

which are estimated by

F �n(y) = n�1
nX
i=1

1fYi�yg and G�n(t) = n�1
nX
i=1

1fTi�tg

respectively, where 1A denotes the indicator function of the set A: Let C (�) be
a function de�ned by

C (y) = P (T � y � Y jY � T ) := G�(y)� F �(y)

= ��1G (y) [1� F (y)] ;

with empirical estimator

Cn(y) = G�n(y)� F �n(y�) = n�1
Xn

i=1
1fTi�y�Yig:

The nonparametric maximum likelihood estimators of F and G are the product-

limit estimators (Lynden-Bell [48]) given by

Fn(y) = 1�
Y
i=Yi�y

�
nCn(Yi)� 1
nCn(Yi)

�
and Gn(y) =

Y
i=Ti>y

�
nCn(Ti)� 1
nCn(Ti)

�
: (2.2)
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2.2 Estimation of the truncation probability

For any df L; denotes the left and right endpoint of its support by

aL := inf fx : L(x) > 0g and bL := sup fx : L(x) < 1g ;respectively. Conse-
quently, � is identi�able only if aG � aF and bG � bF : Note that the estimator

�̂n de�ned in equation (2.1) cannot be calculated (since N is unknown). Another

estimator, namely

�n =
Gn(y) [(1� Fn(y�))]

Cn (y)
; (2.3)

is used, where Fn(y�) denotes the left-limite of Fn(�) at y.

Lemma 2.2.1 (Liang et al. [42]) Let fYi; i � 1g be a stationary ��mixing
sequence of rv�s with mixing coe¢ cient � (n) = O (n��) for some � > 3. Then

sup
y
jCn (y)� C (y) j = O

�
(log log n=n)1=2

�
; a:s: (2.4)

sup
y
jFn (y)� F (y) j = O

�
(log log n=n)1=2

�
; a:s: (2.5)

sup
y
jGn (y)�G (y) j = O

�
(log log n=n)1=2

�
; a:s: (2.6)

sup
y
j�n � �j = O

�
(log log n=n)1=2

�
; a:s: (2.7)

Remark 2.2.2 Under iid setting, Woodroofe [86, Theorem 2] established the

uniform consistency results of Fn and Gn :

sup
y

jFn (y)� F0 (y)j
P�a:s:! 0; and sup

y
jGn (y)�G0 (y)j

P�a:s:! 0; (2.8)

where F0 denotes the conditional distribution of Y given Y � aG and G0 is the

conditional distribution of T given T � bF : Therefore, F is identi�able (F = F0)

only when aG � aF ; whereas G is identi�able (G = G0) only when bG � bF : As

pointed out by Ould Saïd and Lemdani [55], these are necessary but not su¢ cient

identi�ability conditions. He and Yang [34] proved that �n does not depend on y

and its value can then be obtained for any y such that Cn (y) 6= 0. Furthermore,
they showed -in the iid case- (see their Corollary 2.5) its P�a:s: consistency.

Remark 2.2.3 Under ��mixing structure, Sun and Zhou [76] expressed the
product limit estimator Fn as an average of a sequence of bounded rv�s plus a

remainder term of order O
�
n�1=2 log�& n

�
for some & > 0, and obtained similar

results as those obtained for the Kaplan�Meier estimator for censored dependent

data (see Cai [11]).



2. Estimation under random left-truncation model 13

The proof of Lemma 2.2.1 is based on the next result :

Lemma 2.2.4 (Cai and Roussas [9]) Let f�n; n � 1g be a stationary ��mixing
sequence of rv�s with df F and mixing coe¢ cient � (n) = O (n��) for some � > 3;

and let Fn be the empirical df based on the segment �1; � � �; �n. Then

lim sup
n!1

(�
n

2 log log n

�1=2
sup
x2IR

jFn (x)�F (x) j
)
= 1; a:s:

Set

� (y) =

yZ
0

dF � (u)

C (u)
; �n (y) =

yZ
0

dF �n (u)

Cn (u)
; �� (y) =

1Z
y

dG� (u)

C (u)
; ��n (y) =

1Z
y

dG�n (u)

Cn (u)
:

Obviously

�n (y) =
nX
i=1

1fYi�yg
nCn (Yi)

; ��n (y) =
nX
i=1

1fTi>yg
nCn (Ti)

:

Proof of Lemma 2.2.1. By applying Lemma 2.2.4 we have

sup
y
jF �n (y)�F � (y) j = O (�n) a:s: and sup

y
jG�n (y)�G� (y) j = O (�n) a:s:

(2.9)

where �n = (log log (n) =n)
1=2 :

We �rst verify (2.4). Since

C(y) = G�(y)� F �(y) and Cn(y) = G�n(y)� F �n(y�);

by (2.9) we get (2.4).

We now consider (2.5). We de�ne

�Fn(y) = 1�
Y
i=Yi�y

�
1� 1

nCn(Yi) + 1

�
:
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By using inequality je�x � e�yj � jx� yj for x; y � 0 and expanding ln
�
1� �Fn

�
;

we get

��1� �Fn � e��n(y)
�� � ��ln �1� �Fn

�
+ �n (y)

��
=

������
X
i=Yi�y

1

nCn(Yi)
�
X
i=Yi�y

X
k�0

1

k [nCn(Yi) + 1]
k

������
� 3

2

X
i=Yi�y

1

nCn(Yi) [nCn(Yi) + 1]

� 3

2n

yZ
0

dF �n (u)

C2n (u)
: (2.10)

Since �����
nY
i=1

ai �
nY
i=1

bi

����� �
nX
i=1

jai � bij for jaij ; jbij � 1;

we have

jFn (y)� �Fn (y) j = j (1� Fn (y))�
�
1� �Fn (y)

�
j

� 1

n

yZ
0

dF �n (u)

C2n (u)
: (2.11)

Noticing that by (2.10) and (2.11)

1� Fn (y)� e��n(y) = O
�
n�1
� yZ
0

dF �n (u)

C2n (u)
(2.12)

and 1� F (y) = e��(y); we have

jFn (y)� F (y)� [1� F (y)] [�n (y)� � (y)]j

=
���e��(y) � e��n(y)

�
� e��(y) [�n (y)� � (y)]� 1� Fn (y)� e��n(y)

��
� e��2n(y) [�n (y)� � (y)]2 +

��1� Fn (y)� e��n(y)
�� ; (2.13)

where �2n (y) is between �1n (y) and �n (y) ; and �1n (y) is between �n (y) and

� (y) :



2. Estimation under random left-truncation model 15

Note that

�n (y)� � (y) =
yZ
0

dF �n (u)

Cn (u)
�

yZ
0

dF � (u)

C (u)

=

yZ
0

�
1

C (u)
� 1

Cn (u)

�
dF �n (u) +

yZ
0

d (F �n (u)� F � (u))

C (u)

=

yZ
0

C (u)� Cn (u)

C (u)Cn (u)
dF �n (u) +

F �n (y)� F � (y)

C (y)

+

yZ
0

F �n (u)� F � (u)

C2 (u)
dC (u) ;

which, together with (2.4) and (2.9), implies

sup
y
j�n (y)� � (y)j = O (�n) a:s: (2.14)

Therefore, from (2.12)�(2.14) we conclude

sup
y
jFn (y)� F (y) j = O (�n) ; a:s:; (2.15)

proving (2.5).

Next we prove (2.6), denote

�Gn(y) = 1�
Y
i=Ti>y

�
1� 1

nCn(Ti) + 1

�
:

Similarly to the proof of (2.5) we have���Gn (y)� e�
��n(y)

��� � ��� �Gn (y)� e�
��n(y)

���+ ��Gn (y)� �Gn (y)
��

�
��ln � �Gn (y)�+ ��n (y)��+ ��Gn (y)� �Gn (y)

��
=
3

2

X
i=Ti>y

1

nCn(Ti) [nCn(Ti) + 1]
+
X
i=Ti>y

1

nCn(Ti) [nCn(Ti) + 1]

� O
�
n�1
� 1Z
y

dG�n (u)

C2n (u)
: (2.16)
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Note that

��n (y) =

1Z
y

dG� (u)

C (u)
=

1Z
y

dG (u)

C (u)
= � ln (G (y)) ;

which implies G (u) = e�
��(y): Hence we have��(Gn (y)�G (y)) +G (y)
�
��n (y)� �� (y)

���
�
���Gn (y)� e�

��n(y)
���+ ����e���(y) � e�

��n(y)
�
� e�

��(y)
�
��n (y)� �� (y)

����
=
���Gn (y)� e�

��n(y)
���+ e��4n(y)

����n (y)� �� (y)�� ���3n (y)� �� (y)�� ; (2.17)

where �4n (y) is between �3n (y) and �� (y) ; and �3n (y) is between ��n (y) and
�� (y) :

We observe that

����n (y)� �� (y)�� = 1Z
y

dG�n (u)

Cn (u)
�

1Z
y

dG� (u)

C (u)

=

1Z
y

C (u)� Cn (u)

C (u)Cn (u)
dG�n (u) +

G�n (y)�G� (y)

C (y)

+

1Z
y

G�n (u)�G� (u)

C2 (u)
dC (u) : (2.18)

Therefore, from (2.4), (2.9) and (2.16)�(2.18) we conclude (2.6), that is,

sup
y
jGn (y)�G (y) j = O (�n) ; a:s:

Finally we prove (2.7). We observe that

�n � � =
Gn (y) [1� Fn (y�)]

Cn (y)
� G (y) [1� F (y�)]

C (y)

=
1

Cn (y)C (y)
fC (y) [1� Fn (y�)] [Gn (y)�G (y)]

+ C (y)G (y) [F (y)� Fn (y�)]� [Cn (y)� C (y)]G (y) [1� F (y�)] g:

Hence, from the continuity of F and equations (2.4), (2.5) and (2.6) we obtain

(2.7). �
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2.3 Estimation of the covariate�s density

Now, in addition to the considered previously variables Y and T , we consider a
random vector X 2IRd of covariates, assumed to be absolutely continuous with
distribution function V (�) and continuous density v (�) : We could think of the
observations as (Xj;Yj; Tj) ; 1 � j � N , where the sample size N is deter-

ministic, but unknown. Under RLT, however, some of these vectors would be

missing and for notational convenience, we shall denote (Xi; Yi; Ti) ; 1 � i � n;

(n � N) the observed subsequence subject to Yi � Ti from the N�sample. From
now on, T is assumed to be independent of (X; Y ) and (X � x) stands for
(X1 � x1; � � �; Xd � xd) :

We build here estimators of V (�) and v (�) : Firstly, the naturel kernel estimator
of the covarite�s denstiy v (�) is given by

vN (x) :=
1

NhdN

NX
j=1

Kd

�
x�Xj
hN

�
; (2.19)

whereKd : IR
d ! IR is a �xed kernel with

R
IRd

Kd = 1 and (hN)N�1 a nonnegative

bandwidth sequence tending to zero as N grows to in�nity. Note that we can

no longer use the kernel estimator vN (�) ; since only (n � N) observations are

made. On the other hand,

v�n (x) :=
1

Nhdn

nX
i=1

Kd

�
x�Xi

hn

�
(2.20)

is an estimator of the conditional density v� (�) (subject to Y � T ). To over-

come this di¢ culty, we �rst consider the following trivariate conditional joint

distribution H� of (X; Y; T ) :

H� = P (X � x; Y � y; T � t)

= P (X � x; Y � y; T � tjY � T )

= ��1
Z
u�x

Z
aG�v�y

G(t ^ u)F(du; dv);

where F(�; �) is the joint distribution function of (X; Y; ). Taking t = +1; the

observed pair then has the following distribution F�(�; �) :

F�(x; y) = H�(x; y;+1)

= ��1
Z
u�x

Z
aG�v�y

G(u)F(du; dv): (2.21)
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By di¤erentiating (2.21), we get

F(dx; dy) =
1

��1G (y)
F�(dx; dy); for y � aG: (2.22)

Hence

f(x; y) =
1

��1G (y)
f�(x; y): (2.23)

Integrating (2.22) over y, we obtain the df of X :

V (x) = ��1
Z
u�x

Z
aG�y

1

G (y)
F�(du; dy):

A natural estimator of V (x) is then given by

Vn(x) =
�n
n

nX
i=1

1

Gn (Yi)
1(Xi�x): (2.24)

Note that in (2.24) and in the sequel, the sum is taken only for i such that

G (Yi) 6= 0: Finally (2.24) yields the density estimator of X as

vn(x) =
1

hdn

Z
IRd

Kd

�
x� u
hn

�
Vn(du)

=
�n
nhdn

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
; (2.25)

where (hn)n�1 a positive bandwidth sequence tending to zero as n grows to

in�nity.

Adopting the same methodology, and while observing (2.23), we get an estimator

of F(x; y) as follows

Fn(x; y) =
�n
n

nX
i=1

1

Gn(Yi)
1(Xi�x;Yi�y):

According to (2.23), we de�ne the kernel estimate of joint probability density

function f(x; y) as follows

fn(x; y) =
1

hdn`n

Z
IRd�IR

Kd

�
x� u
hn

�
K0

�
y � v

`n

�
Fn(du; dv)

=
�n

nhdn`n

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
K0

�
y � Yi
`n

�
; (2.26)

where K0 : IR ! IR is a �xed kernel with
R
IR
K0 = 1 and (`n)n�1 is de�ned as

(hn)n�1 above.
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3.1 Introduction

Let Y and T be two real random variables (rv) with unknown cumulative dis-

tribution functions (df) F and G respectively, both assumed to be continuous.

Let X be a real-valued random covariable with df V and continuous density v:

Under random left-truncation (RLT), the rv of interest Y is interfered by the

truncation rv T , in such a way that Y and T are observed only if Y � T . Such
data occur in astronomy and economics (see Woodroofe [86], Feigelson and Babu

[20], Wang et al. [83], Tsai et al. [77]) and also in epidemiology and biometry

(see, e.g., He and Yang [33]).

If there were no truncation, we could think of the observations as (Xj;Yj; Tj) ;
1 � j � N , where the sample size N is deterministic, but unknown. Under RLT,

however, some of these vectors would be missing and for notational convenience,

we shall denote (Xi; Yi; Ti) ; 1 � i � n; (n � N) the observed subsequence subject

to Yi � Ti from the N�sample.

As a consequence of truncation, the size of actually observed sample, n, is a

binomial rv with parameters N and

� := P (Y � T ) > 0: By the strong law of large numbers we have, as N !1

�̂n :=
n

N
! �; P�a:s: (3.1)

Now we consider the joint df F(�; �) of the random vector (X ;Y) related to the
N�sample and suppose it is of class C1: The conditional df of Y given X = x;

that is F(yjx) = IE
�
1fY�ygjX = x

�
which may be rewritten into

F(�jx) = F1(x; �)
v(x)

(3.2)

where F1(x; �) is the �rst derivative of F (x; �) with respect to x. For all �xed
p 2 (0; 1), the pth conditional quantile of F given X = x is de�ned by

qp(x) := inf fy 2 IR : F(yjx) � pg :

It is well known that the quantile function can give a good description of the data

(see, Chaudhuri et al. [13]), such as robustness to heavy-tailed error distributions

and outliers, especially the conditional median function q1=2(x) for asymmetric

distribution, which can provide a useful alternative to the ordinary regression
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based on the mean. The nonparametric estimation of conditional quantile has

�rst been considered in the case of complete data (no truncation). Roussas

[69] showed the convergence and asymptotic normality of kernel estimates of

conditional quantile under Markov assumptions. For independent and identically

distributed (iid) rv�s, Stone [73] proved the weak consistency of kernel estimates.

The uniform consistency was studied by Schlee [72] and Gannoun [23]. The

asymptotic normality has been established by Samanta [71]. Mehra et al. [52]

proposed and discussed certain smooth variants (based both on single as well as

double kernel weights) of the standard conditional quantile estimator, proved the

asymptotic normality and found an almost sure (a.s.) convergence rate, whereas

Xiang [87] gave the asymptotic normality and a law of the iterated logarithm for

a new kernel estimator. In the dependent case, the convergence of nonparametric

estimation of quantile was proved by Gannoun [24] and Boente and Fraiman [6].

In the RLT model, Gürler et al. [30] gave a Bahadur-type representation for the

quantile function and asymptotic normality. Its extension to time series analysis

was obtained by Lemdani et al. [45].

The aim of this paper is to establish a strong uniform convergence rate for the

kernel conditional quantile estimator with randomly left-truncated data under

��mixing conditions whose de�nition is given below. Hence, we extend the
obtained result by Lemdani et al. [46] in the iid case.

First, let Fk
i (Z) denotes the �-�eld of events generated by fZj; i � j � kg. For

easy reference, let us recall the following de�nition.

De�nition 3.1.1 Let fZi; i � 1g denotes a sequence of random variables. Given
a positive integer n, set:

�(n) = sup
�
jP(A \B)�P(A)P(B)j : A 2 Fk

1 (Z); B 2 F1
k+n(Z); k 2 IN

	
:

The sequence is said to be ��mixing (strongly mixing) if the mixing coe¢ cient
�(n)! 0:

Among various mixing conditions used in the literature, ��mixing is reasonably
weak and has many practical applications (see, e.g. Doukhan [18] or Cai ([10, 11]

for more details). In particular, Masry and Tj�stheim [50] proved that, both

ARCH processes and nonlinear additive AR models with exogenous variables,
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which are particularly popular in �nance and econometrics, are stationary and

��mixing.

The rest of this chapter is organized as follows. In Section 2, we recall a de�nition

of the kernel conditional quantile estimator with randomly left-truncated data.

Assumptions and main results are given in Section 3. Section 4 is devoted to

application to prediction. Finally, the proofs of the main results are postponed

to Section 5 with some auxiliary results and their proofs.

3.2 De�nition of the estimator

In the sequel, the letters C and C 0 are used indiscriminately as generic con-

stants. Note also that, N is unknown and n is known (although random), our

results will not be stated with respect to the probability measure P (related
to the N�sample) but will involve the conditional probability P (related to the
n�sample). Also IE and E will denote the expectation operators related to P and
P, respectively. Finally, we denote by a superscript (�) any df that is associated

to the observed sample.

The estimation of conditional df is based on the choice of weights. For the

complete data, the well-known Nadaraya-Watson weights are given by

Wi;N(x) =
Kd f(x�Xi) =hNgPN
i=1Kd f(x�Xi) =hNg

=

�
NhdN

��1
Kd f(x�Xi) =hNg
vN(x)

(3.3)

that are measurable functions of x depending on X1; :::;XN ; with the convention
0=0 = 0: The kernel Kd is a measurable function on IRd and (hN) a nonnegative

sequence which tends to zero as N tends to in�nity. The regression estimator

based on the N -sample is then given by

rN(x) =

�
NhdN

��1Pn
i=1 YiK f(x�Xi) =hNg
vN(x)

(3.4)

where vN is a well known kernel estimator of v based on the N�sample. As N
is unknown, then vN(�) cannot be calculated and therefore rN(�). On the other
hand, based on the n�sample, the kernel estimator

v�n(x) =
1

nhn

nX
i=1

K

�
x�Xi

hn

�
(3.5)
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is an estimator of the conditional density v�(x) (given Y � T ), see Ould Saïd
and Lemdani [55].

Under RLT sampling scheme, the conditional joint distribution (Stute, [74]) of

(Y; T ) becomes

J�(y; t) = P (Y � y; T � t) = P (Y � y; T � tjY � T )

= ��1
Z y

�1
G(t ^ u)dF (u);

where t^ u := min(t; u). The marginal distribution and their empirical versions
are de�ned by

F �(y) = ��1
Z y

�1
G(u)dF (u); F �n(y) = n�1

nX
i=1

1fYi�yg;

G�(t) = ��1
Z 1

�1
G(t ^ u)dF (u) and G�n(t) = n�1

nX
i=1

1fTi�tg;

where 1A denote the indicator function of the set A:

In the sequel we use the following consistent estimator

�n =
Gn(y) [(1� Fn(y�))]

Cn (y)
; (3.6)

for any y such that Cn (y) 6= 0, where Fn(y�) denotes the left-limite of Fn(�) at
y. Here Fn and Gn are the product-limit estimators (Lynden-Bell, [48]) for F

and G; respectively i.e.,

Fn(y) = 1�
Y
i=Yi�y

�
nCn(Yi)� 1
nCn(Yi)

�
; Gn(y) =

Y
i=Ti>y

�
nCn(Ti)� 1
nCn(Ti)

�
and Cn(y) = n�1

Pn
i=11fTi�y�Yig is the empirical estimator of

C (y) = P (T � y � Y jY � T ) :

He and Yang [34] proved that �n does not depend on y and its value can then

be obtained for any y such that Cn (y) 6= 0. Furthermore, they showed in the iid
case (see their Corollary 2.5) its P�a:s: consistency.

Suppose that one observes the n triplets (Xi; Yi; Ti) among theN ones and for any

df L; denote the left and right endpoint of its support by aL := inf fx : L(x) > 0g



24 3. A strong uniform convergence rate...

and bL := sup fx : L(x) < 1g ; respectively. Then under the current model, as
discussed by Woodroofe [86], F and G can be estimated completely only if

aG � aF ; bG � bF and
Z 1

aF

dF

G
<1:

In order to estimate the marginal density v we have to take into account the

truncation and the estimator

vn(x) =
�n
nhdn

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
(3.7)

is considered in Ould Saïd-Lemdani [55]. Note that in this formula and the

forthcoming, the sum is taken only for i such that Gn (Yi) 6= 0:

Then, adapting Ould Saïd-Lemdani�s weights, we get the following estimator of

the conditional df of Y given X = x

Fn(yjx) = �n

nX
i=1

fWi;n(x)G
�1
n (Yi)H

�
y � Yi
hn

�

=

nP
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
H

�
y � Yi
hn

�
nP
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
=:

F1;n(x; y)

vn(x)
; (3.8)

where H is a df de�ned on IR and

F1;n(x; y) =
�n
nhdn

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
H

�
y � Yi
hn

�
(3.9)

is an estimator of F1(x; y): As the latter is continuous, it is clear that it is better

to de�ne a smooth estimator by using a continuous function H(�) instead of a
step function If�g: We point out here that the estimators (3.8) and (3.9) have

been already de�ned in Lemdani et al. [46].

Then a natural estimator of the pth conditional quantile qp(x) is given by

qp;n(x) := inf fy 2 IR : Fn(yjx) � pg ; (3.10)

which satis�es Fn(qp;n(x)jx) = p:



3. A strong uniform convergence rate... 25

3.3 Assumptions and main results

In what follows, we focus our attention on the case of univariate covaraible (i.e.,

d = 1) and denote X for X and K for K1. Assume that 0 = aG < aF and

bG � bF . We consider two real numbers a and b such that aF < a < b < bF . Let


 be a compact subset of 
0 = fx 2 IRjv(x) > 0g and  := inf
x2


v(x) > 0:

We introduce some assumptions, gathered below for easy reference needed to

state our results.

(K1) K is a positive-valued, bounded probability density, Hölder continuous

with exponent � > 0 and satisfying

jujK (u)! 0 as kuk ! +1:

(K2) H is a df with C1�probability density H(1) which is positive, bounded and

has compact support. It is also Hölderian with exponent �:

(K3) i) H(1) and K are second-order kernels,

ii)
R
K2(r)dr <1:

(M1) f(Xi; Yi) ; i � 1g is a sequence of stationary �-mixing random variables

with coe¢ cient � (n) :

(M2) fTi; i � 1g is a sequence of iid truncating variables independent of f(Xi; Yi) ; i � 1g
with common continuous df G.

(M3) There exists � > 5+ 1=� for some � > 1=7 such that 8n; � (n) = O (n��) :

(D1) The conditional density v�(�) is twice continuously di¤erentiable.

(D2) The joint conditional density v�(�; �) of (Xi; Xj) exists and satis�es

sup
r;s
jv�(r; s)� v�(r)v�(s)j � C <1;

for some constant C not depending on (i; j) :

(D3) The joint conditional density of (Xi; Yi; Xj; Yj) ; denoted by f � (�; �; �; �),
exists and satis�es for any constant C;

sup
r;s;t;u

jf �(r; s; t; u)� f �(r; s)f �(t; u)j � C <1:
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(D4) The joint density f (�; �) is bounded and twice continuously di¤erentiable.

(D5) The marginal density v(�) is locally Lipschitz continuous over 
0.

The bandwidth hn =: h satis�es:

(H1)

h # 0; log n

nh
! 0 and h = o (1= log n) ; as n!1;

(H2)

Cn
(3��)�

�(�+1)+4�+1
+� < h < C 0n

1
1�� ;

where � satis�es

2

�(� + 1) + 4� + 1
< � <

(� � 3)�
�(� + 1) + 4� + 1

+
1

1� �

and � and � are as in (M3).

Remark 3.3.1 Assumptions (K) are quite usual in kernel estimation. Condi-
tions (D1), (D4) and (D5) are needed in the study of the bias term. (D2) and

(D3) are needed for covariance calculus and take similar forms to those used

under mixing. Hypothesis (H2) is used in Ould Saïd and Tatachak [57] and is

needed to establish Lemma 3.5.1 and Lemma 3.5.4. Assumptions (M) concern

the mixing processes structure which are standard in such situation. The choice

of � seems to be surprising, but it is only technical choice which permit us to

make one of the variance term to be negligible.

Remark 3.3.2 Here we point out that we can not suppose that the original data
(that is the N-sample) satis�es some kind of dependency. Indeed, we do not

know if the observed data are �-mixing or are not. And if they are, we do not

know the coe¢ cient. Therefore, we suppose that the observed data satisfy some

kind of mixing condition.

Remark 3.3.3 As we are interested in the number n of observations (N is un-

known), we give asymptotics as n!1 unless otherwise speci�ed. Since n � N ,

this implies N !1 and these results also hold under P�a:s: N !1:

Our �rst result, stated in Proposition 3.3.4, is the uniform almost sure conver-

gence with rate of the conditional df estimator de�ned in (3.8).
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Proposition 3.3.4 Under assumptions (K), (M), (D) and (H), we have,

sup
x2


sup
a�y�b

jFn(yjx)� F(yjx)j = O

 
max

(r
log n

nh
; h2

)!
; P� a:s: n!1:

The second result deals with the strong uniform convergence with rate of the

kernel conditional quantile estimator qp;n(:) which is given in the following the-

orem.

Theorem 3.3.5 Under the assumptions of Proposition 3.3.4 and for each �xed
p 2 (0; 1) if the function qp satis�es for given " > 0 there exists � > 0 such that

8�p : 
! IR; sup
x2


��qp(x)� �p(x)
�� � ") sup

x2


��F (qp(x))� F ��p(x)��� � �;

(3.11)

we have

lim
n!1

sup
x2


jqp;n(x)� qp(x)j = 0; P� a:s:

Furthermore, we have,

sup
x2


jqp;n(x)� qp(x)j = O

 
max

(r
log n

nh
; h2

)!
; P� a:s: as n!1:

3.4 Applications to prediction

It is well known, from the robustness theory that the median is more robust than

the mean, therefore the conditional median, �(x) = q1=2(x), is a good alternative

to the conditional mean as a predictor for a variable Y given X = x. Note that

the estimation of �(x) is given by �n(x) = q 1
2
;n(x): Using this considerations and

section 2, we want to predict the non observed rv Yn+1 (which corresponds to

some modality of our problem), from available data X1; : : :; Xn. Given a new

value Xn+1, we can predict the corresponding response Yn+1 bybYn+1 = �n(Xn+1) = q1=2;n(Xn+1):

Nevertheless to say, that the theoretical predictor is given by

�(Xn+1) = q1=2(Xn+1):

Applying the above Theorem, we have the following corollary:

Corollary 3.4.1 Under the assumptions of Theorem 3.3.5, we have

jqp;n(x)� qp(x)j = 0; P� a:s: as n!1:
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3.5 Proofs

We need some auxiliary results and notations to prove our results. The �rst

lemma gives the uniform convergence with rate of the estimator v�n(x) de�ned in

(3.5).

Lemma 3.5.1 Under (K1), (K3), (M), (D1), (D2) and (H) we have for

sup
x2


jv�n(x)� v�(x)j = O

 
max

(r
log n

nh
; h2

)!
; P� a:s: as n!1:

Proof. We have

sup
x2


jv�n(x)� v�(x)j � sup
x2


jv�n(x)� E [v�n(x)]j+ sup
x2


jE [v�n(x)]� v�(x)j

=: I1n + I2n: (3.12)

We begin by study the variance term I1n. The idea consists in using an expo-
nential inequality taking into account the ��mixing structure. The compact set

 can be covered by a �nite number ln of intervals of length !n = (n�1h1+2�)

1
2� ;

where � is the Hölder exponent. Let Ik := I(xk; !n); k = 1; :::; ln, denote each

interval centered at some points xk. Since 
 is bounded, there exists a constant

C such that !nln � C: For any x in 
; there exists Ik which contains x such that

jx� xkj � !n: We start by writing

4i (x) :=
1

nh

�
K

�
x�Xi

h

�
� E

�
K

�
x�X1

h

���
:

Clearly, we have

nX
i=1

4i (x) = f(v�n(x)� v�n(xk))� (E [v�n(x)]� E [v�n(xk)])g

+ (v�n(xk)� E [v�n(xk)])

=:

nX
i=1

e4i (x) +
nX
i=1

4i (xk) :

Hence

sup
x2


�����
nX
i=1

4i (x)

����� � max
1�k�ln

sup
x2Ik

�����
nX
i=1

e4i (x)

�����+ max
1�k�ln

�����
nX
i=1

4i (xk)

�����
=: S1n + S2n: (3.13)
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First, we have under assumption (K1) ;

sup
x2Ik

�����
nX
i=1

e4i (x)

����� � 1

nh

nX
i=1

����K �x�Xi

h

�
�K

�
xk �Xi

h

�����
+
1

h
E

�����K �x�X1

h

�
�K

�
xk �X1

h

������
�
2 supx2Ik jx� xkj�

h1+�

� C!�nh
�1�� = O

�
(nh)�1=2

�
:

Hence, by (H1) and for n large enough, we get S1 = oP(1):

We now turn to the term S2n in (3.13). Under (K1), the rv�s Ui = nh4i (xk)

are centered and bounded. The use of the well known Fuk-Nagaev�s inequality

(see Rio [66, formula 6.19b, page 87]) slightly modi�ed in Ferraty and Vieu [22,

proposition A.11-ii), page 237], allows one to get, for all " > 0 and r > 1

P

(
max
1�k�ln

�����
nX
i=1

4i (xk)

����� > "

)
�

lnX
k=1

P

(�����
nX
i=1

4i (xk)

����� > "

)

� C!�1n

(
n

r

� r

"nh

��+1
+

�
1 +

"2n2h2

rs2n

�� r
2

)
=: I11n + I12n (3.14)

where

s2n =
X
1�i�n

X
1�j�n

jCov(Ui; Uj)j :

Putting

r = (log n)1+�; where � > 0; and " = "0

r
log n

nh
; for some "0 > 0: (3.15)

We have

Q1n = C(n�1h1+2�))
�1
2�

n

(log n)1+�

�
(log n)1+�

"0
p
nh log n

��+1
= n1�

�+1
2
+ 1
2�h�(

1
2�
+1+ �+1

2 )(log n)v(1+�)�
�+1
2 "

�(�+1)
0 :

Note that under (M3), it is easy to see the following modi�ed assumption (H 02)

of (H2) hold,

Cn
(3��)�

�(�+1)+2�+1
+� < h < C 0n

1
1�� ; (3.16)
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where � satis�es

1

�(� + 1) + 2� + 1
< � <

(� � 3)�
�(� + 1) + 2� + 1

+
1

1� �
(3.17)

� and � are as in (M3).

Then, from the left-hand side of (3.16)

I11n � C 0(log n)�(1+�)�
v+1
2 n�1�

�
2�
(�(�+1)+2�+1� 1

�
):

Hence, for any � as in (3.17), I11n is bounded by the term of a �nite-sum series.

Before we focus on I11n, we have to study the asymptotic behavior of

s2n =

nX
i=1

V ar(Ui) +
X
i6=j

jCov(Ui; Uj)j

=: svarn + scovn :

First, by (K1; 1), (D1) and a change of variable, we obtain

svarn = nV ar(U1)

= n

�
EK2

�
xk �X1

h

�
� E2

�
K

�
xk �X1

h

���
= O (nh) : (3.18)

On the other hand, a change of variable, (K1), (M1) and (D2) lead to

jCov(Ui; Uj)j = jE [UiUj]j

�
ZZ

K

�
xk � r

h

�
K

�
xk � s

h

�
jv�(r; s)� v�(r)v�(s)j drds

= O
�
h2
�
: (3.19)

Note also that, these covariances can be controlled by means of the usual Davy-

dov covariance inequality for mixing processes (see Rio [66, formula 1.12a, page

10]; or Bosq [7, formula 1.11, page 22]). We have

8i 6= j; jCov(Ui; Uj)j � C� (ji� jj) : (3.20)

To evaluate scovn , we use the technique developed by Masry [49]. Taking

'n =
l
(n�1h)

�1=�
m
(where d:e denotes the smallest integer greater than the

argument), we can write

scovn =
X

0<ji�jj�'n

jCov(Ui; Uj)j+
X

ji�jj>'n

jCov(Ui; Uj)j : (3.21)
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First, applying the upper bound (3.19) to the �rst covariance term in (3.21), we

get X
0<ji�jj�'n

jCov(Ui; Uj)j � Cnh2'n: (3.22)

For the second term, thanks to (3.20) we getX
ji�jj>'n

jCov(Ui; Uj)j � C
X

ji�jj>'n

� (ji� jj)

� Cn2� ('n) : (3.23)

According to the right-hand side of (H 02), using (M3), (3.22) and (3.23), we get

scovn = O(nh): (3.24)

Finally, (3.18) and (3.24) lead directly to s2n = O (nh) :

This is enough to study the quantity I12n, since for " and r as in (3.15) and
Taylor expansion of log(1 + x) allows us to write that

I12n = C!�1n exp

�
�r
2
log

�
1 +

"20nh log n

rs2n

��
� Cn

1
2�
�C0"20h�(1+

1
2�
)

= Cn
1
2�
�C0"20h�

1
2�
(�(�+1)+2�+1)h

v+1
2 :

By using (H 02) and (M3), the later can be made as a general term of a convergent

series. Hence
P

n�1 (I11n + I12n) <1, and therefore by Borel-Cantelli�s Lemma,
we have

I1n = O

 r
log n

nh

!
; P� a:s: as n!1

On the other hand, the bias term I2n does not depend on the mixing structure.
We prove its convergence by using a change of variable and a Taylor expansion

(see Lemdani et al. [46, Lemma 6.1]). We get, under (K3) and (D1)

I2n = O
�
h2
�
; P� a:s: as n!1

Hence, replacing I1n and I2n in (3.12), we get the result. �
The following Lemma is Lemma 5.2 in Ould Saïd and Tatachak [57], in which

they state a rate of convergence for �n under �-mixing hypothesis, which is

interesting in itself, similar to that established in the iid case by He and Yang

[34].
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Lemma 3.5.2 Under assumptions (M), we have

sup
x2


j�n � �j = O

 r
log log n

n

!
; P� a:s: as n!1:

Proof. See Lemma 5.2 in Ould Saïd and Tatachak [57]. �
Adapting (3.9), de�ne

~F1;n(x; y) :=
�

nh

nX
i=1

1

G(Yi)
K

�
x�Xi

h

�
H

�
y � Yi
h

�
: (3.25)

Lemma 3.5.3 Under the assumptions of Lemma 3.5.1 and (K2), we have

sup
x2


sup
a�y�b

���F1;n(x; y)� ~F1;n(x; y)
��� = O

 r
log log n

n

!
; P� a:s: as n!1:

Proof. Under (K2), the df H is bounded by 1. Hence���F1;n(x; y)� ~F1;n(x; y)
��� � � j�n � �j

Gn(aF )
+
� supy�aF jGn(y)�G(y)j

Gn(aF )G(aF )

�
jv�n(x)j :

From Lemma 3.5.2, we have

j�n � �j = O

 r
log log n

n

!
P� a:s: n!1:

Moreover, Gn(aF )
P�a:s:! G(aF ) > 0: In the same way and using Lemma 3.4 in

Liang et al. [42] (see Lemma 2.2.1, Chapter 2) we get

sup
y�aF

jGn(y)�G(y)j = O

 r
log log n

n

!
P� a:s: as n!1:

Combining these last results with Lemma 3.5.1, we achieve the proof. �

Lemma 3.5.4 Under assumptions (K), (M), (D3), (D4), and (H), we have,

sup
x2


sup
a�y�b

��� ~F1;n(x; y)� E h ~F1;n(x; y)i��� = O

 r
log n

nh

!
; P�a:s: as n!1:

Proof. The proof is analogous to Lemma 3.5.1, we give only the leading lines.

As 
 and [a; b] are compact sets, then they can be covered by �nite numbers ln
and dn of intervals I1; :::; Iln and J1; :::; Jdn of length !n as in Lemma 3.5.1 and
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�n = (n
�1h2�)

1
2� and centers x1; :::; xln and y1; :::; ydn respectively. Since 
 and

[a; b] are bounded, there exist two constant C1 and C2 such that ln!n � C1 and

dn�n � C2. Hence for any (x; y) 2 
 � [a; b] there exists xk and yj such that
jjx� xkjj � !n and jy � yjj � �n. Thus we have the following decomposition

sup
x2


sup
y2[a; b]

��� ~F1;n(x; y)� IE h ~F1;n(x; y)i���
� max

1�k�ln
sup
x2Ik

sup
y

��� ~F1;n(x; y)� ~F1;n(xk; y)
���

+ max
1�k�ln

max
1�j�dn

sup
y2Jj

��� ~F1;n(xk; y)� ~F1;n(xk; yj)
���

+ max
1�k�ln

max
1�j�dn

��� ~F1;n(xk; yj)� IE h ~F1;n(xk; yj)i���
+ max
1�k�ln

max
1�j�dn

sup
y2Jk

���IE h ~F1;n(xk; yj)i� IE h ~F1;n(xk; y)i���
+ max
1�k�ln

sup
x2Ik

sup
y

���IE h ~F1;n(xk; y)i� IE h ~F1;n(x; y)i���
=: J1n + J2n + J3n + J4n + J5n:

Concerning J1n and J5n, assumptions (K1) ; (K2) yield

sup
x2Ik

sup
y

��� ~F1;n(x; y)� ~F1;n(xk; y)
��� � C�!�n

G(aF )h1+�
sup
y

����H �y � Yi
h

�����
= O

�
(nh)�1=2

�
:

Hence, by (H1) we gets
nh

log n
sup
x2


sup
y2[a; b]

��� ~F1;n(x; y)� ~F1;n(xk; y)
��� = o(1): (3.26)

Similarly, we obtain for J2n and J4n

sup
y2Jj

��� ~F1;n(xk; y)� ~F1;n(xk;yj)
��� � C���n

G(aF )h1+�

����K �x�Xi

h

�����
= O

�
(nh2)�1=2

�
:

Again, by (H1) we gets
nh

log n
sup
x2


sup
y2[a; b]

��� ~F1;n(xk; y)� ~F1;n(xk; yj)
��� = o(1): (3.27)
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As to J3, for all " > 0 we have

P
�
max
1�k�ln

max
1�j�dn

��� ~F1;n(xk; yj)� IE h ~F1;n(xk; yj)i��� > "

�
� ln dnP

n��� ~F1;n(xk; yj)� IE h ~F1;n(xk; yj)i��� > "
o
: (3.28)

Set, for any i � 1

	i(xk; yj) =
�

nh

�
1

G(Yi)
K

�
xk �Xi

h

�
H

�
yj � Yi
h

�
� IE

�
1

G(Yi)
K

�
xk �Xi

h

�
H

�
yj � Yi
h

���
:

Under (K1) and (K2), the rv�s Vi = nh	i(xk; yj) are centered and bounded by
2�M0M1

G(aF )
=: C < 1. Then, applying again Fuck-Nagaev�inequality, we obtain

for all � > 0 and r > 1;

P
n
max
1�k�ln

max
1�j�dn

�����
nX
i=1

	i(xk; yj)

����� > �
o

= P
n
max
1�k�ln

max
1�j�dn

�� nX
i=1

Vi
�� > nh�

o
� C1C2 (!n�n)

�1

(
n

r

�
2r

�nh

�1+�
+

�
1 +

�2n2h2

rs2n

�� r
2

)

� Cn
1
�h�(

1
2�
+2)n

r

� r

�nh

�1+�
+ Cn

1
�h�(

1
2�
+2)
�
1 +

�2n2h2

rs2n

�� r
2

=: J31n + J32n; (3.29)

where

s2n =
X
1�i�n

X
1�j�n

jCov(Ui; Uj)j :

By taking " and r as in (3.15), we get

J31n = C�
�(1+�)
0 n1+

1
�
� 1+�

2 (log n)v(1+�)�
�+1
2 h�

1
2�
(1+4�+�(1+�)):

Then, Using (H1) and (H2) we get

J31n � C�
�(1+�)
0 n�1�

�
2� (1+4�+�(1+�)�

2
� )(log n)v(1+�)�

�+1
2 :

Hence, the condition upon � and for any � as in (H2) ; J31n is the general term
of a �nite-sum series.
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Let us now examine the term J32n. First, we have to calculate

s2n = nV ar(V1) +
X

i6=l

��cov(Vi; Vl)��:
We have

V ar(V1) = IE

�
�2

G2(Y1)
K2

�
xk �X1

h

�
H2

�
yj � Y1
h

��
� IE2

�
�

G(Y1)
K

�
xk �X1

h

�
H

�
yj � Y1
h

��
=: V1 � V2:

Remark that

IE

�
�2

G2(Y1)
H2

�
yj � Y1
h

� ���X1

�
=

Z
�2

G2(y1)
H2

�
yj � y1
h

�
f �(y1

���X1)dy1

=

Z
�

G(y1)
H2

�
yj � y1
h

�
f(y1

���X1)dy1

= IE

�
�

G(Y1)
H2

�
yj � Y1
h

��
:

Then

V1 = IE
�

�

G(Y1)
K2

�
xk �X1

h

�
H2

�
yj � Y1
h

��
� �

G(aF )
IE

�
K2

�
xk �X1

h

��
� �h

G(aF )

Z
K2(r)v�(xk � rh)dz:

Under (K3; ii) and (D1), we have V1 = O (h) : An analogous development gives

that V2 = O (h2), which implies V ar(�1) = O (h) :
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On the one hand, (M1) ; (K1) and (K2) lead to���cov (Vi; Vj) ��� = ��� Z Z Z Z Z �2

G(r)G(t)
K

�
xk � u

h

�
H

�
yj � r

h

�
�K

�
xk � s

h

�
H

�
yj � t

h

�
f �1;i;j+1;j+1(u; r; s; t)dudrdsdt

�
Z Z

�

G(r)
K

�
xk � u

h

�
H

�
yj � r

h

�
f �(u; r)dudr

�
Z Z

�

G(t)
K

�
xk � s

h

�
H

�
yj � t

h

�
f �(s; t)dsdt

���
� �2

G2(aF )

Z Z Z Z ���K �xk � u

h

�
H

�
yj � r

h

�
K

�
xk � s

h

�
�H

�
yj � t

h

��
f �1;i;j+1;j+1(u; r; s; t)dudrdsdt� f �(u; r)dudrf �(s; t)dsdt

� ���:
Using assumption (D3) and by change of variable, it follows that���cov (Vi; Vj) ��� = O

�
h4
�
: (3.30)

On the other hand, from a result in Bosq [7, p. 22], we have���cov (Vi; Vj) ��� = O (�(ji� jj)) : (3.31)

Then to evaluate
P

i6=l
��cov(Vi; Vj)��; the idea is to introduce a sequence of integers

'n the same as in Lemma 3.5.1, and using (3.30) for the nearest and (3.31) for

the farest integer i and j. Then we getX
i6=j

��cov(Vi; Vj)�� =XX
0<ji�jj�'n

��cov(Vi; Vj)��
+
XX

ji�jj>'n

��cov(Vi; Vj)��
�
XX

0<ji�jj�'n
h4 +

XX
ji�jj>'n

�(ji� jj)

� Cn'nh
4 + Cn2� ('n) :

The right-hand side of (H2) and (M3), one hasX
i6=j

��cov(Vi; Vj)�� = O (nh) :

So s2n = O (nh) :

Consequently, by taking � and r as in (3.15) and using Taylor expansion of
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log (1 + x) ; the term J32n becomes

J32n � Cn
1
�h�(2+

1
2�
) exp

�
�1
2
�20 log n

�
= Cn

1
�
�C�20h�(2+

1
2�
):

By using (H2) and (M3), the later can be made as a general term of summable

series. Thus
P

n�1 (J31n + J32n) < 1: Then by Borel-Cantelli�s Lemma, the

�rst term of (3.29) goes to zero a.s. and for n large enough, we have

J3n = O

 r
log n

nh

!
; this completes the proof of the Lemma. �

Lemma 3.5.5 Under assumptions (K3) and (D4), we have

sup
x2


sup
a�y�b

���E h ~F1;n(x; y)i� F1(x; y)��� = O
�
h2
�
; P� a:s: as n!1:

Proof. The bias terms do not depend on the mixing structure. The proof of

Lemma 3.5.5 is similar to that of Lemma 6.2 in Lemdani et al. [46], hence its

proof is omitted. �
The next Lemma gives the uniform convergence with rate of the estimator vn(x)

de�ned in (3.7).

Lemma 3.5.6 Under the assumptions of Lemma 3.5.1 and condition (D5), we
have

sup
x2


jvn(x)� v(x)j = O

 
max

(r
log n

nh
; h2

)!
; P� a:s: as n!1:

Proof. Adapting (3.7), de�ne

~vn(x) =
�

nh

nX
i=1

1

G(Yi)
K

�
x�Xi

h

�
: (3.32)

We have

sup
x2


jvn(x)� v(x)j � sup
x2


jvn(x)� ~vn(x)j

+ sup
x2


j~vn(x)� E [~vn(x)]j

+ sup
x2


jE [~vn(x)]� v(x)j

=: L1n + L2n + L3n:
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For the �rst term, using analogous framework as in Lemma 3.5.3, we get

L1n = O

 r
log log n

n

!
; P� a:s: as n!1: (3.33)

In addition, by using the same approach as for I1n in the proof of Lemma 3.5.1,
we can show that, for n large enough

L2n = O

 r
log n

nh

!
; P� a:s: as n!1: (3.34)

Finally, a change of variable and a Taylor expansion, we get, under (K3) and

(D5)

E [~vn(x)]� v(x) = E

"
�

nh

nX
i=1

1

G(Y1)
K

�
x�X1

h

�#
� v(x)

=
1

h

Z
K

�
x� u

h

�
v(u)du� v(x)

=
h2

2

Z
r2K (r) v00(~x)dr

with ~x 2 [x� rh; x] , which yields that

L3n = O
�
h2
�
; P� a:s: as n!1: (3.35)

Combining (3.33), (3.34) and (3.35) permit to conclude the proof. �
Proof of Proposition 3.3.4 In view of (3.8), we have the following classical

decomposition

sup
x2


sup
a�y�b

jFn(yjx)� F(yjx)j

� 1

� � sup
x2


jvn(x)� v(x)j

�
sup
x2


sup
a�y�b

jF1;n(x; y)� F1(x; y)j

+ �1sup
x2


sup
a�y�b

jF (yjx)j sup
x2


jvn(x)� v(x)j
�
:

Furthermore, we have

sup
x2


sup
a�y�b

jF1;n(x; y)� F1(x; y)j � sup
x2


sup
a�y�b

���F1;n(x; y)� ~F1;n(x; y)
���

+ sup
x2


sup
a�y�b

��� ~F1;n(x; y)� E h ~F1;n(x; y)i���
+sup
x2


sup
a�y�b

���E h ~F1;n(x; y)i� F1(x; y)��� :
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In conjunction with Lemmas 3.5.1�3.5.6, we conclude the proof. �
We now embark on the proof of Theorem 3.3.5.

Proof of Theorem 3.3.5 Let x 2 
: As Fn(�jx) and F(�jx) are continuous,
we have

F(qp(x)jx) = Fn(qp;n(x)jx) = p: Then

jF(qp;n(x)jx)� F(qp(x)jx)j � jF(qp;n(x)jx)� Fn(qp;n(x)jx)j
+ jFn(qp;n(x)jx)� F(qp(x)jx)j (3.36)

� jF(qp;n(x)jx)� Fn(qp;n(x)jx)j
� sup

a�y�b
jFn(yjx)� F(yjx)j : (3.37)

The consistency of qp;n(x) follows then immediately from Proposition 3.3.4 in

conjunction with the inequalityX
n

�
sup
x2


jqp;n(x)� qp(x)j � "

�
�
X
n

�
sup
x2


sup
a�y�b

jFn(yjx)� F(yjx)j � �

�
:

For the second part, a Taylor expansion of F (�j�) in neighborhood of qp, implies
that

F(qp;n(x)jx)� F(qp(x)jx) = (qp;n(x)� qp(x)) f (~qp(x)jx) (3.38)

where ~qp is between qp and qp;n and f (�jx) is the conditional density of Y given

X = x: Then, from the behavior of F(qp;n(x)jx)�F(qp(x)jx) as n goes to in�nity,
it is easy to obtain asymptotic results for the sequence (qp;n(x)� qp(x)) : By

(3.38) we have

sup
x2


jqp;n(x)� qp(x)j jf (~qp(x)jx)j � sup
x2


sup
a�y�b

jFn(yjx)� F(yjx)j :

The result follows from (D4) and the Proposition 3.3.4. Here we point out

that, if f (~qp(x)jx) = 0; for some x 2 
, we should increase the order of Taylor
expansion to obtain the consistency of qp;n(x) (with an adapted rate). �
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Abstract: In this chapter, we consider the estimation of the conditional quantile
when the interest variable is subject to left truncation. It is shown that, under

regularity conditions, kernel estimate of the conditional quantile is asymptoti-

cally normally distributed, when the data exhibit some kind of dependence. We

use asymptotic normality to construct con�dence bands for predictors based on

the kernel estimate of the conditional median.
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4.1 Introduction

Let Y and T be two real random variables (rv) with unknown cumulative dis-

tribution functions (df) F and G respectively, both assumed to be continuous.

Let X � 3:4mmX be a random vector of covariates taking its values in IRd with

df V and continuous density v: When no truncation is present, we could think

of the observations as (XXj;Yj; Tj) ; 1 � j � N , where the sample size N is

deterministic, but unknown. Under random left-truncation (RLT), the rv of in-

terest Y is interfered by the truncation rv T , in such a way that Y and T are

observed only if Y � T . Therefore, for notational convenience, we shall denote
(Xi; Yi; Ti) ; 1 � i � n; (n � N) the observed subsequence that is Yi � Ti from

the N�sample. As a consequence of truncation, the size of the actually observed
sample, n, is a binomial rv with parameters N and � := P (Y � T ) > 0: Such

data occur in astronomy and economics (see Woodroofe [86], Feigelson and Babu

[20] and also in epidemiology and biometry (see, e.g., He and Yang [33]).

Consider the joint df F(�; �) of the random vector (XX ; Y) related to theN�sample
and suppose it is of class C1: The conditional df of Y given XX = x =: (x1; :::; xd)

t ;

that is F(yjx) = IE
�
1fY�ygjXX = x

�
which may be rewritten into

F(�jx) = F1(x; �)
v(x)

; F1(x; �) =
@F(x; �)
@x

:=
@dF(x; �)
@x1:::@xd

: (4.1)

For all �xed p 2 (0; 1), the pth conditional quantile of F given XX = x is de�ned

by

qp(x) := inf fy 2 IR : F(yjx) � pg :

It is well known that the conditional quantiles can give a good description of

the data (see, Chaudhuri et al. [13]), such as robustness to heavy-tailed error

distributions and outliers, especially the conditional median function q1=2(x) for

asymmetric distributions, which can provide a useful alternative to the ordinary

regression based on the mean.

In the RLT model, Gürler et al. [30] establish a Bahadur-type representation

for the quantile function and asymptotic normality. Its extension to time series

analysis have been obtained by Lemdani et al. [45]. Ould Saïd and Lemdani

[55] study a nonparametric regression function estimator with RLT data. In the

same way, Lemdani et al. [46] introduce a kernel conditional quantile estimator
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and prove its almost sure (a.s.) consistency and asymptotic normality in the iid

case.

Under strong mixing hypotheses, the strong uniform convergence with rates of

the kernel conditional quantile and that of the conditional df is established by

Ould Saïd et al. [58]. In this chapter, our purpose is to study the asymptotic

normality of the kernel conditional quantile estimator with RLT data. Although

our interest in conditional quantile estimation is motivated by the forecasting

from time series data, our results are derived where the observations exhib some

kind of dependence.

First, let Fk
i (Z) denotes the �-�eld of events generated by fZj; i � j � kg. For

easy reference, let us recall the following de�nition.

De�nition 4.1.1 Let fZi; i � 1g denotes a sequence of random variables. Given
a positive integer n, set:

�(n) = sup
�
jP(A \B)�P(A)P(B)j : A 2 Fk

1 (Z); B 2 F1
k+n(Z); k 2 IN

	
:

The sequence is said to be ��mixing (strongly mixing) if the mixing coe¢ cient
�(n)! 0:

Strong-mixing condition is reasonably weak and has many practical applications

(see, e.g. Doukhan[18], Cai [10, 11] and Dedecker et al.[16] for more details).

In particular, Masry and Tójstheim [50] proved that, both ARCH processes and

nonlinear additive autoregressive models with exogenous variables, which are

particularly popular in �nance and econometrics, are stationary and ��mixing.

The rest of the chapter is organized as follows. In Section 2, we recall a de�nition

of the kernel conditional quantile estimator in the RLT model, the assumptions

and our main results. In Section 3, we derive from our results the asymptotic

normality of a predictor and propose a con�dence bands for the conditional

quantile function. Finally, the proofs of the main results are postponed to Section

4 with some auxiliary results and their proofs.
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4.2 The model, the assumptions and the main

results

In the sequel, the notation (X � x) stands for (X1 � x1; :::; Xd � xd) : Note also

that, since N is unknown and n is known (although random), our results will not

be stated with respect to the probability measure P (related to the N�sample)
but will involve the conditional probability P (related to the n�sample). Also
IE and E will denote the expectation operators related to P and P, respectively.
Finally, we denote by a superscript (�) any df that is associated to the observed

sample.

Suppose that the n triplets (Xi; Yi; Ti) are observed among theN ones. For any df

L; denote the left and right endpoints of its support by aL := inf fu : L(u) > 0g
and bL := sup fu : L(u) < 1g ; respectively. Then under the current model, as
discussed by Woodroofe [86], F and G can be estimated completely only if

aG � aF ; bG � bF and
Z 1

aF

dF

G
<1:

Under RLT sampling scheme, the conditional joint distribution (Stute [74]) of

(Y; T ) becomes

J�(y; t) = P (Y � y; T � t) = P (Y � y; T � tjY � T )

= ��1
Z y

�1
G(t ^ u)dF (u)

where t^u := min(t; u). The marginal distributions and their empirical versions
are de�ned by

F �(y) = ��1
Z y

�1
G(u)dF (u); F �n(y) = n�1

nX
i=1

1fYi�yg;

G�(t) = ��1
Z 1

�1
G(t ^ u)dF (u) and G�n(t) = n�1

nX
i=1

1fTi�tg;

where 1A denotes the indicator function of the set A:

In the sequel we use the following consistent estimator

�n =
Gn(y) [(1� Fn(y�))]

Cn (y)
; (4.2)
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for any y such that Cn (y) 6= 0; where Fn(y�) denotes the left-limite of Fn at y.
Here Fn and Gn are the product-limit estimators (Lynden-Bell [48]) for F and

G; respectively i.e.,

Fn(y) = 1�
Y
i=Yi�y

�
nCn(Yi)� 1
nCn(Yi)

�
; Gn(y) =

Y
i=Ti>y

�
nCn(Ti)� 1
nCn(Ti)

�
;

where Cn(y) = n�1
Pn

i=11fTi�y�Yig is the empirical estimator of

C (y) = P (T � y � Y jY � T ) :

Remark 4.2.1 In the iid case, He and Yang [34] proved that �n does not de-
pend on y and its value can then be obtained for any y such that Cn (y) 6= 0.

Furthermore, they showed (see their Corollary 2.5) that

�n
P�a:s:! �; as n!1:

The estimation of conditional df is based on the choice of weights. For complete

data, the well-known Nadaraya-Watson weights are given by

Wi;N(x) =
Kd f(x�Xi) =hNgPN
i=1Kd f(x�Xi) =hNg

=:

�
NhdN

��1
Kd f(x�Xi) =hNg
vN(x)

; (4.3)

that are measurable functions of x depending on X1; � � �;XN ; with the convention
0=0 = 0: The kernel Kd is a measurable function on IRd and (hN) a nonnegative

sequence which tends to zero as N tends to in�nity. The corresponding estimator

vN (�) of v (�) is based on the N�sample and cannot therefore be calculated. On
the other hand

v�n(x) =
1

nhdn

nX
i=1

Kd

�
x�Xi

hn

�
(4.4)

is an estimator of the conditional density v�(x) (given Y � T ).

In order to estimate the marginal density v (�) we have to take into account the
truncation and the estimator

vn(x) =
�n
nhdn

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
(4.5)

is considered in Ould Saïd and Lemdani [55]. Note that in this formula and the

forthcoming, the sum is taken only for i such that Gn (Yi) 6= 0:
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Then, adapting Ould Saïd-Lemdani�s weights, we get the following estimator of

the conditional df of Y given XX = x

Fn(yjx) =

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
H

�
y � Yi
hn

�
nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
=:
F1;n(x; y)

vn(x)
; (4.6)

where H is a distribution function de�ned on IR; and

F1;n(x; y) =
�n
nhdn

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
H

�
y � Yi
hn

�
(4.7)

is an estimator of F1(x; y):

We point out here that the estimator (4.6) and (4.7) have been already de�ned in

Lemdani et al. [46] and used in Ould Saïd et al. [58]. Then a natural estimator

of the pth conditional quantile qp(x); is given by

qp;n(x) := inf fy 2 IR : Fn(yjx) � pg (4.8)

which satis�es Fn(qp;n(x)jx) = p:

Finally, considering the density H(1) and (4.6), we easily get (see Lemdani et

al. [46, Remark 4.1]) an estimator of the conditional density of Y given XX = x

(de�ned by f (yj�) = @F(yj:)
@y

)

fn(yjx) =
f1;n(x; y)

vn(x)
; (4.9)

where

f1;n(x; y) =
�n

nhd+1n

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
H(1)

�
y � Yi
hn

�
(4.10)

is an estimator of f (x; y) =
@F1(x; y)

@y
; and H(1) is the derivative of H.

Throughout this paper, C denotes a positive constant which might take di¤erent

values at di¤erent place. Assume that 0 = aG < aF and bG � bF . We consider
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two real numbers a and b such that aF < a < b < bF . Let 
 be a compact subset

of 
0 =
n
x 2 IRd

 v(x) > 0o and  := inf
x2


v(x) > 0:

We introduce our assumptions, gathered below for easy reference.

(K1) Kd is a bounded probability density, Hölder continuous with exponent

� > 0 and satisfying

kukdKd (u)! 0 as kuk ! 1:

(K2) H is a df with C1�probability density H(1) and compact support.

(K3) H(1) and Kd are second-order kernels.

(M1) The observed sequence f(Xi; Yi) ; i � 1g is of stationary �-mixing random
variables with coe¢ cient � (n) :

(M2) fTi; i � 1g is a sequence of iid truncating variables independent of f(Xi; Yi) ; i � 1g
with common continuous df G.

(M3) There exists � > 5+ 1=� for some � > 1=7 such that 8n; � (n) = O (n��) :

(D1) The conditional density v�(�) is twice continuously di¤erentiable.

(D2) The marginal density v(�) is locally Lipschitz continuous over 
0.

(D3) The joint density f (�; �) is bounded and twice continuously di¤erentiable.

(D4) For all j > 1, the joint conditional density f �1;j+1(�; �) of (X1; Xj+1) exists

and satis�es

sup
r;s

��f �1;j+1(r; s)� v�(r)v�(s)
�� � C <1;

for some constant C not depending on (i; j) : The joint conditional den-

sity of (X1; Xj+1; Yj+1) and that of (X1; Y1; Xj+1; Yj+1) are denoted by

f �1;j+1;j+1(�; �; �) and f �1;1;j+1;j+1(�; �; �; �) respectively:

(H1) The bandwidth hn satis�es:

(a) nh2n= log n!1 and hn = o (1= log n) ; as n!1;

(b) hd+1n < Cn
1

1�� and
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(c) hn > Cn
1
2

(3��)�
�(�+1)+2�+1

+� where � satis�es

1

�(� + 1) + 2� + 1
< � <

(� � 3)�
�(� + 1) + 2� + 1

+
1

1� �
;

� and � are the same as in (M3).

(H2) There exists a sequence (mn)n�1 ; 1 � mn � n, such that as n!1

(a) mn !1; mnh! 0

(b)
�
1=h�

�P1
l=mn

(� (l))� ! 0; with � 2 (0; 1) :

(H3) Let (Mn) and (Nn) be subsequences of (n) tending to in�nity such that:

(a) Mn +Nn � n; rnMn

n
! 1 and rnNn

n
! 0;

(b) Mn (nhn)
�1=2 ! 0;

(c) rn� (Nn)! 0; as n!1

where (rn) be the largest positive integer for which rn (Mn +Nn) � n:

Remark 4.2.2 (Comments on the assumptions) Assumptions (K) are quite
usual in kernel estimation. Assumptions (D1) � (D3) are needed in the study
of the bias term. (D4) is needed for covariance calculus and takes similar forms

to those used in complete data under dependence. Note also that, it is satis�ed

in the iid case. Assumptions (M) is related to mixing coe¢ cient. Assump-

tions (H1 : a � b) are used in Ould Saïd et al. [58] to prove the uniform a.s.

convergence of Fn (yjx) � F (yjx) and is needed here to prove the uniform a.s.

convergence of fn (yjx) � f (yjx), which is used in the proof of the asymptotic
normality. Assumptions (H2) and (H3) deal with real sequences. They are used

in Louani and Ould Saïd [47] and take part in establishing our results.

Remark 4.2.3 We point out here, that if we suppose that the original observa-
tions (related to N�sample) are dependent, we do not know, which dependence
are the observed data. Then, we suppose in (M1) that the observed sequence

(related to n�sample) is alpha-mixing.

Remark 4.2.4 Assumption (K2) implies that the kernel H(1) is bounded by a

constant M0 > 0. In the same way, under (K1), we put M1 = kKk1 :
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Remark 4.2.5 As we are interested in the number n of observations (N is un-

known), we give asymptotics as n!1 unless otherwise speci�ed. Since n � N

this implies N !1 and these results also hold under P� a:s: as N !1:

Our �rst result, stated in Proposition 4.2.6, is the uniform a.s. convergence of

fn(yjx)� f(yjx) with rate of the conditional density estimator de�ned in (4.9).

Proposition 4.2.6 Under assumptions (K), (M), (D) and (H1), we have,

sup
x2


sup
a�y�b

jfn(yjx)� f(yjx)j = O

 
max

(s
log n

nhd+1n

; h2n

)!
; P� a:s: n!1:

The next result states the pointwise asymptotic normality of the conditional df

estimator de�ned in (4.6). Let

� (x; y) =

 
�0 (x; y) �1 (x; y)

�1 (x; y) �2 (x)

!

where

�k (x; y) =

Z y

�1
H2�k

�
y � s
h

�
f (x; s)

G(s)
ds for k = 0; 1 and �2 (x) =

Z
f (x; s)

G(s)
ds:

The second result deals with the strong uniform convergence with rate of the

kernel conditional quantile estimator qp;n(:) which is given in the following the-

orem.

Proposition 4.2.7 Under the assumptions (K), (M), (D) and (H), we havep
nhn (Fn(yjx)� F(yjx))

D! N
�
0; �2 (x; y)

�
; as n!1

where D! denotes the convergence in distribution andN (0; �2 (x; y)) is the Gaussian

distribution with zero mean and variance given by

�2 (x; y) = �
�0 (x; y) v

2(x) + �2 (x)F
2
1(x; y)� 2�1 (x; y)F1(x; y)v(x)
�v4(x)

with � =
R
K (r) dr:

Our main result is given in the following Theorem.
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Theorem 4.2.8 Under the assumptions of Proposition 4.2.7, we have, for each
p 2 (0; 1) and for any x 2 
0 such that fn(qp (x) jx) 6= 0�

nhn
�2q (x; qp (x))

�1=2
(qp;n(x)� qp(x))

D! N (0; 1) ; as n!1

where

�2q (x; qp (x)) =
�2 (x; qp (x))

f 2 (qp (x) jx)
:

Remark 4.2.9 Note on the one hand that �2 (x) � v (x) and on the other hand,

by Cauchy-Schwartz inequality, we have �21 (x; y) < �0 (x; y) �2 (x). Therefore,

� (x; y) is positive de�nite as soon as v (x) > 0.

4.3 Application to prediction

In this section we recall some situations and conditions that some usual processes

satisfy the strong mixing conditions:

1) Gaussian process :

Let X = (Xn; n 2 N) be a stationary Gaussian process where X has a spectral

density f of the form

f(eit) = jp(eit)j2exp[u(eit) + �v(eit)]; t 2 [��; �];

where p(�) is a polynomial, u and v are continuous real functions on the unit
circle in the complex plane, and �v is the conjugate of v. Then the process Xn is

strong mixing.

2) Countable-state Markov chains :

Let X = (Xn; n 2 N) be a strictly stationary Markov chain, irreductible and
aperiodic whose state space is an at most countable set. Then the process Xn is

strong mixing.

An example of Markov chain with space state f0; 1g which is strong mixing with
exponential coe¢ cient is given in Bradley [8, vol 1, pp 215-216].
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3) Linear process (see Withers [85] )

Let Zi; i 2 N be independent r.v. on R with characteristic functions �i such that

max
i

Z
j�(u)jdu <1 and  := max

i
EjZij� <1 for some � > 0:

Let (gi) be a sequence of complex numbers and for all t put Xnt =
Pn

i=0 giZt�i.

Suppose that

K := sup
k s m�1

sup
�
max
t

����� @@�tP
 
W + � 2

s[
i=1

Di

!����� <1;

where Di = X(ait; bit); � = (�k; � � � ; �k+m�1); W = (Wk; � � � ;Wk+m�1) and

Wt = Xt�1; t, then the process Xt is strong mixing with coe¢ cient �(k) is such

that

�(k) � 2(4K + )�0(k) where �0(k) =
1X
i=k

jgij�:

Remark 4.3.1 Some particular case of linear processes can be given:
3.i) Under the same conditions as before, if gk = O (k�v) where

v > 1 + ��1 +max(1; ��1);

then the process Xt is strong mixing with �(k) = O (k�") where " = (v� �
max(1; �)) (1 + �)�1 � 1 > 0:
3.ii) Under the same conditions as before, if gk = O

�
e�vk

�
where v > 0, then the

process Xt is strong mixing with �(k) = O
�
e�v�k

�
where the � = � (1 + �)�1 :

A main application is given by the general ARMA(p; q) process :

Let �j; j = 1; � � �; p be the coe¢ cients of autoregressive part and suppose
r = maxj=1;:::;p

���j�� < 1: Then, the ARMA(p; q) process is equivalent to Xt =P1
j=0 gjZt�j and under the same condition as above, the process Xt is strong

mixing with �(k) = O
�
r�k0
�
for r0 > r and � = � (1 + �)�1 :

In what follow we apply Theorem 4.2.8 to the problem of prediction. It is well

known, from the robustness theory that conditional median estimators are more

robust than those of the classical conditional mean. Therefore the conditional

median, � (x) = q1=2(x); is a good alternative to the conditional mean as a pre-

dictor for a variable Y given X = x, specially in the case when the conditional
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density is asymmetric or has heavy tails. Let (Ui)i2N be a real-valued station-

ary and strong mixing process. The prediction aims at evaluating Um+1 given

U1; :::; Um: To this end, setXi = (Ui; :::; Ui+d�1) and Yi = Ui+d; i = 1; :::; n; where

n = m� d+ 1. The predictor estimator of Um+1 is de�ned by

bUm+1 = �n (Xn) = q1=2;n(Xn);

where q1=2;n(Xn) is given by (4.8).

The following Corollary is a consequence of Theorem 4.2.8.

Corollary 4.3.2 Under the assumptions of Theorem 4.2.8, we have

 
nhn

�2q
�
Xn; q1=2 (Xn)

�!1=2 �q1=2;n(Xn)� q1=2(Xn)
� D! N (0; 1) ; as n!1:

A plug-in-type estimate b�q2 �x; q1=2;n(x)� for the asymptotic variance �2q �x; q1=2(x)�
can easily be obtained by using (4.4), (4.7), (4.10) and the estimators

b�1 (x; y) = �n
nhn

nX
i=1

1fYi�yg
G2n(Yi)

K

�
x�Xi

h

�
and b�2 (x) = �n

nhn

nX
i=1

1

G2n(Yi)
K

�
x�Xi

h

�

of �1 (x; y) and �2 (x) respectively. Then we get from Corollary 4.3.2 :

Corollary 4.3.3 Under the assumptions of Theorem 4.2.8, we have

 
nhnb�q2 �x; q1=2;n(x)�

!1=2 �
q1=2;n(x)� q1=2(x)

� D! N (0; 1) ; as n!1:

From Corollary 4.3.3, we get for each �xed � 2 (0; 1) ; the following approximate
(1� �)% con�dence interval for q1=2(x)"

q1=2;n(x)�
t1��=2 b�q �x; q1=2;n(x)�p

nhn
; q1=2;n(x) +

t1��=2 b�q �x; q1=2;n(x)�p
nhn

#

where t1��=2 denotes the (1� �=2) quantile of the standard normal distribution.
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4.4 Proofs

We need some auxiliary results and notations to prove our results. Firstly,

adapting (4.10), de�ne

~f1;n(x; y) =
�

nhd+1n

nX
i=1

1

G(Yi)
Kd

�
x�Xi

hn

�
H(1)

�
y � Yi
hn

�
: (4.11)

We have

Lemma 4.4.1 Under Assumptions, (K) ; (M) ; (D1) and (H1 : a) we have

sup
x2


sup
a�y�b

���f1;n(x; y)� ~f1;n(x; y)
��� = O

 s
log log n

nh2n

!
; P� a:s: as n!1:

Proof. Firstly, using (K2) we can show that���f1;n(x; y)� ~f1;n(x; y)
��� � � j�n � �j

Gn(aF )
+
� supy�aF jGn(y)�G(y)j

Gn(aF )G(aF )

�
M

hn
jv�n(x)j :

Recall that by (4.4) and (D1), v?n is bounded. Furthermore from Lemma 5.2 in

Ould Saïd and Tatachak [57], we have

j�n � �j = O

 r
log log n

n

!
; P� a:s:

Moreover, Gn(aF )
P�a:s:! G(aF ) > 0: In the same way, and using Lemma 3.4 in

Liang et al. [42] (see Lemma 2.2.1, Chapter 2) we get

sup
y�aF

jGn(y)�G(y)j = O

 r
log log n

n

!
; P� a:s:

An immediate consequence of Lemma 4.1 in Ould Saïd et al. [58, see Lemma

3.5.1, chapter 3] gives the result. �

Lemma 4.4.2 Under Assumptions, (K) ; (M) ; (D1) ; (D4) and (H1) we have

sup
x2


sup
a�y�b

��� ~f1;n(x; y)� E h ~f1;n(x; y)i��� = O

 s
log n

nhd+1n

!
; P�a:s: as n!1:
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Proof. The proof of this lemma makes use of the covering technique and the

Fuk-Nagaev�s inequality for strong mixing data (see Rio[66, formula 6.19b, page

87]). The compact set 
 can be covered by a �nite number ln of balls of radius

!n = (n�1h
d(1+2�)
n )

1
2� ; where � is the Hölder exponent. Let Bk := B(xk; !n);

k = 1; :::; ln, denote each ball centered at some points xk. Since 
 is bounded,

there exists a constant C such that !nln � C: For any x in 
; there exists Bk
which contains x is that jx� xkj � !n:

Set, for any i � 1 and any (x; y) 2 IRd � IR

Zi (x; y) :=
�

nhd+1n

�
1

G(Yi)
Kd

�
x�Xi

hn

�
H(1)

�
y � Yi
hn

�
� E

�
1

G(Yi)
Kd

�
x�X1

hn

�
H(1)

�
y � Yi
hn

���
:

Clearly, we have
nX
i=1

Zi (x; y) =
n
~f1;n(x; y)� ~f1;n(xk; y)�

�
E
h
~f1;n(x; y)

i
� E

h
~f1;n(xk; y)

i�o
+
�
~f1;n(xk; y)� E

h
~f1;n(xk; y)

i�
=:

nX
i=1

~Zi (x; y) +

nX
i=1

Zi (xk; y) ;

one then has

sup
x2


�����
nX
i=1

Zi (x; y)

����� � max
1�k�qn

sup
x2Bk

�����
nX
i=1

~Zi (x; y)

�����| {z }
An

+ max
1�k�qn

�����
nX
i=1

Zi (xk; y)

�����| {z } :
Bn

First, we have

An �
1

nhd+1n

nX
i=1

���� �

G(Yi)
H(1)

�
y � Yi
hn

����� ����Kd

�
x�Xi

hn

�
�Kd

�
xk �Xi

hn

�����
+

1

hd+1n

E

����� �

G(Yi)
H(1)

�
y � Yi
hn

����� ����Kd

�
x�Xi

hn

�
�Kd

�
xk �Xi

hn

������
=: A1n + A2n:

Assumptions (K1) and (K2), yield

A1n �
�M0 jx� xkj�

G(aF )h
d(1+�)+1
n

� C!�nh
�d(1+�)�1
n

= O
��
nhd+2n

��1=2�
:
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Similar argument as above, lead to the same bound for A2n: Hence, by (H1 : a)

and for all n large enough, we get An = oP(1):

Now, we focus on Bn, under (K1) and (K2), the rv�s Wi := nhd+1n Zi (xk; y) are

centered and may be bounded by

2�M0Md

G(aF )
� C <1:

The use of the well known Fuk-Nagaev�s inequality slightly modi�ed in Ferraty

and Vieu [22, proposition A.11-ii), page 237], allows one to get, for all " > 0 and

� > 1

P

(
max
1�k�qn

�����
nX
i=1

Zi (xk; y)

����� > "

)
�

qnX
i=1

P

(�����
nX
i=1

Zi (xk; y)

����� > "

)

� C!�1n

8<:n�
�

�

"nhd+1n

��+1
+

 
1 +

"2n2h
2(d+1)
n

�sn

!� r
2

9=;
=: B1n +B2n (4.12)

where

sn =
X
1�i�n

X
1�j�n

jCov(Wi;Wj)j :

By taking

� = (log n)1+�; where � > 0; and " = "0

s
log n

nhd+1n

for some "0 > 0: (4.13)

We get

B1n = Cn1�
�+1
2
+ 1
2� (log n)�(1+�)�

�+1
2

�
"�+10 h

d( 1
2�
+1)

n h
(d+1) v+1

2
n

��1
:

Then, using (H1 : c) we get

B1n � C 0(log n)�(1+�)�
v+1
2 n�1�

�
2�
(�(�+1)+2�+1� 1

�
);

Hence, for any � as in (H1 : c), B1n is bounded by the term of a �nite-sum series.

Let�s now examine the term B2n. Firstly, we have to get the asymptotic behavior

of

sn =
nX
i=1

V ar(Wi) +
X

1�i<j�n
jCov(Wi;Wj)j

=: svarn + scovn :
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Assumption (K2) implies that, the kernel H(1) is bounded by a constantM0 > 0.

Hence, under (K1), (D1) and a change of variable we have

svarn = nE

�
�2

G2(Y1)
K2
d

�
xk �X1

hn

�
H(1)2

�
y � Y1
hn

��
� nE2

�
�

G(Yi)
Kd

�
xk �X1

hn

�
H(1)

�
y � Y1
hn

��
� �2M2

0

G2(aF )

�
nhd+1n + nh2(d+1)n

�
= O

�
nhd+1n

�
: (4.14)

On the other hand, (M1), (K1) and (K2) lead to

jCov(Wi;Wj)j =
����Z Z Z Z �

G(r)
Kd

�
xk � u
hn

�
H(1)

�
y � r

hn

�
�

G(t)
Kd

�
xk � s
hn

�
�H(1)

�
y � t

hn

�
f �1;1;j+1;j+1(u; r; s; t)dudrdsdt

�
Z Z

�

G(r)
Kd

�
xk � u
hn

�
H(1)

�
y � r

hn

�
f �(u; r)dudr

�
Z Z

�

G(t)
Kd

�
xk � s
hn

�
H(1)

�
y � t

hn

�
f �(s; t)dsdt

����
� �2

G2(aF )

����Z Z Z Z Kd

�
xk � u
hn

�
H(1)

�
y � r

hn

�
Kd

�
xk � s
hn

�
� H(1)

�
y � t

hn

��
f �1;1;j+1;j+1(u; r; s; t)� f �(u; r)f �(s; t)

�
dudrdsdt

���� :
Using Assumption (D4) and a change of variable, it follows that

jCov(Wi;Wj)j = O
�
h2(d+1)n

�
: (4.15)

Note also that, these covariances can be controlled by means of the usual Davy-

dov covariance inequality for mixing processes (see Rio [66, formula 1.12a, page

10]; or Bosq [7, formula 1.11, page 22]). We have

8i 6= j; jCov(Ui; Uj)j � C� (ji� jj) : (4.16)

To evaluate scovn , we use the technique developed by Masry [49]. We deduce

easily that for 'n > 0

scovn =
X

0<ji�jj�'n

jCov(Wik;Wjk)j+
X

ji�jj>'n

jCov(Wik;Wjk)j

= O(nh2(d+1)n 'n) +O(n2� ('n)):
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It su¢ ce to take 'n =
l�
n�1hd+1n

��1=�m
(where d:e denotes the smallest integer

greater than the argument), and use (H1 : b), to get

scovn = O(nhd+1n ): (4.17)

Then, (4.14) and (4.17) lead directly to

sn = O
�
nhd+1n

�
:

Consequently, by taking r and " as in (4.13) and using Taylor expansion of

log(1 + x), the term B2n becomes

B2n � Cn
1
2�
�C0"20h

�d(1+ 1
2�
)

n ;

which by an appropriate choice of "0 can be made O
�
n�3=2

�
, which in tern is

the general term of summable series. Thus
P

n�1 (B1n +B2n) < 1, and Borel-
Cantelli Lemma allow us to conclude. �

Lemma 4.4.3 Under Assumptions, (K) and (D3) we have, for n large enough

sup
x2


sup
a�y�b

���E h ~f1;n(x; y)i� f1(x; y)
��� = O

�
h2n
�
; P� a:s:

Proof. The bias terms do not depend on the mixing structure. The proof is

analogous to that of Lemma 4.8 in Lemdani et al. [46], therefore, it is omitted.

�

Proof of Proposition 4.2.6 In view of (4.9), we have the following classical

decomposition

sup
x2


sup
a�y�b

jfn(yjx)� f(yjx)j

� 1
�sup

x2

jvn(x)�vn(x)j

�
sup
x2


sup
a�y�b

jf1;n(x; y)� f1(x; y)j

+ �1sup
x2


sup
a�y�b

jf(yjx)j sup
x2


jvn(x)� vn(x)j
�
:

In addition, we have

sup
x2


sup
a�y�b

jf1;n(x; y)� f1(x; y)j � sup
x2


sup
a�y�b

���f1;n(x; y)� ~f1;n(x; y)
���

+ sup
x2


sup
a�y�b

��� ~f1;n(x; y)� E h ~f1;n(x; y)i���
+ sup sup

a�y�b

���E h ~f1;n(x; y)i� f1(x; y)
��� :
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The result follows straightforwardly from Lemma 4.4.1-4.4.3. �

In order to prove Theorem 4.2.8 we will prove the asymptotic normality of the

estimator of the conditional df. Using (4.6), we write

Fn(yjx) =
��1n F1;n(x; y)

��1n vn(x)
; (4.18)

where, from (4.7) and (4.5),

F1;n(x; y)

�n
=

1

nhdn

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
H

�
y � Yi
hn

�
and

vn(x)

�n
=

1

nhdn

nX
i=1

1

Gn(Yi)
Kd

�
x�Xi

hn

�
.

Ould Saïd and Lemdani [55] give three-terms decomposition of the di¤erences

��1n vn(x)� ��1v(x);

vn(x)

�n
� v(x)

�
=
vn(x)

�n
� ~v(x)

�
+
~vn(x)

�
� E

�
~vn(x)

�

�
+ E

�
~vn(x)

�

�
� v(x)

�
(4.19)

=: �n1 (x) + �n2 (x) + �n3 (x) : (4.20)

Similarly, Lemdani et al. [46] give three-terms decomposition of the di¤erences

��1n F1;n(x; y)� ��1F(x; y);

F1;n(x; y)

�n
� F (x; y)

�
=
F1;n(x; y)

�n
�
~F1;n(x; y)

�
+
~F1;n(x; y)

�
� E

"
~F1;n(x; y)

�

#

+ E

"
~F1;n(x; y)

�

#
� F (x; y)

�

=: �n1 (x; y) + �n2 (x; y) + �n3 (x; y) : (4.21)

We �rst consider the negligible terms in (4.20) and (4.21).

Lemma 4.4.4 Under Assumptions of Lemma 4.4.1 and for any x, y both
p
nhdn�n1 (x)

and
p
nhdn�n1 (x; y) are op(1) as n!1:
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Proof. Using Lemma 3.4 in Liang et al. [42] (see Lemma 2.2.1, Chapter 2)

and Lemma 4.1 in Ould Saïd et al. [58], we getp
nhdn�n1 (x) �

p
nhdn

supy�aF jGn(y)�G(y)j
Gn(aF )G(aF )

v�n(x)

= OP

�p
hdn

�
:

In the same way, p
nhdn�n1 (x; y) = OP

�p
hdn

�
;

by using (K2). �

Lemma 4.4.5 Under Assumptions (K), (D3) ; (D4) ; and (H1 : a) ; for any x,
y both

p
nhdn�n3 (x) and

p
nhdn�n3 (x; y) are op(1) as n!1:

Proof. We have p
nhdn�n3 ( x) =

1

�
fE [~vn(x)]� v(x)g :

Using this, the result is a direct consequence of Lemma 4.4 in Lemdani et al.

[46] . Likewise, we can show
p
nhdn�n3 (x; y) = oP (1) : �

Now we consider the dominant terms �n2 (x) and �n2 (x; y) and prove thatp
nhdn (�n2 (x; y) ; �n2 (x))

T D! N
�
0 ; �2(x; y)

�
where the variance �2(x; y) will be explicitly given later on.

We follow the same lines as Louani and Ould Saïd [47] for the kernel conditional

mode estimator or as Berlinet et al. [4] for the conditional quantile estimator

in the case of complete data (no truncation). Let c = (c1; c2)
T be a pair of real

numbers satisfying c21 + c22 6= 0: Putp
nhdn (c1�n2 (x) + c2�n2 (x; y)) =:

�
nhdn

��1=2 nX
i=1

�i (x; y)

where

�i (x; y) =
c1

Gn(Yi)
Kd

�
x�Xi

hn

�
� c1E

�
1

Gn(Yi)
Kd

�
x�Xi

hn

��
+

c2
Gn(Yi)

Kd

�
x�Xi

hn

�
H

�
y � Yi
hn

�
� c2E

�
1

Gn(Yi)
Kd

�
x�Xi

hn

�
H

�
y � Yi
hn

��
=: c1�1;i � c1E [�1;i] + c2�2;i � c2E [�2;i] :
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Lemma 4.4.6 Let (x; y) 2 IRd � IR, under assumptions (K1), (K2) ; (D3) ;
(D4) ; and (H1 : a) ; we have as n!1;

1

hdn
E
�
�2
1 (x; y)

�
! ��1�cT� (x; y) c; (4.22)

where � and � (x; y) are described as in Proposition 4.2.7,

jCov [�1;1;�1;j+1]j = O
�
h2dn
�
; (4.23)

jCov [�1;1;�2;j+1]j = O
�
h2dn
�

(4.24)

and

jCov [�2;1;�2;j+1]j = O
�
h2dn
�
: (4.25)

Proof. Firstly, remark that

1

hdn
E
�
�2
1 (x; y)

�
=
c21
hdn
V ar [�1;1] +

c22
hdn
V ar [�2;1] +

2c1c2
hdn

Cov [�1;i;�2;j] :

The �rst term of the right hand side of this latter equation is given in Ould Saïd

and Lemdani [55, Lemma 6.9] . On the other hand, by Lemma 4.13 in Lemdani

et al. [46] we get the second and last term. Particularly,

1

hdn
V ar [�1;1] =

�

�
�2 (x; y) + o (1) ;

1

hdn
V ar [�1;1] =

�

�
�0 (x; y) + o (1)

and
1

hdn
Cov [�1;i;�2;j] =

�

�
�1 (x; y) + o (1) :

To prove (4.23), we make use (D4) and a change of variable, we obtain

jCov [�1;1;�1;j+1]j �
h2dn

G2n(aF )

Z Z
Kd (u)Kd (r)

�
��f �1;j+1 (x� hnu;x� hnr)� v� (x� hnu) v

� (x� hnr)
�� dudr

= O
�
h2dn
�
:

In the same way, we get : jCov [�1;1;�2;j+1]j =����Cov � 1

Gn(Y1)
Kd

�
x�X1

hn

�
;

1

Gn(Yj+1)
Kd

�
x�Xj+1

hn

�
H

�
y � Yj+1
hn

������
� 1

G2n(aF )

����Z Z Z Kd

�
x� u
hn

�
Kd

�
x� r
hn

�
H

�
y � s

hn

�
f �1;j+1;j+1 (u; r; s) dudrds

�
Z
Kd

�
x� u
hn

�
v� (u) du

Z Z
Kd

�
x� r
hn

�
H

�
y � s

hn

�
f �1;j+1 (r; s) drds

���� :
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Under (K2), the kernel H is bounded by 1. Hence integrates over s, using (D4)

and a change of variable lead to get (4.24). Likewise, we obtain (4.25). �

Lemma 4.4.7 Let (x; y) 2 IRd� IR, under the assumptions of Lemma 4.4.6 and
condition (H2) ; we have

1

nhdn

nX
1�i<j�n

jE [�i (x; y) �j (x; y)]j ! 0; as n!1: (4.26)

Proof. The proof is based on decomposition (4.27) hereafter,

1

nhdn

nX
1�i<j�n

jE [�i (x; y) �j (x; y)]j =
c21
nhdn

nX
1�i<j�n

Cov [�1;i;�1;j]

+
c22
nhdn

nX
1�i<j�n

Cov [�2;i;�2;j]

+
c1c2
nhdn

nX
1�i<j�n

Cov [�1;i;�2;j]

+
c1c2
nhdn

nX
1�i<j�n

Cov [�2;i;�1;j]

=: A1n +A2n +A3n +A4n: (4.27)

We will prove that each term of the right hand side of (4.27) tends to 0 as n

tends to in�nity. In the sequel, we use technique developed by Masry [49] and

used in Louani and Ould Saïd [47]. De�ne the sets S1 and S2 as follows

S1 = f(i; j) : i; j 2 f1; 2; :::; ng ; 1 � j � i � mng ;
S2 = f(i; j) : i; j 2 f1; 2; :::; ng ; mn + 1 � j � i � n� 1g

where mn is as in (H2) and observe that S1 [ S2 = f(i; j) : 1 � i < j � ng :
If mn � n� 1; then S2 = ?: Therefore, using (4.23)

A1n =
c21
nhdn

nX
j=2

j�1X
i=1

Cov

�
1

Gn(Yi)
Kd

�
x�Xi

hn

�
;

1

Gn(Yj)
Kd

�
x�Xj

hn

��
� Cmnh

d
n:

Suppose now that mn � n� 2: It follows that

A1n =
c21
nhdn

X
(i;j)2S1

Cov [�1;i;�1;j] +
c21
nhdn

X
(i;j)2S2

Cov [�1;i;�1;j] : (4.28)
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By (4.23), we have

c21
nhdn

X
(i;j)2S1

Cov [�1;i;�1;j]

=
c21
nhdn

n�mnX
i=1

mn+1X
j=i+1

Cov

�
1

Gn(Yi)
Kd

�
x�Xi

hn

�
;

1

Gn(Yj)
Kd

�
x�Xj

hn

��
� Cmnh

d
n:

To bound the sum over S2 in (4.28), we use moment inequality due to Rio [65].

Let p; q; r be integer numbers greater than 1 such that
1

p
+
1

q
= 1� 1

r
: We have

c21
nhdn

X
(i;j)2S1

Cov [�1;i;�1;j] =
c21
nhdn

X
(i;j)2S1

21+
1
r (� (i� j))

1
r (E j�1;1jp)

1
p (E j�1;1jq)

1
q :

Moreover, under (K1), we get for n large enough,

E j�1;1jp = E
���� 1

Gn(Y1)
Kd

�
x�X1

hn

�����p
� 1

Gpn(aF )

����Z Kp
d

�
x� u
hn

�
v�(u)du

����
� hdn
�p

Z
jKd (r)jp v(x� hnr)dr

� C(x)hdn: (4.29)

where C(x) is a constant possibly depending on x. Hence, using (4.29), it follows

that

c21
nhdn

X
(i;j)2S1

Cov [�1;i;�1;j] �
c21
nhdn

n�1X
k=mn+1

n�kX
i=1

�
21+

1
r (� (k))

1
r
�
C(x)hdn

�1� 1
r

�

� C(x)21+
1
rh

� d
r

n

n�1X
k=mn+1

(� (k))
1
r :

Therefore, by assumption (H2) we should have A1n ! 0; as n!1:

Finally, by using the same argument as for A1n. We can get that, each terms
of the right hand side of (4.27) goes to 0 as n goes to in�nity. The details are

omitted. �

Lemma 4.4.8 Let (x; y) 2 IRd� IR, under the assumptions of Lemma 4.4.7, we
have

nhdnV ar (c1�n2 (x) + c2�n2 (x; y)) = ��1�cT� (x; y) c; as n!1: (4.30)
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Proof. Remark that

nhdnV ar (c1�n2 (x) + c2�n2 (x; y)) =
1

nhdn
V ar

 
nX
i=1

�i (x; y)

!

=
c21
hdn
V ar (�1;1) +

2c21
nhdn

X
1�i<j�n

Cov [�1;i;�1;j]

+
c22
hdn
V ar (�2;1) +

2c22
nhdn

X
1�i<j�n

Cov [�2;i;�2;j]

+
2c1c2
nhdn

X
1�i<j�n

Cov [�1;i;�2;j]

+
2c1c2
nhdn

X
1�i<j�n

Cov [�1;j;�2;i]

+
2c1c2
nhdn

Cov [�1;1;�2;1] :

The result follows directly from Lemma 4.4.6 and 4.4.7. �

In order to establish the asymptotic normality for sums of dependent rv�s, we

use the Doob�s small-block and large-block technique (see, Doob [17, pp. 228�

232]) according to which the sum
Pn

i=1�i (x; y) is split up as follows. Partition

f1; ::; ng into 2rn + 1 subsets with large-block of size Mn and small-block of size

Nn; where (Mn) ; (Nn) and (rn) are three sequences of integer numbers described

in Assumption (H3) and set
nX
i=1

�i (x; y) = Sn (x; y) + T1;n (x; y) + T2;n (x; y) (4.31)

where

Sn (x; y) =
rnX
j=1

Lj (x; y) ;

T1;n (x; y) =
rnX
j=1

L0j (x; y) and T2;n (x; y) =
nX

j=(Mn+Nn)rn+1

�j (x; y)

with

Lj (x; y) =

j(Mn+Nn)+MnX
i=j(Mn+Nn)+1

�i (x; y) ; 0 � j � rn � 1

and

L0j (x; y) =

(j+1)(Mn+Nn)X
i=j(Mn+Nn)+Mn+1

�i (x; y) ; 0 � j � rn � 1:
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We �rst show that
�
nhdn

��1=2
(T1;n (x; y) + T2;n (x; y))

P! 0; as n ! 1, next we
state that

�
nhdn

��1=2
Sn (x; y) converge in distribution to Gaussian variable with

0 mean and a variance given explicitly.

Lemma 4.4.9 Under the assumptions of Lemma 4.4.7 and assumption (H3 : a),
we have

�
nhdn

��1=2
(T1;n (x; y) + T2;n (x; y))

P! 0; as n!1: (4.32)

Proof. By Markov inequality, it su¢ ces to show that

1

nhdn
E
�
T 21;n (x; y) + T 22;n (x; y)

�
! 0; as n!1:

First, observe that

1

nhdn
E
�
T 21;n (x; y)

�
=

1

nhdn

rnX
j=1

E
h�
L0j (x; y)

�2i
+

2

nhdn

X
1�i<j�rn

E
�
L0i (x; y)L

0
j (x; y)

�
=
rnMn

nhdn
E
�
�2
1 (x; y)

�
+

2

nhdn

rnX
j=1

X
1�i<j�Mn

E [�i (x; y)�j (x; y)]

+
2

nhdn

X
1�k<l�rn

E

240@ (k+1)(Mn+Nn)X
i=k(Mn+Nn)+1

�i (x; y)

1A0@ (l+1)(Mn+Nn)X
j=l(Mn+Nn)+1

�j (x; y)

1A35
� rnMn

nhdn
E
�
�2
1 (x; y)

�
+
2rn
nhdn

X
1�i<j�n

E j�i (x; y)�j (x; y)j

+
2

nhdn

X
1�i<j�n

E j�i (x; y)�j (x; y)j : (4.33)

Using (H3 : a) and (4.22), the �rst term in the right hand side of (4.33) converge

to zero as n!1: By Lemma 4.4.7, the second and last terms in (4.33) converge
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to zero as n!1: Likewise, we have

1

nhdn
E
�
T 22;n (x; y)

�
=

1

nhdn
E

240@ nX
i=(Mn+Nn)rn+1

�i (x; y)

1A235
=

1

nhdn
(n� (Mn +Nn) rn)E

�
�2
1 (x; y)

�
+

2

nhdn

X
1�i<j�n�(Mn+Nn)rn

E [�i (x; y)�j (x; y)]

�
�
1� rnMn

n
+
rnNn
n

�
1

hdn
E
�
�2
1 (x; y)

�
+

2

nhdn

X
1�i<j�n

E j�i (x; y)�j (x; y)j :

Therefore, (4.22), Assumption (H3 : a) and Lemma 4.4.7 give the result. �

Lemma 4.4.10 Under the assumptions of Lemma 4.4.9, we have

1

nhdn

rnX
j=1

V ar (Lj (x; y))! ��1�cT� (x; y) c; as n!1: (4.34)

Proof. From (4.31), we have�
nhdn

��1=2
Sn (x; y) =

�
nhdn

��1=2 nX
i=1

�i (x; y)�
�
nhdn

��1=2
(T1;n (x; y) + T2;n (x; y)) :

Using (4.22) and Lemma 4.4.9, we get
1

nhdn
V ar (Sn (x; y))! ��1�cT� (x; y) c; as n!1: (4.35)

On the other hand,

1

nhdn
V ar (Sn (x; y)) =

1

nhdn

rnX
j=1

V ar (Lj (x; y))+
2

nhdn

X
1�i<j�rn

E [Li (x; y)Lj (x; y)]

where

1

nhdn

X
1�i<j�rn

E [Li (x; y)Lj (x; y)] =
1

nhdn

X
1�i<j�rn

E

240@ i(Mn+Nn)+MnX
k=i(Mn+Nn)+1

�k (x; y)

1A
�

0@j(Mn+Nn)+MnX
l=j(Mn+Nn)+1

�l (x; y)

1A35
� 1

nhdn

X
1�i<j�n

E j�i (x; y)�j (x; y)j :

Lemma 4.4.7 entails the desired result. �
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Lemma 4.4.11 Under the assumptions of Lemma 4.4.7and condition (H3), we
have �

nhdn
��1=2

Sn (x; y)
D! N

�
0 ; ��1�cT� (x; y) c

�
; as n!1: (4.36)

Proof. The proof is based on the approximation of
�
nhdn

��1=2
Sn (x; y) by a

sum of independent rv�s. Let Zn1(x; y); :::; Znrn(x; y) be a sequence of iid rv�s

of the same distribution as
�
nhdn

��1=2
L1 (x; y) : Denote by �n (t) the charac-

teristic function (cf) of L1 (x; y). It follows that the cf of
Prn

j=1 Znj (x; y) is

�rnn

�
t
�
nhdn

��1=2�
. Using inequality due to Roussas and Ioannides [69, Theorem

7.2], we have�����E
"
rnY
j=1

exp
n
it
�
nhdn

��1=2
Li (x; y)

o#
�

rnY
j=1

E
h
exp

n
it
�
nhdn

��1=2
Li (x; y)

oi�����
� 16 (rn � 1)� (Nn) ;

where rn and qn are de�ned in (H3). So, by (H3 : c)�����E
"
rnY
j=1

exp
n
it
�
nhdn

��1=2
Li (x; y)

o#
� �rnn

�
t
�
nhdn

��1=2������! 0; as n!1

and the rv�s
Prn

j=1 Znj (x; y) and
�
nhdn

��1=2
Sn (x; y) have the same asymptotic

distribution. Hence, it su¢ ces to show that �rnn
�
t
�
nhdn

��1=2�
converge to the cf

of N
�
0 ; ��1�cT� (x; y) c

�
as n!1: To this end, set

s2n (x; y) =

rnX
j=1

V ar (Znj (x; y)) = rnV ar (Zn1 (x; y)) =
rn
nhdn

V ar (L1 (x; y))

and
~Znj (x; y) =

Znj (x; y)

sn (x; y)
; j = 1; :::; rn:

Clearly, E
h
~Znj (x; y)

i
= 0 and

Prn
j=1 V ar

�
~Znj (x; y)

�
= 1:

In order to state the asymptotic normality, we have to show that the Lindberg

condition is satis�ed for the sequence
�
~Znj (x; y)

�
; that is,

8" > 0; 'n (") :=
rnX
j=1

Z
fjzj�"g

z2dFnj (z)! 0; as n!1
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where Fnj is the df of ~Znj (x; y), noted Fn1 because it is the same for all j =

1; :::; rn. Firstly, we have

'n (") = rn

Z
fjzj�"g

z2dFn1 (z)

= rnE
h
~Z2n1 (x; y)� 1fj ~Zn1(x;y)j�"g

i
:

On the other hand, we have

�i (x; y) �
2c1Md

G(aF )
+
2c2MdM0

G(aF )
� C <1

Therefore, by Markov inequality, we get

'n (") =
rn

nhdns
2
n (x; y)

E

"
L21 (x; y)� 1�j ~Zn1(x;y)j�"(nhdn)1=2sn(x;y)�

#

� r2nM
2
nC

2

nhdns
2
n (x; y)

P
n
jL1 (x; y)j � "

�
nhdn

�1=2
sn (x; y)

o
� C2

"2
nhdn

rnV ar (L1 (x; y))

M2
n

nhdn
: (4.37)

By (H : b; c), the last term in (4.37) tends to zero as n!1 and using Lemma

4.4.9 give the result. �

Lemma 4.4.12 Under the assumptions of Lemma 4.4.11, we havep
nhdn (c1�n2 (x) + c2�n2 (x; y))

T D! N
�
0 ; ��1�� (x; y)

�
Proof. It su¢ ces to use the Cramér-Wold device and Lemmas 4.4.6-4.4.11 to

get the result. �

Proof of Proposition 4.2.7 Consider the mapping � from IR to IR de�ned

by �(x; y) = x=y for y 6= 0: Since Fn(yjx) and F(yjx) are the respective im-
ages of ��1n (Fn(yjx); vn(x)) and ��1 (F(yjx); v(x)) by �. We deduce from Lem-
mas 4.4.6-4.4.12 and from Mann-Wold�s Theorem (see Rao [64, p 321]) thatp
nhdn (Fn(yjx)� F(yjx)) converge in distribution toN

�
0; ��1�r�T� (x; y)r�

�
;

where the gradient r� is evaluated at ��1 (F(yjx); v(x)) : Simple algebra gives
then the variance �2 (x; y). �
We embark now on the proof of Theorem 4.2.8.
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Proof of Theorem 4.2.8. We make use of the property

F(qp(x)jx) = p = Fn(qp;n(x)jx):

A Taylor expansion of Fn(:j:) in neighborhood of qp, implies that

qp;n(x)� qp(x) =
F(qp(x)jx)� Fn(qp;n(x)jx)

fn(~qp;n(x)jx)

where ~qp;n is between qp and qp;n. The continuity of f(:jx); the almost sure
convergence of qp;n(x) to qp(x) (see [58, Theorem 3.1]) and Proposition 4.2.6

imply the convergence in probability of the above denominator to f(qp(x)jx).
Proposition 4.2.7 is used to �nish the proof. �

Remark 4.4.13 If the condition fn(~qp;n(x)jx) 6= 0 was not satis�ed, we should
have increase the order of Taylor expansion and to modify the proofs of the The-

orem accordingly. Furthermore, we point out that our assumptions contain those

in Ould Saïd et al.[58] which permit us to get the convergence of the conditional

quantile estimator.



Conclusion

In this thesis, we establish the uniform almost sure convergence and asymptotic

normality of the estimator based on conditional quantiles for truncated and

dependent data. Conditional medians and quantiles are frequently used in ana-

lyzing time series data with heavy tails for their robustness properties. Although

our interest in conditional quantile estimation is motivated by the constructing

of the con�dence intervals and the forecasting from time series data.

To study a statistical model more practical for several applications, we are in-

terested in the context of the left-truncated data. We therefore sought to relax

this assumption by considering a form of dependency. We made the choice of

alpha mixing, this type of dependency modeling many processes in particular

are strongly mixing.

Our results are derived in a more general setting (strong mixing) which includes

time series modeling as a special case. It is assumed that the lifetime observations

with multivariate covariates from a stationary strong mixing process.

The progress of the quality of results is linked to that of probabilistic tools in

particular that of exponential inequalities (i.e., Fuk-Nagaev inequality). The

choice of this type of inequality and its use in the case of dependent data is

justi�ed by the fact that it can be adapted better and poses fewer technical

problems than Bosq [7] or that of Bernstein type.
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Appendix A. Cramér-Wold
device

The characteristic function t ! E
�
exp

�
itTX

��
of a vector X is determined

by the set of all characteristic function u ! E
�
exp

�
iu
�
tTX

���
of all linear

combinations tTX of the components of X: Therefore the continuity theorem

implies that the weak convergence of vectors is equivalent to weak convergence

of linear combinations.

Xn  X if and only if tTXn  tTX for all t 2 IRk: This is known as the

Cramér-Wold device. It allows to reduce all higher dimensional weak convergence

problems to the one-dimensional case.

Example (Multivariate central limit theorem) Let Y; Y1; Y2 be iid random
vectors in IRk with mean vector � = E [Y ] and covariance matrix

� = E
h
(Y � �) (Y � �)T

i
: Then

1p
n

nX
i=1

(Yi � �) =
p
n
�
�Yn � �

� D! Nk (0;�) ; as n!1:

By the Cramér-Wold device the problem can be reduced to �nding the limit

distribution of the sequences of real-variables

tT

 
1p
n

nX
i=1

(Yi � �)

!
=

1p
n

nX
i=1

�
tTYi � tT�

�
:

Since the random variable tTY1 � tT�; tTY2 � tT�; � � � are iid with zero mean

and variance tT�t; this sequence is asymptotically N1

�
0; tT�t

�
:
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Appendix B. Stochastic o and O

symbols

It is convenient to have short expressions for terms that converge in probabil-

ity to zero or are uniformly tight. The notation op (1) (�small "oh-P-one"�) is

short for a sequence of random vectors that converges to zero in probability.

The expression Op (1) (�big "oh-P-one"�) denotes a sequence that is bounded in

probability. More generally, for a given sequence of random variables Rn

Xn = op (Rn) means Xn = YnRn and Yn
P! 0;

Xn = Op (Rn) means Xn = YnRn and Yn = Op (1) :

This expresses that the sequence Xn converges in probability to zero or bounded

in probability at "rate" Rn: For deterministic sequencesXn andRn the stochastic

oh-symbols reduce to usual o and O symbols, which will be applied without

comment. For instance,

op (1) + op (1) = op (1) ; op (1) +Op (1) = Op (1) ;

op (1)Op (1) = op (1) ; (1 + op (1))
�1 = Op (1) ;

op (Rn) = Rnop (1) ; Op (Rn) = RnOp (1) ;

op (Op (1)) = op (1) :

To see the validity of these "rules" it su¢ ces to restate them in terms of explicitly

named vectors, where each op (1) and Op (1) should be replaced by a di¤erent

sequence vectors that converge to zero or is bounded in probability. In this

manner the �rst rule says; if Xn
P! 0 and Yn

P! 0; then Xn + Yn
P! 0; this is an

example of the continuous mapping theorem. The third rule is short for, if Xn

is bounded in probability and Yn
P! 0; then XnYn

P! 0:
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Appendix C. Notations and
abbreviations

a:s: almost sure convergence

rv random variable

cf characteristic function

iid independent and identically distributed

cdf cumulative distribution functions

RLT random left-truncation

Y random variable of interest

T truncation random variable

X random covariable

(X ;Y ; T ) complete sample

N sample size

(X; Y; T ) observed subsequence subject to Y � T

n size of observed sample

� truncation probability

P probability measure related to the N � sample

IE expectation operators related to P
P the conditional probability related to the n� sample

E expectation operators related to P

� (n) ��mixing coe¢ cient
qp(x) pth conditional quantile
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Abstract

In this thesis we study some asymptotic properties of the kernel conditional

quantile estimator when the interest variable is subject to random left truncation.

The uniform strong convergence rate of the estimator is obtained. In addition,

it is shown that, under regularity conditions and suitably normalized, the kernel

estimate of the conditional quantile is asymptotically normally distributed.

Our interest in conditional quantile estimation is motivated by it�s robusteness,

the constructing of the con�dence bands and the forecasting from time series

data. Our results are obtained in a more general setting (strong mixing) which

includes time series modelling as a special case.

Résumé

Dans cette thèse nous étudions certaines propriétés asymptotiques de l�estimateur

à noyau du quantile conditionnel lorsque la variable d�intérêt est soumise à une

troncature aléatoire à gauche. La convergence uniforme presque sûre avec vitesse

de l�estimateur est obtenue. En outre, il est démontré que, sous des conditions

de régularité, l�estimateur à noyau du quantile conditionnel convenablement nor-

malisé est asymptotiquement normal.

L�intérêt principal dans l�étude de l�estimation des quantiles conditionnels est

sa robustesse, la construction des intervalles de con�ance et la prévision à par-

tir des données de séries chronologiques. Nos résultats sont obtenus dans un

cadre général (mélangeance forte), qui inclut des modèles populaires de séries

�nancières et économétriques comme cas particulier.




